Science.gov

Sample records for resolved infrared spectroscopy

  1. Spatially Resolved Infrared Spectroscopy of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Knop, Robert Andrew, Jr.

    This thesis presents infrared spectroscopy of the circumnuclear regions of 23 Seyfert galaxies. Observations are spectrally resolved with a resolution of λΔλ~1000 and spatially resolved to ~1'', corresponding to ~102 pc for the objects in the sample. The instrument used for the observations, the Palomar Near-Infrared Spectrometer, is described, and problems peculiar to reduction of data from it are discussed. The lines observed include Paβ, Brγ, (FeII) (λ=1.2567μm), and H2 (λ=2.1213μm). In nine objects, the coronal line (SIX) (λ=1.2524μm) is also detected. Spatially resolved line emission is clearly visible in approximately half of the objects observed. The data for five of the objects showing the best spatially resolved infrared line emission are analyzed in detail. These objects include Seyfert 1.5 galaxy NGC 4151 and Seyfert 2 galaxies Mk 1066, NGC 2110, NGC 4388, and Mk 3. The data for the remaining objects is presented in tabular form, and each object is discussed briefly. The data argue that processes associated with the Seyfert nucleus are responsible for the bulk of the observed (FeII) emission. Kinematic and spatial associations can be drawn between features in the (FeII) line profiles and other processes associated with the active nucleus, such as outflows seen in ionized optical emission and radio lobes. Most of the (FeII) appears to emerge from partially ionized regions excited by nuclear x-rays, with an additional contribution from fast shocks. Some of the H2 emission also appears to be associated with the nuclear activity. However, in some cases the H2 emission is observed to have a different spatial distribution from (FeII) and the H+ emission. The H2 emission is probably thermally excited. No significant differences are found between the infrared line emission of Seyfert and Seyfert 1.x galaxies.

  2. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  3. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  4. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  5. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  6. Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Zhou, Qun; Sun, Su-qin

    2016-07-01

    Wood resins are valuable natural products with wide utilizations. Either in the form of resin exudates or in the form of resin-containing woods, natural wood resins are usually complex mixtures consisting of various compounds. Therefore, effective chemical characterization methods are necessary for the research and quality control of natural wood resins. No need for separation or labeling, wood resin samples can be measured directly by Fourier transform infrared (FT-IR) spectroscopy, which reduces the testing costs and avoids the possible distortions caused by the pretreatments. However, the absorption bands of various compositions in the resin sample are assembled in a single spectrum by the separation-free measurement, which makes it difficult to identify the compounds of interest and decreases the limits of detection. In this research, the temperature-resolved and space-resolved FT-IR techniques are proposed to resolve the overlapped signals for the direct, selective, and sensitive characterization of natural wood resins. For resin exudates, the temperature-resolved FT-IR spectroscopy and two-dimensional correlation analysis can resolve the absorption bands of different compounds according to their responses to the thermal perturbations. For resin-containing woods, the FT-IR microspectroscopic imaging and principal component analysis can resolve the absorption bands of different compounds according to their positions. The study of six kinds of wood resins proves the feasibility of temperature-resolved and space-resolved FT-IR techniques for the direct, selective, and sensitive chemical characterization of natural wood resins.

  7. Conventional and Time-Resolved Infrared Spectroscopy of La-1111 Thin Films

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoxiang; Dai, Y.; Homes, C.; Kidszun, M.; Haindl, S.; Carr, G.

    2013-03-01

    We have performed both conventional as well as time-resolved far-infrared spectroscopy on LaFeAsO1-xFx pnictide thin films. The conventional spectroscopy results can be fit using a simple gapped superconductor + normal conductor two-component model. Absorption by quasiparticles in a gap system with nodes is a plausible explanation for the normal component [Lobo et al. Phys. Rev. B 82, 100506(R) (2010)]. The time-resolved study is performed by laser-pump, far-IR probe spectroscopy using synchrotron radiation at NSLS beamline U4IR. A laser pulse breaks superconducting pairs and the synchrotron probe is used to sense the recombination process. In contrast to the picosecond response observed for cuprate superconductors, we observe a nanosecond response typical of a fully gapped superconductor where phonon-bottleneck effects slow the effective recombination rate. This result suggests the presence of a full isotropic gap, as might exist at lower energies due to electronic scattering [Carbotte et al. Phys. Rev. B 81, 104510 (2010)]. Supported by the U.S. Dep't. of Energy under contract DE-AC02-98CH10886 at Brookhaven Nat'l Lab.

  8. Time-resolved Fourier transform infrared spectroscopy: Application to pulsed discharges

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Hama, Yoichi; Nishida, Shigeki

    2005-07-01

    Time-resolved Fourier transform spectroscopy (TR-FTS) is reviewed, with emphasis on synchronous FTS using continuously scanning interferometers. By using a high-resolution Bruker IFS 120 HR, a TR-FTS method has been developed with the help of a microcontroller SX, where a maximum of 64 time-resolved data are recorded with a preset time interval in a single scan of the interferometer. The time resolution is 1 μs, limited by the response time of the detector system used. This method has been applied to a pulsed discharge in an Ar and H 2 mixture to observe time profiles of ArH + and ArH emission spectra. Electronic transitions of He 2 have been observed in the infrared region with this method, and from the time profiles, He 2 in Rydberg states with higher energy than the b3Π state is found to be produced efficiently in afterglow plasma. Fifteen bands in the 2300-8000 cm -1 region have been assigned by using previously reported data from the optical region. A new band from the 5 f state has been assigned for the first time through the 5 f-4 d band in the 2600 cm -1 region.

  9. Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamaoka, Takatumi; Katsumura, Toshihito; Murase, Norio; Nishio, Shinya; Osada, Takuya; Sako, Takayuki; Higuchi, Hiroyuki; Kurosawa, Yuko; Shimomitsu, Teruichi; Miwa, Mitsuharu; Chance, Britton

    2000-01-01

    The purpose of this study was to quantify muscle deoxygenation in human skeletal muscles using near infrared time-resolved spectroscopy (NIRTRS) and compare NIRTRS indicators and blood saturation. The forearm muscles of five healthy males (aged 27 - 32 yrs.) were monitored for changes in hemoglobin saturation (SO2) during 12 min of arterial occlusion and recovery. SO2 was determined by measuring the temporal profile of photon diffusion at 780 and 830 nm using NIRTRS, and was defined as SO2-TRS. Venous blood samples were also obtained for measurements of SvO2, and PvO2. Interstitial PO2(PintO2) was monitored by placing an O2 electrode directly into the muscle tissue. Upon the initiation of occlusion, all parameters fell progressively until reaching a plateau in the latter half of occlusion. It was observed at the end of occlusion that SO2-TRS (24.1 +/- 5.6%) agreed with SvO2 (26.2 +/- 6.4) and that PintO2 (14.7 +/- 1.0 Torr) agreed with PvO2 (17.3 +/- 2.2 Torr). The resting O2 store (oxygenated hemoglobin) and O2 consumption rate were 290 (mu) M and 0.82 (mu) Ms-1, respectively, values which reasonably agree with the reported results. These results indicate that there was no O2 gradient between vessels and interstisium at the end of occlusion.

  10. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  11. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  12. A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing

    NASA Astrophysics Data System (ADS)

    Re, Rebecca; Contini, Davide; Caffini, Matteo; Cubeddu, Rinaldo; Spinelli, Lorenzo; Torricelli, Alessandro

    2010-11-01

    We designed and developed a compact dual-wavelength and dual-channel time-resolved system for near-infrared spectroscopy studies of muscle and brain. The system employs pulsed diode lasers as sources, compact photomultipliers, and time-correlated single photon counting boards for detection. To exploit the full temporal and dynamic range of the acquisition technique, we implemented an approach based on wavelength space multiplexing: laser pulses at the two wavelengths are alternatively injected into the two channels by means of an optical 2×2 switch. In each detection line (i.e., in each temporal window), the distribution of photon time-of-flights at one wavelength is acquired. The proposed approach increases the signal-to-noise ratio and avoids wavelength cross-talk with respect to the typical approach based on time multiplexing. The instrument was characterized on tissue phantoms to assess its properties in terms of linearity, stability, noise, and reproducibility. Finally, it was successfully tested in preliminary in vivo measurements on muscle during standard cuff occlusion and on the brain during a motor cortex response due to hand movements.

  13. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  14. Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy.

    PubMed

    Ganesan, Goutham; Leu, Szu-Yun; Cerussi, Albert; Tromberg, Bruce; Cooper, Dan M; Galassetti, Pietro

    2016-05-01

    Near-infrared spectroscopy has long been used to measure tissue-specific O2 dynamics in exercise, but most published data have used continuous wave devices incapable of quantifying absolute Hemoglobin (Hb) concentrations. We used time-resolved near-infrared spectroscopy to study exercising muscle (Vastus Lateralis, VL) and prefrontal cortex (PFC) Hb oxygenation in 11 young males (15.3 ± 2.1 yrs) performing incremental cycling until exhaustion (peak VO2 = 42.7 ± 6.1 ml/min/kg, mean peak power = 181 ± 38 W). Time-resolved near-infrared spectroscopy measurements of reduced scattering (μs´) and absorption (μa) at three wavelengths (759, 796, and 833 nm) were used to calculate concentrations of oxyHb ([HbO2]), deoxy Hb ([HbR]), total Hb ([THb]), and O2 saturation (stO2). In PFC, significant increases were observed in both [HbO2] and [HbR] during intense exercise. PFC stO2% remained stable until 80% of total exercise time, then dropped (-2.95%, p = .0064). In VL, stO2% decreased until peak time (-6.8%, p = .01). Segmented linear regression identified thresholds for PFC [HbO2], [HbR], VL [THb]. There was a strong correlation between timing of second ventilatory threshold and decline in PFC [HbO2] (r = .84). These findings show that time-resolved near-infrared spectroscopy can be used to study physiological threshold phenomena in children during maximal exercise, providing insight into tissue specific hemodynamics and metabolism. PMID:26451845

  15. PHASE-RESOLVED INFRARED SPECTROSCOPY AND PHOTOMETRY OF V1500 CYGNI, AND A SEARCH FOR SIMILAR OLD CLASSICAL NOVAE

    SciTech Connect

    Harrison, Thomas E.; Campbell, Randy D.; Lyke, James E. E-mail: jlyke@keck.hawaii.edu

    2013-08-01

    We present phase-resolved near-infrared photometry and spectroscopy of the classical nova (CN) V1500 Cyg to explore whether cyclotron emission is present in this system. While the spectroscopy do not indicate the presence of discrete cyclotron harmonic emission, the light curves suggest that a sizable fraction of its near-infrared fluxes are due to this component. The light curves of V1500 Cyg appear to remain dominated by emission from the heated face of the secondary star in this system. We have used infrared spectroscopy and photometry to search for other potential magnetic systems among old CNe. We have found that the infrared light curves of V1974 Cyg superficially resemble those of V1500 Cyg, suggesting a highly irradiated companion. The old novae V446 Her and QV Vul have light curves with large amplitude variations like those seen in polars, suggesting they might have magnetic primaries. We extract photometry for 79 old novae from the Two Micron All Sky Survey Point Source Catalog and use those data to derive the mean, un-reddened infrared colors of quiescent novae. We also extract WISE data for these objects and find that 45 of them were detected. Surprisingly, a number of these systems were detected in the WISE 22 {mu}m band. While two of those objects produced significant dust shells (V705 Cas and V445 Pup), the others did not. It appears that line emission from their ionized ejected shells is the most likely explanation for those detections.

  16. Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Wang, W. B.; Tang, G. C.; Achilefu, S.; Alfano, R. R.

    2011-03-01

    Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection will be presented. Two contrast agents, Cybesin and Cytate, were investigated using time-resolved spectroscopy in aqueous solution and cancerous and normal prostate tissues. The time evolution of the fluorescent dipole in solution was studied using a system of first-order linear differential equations containing two main parameters: the decay rate of emission and the rate of one orthogonal emission component transferring to another. An analytical polarization model was developed and used to extract rotational times and fluorescence anisotropies of the contrast agents in prostate tissues. The differences of rotational times and polarization anisotropies were observed for Cybesin (Cytate) in cancerous and normal prostate tissue, which reflect preferred bond of contrast agents and cancerous tissue cells. The conjugation of Cybesin (Cytate) to prostate cancerous cells offers high contrast between normal and cancerous tissues.

  17. Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Makoto; Kawashima, Yasutake; Takeda, Akihiro; Ohmori, Tsutomu; Fujii, Masaaki

    2007-05-01

    A new far-field infrared super-resolution microscopy combining laser fluorescence microscope and picosecond time-resolved transient fluorescence detected IR (TFD-IR) spectroscopy is proposed. TFD-IR spectroscopy is a kind of IR-visible/UV double resonance spectroscopy, and detects IR transitions by the transient fluorescence due to electronic transition originating from vibrationally excited level populated by IR light. IR images of rhodamine-6G solution and of fluorescent beads were clearly observed by monitoring the transient fluorescence. Super-resolution twice higher than the diffraction limit for IR light was achieved. The IR spectrum due to the transient fluorescence was also measured from spatial domains smaller than the diffraction limit.

  18. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  19. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  20. Resolving the coronal line region of NGC 1068 with near-infrared integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Rodríguez-Ardila, A.; Komossa, S.; McGregor, Peter J.

    2013-04-01

    We present adaptive optics-assisted J- and K-band integral field spectroscopy of the inner 300 × 300 pc of the Seyfert 2 galaxy NGC 1068. The data were obtained with the Gemini Near-infrared Integral-Field Spectrograph integral field unit spectrometer, which provided us with high-spatial and high-spectral resolution sampling. The wavelength range covered by the observations allowed us to study the [Ca VIII], [Si VI], [Si VII], [Al IX] and [S IX] coronal line (CL) emission, covering ionization potentials up to 328 eV. The observations reveal very rich and complex structures, both in terms of velocity fields and emission-line ratios. The CL emission is elongated along the NE-SW direction, with the stronger emission preferentially localized to the NE of the nucleus. CLs are emitted by gas covering a wide range of velocities, with maximum blueshifts/redshifts of ˜ -1600/1000 km s-1. There is a trend for the gas located on the NE side of the nucleus to be blueshifted while the gas located towards the SW is redshifted. The morphology and the kinematics of the near-infrared CLs are in very good agreement with the ones displayed by low-ionization lines and optical CLs, suggesting a common origin. The line flux distributions, velocity maps, ionization structure (traced by the [Si VII]/[Si VI] emission-line ratio) and low-ionization emission-line ratios (i.e. [Fe II]/Paβ and [Fe II]/[P II]) suggest that the radio jet plays an important role in the structure of the CL region of this object, and possibly in its kinematics.

  1. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    PubMed

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-01

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). PMID:21384966

  2. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-01

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH3OSO produced upon irradiation of a flowing gaseous mixture of CH3OS(O)Cl in N2 or CO2 at 248 nm. Two intense transient features with origins near 1152 and 994 cm-1 are assigned to syn-CH3OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm-1, assigned to the S=O stretching mixed with CH3 rocking (ν8) and the S=O stretching mixed with CH3 wagging (ν9) modes, respectively, and the latter to the C-O stretching (ν10) mode at 994 ± 6 cm-1. Two weak bands at 2991 ± 6 and 2956 ± 3 cm-1 are assigned as the CH3 antisymmetric stretching (ν2) and symmetric stretching (ν3) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86/aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH3OSO near 1164 cm-1 likely makes a small contribution to the observed band near 1152 cm-1. A simple kinetic model of self-reaction is employed to account for the decay of CH3OSO and yields a second-order rate coefficient k = (4 ± 2)×10-10 cm3 molecule-1 s-1.

  3. Near-infrared spatially resolved spectroscopy of (136108) Haumea's multiple system

    NASA Astrophysics Data System (ADS)

    Gourgeot, F.; Carry, B.; Dumas, C.; Vachier, F.; Merlin, F.; Lacerda, P.; Barucci, M. A.; Berthier, J.

    2016-08-01

    Context. The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. Aims: The dwarf planet (136108) Haumea is among the largest transneptunian objects (TNOs) and is a very fast rotator (~3.9 h). This dwarf planet displays a highly elongated shape and hosts two small moons that are covered with crystalline water ice, similar to their central body. A particular region of interest is the Dark Red Spot (DRS) identified on the surface of Haumea from multiband light-curve analysis (Lacerda et al. 2008). Haumea is also known to be the largest member of the sole TNO family known to date, and an outcome of a catastrophic collision that is likely responsible for the unique characteristics of Haumea. Methods: We report here on the analysis of a new set of near-infrared Laser Guide Star assisted observations of Haumea obtained with the Integral Field Unit (IFU) Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the European Southern Observatory (ESO) Very Large Telescope (VLT) Observatory. Combined with previous data published by Dumas et al. (2011), and using light-curve measurements in the optical and far infrared to associate each spectrum with its corresponding rotational phase, we were able to carry out a rotationally resolved spectroscopic study of the surface of Haumea. Results: We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the DRS, and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope (1.45 ± 0.82% by 100 nm) confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the

  4. Multi-Object Spectroscopy with the James Webb Space Telescope’s Near Infrared Spectrograph: Observing Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Karakla, Diane M.; Beck, Tracy

    2015-08-01

    The James Webb Space Telescope’s (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We give examples of how this and other use cases are guiding development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  5. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  6. Time-Resolved Resonance Raman Spectroscopy of Vibrational Populations Monitored after Electronic and Infrared Excitation

    SciTech Connect

    Werncke, W.; Kozich, V.; Dreyer, J.

    2008-11-14

    Pathways of vibrational energy flow in molecules with an intramolecular hydrogen bond are studied after intramolecular proton transfer reactions as well as after infrared excitation of the O-H stretching vibration which is coupled to this hydrogen bond.

  7. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  8. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.

    PubMed

    Kaun, N; Vellekoop, M J; Lendl, B

    2006-11-01

    A Fourier transform infrared (FT-IR) microscope equipped with a single as well as a 64 x 64 element focal plane array MCT detector was used to measure chemical reaction taking place in a microstructured flow cell designed for time-resolved FT-IR spectroscopy. The flow cell allows transmission measurements through aqueous solutions and incorporates a microstructured mixing unit. This unit achieves lamination of the two input streams with a cross-section of 300 x 5 microm each, resulting in fast diffusion-controlled mixing of the two input streams. Microscopic measurement at defined positions along the outlet channel allows time-resolved information of the reaction taking place in the flow cell to be obtained. In this paper we show experimental results on the model reaction between formaldehyde and sulfite. Using the single-point MCT detector, high-quality FT-IR spectra could be obtained from a spot size of 80 x 200 microm whereas the FPA detector allowed recording light from an area of 260 x 260 microm focused on its 64 x 64 detector elements. Therefore, more closely spaced features could be discerned at the expense of a significantly lower signal-to-noise (S/N) ratio per spectrum. Multivariate curve resolution-alternating least squares was used to extract concentration profiles of the reacting species along the outlet channel axis. PMID:17132444

  9. Relation between the OH stretching frequency and the OO distance in time-resolved infrared spectroscopy of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bratos, Savo; Leicknam, Jean-Claude; Pommeret, Stanislas

    2009-05-01

    A non-empirical theory is presented to study the relation between the OH stretching frequency and the OO distance in ultrafast laser spectra of water. Diluted solutions HDO/DO rather than pure HO were considered to switch off resonant vibrational interactions between water molecules; the local structure of water as well as the OO distribution functions remain unchanged in this substitution. Only times superior to 100-200fs are considered to avoid perturbations generated by collisions between water molecules. It is then shown that the Novak-Mikenda type relations between the OH stretching frequency and the OO distance largely survive when going from equilibrium to laser perturbed non-equilibrium systems. It is also shown that temporally varying infrared pump-probe profiles of OH stretching bands in HDO/DO closely parallel the oxygen-oxygen distribution functions of these solutions. Infrared pump-probe spectroscopy can thus replace time-resolved X-ray diffraction in this particular case.

  10. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved

  11. Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain

    1990-01-01

    Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.

  12. Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lopez, B. A.

    1984-11-01

    Infrared spectroscopic analysis is reviewed. Applications to chemical analysis of preimpregnated carbon fiber materials, including polystyrene spectra, epoxy resin analysis, mineral loads analysis, determination of epoxy groups and identification of spurious organic materials are discussed. The advantages of the method for quality control are pointed out.

  13. Spatially resolved optical and near-infrared spectroscopy of I Zw 18

    NASA Technical Reports Server (NTRS)

    Skillman, Evan D.; Kennicutt, Robert C., Jr.

    1993-01-01

    Long-slit optical and near-IR spectroscopy are presented for the bright NW and faint SE components of the oxygen-poor H II galaxy I Zw 18, yielding physical conditions and O, N, S, and He abundances for these components. All of the elemental abundances for the two components of I Zw 18 are equal (within errors), thereby placing constraints on evolutionary theories for this system.

  14. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy.

    PubMed

    Nguyen, Son C; Zhang, Qiao; Manthiram, Karthish; Ye, Xingchen; Lomont, Justin P; Harris, Charles B; Weller, Horst; Alivisatos, A Paul

    2016-02-23

    Studying the local solvent surrounding nanoparticles is important to understanding the energy exchange dynamics between the particles and their environment, and there is a need for spectroscopic methods that can dynamically probe the solvent region that is in nearby contact with the nanoparticles. In this work, we demonstrate the use of time-resolved infrared spectroscopy to track changes in a vibrational mode of local water on the time scale of hundreds of picoseconds, revealing the dynamics of heat transfer from gold nanorods to the local water environment. We applied this probe to a prototypical plasmonic photothermal system consisting of organic CTAB bilayer capped gold nanorods, as well as gold nanorods coated with varying thicknesses of inorganic mesoporous-silica. The heat transfer time constant of CTAB capped gold nanorods is about 350 ps and becomes faster with higher laser excitation power, eventually generating bubbles due to superheating in the local solvent. Silica coating of the nanorods slows down the heat transfer and suppresses the formation of superheated bubbles. PMID:26840805

  15. Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy

    SciTech Connect

    Chu, Li-Kang; Han, Hui-Ling; Lee, Yuan-Pern

    2007-05-07

    A transient infrared absorption spectrum of gaseous ClCS was detected with a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. ClCS was produced upon irradiating a flowing mixture of Cl{sub 2}CS and N{sub 2} or CO{sub 2} with a KrF excimer laser at 248 nm. A transient band in the region of 1160-1220 cm{sup -1}, which diminished on prolonged reaction, is assigned to the C-S stretching ({nu}{sub 1}) mode of ClCS. Calculations with density-functional theory (B3P86 and B3LYP/aug-cc-pVTZ) predict the geometry, vibrational wave numbers, and rotational parameters of ClCS. The rotational contour of the spectrum of ClCS simulated based on predicted rotational parameters agrees satisfactorily with experimental observation; from spectral simulation, the band origin is determined to be at 1194.4 cm{sup -1}. Reaction kinetics involving ClCS, CS, and CS{sub 2} are discussed.

  16. The origin of (90) Antiope from component-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Berthier, J.; Descamps, P.; Vachier, F.

    2011-05-01

    The origin of the similarly-sized binary Asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087″, to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR = 40) and H + K band (SNR = 100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 μm taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb-type asteroids. Their constant flux ratio indicates that both components' surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered.

  17. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy.

    PubMed

    Messere, Alessandro; Roatta, Silvestro

    2013-12-01

    The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858

  18. Reduction of O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy

    PubMed Central

    Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku

    2015-01-01

    Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190

  19. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  20. Characterization of a hybrid diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy system for real-time monitoring of cerebral blood flow and oxygenation

    NASA Astrophysics Data System (ADS)

    Verdecchia, K.; Diop, M.; Lee, A.; St. Lawrence, K.

    2015-03-01

    The combination of near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) offers the ability to provide real-time monitoring of cerebral oxygenation, blood flow and oxygen consumption. However, measuring these parameters accurately requires depth-sensitive techniques that can remove the effects of signal contamination from extracerebral tissues. Towards this goal, we developed and characterized a hybrid DCS/time-resolved (TR)-NIRS system. Both systems acquire data at three source-detector distances (SDD: 7, 20 and 30 mm) to provide depth sensitivity. The TR-NIRS system uses three pulsed lasers (760, 810, and 830 nm) to quantify tissue optical properties, and DCS uses one continuous-wave, long coherence length (>5 m) laser (785 nm) for blood flow monitoring. The stability of the TR-NIRS system was characterized by continuously measuring the instrument response function (IRF) for four hours, and a warmup period of two hours was required to reduce the coefficient of variation of the extracted optical properties to < 2%. The errors in the measured optical properties were <10% at SDDs of 20 and 30 mm; however, the error at 7 mm was greater due to the effects of the IRF. The number of DCS detectors at each SDD and the minimum count-rate (20 kHz per detector resulting in <10% uncertainty in the extracted blood flow index) were optimized using a homogenous phantom. The depth sensitivity was assessed using a two-layer phantom, with the flow rate in the bottom layer altered to mimic cerebral blood flow.

  1. Photochemistry of a Puckered Ferracyclobutadiene in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy.

    PubMed

    Torres-Alacan, Joel; Das, Ujjal; Wezisla, Boris; Straßmann, Martin; Filippou, Alexander C; Vöhringer, Peter

    2015-11-23

    Flash photolysis combined with step-scan and rapid-scan Fourier-transform infrared spectroscopy was carried out to explore the photochemistry of a puckered, quasi-square pyramidal ferracyclobutadiene, [Fe{κ(2) -C3 (NEt2 )3 }(CO)3 ]BF4 ([1]BF4 ), that features three additional carbonyl ligands in the metal coordination sphere. In liquid solution at room temperature, an excitation with λ=355 nm light resulted in the loss of one CO ligand, which is cleaved from a basal metal-coordination site. Within the time resolution of the experiment, a solvent molecule promptly refills the resultant vacancy at the coordinatively unsaturated metal center. In the weakly interacting liquid, dichloromethane, the counterion of the complex is subsequently able to substitute the solvent in the coordination sphere of the iron center, thereby forming as a stable product a neutral dicarbonyl tetrafluoroborato iron(0) species containing a four-membered ferracycle. PMID:26457465

  2. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

    PubMed

    Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C

    2015-06-01

    Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. PMID:25840439

  3. Reaction mechanism of adenylyltransferase DrrA from Legionella pneumophila elucidated by time-resolved fourier transform infrared spectroscopy.

    PubMed

    Gavriljuk, Konstantin; Schartner, Jonas; Itzen, Aymelt; Goody, Roger S; Gerwert, Klaus; Kötting, Carsten

    2014-07-01

    Modulation of the function of small GTPases that regulate vesicular trafficking is a strategy employed by several human pathogens. Legionella pneumophila infects lung macrophages and injects a plethora of different proteins into its host cell. Among these is DrrA/SidM, which catalyzes stable adenylylation of Rab1b, a regulator of endoplasmatic reticulum to Golgi trafficking, and thereby alters the function and interactions of this small GTPase. We employed time-resolved FTIR-spectroscopy to monitor the DrrA-catalyzed AMP-transfer to Tyr77 of Rab1b. A transient complex between DrrA, adenylylated Rab1b, and the pyrophosphate byproduct was resolved, allowing us to analyze the interactions at the active site. Combination of isotopic labeling and site-directed mutagenesis allowed us to derive the catalytic mechanism of DrrA from the FTIR difference spectra. DrrA shares crucial residues in the ATP-binding pocket with similar AMP-transferring enzymes such as glutamine synthetase adenylyltransferase or kanamycin nucleotidyltransferase, but provides the complete active site on a single subunit. We determined that Asp112 of DrrA functions as the catalytic base for deprotonation of Tyr77 of Rab1b to enable nucleophilic attack on the ATP. The study provides detailed understanding of the Legionella pneumophila protein DrrA and of AMP-transfer reactions in general. PMID:24950229

  4. Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site

    PubMed Central

    Makita, Hiroki; Hastings, Gary

    2016-01-01

    Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB− mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2,3-dibromo-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, and 9,10-anthraquinone incorporated. Transient absorption data were obtained at 487 and 703 nm in the visible spectral range, and 1950–1100 cm−1 in the infrared region. Time constants obtained from fitting the time-resolved infrared and visible data are in good agreement. The measured time constants are crucial for the development of appropriate kinetic models that can describe electron transfer processes in photosystem I, “Modeling Electron Transfer in Photosystem I” Makita and Hastings (2016) [1]. PMID:27182540

  5. Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2016-06-01

    Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB (-) mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2,3-dibromo-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, and 9,10-anthraquinone incorporated. Transient absorption data were obtained at 487 and 703 nm in the visible spectral range, and 1950-1100 cm(-1) in the infrared region. Time constants obtained from fitting the time-resolved infrared and visible data are in good agreement. The measured time constants are crucial for the development of appropriate kinetic models that can describe electron transfer processes in photosystem I, "Modeling Electron Transfer in Photosystem I" Makita and Hastings (2016) [1]. PMID:27182540

  6. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.

  7. Ultrafast infrared spectroscopy in photosynthesis.

    PubMed

    Di Donato, Mariangela; Groot, Marie Louise

    2015-01-01

    In recent years visible pump/mid-infrared (IR) probe spectroscopy has established itself as a key technology to unravel structure-function relationships underlying the photo-dynamics of complex molecular systems. In this contribution we review the most important applications of mid-infrared absorption difference spectroscopy with sub-picosecond time-resolution to photosynthetic complexes. Considering several examples, such as energy transfer in photosynthetic antennas and electron transfer in reaction centers and even more intact structures, we show that the acquisition of ultrafast time resolved mid-IR spectra has led to new insights into the photo-dynamics of the considered systems and allows establishing a direct link between dynamics and structure, further strengthened by the possibility of investigating the protein response signal to the energy or electron transfer processes. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:24973600

  8. Single water solvation dynamics in the 4-aminobenzonitrile-water cluster cation revealed by picosecond time-resolved infrared spectroscopy.

    PubMed

    Miyazaki, Mitsuhiko; Nakamura, Takashi; Wohlgemuth, Matthias; Mitrić, Roland; Dopfer, Otto; Fujii, Masaaki

    2015-11-28

    The dynamics of a solvent is important for many chemical and biological processes. Here, the migration dynamics of a single water molecule is triggered by the photoionization of the 4-aminobenzonitrile-water (4ABN-W) cluster and monitored in real time by picosecond time-resolved IR (ps TRIR) spectroscopy. In the neutral cluster, water is hydrogen-bonded to the CN group. When this CN-bound cluster is selectively ionized with an excess energy of 1238 cm(-1), water migrates with a lifetime of τ = 17 ps from the CN to the NH2 group, forming a more stable 4ABN(+)-W(NH) isomer with a yield of unity. By decreasing the ionization excess energy, the yield of the CN → NH2 reaction is reduced. The relatively slow migration in comparison to the ionization-induced solvent dynamics in the related acetanilide-water cluster cation (τ = 5 ps) is discussed in terms of the internal excess energy after photoionization and the shape of the potential energy surface. PMID:26490096

  9. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Verification of roaming and triple fragmentation

    NASA Astrophysics Data System (ADS)

    Hung, Kai-Chan; Tsai, Po-Yu; Li, Hou-Kuan; Lin, King-Chuen

    2014-02-01

    By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of <0.13 and >0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality.

  10. Photodissociation of gaseous CH3COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    NASA Astrophysics Data System (ADS)

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-01

    Upon one-photon excitation at 248 nm, gaseous CH3C(O)SH is dissociated following three pathways with the products of (1) OCS + CH4, (2) CH3SH + CO, and (3) CH2CO + H2S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state 1(nO, π*CO) has a radiative lifetime of 249 ± 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 × 10-10 cm3 molecule-1 s-1. Among the primary dissociation products, a fraction of the CH2CO moiety may undergo further decomposition to CH2 + CO, of which CH2 is confirmed by reaction with O2 producing CO2, CO, OH, and H2CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 ± 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  11. Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    The discovery of near-infrared energy is ascribed to Herschel in the nineteenth century; the first industrial application however began in the 1950s. Initially near infrared spectroscopy (NIRS) was used only as an add-on unit to other optical devices, that used other wavelengths such as ultraviolet (UV), visible (Vis), or mid-infrared (MIR) spectrometers. In the 1980s, a single unit, stand-alone NIRS system was made available, but the application of NIRS was focused more on chemical analysis. With the introduction of light-fibre optics in the mid 1980s and the monochromator-detector developments in early 1990s, NIRS became a more powerful tool for scientific research. This optical method can be used in a number of fields of science including physics, physiology, medicine and food.

  12. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  13. RESOLVED NEAR-INFRARED SPECTROSCOPY OF WISE J104915.57-531906.1AB: A FLUX-REVERSAL BINARY AT THE L DWARF/T DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Sheppard, Scott S.; Luhman, K. L.

    2013-08-01

    We report resolved near-infrared spectroscopy and photometry of the recently identified brown dwarf binary WISE J104915.57-531906.1AB, located 2.02 {+-} 0.15 pc from the Sun. Low-resolution spectral data from Magellan/FIRE and IRTF/SpeX reveal strong H{sub 2}O and CO absorption features in the spectra of both components, while the secondary also exhibits weak CH{sub 4} absorption at 1.6 {mu}m and 2.2 {mu}m. Spectral indices and comparison to low-resolution spectral standards indicate component types of L7.5 and T0.5 {+-} 1, the former consistent with the optical classification of the primary. Both sources also have unusually red spectral energy distributions for their spectral types, which we attribute to enhanced condensate opacity (thick clouds). Relative photometry reveals a flux reversal between the J and K bands, with the T dwarf component being brighter in the 0.95-1.3 {mu}m region ({Delta}J = -0.31 {+-} 0.05). As with other L/T transition binaries, this reversal likely reflects the depletion of condensate opacity in the T dwarf, with the contrast enhanced by the thick clouds present in the photosphere of the L dwarf primary. The 1 {mu}m flux from the T dwarf most likely emerges from gaps in its cloud layer, as suggested by the significant optical variability detected from this source by Gillon et al. Component mass measurements of the WISE J1049-5319AB system through astrometric and component radial velocity monitoring may resolve the current debate as to whether the loss of photospheric condensate clouds at the L dwarf/T dwarf boundary is a slow or rapid process, a conceivable endeavor given its proximity, brightness, small separation (3.1 {+-} 0.3 AU), and reasonable orbital period (20-30 yr)

  14. Photodissociation of gaseous CH{sub 3}COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    SciTech Connect

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-07

    Upon one-photon excitation at 248 nm, gaseous CH{sub 3}C(O)SH is dissociated following three pathways with the products of (1) OCS + CH{sub 4}, (2) CH{sub 3}SH + CO, and (3) CH{sub 2}CO + H{sub 2}S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state {sup 1}(n{sub O}, {pi}{sup *}{sub CO}) has a radiative lifetime of 249 {+-} 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 Multiplication-Sign 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}. Among the primary dissociation products, a fraction of the CH{sub 2}CO moiety may undergo further decomposition to CH{sub 2}+ CO, of which CH{sub 2} is confirmed by reaction with O{sub 2} producing CO{sub 2}, CO, OH, and H{sub 2}CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 {+-} 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  15. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements.

    PubMed

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-07-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R(2) = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  16. Time-resolved infrared diode laser spectroscopy of the ν1 (C O stretch) band of the CoCO radical

    NASA Astrophysics Data System (ADS)

    Ikeda, Seiki; Hikida, Toshihide; Tanaka, Takehiko; Tanaka, Keiichi

    2008-02-01

    Infrared spectrum of the cobalt carbonyl radical CoCO produced by the 193 nm excimer laser photolysis of cobalt tricarbonyl nitrosyl Co(CO) 3NO was observed by time-resolved diode laser spectroscopy. More than 600 lines were identified as belonging to the ν1 (C-O stretch) fundamental band, consisting of the Ω=5/2 and 3/2 subbands, and the associated hot bands 112, 101211, 101311, and 101222. The 2Δi electronic ground state of CoCO was experimentally confirmed. The ν1 band origins are 1974.172582(93) cm -1 and 1973.53178(14) cm -1 for the Ω=5/2 and 3/2 subbands, respectively. The rotational constant in the ground state was determined as B0=4427.146(50) MHz. The centrifugal distortion constant D0=1.1243(68) kHz was obtained for the Ω=5/2 substate of the ground state. The equilibrium rotational constant Be=4435.44(14) MHz was derived, together with the vibration-rotation interaction constants.

  17. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy.

    PubMed

    Nirengi, Shinsuke; Homma, Toshiyuki; Inoue, Naohiko; Sato, Hitoshi; Yoneshiro, Takeshi; Matsushita, Mami; Kameya, Toshimitsu; Sugie, Hiroki; Tsuzaki, Kokoro; Saito, Masayuki; Sakane, Naoki; Kurosawa, Yuko; Hamaoka, Takafumi

    2016-09-01

    18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDGPET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIR(TRS)) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P < 0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIR(TRS) every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIR(TRS) successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P < 0.05), and a decrease in the 8-week follow-up period (-12.5%, P = 0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIR(TRS) can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans. PMID:27135066

  18. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

    PubMed Central

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-01-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R2 = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  19. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy.

    PubMed

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-01

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690cm(-1)) the CO stretching modes at unhydrated groups, (ii) (1655-1673cm(-1)) the CO stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640cm(-1)) the CO stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c<50μgml(-1)) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c⩾50μgml(-1)) collagen multilayers are formed. The amide I mode is blue-shifted by 18cm(-1), indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed. PMID:25498816

  20. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  1. Transient infrared emission spectroscopy

    SciTech Connect

    Jones, R.W.; McClelland, J.F.

    1989-04-01

    Transient infrared emission spectroscopy (TIRES) is a new method that produces analytically useful emission spectra from optically thick, solid samples by greatly reducing self-absorption of emitted radiation. The method reduces self-absorption by creating a thin, short-lived, heated layer at the sample surface and collecting the transient emission from this layer. The technique requires no sample preparation and may be applied to both moving and stationary samples. The single-ended, noncontact TIRES measurement geometry is ideal for on-line and other remote-sensing applications. TIRES spectra acquired via a Fourier transform infrared spectrometer on moving samples of coal, plastic, and paint are presented and compared to photoacoustic absorption spectra of these materials. The TIRES and photoacoustic results are in close agreement as predicted by Kirchhoff's law.

  2. Photoionization-induced π↔ H site switching dynamics in phenol(+)-Rg (Rg = Ar, Kr) dimers probed by picosecond time-resolved infrared spectroscopy.

    PubMed

    Miyazaki, Mitsuhiko; Sakata, Yuri; Schütz, Markus; Dopfer, Otto; Fujii, Masaaki

    2016-09-21

    The ionization-induced π↔ H site switching reaction in phenol(+)-Rg (PhOH(+)-Rg) dimers with Rg = Ar and Kr is traced in real time by picosecond time-resolved infrared (ps-TRIR) spectroscopy. The ps-TRIR spectra show the prompt appearance of the non-vanishing free OH stretching band upon resonant photoionization of the π-bound neutral clusters, and the delayed appearance of the hydrogen-bonded (H-bonded) OH stretching band. This result directly proves that the Rg ligand switches from the π-bound site on the aromatic ring to the H-bonded site at the OH group by ionization. The subsequent H →π back reaction converges the dimer to a π↔ H equilibrium. This result is in sharp contrast to the single-step π→ H forward reaction in the PhOH(+)-Ar2 trimer with 100% yield. The reaction mechanism and yield strongly depend on intracluster vibrational energy redistribution. A classical rate equation analysis for the time evolutions of the band intensities of the two vibrations results in similar estimates for the time constants of the π→ H forward reaction of τ+ = 122 and 73 ps and the H →π back reaction of τ- = 155 and 188 ps for PhOH(+)-Ar and PhOH(+)-Kr, respectively. The one order of magnitude slower time constant in comparison to the PhOH(+)-Ar2 trimer (τ+ = 7 ps) is attributed to the decrease in density of states due to the absence of the second Ar in the dimer. The similar time constants for both PhOH(+)-Rg dimers are well rationalized by a classical interpretation based on the comparable potential energy surfaces, reaction pathways, and density of states arising from their similar intermolecular vibrational frequencies. PMID:27550720

  3. Gas-phase photodissociation of CH3COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Ying; Chao, Meng-Hsuan; Tsai, Po-Yu; Chang, Yuan-Bin; Tsai, Ming-Tsang; Lin, King-Chuen

    2012-01-01

    By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH3COCN) at 308 nm. The S1(A″), 1(nO, π*CO) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10-12 cm3 molecule-1 s-1. The measurements of O2 dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ/mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH2CO, in which the CH2CO moiety may further undergo secondary dissociation to release CO. The production of CO2 in the reaction with O2 confirms existence of CH2 and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH3 fragments that dominate the dissociation products at 193 nm are not detected.

  4. Gas-phase photodissociation of CH{sub 3}COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy

    SciTech Connect

    Yeh, Yu-Ying; Chao, Meng-Hsuan; Tsai, Po-Yu; Chang, Yuan-Bin; Tsai, Ming-Tsang; Lin, King-Chuen

    2012-01-28

    By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v= 1, 2) and CO(v= 1-3) are detected in one-photon dissociation of acetyl cyanide (CH{sub 3}COCN) at 308 nm. The S{sub 1}(A'), {sup 1}(n{sub O}, {pi}*{sub CO}) state at 308 nm has a radiative lifetime of 0.46 {+-} 0.01 {mu}s, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) x 10{sup -12} cm{sup 3} molecule{sup -1} s{sup -1}. The measurements of O{sub 2} dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 {+-} 7 and 32 {+-} 3 kJ/mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH{sub 2}CO, in which the CH{sub 2}CO moiety may further undergo secondary dissociation to release CO. The production of CO{sub 2} in the reaction with O{sub 2} confirms existence of CH{sub 2} and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH{sub 3} fragments that dominate the dissociation products at 193 nm are not detected.

  5. Using near-infrared spectroscopy to resolve the species, gender, age, and the presence of Wolbachia infection in laboratory-reared Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to determine the accuracy of near-infrared spectroscopy (NIRS) in determining species, gender, age and the presence of the common endosymbiont Wolbachia in laboratory reared Drosophila. NIRS measures absorption of light by organic molecules. Initially, a calibration model wa...

  6. Infrared spectroscopy with visible light

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Dmitry A.; Paterova, Anna V.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-02-01

    Spectral measurements in the infrared optical range provide unique fingerprints of materials, which are useful for material analysis, environmental sensing and health diagnostics. Current infrared spectroscopy techniques require the use of optical equipment suited for operation in the infrared range, components of which face challenges of inferior performance and high cost. Here, we develop a technique that allows spectral measurements in the infrared range using visible-spectral-range components. The technique is based on nonlinear interference of infrared and visible photons, produced via spontaneous parametric down conversion. The intensity interference pattern for a visible photon depends on the phase of an infrared photon travelling through a medium. This allows the absorption coefficient and refractive index of the medium in the infrared range to be determined from the measurements of visible photons. The technique can substitute and/or complement conventional infrared spectroscopy and refractometry techniques, as it uses well-developed components for the visible range.

  7. Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water

    SciTech Connect

    Sperling, Brent A. Hoang, John; Kimes, William A.; Maslar, James E.; Steffens, Kristen L.; Nguyen, Nhan V.

    2014-05-15

    Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120 ms. At 190 °C and 240 °C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110 °C) and with long purge times (30 s)

  8. Infrared spectroscopy of stars

    NASA Technical Reports Server (NTRS)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  9. Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy

    PubMed Central

    Lórenz-Fonfría, Víctor A.; Heberle, Joachim

    2014-01-01

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With ~102-103 repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as ~10-4, sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent. PMID:24998200

  10. Interferometric near-infrared spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-03-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts the optical and dynamic properties of turbid media from the analysis of the spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency swept narrow bandwidth light source such that the temporal intensity autocorrelations can be determined for all photon path lengths. This approach enables time-of-flight (TOF) resolved measurement of scatterer motion, which is a feature inaccessible in well-established diffuse correlation spectroscopy techniques. We prove this by analyzing intensity correlations of the light transmitted through diffusive fluid phantoms with photon random walks of up to 55 (approximately 110 scattering events) using laser sweep rates on the order of 100kHz. Thus, the results we present here advance diffuse optical methods by enabling simultaneous determination of depth-resolved optical properties and dynamics in highly scattering samples.

  11. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  12. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  13. Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+-DNA Constructs Monitored by Time Resolved Visible and Infrared Spectroscopy

    PubMed Central

    Olmon, Eric D.; Sontz, Pamela A.; Blanco-Rodríguez, Ana María; Towrie, Michael; Clark, Ian P.; Vlček, Antonín; Barton, Jacqueline K.

    2011-01-01

    The complex [Re(CO)3(dppz)(py′-OR)]+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine; py′-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re-DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states. Experimental observations that are consistent with charge injection from these excited states include similarity between long-time TRIR spectra and the reduced state spectrum observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR spectra, and the eventual formation of permanent guanine oxidation products. The majority of reactivity occurs on the ultrafast timescale, although processes dependent on slower conformational motions of DNA, such as the accumulation of oxidative damage at guanine, are also observed. The ability to measure events on such disparate timescales, its superior selectivity in comparison to other spectroscopic techniques, and the ability to simultaneously monitor carbonyl ligand and DNA IR absorption bands makes TRIR a valuable tool for the study of CT in DNA. PMID:21827149

  14. In vivo swine myocardial tissue characterization and monitoring during open chest surgery by time-resolved diffuse near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Spinelli, Lorenzo; Contini, Davide; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio; Cubeddu, Rinaldo; Ascari, Luca; Potì, Luca; Trivella, Maria Giovanna; L'Abbate, Antonio; Puzzuoli, Stefano

    2011-03-01

    Cardiovascular diseases are the main cause of death in industrialized countries. Worldwide, a large number of patients suffering from cardiac diseases are treated by surgery. Despite the advances achieved in the last decades with myocardial protection, surgical failure can still occur. This is due at least in part to the imperfect control of the metabolic status of the heart in the various phases of surgical intervention. At present, this is indirectly controlled by the electrocardiogram and the echographic monitoring of cardiac mechanics as direct measurements are lacking. Diffuse optical technologies have recently emerged as promising tools for the characterization of biological tissues like breast, muscles and bone, and for the monitoring of important metabolic parameters such as blood oxygenation, volume and flow. As a matter of fact, their utility has been demonstrated in a variety of applications for functional imaging of the brain, optical mammography and monitoring of muscle metabolism. However, due to technological and practical difficulties, their potential for cardiac monitoring has not yet been exploited. In this work we show the feasibility of the in-vivo determination of absorption and scattering spectra of the cardiac muscle in the 600-1100 nm range, and of monitoring myocardial tissue hemodynamics by time domain near-infrared spectroscopy at 690 nm and 830 nm. Both measurements have been performed on the exposed beating heart during open chest surgery in pigs, an experimental model closely mimicking the clinical cardio-surgical setting.

  15. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.

    PubMed

    Samjeské, Gabor; Miki, Atsushi; Ye, Shen; Osawa, Masatoshi

    2006-08-24

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account. PMID:16913790

  16. Time-resolved photoelectron spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids.

  17. Time-resolved photoelectron spectroscopy of liquids.

    PubMed

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids. PMID:21133461

  18. Time-resolved multiple probe spectroscopy

    SciTech Connect

    Greetham, G. M.; Sole, D.; Clark, I. P.; Parker, A. W.; Pollard, M. R.; Towrie, M.

    2012-10-15

    Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump-probe-probe-probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO){sub 6}) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

  19. Infrared absorption of C{sub 6}H{sub 5}SO{sub 2} detected with time-resolved Fourier-transform spectroscopy

    SciTech Connect

    Chu, L.-K.; Lee, Y.-P.

    2007-04-07

    C{sub 6}H{sub 5}SO{sub 2} radicals were produced upon irradiation of three flowing mixtures: C{sub 6}H{sub 5}SO{sub 2}Cl in N{sub 2}, C{sub 6}H{sub 5}Cl and SO{sub 2} in CO{sub 2}, and C{sub 6}H{sub 5}Br and SO{sub 2} in CO{sub 2}, with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record the time-resolved infrared (IR) absorption spectra of reaction intermediates. Two transient bands with origins at 1087.7 and 1278.2 cm{sup -1} are assigned to the SO{sub 2}-symmetric and SO{sub 2}-antisymmetric stretching modes, respectively, of C{sub 6}H{sub 5}SO{sub 2}. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predict the geometry and vibrational wave numbers of C{sub 6}H{sub 5}SO{sub 2} and C{sub 6}H{sub 5}OSO. The vibrational wave numbers and IR intensities of C{sub 6}H{sub 5}SO{sub 2} agree satisfactorily with the observed new features. Rotational contours of IR spectra of C{sub 6}H{sub 5}SO{sub 2} simulated based on predicted molecular parameters agree satisfactorily with experimental results for both bands. The SO{sub 2}-symmetric stretching band is dominated by a- and c-type rotational structures and the SO{sub 2}-antisymmetric stretching band is dominated by a b-type rotational structure. When C{sub 6}H{sub 5}SO{sub 2}Cl was used as a precursor of C{sub 6}H{sub 5}SO{sub 2}, C{sub 6}H{sub 5}SO{sub 2}Cl was slowly reproduced at the expense of C{sub 6}H{sub 5}SO{sub 2}, indicating that the reaction Cl+C{sub 6}H{sub 5}SO{sub 2} takes place. When C{sub 6}H{sub 5}Br/SO{sub 2}/CO{sub 2} was used as a precursor of C{sub 6}H{sub 5}SO{sub 2}, features at 1186 and 1396 cm{sup -1} ascribable to C{sub 6}H{sub 5}SO{sub 2}Br were observed at a later period due to secondary reaction of C{sub 6}H{sub 5}SO{sub 2} with Br. Corresponding kinetics based on temporal profiles of observed IR absorption are discussed.

  20. INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.

    SciTech Connect

    GRIFFITHS, P.R.; HOMES, C.

    2001-05-04

    Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

  1. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. PMID:27428600

  2. Infrared spectroscopy of ionic clusters

    SciTech Connect

    Price, J.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  3. Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Berthomieu, Catherine; Hienerwadel, Rainer

    2009-01-01

    Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method. PMID:19513810

  4. Resolving shocked and UV excited components of H2 emission in planetary nebulae with high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2016-06-01

    Planetary nebulae (PNe) form when low and intermediate-mass stars eject their outer layers into the ISM at the end of the AGB phase. Many PNe exhibit near-infrared (NIR) emission from molecular hydrogen (H2). This NIR emission arises from radiative decay out of excited rotation-vibration (rovibrational) states. The rovibrational states can be populated by excitation to higher electronic states through absorption of a far-UV photon followed by a radiative cascade to the electronic ground state, or by collisions (e.g., in a hot gas). The two processes populate the rovibrational levels of H2 differently, so the observed emergent emission spectrum provides an effective probe of the mechanisms that excite the H2. Many PNe display line intensity ratios that are intermediate between these two processes (Otsuka et al. 2013). With the advantages of the high spectral resolution (R~40000), broad wavelength coverage (1.45-2.45 μm), and high spatial resolution of the Immersion GRating Infrared Spectrometer (IGRINS, Park et al. 2014), we are able to differentiate components in position-velocity space: we see a slowly expanding UV-excited H2 shell in the PN M 1-11 and two faster moving “bullets” of thermalized H2 that we interpret as shocked gas from a bipolar outflow. We also present observations of several other PNe that exhibit similar morphologies of thermalized and UV-excited H2 components.

  5. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  6. Phase-resolved cyclotron spectroscopy of polars

    NASA Astrophysics Data System (ADS)

    Campbell, Ryan

    In this thesis we use phase-resolved cyclotron spectroscopy to study polars. Polars are a subset of cataclysmic variables where the primary WD is highly magnetic. In this case, the accretion flow is constrained along the magnetic field lines and eventually deposited on the WD, where the accreting material interacts with the atmosphere, forming a standing hydrodynamic shock at a location termed the accretion region, and emitting cyclotron radiation. Due to its field strength, cyclotron radiation from polars falls at either UV, optical or NIR wavelengths. While a substantial amount of optical cyclotron spectra have been published on polars, the NIR remains relatively unstudied. In this thesis, we present NIR spectroscopy for fifteen polars. Additionally, while a single cyclotron spectrum is needed to constrain the shock parameters, phase- resolved spectroscopy allows for a more in-depth analysis of the shock structure and the geometry of the accretion region. Of the fifteen polars observed, eight yielded spectra of adequate quality to be modeled in this manner: EF Eri, EQ Cet, AN UMa, VV Pup, AM Her, ST LMi, MR Ser, and MQ Dra. Initially, we used the industry standard "Constant Lambda (CL)" code to model each object. The code is fast, but produces only globally averaged values of the salient shock parameters: B - the magnetic field strength, kT - the plasma temperature, logL - the "size parameter" of the accretion column, and TH- the viewing angle between the observer and the magnetic field. For each object we present CL models for our NIR phase-resolved cyclotron spectra. Subsequently, we use a more advanced "Structured-Shock" code built by Fischer & Beuermann (2001)("F&B") to remodel three objects: EQ Cet, MQ Dra, and EF Eri. The F&B code allows for input of more physical parameters and most importantly does ray tracing through a simulated one-dimensional accretion column. To determine the outgoing spectrum, temperature and velocity profiles are needed to

  7. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    SciTech Connect

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-10-12

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm{sup {minus}1} (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated.

  8. Reaction dynamics of O({sup 1}D) + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy

    SciTech Connect

    Huang, Shang-Chen; Putikam, Raghunath; Lin, M. C. E-mail: tsuchis@sepia.plala.or.jp Tsuchiya, Soji E-mail: tsuchis@sepia.plala.or.jp; Nghia, N. T.; Nguyen, Hue M. T.; Lee, Yuan-Pern E-mail: tsuchis@sepia.plala.or.jp

    2014-10-21

    We investigated the reaction dynamics of O({sup 1}D) towards hydrogen atoms of two types in HCOOH. The reaction was initiated on irradiation of a flowing mixture of O{sub 3} and HCOOD or DCOOH at 248 nm. The relative vibration-rotational populations of OH and OD (1 ≦ v ≦ 4, J ≤ 15) states were determined from time-resolved IR emission recorded with a step-scan Fourier-transform spectrometer. In the reaction of O({sup 1}D) + HCOOD, the rotational distribution of product OH is nearly Boltzmann, whereas that of OD is bimodal. The product ratio [OH]/[OD] is 0.16 ± 0.05. In the reaction of O({sup 1}D) + DCOOH, the rotational distribution of product OH is bimodal, but the observed OD lines are too weak to provide reliable intensities. The three observed OH/OD channels agree with three major channels of production predicted with quantum-chemical calculations. In the case of O({sup 1}D) + HCOOD, two intermediates HOC(O)OD and HC(O)OOD are produced in the initial C−H and O−D insertion, respectively. The former undergoes further decomposition of the newly formed OH or the original OD, whereas the latter produces OD via direct decomposition. Decomposition of HOC(O)OD produced OH and OD with similar vibrational excitation, indicating efficient intramolecular vibrational relaxation, IVR. Decomposition of HC(O)OOD produced OD with greater rotational excitation. The predicted [OH]/[OD] ratio is 0.20 for O({sup 1}D) + HCOOD and 4.08 for O({sup 1}D) + DCOOH; the former agrees satisfactorily with experiments. We also observed the v{sub 3} emission from the product CO{sub 2}. This emission band is deconvoluted into two components corresponding to internal energies E = 317 and 96 kJ mol{sup −1} of CO{sub 2}, predicted to be produced via direct dehydration of HOC(O)OH and secondary decomposition of HC(O)O that was produced via decomposition of HC(O)OOH, respectively.

  9. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin

    PubMed Central

    Ritter, Eglof; Puskar, Ljiljana; Bartl, Franz J.; Aziz, Emad F.; Hegemann, Peter; Schade, Ulrich

    2015-01-01

    Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins. PMID:26217670

  10. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  11. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  12. Infrared Laser Spectroscopy, 1980-1983

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.

    1983-11-01

    The text for the Short Course on Infrared Laser Spectroscopy given at the Los Alamos Conference on Optics '83 is R. S. McDowell, "Vibrational Spectroscopy Using Tunable Lasers," in Vibrational Spectra and Structure, J. R. Durig, ed. (Elsevier, Amsterdam, 1981) 10, 1-151, which includes references through 1979. The present paper summarizes progress in this field from 1980 to early 1983.

  13. Identification of residues by infrared spectroscopy

    SciTech Connect

    Barber, T.E.; Ayala, N.L.; Jin, Hong; Drumheller, C.T.

    1997-12-31

    Mid-infrared spectroscopy of surfaces can be a very powerful technique for the qualitative and quantitative analysis of surface residues. The goal of this work was to study the application of diffuse reflectance mid-infrared spectroscopy to the identification of pesticide, herbicide, and explosive residues on surfaces. A field portable diffuse reflectance spectrometer was used to collect the mid-infrared spectra of clean surfaces and contaminated surfaces. These spectra were used as calibration sets to develop automated data analysis to classify or to identify residues on samples. In this presentation, the instrumentation and data process algorithms will be discussed.

  14. Spatially resolved photoluminescence spectroscopy of quantum dots

    NASA Astrophysics Data System (ADS)

    Dybiec, Maciej

    applications was in the scope of this research. Bio-conjugation and functionalization are the fundamental issues for bio-marker tagging application of semiconductor quantum dots. It was discovered that spatially resolved photoluminescence spectroscopy and PL photo-degradation kinetics can confirm the bio-conjugation. Development of a methodology that will allow the spectroscopic confirmation of bio-conjugation of quantum dot fluorescent tags and optimization of their performance was the final goal for this research project.

  15. Position-resolved Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2013-06-01

    A new method which allows for position-resolved positron lifetime spectroscopy studies in extended volume samples is presented. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) which delivers electron bunches of less than 10 ps temporal width and an adjustable bunch separation of multiples of 38 ns, average beam currents of 1 mA, and energies up to 40 MeV. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for positron annihilation lifetime studies with high timing resolutions and high signal to background ratios due to the coincident detection of two annihilation photons. Two commercially available detectors from a high-resolution medial positron-emission tomography system are being employed with 169 individual Lu2SiO5:Ce scintillation crystals, each. In first experiments, a positron-lifetime gated image of a planar Si/SiO2 (pieces of 12.5 mm × 25 mm size) sample and a 3-D structured metal in Teflon target could be obtained proving the feasibility of a three dimensional lifetime-gated tomographic system.

  16. Remote sensing by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Mumma, M. J.

    1983-01-01

    The use of infrared heterodyne spectrocopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the Earth are given. A discussion of developments in infrared heterodyne technology is also presented.

  17. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  18. Phase angle description of perturbation correlation analysis and its application to time-resolved infrared spectra.

    PubMed

    Morita, Shigeaki; Tanaka, Masaru; Noda, Isao; Ozaki, Yukihiro

    2007-08-01

    A method of spectral analysis, phase angle description of perturbation correlation analysis, is proposed. This method is based on global phase angle description of generalized two-dimensional (2D) correlation spectroscopy, proposed by Shin-ichi Morita et al., and perturbation-correlation moving-window 2D (PCMW2D) correlation spectroscopy, proposed by Shigeaki Morita et al. For a spectral data set collected under an external perturbation, such as time-resolved infrared spectra, this method provides only one phase angle spectrum. A phase angle of the Fourier frequency domain correlation between a spectral intensity (e.g., absorbance) variation and a perturbation variation (e.g., scores of the first principle component) as a function of spectral variable (e.g., wavenumber) is plotted. Therefore, a degree of time lag of each band variation with respect to the perturbation variation is directly visualized in the phase angle spectrum. This method is applied to time-resolved infrared spectra in the O-H stretching region of the water sorption process into a poly(2-methoxyethyl acrylate) (PMEA) film. The time-resolved infrared (IR) spectra show three broad and overlapping bands in the region. Each band increases toward saturated water sorption with different relaxation times. In comparison to conventional methods of generalized 2D correlation spectroscopy and global phase angle mapping, the method proposed in the present study enables the easier visualization of the sequence as a degree of phase angle in the spectrum. PMID:17716406

  19. Flap monitoring using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Keller, Alex; Wright, Leigh P.; Elmandjra, Mohamed; Mao, Jian-min

    2006-02-01

    We report results of clinical trials on flap monitoring in 65 plastic surgeries. Hemoglobin oxygen saturation of flap tissue (StO II) was monitored non-invasively by using ODISsey TM tissue oximeter, an infrared spectroscopic device. StO II measurements were conducted both intra-operatively and post-operatively. From the intra-operative measurements, we observed that StO II values dropped when the main blood vessels supplying the flap were clamped in surgery, and that StO II jumped after anastomosis to a value close to its pre-operative value. From post-operative monitoring measurements for the 65 flap cases, each lasted two days or so, we found that the StO II values approach to a level close to the baseline if the surgery was successful, and that the StO II value dropped to a value below 30% if there is a perfusion compromise, such as vascular thrombosis.

  20. Infrared Absorption Spectroscopy Measurement of SOx using Tunable Infrared Laser

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    The absorption characteristics of sulfur dioxide (SO2) and sulfur trioxide (SO3) in the infrared region were measured using a quantum cascade laser and an absorption cell of length 1 m heated to 150°C. The laser was scanned over the wavelength range 6.9-7.4 μm, which included the absorption bands of SO2 and SO3. Measurement results showed that the absorption bands of SO2 and SO3 partially overlapped, with peaks at 7.28 μm and 7.35 μm for SO2 and 7.14 μm and 7.25 μm for SO3. These results showed the possbility of using infrared laser absorption spectroscopy for measurement of sulfur oxides (SOx) in flue gas. For SO3 measurement, infrared absorption spectroscopy was shown to be more suitable than ultraviolet absorption spectroscopy. The absorption characteristics of open air in the same wavelength region showed that the interference due to water vapor must be efficiently removed to perform SOx measurement in flue gas.

  1. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    SciTech Connect

    Datskos, P.G. |; Rajic, S.; Datskou, I.; Egert, C.M.

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  2. Following [FeFe] Hydrogenase Active Site Intermediates by Time-Resolved Mid-IR Spectroscopy.

    PubMed

    Mirmohades, Mohammad; Adamska-Venkatesh, Agnieszka; Sommer, Constanze; Reijerse, Edward; Lomoth, Reiner; Lubitz, Wolfgang; Hammarström, Leif

    2016-08-18

    Time-resolved nanosecond mid-infrared spectroscopy is for the first time employed to study the [FeFe] hydrogenase from Chlamydomonas reinhardtii and to investigate relevant intermediates of the enzyme active site. An actinic 355 nm, 10 ns laser flash triggered photodissociation of a carbonyl group from the CO-inhibited state Hox-CO to form the state Hox, which is an intermediate of the catalytic proton reduction cycle. Time-resolved infrared spectroscopy allowed us to directly follow the subsequent rebinding of the carbonyl, re-forming Hox-CO, and determine the reaction half-life to be t1/2 ≈ 13 ± 5 ms at room temperature. This gives direct information on the dynamics of CO inhibition of the enzyme. PMID:27494400

  3. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  4. Observations of Resolved Stellar Populations with the JWST Near Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Beck, Tracy L.; Karakla, Diane M.

    2015-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST's sensitivity and superb resolution in the infrared and NIRSpec's full wavelength coverage over 1 to 5 micrometers will open new parameter space for studies of galaxies and resolved stellar populations alike. We present a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in external galaxies. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We discuss how this and other use cases are being used to guide development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  5. Determination of hexacelsian by infrared spectroscopy.

    PubMed

    Guillem Villar, M C; Monzonís, C G

    1984-07-01

    Hexacelsian has been determined by infrared spectroscopy with KBr discs and K(4)Fe(CN)(6) as internal standard. A KBr particle size of <40 mum gave better homogenization of the sample-KBr mixture than a particle size in the 40-70 mum range. For determinations of hexacelsian in synthetic samples containing amorphous phase or celsian, calibration curves were constructed. A least-squares fit yielded correlation coefficients of 0.998 and 0.997. PMID:18963645

  6. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  7. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  8. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Astrophysics Data System (ADS)

    Barrett, Paul

    2005-09-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  9. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Technical Reports Server (NTRS)

    Barrett, Paul

    2005-01-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  10. Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Martens, Wayde N.; Wain, Daria L.; Hales, Matt C.

    2008-10-01

    Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440 cm -1 is assigned to the ν CO 32- antisymmetric stretching vibration. An additional band is resolved at 1335 cm -1. An intense sharp Raman band at 1092 cm -1 is assigned to the CO 32- symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442 cm -1 shifting to lower wavenumbers with thermal treatment. A band observed at 870 cm -1 with a band of lesser intensity at 842 cm -1 shifts to higher wavenumbers upon thermal treatment and is observed at 865 cm -1 at 400 °C and is assigned to the CO 32-ν mode. No ν bending modes are observed in the Raman spectra for smithsonite. The band at 746 cm -1 shifts to 743 cm -1 at 400 °C and is attributed to the CO 32-ν in phase bending modes. Two infrared bands at 744 and around 729 cm -1 are assigned to the ν in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO 6 octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991 cm -1 in both the IE and infrared spectra are attributed to combination bands.

  11. Background-Limited Infrared-Submillimeter Spectroscopy (BLISS)

    NASA Technical Reports Server (NTRS)

    Bradford, Charles Matt

    2004-01-01

    The bulk of the cosmic far-infrared background light will soon be resolved into its individual sources with Spitzer, Astro-F, Herschel, and submm/mm ground-based cameras. The sources will be dusty galaxies at z approximately equal to 1-4. Their physical conditions and processes in these galaxies are directly probed with moderate-resolution spectroscopy from 20 micrometers to 1 mm. Currently large cold telescopes are being combined with sensitive direct detectors, offering the potential for mid-far-IR spectroscopy at the background limit (BLISS). The capability will allow routine observations of even modest high-redshift galaxies in a variety of lines. The BLISS instrument's capabilities are described in this presentation.

  12. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  13. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  14. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth. PMID:25358142

  15. [Application of near infrared spectroscopy (NIR) for evaluating cheese quality].

    PubMed

    Zou, Qiang; Fang, Hui; Zhang, Wei; He, Yong

    2011-10-01

    Near infrared spectrocopy, widely used in food industry, is a fast, nondestructive analysis method. Although it has been in the detection of the quality of cheese for many years, related research is few in our country. The principle of near infrared spectroscopy and the characteristics are introduced. Cheese process, shrinkage control, maturation process, shelf life, brand classification and detection of components in the application of near infrared spectroscopy are summarized. There is great potential to apply near infrared spectroscopy in cheese quality analysis. It is an urgent task to promote the application of near infrared spectroscopy and the development of China's cheese industry. PMID:22250544

  16. Spatially resolved tunneling spectroscopy on TTF-TCNQ

    NASA Astrophysics Data System (ADS)

    Wang, Z. Z.; Girard, J. C.; Pasquier, C.; Jérome, D.

    2004-04-01

    Local tunneling spectroscopy has been measured with low temperature UHV-STM on in-situ cleaved ab surface of organic TTF-TCNQ crystal. Due to ultra low image drift and clear molecular resolution, the spectroscopy is performed at specific molecular site either on TCNQ or TTF chains. In normal state (T= 63 K), a large pseudo-gap exists both in TTF and TCNQ chains. Above pseudo-gap local density of states differs for TTF and TCNQ chains that is in good agreement with double band model. By the signature of an anomalous in local spectroscopy measurement, a single impurity has been detected on a TTF chain. Charge density wave fluctuation is pinned by impurity above critical temperature (T=54K). Results obtained show that, Scanning Tunneling Spectroscopy can provide spatially resolved spectroscopic information at nanometer scale. Key words. TTF-TCNQ, local tunneling spectroscopy, pseudogap.

  17. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  18. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  19. Fourier transform infrared spectroscopy for Mars science

    NASA Astrophysics Data System (ADS)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  20. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  1. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  2. Detection of Endolithes Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, S.; Dutil, Y.; Joncas, G.

    2009-12-01

    On Earth, the Dry Valleys of Antarctica provide the closest martian-like environment for the study of extremophiles. Colonies of bacterias are protected from the freezing temperatures, the drought and UV light. They represent almost half of the biomass of those regions. Due to their resilience, endolithes are one possible model of martian biota. We propose to use infrared spectroscopy to remotely detect those colonies even if there is no obvious sign of their presence. This remote sensing approach reduces the risk of contamination or damage to the samples.

  3. Infrared microcalorimetric spectroscopy using quantum cascade lasers

    SciTech Connect

    Morales Rodriguez, Marissa E; Senesac, Larry R; Rajic, Slobodan; Lavrik, Nickolay V; Smith, Barton; Datskos, Panos G

    2013-01-01

    We have investigated an infrared (IR) microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of uncooled thermal micromechanical detectors. IR microcalorimetric spectroscopy requires no chemical specific coatings and the chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of RDX and a monolayer of 2-mercaptoethanol, over the wavelength region from 6 to 10 m. We found that in this wavelength region both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  4. Disease recognition by infrared and Raman spectroscopy.

    PubMed

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis. PMID:19343682

  5. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    SciTech Connect

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B.

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  6. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B.

    2015-10-01

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  7. Infrared spectroscopy of mass-selected carbocations

    SciTech Connect

    Duncan, Michael A.

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  8. Thermal infrared near-field spectroscopy.

    PubMed

    Jones, Andrew C; Raschke, Markus B

    2012-03-14

    Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. PMID:22280474

  9. Simulations of Non-resolved, Infrared Imaging of Satellites

    NASA Astrophysics Data System (ADS)

    Jim, K.; Kuluhiwa, K.; Scott, B. Knox, R.; Frith, J.; Gibson, B.

    Simulations of near-infrared, non-resolved imaging of earth-orbiting satellites during nighttime and daytime were created to consider the feasibility of such observations. By using the atmospheric radiative transfer code MODTRAN (MODerate resolution atmospheric TRANsmission), we incorporate site-specific mean weather conditions for several possible locations. In general, the dominant effect to be modeled is the sky radiance, which has a strong dependence upon the solar angle and the nature of the distribution of aerosols. Other significant effects included in the model are telescope design, camera design, and detector selection. The simulations are used in turn to predict the signal to noise ratio (SNR) in standard astronomical filter bands for several test cases of satellite-sun-observer geometries. The SNR model is then used to devise a method to design an optimal filter band for these observations.

  10. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  11. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  12. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  13. [Application of infrared spectroscopy technique to discrimination of alcoholic beverages].

    PubMed

    Niu, Xiao-Ying; Ying, Yi-Bin; Yu, Hai-Yan; Xie, Li-Juan; Fu, Xia-Ping

    2008-04-01

    Infrared spectroscopy technique is a rapid for the discrimination of food samples, and is widely used to detect and discriminate various beverages. This paper presents the advantages and disadvantages of techniques that have been used to discriminate alcoholic beverages, and the discriminating procedure with infrared spectroscopy technique. Applications of infrared spectroscopy technique to wine, whiskey, Japanese sake and Chinese rice wine etc. is presented too. Finally, problems in applications are analyzed, and the application of infrared spectroscopy technique to the discrimination of our traditional alcoholic beverages is prospected. PMID:18619303

  14. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  15. Momentum Resolved Radio Frequency Spectroscopy in Trapped Fermi Gases

    SciTech Connect

    Chen Qijin; Levin, K.

    2009-05-15

    We address recent momentum-resolved radio frequency (rf) spectroscopy experiments, showing how they yield more stringent tests than other comparisons with theory, associated with the ultracold Fermi gases. We demonstrate that, by providing a clear dispersion signature of pairing, they remove the ambiguity plaguing the interpretation of previous rf experiments. Our calculated spectral intensities are in semiquantitative agreement with the data. Even in the presence of a trap, the spectra are predicted to exhibit two BCS-like branches.

  16. Quantitatively Resolving Multivalent Interactions on Macroscopic Scale Using Force Spectroscopy

    PubMed Central

    Hu, Qiongzheng; Yang, Haopeng; Wang, Yuhong; Xu, Shoujun

    2016-01-01

    Multivalent interactions remain difficult to be characterized and consequently controlled, particularly on a macroscopic scale. Using force-induced remnant magnetization spectroscopy (FIRMS), we have resolved the single-, double-, and triple- biotin—streptavidin interactions, multivalent DNA interactions and CXCL12-CXCR4 interactions, on millimetre-scale surfaces. Our results establish FIRMS as a viable method for systematic resolution and controlled formation of multivalent interactions. PMID:26864087

  17. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  18. Buccal microbiology analyzed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  19. Surface Inspection using fourier transform infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Smyrl, N.R.; Williams, D.M.; Meyers, H.M. III; Barber, T.E.; Marrero-Rivera, M.

    1994-08-08

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces. Detection limits under the best of conditions are in the subnanometer range (i.e., near absolute cleanliness), excellent performance is obtained in the submicrometer range, and useful performance may exist for films tens of microns thick. Identifying and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and gritblasted 7075 aluminum alloy and D6AC steel are described. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques for quantitatively applying oils to metals, subsequently verifying the application, and nonlinear relationships between reflectance and the quantity of oil are discussed.

  20. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  1. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    PubMed

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  2. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Tim; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. The technique is rapid, reproducible and usually non-invasive. With the appropriate accessories, the technique can be used to examine samples in either a solid, liquid or gas phase. Solid samples of varying sizes and shapes may be used, and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be examined. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Both aqueous and non-aqueous free-flowing solutions can be analyzed using appropriate IR techniques, as can viscous liquids such as heavy oils and greases. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  3. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  4. TIMESCALE-RESOLVED SPECTROSCOPY OF Cyg X-1

    SciTech Connect

    Wu, Y. X.; Li, T. P.; Belloni, T. M.; Wang, T. S.; Liu, H.

    2009-04-20

    We propose the timescale-resolved spectroscopy (TRS) as a new method to combine the timing and spectral study. The TRS is based on the time domain power spectrum and reflects the variable amplitudes of spectral components on different timescales. We produce the TRS with the RXTE PCA data for Cyg X-1 and study the spectral parameters (the power-law photon index and the equivalent width of the iron fluorescent line) as a function of timescale. The results of TRS and frequency-resolved spectra have been compared, and similarities have been found for the two methods with the identical motivations. We also discover the correspondences between the evolution of photon index with timescale and the evolution of the equivalent width with timescale. The observations can be divided into three types according to the correspondences and different type is connected with different spectral state.

  5. Temporally resolved infrared spectra from the detonation of advanced munitions

    NASA Astrophysics Data System (ADS)

    Gordon, Joe Motos; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A suite of instruments including a 100 kHz 4-channel radiometer, a rapid scanning Fourier-transform infrared spectrometer, and two high-speed visible imagers was used to observe the detonation of several novel insensitive munitions being developed by the Air Force Research Laboratory. The spectral signatures exhibited from several different explosive compositions are discernable and may be exploited for event classification. The spectra are initially optically thick, resembling a Planckian distribution. In time, selective emission in the wings of atmospheric absorption bands becomes apparent, and the timescale and degree to which this occurs is correlated with aluminum content in the explosive formulation. By analyzing the high-speed imagery in conjunction with the time-resolved spectral measurements, it may be possible to interpret these results in terms of soot production and oxidation rates. These variables allow for an investigation into the chemical kinetics of explosions and perhaps reveal other phenomenology not yet readily apparent. With an increased phenomenological understanding, a model could be created to explain the kinetic behavior of the temperature and by-product concentration profiles and thus improve the ability of military sensing platforms to identify explosive types and sources.

  6. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1979-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution (approximately 5 MHz = 0.000167 kaysers at 10 microns). The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described, and applications to synthetic lines of O3, CO2, CH4, and N2O are given. Some recent heterodyne measurements of CO2 and O3 absorption lines are analytically inverted, and the vertical distributions of the two gases are determined.

  7. Sensitive, time-resolved, broadband spectroscopy of single transient processes

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Baev, Ivan; Hellmig, Ortwin; Sengstock, Klaus; Baev, Valery M.

    2015-09-01

    Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

  8. Spectrally resolved photon-echo spectroscopy of Rhodamine-6G

    PubMed Central

    Kumar, Ajitesh; Karthick, S. K.; Goswami, D.

    2013-01-01

    Wavelength dependent study of a laser dye: Rhodamine-6G (Rh6G) by using spectrally resolved photon-echo spectroscopy is presented. The coherence and population dynamics of Rh6G solution in methanol changes as the excitation wavelength is tuned near its absorption maxima of 528 nm. Specifically, the central wavelength of the femtosecond laser pulse was set to 535 nm and to 560 nm while the respective spectra of the photon-echo signals were collected. This gives information on how the ultrafast dynamics of the Rh6G molecule changes with a change in the excitation wavelength. PMID:24098869

  9. Resolving multi-exciton generation by attosecond spectroscopy.

    PubMed

    Neukirch, A J; Neumark, D M; Kling, M F; Prezhdo, O V

    2014-10-20

    We propose an experimentally viable attosecond transient absorption spectroscopy scheme to resolve controversies regarding multiexciton (ME) generation in nanoscale systems. Absence of oscillations indicates that light excites single excitons, and MEs are created by incoherent impact ionization. An oscillation indicates the coherent mechanism, involving excitation of superpositions of single and MEs. The oscillation decay, ranging from 5 fs at ambient temperature to 20 fs at 100 K, gives the elastic exciton-phonon scattering time. The signal is best observed with multiple-cycle pump pulses. PMID:25401661

  10. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  11. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    SciTech Connect

    Yu, S.-W.; Tobin, J. G.; Chung, B. W.

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  12. Momentum-resolved spectroscopy of a Fermi liquid.

    PubMed

    Doggen, Elmer V H; Kinnunen, Jami J

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  13. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  14. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGESBeta

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  15. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  16. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C. Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Wishart, James F.; Bernstein, Herbert J.

    2015-04-15

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm{sup −1}. The response time of the TRIR detection setup is ∼40 ns, with a typical sensitivity of ∼100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  17. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    NASA Astrophysics Data System (ADS)

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-01

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm-1. The response time of the TRIR detection setup is ˜40 ns, with a typical sensitivity of ˜100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  18. Infrared spectroscopy of anionic hydrated fluorobenzenes

    SciTech Connect

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-09-21

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C{sub 6}F{sub 6}{sup -}{center_dot}H{sub 2}O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules.

  19. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  20. Trace water vapor determination in corrosive gases by infrared spectroscopy

    SciTech Connect

    Stallard, B.R.; Rowe, R.K.; Garcia, M.J.; Haaland, D.M.; Espinoza, L.H.; Niemczyk, T.M.

    1993-12-01

    To extend the life of gas delivery systems and improve wafer yields, there is a need for an in-line monitor of H{sub 2}O contamination. Goal of this project is to develop such an instrument, based on infrared spectroscopy, that has a detection limit of 30 ppB or better and costs $50K or less. This year`s work considered the application of Fourier transform infrared (FTIR) spectroscopy to H{sub 2}O detection in N{sub 2} and HCl. Using a modified commercial FTIR spectrometer and a long-path gas cell, a detection limit of about 10 ppB was demonstrated for H{sub 2}O in N{sub 2} and HCl. This includes about a factor of three improvement achieved by applying quantitative multivariate calibration methods to the problem. Absolute calibration of the instrument was established from absorptivities of prominent H{sub 2}O bands between 3600 and 3910 cm{sup {minus}1}. Methods are described to minimize background moisture in the beam path. Spectral region, detector type, resolution, cell type, and path length were optimized. Resolving the narrow H{sub 2}O bands (FWHM {approx} 0.20 cm{sup {minus}1}) is not necessary to achieve optimal sensitivity. In fact, optimal sensitivity is achieved at 2 to 4 cm{sup {minus}1} resolution, allowing the use of an inexpensive interferometer. A much smaller, second generation instrument is described that will have a conservatively estimated detection limit of 1 ppB. Since the present laboratory instrument can be duplicated in its essential parts for about $90K, it is realistic to project a cost of $50K for the new instrument. An accessory for existing FTIR spectrometers was designed that may be marketed for as little as $10K.

  1. Time-resolved air monitoring using Fourier absorption spectroscopy

    SciTech Connect

    Biermann, H.W.

    1995-12-31

    Two categories where spectroscopic techniques excel are the capabilities to perform air analyses in situ and to obtain data at very high time resolutions. Because of these features, the Department of Pesticide Regulation augmented its extensive air monitoring capabilities with a Fourier transform infrared (FTIR) spectrometer using open-path optical systems for time resolved ambient air monitoring. A description of the instrumentation and the data analysis procedures will be presented based on two data sets obtained with this FTIR system. In one case, a 100 m folded optical path was used to measure methyl bromide concentrations after fumigation in a warehouse with a time resolution of 15 min and a detection limit of 0.2 ppm. And trying to assess the capability of this FTIR spectrometer to determine flux, water vapor concentrations were measured with a four-meter path length at a time resolution of 0.6 seconds.

  2. Infrared spectroscopy of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1993-01-01

    Infrared spectroscopy provides unique insights into the chemistry and dynamics of the atmospheres of Jupiter, Saturn, and Titan. In 1991 we obtained data at J, H, K, and M and made repeated observations of Titan's albedo as the satellite orbited Saturn. The J albedo is 12% +/- 3% greater than the albedo measured in 1979; the H and K albedos are the same. There was no evidence for variations at any wavelength over the eastern half of Titan's orbit. We also obtained low resolution (R=50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain evidence for CO and CH3D absorptions. Spectra of Callisto and Ganymede in the 4.5 micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to Callisto's. In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the 3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu sub 3) band of methane indicated temperatures higher than known to be present in Titan's upper stratosphere and may be caused by unexpected non-LTE emission. An absorption feature near 3.47 microns may be caused by absorption in solid grains or aerosols in Titan's clouds. The feature is similar but not identical to organics in the interstellar matter and in comets.

  3. RESOLVED NEAR-INFRARED STELLAR POPULATIONS IN NEARBY GALAXIES

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip A.; Gilbert, Karoline E-mail: ben@astro.washington.edu E-mail: kgilbert@astro.washington.edu; and others

    2012-01-01

    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies ({approx}< 4 Mpc), based on images in the F110W and F160W filters taken with the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs are measured in regions spanning a wide range of star formation histories, including both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in more familiar optical CMDs, and identify the red core helium-burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myr old. The strength of this feature suggests that the NIR mass-to-light ratio can vary significantly on short timescales in star-forming systems. The NIR luminosity of star-forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual RHeB stars may also be misidentified as old stellar clusters in images of nearby galaxies. For older stellar populations, we discuss the CMD location of asymptotic giant branch (AGB) stars in the HST filter set and explore the separation of AGB subpopulations using a combination of optical and NIR colors. We empirically calibrate the magnitude of the NIR tip of the red giant branch in F160W as a function of color, allowing future observations in this widely adopted filter set to be used for distance measurements. We also analyze the properties of the NIR red giant branch (RGB) as a function of metallicity, showing a clear trend between NIR RGB color and metallicity. However, based on the current study, it appears unlikely that the slope of the NIR RGB can be used as an effective metallicity indicator in extragalactic systems with comparable data. Finally, we highlight issues with scattered light in the WFC3, which becomes significant for exposures taken close to a bright Earth limb.

  4. Temperature Resolved 3-D Submillimeter Spectroscopy of Astronomical `WEEDs'.

    NASA Astrophysics Data System (ADS)

    Fortman, Sarah M.; Medvedev, Ivan R.; Neese, Christopher F.; De Lucia, Frank C.

    2009-06-01

    We have previously reported on the experimental spectroscopic approach that makes possible the calculation of lower state energy levels and transition strengths without the need for spectral assignment. Analysis of the temperature dependent measurements significantly improves the estimate of the lower state energy, recovered by division of temperature dependent spectral intensities. Also, this approach provides results both in the standard astronomical catalog form (frequency, line strength, lower state energy) and as experimental temperature dependent spectra. We are reporting on temperature resolved 3-D spectroscopy of ethyl cyanide -- a well known astronomical `weed'. "An experimental approach to the prediction of complete millimeter and submillimeter spectra at astrophysical temperatures: Applications to confusion-limited astrophysical observations," I. R. Medvedev and F. C. De Lucia, Ap. J. 656, 621-628 (2007).

  5. Angle resolved electron energy loss spectroscopy on graphite

    NASA Astrophysics Data System (ADS)

    Diebold, U.; Preisinger, A.; Schattschneider, P.; Varga, P.

    We report on angle resolved electron energy loss spectroscopy (EELS) in reflection mode with low primary energy on a graphite single crystal. Measurements with primary electron energy of 175 eV have been performed in off-Bragg-reflex geometry in two different directions within the (0001) surface plane of the graphite single crystal. In addition, EELS measurements in specular reflection mode with different primary energies and angles of incidence were done in order to distinguish between surface and bulk plasmon losses. The energy losses and the transferred momenta of the losses have been analyzed. The results are compared with the loss functions for bulk and surface excitations calculated from the dielectric function ɛ(ω, q) obtained from TEELS-data (EELS in transmission mode) [Springer Tracts Mod. Phys. 54 (1970) 77].

  6. Nonselective and polarization effects in time-resolved optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhechev, D.; Steflekova, V.

    2016-02-01

    Three interfering effects in optogalvanic (OG) spectroscopy are identified in a hollow cathode discharge (HCD) - OG detector. The laser beam is found to generate two nonselective processes, namely photoelectron emission (PE) from the cathode surface with a sub-breakdown bias applied, and nonresonant space ionization. The convolution of these galvanic contributions was determined experimentally as an instrumental function and a deconvolution procedure to determine the actual OG signal was developed. Specific plasma conductance is detected dependent on the polarization of the laser beam irradiating. Linearly/circularly polarized light beam is found to induce OG signals differ in amplitude (and their shape parameters in the time-resolved OG signals (TROGS)). The phenomena coherence and specific conductance are found to be in causal relationship. The additional conductance due to coherent states of atoms manifests itself as an intrinsic instrumental property of OG detector.

  7. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    PubMed

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy. PMID:26698997

  8. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  9. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  10. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  11. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  12. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    SciTech Connect

    Peragut, Florian; De Wilde, Yannick; Brubach, Jean-Blaise; Roy, Pascale

    2014-06-23

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  13. Quantification of the extracerebral contamination of near infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Mudra, R.; Niederer, P.; Keller, E.

    2005-04-01

    Recently, conventional near infrared spectroscopy (NIRS) for oxymetry has been extended with an indocyanine green (ICG) dye dilution method which allows the estimation of cerebral blood flow (CBF) and cerebral blood volume (CBV). The signal obtained through the skull is substantially influenced by extracerebral tissue. In order to quantify and eliminate extracerebral contamination of the optical density signal we have applied two approaches. Firstly, we used spatially resolved spectroscopy (SRS) with a two receiver arrangement, with separations between emitter and two receivers in distances of d1=4.0cm and d2=6.5cm. The magnitude of the determined extracerebral contamination was verified with NIRS measurements in patients after brain herniation. Intracerebral circulatory arrest was confirmed by transcerebral Doppler examination. Secondly, Monte Carlo simulation was used to simulate the light propagation through the head to quantify the extracerebral contamination of the optical density signal of NIRS. The anatomical structure is determined from 3D-magnetic resonance imaging (MRI) using a voxel resolution of 0.8 x 0.8 x 0 .8 mm3 for three different pairs of T1/T2 values. We segment the MRI data to obtain a material matrix describing the composition of skin, skull, cerebral spinal fluid (CSF), grey and white matter. Each voxel in this material matrix characterizes the light absorption and dispersion coefficient of the identified material. This material matrix is applied in the Monte Carlo simulation. With SRS an extracerebral contamination of 65% of the optical density signal is extracted, while the Monte Carlo simulation results show that the extracerebral contamination decreases from 70% to 30% with increasing emitter-receiver distance. Differences between the NIRS ICG dye dilution technique and conventional NIRS oxymetry concerning the extracerebral contamination are discussed.

  14. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  15. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media.

    PubMed

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J

    2016-01-11

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  16. Muscle oxygenation during exercise under hypoxic conditions assessed by spatially resolved broadband NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Platen, Petra; Franke, Julia; Andre, Christiane; Bloch, Wilhelm; Kohl-Bareis, Matthias

    2005-08-01

    Near-infrared spectroscopy (NIRS) is used for the non-invasive measurement of muscle oxygenation during an incremental cycle test in healthy volunteers. A broad band spatially resolved system is used that allows the reliability of current algorithms to be inspected with the main emphasis on tissue oxygen saturation (SO2) and oxygenated and deoxygenated haemoglobin concentrations. Physiological conditions were modulated by changing oxygen supply from normal (21 % O2 in inspired air) to conditions corresponding to 2000 and 4000 m altitude above sea level (15.4 and 11.9 % O2). Under these hypoxic conditions the decrease in SO2 with increased exercise power is highly correlated with the oxygen content of the inspired air. There is a clear correlation with physiological parameters (heart rate, pulse oxymetry, blood gas, lactate, spirometric data). Skin oxygenation parameters are compared to those of muscle.

  17. A Clinical Tissue Oximeter Using NIR Time-Resolved Spectroscopy.

    PubMed

    Fujisaka, Shin-ichi; Ozaki, Takeo; Suzuki, Tsuyoshi; Kamada, Tsuyoshi; Kitazawa, Ken; Nishizawa, Mitsunori; Takahashi, Akira; Suzuki, Susumu

    2016-01-01

    The tNIRS-1, a new clinical tissue oximeter using NIR time-resolved spectroscopy (TRS), has been developed. The tNIRS-1 measures oxygenated, deoxygenated and total hemoglobin and oxygen saturation in living tissues. Two-channel TRS measurements are obtained using pulsed laser diodes (LD) at three wavelengths, multi-pixel photon counters (MPPC) for light detection, and time-to-digital converters (TDC) for time-of-flight photon measurements. Incorporating advanced semiconductor devices helped to make the design of this small-size, low-cost and low-power TRS instrument possible. In order to evaluate the correctness and reproducibility of measurement data obtained with the tNIRS-1, a study using blood phantoms and healthy volunteers was conducted to compare data obtained from a conventional SRS device and data from an earlier TRS system designed for research purposes. The results of the study confirmed the correctness and reproducibility of measurement data obtained with the tNIRS-1. Clinical evaluations conducted in several hospitals demonstrated a high level of usability in clinical situations and confirmed the efficacy of measurement data obtained with the tNIRS-1. PMID:26782242

  18. Infrared Spectroscopy in the General Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Hill, Margaret A.

    2001-01-01

    Acquisition of infrared spectrometers for use in general chemistry lab was made possible through the NSF-sponsored Instrumentation and Laboratory Improvement (ILI) program. Three laboratory exercises suitable for first-year students are described in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab is the first of these with minimal sample preparation. It uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.

  19. Improved source of infrared radiation for spectroscopy

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Rao, K. N.

    1971-01-01

    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph.

  20. Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; McCall, Benjamin J.

    2013-06-01

    High-resolution spectroscopy of small gas-phase water clusters has provided a wealth of information regarding the intermolecular interactions between water molecules. Water dimer is of particular interest because high-resolution spectroscopy can yield detailed information about the water pair potential. While there have been extensive studies of water dimer throughout the microwave and infrared regions of the spectrum, to date there has been no reported high-resolution spectrum of the intramolecular bending modes of water dimer. We have obtained rotationally-resolved spectra of the bending modes of deuterated water dimer (D_2O)_2, which are, to our knowledge, the first reported spectra of the bending modes of water dimer with rotational resolution. Dimers were produced in a supersonic expansion by bubbling Ar or He through D_2O and expanding the mixture through a 150 μm × 12 mm slit. The expansion was then probed using continuous wave cavity ringdown spectroscopy with light generated by a quantum cascade laser (QCL) operating near 8.5 μm. We have assigned the K_a = 1 ← 0 and K_a = 2 ← 1 sub-bands of the bending mode belonging to the hydrogen bond donor and have observed additional transitions which we attribute to the bending mode associated with the hydrogen bond acceptor.

  1. Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures

    PubMed Central

    Borisenko, Sergey V.; Zabolotnyy, Volodymyr B.; Kordyuk, Alexander A.; Evtushinsky, Danil V.; Kim, Timur K.; Carleschi, Emanuela; Doyle, Bryan P.; Fittipaldi, Rosalba; Cuoco, Mario; Vecchione, Antonio; Berger, Helmut

    2012-01-01

    The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample. In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be

  2. Angle-resolved photoemission spectroscopy at ultra-low temperatures.

    PubMed

    Borisenko, Sergey V; Zabolotnyy, Volodymyr B; Kordyuk, Alexander A; Evtushinsky, Danil V; Kim, Timur K; Carleschi, Emanuela; Doyle, Bryan P; Fittipaldi, Rosalba; Cuoco, Mario; Vecchione, Antonio; Berger, Helmut

    2012-01-01

    The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample. In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He(3) cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be

  3. Infrared Spectroscopy of TeF 6

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.; Holland, Redus F.; McCulla, William H.; Anderson, Graydon K.; Reisfeld, Martin J.

    1986-07-01

    Fourier transform and grating IR spectrometers and tunable diode lasers have been used to record the IR spectrum of TeF 6. The isotopic structure in the stretching fundamental ν 3is resolved, revealing a tellurium isotope shift of approximately 0.68 cm -1 amu -1. Some of the rotational structure in the P and R branches of ν 3 of 99.3% 130TeF 6 is also resolved and analyzed to yield a Coriolis constant ζ 3 = 0.225. Integrated absorptivities are reported for ν 3 and for the stronger combination bands. The isotope shifts and Coriolis constants are used to fix the general quadratic symmetry and valence force fields, and the force constants of the Group VI series SF 6, SeF 6, and TeF 6 are compared and discussed.

  4. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  5. Advances in Mid-Infrared Spectroscopy for Chemical Analysis.

    PubMed

    Haas, Julian; Mizaikoff, Boris

    2016-06-12

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review. PMID:27070183

  6. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  7. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    PubMed Central

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  8. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  9. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  10. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.

    PubMed Central

    Hessling, B; Herbst, J; Rammelsberg, R; Gerwert, K

    1997-01-01

    The orientation of the central proton-binding site, the protonated Schiff base, away from the proton release side to the proton uptake side is crucial for the directionality of the proton pump bacteriorhodopsin. It has been proposed that this movement, called the reprotonation switch, takes place in the M1 to M2 transition. To resolve the molecular events in this M1 to M2 transition, we performed double-flash experiments. In these experiments a first pulse initiates the photocycle and a second pulse selectively drives bR molecules in the M intermediate back into the BR ground state. For short delay times between initiating and resetting pulses, most of the M molecules being reset are in the M1 intermediate, and for longer delay times most of the reset M molecules are in the M2 intermediate. The BR-M1 and BR-M2 difference spectra are monitored with nanosecond step-scan Fourier transform infrared spectroscopy. Because the Schiff base reprotonation rate is kM1 = 0.8 x 10(7) s(-1) in the light-induced M1 back-reaction and kM2 = 0.36 x 10(7) s(-1) in the M2 back-reaction, the two different M intermediates represent two different proton accessibility configurations of the Schiff base. The results show only a minute movement of one or two peptide bonds in the M1 to M2 transition that changes the interaction of the Schiff base with Y185. This backbone movement is distinct from the larger one in the subsequent M to N transition. No evidence of a chromophore isomerization is seen in the M1 to M2 transition. Furthermore, the results show time-resolved reprotonation of the Schiff base from D85 in the M photo-back-reaction, instead of from D96, as in the conventional cycle. Images Scheme 2 PMID:9336202

  11. Galileo infrared imaging spectroscopy measurements at venus

    USGS Publications Warehouse

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.

    1991-01-01

    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  12. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found. PMID:11539179

  13. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  14. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  15. Exploration of the giant planets by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1976-01-01

    The infrared spectrometer and radiometer for the Mariner-Jupiter-Saturn mission is described. Results of Nimbus and Mariner 9 IR spectroscopy of earth and Mars are used as examples to demonstrate the power and diversity of the technique. Determinations of planetary surface compositions, surface temperatures, vertical temperature profiles, surface pressures, and atmospheric constituents are summarized. Applications to Jupiter and Saturn are briefly mentioned.

  16. Measurement of lipid supplements in poultry feed by infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid measurement of a fatty acid supplement in poultry feed formulations was performed using near infrared (NIR) spectroscopy with chemometric analysis. A standard feed formulation was amended with up to 10 wt% fatty acid supplement containing docosahexaenoic acid (DHA) and scanned from 10,000 cm-1...

  17. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  18. Progress in far-infrared spectroscopy: Approximately 1890 to 1970

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Akiyoshi

    2014-03-01

    The history of far-infrared spectroscopy from its beginning to around 1970 is reviewed. Before World War II, the size of the community investigating this topic was limited. During this period, in particular before 1925, about 90% of the papers were published by H. Rubens and his co-workers in Germany. One or two researchers from the US joined the Rubens group per year from 1890 to the beginning of 1910. During the next year or two, some researchers joined M. Czerny, who is seen as the successor of Rubens. After World War II, far-infrared techniques progressed further in the US, which did not suffer damage during the war. The advanced techniques of far-infrared grating spectroscopy were transferred from the US (R. A. Oetjen) to Japan (H. Yoshinaga). Yoshinaga and his co-workers expanded the techniques by themselves. This paper describes the historical development of far-infrared spectroscopy before Fourier transform spectroscopy became popular around 1970.

  19. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  20. Forensic applications of microscopical infrared internal reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  1. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  2. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  3. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  4. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO

  5. Homogeneity study of ointment dosage forms by infrared imaging spectroscopy.

    PubMed

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2012-01-25

    Ointment dosage forms are semi-solid preparations intended for local or transdermal delivery of active substances usually for application to the skin and it is important that they present a homogeneous appearance. In this work, a study of the homogeneity of a tacrolimus ointment dosage form was performed using infrared imaging spectroscopy coupled with principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to interpret the imaging data. Optical visible microscopy images indicated possible phase separation in the ointment and, based on the results presented by distribution concentration maps from infrared imaging, it was possible to conclude that, in fact, there was phase separation incorporated in the ointment. Thus, infrared imaging spectroscopy associated to PCA and MCR-ALS is demonstrated to be a powerful tool for the development process of ointment dosage forms. PMID:22018891

  6. Infrared quantitative spectroscopy and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Flaud, J.-M.

    2009-04-01

    Optical measurements of atmospheric minor constituents are carried out using spectrometers working in the UV-visible, infrared and microwave spectral ranges. In all cases the quality of the analysis and of the interpretation of the atmospheric spectra requires the best possible knowledge of the molecular parameters of the species of interest. To illustrate this point we will concentrate on recent laboratory studies of nitric acid, chlorine nitrate and formaldehyde. Nitric acid is one of the important minor constituent of the terrestrial atmosphere. Using new and accurate experimental results concerning the spectroscopic properties of the H14NO3 and H15NO3 molecules, as well as improved theoretical methods (Perrin et al., 2004), it has been possible to generate an improved set of line parameters for these molecules in the 11.2 μm spectral region. These line parameters were used to detect for the first time the H15NO3 molecule in the atmosphere analyzing atmospheric spectra recorded by the MIPAS experiment. The retrievals of chlorine nitrate profiles are usually performed using absorption cross sections (Birk and Wagner, 2003). Following a high resolution analysis of the ν3 and ν4bands of this species in the 12.8 μm region wepropose, as a possibility, to use line by line calculation simulating its ν4Q-branch for the atmospheric temperature and pressure ranges. For the measurement of atmospheric formaldehyde concentrations, mid-infrared and ultraviolet absorptions are both used by ground, air or satellite instruments. It is then of the utmost importance to have consistent spectral parameters in these various spectral domains. Consequently the aim of the study performed at LISA (Gratien et al., 2007) was to intercalibrate formaldehyde spectra in the infrared and ultraviolet regions acquiring simultaneously UV and IR spectra using a common optical cell. The results of the work will be presented. Also high resolution infrared data derived from Perrin et al., 2003

  7. Infrared Spectroscopy of Hydrated Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Weber, J. Mathias

    2009-06-01

    The hydration of molecular anions is still not as thoroughly explored as for atomic anions. We present IR spectra and quantum chemical calculations of hydrated nitromethane anions. In the monohydrate, the nitro group of the ion interacts with the water molecule via two hydrogen bonds, one from each O atom. This motif is partially conserved in the dihydrate. Adding the third water molecule results in a ring-like structure of the water ligands, each of which forms one H bond to one of the O atoms of the nitro group and another to a neighboring water ligand, reminiscent of the hydration motif of the heavier halides. Interestingly, while the methyl group is not directly involved in the interaction with the water ligands, its infrared signature is strongly affected by the changes in the intramolecular charge distribution through hydration.

  8. - Fourier Transform Infrared Spectroscopy of Small - Molecules

    NASA Astrophysics Data System (ADS)

    Li, G.; Bernath, P. F.

    2011-06-01

    A series of small boron-containing molecules were synthesized in the gas phase using a tube furnace. High-resolution spectra of these species were recorded in either emission or absorption in the mid-infrared region using a Bruker IFS-125HR spectrometer. Our observations contain vibration-rotation bands of BO, the V1 and V3 bands of HBO, the V1 and V3 bands of HBS, the V1 band of FBO, and the V1 band of HBF2. The vibrational bands of HOBO, BF2OH and other boron-containing molecules may also be present. Ab initio calculations were performed at the MRCI level to assist in the vibrational assignments. Preliminary assignments of the spectra for these species will be reported.

  9. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  10. Infrared spectroscopy of simulated Martian surface materials

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Sagan, C.

    1978-01-01

    Mineralogy inferred from the Viking X-ray fluorescence spectrometry (XRFS) is compared with mineralogy indicated by spectral data. The comparison is done by taking laboratory spectra of Viking analog minerals. Both XRFS and infrared data are consistent with clays as the dominant SiO2 containing minerals on Mars. The X-ray fluorescence data might also be consistent with the dominance of certain mafic SiO2 igneous minerals, but the spectral data are probably inconsistent with such materials. Sulfates, inferred by XRFS, are consistent with the spectral data. Inferences following Mariner 9 that high-SiO2 minerals were important on Mars may have been biased by the presence of sulfates. Calcium carbonate, in the quantities indirectly suggested by XRFS are inconsistent with the spectral data, but smaller quantities of CaCO3 are consistent, as are large quantities of other carbonates.

  11. Measuring Titan's mesospheric temperatures by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Penteado, P.; Griffith, C.; Greathouse, T.; Roe, H.; Yelle, R.

    2005-08-01

    Titan's temperature profile is an indicator of the atmospheric energy transport, by radiation, convection and conduction. From the surface up to ˜250 km altitude, the temperature profile was measured by the Voyager 1 radio occultations and infrared spectra. In the troposphere, heating by the surface and low atmosphere by solar radiation absorption and cooling by emission to space are the dominant processes that establish the temperature profile, which decreases from ˜94 K at the surface, to ˜70 K at 200 km. Between 200 and 350 km, the atmosphere radiative absorption and emission balance, and the temperature is approximately constante. At 250-500 km altitudes, observations of stellar occultations reveal oscillations between 170 and 150 K. Atmospheric models predict the existence of a mesosphere, in the region 350-550 km, with the temperature decreasing from ethane and other hydrocarbons' emissions. In this work we analyze emission lines of methane's ν 4 band (8.1 μ m, 1230 cm-1) with high resolution spectra. The line profiles of different intensities allow us to determine the vertical temperature profile for the region 100-600 km, which was not possible with previously available data. We present the first infrared observation that can measure independently the temperatures for the regions 100-200 km, 200-400 km, and 400-600 km. These measurements show the existence of a mesosphere, with a temperature drop of at least 15 K from 380+50-100 km altitude. Paulo Penteado is sponsored by the NASA Planetary Astronomy Program and the Brazilian Government through CAPES.

  12. Near-infrared spectroscopy in NGC 7538

    NASA Astrophysics Data System (ADS)

    Puga, E.; Marín-Franch, A.; Najarro, F.; Lenorzer, A.; Herrero, A.; Acosta Pulido, J. A.; Chavarría, L. A.; Bik, A.; Figer, D.; Ramírez Alegría, S.

    2010-07-01

    Aims: The characterisation of the stellar population in young high-mass star-forming regions allows fundamental cluster properties like distance and age to be constrained. These are essential when using high-mass clusters as probes for conducting Galactic studies. Methods: NGC 7538 is a star-forming region with an embedded stellar population unearthed only in the near-infrared (NIR). We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with subarcsecond JHKs photometry of the region using the imaging mode of the same instrument. Results: We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the H ii region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources, as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7 ± 0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass 1.7 × 103 Msun for the older population. Based on observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  13. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  14. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    SciTech Connect

    Palczewski, Ari Deibert

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent

  15. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    PubMed

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  16. SPATIALLY RESOLVED SPECTROSCOPY OF SDSS J0952+2552: A CONFIRMED DUAL ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    McGurk, R. C.; Max, C. E.; Rosario, D. J.; Shields, G. A.; Smith, K. L.; Wright, S. A. E-mail: max@ucolick.org E-mail: shieldsga@mail.utexas.edu E-mail: saw@astro.berkeley.edu

    2011-09-01

    Most massive galaxies contain supermassive black holes (SMBHs) in their cores. When galaxies merge, gas is driven to nuclear regions and can accrete onto the central black hole. Thus, one expects to see dual active galactic nuclei (AGNs) in a fraction of galaxy mergers. Candidates for galaxies containing dual AGNs have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. Spatially resolved spectroscopy is needed to confirm these galaxy pairs as systems with spatially separated double SMBHs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OH Suppressing InfraRed Imaging Spectrograph near-infrared integral field spectrograph, we obtained spatially resolved spectra for SDSS J09527.62+255257.2, a radio-quiet quasar shown by previous imaging to consist of a galaxy and its close (1.''0) companion. We find that the main galaxy is a Type 1 AGN with both broad and narrow AGN emission lines in its spectrum, while the companion galaxy is a Type 2 AGN with narrow emission lines only. The two AGNs are separated by 4.8 kpc, and their redshifts correspond to those of the double peaks of the [O III] emission line seen in the Sloan Digital Sky Survey spectrum. Line diagnostics indicate that both components of the double emission lines are due to AGN photoionization. These results confirm that J0952+2552 contains two spatially separated AGNs. As one of the few confirmed dual AGNs at an intermediate separation of <10 kpc, this system offers a unique opportunity to study galaxy mergers and their effect on black hole growth.

  17. Bird sexing by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  18. Metal nanofilms studied with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fahsold, Gerhard; Priebe, Andreas; Pucci, Annemarie; Otto, Andreas

    2006-03-01

    Metal films with thickness in the nanometer range are optically transparent. In the IR range their transmittance may show both the Drude-type behaviour of coalesced islands and the tail of the plasmon absorption of single islands. Therefore, IR transmittance spectroscopy is a sensitive tool for in-situ studies of metal-film growth on insulating substrates and of the film conductivity. With IR transmittance spectroscopy the in-plane film conductivity and its correlation to the film-growth process can be determined without electrical contacts. Adsorbate induced changes can be observed well. Their analysis may give insight into the adsorbate-metal bonding. Depending on the film's roughness the IR lines of adsorbate-vibration modes may be strongly modified because of their interaction with electronic excitations of the film. The atomic roughness of cold-condensed metal films produces additional IR activity: strong IR activity of Raman lines of centrosymmetric adsorbate molecules is observed in those cases where the adsorbate has states close to the Fermi level.

  19. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos G.; Rajic, Slobodan; Datskou, Irene; Egert, Charles M.

    1997-10-01

    We have investigated a novel IR microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors require highly selective coatings to achieve chemical specificity. In contrast, IR microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. We have obtained IR photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region 2.5 to 14.5 micrometers . We found that in the wavelength region 2.5 to 14.5 micrometers DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 micrometers and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with IR absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  20. Time-resolved reflectance spectroscopy for nondestructive assessment of fruit and vegetable quality

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Spinelli, Lorenzo; Vanoli, Maristella; Rizzolo, Anna; Eccher Zerbini, Paola

    2007-09-01

    In the majority of food and feed, due to the microscopic spatial changes in the refractive index, visible (VIS) and near infrared (NIR) light undergoes multiple scattering events and the overall light distribution is determined more by scattering rather than absorption. Conventional steady state VIS/NIR reflectance spectroscopy can provide information on light attenuation, which depends both on light absorption and light scattering, but cannot discriminate these two effects. On the contrary, time-resolved reflectance spectroscopy (TRS) provides a complete optical characterisation of diffusive media in terms of their absorption coefficient and reduced scattering coefficient. From the assessment of the absorption and reduced scattering coefficients, information can then be derived on the composition and internal structure of the medium. Main advantages of the technique are the absolute non-invasiveness, the potentiality for non-contact measurements, and the capacity to probe internal properties with no influence from the skin. In this work we review the physical and technical issues related to the use of TRS for nondestructive quality assessment of fruit and vegetable. A laboratory system for broadband TRS, based on tunable mode-locked lasers and fast microchannel plate photomultiplier, and a portable setup for TRS measurements, based on pulsed diode lasers and compact metal-channel photomultiplier, will be described. Results on broadband optical characterisation of fruits and applications of TRS to the detection of internal defects in pears and to maturity assessment in nectarines will be presented.

  1. Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy

    SciTech Connect

    Frei, Heinz; Mul, Guido; Wasylenko, Walter; Hamdy, M. Sameh; Frei, Heinz

    2008-06-04

    Vanadia was incorporated in the 3-dimensional mesoporous material TUD-1 with a loading of 2percent w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product, i.e. cyclohexenone, was identified. This demonstrates for the first time that hydroxylated vanadia centers in mesoporous materials can be activated by visible light to induce oxidation reactions. Using the rapid scan method, a strong perturbation of the vanadyl environment could be observed in the selective oxidation process induced by a 458 nm laser pulse of 480 ms duration. This is proposed to be caused by interaction of the catalytic centre with a cyclohexenyl hydroperoxide intermediate. The restoration of the vanadyl environment could be kinetically correlated to the rate of formation of cyclohexenone, and is explained by molecular rearrangement and dissociation of the peroxide to ketone and water. The ketone diffuses away from the active center and ATR infrared probing zone, resulting in a decreasing ketone signal on the tens of seconds time scale after initiation of the photoreaction. This study demonstrates the high potential of time resolved ATR FT-IR spectroscopy for mechanistic studies of liquid phase reactions by monitoring not only intermediates and products, but by correlating the temporal behavior of these species to molecular changes of the vanadyl catalytic site.

  2. A 100 kHz Time-Resolved Multiple-Probe Femtosecond to Second Infrared Absorption Spectrometer.

    PubMed

    Greetham, Gregory M; Donaldson, Paul M; Nation, Charlie; Sazanovich, Igor V; Clark, Ian P; Shaw, Daniel J; Parker, Anthony W; Towrie, Michael

    2016-04-01

    We present a dual-amplifier laser system for time-resolved multiple-probe infrared (IR) spectroscopy based on the ytterbium potassium gadolinium tungstate (Yb:KGW) laser medium. Comparisons are made between the ytterbium-based technology and titanium sapphire laser systems for time-resolved IR spectroscopy measurements. The 100 kHz probing system provides new capability in time-resolved multiple-probe experiments, as more information is obtained from samples in a single experiment through multiple-probing. This method uses the high repetition-rate probe pulses to repeatedly measure spectra at 10 µs intervals following excitation allowing extended timescales to be measured routinely along with ultrafast data. Results are presented showing the measurement of molecular dynamics over >10 orders of magnitude in timescale, out to 20 ms, with an experimental time response of <200 fs. The power of multiple-probing is explored through principal component analysis of repeating probe measurements as a novel method for removing noise and measurement artifacts. PMID:26887988

  3. Resolved Molecular Gas Properties in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine

    2015-08-01

    Luminous infrared galaxies (LIRGs) in the local universe are mergers of gas-rich galaxies. The merger event funnels the molecular gas towards the central kiloparsec, compressing the gas, and triggering an extreme starburst, making LIRGs the perfect laboratory for studying extreme modes of star formation. We use the Submillimeter Array sample and observations of Wilson et al. (2008), supplemented with new CARMA and ALMA observations, to constrain the physical conditions such as temperature, density and column density of the molecular gas in the sample of 7 LIRGs. We use the radiative transfer code RADEX (van der Tak et al. 2007) and a Bayesian likelihood code to fit the most probable physical conditions. Comparison of the molecular gas physical conditions shows that earlier merger stage LIRGs such as Arp 299 and NGC 1614 have denser (> 103cm-1) molecular gas than a later stage merger such as VV 114 and NGC 2623. We measure the CO luminosity to H2 mass conversion factor, αCO, using the radiative transfer analysis results and find that the values are a factor of 4-10 times lower than the Galactic value of 4.3 M⊙ (K km s-1 pc2)-1. We also find unusually large 12CO-to-13CO abundance ratios (> 130), more than 2 times the local Galactic value.

  4. Resolved Star Formation Law In Nearby Infrared-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Bolatto, A.; Wong, T.; Leroy, A.; Ott, J.; Calzetti, D.; Blitz, L.; Walter, F.; Rosolowsky, E.; West, A.; Vogel, S.; Bigiel, F.; Xue, R.

    2009-05-01

    An accurate knowledge of star formation law is crucial to make progress in understanding galaxy formation and evolution. We are studying this topic using CARMA STING (Survey Toward Infrared-bright Nearby Galaxies), an interferometric CO survey of a sample of 27 star-forming nearby galaxies with a wealth of multi-wavelength data designed to study star formation in environments throughout the blue sequence at sub-kpc scales. We present results for NGC 4254 (M99), one of our sample galaxies. We construct star formation rate surface density (SFRSD) and gas (atomic and molecular) surface density indicators using a combination of high resolution data from CARMA, KPNO, Spitzer, IRAM and VLA. We find a tight correlation between SFRSD and molecular gas surface density (MGSD), whereas the relation between atomic gas surface density and SFRSD shows very large scatter. Within the central 6 kpc (radius) where CARMA is the most sensitive the MGSD derived from CO(1-0) and CO(2-1) shows similar trend, however, in the extended disk the slope, derived from CO(2-1) data alone, gets steeper.

  5. Infrared spectroscopy of starburst and Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moorwood, A. F. M.; Oliva, E.

    1994-03-01

    We present and discuss some recent results ofgroundbased IR spectroscopie studies ofstarburst and Seyfert galaxies through the 1-5 μm atmospheric windows. Of particular interest in this spectral range are H and He recombination lines, stellar CO and other absorption bands which can provide information on the stellar populations; [SiVI, VII, IX], [CaVIII] and [SIX] coronal lines in Seyferts and [FeII] and ro-vibrational H2 lines from circumnuclear gas excited by high energy photons and winds associated with recently formed hot stars, SN/SNR and AGN. Recent progress in the latter case has largely been achieved through the first use of 2D arrays to obtain maps and images of the extended line emission in several relatively nearby galaxies.

  6. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  7. The far-infrared spectroscopy of the troposphere (FIRST) project

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D. G.; Bingham, G. E.; Jucks, K. W.; Traub, W. A.; Gordley, L.; Yang, P.

    2005-01-01

    The far-infrared spectroscopy of the troposphere (FIRST) project is under development by NASA through its Instrument Incubator Program (IIP) administered by the Earth Science Technology Office. The objective of the FIRST project is to develop and demonstrate the technology needed to routinely observe from space the far-infrared spectrum between 15 and 100 micrometers in wavelength. This spectral region contains about half of the outgoing longwave radiation from the Earth and its atmosphere and is responsible for about half of the natural greenhouse effect. Radiative cooling of the free troposphere occurs almost exclusively in the far-infrared. The far-infrared emission is modulated almost entirely by water vapor, the main greenhouse gas. Cirrus clouds exhibit significant climate forcing in the far-infrared. Despite this fundamental science, the far-infrared has remained almost unobserved directly, primarily due to technological limitations. The FIRST project is advancing technology in the areas of high throughput interferometers, broad bandpass beamsplitters, and detector focal planes to enable routine measurement of the far-infrared from space. FIRST will conduct a technology demonstration on a high altitude balloon platform in Spring 2005.

  8. Size Dependent Ultrafast Cooling of Water Droplets in Microemulsions by Picosecond Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Patzlaff, T.; Graener, H.

    2002-04-01

    The ultrafast thermal relaxation of reversed micelles in n-octane/AOT/water (where AOT denotes sodium di-2-ethylhexyl sulfosuccinate) microemulsions was investigated by time-resolved infrared pump-probe spectroscopy. This picosecond cooling process can be described in terms of heat diffusion, demonstrating a new method to determine the nanometer radii of the water droplets. The reverse micelles are stable against transient temperatures far above the equilibrium stability range. The amphiphilic interface layer (AOT) seems to provide an efficient heat contact between the water and the nonpolar solvent.

  9. Fourier transform infrared spectroscopy in physics laboratory courses

    NASA Astrophysics Data System (ADS)

    Möllmann, K.-P.; Vollmer, M.

    2013-11-01

    Infrared spectrometry is one of the most important tools in the field of spectroscopic analysis. This is due to the high information content of spectra in the so-called spectroscopic fingerprint region, which enables measurement not only of gases, but also of liquids and solids. Today, infrared spectroscopy is almost completely dominated by Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy is able to detect minute quantities in the ppm and ppb ranges, and the respective analyses are now standard tools in science as well as industry. Therefore FTIR spectroscopy should be taught within the standard curriculum at university to physicists and engineers. Here we present respective undergraduate laboratory experiments designed for students at the end of their third year. Experiments deal first with understanding the spectrometer and second with recording and analysing spectra. On the one hand, transmission spectra of gases are treated which relate to environmental analytics (being probably the most prominent and well-known examples), and on the other hand, the focus is on the transmission and reflection spectra of solids. In particular, silicon wafers are studied—as is regularly done in the microelectronics industry—in order to characterize their thickness, oxygen content and phonon modes.

  10. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1998-01-01

    investigators examined the spatial structure of the thermal component and analyzed the GIS spectra with a non-equilibrium plasma model, and found no systematic variation of the interstellar absorption across the remnant. Evidence for shock acceleration of cosmic rays to high energies (10 TeV) was found by Keohane. X-ray imaging spectroscopy with ASCA reveals two regions of particularly hard emission: an unresolved source embedded in an extended emission region, and a ridge of emission coincident with the southeastern rim. Both features are located on part of the radio shell where the shock wave is interacting with molecular gas, and together they account for a majority of the emission at 7 keV. Though we would not have noticed it a priori, the unresolved feature is coincident with one resolved by the ROSAT HRI. The ASCA measurements were combined with higher energy data from the XTE and GRO missions and with radio and TeV gamma-ray data to produce a nonthermal multiwavelength spectrum for IC 443 which was fit with a cosmic ray interaction model. This model calculates the cynchrotron, bremsstrahlung, invers Compton, and neutral pion decay emission produced by locally accelerated cosmic ray interacting with ambient matter, soft photon fields, and magnetic fields.

  11. Monitoring the alcoholysis of isocyanates with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kössl, F.; Lisaj, M.; Kozich, V.; Heyne, K.; Kühn, O.

    2015-02-01

    The alcoholysis reaction of phenylisocyanate with cyclohexanol (I) and of 2,4-toluene-diisocyanate with chloraldhydrate (II) is studied by infrared absorption spectroscopy in combination with anharmonic frequency calculations using density functional theory. It is shown that the progress of the reaction can be monitored by measuring infrared marker bands in the isocyanate NCO and alcohol OH stretching regions. Analysis of spectra obtained as a function of time for different temperatures yields a second-order kinetics with an Arrhenius activation energy of 6.7 ± 0.2 and 2.8 ± 0.3 kcal/mol for reaction I and II, respectively.

  12. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  13. Synchrotron-based far-infrared spectroscopy of nickel tungstate

    NASA Astrophysics Data System (ADS)

    Kalinko, A.; Kuzmin, A.; Roy, P.; Evarestov, R. A.

    2016-07-01

    Monoclinic antiferromagnetic NiWO4 was studied by far-infrared (30-600 cm-1) absorption spectroscopy in the temperature range of 5-300 K using the synchrotron radiation from SOLEIL source. Two isomorphous CoWO4 and ZnWO4 tungstates were investigated for comparison. The phonon contributions in the far-infrared range of tungstates were interpreted using the first-principles spin-polarized linear combination of atomic orbital calculations. No contributions from magnetic excitations were found in NiWO4 and CoWO4 below their Neel temperatures down to 5 K.

  14. Infrared Spectroscopy of the Eruptive Variable ASASSN-15qi

    NASA Astrophysics Data System (ADS)

    Connelley, M. S.; Reipurth, Bo; Hillenbrand, Lynne A.

    2015-11-01

    We report infrared medium-resolution spectroscopy and near-infrared photometry of the eruptive variable ASASSN-15qi = 2MASS J22560882+5831040. Recently the ASAS-SN transients survey reported that 2MASS J22560882+5831040 between Oct 2 and Oct3, 2015 brightened from V > 17.0 to V=13.6, fading slightly to V=13.9 the following night (http://www.astronomy.ohio-state.edu/~assassin/transients.html, Shappee et al. 2014, ApJ, 788:A48).

  15. Frequency- and time-resolved coherence transfer spectroscopy.

    PubMed

    Rickard, Mark A; Pakoulev, Andrei V; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2007-02-22

    Frequency-domain two-color triply vibrational enhanced four-wave mixing using a new phase-matching geometry discriminates against coherent multidimensional spectral features created solely by radiative transitions, spectrally resolves pathways with different numbers of coherence transfer steps, and temporally resolves modulations created by interference between coherence transfer pathways. Coherence transfer is a nonradiative transition where a superposition of quantum states evolves to a different superposition. The asymmetric and symmetric C[triple bond]O stretching modes of rhodium(I) dicarbonyl acetylacetonate are used as a model system for coherence transfer. A simplified theoretical model based on Redfield theory is used to describe the experimental results. PMID:17300169

  16. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  17. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  18. Raman and Infrared Spectroscopy of Pyridine under High Pressure

    SciTech Connect

    Zhuravlev, K.; Traikov, K; Dong, Z; Xie, S; Song, Y; Liu, Z

    2010-01-01

    We report the structural transitions of pyridine as a function of pressure up to 26 GPa using in situ Raman spectroscopy and infrared absorption spectroscopy. By monitoring changes in the Raman shifts in the lattice region as well as the band profiles in both Raman and IR spectra, a liquid-to-solid transition at 1 GPa followed by solid-to-solid transitions at 2, 8, 11, and 16 GPa were observed upon compression. These transitions were found to be reversible upon decompression from 22 GPa. A further chemical transformation was observed when compressed beyond 22 GPa as evidenced by the substantial and irreversible changes in the Raman and infrared spectra, which could be attributed to the destruction of the ring structure. The observed transformations in pyridine were also compared to those for benzene. The similar transition sequence with well-aligned transition pressures suggests that these isoelectronic aromatics may have similar structures and stabilities under high pressure.

  19. Environmental Affects on Surfactin Studied Using Multidimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nite, Jacob; Krummel, Amber

    2014-03-01

    Surfactin, a cyclic lipopeptide produced by Bacillus subtilis, is a pore forming toxin that has been studied in the literature extensively. It is known to exist in two different conformations, S1 and S2, which are thought to relate to surfactin's pore forming ability. The vibrational characteristics of surfactin have been studied using linear infrared spectroscopy as well as two-dimensional infrared spectroscopy in different environments. The environments probed were specifically chosen to mimic surfactin in an aqueous environment as well as a lipid membrane environment. The vibrational spectra were interpreted using transitional dipole coupling to relate the coupling evident in the data to the structural conformers obtained from NMR data. These measurements have been used to link the structural characteristics of surfactin to different solvent environments to gain insight into surfactin's pore forming ability mechanisms. Colorado State University. Maciel Fellowship.

  20. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  1. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    NASA Astrophysics Data System (ADS)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2010-12-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  2. Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin

    NASA Astrophysics Data System (ADS)

    Kumar, Ajitesh; Karthick Kumar, S. K.; Gupta, Aditya; Goswami, Debabrata

    2011-08-01

    We have studied the coherence and population dynamics of Astaxanthin solution in methanol and acetonitrile by spectrally resolving their photon echo signals. Our experiments indicate that methanol has a much stronger interaction with the ultrafast dynamics of Astaxanthin in comparison to that of acetonitrile.

  3. Infrared heterodyne spectroscopy for astronomical purposes. [laser applications

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1978-01-01

    Heterodyne infrared astronomy was carried out using CO2 lasers and some solid state tunable lasers. The best available detectors are mercury cadmium telluride photodiodes. Their quantum efficiencies reach values near 0.5 and in an overall system an effective quantum efficiency, taking into account optical losses and amplifier noise, of about 0.25 was demonstrated. Initial uses of 10 micron heterodyne spectroscopy were for the study of planetary molecular spectra.

  4. Angle-resolved multioctave supercontinua from mid-infrared laser filaments.

    PubMed

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Mitryukovsky, S I; Rozhko, M V; Pugžlys, A; Fedotov, A B; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2016-08-01

    Angle-resolved spectral analysis of a multioctave high-energy supercontinuum output of mid-infrared laser filaments is shown to provide a powerful tool for understanding intricate physical scenarios behind laser-induced filamentation in the mid-infrared. The ellipticity of the mid-infrared driver beam breaks the axial symmetry of filamentation dynamics, offering a probe for a truly (3+1)-dimensional spatiotemporal evolution of mid-IR pulses in the filamentation regime. With optical harmonics up to the 15th order contributing to supercontinuum generation in such filaments alongside Kerr-type and ionization-induced nonlinearities, the output supercontinuum spectra span over five octaves from the mid-ultraviolet deep into the mid-infrared. Full (3+1)-dimensional field evolution analysis is needed for an adequate understanding of this regime of laser filamentation. Supercomputer simulations implementing such analysis articulate the critical importance of angle-resolved measurements for both descriptive and predictive power of filamentation modeling. Strong enhancement of ionization-induced blueshift is shown to offer new approaches in filamentation-assisted pulse compression, enabling the generation of high-power few- and single-cycle pulses in the mid-infrared. PMID:27472598

  5. Elucidation of Intermediates and Mechanisms in Heterogeneous Catalysis Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Savara, Aditya; Weitz, Eric

    2014-04-01

    Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNOx, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy.

  6. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy.

    PubMed

    Savara, Aditya; Weitz, Eric

    2014-01-01

    Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNOx, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy. PMID:24689797

  7. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies.

    PubMed

    Mahulikar, Shripad P; Potnuru, Santosh K; Kolhe, Pankaj S

    2007-08-01

    The solid angle (Omega) subtended by the hot power-plant surfaces of a typical fighter aircraft, on the detector of an infrared (IR) guided missile, is analytically obtained. The use of the parallel rays projection method simplifies the incorporation of the effect of the optical blocking by engine surfaces, on Omega-subtended. This methodology enables the evaluation of the relative contribution of the IR signature from well-resolved distributed sources, and is important for imaging infrared detection studies. The complex 3D surface of a rear fuselage is projected onto an equivalent planar area normal to the viewing aspect, which would give the same Omega-subtended. PMID:17676106

  8. Vesta Rotationally Resolved Near-Infrared Spectra V1.0

    NASA Astrophysics Data System (ADS)

    Reddy, V.

    2011-08-01

    This data set contains low-resolution near-infrared (~0.7-2.5 microns) spectra of main belt asteroid (4) Vesta observed with the SpeX instrument on NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i, and reported in Reddy et al. (2011). This data set archives reduced, calibrated spectra that were obtained as part of ground-based characterization of Vesta prior to the arrival of Dawn spacecraft. They have been used for detailed rotationally-resolved mineralogical/compositional analysis.

  9. Infrared Spectroscopy of Molecules in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Zhang, Keqing

    Fourier transform infrared spectroscopy is applied to the studies of several very different molecular systems. The spectra of the diatomic molecules BF, AlF, and MgF were recorded and analyzed. Dunham coefficients were obtained. The data of two isotopomers, 11BF and 10BF, were used to determine the mass-reduced Dunham coefficients, along with Born-Oppenheimer breakdown constants. Parameterized potential energy functions of BF and AlF were determined by fitting the available data using the solutions of the radial Schrodinger equation. Two vibrational modes of the short-lived and reactive BrCNO molecule were recorded at high resolution. Rotation-vibration transitions of the fundamental bands of both isotopomers 79BrCNO and 81BrCNO were assigned and analyzed. From the rotational constants, it was found that the Br-C bond length in BrCNO anomalously short when a linear geometry was assumed. This may indicate that BrCNO is quasi-linear, simulating the parent HCNO molecule. The emission spectra of the gaseous polycyclic aromatic hydrocarbon (PAH) molecules naphthalene, anthracene, pyrene, and chrysene were recorded in the far-infrared and mid-infrared regions. The assignments of fundamental modes and some combination modes were made. The vibrational bands that lie in the far-infrared are unique for different PAHs and allow discrimination among the four PAH molecules. The far-infrared PAH spectra, therefore, may prove useful in the assignments of unidentified spectral features from astronomical objects.

  10. RESOLVED SPECTROSCOPY OF A BROWN DWARF BINARY AT THE T DWARF/Y DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.

    2012-01-20

    We report resolved near-infrared imaging and spectroscopic observations of the T8.5 binary WISEP J045853.90+643452.6AB obtained with Keck/NIRC2, Keck/OSIRIS, and the Keck Laser Guide Star Adaptive Optics system. These data confirm common proper and radial motion for the two components, and we see the first indications of orbital motion (mostly radial) for this system. H-band spectroscopy identifies both components as very late type brown dwarfs with strong H{sub 2}O and CH{sub 4} absorption. The spectrum of WISE J0458+6434B also exhibits a compelling signature of NH{sub 3} absorption over 1.52-1.54 {mu}m when compared to the T9 dwarf UGPS J072227.51-054031.2. Comparison to T8-Y0 spectral standards and H-band spectral indices indicate classifications of T8.5 and T9.5 for these two components, approaching the boundary between the T dwarf and Y dwarf spectral classes.

  11. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions.

    PubMed

    Ding, Thomas; Ott, Christian; Kaldun, Andreas; Blättermann, Alexander; Meyer, Kristina; Stooss, Veit; Rebholz, Marc; Birk, Paul; Hartmann, Maximilian; Brown, Andrew; Van Der Hart, Hugo; Pfeifer, Thomas

    2016-02-15

    Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules. PMID:26872169

  12. Reactivity of Binuclear Tantalum Clusters on Silica: Characterization by Transient Time-Resolved Spectroscopy

    SciTech Connect

    Nemana, Sailendra; Sun, Junming; Gates, Bruce C.

    2008-05-08

    Binuclear tantalum clusters were synthesized from Ta(CH{sub 2}Ph){sub 5} (Ph is phenyl) on the surface of nonporous SiO{sub 2} (Aerosil), and their reactions with H{sub 2}, D{sub 2}, and ethylene were characterized by time-resolved infrared (IR), extended X-ray absorption fine structure (EXAFS), and X-ray absorption near edge spectroscopies. The EXAFS data indicate the formation in H{sub 2} of clusters with a Ta-Ta coordination number of approximately 1 and a bonding distance of 2.74 {angstrom}. Reactions of the supported clusters with D{sub 2} and H{sub 2} facilitate the interconversion of O-H and O-D groups on the SiO{sub 2} surface. Reaction of these clusters with ethylene led to their rapid fragmentation to give mononuclear tantalum complexes, as the tantalum was oxidized and new ligands formed, suggested by IR spectra to be ethyl. The results demonstrate a rough analogy between the chemistry of tantalum clusters on the SiO{sub 2} surface and their chemistry in solution. Because alkenes are suggested intermediates in the catalytic disproportionation of alkanes on supported tantalum, our results indicate how these intermediates might influence the nature of the catalytically active species.

  13. Immunoglobulin G measurement in blood plasma using infrared spectroscopy.

    PubMed

    Hou, Siyuan; McClure, J Trenton; Shaw, R Anthony; Riley, Christopher B

    2014-01-01

    A rapid, simple, and inexpensive method to measure the immunoglobulin G (IgG) concentrations in blood samples in human and veterinary medicine is highly desired. Infrared spectroscopy (coupled with chemometric manipulation of spectral data) has the advantages of simple sample preparation, rapid implementation of analysis, and low cost. Here a method that exploits infrared spectroscopy as the basis to measure IgG concentration in animal plasma samples is reported, with radial immunodiffusion (RID) used as the reference test method for partial least squares (PLS) calibration model development. Smoothed non-derivative and the second-order derivative spectra were used to develop calibration models. Various additional spectral preprocessing steps were evaluated to optimize the calibration models, and the possible benefits of using an internal standard (potassium thiocyanate [KSCN]) were investigated. Monte Carlo cross-validation was used to determine the optimal number of PLS factors, and an independent prediction set was used to test the predictive performances of provisional models. The effects of various preprocessing options (spectral smoothing, derivation, normalization, region selection, mean-centering, and standard deviation scaling) on quantification accuracy were investigated. The root mean squared error of prediction (RMSEP) for different combinations of spectra preprocessing steps was 394 ± 36 mg/dL for the non-derivative spectra and 427 ± 101 mg/dL for the second-order derivative spectra. Immunoglobulin G concentrations produced by the optimized PLS model for the non-derivative spectra (RMSEP = 352 mg/dL) were found to be stable with respect to different splits of the samples among the calibration, validation, and prediction sets. The precision of the Fourier transform infrared (FT-IR) method is found to be slightly superior to that of the RID method. The results of this work indicate that infrared spectroscopy is a promising technique for economically and

  14. Infrared spectroscopy: a novel tool to aid classification of DCIS

    NASA Astrophysics Data System (ADS)

    Subramanian, K.; Stone, N.; Kendall, C.; Brown, J. C.; McCarthy, K.; Bristol, J.; Chan, Y. H.

    2006-02-01

    There is no universally accepted grading system for the classification of Ductal Carcinoma in Situ (DCIS) although the diagnosis of DCIS has increased (2-20%) with screening mammography. (1) At present there are more than six different classifications and grading systems. Infrared spectroscopy is a non-invasive, rapid and specific technique used to analyse biological tissue. Spectral analysis of the chemical fingerprint within the duct would reveal spectral differences according to absorption and transmission characteristics of different grades of DCIS. An existing model of histopathological classification which is locally accepted has been tested and evaluated in this study. 19 ducts from different biopsy specimens were marked on H&E stained sections by two breast pathologists, according to the locally accepted classification. A consecutive unstained 20μm section was subjected to infrared analysis (Perkin-Elmer). Principal component analysis was undertaken using Matlab. Pseudocolor maps of the principal component scores delineated morphological features of the ducts. Peaks in the corresponding principal component loads were identified to enable understanding of the biochemical changes associated with different grades of DCIS. A 4-group cross-validated classification model was developed using multivariate statistical analysis with selected spectra from different grades of DCIS. The classification model demonstrated good separation of the different grades of the DCIS with a sensitivity of 80-99% and specificity of 92-98%. Infrared spectroscopy is a highly sensitive and specific technique for the demonstration of biochemical changes within the proliferative duct. It could aid in reclassifying the grades of DCIS in accordance with the biochemical and morphological changes that occur with proliferation. Infrared spectroscopy has potential as an added tool for the pathologist to diagnose in vitro.

  15. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.

    PubMed

    Hajimohammadi, Ailar; Provis, John L; van Deventer, Jannie S J

    2011-05-15

    The effect of seeded nucleation on the formation and structural evolution of one-part ("just add water") geopolymer gels is investigated. Gel-forming systems are seeded with each of three different oxide nanoparticles, and seeding is shown to have an important role in controlling the silica release rate from the solid geothermal silica precursor, and in the development of physical properties of the gels. Nucleation accelerates the chemical changes taking place during geopolymer formation. The nature of the seeds affects the structure of the growing gel by affecting the extent of phase separation, identified by the presence of a distinct silica-rich gel in addition to the main, more alumina-rich gel phase. Synchrotron radiation-based infrared microscopy (SR-FTIR) shows the effect of nucleation on the heterogeneous nanostructure and microstructure of geopolymer gels, and is combined with data obtained by time-resolved FTIR analysis to provide a more holistic view of the reaction processes at a level of detail that has not previously been available. While spatially averaged (ATR-FTIR) infrared results show similar spectra for seeded and unseeded samples which have been cured for more than 3 weeks, SR-FTIR results show marked differences in gel structure as a result of seeding. PMID:21397245

  16. The Pt2 (1,0) band of System VI in the near infrared by intracavity laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, James J.

    2011-05-01

    Intracavity laser absorption spectroscopy has been used to record rotationally resolved electronic spectra of Pt2 in the near infrared. The metal dimers were created using a 50 mm-long, platinum-lined hollow cathode plasma discharge. The observed transition at 12 937 cm-1 is identified as the (1,0) band of System VI, with state symmetries Ω = 0 - X Ω = 0.

  17. Infrared Spectroscopy of Astrophysical Gas, Grains, and Ices with the Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2009-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) will be a premier facility for studying the physics and chemistry of the stellar evolution process for many decades. SOFIA spectroscopic science applications will be discussed, with special emphasis on investigations related to infrared spectroscopy of astrophysical gas, grains, and ices. Examples will be given of spectroscopic studies of the interstellar medium, protostars, obscured sources in molecular cloud cores, circumstellar disks around young stellar objects, remnants of nova and supernova explosions, and winds of evolved stellar systems.

  18. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  19. Time-resolved Hyperspectral Fluorescence Spectroscopy using Frequency Modulated Excitation

    SciTech Connect

    ,; Neill, M

    2012-07-01

    An intensity-modulated excitation light source is used together with a micro channel plate intensified CCD (ICCD) detector gated at a slightly different frequency to generate a beat frequency from a fluorescent sample. The addition of a spectrograph produces a hyperspectral time-resolved data product where the resulting beat frequency is detected with a low frame rate camera. Measuring the beat frequency of the spectrum as a function of time allows separation of the excited fluorescence from ambient constant light sources. The excitation and detector repetition rates are varied over a range of discrete frequencies, and the phase shift of the beat wave maps out the emission decay rate(s).

  20. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    NASA Astrophysics Data System (ADS)

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  1. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. Cerebral oxygenation monitoring during cardiac bypass surgery in infants with broad band spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Soschinski, Jan; Ben Mine, Lofti; Geraskin, Dmitri; Bennink, Gerardus; Kohl-Bareis, Matthias

    2007-07-01

    Neurological impairments following cardio-pulmonary bypass (CPB) during open heart surgery can result from microembolism and ischaemia. Here we present results from monitoring cerebral haemodynamics during CPB with near infrared spatially resolved broadband spectroscopy. In particular, the study has the objective (a) to monitor oxy- and deoxy-hemoglobin concentrations (oxy-Hb, deoxy-Hb) and their changes as well as oxygen saturation during CPB surgery and (b) to develop and test algorithms for the calculation of these parameters from broad band spectroscopy. For this purpose a detection system was developed based on an especially designed lens imaging spectrograph with optimised sensitivity of recorded reflectance spectra for wavelengths between 600 and 1000 nm. The high f/#-number of 1:1.2 of the system results in about a factor of 10 higher light throughput combined with a lower astigmatism and crosstalk between channels when compared with a commercial mirror spectrometers (f/# = 1:4). For both hemispheres two independent channels each with three source-detector distances (ρ = 25 . 35 mm) were used resulting in six spectra. The broad band approach allows to investigate the influence of the wavelength range on the calculated haemoglobin concentrations and their changes and oxygen saturation when the attenuation A(λ) and its slope ΔA(λ)/Δρ are evaluated. Furthermore, the different depth sensitivities of these measurement parameters are estimated from Monte Carlo simulations and exploited for an optimization of the cerebral signals. It is demonstrated that the system does record cerebral oxygenation parameters during CPB in infants. In particular, the correlation of haemoglobin concentrations with blood supply (flow, pressure) by the heart-lung machine and the significant decreases in oxygen saturation during cardiac arrest is discussed.

  6. Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)

    NASA Astrophysics Data System (ADS)

    Wright, Shelley; IRIS Science Team

    2014-07-01

    The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.

  7. Angular-resolved photoelectron spectroscopy of corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Olejnik, K.; Zemek, J.; Werner, W. S. M.

    2005-12-01

    The influence of surface roughness on angle-resolved photoelectron intensities has been studied by means of a semiempirical method and experimentally. The full three-dimensional information about the surface roughness of real samples measured by atomic force microscopy (AFM) was used as an input for the calculations of the so-called tilt-angle histograms. Both effects of surface roughness, shadowing of photoelectrons and differences between microscopic and macroscopic signal electron emission geometry (true emission angles), are taken into account. Photoelectron current is then calculated using a common formalism XPS/AES valid for ideally flat surfaces, i.e. analytically by the straight-line approximation (SLA) or by Monte Carlo calculations. The approach which can be applied for an arbitrary type of surface roughness is verified on angular-resolved Si 2p photoelectron spectra recorded from model silicon samples with different artificially modified surface roughness, covered by a thin silicon oxide film and a surface contamination. The effect of surface roughness on the Si 2p photoelectron intensities was found to be quite prevalent over electron elastic scattering or surface contamination effects. The so-called magic angle depended on a character of surface roughness.

  8. PREFACE: 3rd International Workshop on Infrared Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davies, P. B.; Röpcke, Jürgen; Hempel, Frank

    2009-07-01

    This volume containsd a selection of papers from the third Infrared Plasma Spectroscopy (IPS) Workshop held in Greifswald, Germany in July 2008. Although not all the contributions have been written up in time for the deadline for this volume, nevertheless the 12 contributions presented here give a fair representation of the conference topics. The conference comprised four different types of contribution. Firstly, four invited lectures focussed on the prime areas of interest. Secondly, eight shorter contributed talks, grouped as closely as possible with the appropriate invited lecture. These contributed talks covered topics in both pure and applied infrared plasma spectroscopy. A feature of the two previous IPS conferences has been a contribution from commercial organisations namely those involved in manufacturing devices, detectors and spectrometers. This group of participants formed the third part of the conference programme and gave five oral presentations covering topics like QCL and detector/detection developments and novel spectrometer designs. The fourth contributing group comprised 27 poster presentations. It should be mentioned that some of the latter were poster versions of contributed talks. The conference was remarkable for the wide spread of topics covered in a relatively small meeting, consisting of 44 participants. The participants were made up of 34 scientists from within Europe and 4 from the rest of the world. It is interesting to reflect on changes that have occurred since the previous meeting just a year earlier. Two clear developments which have occurred are the emergence of Quantum Cascade Lasers (QCL) and their use in Cavity Ring Down (CRD) spectroscopy. A major shift from cw lead salt diode lasers to cw and pulsed QCL in both pure and applied projects now seems to be well under way. The topics covered in the earlier conferences focussed more on applying infrared spectroscopy to plasma monitoring and control. When choosing the topics to cover

  9. Biochemical applications of surface-enhanced infrared absorption spectroscopy

    PubMed Central

    Heberle, Joachim

    2007-01-01

    An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. Figure Surface enhanced infrared absorption spectroscopy (SEIRAS) on the studies of tethered protein monolayer (cytochrome c oxidase and cytochrome c) on gold substrate (left), and its potential induced surface enhanced infrared difference absorption (SEIDA) spectrum PMID:17242890

  10. An infrared spectroscopy method to detect ammonia in gastric juice.

    PubMed

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations. PMID:26377936

  11. Composition of Polar Stratospheric Clouds from Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tolbert, M. A.; Anthony, S. E.; Disselkamp, R.; Toon, O. B.; Condon, Estelle P. (Technical Monitor)

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO3/H2O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H2SO4/HNO3/H2O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO3/H2O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric clouds formation.

  12. Composition of polar stratospheric clouds from infrared spectroscopy

    SciTech Connect

    Tolbert, M.A.; Anthony, S.E.; Disselkamp, R.; Toon, O.B.

    1995-12-31

    Heterogeneous reactions on polar stratospheric clouds (PSCs) have recently been implicated in Arctic and Antarctic ozone destruction. Although the chemistry is well documented, the composition of the clouds remains uncertain. The most common PSCs (type I) are thought to be composed of HNO{sub 3}/H{sub 2}O mixtures. Although the exact process is not clear, type I PSCs are believed to nucleate on preexisting stratospheric sulfate aerosols (SSAs) composed of sulfuric acid and water. We are using infrared spectroscopy to study the composition and formation mechanism of type I PSCs. In the laboratory, we have used FTIR spectroscopy to probe the composition and phase of H{sub 2}SO{sub 4}/HNO{sub 3}/H{sub 2}O aerosols under winter polar stratospheric conditions. We have also used recently measured infrared optical constants for HNO{sub 3}/H{sub 2}O mixtures to analyze solar infrared extinction measurements of type I PSCs obtained in September, 1987 over Antarctica. The results of these studies will be discussed in the context of current theories for polar stratospheric cloud formation.

  13. Photoacoustic-based detector for infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, L.; Palzer, S.

    2016-07-01

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v3 band at 6046.95 cm-1 using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  14. Near Infrared Spectroscopy and Imaging of Star Cluster Mercer 17

    NASA Astrophysics Data System (ADS)

    Moreau, Julie May; Clemens, D.; Jameson, K.; Pavel, M.; Pinnick, A.

    2010-01-01

    Mercer 17 is a recently discovered and as yet unstudied candidate star cluster located in the inner disk of the Milky Way (Mercer et al. 2005 ApJ 635, 560). Follow up studies are necessary to test the validity of proposed star clusters identified by imaging. The majority of well studied star clusters are outer galaxy clusters because of decreased extinction there. Using infrared enables probing into the inner galaxy to larger distances and to younger environments. Determining the basic properties of these newly discovered star cluster candidates, like Mercer 17, provides new insight into their formation. We obtained medium resolution (R=560-780) H- and K-band spectroscopy for eight of the brightest stars using the Mimir near-infrared instrument on the Perkins 1.83m telescope outside Flagstaff, Arizona. In addition to the spectroscopy observations, deep JHK band photometry was obtained for the cluster. Using these imaging and spectroscopic data, we present classified spectra and derived magnitudes of the stars in Mercer 17. Combining color magnitude diagrams and spectroscopy, we estimate basic cluster properties including age, distance, and total mass. Partially funded by an Undergraduate Research Opportunities Program (UROP) Award as a Clare Boothe Luce Summer Undergraduate Research Fellow and NSF grants AST 06-07500 and AST 09-07790

  15. Time-resolved spectroscopy of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Murphy, Joseph R.

    This dissertation is a survey of ultrafast time-resolved optical measurements conducted on a variety of low-dimensional semiconductor systems to further the understanding of the dynamic behavior in the following systems: ZnMnTe/ZnSe quantum dots, ZnTe/ZnMnSe quantum dots, InGaAs quantum wells, CdMnSe colloidal quantum dots, multi-shell CdSe/CdMnS/CdS colloidal nanoplatelets, and graphene and graphene-related solutions and films. Using time-resolved photoluminescence to study epitaxially-grown ZnTe and ZnMnTe quantum dots in corresponding ZnMnSe and ZnSe matrices, the location dependence of manganese ions in respect to magnetic polaron formation is shown. The structure with manganese ions located in the matrix exhibited magnetic polaron behavior consistent with previous literature, whereas the structure with the magnetic ions located within the quantum dots exhibited unconventional magnetic polaron properties. These properties, including temperature and magnetic field insensitivity, were explained through the use of a model that predicted an increased internal magnetic field due to a decreased effective volume of the magnetic polaron and a higher effective temperature due to laser heating. Magneto-time-resolved photoluminescence measurements on a system of colloidal CdMnSe quantum dots show that the magnetic polaron properties differ significantly from the epitaxially grown quantum dots. First the timescales at which the magnetic polaron forms and the polarization saturates are different by more than an order of magnitude, and second, the magnetic polaron energy exhibited step-like behavior as the strength of the externally applied magnetic field is increased. The field dependent MP formation energy that is observed experimentally is explained as due to the breaking of the antiferromagnetic coupling of Mn dimers within the QDs. This model is further verified by the observation of quantized behavior in the Zeeman energy splitting. Through the use of magneto

  16. Time-resolved phase-sensitive second harmonic generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowakowski, Paweł J.; Woods, David A.; Bain, Colin D.; Verlet, Jan R. R.

    2015-02-01

    A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times.

  17. Fingerprints of Majorana fermions in spin-resolved subgap spectroscopy

    NASA Astrophysics Data System (ADS)

    Chirla, Razvan; Moca, Cǎtǎlin Paşcu

    2016-07-01

    When a strongly correlated quantum dot is tunnel coupled to a superconductor, it leads to the formation of Shiba bound states inside the superconducting gap. They have been measured experimentally in a superconductor-quantum dot-normal lead setup. Side coupling the quantum dot to a topological superconducting wire that supports Majorana bound states at its ends, drastically affects the structure of the Shiba states and induces supplementary in-gap states. The anomalous coupling between the Majorana bound states and the quantum dot gives rise to a characteristic imbalance in the spin-resolved spectral functions for the dot operators. These are clear fingerprints for the existence of Majorana fermions and they can be detected experimentally in transport measurements. In terms of methods employed, we have used analytical approaches combined with the numerical renormalization group approach.

  18. FIRST - The Far-Infrared Spectroscopy of the Troposphere Project

    NASA Astrophysics Data System (ADS)

    Kratz, D. P.; Mlynczak, M. G.; Johnson, D. G.; Bingham, G. P.; Traub, W. A.; Jucks, K.; Hyde, C. R.; Wellard, S.

    2004-12-01

    FIRST, The Far-Infrared Spectroscopy of the Troposphere project is being developed under NASA's Instrument Incubator Program (IIP). The far-infrared encompasses the relatively unobserved portion of the Earth's emission spectrum between 15 and 100 micrometers in wavelength that controls much of the natural greenhouse effect, water vapor feedback, and cirrus radiative forcing. The objective of FIRST is to develop and demonstrate in a space-like environment the technology necessary to measure the far-infrared portion of the Earth's emission spectrum from an orbiting satellite daily and globally. To achieve this, FIRST is developing a high throughput Fourier Transform Spectrometer and broad bandpass beamsplitters. The FIRST instrument is now built and is undergoing radiometric calibration and characterization in thermal vacuum chambers at the Space Dynamics Laboratory in Logan, Utah. We will present an overview of the science afforded by far-infrared observations, a description of the FIRST instrument, and preliminary results from the FIRST radiometric testing program. The FIRST instrument and associated technologies will be demonstrated in a space-like environment from a high-altitude balloon platform in Spring, 2005, from Ft. Sumner, New Mexico.

  19. Infrared Spectroscopy on Smoke Produced by Cauterization of Animal Tissue

    PubMed Central

    Gianella, Michele; Sigrist, Markus W.

    2010-01-01

    In view of in vivo surgical smoke studies a difference-frequency-generation (DFG) laser spectrometer (spectral range 2900–3144 cm−1) and a Fourier-transform infrared (FTIR) spectrometer were employed for infrared absorption spectroscopy. The chemical composition of smoke produced in vitro with an electroknife by cauterization of different animal tissues in different atmospheres was investigated. Average concentrations derived are: water vapor (0.87%), methane (20 ppm), ethane (4.8 ppm), ethene (17 ppm), carbon monoxide (190 ppm), nitric oxide (25 ppm), nitrous oxide (40 ppm), ethyne (50 ppm) and hydrogen cyanide (25 ppm). No correlation between smoke composition and the atmosphere or the kind of cauterized tissue was found. PMID:22319267

  20. Detection of organic contamination on surfaces by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyt, Jaco M.; Van Eesbeek, Marc; Van Papendrecht, G.

    2002-09-01

    Organic contamination control at ESA is based on the infrared spectroscopy method described in the PSS-01-705. The method is used to verify the organic contamination levels during integration and thermal vacuum tests. The detection limits are in the 10-8 g/cm2 range or below, depending on the equipment and sampling method. Quantification is performed with common space contaminants, with the possibility to include a new calibration standard when a specific contaminant is occurring more often. Sampling is done with witness sensors of 15 cm2 or infrared transparent windows to verify the cleanliness after specific events. When no witness sensor has been used, solvent compatible surfaces can be analyzed by a solvent wash or by wiping the surface using dry or wetted tissues. Calibration curves with detection limits are presented, with an examples of a contamination event found on a retrieved space hardware.

  1. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  2. Operando X-ray absorption and infrared fuel cell spectroscopy

    SciTech Connect

    Lewis, Emily A.; Kendrick, Ian; Jia, Qingying; Grice, Corey; Segre, Carlo U.; Smotkin, Eugene S.

    2011-11-17

    A polymer electrolyte fuel cell enables operando X-ray absorption and infrared spectroscopy of the membrane electrode assembly catalytic layer with flowing fuel and air streams at controlled temperature. Time-dependent X-ray absorption near edge structure spectra of the Pt and Ni edge of Pt based catalysts of an air-breathing cathode show that catalyst restructuring, after a potential step, has time constants from minutes to hours. The infrared Stark tuning plots of CO adsorbed on Pt at 100, 200, 300 and 400 mV vs. hydrogen reference electrode were obtained. The Stark tuning plots of CO adsorbed at 400 mV exhibit a precipitous drop in frequency coincident with the adsorption potential. The turn-down potential decreases relative to the adsorption potential and is approximately constant after 300 mV. These Stark tuning characteristics are attributed to potential dependent adsorption site selection by CO and competitive adsorption processes.

  3. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed. PMID:12027163

  4. Infrared spectroscopy of mass-selected metal carbonyl cations

    NASA Astrophysics Data System (ADS)

    Ricks, A. M.; Reed, Z. E.; Duncan, M. A.

    2011-04-01

    Metal carbonyl cations of the form M(CO)n+ are produced in a molecular beam by laser vaporization in a pulsed nozzle source. These ions, and their corresponding rare gas atom "tagged" analogs, M(CO)n(RG)m+, are studied with mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region and with density functional theory computations. The number of infrared-active bands, their frequency positions, and their relative intensities provide distinctive patterns allowing determination of the geometries and electronic structures of these complexes. Cobalt penta carbonyl and manganese hexacarbonyl cations are compared to isoelectronic iron pentacarbonyl and chromium hexacarbonyl neutrals. Gold and copper provide examples of "non-classical" carbonyls. Seven-coordinate carbonyls are explored for the vanadium group metal cations (V +, Nb + and Ta +), while uranium cations provide an example of an eight-coordinate carbonyl.

  5. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit

    NASA Astrophysics Data System (ADS)

    Centrone, Andrea

    2015-07-01

    Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field.

  6. Spin- and angle-resolved spectroscopy of S 2p photoionization in the hydrogen sulfide molecule

    SciTech Connect

    Turri, G.; Snell, G.; Canton, S.E.; Bilodeau, R.C.; Langer, B.; Martins, M.; Kukk, E.; Cherepkov, N.; Bozek, J.D.; Kilcoyne, A.L.; Berrah, N.

    2004-08-01

    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed.

  7. Innovative uses of near-infrared spectroscopy in food processing.

    PubMed

    Bock, J E; Connelly, R K

    2008-09-01

    Near-infrared spectroscopy (NIRS) has experienced widespread use as an analytical tool in the last 3 decades. Researchers today are exploring ways of applying NIRS that expand beyond compositional analyses into process control. Processes such as meat tenderness evaluation, curd cutting, and dough mixing have traditionally been controlled by highly skilled master craftsmen; new NIRS research applications are demonstrating that these complex processes can be monitored and controlled in situ to produce consistent, high quality end products with online NIRS technology. Additionally, researchers also now have the potential ability to develop new nondestructive spectroscopic techniques to probe the underlying molecular evolution of these products during processing. PMID:18803725

  8. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  9. Raman and infrared reflection spectroscopy in black phosphorus

    NASA Astrophysics Data System (ADS)

    Sugai, S.; Shirotani, I.

    1985-03-01

    The symmetry and energies of all optically active phonon modes in black phosphorous are determined by polarized Raman scattering and infrared reflection spectroscopy at room temperature. The obtained energies are; 365 and 470 cm -1 for A g modes, 197 for B lg, 442 for B 2g, 223 and 440 for B 3g, 136 (TO) and 138 (LO) for B lu, and 468 (TO) and 470 (LO) for B 2u, respectively. The small TO-LO splitting is related to the charge transfer between phosphorus atoms induced by the atomic displacement.

  10. Far-infrared terahertz time-domain spectroscopy of flames.

    PubMed

    Cheville, R A; Grischkowsky, D

    1995-08-01

    We present what is to our knowledge the first comprehensive far-infrared absorption measurement of flames. These measurements, covering the region of 7-88 wave numbers (0.2-2.65 THz) are only now made possible by the technique of terahertz time-domain spectroscopy. We observe a large number of absorption lines-including those of water, CH, and NH(3)-in a stationary, premixed, propane-air flame. The absorption strength permits the determination of species concentration along the beam path. The f lame temperature is determined by comparison of the relative strengths of the water vapor lines. PMID:19862111

  11. Near-infrared spectroscopy. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

  12. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  13. Infrared laser-induced breakdown spectroscopy emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Yang, Clayton S.; Brown, E.; Hommerich, Uwe; Trivedi, Sudhir B.; Samuels, Alan C.; Snyder, A. Peter

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives (CBE) sensing and has significant potential for real time standoff detection and analysis. We have studied LIBS emissions in the mid-infrared (MIR) spectral region for potential applications in CBE sensing. Detailed MIR-LIBS studies were performed for several energetic materials for the first time. In this study, the IR signature spectral region between 4 - 12 um was mined for the appearance of MIR-LIBS emissions that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species.

  14. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  15. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics. PMID:26208268

  16. Trace water determination in gases by infrared spectroscopy

    SciTech Connect

    Stallard, B.R.; Espinoza, L.H.; Niemczyk, T.M.

    1995-05-01

    Water determination in semiconductor process gases is desirable in order to extend the life of gas delivery systems and improve wafer yields. The authors review their work in applying Fourier transform infrared spectroscopy to this problem, where a 10 ppb detection limit has been demonstrated for water in N{sub 2}, HCl, and HBr. The potential for optical determination of other contaminants in these gases is discussed. Also, alternative optical spectroscopic approaches are briefly described. Finally, they discuss methods for dealing with interference arising from water in the instrument beam path, yet outside the sample cell.

  17. The spotted contact binary SS ARIETIS - Spectroscopy and infrared photometry

    NASA Astrophysics Data System (ADS)

    Rainger, P. P.; Bell, S. A.; Hilditch, R. W.

    1992-02-01

    The first infrared photometry for the W-UMa system SS Ari is presented. An analysis based on medium-resolution spectroscopy presented here shows that SS Ari is a W-type system with a mass ratio of 0.33. It seems certain that the asymmetry in the published light curves and those obtained for this study can be explained by the effect of spots on one or possibly both components of the system. The precise location, size and temperature of these spots require the use of Doppler Imaging techniques in conjunction with high-quality multiband photometry.

  18. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  19. Unresolved Instrumentation Problems Following Clinical Trials Using Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew J.; Gagnon, Roy E.; Gagnon, Faith A.

    1998-10-01

    Near infrared spectroscopy (NIRS) clinical trials conducted over a seven year period have identified instrument engineering problems related to fiber optic failure, electromagnetic interference, chromophore algorithms, and computational software. These problems have caused confusion amongst clinicians at the bedside, rejection of large volumes of data, repeated reanalysis of data, and a significant diversion of project resources away from clinical studies and into engineering solutions. This article summarizes previously published studies and presents new data which, together, emphasize the need for improvements in NIRS technology. Instrument designers need to be aware of the need for these improvements if NIRS is to serve clinicians better during research designed to rationally define clinical management protocols.

  20. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  1. Transient Two-Dimensional Infrared Spectroscopy in a Vibrational Ladder.

    PubMed

    Kemlin, Vincent; Bonvalet, Adeline; Daniault, Louis; Joffre, Manuel

    2016-09-01

    We report on transient 2D Fourier transform infrared spectroscopy (2DIR) after vibrational ladder climbing induced in the CO-moiety longitudinal stretch of carboxyhemoglobin. The population distribution, spreading up to seven vibrational levels, results in a nonequilibrium 2DIR spectrum evidencing a large number of peaks that can be easily attributed to individual transitions thanks to the anharmonicity of the vibrational potential. We discuss the physical origin of the observed peaks as well as the qualitative behavior of the subsequent dynamics governed by population relaxation in the vibrational ladder. PMID:27508408

  2. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    PubMed

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. PMID:21335912

  3. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  4. Infrared and optical spectroscopy study of UHMWPE polymers

    NASA Astrophysics Data System (ADS)

    Wolf, M. S.; Morvan, J. N.; Dordevic, S. V.; Stojilovic, N.

    2009-03-01

    Ultra-High Molecular Weight Polyethylene (UHMWPE) is very often the material of choice for the bearing surfaces of most hip and knee implants primarily due to its low friction combined with good toughness and abrasion resistance. We investigate optical properties of biomedical-grade UHMWPE GUR 1020 powders and sheets using infrared and UV-vis spectroscopy and compare results with those from industrial grade samples. In addition, we use X-ray diffraction spectroscopy to monitor the changes in crystal structure of these polymers as a function of temperature. Finally, we deliberately oxidize and subsequently characterize these materials since the oxidation of UHMWPE bio- implants is believed to be responsible for their failure in vivo.

  5. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported. PMID:26329169

  6. [Laser-time-resolved fluorescence spectroscopy in immunoassays].

    PubMed

    Pan, L; Du, J; Xie, W; Du, Q; Yun, Q

    2000-06-01

    This paper described a laser-excited time-resolved fluoroimmunoassay set. It made lanthanide ion to couple the anhydrde of diethylenetriaminepentaacetic acid (DTPAA) for labeling antibodies. The experiment used polystyrene tap coated with HCV antigen as the solid phase and a chelate of the rare earth metal europium as fluorescent label. A nitrogen laser beam was used to excite the Eu3- chelates and after 60 microseconds delay time, the emission fluorescence was measured. Background fluorescence of short lifetimes caused by serum components and Raman scattering can be eliminated by set the delay time. In the system condition, fluorescent spectra and fluorescent lifetimes of Eu3+ beta-naphthoyltrifluroacetone (NTA) chelates were measured. The fluorescent lifetime value is 650 microseconds. The maximum emission wavelength is 613 nm. The linear range of europium ion concentration is 1 x 10(-7)-1 x 10(-11) g.mL-1 and the detection limit is 1 x 10(-13) g.mL-1. The relative standard deviation of determination (n = 12) for samples at 0.01 ng.mL-1 magnitude is 6.4%. Laser-TRFIA was also found to be suitable for diagnosis of HCV. The sensitivity and specificity were comparable to enzyme immunoassay. The result was obtained with laser-TRFIA for 29 human correlated well with enzyme immunoassay. PMID:12958930

  7. Multispectral scanning time-resolved fluorescence spectroscopy (TRFS) technique for intravascular diagnosis

    PubMed Central

    Xie, Hongtao; Bec, Julien; Liu, Jing; Sun, Yang; Lam, Matthew; Yankelevich, Diego R.; Marcu, Laura

    2012-01-01

    This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tissue was validated using standard dyes and tissue phantoms (e.g., ex vivo pig aorta phantom). Current results demonstrate that this system is capable to reliably resolve the fluorescence emission of multiple fluorophores located in the lumen; and suggest its potential for intravascular detection of distinct biochemical features of atherosclerotic plaques. PMID:22808425

  8. Differentiation and quality estimation of Cordyceps with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun

    2009-11-01

    Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.

  9. Ante mortem identification of BSE from serum using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmitt, Jürgen; Lasch, Peter; Beekes, Michael; Udelhoven, Thomas; Eiden, Michael; Fabian, Heinz; Petrich, Wolfgang H.; Naumann, Dieter

    2004-07-01

    In our former studies a diagnostic approach for the detection of transmissible spongiform encephalopaties (TSE) based on FT-IR spectroscopy in combination with artificial neural networks was described, based on a controlled animal study with terminally ill Syrian hamsters and control animals. As a consequence of the bovine spongiform encephalopathy (BSE) crisis in Europe, the development of a disgnostic ante mortem test for cattle has become a matter of great scientific importance and public interest. Since 1986 more than 180,000 clinical cases of BSE have been observed in the UK alone. Most of these cases were confirmed by post mortem examination of brain tissue. However, BSE-related risk assessment and risk-management would greatly benefit from ante mortem testing on living animals. For example, a serum-based test could allow for screening of the cattle population, thus, even a BSE eradication program would be conceivable. Here we report on a novel method for ante mortem BSE testing, which combines infrared spectroscopy of serum samples with multivariate pattern recognition analysis. A classification algorithm was trained using infrared spectra of sera from more than 800 animals from a field study (including BSE positive, healthy controls and animals suffering from viral or bacterial infections). In two validation studies sensitivities of 85% and 87% and specificities of 84% and 91% were achieved, respectively. The combination of classification algorithms increased sensitivity and specificity to 96% and 92%, respectively.

  10. INFRARED SPECTROSCOPY OF INTERMEDIATE-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Pitann, Jan; Bouwman, Jeroen; Krause, Oliver; Henning, Thomas; Hennemann, Martin

    2011-12-10

    In this paper, we present Spitzer Infrared Spectrograph spectroscopy for 14 intermediate-mass young stellar objects (YSOs). We use Spitzer spectroscopy to investigate the physical properties of these sources and their environments. Our sample can be divided into two types of objects: young isolated, embedded objects with spectra that are dominated by ice and silicate absorption bands, and more evolved objects that are dominated by extended emission from polycyclic aromatic hydrocarbons (PAHs) and pure H{sub 2} rotational lines. We are able to constrain the illuminating FUV fields by classifying the PAH bands below 9 {mu}m. For most of the sources we are able to detect several atomic fine structure lines. In particular, the [Ne II] line appearing in two regions could originate from unresolved photodissociation regions or J-shocks. We relate the identified spectral features to observations obtained from NIR through submillimeter imaging. The spatial extent of several H{sub 2} and PAH bands is matched with morphologies identified in previous Infrared Array Camera observations. This also allows us to distinguish between the different H{sub 2} excitation mechanisms. In addition, we calculate the optical extinction from the silicate bands and use this to constrain the spectral energy distribution fit, allowing us to estimate the masses of these YSOs.

  11. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  12. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  13. Multianalyte serum analysis using mid-infrared spectroscopy.

    PubMed

    Shaw, R A; Kotowich, S; Leroux, M; Mantsch, H H

    1998-09-01

    This study assesses the potential for using mid-infrared (mid-IR) spectroscopy of dried serum films as the basis for the simultaneous quantitation of eight serum analytes: total protein, albumin, triglycerides, cholesterol, glucose, urea, creatinine and uric acid. Infrared transmission spectra were acquired for 300 serum samples, each analysed independently using accepted reference clinical chemical methods. Quantitation methods were based upon the infrared spectra and reference analyses for 200 specimens, and the models validated using the remaining 100 samples. Standard errors in the IR-predicted analyte levels (Sy/x) were 2.8 g/L (total protein), 2.2 g/L (albumin), 0.23 mmol/L (triglycerides), 0.28 mmol/L (cholesterol), 0.41 mmol/L (glucose) and 1.1 mmol/L for urea, with correlation coefficients (IR vs reference analyses) of 0.95 or better. The IR method emerged to be less suited for creatinine (Sy/x = mumol/L) and uric acid (Sy/x = 140 mumol/L) due to the relatively low concentrations typical of these analytes. PMID:9768328

  14. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

    SciTech Connect

    Glascoe, E A; Zaug, J M; Armstrong, M R; Crowhurst, J C; Grant, C D; Fried, L E

    2009-03-05

    The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO{sub 2}, an observed decomposition product, is complete within 30-40 s. Proof of principle time resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  15. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  16. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  17. Infrared molecular binding spectroscopy realized in sorbent coated microfabricated devices

    NASA Astrophysics Data System (ADS)

    McGill, R. Andrew; Stievater, Todd H.; Pruessner, Marcel W.; Holmstrom, Scott A.; Nierenberg, Kerry; McGill, Rachel; Nguyen, Viet; Park, Doewon; Kendziora, Christopher; Furstenberg, Robert

    2014-05-01

    Sorbent materials are utilized in a range of analytical applications including coatings for preconcentrator devices, chromatography stationary phases, and as thin film transducer coatings used to concentrate analyte molecules of interest for detection. In this work we emphasize the use of sorbent materials to target absorption of analyte vapors and examine their molecular interaction with the sorbent by optically probing it with infrared (IR) light. The complex spectral changes which may occur during molecular binding of specific vapors to target sites in a sorbent can significantly aid in analyte detection. In this work a custom hydrogen-bond (HB) acidic polymer, HCSFA2, was used as the sorbent. HCSFA2 exhibits a high affinity for hazardous vapors with hydrogen-bond (HB) basic properties such as the G-nerve agents. Using bench top ATR-FTIR spectroscopy the HFIP hydroxyl stretching frequency has been observed in the mid wave infrared (MWIR) to shift by up to 700 wavenumbers when exposed to a strong HB base. The amount of shift is related to the HB basicity of the vapor. In addition, the large analyte polymer-gas partition coefficients sufficiently concentrate the analyte in the sorbent coating to allow spectral features of the analyte to be observed in the MWIR and long wave infrared (LWIR) while it is sorbed to HCSFA2. These spectral changes, induced by analyte-sorbent molecular binding, provide a rich signal feature space to consider selective detection of a wide range of chemical species as single components or complex mixtures. In addition, we demonstrate an HCSFA2 coated microbridge structure and micromechanical photothermal spectroscopy to monitor spectral changes when a vapor sorbs to HCSFA2. Example ATR-FTIR and microbridge spectra with exposures to dimethylmethylphosphonate (DMMP - G nerve agent simulant) and other vapors are compared. In a generic form we illustrate the concept of this work in Figure 1. The results of this work provide the potential to

  18. SAFIRE: Far-Infrared Imaging Spectroscopy with SOFIA

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Moseley, Harvey; Chervenak, Jay; Irwin, Kent; Pajot, Francois; Shafer, Rick; Staguhn, Johannes; Stacey, Gorden; Oegerle, William (Technical Monitor)

    2002-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 145 microns-655microns, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up bolometer array to provide background limited imaging spectrometry. Superconducting transition edge bolometers and SQUID amplifiers have been developed for these detectors.

  19. Far-Infrared Imaging Spectroscopy with SAFIRE on SOFIA

    NASA Technical Reports Server (NTRS)

    Shafer, Richard A.; Benford, D. J.; Irwin, K. D.; Moseley, S. H.; Pajot, F.; Stacey, G. J.; Staguhn, J. G.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The SOFIA airborne observatory will provide a high spatial resolution, low background telescope for far-infrared astrophysical investigations. Selected as a PI instrument for SOFIA, SAFIRE is an imaging Fabry-Perot spectrograph covering 100 micrometers - 655 micrometers, with spectral resolving power of approx. 1500 (200 kilometers per second). This resolution is well matched to extragalactic emission lines and yields the greatest sensitivity for line detection. SAFIRE will make important scientific contributions to the study of the powering of ULIRGs and AGN, the role of CII cooling in extragalactic star formation, the evolution of matter in the early Universe, and the energetics of the Galactic center. SAFIRE will employ a two-dimensional pop-up barometer array in a 16 x 32 format to provide background-limited imaging spectrometry. Superconducting transition edge barometers and SQUID amplifiers have been developed for these detectors.

  20. Infrared Spectroscopy of HOCl Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Raston, Paul; Kelloway, Donald; Jäger, Wolfgang

    2012-06-01

    The infrared depletion spectrum of hypochlorous acid (HOCl) embedded in superfluid helium nanodroplets has been measured in the region near 2.8 μm. The spectrum consists of baseline resolved a-type lines and a broad convoluted b-type feature. The a-type lines are asymmetrically skewed in the direction of the band origin, and an analysis of their line shapes based on the chirped damped oscillator function introduced by van Staveren and Apkarian yields a response time of the helium solvent of 1 ns. The b-type lines are much broader due to the greater number of droplet states available for relaxation of the excited rotational states. M. N. van Staveren, and V. A. Apkarian J. Chem. Phys., 132, 054506 (2010).

  1. Time-resolved diffuse spectroscopy measurements using a hybrid Green's function for the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Simon, Emanuel; Foschum, Florian; Kienle, Alwin

    2013-06-01

    Time-resolved diffuse optical spectroscopy measurements of phantoms at small source-detector separations yield good results for the retrieved coefficients of reduced scattering and absorption when a hybrid Green's function of the radiative transfer equation for semi-infinite media is used.

  2. Time-resolved optical spectroscopy of the chest: is it possible to probe the lung?

    NASA Astrophysics Data System (ADS)

    Quarto, G.; Farina, A.; Pifferi, A.; Taroni, P.; Miniati, M.

    2013-06-01

    Monte Carlo simulations and preliminary time-resolved spectroscopy measurements were performed to investigate the feasibility of the in vivo optical diagnostics of lung conditions and diseases. Absorption and reduced scattering properties of the chest, arising from in vivo spectral measurements on volunteers are presented.

  3. Resolving stellar populations with crowded field 3D spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.

    2013-01-01

    We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the

  4. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank; Chithambo, Makaiko L.

    2016-09-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  5. Rotationally resolved spectroscopy of the dwarf planet (136472) Makemake

    NASA Astrophysics Data System (ADS)

    Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J.

    2014-07-01

    Icy dwarf planets are transneptunian objects large and cold enough to retain large amounts of volatiles on their surfaces, which is of particular interest for the understanding of the origin and evolution of the Solar System. Two of them, Pluto and Eris, are very similar. They are of comparable dimensions and present similar spectral characteristics, with methane-ice bands dominating the visible and near-infrared spectra, and a red slope in the visible, suggesting the presence of complex organic materials on the surface (Licandro et al. 2006a). But there are also some significant differences: whereas Pluto has an observed global atmosphere (composed mainly of N_2 but also of CH_4, e.g., Lellouch et al. 2009), for Eris, there is no evidence of the presence of an atmosphere. No N_2 (main component of the surface of Pluto) or CO have been detected on the surface of Eris, even if their presence is inferred (Licandro et al. 2006a), and there is no evidence for surface variability (Alvarez-Candal et al. 2011), which has been widely studied for Pluto (e.g., Buie et al. 2010; Grundy et al. 2013). Moreover, the albedo of Eris (p_{v}=0.96, Buratti et al. 2003) is higher than Pluto's (p_{v}=0.52, Sicardy et al, 2011). All this seems to indicate that Eris, with a more eccentric orbit and a distance to the Sun varying between 35 and 97 au, could be an iced Pluto whose atmosphere has collapsed on the surface covering it with ices of higher albedo and giving it its homogeneous appearance. Makemake, another dwarf planet, seems to be a intermediate case between the other two: it moves at a heliocentric distance between 38.5 and 53 au, it has an intermediate albedo (p_{v} = 0.77, Ortiz et al. 2012), and like Pluto and Eris, it has a reddish spectrum with strong methane-ice absorption bands (Licandro et al. 2006b). Furthermore, some surface heterogeneity related with volatile transport has been suggested. Thermal observations (Stansberry et al. 2008; Lim et al. 2010) point at the

  6. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy.

    PubMed

    Souvignier, G; Gerwert, K

    1992-11-01

    Bacteriorhodopsin's proton uptake reaction mechanism in the M to BR reaction pathway was investigated by time-resolved FTIR spectroscopy under physiological conditions (293 K, pH 6.5, 1 M KCl). The time resolution of a conventional fast-scan FTIR spectrometer was improved from 10 ms to 100 mus, using the stroboscopic FTIR technique. Simultaneously, absorbance changes at 11 wavelengths in the visible between 410 and 680 nm were recorded. Global fit analysis with sums of exponentials of both the infrared and visible absorbance changes yields four apparent rate constants, k(7) = 0.3 ms, k(4) = 2.3 ms, k(3) = 6.9 ms, k(6) = 30 ms, for the M to BR reaction pathway. Although the rise of the N and O intermediates is dominated by the same apparent rate constant (k(4)), protein reactions can be attributed to either the N or the O intermediate by comparison of data sets taken at 273 and 293 K. Conceptionally, the Schiff base has to be oriented in its deprotonated state from the proton donor (asp 85) to the proton acceptor (asp 96) in the M(1) to M(2) transition. However, experimentally two different M intermediates are not resolved, and M(2) and N are merged. From the results the following conclusions are drawn: (a) the main structural change of the protein backbone, indicated by amide I, amide II difference bands, takes place in the M to N (conceptionally M(2)) transition. This reaction is proposed to be involved in the "reset switch" of the pump, (b) In the M to N (conceptionally M(2)) transition, most likely, asp-85's carbonyl frequency shifts from 1,762 to 1,753 cm(-1) and persists in O. Protonation of asp-85 explains the red-shift of the absorbance maximum in O. (c) The catalytic proton uptake binding site asp-96 is deprotonated in the M to N transition and is reprotonated in O. PMID:19431858

  7. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  8. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  9. High-Resolution Infrared Spectroscopy with Synchrotron Sources

    SciTech Connect

    McKellar, A.

    2010-01-01

    Most applications of synchrotron radiation lie in the ultraviolet and X-ray region, but it also serves as a valuable continuum source of infrared (IR) light which is much brighter (i.e. more highly directional) than that from normal thermal sources. The synchrotron brightness advantage was originally exploited for high spatial resolution spectroscopy of condensed-phase samples. But it is also valuable for high spectral resolution of gas-phase samples, particularly in the difficult far-IR (terahertz) range (1/{lambda} {approx} 10-1000 cm{sup -1}). Essentially, the synchrotron replaces the usual thermal source in a Fourier transform IR spectrometer, giving a increase of up to two (or even more) orders of magnitude in signal at very high-resolution. Following up on pioneering work in Sweden (MAX-lab) and France (LURE), a number of new facilities have recently been constructed for high-resolution gas-phase IR spectroscopy. In the present paper, this new field is reviewed. The advantages and difficulties associated with synchrotron IR spectroscopy are outlined, current and new facilities are described, and past, present, and future spectroscopic results are summarized.

  10. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  11. Time-domain spectroscopy in the mid-infrared

    PubMed Central

    Lanin, A. A.; Voronin, A. A.; Fedotov, A. B.; Zheltikov, A. M.

    2014-01-01

    When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294

  12. Time-domain spectroscopy in the mid-infrared.

    PubMed

    Lanin, A A; Voronin, A A; Fedotov, A B; Zheltikov, A M

    2014-01-01

    When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294

  13. Rapid Bacterial Identification Using Fourier Transform Infrared Spectroscopy

    SciTech Connect

    Valentine, Nancy B.; Johnson, Timothy J.; Su, Yin-Fong; Forrester, Joel B.

    2007-02-01

    Recent studies at Pacific Northwest National Laboratory (PNNL) using infrared spectroscopy combined with statistical analysis have shown the ability to identify and discriminate vegetative bacteria, bacterial spores and background interferents from one another. Since the anthrax releases in 2001, rapid identification of unknown powders has become a necessity. Bacterial endospores are formed by some Bacillus species as a result of the vegetative bacteria undergoing environmental stress, e.g. a lack of nutrients. Endospores are formed as a survival mechanism and are extremely resistant to heat, cold, sunlight and some chemicals. They become airborne easily and are thus readily dispersed which was demonstrated in the Hart building. Fourier Transform Infrared (FTIR) spectroscopy is one of several rapid analytical methods used for bacterial endospore identification. The most common means of bacterial identification is culturing, but this is a time-consuming process, taking hours to days. It is difficult to rapidly identify potentially harmful bacterial agents in a highly reproducible way. Various analytical methods, including FTIR, Raman, photoacoustic FTIR and Matrix Assisted Laser Desorption/Ionization (MALDI) have been used to identify vegetative bacteria and bacterial endospores. Each has shown certain areas of promise, but each has shortcomings in terms of sensitivity, measurement time or portability. IR spectroscopy has been successfully used to distinguish between the sporulated and vegetative state. [1,2] It has also shown its utility at distinguishing between the spores of different species. [2-4] There are several Bacillus species that occur commonly in nature, so it is important to be able to distinguish between the many different species versus those that present an imminent health threat. The spectra of the different sporulated species are all quite similar, though there are some subtle yet reproducible spectroscopic differences. Thus, a more robust and

  14. Infrared spectroscopy of nonclassical ions and their complexes

    SciTech Connect

    Boo, D.W.

    1995-01-01

    This thesis describes an infrared spectroscopic study on the structures and dynamics of the nonclassical ions and their complexes, using ion trap vibrational predissociation spectroscopy. Chapter One provides an introduction to the experimental apparatus used in this work. Chapter Two describes the previous theoretical and experimental works on the carbonium ion CH{sub 5}{sup +} and infrared spectroscopic and theoretical works on CH{sub 5}{sup +}. CH{sub 5}{sup +} was predicted to scramble constantly without possessing a stable structure. In Chapter Three, the infrared spectroscopy for the molecular hydrogen solvated carbonium ions CH{sub 5}{sup +}(H{sub 2}){sub n} (n=1-6) in the frequency region of 2700-4200 cm{sup {minus}1} are presented and compared with the results of ab initio molecular dynamics simulation on CH{sub 5}{sup +}(H{sub 2}){sub n} (n=0-3). The results suggested that the scrambling of CH{sub 5}{sup +} slowed down considerably by the stabilization effects of the solvent H{sub 2} molecules, and it was completely frozen out when the first three H{sub 2} molecules were bound to the core CH{sub 5}{sup +}. Chapter Four presents the complete infrared spectra for the solvated carbonium ions, CH{sub 5}{sup +}(A){sub x}(B){sub y} (A,B=H{sub 2}, Ar, N{sub 2}, CH{sub 4};x,y=0-5) in the frequency region of 2500-3200 cm{sup {minus}1}. As the binding affinities of the solvent molecules and the number of the solvent molecules in the clusters increased, the scrambling of CH{sub 5}{sup +} slowed down substantially. The structures of the solvated carbonium ions and the evidence for rapid proton transfer in CH{sub 5}{sup +}(CH{sub 4}) were also presented. Chapter Five presents the vib-rotational spectrum for the H-H stretching mode of the silanium ion SiH{sub 5}{sup +}. The results suggested that SiH{sub 5}{sup +} can be described as a complex of SiH{sub 3}{sup +} and a freely internally rotating H{sub 2}, analogous to, but distinct from CH{sub 5}{sup +}.

  15. An inexpensive technique for the time resolved laser induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Rizwan; Ahmed, Nasar; Iqbal, J.; Aslam Baig, M.

    2016-08-01

    We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450-550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved information about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.

  16. Combined time- and depth-resolved autofluorescence spectroscopy for tissue diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Qu, Jianan Y.

    2006-02-01

    A fluorescence spectroscopy system combining depth- and time-resolved measurements is developed to investigate the layered fluorescence temporal characteristics of epithelial tissue. It is found that esophageal tissue structure can be resolved well by means of the autofluorescence time-resolved decay process with 375-, 405- and 435- nm excitation. The decay of the autofluorescence signals can be accurately fitted with a dual-exponential function consisting of a short lifetime (0.4 ~ 0.6 ns) and a long lifetime (3 ~ 4 ns) components. The short lifetime component dominates the decay of normal epithelial fluorescence while the decay of the signals from keratinized epithelium and stroma are mainly determined by the long lifetime component. The ratio of the amplitudes of two components provides the information of fine structure of epithelial tissue. This study demonstrates that the combined depth- and time-resolved measurements can potentially provide accurate information for the diagnosis of tissue pathology.

  17. [Noninvasive detection of the concentrations of pigments in pork tissue using near infrared spectroscopy].

    PubMed

    Teng, Yi-chao; Li, Yue; Huang, Lan; Ding, Hai-shu

    2010-01-01

    Based on the absorption spectra of hemoglobin and myoglobin in the near infrared band, the concentrations of these pigments in the biological tissues can be obtained using near infrared spectroscopy (NIRS) by detecting the intensity attenuation of the emitted light compared with the incident light. Based on the steady-state spatially resolved NIRS, the prototype for detecting the concentrations of tissue hemoglobin and myoglobin was independently developed by our group. The probe consisted of an LED light source which could emit three different wavelengths in the near infrared band, and two detectors which were placed on the same line with and at the distances of 30/40 mm to the LED. The pigment concentrations of two pieces of pork, one from the erector spinae and the other from the rectus femoris, were detected using this prototype. The total concentrations of hemoglobin and myoglobin (c(total)) were (6.42 + 1.51) micromol x L(-1) in the erector spinae, and (15.48 +/- 4.54) micromol x L(-1) in the rectus femoris, respectively. The myoglobin was dominant in both of the results. These were consistent with the recent empirical reports. In summary, the NIRS method and prototype are authentic in detecting the pigment concentrations of pork tissue non-invasively, real-time, directly and conveniently. PMID:20302083

  18. Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) in low pressure flames

    SciTech Connect

    Scherer, J.J.; Rakestraw, D.J.

    1996-12-31

    The authors have employed Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) as a diagnostic tool for combustion chemistry studies. High resolution rovibrational absorption spectra have been obtained in low pressure laminar flames in the mid-infrared employing a pulsed single mode optical parametric oscillator (OPO) laser system. The high sensitivity and generality of IR-CRLAS for combustion studies is demonstrated in a variety of flames and is shown to be robust even in sooting environments with high temperature gradients. The ability to obtain spatially resolved data is also demonstrated in one dimensional laminar flame studies. These preliminary results indicate the potential of IR-CRLAS as a combustion diagnostic which is capable of obtaining absolute concentrations of reactants, intermediates, and products simultaneously within a narrow spectral region. In this demonstration, two information rich mid-infrared spectral regions (1.6 and 3-4 microns) have been probed at Doppler-limited resolution with an effective laser bandwidth of < 0.007 cm{sup -1}.

  19. Spitzer Spectroscopy to Distinguish z>5 Sources of Reionization from z~2 Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Chary, Ranga-Ram; Dickinson, Mark; Lawrence, Charles; Teplitz, Harry

    2008-03-01

    Optical/near-infrared photometric redshifts of 13 red galaxies in GOODS favor z>5 redshift solutions which indicate that they are extremely massive galaxies with stellar masses exceeding 1E11 Msun. If true, these galaxies contribute the bulk of the stellar mass density at z~6 and the past star-formation in these galaxies is responsible for reionizing the intergalactic medium at z>>6. The majority of these galaxies have however found to be faint 24 micron sources which would instead suggest that they are luminous infrared galaxies (LIRGs) with L(IR)~3E11 Lsun at z~2. We propose ultradeep Spitzer/IRS LL spectroscopy which will measure the redshifts of two representative, optically invisible (i>27 mag) sources in this class and distinguish between these two widely disparate hypotheses. The detection of polycyclic aromatic hydrocarbons (PAH) in the spectra of these sources would imply that photometric redshifts of dusty infrared luminous galaxies are unreliable - a fundamental obstacle in estimating the comoving luminosity density of the Universe as a function of redshift. It would allow the shape of the dust extinction curve to be constrained and rule out the Balmer-'break' color selection as a reliable tracer of redshift. By virtue of being the deepest IRS/LL observations, it would yield the first measures of PAH line strengths in high redshift LIRGs. This will help refine the mid-infrared PAH templates that are used to estimate bolometric luminosities of galaxies detected in various mid-infrared surveys, including those which will be undertaken by WISE. The absence of PAH in the proposed spectra would imply the presence of Compton-thick AGN and/or confirm that we have identified the galaxies responsible for reionization without the need for changing the stellar initial mass function at high redshift. Spitzer offers the only opportunity to resolve this important conundrum until the James Webb Space Telescope.

  20. Cation Far Infrared Vibrational Spectroscopy of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kong, W.; Zhang, J.; Han, F.

    2009-06-01

    The far infrared (FIR) region is crucial for spectroscopic investigations because of the existence of skeletal modes of moderately sized molecules. However, our knowledge of FIR modes is significantly lacking, largely due to the limited availability of light sources and detectors in this spectral region. The technique "pulsed field ionization zero kinetic energy electron spectroscopy" (PFI-ZEKE) is ideal for studies of FIR spectroscopy. This is because the low internal energy of the cation associated with the skeletal modes is particularly beneficial for the stability of the corresponding Rydberg states. In this work, we report our effort in studies of FIR spectroscopy of cationic polycyclic aromatic hydrocarbons (PAH). Using laser desorption, we can vaporize the non-volatile PAH for gas phase spectroscopy. To ensure the particle density and therefore the critical ion density in prolonging the lifetime of Rydberg electrons, we have used a "chamber-in-a-chamber" design and significantly shortened the distance between the desorption region and the detection region. From our studies of catacondensed PAHs, we have observed the emergence of the flexible waving modes with the increasing length of the molecular ribbon. Pericondensed PAHs, on the other hand, have shown significant out of plane IR active transitions. The planarity of the molecular frame is therefore a question of debate. The FIR modes are also interesting for another reason: they are also telltales of the precision of modern computational packages. The combination of experimental and theoretical studies will help with the identification of the chemical composition of the interstellar medium. This effort therefore directly serves the missions of the Spitzer Space Observatory and more importantly, the missions of the Herschel Space Observatory.

  1. Review of functional near-infrared spectroscopy in neurorehabilitation.

    PubMed

    Mihara, Masahito; Miyai, Ichiro

    2016-07-01

    We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback. PMID:27429995

  2. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  3. Discrimination of different Chrysanthemums with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Zhou, Qun; Sun, Su-qin; Bao, Hong-juan

    2008-07-01

    Use Fourier transform infrared spectroscopy (FT-IR) to analyze simultaneously the main chemical constituents in different solvent extracts of seven kinds of Chrysanthemum samples of different regions. The findings indicate that different Chrysanthemum samples have dissimilar fingerprint characters in FT-IR spectra. Such spectral technique can provide substance structural information of the complicated test samples. According to these spectral fingerprint features, we cannot only identify the main components of different extracts, but also distinguish the origins of the Chrysanthemum samples from different regions easily, which is a troublesome work by existing analytical methods. FT-IR, with the characters of speediness, good repeatability and easy operation, can be used as an effective analytical means to study the complicated system, in our research, the tradition Chinese medicines.

  4. Lipid Microdomain Formation: Characterization by Infrared Spectroscopy and Ultrasonic Velocimetry

    PubMed Central

    Schultz, Zachary D.; Levin, Ira W.

    2008-01-01

    We demonstrate the use of vibrational infrared spectroscopy applied to characterize lipid microdomain sizes derived from a model raft-like system consisting of nonhydroxy galactocerebroside, cholesterol, and dipalmitoylphosphatidylcholine components. The resulting spectroscopic correlation field components of the lipid acyl chain CH2 methylene deformation modes, observed when lipid multilamellar assemblies are rapidly frozen from the liquid crystalline state to the gel phase, indicate the existence of lipid microdomains on a scale of several nanometers. The addition of cholesterol disrupts the glycosphingolipid selectively but perturbs the di-saturated chain phospholipid matrix. Complementary acoustic velocimetry measurements indicate that the microdomain formation decreases the total volume adiabatic compressibilities of the multilamellar vesicle assemblies. The addition of cholesterol, however, disrupts the galactocerebroside domains, resulting in a slight increase in the lipid assemblies' total adiabatic compressibility. The combination of these two physical approaches offers new insight into microdomain formation and their properties in model bilayer systems. PMID:18192352

  5. Near-infrared spectroscopy of proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.; Kwok, Sun; Geballe, T. R.

    1994-01-01

    Sixteen proto-planetary nebulae were observed with low-resolution infrared spectroscopy in the H and K bands, and four were observed in the L band. In the H band, most of the objects show hydrogen Brackett lines (from n = 10 goes to 4 to n = 20 goes to 4) in absorption. In the K band, absorption bands (delta (nu) = 2) of CO were observed to as high as nu = 6 goes to 4, and in three cases the CO bands are in emission. The CO spectrum of 22272 + 5435 was found to change from emission to absorption over a 3 month interval. The CO emission most likely arises from collisional excitation resulting from recent episodes of mass loss. One new object which possibly shows weak 3.3 micron emission was found.

  6. Cardiac tissue characterization using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh Moon, Rajinder; Hendon, Christine P.

    2014-03-01

    Cardiac tissue from swine and canine hearts were assessed using diffuse reflectance near-infrared spectroscopy (NIRS) ex vivo. Slope measured between 800-880 nm reflectance was found to reveal differences between epicardial fat and normal myocardium tissue. This parameter was observed to increase monotonically from measurements obtained from the onset of radiofrequency ablation (RFA). A sheathe-style fiber optic catheter was then developed to allow real-time sampling of the zone of resistive heating during RFA treatment. A model was developed and used to extract changes in tissue absorption and reduced scattering based on the steady-state diffusion approximation. It was found that key changes in tissue optical properties occur during application of RF energy and can be monitored using NIRS. These results encourage the development of NIRS integrated catheters for real-time guidance of the cardiac ablation treatment.

  7. Infrared spectroscopy of molecules with nanorod arrays: a numerical study.

    PubMed

    Tardieu, Clément; Vincent, Grégory; Haïdar, Riad; Collin, Stéphane

    2016-04-15

    Nanorod arrays with diameters much smaller than the wavelength exhibit sharp resonances with strong electric-field enhancement and angular dependence. They are investigated for enhanced infrared spectroscopy of molecular bonds. The molecule 3-cyanopropyldimethylchlorosilane (CS) is taken as a reference, and its complex permittivity is determined experimentally in the 3-5 μm wavelength range. When grafted on silicon nitride nanorods, we show numerically that its weak absorption bands due to chemical bond vibrations can be enhanced by several orders of magnitude compared with unstructured thin film. We propose a figure of merit (FoM) to assess the performance of this spectroscopic scheme, and we study the impact of the nanorod cross section on the FoM. PMID:27082334

  8. Mid-Infrared Spectroscopy of Persistent Leonid Trains

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Rossano, George S.; Chatelain, Mark A.; Lynch, David K.; Tessensohn, Ted K.; Abendroth, Eric; Kim, Daryl; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The first infrared spectroscopy in the 3-13 micron region has been obtained of several persistent Leonid meteor trains with two different instrument types, one at a desert ground-based site and the other on-board a high-flying aircraft. The spectra exhibit common structures assigned to enhanced emissions of warm CH4, CO2, CO and H2O which may originate from heated trace air compounds or materials created in the wake of the meteor. This is the first time that any of these molecules has been observed in the spectra of persistent trains. Hence, the mid-IR observations offer a new perspective on the physical processes that occur in the path of the meteor at some time after the meteor itself has passed by. Continuum emission is observed also, but its origin has not yet been established. No 10 micron dust emission feature has been observed.

  9. Chemical analysis of surgical smoke by infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Sigrist, Markus W.

    2012-11-01

    The chemical composition of surgical smoke, a gaseous by-product of some surgical devices—lasers, drills, vessel sealing devices—is of great interest due to the many toxic components that have been found to date. For the first time, surgical smoke samples collected during routine keyhole surgery were analyzed with infrared laser spectroscopy. Traces (ppm range) of methane, ethane, ethylene, carbon monoxide and sevoflurane were detected in the samples which consisted mostly of carbon dioxide and water vapor. Except for the anaesthetic sevoflurane, none of the compounds were present at dangerous concentrations. Negative effects on the health of operation room personnel can be excluded for many toxic compounds found in earlier studies, since their concentrations are below recommended exposure limits.

  10. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  11. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization

    PubMed Central

    Stensitzki, T.; Yang, Y.; Muders, V.; Schlesinger, R.; Heberle, J.; Heyne, K.

    2016-01-01

    Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm−1 was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal. PMID:27191011

  12. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization.

    PubMed

    Stensitzki, T; Yang, Y; Muders, V; Schlesinger, R; Heberle, J; Heyne, K

    2016-07-01

    Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal. PMID:27191011

  13. Near-infrared Spectroscopy in the Brewing Industry.

    PubMed

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product. PMID:24915307

  14. Biochemical and physiological basis of medical near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Joebsis-vander Vliet, Frans F.; Joebsis, Paul

    1999-10-01

    Near infrared spectroscopy (NIRS) can monitor both the redox status of Cytochrome c oxidase located in the mitochondria within the cell and the oxygenation of the blood in the tissue being monitored. Since the enzyme catalyzes more than 90% of oxygen utilization, it is the sink for the oxygen while the hemoglobin in the capillaries is the oxygen source. In order to evaluate the oxidative metabolic status of a tissue the optical data obtained from both molecules are commonly interpreted in the basis of test tube experiments with purified preparations. We are concerned that the validity of this practice may not have been tested sufficiently and raise four basic questions that have not yet been answered. Citing some examples of in vitro versus in vivo differences we conclude that more effort should be expended on the in vivo testing of the range of the signals, their natural variability, and the physiological and pathological meaning of their deviations from norm.

  15. Discrimination and Content Analysis of Fritillaria Using Near Infrared Spectroscopy

    PubMed Central

    Meng, Yu; Wang, Shisheng; Cai, Rui; Jiang, Bohai; Zhao, Weijie

    2015-01-01

    Fritillaria is a traditional Chinese herbal medicine which can be used to moisten the lungs. The objective of this study is to develop simple, accurate, and solvent-free methods to discriminate and quantify Fritillaria herbs from seven different origins. Near infrared spectroscopy (NIRS) methods are established for the rapid discrimination of seven different Fritillaria samples and quantitative analysis of their total alkaloids. The scaling to first range method and the partial least square (PLS) method are used for the establishment of qualitative and quantitative analysis models. As a result of evaluation for the qualitative NIR model, the selectivity values between groups are always above 2, and the mistaken judgment rate of fifteen samples in prediction sets was zero. This means that the NIR model can be used to distinguish different species of Fritillaria herbs. The established quantitative NIR model can accurately predict the content of total alkaloids from Fritillaria samples. PMID:25789196

  16. Gas emission analysis based on Fourier transformed infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiaowen; Zhang, Xiaofu; Lian, Xu; Jin, Hui

    2014-12-01

    Solar occultation flux (SOF), a new optical technology to detect the gas based on the traditional Fourier transformed infrared spectroscopy (FTIR) developed quickly recently. In this paper, the system and the data analysis is investigated. First a multilayer transmission model of solar radiation is simulated. Then the retrieval process is illustrated. In the proceeding of the data analysis, the Levenberg-Marquardt non-linear square fitting is used to obtain the gas column concentration and the related emission ratio. After the theory certification, the built up system is conducted in a fertilizer plant in Hefei city .The results show SOF is available in the practice and the retrieved gas column concentration can give important information about the pollution emission and dispersion

  17. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  18. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  19. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors

  20. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  1. Development of Noninvasive Blood Glucose Sensor Using the Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Keiichi; Tamura, Kazuto; Kaneko, Wataru; Ishizawa, Hiroaki; Toba, Eiji

    Recently, diabetics have been steadily increasing, because change of diet, lack of exercise, increase an alcoholic intake, and increase a stress. It is a very serious problem for us. About 23.6 millions of people in Japan approach the danger of diabetes. Therefore, it is necessary to get insulin injection. And they have to measure blood glucose again and again a day. So, they are burden too heavy. This paper describes a new noninvasive measurement of blood glucose based on optical sensing. This uses Fourier transform infrared spectroscopy of attenuated total reflection. Non-invasive measurement was carried out by using 3 methods. And standard error of prediction is about ±20mg/dl by 3 method. This paper also describes practical application of this method.

  2. Disks and cones: resolving the dusty torus with mid-infrared interferometry.

    NASA Astrophysics Data System (ADS)

    Tristram, K.

    2015-09-01

    The thermal emission of dust is one of the main possibilities to study the (dusty) material of the so-called "torus" in AGN. Observations using interferometry in the mid-infrared have, in the last ten years, resolved and characterised this emission beyond simple fits of spectral energy distributions, leading to a great leap forward in our view of the dusty material surrounding AGN. I will present the most recent results of such observations, obtained with the instrument MIDI. More than 25 active nuclei could be observed with MIDI, showing that the dust distributions are parsec sized. The sizes roughly scale with the square root of the luminosity, albeit with a much large scatter than in the near-infrared. Detailed studies of a few well resolved sources, among them the illustrious nuclei of NGC1068 and the Circinus galaxy, show a two component structure: an inner disk-like emission region which is surrounded by a polar elongated emitter. The latter shows differential absorption in line with the one-sided ionisation cones observed in the optical. These results are in qualitative agreement with recent hydrodynamic simulations of AGN tori. In general, they confirm the concept of a dusty obscurer providing viewing-angle dependent obscuration of the central engine.

  3. Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser

    SciTech Connect

    Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

    2012-04-01

    Investigation of angle-resolved scattering from solid explosives residues on a car door for non-contact sensing geometries. Illumination with a mid-infrared external cavity quantum cascade laser tuning between 7 and 8 microns was detected both with a sensitive single point detector and a hyperspectral imaging camera. Spectral scattering phenomena were discussed and possibilities for hyperspectral imaging at large scattering angles were outlined.

  4. Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump

    SciTech Connect

    Carroll, Lee; Friedli, Peter; Stutz, Stefan; Sigg, Hans; Lerch, Philippe; Schneider, Joerg; Treyer, Daniel; Hunziker, Stephan

    2011-06-15

    Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 {mu}m) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 {mu}m range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong

  5. Infrared spectroscopy and microscopy in cancer research and diagnosis

    PubMed Central

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  6. Infrared Spectroscopy of HNO and Noh Suspended in Solid Parahydrogen

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Ruzi, Mahmut

    2013-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, the NOH is synthesized by co-deposition of NO/Ar and a H_2/Ar mixture that is passed through a microwave discharge to create H-atoms. The H-atoms recombine with NO in the Ar matrix to produce mostly HNO, but some NOH is produced as well. In this work we irradiate NO doped parahydrogen solids at 2 K using 193 nm radiation which is known to generate H-atoms as by-products. After the photolysis laser is stopped, we detect growth of HNO and NOH presumably due to reactions of H-atoms with NO analogous to the previous Ar matrix study. The higher energy NOH isomer is predicted by high-level calculations to be in a triplet ground electronic state. Interestingly, the infrared absorptions of NOH for the two observed vibrational modes (bend and OH stretch) display fine structure; an intense central peak with smaller peaks spaced symmetrically to both lower and higher wavenumbers. Further, the spacing between the peaks is the same for both vibrational modes. We believe this fine structure reflects the zero-field splitting of the triplet ground state of NOH (magnetic dipole-dipole interaction) and our most current results and analysis will be presented. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). M. Fushitani and T. Momose, Low Temp. Phys. 29, 740-743 (2003). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012).

  7. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  8. Remote detection of organics using Fourier transform infrared spectroscopy

    SciTech Connect

    Demirgian, J.C.; Spurgash, S.M.

    1990-01-01

    Fourier transform infrared (FTIR) spectroscopy is an ideal technique for remote detection of organic emissions. There is an atmospheric window in the 1200 to 800 cm{sup {minus}1} region, which corresponds to the fingerprint'' region for organic molecules. Virtually all organic molecules have a unique absorption/emission pattern in the fingerprint region. A remote-passive FTIR relies on ambient emission of infrared energy from organics to obtain spectra. The instrumentation consists of inlet optics, and interferometer, a mercury cadmium telluride (MCT) detector, and an on-board computer. The transportable unit measures 40 cm by 50 cm and has been used to collect data while mounted on a helicopter or ground vehicle. Through the use of this FTIR combined with least squares software, it is possible to analyze qualitatively and quantitatively for organic vapors from either the air or ground. The data presented will include quantitative releases of common organics present in incinerator stacks, hazardous wastes, and illegal laboratories. Data will be presented for pure compounds, mixtures, and target analytes in the presence of interfering compounds. The sensitivity, reproducibility, and the potential of the technique will be discussed. 1 ref., 8 figs., 6 tabs.

  9. Mid-infrared emission from laser-induced breakdown spectroscopy.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe H; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2007-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region. PMID:17389073

  10. Infrared photodissociation spectroscopy of vanadium oxide-carbonyl cations.

    PubMed

    Brathwaite, A D; Ricks, A M; Duncan, M A

    2013-12-19

    Mass selected vanadium oxide-carbonyl cations of the form VO(m)(CO)(n)(+) (m = 0-3 and n = 3-6) are studied via infrared laser photodissociation spectroscopy in the 600-2300 cm(-1) region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. The effect of oxidation on the carbonyl stretching frequencies of VO(CO)(n)(+), VO2(CO)(n)(+), and VO3(CO)(n)(+) complexes is investigated. All of these oxide-carbonyl species have C-O stretch vibrations blue-shifted from those of the pure vanadium ion carbonyls. The V-O stretches of these complexes are also investigated, revealing the effects of CO coordination on these vibrations. The oxide-carbonyls all have a hexacoordinate core analogous to that of V(CO)6(+). The fully coordinated vanadium monoxide-carbonyl species is VO(CO)5(+), and those of the dioxide and trioxide are VO2(CO)4(+) and VO3(CO)3(+), respectively. PMID:23927497

  11. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  12. Wavelet minimum description length detrending for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Eun; Tak, Sungho; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2009-05-01

    Near-infrared spectroscopy (NIRS) can be employed to investigate brain activities associated with regional changes of the oxy- and deoxyhemoglobin concentration by measuring the absorption of near-infrared light through the intact skull. NIRS is regarded as a promising neuroimaging modality thanks to its excellent temporal resolution and flexibility for routine monitoring. Recently, the general linear model (GLM), which is a standard method for functional MRI (fMRI) analysis, has been employed for quantitative analysis of NIRS data. However, the GLM often fails in NIRS when there exists an unknown global trend due to breathing, cardiac, vasomotion, or other experimental errors. We propose a wavelet minimum description length (Wavelet-MDL) detrending algorithm to overcome this problem. Specifically, the wavelet transform is applied to decompose NIRS measurements into global trends, hemodynamic signals, and uncorrelated noise components at distinct scales. The minimum description length (MDL) principle plays an important role in preventing over- or underfitting and facilitates optimal model order selection for the global trend estimate. Experimental results demonstrate that the new detrending algorithm outperforms the conventional approaches.

  13. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  14. Rapid and economical data acquisition in ultrafast frequency-resolved spectroscopy using choppers and a microcontroller.

    PubMed

    Guo, Liang; Monahan, Daniele M; Fleming, Graham

    2016-08-01

    Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method's effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution. PMID:27505778

  15. Remote time-resolved filament-induced breakdown spectroscopy of biological materials

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; Liu, W.; Chin, S. L.

    2006-05-01

    We report, for what we believe to be the first time, on the feasibility of remote time-resolved filament-induced breakdown spectroscopy (FIBS) of biological materials. The fluorescence from egg white and yeast powder, induced by femtosecond laser pulse filamentation in air, was detected in the backward direction with targets located 3.5 m away from the detection system. The remarkably distinct spectra of egg white and yeast allow us to propose that this technique, time-resolved FIBS, could be potentially useful for remote detection and identification of harmful biological agents.

  16. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling

    NASA Astrophysics Data System (ADS)

    Knie, A.; Patanen, M.; Hans, A.; Petrov, I. D.; Bozek, J. D.; Ehresmann, A.; Demekhin, Ph. V.

    2016-05-01

    In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH4 and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

  17. Near Infrared Spectroscopy for Burning Plasma Diagnostic Applications

    SciTech Connect

    Soukhanovskii, V A

    2008-06-18

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ion fuel species (H, D, T, Li) and impurities (e.g. He, Be, C, W) is a key element of plasma control and diagnosis on ITER and future magnetically confined burning plasma experiments (BPX). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window and optical fiber transmission under intense neutron and {gamma}-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can address machine protection and plasma control diagnostic tasks, as well as plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma facing component temperatures.

  18. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  19. APPLICATION OF MATRIX ISOLATION INFRARED SPECTROSCOPY TO ANALYSIS FOR POLYNUCLEAR AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Gas chromatography combined with matrix isolation infrared spectroscopy (GC/MI-IR) enables identification and quantification of components of complex mixtures by infrared spectroscopy at levels of a few nanograms. These levels are several orders of magnitude lower than those achi...

  20. Reliability of Near-Infrared Spectroscopy for Determining Muscle Oxygen Saturation during Exercise

    ERIC Educational Resources Information Center

    Austin, Krista G.; Daigle, Karen A.; Patterson, Patricia; Cowman, Jason; Chelland, Sara; Haymes, Emily M.

    2005-01-01

    Near-infrared spectroscopy is currently used to assess changes in the oxygen saturation of the muscle during exercise. The primary purpose of this study was to assess the reliability of near-infrared spectroscopy in determining muscle oxygen saturation (StO[subscript 2]) in the vastus lateralis during cycling and the gastrocnemius during running…

  1. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  2. Near- versus Mid-Infrared Spectroscopy for On-Site Analysis of Soil C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has demonstrated that for the determination of soil C, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is often more accurate and produces more robust calibrations than near-infrared reflectance spectroscopy (NIRS) when analyzing ground, dry soils under laboratory condi...

  3. Mid- Versus Near-Infrared Reflectance Spectroscopy for On-Site Determination of Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has demonstrated that the determination of soil C diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is often more accurate and produces more robust calibrations than near-infrared (NIR) reflectance spectroscopy (NIRS) when analyzing ground, dry soils. DRIFTS is also not ...

  4. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  5. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy.

    PubMed

    Spaun, Ben; Changala, P Bryan; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-05-26

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity. PMID:27144351

  6. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C–H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  7. Reaction products in mass spectrometry elucidated with infrared spectroscopy.

    PubMed

    Polfer, Nick C; Oomens, Jos

    2007-08-01

    Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown

  8. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor

    SciTech Connect

    Williams, Richard M.; Harper, Warren W.; Aker, Pam M.; Thompson, Jason S.; Stewart, Timothy L.

    2003-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity and countering terrorism. Missions addressed include detecting chemical, biological, and nuclear weapons and their production; counter terrorism measures that involve screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons and/or their residues; and mapping of contaminated areas. The science and technology developed in this program is dual use in that it additionally supports progress in a diverse set of agendas that include chemical weapons defense programs, air operations activities, emissions monitoring, law enforcement, and medical diagnostics. Sensors for these missions require extremely low limits of detection because many of the targeted signature species are either present in low concentrations or have extremely low vapor pressures. The sensors also need to be highly selective as the environments that they will be operated in will contain a variety of interferent species and false positive detection is not an option. PNNL has been working on developing a class of sensors that draw vapor into optical cavities and use laser-based spectroscopy to identify and quantify the vapor chemical content. The cavity enhanced spectroscopies (CES) afford extreme sensitivity, excellent selectivity, noise immunity, and rapid, real-time, in-situ chemical characterization. PNNL's CES program is currently focused on developing two types of sensors. The first one, which is based on cavity ring down spectroscopy (CRDS), uses short wave infrared (SWIR) lasers to interrogate species. The second sensor, which is based on noise immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE OHMS), uses long wave infrared (LWIR) quantum cascade

  9. Infrared Ion-Gain Spectroscopy and Fractional Abundance Measurements of Conformer Populations

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; Dean, Jacob C.; Marsh, Brett M.; Zwier, Timothy S.

    2011-06-01

    Studies of the single-conformation spectroscopy of large, flexible molecules has as one of its goals providing incisive tests of the predictions of calculations on the isolated molecules, whether ab initio or semi-empirical in nature. An important aspect of this comparison that is often lacking is quantitative data on the fractional abundances of the conformations. Previous studies from our group have provided such data using mass-resolved infrared population transfer (IRPT) spectroscopy. In this talk, we present an alternative method that in certain circumstances has advantages over IRPT, especially in ease of implementation. The method, infrared ion-gain (IRIG) spectroscopy, was first introduced by Fujii and co-workers on molecules without conformational isomers. Here we extend the method to conformationally flexible molecules, and test whether it can be used to provide fractional abundances by comparing with IRPT results^a on jet-cooled Ac-γ2-hPhe-NHMe, using thermal methods for vaporization of the molecule. The comparison provides some confidence that IRIG can be used for this purpose, but also points out conditions where it must be used with care. Analogous fractional abundance measurements on a prototypical lignin monomer will also be described, this time brought into the gas phase by laser desorption. Details of the laser desorption scheme used will also be provided. W. H. James III, C. W. Muller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman and T. S. Zwier J. Am. Chem. Soc. 131, (14243-14245), 2009. S. Ishiuchi, H. Shitomi, K. Takazawa and M. Fujii Chem. Phys. Lett. 283, (243-250), 1998.

  10. Deuterium in the Outer Planets: New Constraints and New Questions from Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fletcher, L. N.; Orton, G. S.; Mainzer, A.; Line, M. R.; Merlet, C.; Burgdorf, M.; Irwin, P. G.

    2008-12-01

    We discuss how new observations of far-infrared rotational lines of HD and mid-infrared vibrational features of CH3D are challenging the accepted measurements for the deuterium abundance in the outer solar system. New derivations of D/H will be presented from the Cassini Composite Infrared Spectrometer (CIRS) for Saturn, the Spitzer Infrared Spectrometer (IRS) for Uranus and Neptune and the grism mode of the AKARI Infrared camera (IRC) for Neptune. Many thousands of spatially resolved Cassini/CIRS spectra at an unapodized spectral resolution of 0.25 cm-1 covering a variety of latitudes on Saturn have been acquired during Cassini's prime mission, and are coadded to give ten independent estimates of the HD mole fraction and hundreds of estimates of the CH3D mole fraction. Spitzer/IRS acquired disc-averaged spectra of Uranus during Cycle 1 and more recently with Director Discretionary time in December 2007. Neptune disc-averaged spectra were acquired during Cycle 2 (November 2005). ISAS/JAXA's AKARI satellite recorded disc-integrated spectra of Neptune in May 2007 with a resolving power of 50 in the 5.5-13 micron range. These spectra have been analysed using two separated radiative transfer and retrieval models to check for consistency of results. On Saturn, we retrieve lower estimates of D/H from HD and CH3D than were obtained from ISO/SWS by Lellouch et al. (2001). Preliminary analysis of Uranus spectra suggest that the CH3D/CH4 ratio is significantly smaller than that predicted by the HD abundance determined from ISO/SWS by Feuchtgruber et al. (1999), suggesting a Uranian ratio more like that of Saturn, or a substantially different fractionation factor from that in the current literature. Furthermore, although constraints on CH3D from mid-IR Neptune spectroscopy are weaker, preliminary findings are that the CH3D/CH4 ratio is lower than that obtained by Orton et al. (1992) and inferred from HD measurements from ISO/SWS (Feuchtgruber et al., 1999). Fletcher is

  11. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    PubMed

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  12. Phase-resolved emission spectroscopy of a neutraliser-free gridded ion thruster

    NASA Astrophysics Data System (ADS)

    Dedrick, James; Gibson, Andrew; Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    Power-efficient electric propulsion systems that operate without an external neutraliser have the potential to increase the longevity of traditional concepts. The Neptune gridded-ion thruster prototype, which uses a single radio-requency (rf) power source for plasma generation, ion acceleration and beam neutralisation, is under development. Previous research has suggested that the time-resolved electron dynamics in the plume are important for maintaining charge neutrality and overall performance. In this study, the electron dynamics in the exhaust beam are investigated within the rf cycle using phase-resolved emission spectroscopy. The results are compared with time-resolved and time-integrated electrical diagnostics to investigate the mechanisms behind beam neutralisation. This work received financial support from the York-Paris CIRC and state aid managed by the laboratory of excellence Plas@Par (ANR-11-IDEX-0004-02).

  13. Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Qu, Jianan Y.; Cheung, Tak-Hong; Yu, Mei-Yung

    2005-01-01

    A portable confocal system with the excitations at 355nm and 457nm was instrumented to investigate the depth-resolved fluorescence of cervical tissue. The study focused on extracting biochemical and morphological information carried in the depth-resolved signals measured from the normal squamous epithelial tissue and squamous intraepithelial lesions. Strong keratin fluorescence with the spectral characteristics similar to collagen were observed from the topmost keratinizing layer of all tissue samples. It was found that NADH and FAD fluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can potentially provide more accurate diagnostic information for determining tissue pathology.

  14. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.

    PubMed

    Groza, Radu Constantin; Li, Boyan; Ryder, Alan G

    2015-07-30

    Structural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore. Here the utility of ARMES was demonstrated via study of the chemical and thermal denaturation of human serum albumin (HSA). Multivariate curve resolution (MCR) analysis of the constituent polarized emission ARMES data resolved contributions from four emitters: fluorescence from tryptophan (Trp), solvent exposed tyrosine (Tyr), Tyr in a hydrophobic environment, and room temperature phosphorescence (RTP) from Trp. The MCR scores, anisotropy, and literature validated these assignments and showed all the expected transitions during HSA unfolding. This new methodology for comprehensive intrinsic fluorescence analysis of proteins is applicable to any protein containing multiple fluorophores. PMID:26320645

  15. Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy.

    PubMed

    Hiramatsu, Kotaro; Nagata, Takashi

    2015-09-28

    We report the development of broadband and sensitive time-resolved circular dichroism (TRCD) spectroscopy by exploiting optical heterodyne detection. Using this method, transient CD signals of submillidegree level can be detected over the spectral range of 415-730 nm. We also demonstrate that the broadband measurement with the aid of singular value decomposition enables the discrimination of genuine TRCD signals from artificial optical-anisotropy, such as linear birefringence and linear dichroism, induced by photoexcitation. PMID:26428989

  16. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  17. Time-resolved emission spectroscopy of gadolinium vanadate ceramics (GdVO4:Bi3+)

    NASA Astrophysics Data System (ADS)

    Leppert, J.; Peudenier, S.; Bayer, E.; Grabmaier, B. C.; Blasse, G.

    1994-07-01

    The preparation of GdVO4:Bi3+ ceramics is indicated. Bismuth shows a strong tendency to evaporate during the sintering process. Time-resolved emission spectroscopy shows for sufficiently low Bi3+ concentrations subsequently: blue VO{4/3-}emission with a decay time corresponding to the transfer rate (106 s-1), yellow VO{4/3-}-Bi3+ emission, rare-earth impurity emission and VO{4/3-}-Bi3+ afterglow.

  18. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Orlov, A. S.; Kiselev, S. A.; Kiseleva, E. A.; Budeeva, A. V.; Mashukov, V. I.

    2013-03-01

    A rapid method for determining the composition of styrene-butadiene rubber using attenuated total internal reflection infrared spectroscopy was proposed. PMR and 13C NMR spectroscopy and infrared transmission spectroscopy were used as absolute techniques for determining the compositions of calibration samples. It was shown that the method was applicable to a wide range of styrene-butadiene rubbers, did not require additional sample preparation, and was easily reproducible.

  19. Development of the Experimental System for Time- and Angle-resolved Photoemission Spectroscopy

    SciTech Connect

    Takahashi, Kazutoshi; Azuma, Junpei; Tokudomi, Shinji; Kamada, Masao

    2007-01-19

    Experimental system for the time- and angle-resolved photoemission spectroscopy have been constructed at BL13 in SAGA Light Source, in order to study the electronic non-equilibrium in the surface layer of laser-excited materials The experimental system is very useful for photoemission spectroscopy in the wide temporal and angular ranges. The time- and angle-resolved photoemission spectra can be obtained with using the gate electronics for the MCP detector of the photoemission spectrometer. The gated MCP detector is synchronized with the laser pulse from Ti:sapphire regenerative amplifier with the repetition frequency of 10 to 300 kHz. The time-window of the gated MCP detector can be changed between 10 nano- and 160 micro-second. The time-resolved measurement in pico-second region can be performed with using the pump-probe technique which uses fundamental, second and third harmonics from the Ti:sapphire laser as the excitation source. Using these systems, we can perform the time- and angle-resolved photoemission study for various photo-excited phenomena and surface dynamics.

  20. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  1. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  2. [Study on the inclusion compound of avermectin by infrared spectroscopy].

    PubMed

    Shen, Wen; Zhang, Guang-Hua; Guo, Ning; Li, Yun-Tao

    2014-05-01

    This study was designed to investigate the formation and effect of inclusion complex of Avermectin-beta-cyclodextrin based on the accommodation property of beta-cyclodextrin's molecular cavity. The inclusion complex of Averrnectin-beta-cyclodextrin was prepared using saturated solution method and high performance liquid chromatography (HPLC) was employed to determine its entraping efficiency. The formation of Avermectin-beta-cyclodextrin inclusion complex was also demonstrated by infrared spectroscopy(IR). The change of chemical structure produced by photocatalysis of Abamectin was analyzed and the effect of inclusion complex to strengthen the photolysis stability of Abamectin's chemical structure was studied. The results show that the entraping efficiency of the inclusion complex was 40. 5%. The IR analysis presents that the intermolecular hydrogen bond was formed in the Avermectin-beta-cyclodextrin inclusion complex, indicating the composition effect was different from physical mixture. The lactones structure of Avermectin Bla can be photodecomposed and disrupted. After decomposition, the infrared stretching vibration peak of C-O-C structure disappeared and the lactone bond was significantly broken. The lactones structure of avermectin Bla was covered by the inclusion molecular loci in beta-cyclodextrin after the formation of avermectin-beta-cyclodextrin inclusion complex, providing a good photophobic protection for C-O-C structure in the macrocyclic lactone structure of avermectin Bla and improving the photostability of avermectin Bla molecule. The innovation of this study is that the structure and the characters of the prepared avermectin-beta-cyclodextrin inclusion complex were analyzed using spectrum methods. This inclusion complex is expected to be the ideal intermediate in the construction of protective controlled release formulation of avermectin. PMID:25095407

  3. A multi-analytical investigation of semi-conductor pigments with time-resolved spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.

    2013-05-01

    We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.

  4. Monitoring the folding kinetics of a β-hairpin by time-resolved IR spectroscopy in silico.

    PubMed

    Daidone, Isabella; Thukral, Lipi; Smith, Jeremy C; Amadei, Andrea

    2015-04-01

    Protein folding is one of the most fundamental problems in modern biochemistry. Time-resolved infrared (IR) spectroscopy in the amide I region is commonly used to monitor folding kinetics. However, associated atomic detail information on the folding mechanism requires simulations. In atomistic simulations structural order parameters are typically used to follow the folding process along the simulated trajectories. However, a rigorous test of the reliability of the mechanisms found in the simulations requires calculation of the time-dependent experimental observable, i.e., in the present case the IR signal in the amide I region. Here, we combine molecular dynamics simulation with a mixed quantum mechanics/molecular mechanics theoretical methodology, the Perturbed Matrix Method, in order to characterize the folding of a β-hairpin peptide, through modeling the time-dependence of the amide I IR signal. The kinetic and thermodynamic data (folding and unfolding rate constants, and equilibrium folded- and unfolded-state probabilities) obtained from the fit of the calculated signal are in good agreement with the available experimental data [Xu et al. J. Am. Chem. Soc. 2003, 125, 15388-15394]. To the best of our knowledge, this is the first report of the simulation of the time-resolved IR signal of a complex process occurring on a long (microsecond) time scale. PMID:25777154

  5. Rotationally resolved infrared spectra of the explosive bouquet compounds associated with C-4 explosives

    NASA Astrophysics Data System (ADS)

    Clasp, Trocia N.; Johnson, Tiffani; Sullivan, Michael N.; Reeve, Scott W.

    2011-05-01

    The explosive material known as Composition C4, or simply C4, is an RDX based military grade explosive. RDX itself possesses a negligible vapor pressure at room temperature suggesting it is not a good target for conventional instruments designed to detect vapor phase chemical compounds. Recent research with canines has indicated that a better approach for detecting explosive vapors such as C4 is to focus on a characteristic mixture of impurities associated with the material. These characteristic mixtures of impurity vapors are referred to by canine researchers as the explosive bouquet and are fairly unique to the specific energetic material. In this paper, we will examine and report rotationally resolved infrared spectral signatures for the known compounds comprising the explosive bouquet for C4 based explosives including isobutylene, 2-ethyl-1-hexanol and cyclohexanone.

  6. Time-resolved detection of structural change in polyethylene films using mid-infrared laser pulses

    SciTech Connect

    Ageev, Eduard; Mizobata, Keisuke; Nakajima, Takashi Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2015-07-27

    Some of the vibrational modes of crystalline organic polymers are known to be sensitive to the structural change from the crystalline phase to the amorphous phase, and vice versa. Using a mid-infrared (mid-IR) pulse from a free-electron laser as a probe, we demonstrate the time-resolved detection of structural change in crystalline polymer (polyethylene) films upon laser heating by a Q-switched Nd:YAG laser. Transmittance of the resonant mid-IR pulse almost instantaneously changes before and after the Nd:YAG laser pulse if its fluence is sufficient to induce the structural change in the film. The developed technique would be useful to study the time-dependent dynamics of the structural change in various materials.

  7. Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy

    PubMed Central

    Saager, Rolf B.; Truong, Alex; Cuccia, David J.; Durkin, Anthony J.

    2011-01-01

    We have demonstrated that spatially modulated quantitative spectroscopy (SMoQS) is capable of extracting absolute optical properties from homogeneous tissue simulating phantoms that span both the visible and near-infrared wavelength regimes. However, biological tissue, such as skin, is highly structured, presenting challenges to quantitative spectroscopic techniques based on homogeneous models. In order to more accurately address the challenges associated with skin, we present a method for depth-resolved optical property quantitation based on a two layer model. Layered Monte Carlo simulations and layered tissue simulating phantoms are used to determine the efficacy and accuracy of SMoQS to quantify layer specific optical properties of layered media. Initial results from both the simulation and experiment show that this empirical method is capable of determining top layer thickness within tens of microns across a physiological range for skin. Layer specific chromophore concentration can be determined to <±10% the actual values, on average, whereas bulk quantitation in either visible or near infrared spectroscopic regimes significantly underestimates the layer specific chromophore concentration and can be confounded by top layer thickness. PMID:21806282

  8. A Resolved Map of the Infrared Excess in a Lyman Break Galaxy at z = 3

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Coppin, K. E. K.; Geach, J. E.; Hine, N. K.; Bremer, M.; Chapman, S.; Davies, L. J. M.; Hayashino, T.; Knudsen, K. K.; Kubo, M.; Lehmer, B. D.; Matsuda, Y.; Smith, D. J. B.; van der Werf, P. P.; Violino, G.; Yamada, T.

    2016-09-01

    We have observed the dust continuum of 10 z = 3.1 Lyman break galaxies with the Atacama Large Millimeter/submillimeter Array at ∼450 mas resolution in Band 7. We detect and resolve the 870 μm emission in one of the targets with a flux density of S 870 = 192 ± 57 μJy, and measure a stacked 3σ signal of S 870 = 67 ± 23 μJy for the remaining nine. The total infrared luminosities are L 8–1000 = (8.4 ± 2.3) × 1010 L ⊙ for the detection and L 8–1000 = (2.9 ± 0.9) × 1010 L ⊙ for the stack. With Hubble Space Telescope Advanced Camera for Surveys I-band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the “infrared excess” (IRX = L FIR/L UV) in a normal galaxy at z = 3. Integrated over the galaxy we measure IRX = 0.56 ± 0.15, and the galaxy-averaged UV slope is β = ‑1.25 ± 0.03. This puts the galaxy a factor of ∼10 below the IRX–β relation for local starburst nuclei of Meurer et al. However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX–β relation at high-z. A naive application of a Meurer-like dust correction based on the UV slope would dramatically overestimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high-z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation.

  9. Fast Perturbation Monte Carlo simulation for heterogeneous medium and its utilization in functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Y. M.; Li, J. W.; Cai, F. H.

    2016-01-01

    In near-infrared spectroscopy, fiber optic probe is usually applied to incident light into the bio-sample and detect the spatial and temporal resolved optical signal re-emitted from the turbid medium. In this point-source-point-detector measurement system, seed Perturbation Monte Carlo (Pmc) method is an effective model to perform the forward simulation. In our study, the integration of parallel computing with graphics processing units(GPU) into the existing seed Pmc method substantially accelerate the speed of the original simulation. The GPU based seed Pmc provide an excellent solution for the application of fiber optic probe in both homogeneous a heterogeneous turbid medium.

  10. Visible-super-resolution infrared microscopy using saturated transient fluorescence detected infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bokor, Nándor; Inoue, Keiichi; Kogure, Satoshi; Fujii, Masaaki; Sakai, Makoto

    2010-02-01

    A scanning visible-super-resolution microscope based on the saturation behaviour of transient fluorescence detected infrared (TFD-IR) spectroscopy is proposed. A Gaussian IR beam, a Gaussian visible beam and a Laguerre-Gaussian (LG) visible beam are used to obtain two separate two-color excitation fluorescence (2CF) images of the sample. The final image is obtained as the difference between the two recorded images. If the peak intensity of the LG beam is high enough to induce saturation in the fluorescence signal, the image can, in principle, have unlimited spatial resolution. A ˜3-fold improvement in transverse resolution over the visible diffraction limit (and far exceeding the IR diffraction limit) is easily achievable in present experimental setups.

  11. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, James P.; Poynton, Fergus E.; Keane, Páraic M.; Gurung, Sarah P.; Brazier, John A.; Cardin, David J.; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V.; Towrie, Michael; Cardin, Christine J.; Kelly, John M.; Quinn, Susan J.

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  12. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy.

    PubMed

    Hall, James P; Poynton, Fergus E; Keane, Páraic M; Gurung, Sarah P; Brazier, John A; Cardin, David J; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V; Towrie, Michael; Cardin, Christine J; Kelly, John M; Quinn, Susan J

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium. PMID:26587711

  13. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  14. Follow-up in patients with subdural haematomas using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Richter, Barbel; Lott, Carsten; Dick, Wolfgang; Boor, Stephan; Hanley, Daniel F.

    1998-12-01

    Secondary haemorrhage is an important cause of brain injury following initial therapy of subdural haematoma (SDH). Early identification and treatment of secondary haemorrhage improves neurologic outcome. Near infrared light at a wavelength of 760 nm shows a high absorption for haemoglobin. The difference in absorbance of light ((Delta) OD) at the wavelength of 760 nm between both hemispheres is measured to detect SDH. We have prospectively studied 20 patients with the CT diagnosis of SDH using near infrared spectroscopy (NIRS). Unilateral subdural haematomas were detected by NIRS in 15 out of 16 patients. Bilateral SDH were detected in 2 out of 3 patients. The median of (Delta) OD was reduced from initially 0.32 (0.05 - 0.85) to 0.1 (0.02 - 0.49) at hospital discharge. The complete resorption of the haematoma has been observed in 12 patients by NIRS. In 7 patients we still obtained pathologic values at discharge. The haematomas were not completely resolved, as proved by the CT scans prior to discharge. Our results showed repeated application of NIRS in patients with SDH help to document the clinical course after surgical treatment. Follow-up NIR evaluation of patients with SDH using NIRS may allow early treatment without time delay and a reduction of secondary brain injury as well as treatment costs.

  15. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  16. Time Resolved Detection of Infrared Synchrotron Radiation at DA{phi}NE

    SciTech Connect

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.

    2007-01-19

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DA{phi}NE (Double Annular {phi}-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DA{phi}NE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics.

  17. A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Elezzabi, A. Y.; Maraghechi, P.

    2012-05-01

    A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.

  18. Near-infrared spectroscopy of renal tissue in vivo

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann

    2013-03-01

    We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.

  19. Infrared spectroscopy and structure of (NO)n clusters

    DOE PAGESBeta

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; Verma, Deepak; Schmidt, Michael W.; Ivanic, Joseph; Vilesov, Andrey F.

    2016-01-12

    Nitrogen oxide clusters (NO)n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν1 and ν5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm–1, respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm–1 close to the band origin of single molecules was assigned to van der Waals bound dimersmore » of (NO)2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. As a result, experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.« less

  20. Near-Infrared Spectroscopy for the Evaluation of Anesthetic Depth

    PubMed Central

    Hernandez-Meza, Gabriela; Izzetoglu, Meltem; Osbakken, Mary; Green, Michael; Izzetoglu, Kurtulus

    2015-01-01

    The standard-of-care guidelines published by the American Society of Anesthesiologists (ASA) recommend monitoring of pulse oximetry, blood pressure, heart rate, and end tidal CO2 during the use of anesthesia and sedation. This information can help to identify adverse events that may occur during procedures. However, these parameters are not specific to the effects of anesthetics or sedatives, and therefore they offer little, to no, real time information regarding the effects of those agents and do not give the clinician the lead-time necessary to prevent patient “awareness.” Since no “gold-standard” method is available to continuously, reliably, and effectively monitor the effects of sedatives and anesthetics, such a method is greatly needed. Investigation of the use of functional near-infrared spectroscopy (fNIRS) as a method for anesthesia or sedation monitoring and for the assessment of the effects of various anesthetic drugs on cerebral oxygenation has started to be conducted. The objective of this paper is to provide a thorough review of the currently available published scientific studies regarding the use of fNIRS in the fields of anesthesia and sedation monitoring, comment on their findings, and discuss the future work required for the translation of this technology to the clinical setting. PMID:26495317

  1. Wearable near-infrared spectroscopy neuroimaging and its applications.

    PubMed

    Funane, Tsukasa

    2015-08-01

    Wearable near-infrared spectroscopy (NIRS) systems are expected to be applied in various fields such as health care (medical use), education (teaching), and biofeedback. An investigation on hyperscanning by using NIRS is discussed first, where multiple brains were simultaneously measured for investigating and evaluating important social interactions, such as communication. The relationship between interacting brain activities and performance in cooperation has been demonstrated. An investigation on mood-state measurements in a return-to-work program is next discussed. It has been reported that a specified index calculated using NIRS signals obtained during performance of a working memory task correlated with a mood score. Using this index, the mood states of volunteers who participated in a return-to-work program after psychiatric clinical treatment were monitored. It has been suggested that the relationship between brain activities and subjective assessment of depression mood will be useful for evaluating the recovery stage for return-to-work programs. These techniques open new applications of wearable NIRS systems in mental health care. PMID:26737177

  2. Textile integrated sensors and actuators for near-infrared spectroscopy.

    PubMed

    Zysset, Christoph; Nasseri, Nassim; Büthe, Lars; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Kleiser, Stefan; Salvatore, Giovanni A; Wolf, Martin; Tröster, Gerhard

    2013-02-11

    Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices. PMID:23481780

  3. Raman and infrared fingerprint spectroscopy of peroxide-based explosives.

    PubMed

    Oxley, Jimmie; Smith, James; Brady, Joseph; Dubnikova, Faina; Kosloff, Ronnie; Zeiri, Leila; Zeiri, Yehuda

    2008-08-01

    A comparative study of the vibrational spectroscopy of peroxide-based explosives is presented. Triacetone triperoxide (TATP) and hexamethyl-enetriperoxide-diamine (HMTD), now commonly used by terrorists, are examined as well as other peroxide-ring structures: DADP (diacetone diperoxide); TPTP [3,3,6,6,9,9-Hexaethyl-1,2,4,5,7,8-hexaoxo-nonane (tripentanone triperoxide)]; DCypDp {6,7,13,14-Tetraoxadispiro [4.2.4.2]tetradecane (dicyclopentanone diperoxide)}; TCypDp {6,7,15,16,22,23-Hexaoxatrispiro[4.2.4.2.4.2] henicosane (tricyclopentanone triperoxide)}; DCyhDp {7,8,15,16-tetraoxadispiro [5.2.5.2] hexadecane (dicyclohexanone diperoxide)}; and TCyhTp {7,8,14,15,21,22-hexaoxatrispiro [5.2.5.2.5.2] tetracosane (tricyclohexanone triperoxide)}. Both Raman and infrared (IR) spectra were measured and compared to theoretical calculations. The calculated spectra were obtained by calculation of the harmonic frequencies of the studied compounds, at the density functional theory (DFT) B3LYP/cc-pVDZ level of theory, and by the use of scaling factors. It is found that the vibrational features related to the peroxide bonds are strongly mixed. As a result, the spectrum is congested and highly sensitive to minor changes in the molecule. PMID:18702865

  4. Ageing of resin from Pinus species assessed by infrared spectroscopy.

    PubMed

    Beltran, Victòria; Salvadó, Nati; Butí, Salvador; Pradell, Trinitat

    2016-06-01

    Resins obtained from Pinus genus species have been widely used in very different fields throughout history. As soon as the resins are secreted, molecular changes start altering their chemical, mechanical and optical properties. The ageing processes are complex, and the chemical and structural changes associated with resin degradation are not yet fully known. Many questions still remain open, for instance changes happening in pimaranes, one of the two diterpenoid constituents of the resin. A systematic study of the ageing process of Pinus resins is done through Fourier transform infrared spectroscopy (FTIR) using chemical standards and complementing the obtained results with gas chromatography coupled to mass spectrometry (GC/MS) analysis when necessary. Moreover, long-term degradation processes are also investigated through the analysis of a selection of dated historical resins. This study overcomes the limitations of GC/MS and brings new information about the reactions and interactions between molecules during Pinus resin ageing processes. It also provides information about which bonds are affected and unaffected, and these can be used as specific markers of the degradation and of the resins themselves. Graphical Abstract Changes in the IR spectral features due to the Pinus resin ageing processes. PMID:27052772

  5. Infrared Spectroscopy and Structure of (NO)n Clusters.

    PubMed

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; Verma, Deepak; Schmidt, Michael W; Ivanic, Joseph; Vilesov, Andrey F

    2016-02-01

    Nitrogen oxide clusters (NO)n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν1 and ν5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm(-1), respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm(-1) close to the band origin of single molecules was assigned to van der Waals bound dimers of (NO)2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. Experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers. PMID:26756475

  6. Rapid Characterization of Tanshinone Extract Powder by Near Infrared Spectroscopy

    PubMed Central

    Luo, Gan; Xu, Bing; Shi, Xinyuan; Li, Jianyu; Dai, Shengyun; Qiao, Yanjiang

    2015-01-01

    Chemical and physical quality attributes of herbal extract powders play an important role in the research and development of Chinese medicine preparations. The active pharmaceutical ingredients have a direct impact on the herbal extract's efficacy, while the physical properties of raw material affect the pharmaceutical manufacturing process and the final products' quality. In this study, tanshinone extract powders from Salvia miltiorrhiza which are widely used for the treatment of cardiovascular diseases in the clinic are taken as the research object. Both the chemical information and physical information of tanshinone extract powders are analyzed by near infrared (NIR) spectroscopy. The partial least squares (PLS) and least square support vector machine (LS-SVM) models are investigated to build the relationship between NIR spectra and reference values. PLS models performed well for the content of crytotanshinone, tanshinone IIA, the moisture, and average median particle size, while, for specific surface area and tapped density, the LS-SVM models performed better than the PLS models. Results demonstrated NIR to be a valid and fast process analytical technology tool to simultaneously determine multiple quality attributes of herbal extract powders and indicated that there existed some nonlinear relationship between NIR spectra and physical quality attributes. PMID:25866511

  7. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  8. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  9. Fourier transform infrared spectroscopy (FTIR) of laser-irradiated cementum

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; White, Joel M.; Cecchini, Silvia C. M.; Hennig, Thomas

    2003-06-01

    Utilizing Fourier Transform Infrared Spectroscopy (FTIR) in specular reflectance mode chemical changes of root cement surfaces due to laser radiation were investigated. A total of 18 samples of root cement were analyzed, six served as controls. In this study laser energies were set to those known for removal of calculus or for disinfection of periodontal pockets. Major changes in organic as well as inorganic components of the cementum were observed following Nd:YAG laser irradiation (wavelength 1064 nm, pulse duration 250 μs, free running, pulse repetition rate 20 Hz, fiber diameter 320 μm, contact mode; Iskra Twinlight, Fontona, Slovenia). Er:YAG laser irradiation (wavelength 2.94 μm, pulse duration 250 μs, free running, pulse repetition rate 6 Hz, focus diameter 620 μm, air water cooling 30 ml/min; Iskra Twinlight, Fontona, Slovenia) significantly reduced the Amid bands due to changes in the organic components. After irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, q-switched, pulse repetition rate 20 Hz, beam diameter 800 μm, contact mode, water cooling 30 ml/min; laboratory prototype) only minimal reductions in the peak intensity of the Amide-II band were detected.

  10. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  11. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  12. Near-infrared spectroscopy of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Eric; Phillips, Mark; Burns, Christopher R.; Contreras, Carlos; Gall, Christa; Hoeflich, Peter; Kirshner, Robert P.; Marion, Howie H.; Morrell, Nidia; Sand, David J.; Stritzinger, Maximillian; Carnegie Supernova Project

    2016-01-01

    Improving the cosmological experiments with Type Ia supernovae (SNe Ia) is now not simply a question of observing more supernovae, since any survey, no matter how large, will ultimately be limited by the systematic errors. It has been clearly demonstrated in a number of studies that SNe Ia are better distance indicators in the near-infrared compared to the optical. As exciting as these new results are, SNe Ia in the NIR are expected to be even better than these studies indicate. A key ingredient for improving SN Ia in the NIR as distance indicators is to obtain NIR spectroscopy to determine precise k-corrections, which account for the effect of cosmological expansion upon the measured magnitudes. Better knowledge of the NIR spectroscopic behaviors, akin to that in the optical, is necessary to reach the distance precision required to identify viable models for dark energy. Carnegie Supernova Project II has built a definitive data set, much improved from previous samples, both in size and quality. With this previously unavailable window, we are also beginning to gain new insight on the physics of these events.

  13. Detecting concealed information using functional near-infrared spectroscopy.

    PubMed

    Sai, Liyang; Zhou, Xiaomei; Ding, Xiao Pan; Fu, Genyue; Sang, Biao

    2014-09-01

    The present study focused on the potential application of fNIRS in the detection of concealed information. Participants either committed a mock crime or not and then were presented with a randomized series of probes (crime-related information) and irrelevants (crime-irrelevant information) in a standard concealed information test (CIT). Participants in the guilty group were instructed to conceal crime-related information they obtained from the mock crime, thus making deceptive response to the probes. Meanwhile, their brain activity to probes and irrelevants was recorded by functional near-infrared spectroscopy (fNIRS). At the group level, we found that probe items were associated with longer reaction times and greater activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex than irrelevant items in the guilty group, but not in the innocent group. These findings provided evidence on neural correlates of recognition during a CIT. Finally, on the basis of the activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex, the correct classification of guilty versus innocent participants was approximately 75 % and the combination of fNIRS and reaction time measures yielded a better classification rate of 83.3 %. These findings illustrate the feasibility and promise of using fNIRS to detect concealed information. PMID:24514911

  14. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  15. Prediction of chicken quality attributes by near infrared spectroscopy.

    PubMed

    Barbin, Douglas Fernandes; Kaminishikawahara, Cintia Midori; Soares, Adriana Lourenco; Mizubuti, Ivone Yurika; Grespan, Moises; Shimokomaki, Massami; Hirooka, Elisa Yoko

    2015-02-01

    In the present study, near-infrared (NIR) reflectance was tested as a potential technique to predict quality attributes of chicken breast (Pectoralis major). Spectra in the wavelengths between 400 and 2500nm were analysed using principal component analysis (PCA) and quality attributes were predicted using partial least-squares regression (PLSR). PCA performed on NIR dataset revealed the influence of muscle reflectance (L(∗)) influencing the spectra. PCA was not successful to completely discriminate between pale, soft and exudative (PSE) and pale-only muscles. High-quality PLSR were obtained for L(∗) and pH models predicted individually (R(2)CV of 0.91 and 0.81, and SECV of 1.99 and 0.07, respectively). Water-holding capacity was the most challenging attribute to determine (R(2)CV of 0.70 and SECV of 2.40%). Sample mincing and different spectra pre-treatments were not necessary to maximise the predictive performance of models. Results suggest that NIR spectroscopy can become useful tool for quality assessment of chicken meat. PMID:25172747

  16. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  17. Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Alford, K.; Wickramasinghe, Y.

    2000-05-01

    Near infrared spectroscopy (NIRS) instruments that rely on phase sensitive detection suffer from what is called "phase-amplitude crosstalk," i.e., the phase measured is dependent on the average light intensity entering the detector. Changes in detector rise time with input light intensity is the accepted explanation of this phenomenon. It is concluded here that an additional simple mechanism can cause phase-amplitude errors, particularly if the ratio of the ac component of the detected signal to the dc component is low. It is shown that the form of the phase distortion encountered during the development of a new phase sensitive NIR instrument can be modeled by assuming the presence of a synchronous interfering signal, due to rf coupling, at the detector output. This modeling allows a required margin between the detected signal of interest, i.e., the signal from the tissue and the interfering signal to be set in order to achieve a measured phase accuracy necessary to derive sufficiently accurate clinical parameters.

  18. Application of functional near-infrared spectroscopy in psychiatry.

    PubMed

    Ehlis, Ann-Christine; Schneider, Sabrina; Dresler, Thomas; Fallgatter, Andreas J

    2014-01-15

    Two decades ago, the introduction of functional near-infrared spectroscopy (fNIRS) into the field of neuroscience created new opportunities for investigating neural processes within the human cerebral cortex. Since then, fNIRS has been increasingly used to conduct functional activation studies in different neuropsychiatric disorders, most prominently schizophrenic illnesses, affective disorders and developmental syndromes, such as attention-deficit/hyperactivity disorder as well as normal and pathological aging. This review article provides a comprehensive overview of state of the art fNIRS research in psychiatry covering a wide range of applications, including studies on the phenomenological characterization of psychiatric disorders, descriptions of life-time developmental aspects, treatment effects, and genetic influences on neuroimaging data. Finally, methodological shortcomings as well as current research perspectives and promising future applications of fNIRS in psychiatry are discussed. We conclude that fNIRS is a valid addition to the range of neuroscientific methods available to assess neural mechanisms underlying neuropsychiatric disorders. Future research should particularly focus on expanding the presently used activation paradigms and cortical regions of interest, while additionally fostering technical and methodological advances particularly concerning the identification and removal of extracranial influences on fNIRS data as well as systematic artifact correction. Eventually, fNIRS might be a useful tool in practical psychiatric settings involving both diagnostics and the complementary treatment of psychological disorders using, for example, neurofeedback applications. PMID:23578578

  19. Near-infrared spectroscopy for rapid classification of fruit spirits.

    PubMed

    Jakubíková, M; Sádecká, J; Kleinová, A; Májek, P

    2016-06-01

    Multivariate analysis combined with near-infrared (NIR) spectral analysis was evaluated to classify fruit spirits. A total of 67 fruit spirits (12 apple, 18 apricot, 19 pear and 18 plum spirits) were analyzed. NIR spectra were collected in the wavenumber range of 4000-10,000 cm(-1). Linear discriminant analysis based on principal component analysis (PCA-LDA) and general discriminant analysis (GDA) based directly on NIR spectral data were used to classify the samples. The prediction performance of models in different wavenumber ranges was also investigated. The best PCA-LDA and GDA models gave a 100 % classification of spirits of the four fruit kinds in the wavenumber range from 5500 to 6050 cm(-1) corresponding to either the C-H stretch of the first overtones of CH3 and CH2 groups, or to compounds containing O-H aromatic groups. The results demonstrated that NIR spectroscopy could be used as a rapid method for classification of fruit spirits. PMID:27478236

  20. Infrared spectroscopy and the ferromagnetic transition in Gd.

    PubMed

    Obied, L H; Crandles, D A; Antonov, V N; Bose, S K; Jepsen, O

    2013-01-23

    The low energy electronic structure of Gd has been investigated experimentally by infrared reflectance spectroscopy, and theoretically from first principles, using the fully relativistic Dirac linear-muffin-tin-orbital (LMTO) method in the local spin density approximation (LSDA) as well as within the LSDA + U approach. The reflectance of a Gd single crystal was measured with the electric field in the plane perpendicular to the c-axis for temperatures between 50 K and slightly above the Curie temperature (293 K) in the frequency range between 100 and 12 000 cm(-1) (0.013-1.5 eV). As Gd enters the ferromagnetic state, the dissipative part of the optical conductivity exhibits interesting spectral weight transfers over the whole spectral range measured. It is shown that the ab initio calculations reproduce well the experimental spectra for the ferromagnetic state and allow one to explain the microscopic origin of the optical response of Gd in terms of interband transitions. PMID:23221360

  1. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  2. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz.

    PubMed

    Zolot, A M; Giorgetta, F R; Baumann, E; Nicholson, J W; Swann, W C; Coddington, I; Newbury, N R

    2012-02-15

    We demonstrate a dual-comb spectrometer using stabilized frequency combs spanning 177 to 220 THz (1360 to 1690 nm) in the near infrared. Comb-tooth-resolved measurements of amplitude and phase generate over 4×10(5) individually resolved spectral elements at 100 MHz point spacing and kilohertz-level resolution and accuracy. The signal-to-noise ratio is 100 to 3000 per comb tooth. Doppler-broadened phase and amplitude spectra of CO(2), CH(4), C(2)H(2), and H(2)O in a 30 m multipass cell agree with established spectral parameters, achieving high-resolution measurements with optical bandwidth generally associated with blackbody sources. PMID:22344132

  3. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    PubMed

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  4. Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Li, Z. S.; Li, B.; Alwahabi, Z. T.; Aldén, M.

    2010-10-01

    Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He-Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ˜2×10-7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.

  5. Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs.

    PubMed

    Visser, A J W G; Laptenok, S P; Visser, N V; van Hoek, A; Birch, D J S; Brochon, J-C; Borst, J W

    2010-01-01

    Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET-FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive. PMID:19693494

  6. Mineralogical Mapping of the Banded Iron Formations using Fourier Transform Infra-Red (FTIR) Spectroscopy and micro-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McKeeby, B. E.; Schoonen, M. A.; Glotch, T. D.; Ohmoto, H.

    2013-12-01

    Banded Iron Formations (BIFs) consist of thin alternating layers of iron-poor silica and iron-bearing phylosilicates, iron oxides, and carbonates and/or sulfides. BIFs are common in the Precambrian. Although BIFs have been the subject of numerous studies, the mechanism and environments of formation remains poorly understood. It has been hotly debated whether BIFs formed by microbes in Fe2+-rich oceans under a reducing atmosphere, or by reactions between locally discharged submarine hydrothermal fluids and O2-rich deep ocean water. The debates have continued mostly because of the lack of detailed studies on the paragenesis of minerals in BIFs to determine which minerals are primary precipitates, and which are diagenetic and metamorphic products. The purpose of this study is to explore the applications of FTIR spectroscopy and micro-Raman spectroscopy in micro-scale paragenetic studies of BIF samples. FTIR and Raman are vibrational spectroscopy techniques that provide insight into the chemical bonding within a compound. With these techniques it is possible to resolve the iron oxide, carbonate, and clay mineralogy within BIFs, which is difficult with techniques that rely on elemental analysis, such as TEM-EDAX. Samples used in this study are thin sections of the 2.7 Ga BIFs from Temagami in the Abitibi green stone belt, Ontario, Canada. FTIR analyses were conducted using a Nicolet iN10MX Micro-Imaging FTIR Spectrometer. This instrument is capable of collecting hyperspectral infrared images with a pixel size of 25 microns covering the range from 7000 to 715 cm-1. In addition, we collected point spectra measuring 50X50 microns over a spectral range from 4000 to 400 cm-1. These point spectra were used to distinguish among different iron minerals in the thin sections. Using the hyperspectral data, we created composite false color Images to show mineral variation across the samples. The spectra were modeled using a digital spectral library. After modeling and examination

  7. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a

  8. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  9. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  10. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2004-01-01

    Last year we submitted and had accepted a paper entitled "The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068," by Spinoglio, L., Malkan, M., Smith. HA, Gonzalez-Alfonso, E., and Fischer, J. This analysis was based on the SWAS Monte Carlo code modeling of the OH lines in galaxies observed by ISO. Since that meeting last spring considerable effort has been put into improving the Monte Carlo code. A group of European astronomers, including Prof. Eduardo Gonzalez-Alfonso, had been performing Monte Carlo modeling of other molecules seen in ISO galaxies. We used portions of this grant to bring Prof. Gonzalez-Alfonso to Cambridge for an intensive working visit. A second major paper on the ISO IR spectroscopy of galaxies, "The Far Infrared Spectrum of Arp 220," Gonzalez-Alfonso, E., Smith. H., Fischer, J., and Cernicharo, J., is in press. Spitzer science development was the major component of this past year;s research. This program supported the development of five Early Release Objects for Spitzer observations on which Dr. Smith was Principal Investigator or Co-Investigator, and another five proposals for GO time. The early release program is designed to rapidly present to the public and the scientific community some exciting results from Spitzer in the first months of its operation. The Spitzer instrument and science teams submitted proposals for ERO objects, and a competitive selection process narrowed these down to a small group with exciting science and realistic observational parameters. This grant supported Dr. Smith's participation in the ERO process, including developing science goals, identifying key objects for observation, and developing the detailed AOR (observing formulae) to be use by the instruments for mapping, integrating, etc.). During this year Dr. Smith worked on writing up and publishing these early results. The attached bibliography includes six of Dr. Smith's articles. During this past year Dr. Smith also led or

  11. Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bezard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K.; Simon-Miller, A. A.; Irwin, P.; Brasunas, J. C.; Pearl, J. C.; Smith, M. D.; Orton, G. S.; Gierasch, P. J.; Spilker, L. J.; Carlson, R. C.; Mamoutkine, A. A.; Calcutt, S. B.; Read, P. L.; Taylor, F. W.; Fouchet, T.; Parrish, P.

    2004-01-01

    The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

  12. Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3).

    PubMed Central

    Goldbeck, R A; Dawes, T D; Einarsdóttir, O; Woodruff, W H; Kliger, D S

    1991-01-01

    Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond. PMID:1653049

  13. Resolved Sideband Spectroscopy and Cooling of Strontium in a 532-nm Optical Lattice

    NASA Astrophysics Data System (ADS)

    Aman, James; Hill, Joshua; Killian, T. C.

    2016-05-01

    Resolved sideband cooling is a powerful and well established technique for driving ultracold atoms in optical lattices to the motional ground state of individual lattice sites. Here we present spectroscopy of the narrow 5s21S0 --> 5 s 5 p3P1 transition for neutral strontium-84 in a 532nm optical lattice. Resolved red- and blue-detuned sidebands are observed corresponding to changes in the motional state in the lattice sites. Driving the red sideband, we demonstrate cooling into the ground state, which increases the initial phase-space density before forced evaporative cooling. This is a promising technique for improving the production of strontium quantum degenerate gases. Research supported by the Robert A, Welch Foundation under Grant No. C-1844.

  14. Capturing molecular structural dynamics by 100 ps time-resolved X-ray absorption spectroscopy.

    PubMed

    Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Tomita, Ayana; Chollet, Matthieu; Ichikawa, Hirohiko; Fujii, Hiroshi; Adachi, Shin Ichi; Koshihara, Shin Ya

    2009-01-01

    An experimental set-up for time-resolved X-ray absorption spectroscopy with 100 ps time resolution at beamline NW14A at the Photon Factory Advanced Ring is presented. The X-ray positional active feedback to crystals in a monochromator combined with a figure-of-merit scan of the laser beam position has been utilized as an essential tool to stabilize the spatial overlap of the X-ray and laser beams at the sample position. As a typical example, a time-resolved XAFS measurement of a photo-induced spin crossover reaction of the tris(1,10-phenanthrorine)iron(II) complex in water is presented. PMID:19096182

  15. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  16. Astronomical Spectroscopy: Calibration Sources for the Near Infrared

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Aldenius, Maria; Nave, Gillian; Sansonetti, Craig J.; Ralchenko, Yuri

    2009-05-01

    The European Southern Observatory (ESO) operates a multitude of telescopes and instruments at its La Silla Paranal Observatory in Chile. The most powerful ones are the four 8-m telescopes of the Very Large Telescope (VLT). ESO is currently studying an Extremely Large Telescope (ELT) with a diameter of the primary mirror of 42 m. This telescope will make use of various techniques of adaptive optics (AO) to counter the perturbing effect of Earth's atmosphere. Due to the wavelength dependent performance of AO the European ELT (E-ELT) will be most powerful in the near-infrared (IR) domain. A collaboration of ESO and the US Institute for Standards and Technology (NIST) has successfully established wavelength standards in the emission spectrum of Th-Ar hollow cathode lamps for high resolution spectroscopy. This has been a major advancement for near-IR astronomy, which has traditionally relied on atmospheric features for wavelength calibration. ESO and NIST report on joint efforts to identify and establish the best sources for wavelength calibration for the 2nd generation of VLT instrument and for the E-ELT. To this end we are studying the near-IR spectra of various elements. With the focus of astronomy moving toward IR wavelengths the astronomical community will have a need for a large amount of atomic and molecular data in order to perform the scientific analysis of their data. It will be essential that the long-standing and fruitful collaboration between astrophysics and the atomic and molecular physics community continues in the future.

  17. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chuang, Yung-Kun; Tsai, Chao-Yin; Chang, Yao-Chien A.; Yang, I.-Chang; Chang, Yung-Huei; Tai, Chu-Chun; Hou, Jiunn-Yan

    2013-05-01

    Carbohydrate contents have been demonstrated as indicators for flowering quality of Phalaenopsis plants. In this study, near infrared reflectance (NIR) spectroscopy was employed for quantitative analysis of carbohydrate contents like fructose, glucose, sucrose, and starch in Phalaenopsis. The modified partial least squares regression (MPLSR) method was adopted for spectra analyses of 176 grown plant samples (88 shoots and 88 roots), over the full wavelength range (FWR, 400 to 2498 nm). For fructose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.210% DW, SEV = 0.324% DW) in the wavelength ranges of 1400-1600, 1800-2000, and 2200-2300 nm. For glucose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.975, SEC = 0.196% DW, SEV = 0.264% DW) in the wavelength range of 1400-1600, 1800-2000, and 2100-2400 nm. For sucrose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.237% DW, SEV = 0.322% DW) in the wavelength range of 1300-1400, 1500-1800, 2000-2100, and 2200-2300 nm. For starch concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.873, SEC = 0.697% DW, SEV = 0.774% DW) in the wavelength ranges of 500-700, 1200-1300, 1700-1800, and 2200-2300 nm. This study successfully developed the calibration models for inspecting concentrations of carbohydrates to predict the flowering quality in different cultivation environments of Phalaenopsis. The specific wavelengths can be used to predict the quality of Phalaenopsis flowers and thus to adjust cultivation managements.

  18. TATP and TNT detection by mid-infrared transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Herbst, Johannes; Hildenbrand, Jürgen; Wöllenstein, Jürgen; Lambrecht, Armin

    2009-05-01

    Sensitive and fast detection of explosives remains a challenge in many threat scenarios. Fraunhofer IPM works on two different detection methods using mid-infrared absorption spectroscopy in combination with quantum cascade lasers (QCL). 1. stand-off detection for a spatial distance of several meters and 2. contactless extractive sampling for short distance applications. The extractive method is based on a hollow fiber that works as gas cell and optical waveguide for the QCL light. The samples are membranes contaminated with the explosives and real background. The low vapor pressure of TNT requires a thermal desorbtion to introduce gaseous TNT and TATP into the heated fiber. The advantage of the hollow fiber setup is the resulting small sample volume. This enables a fast gas exchange rate and fast detection in the second range. The presented measurement setup achieves a detection limit of around 58 ng TNT and 26 ng TATP for 1 m hollow fiber. TATP - an explosive with a very high vapor pressure in comparison to TNT or other explosives - shows potential for an adequate concentration in gas phase under normal ambient conditions and thus the possibility of an explosive detection using open path absorption of TATP at 8 μm wavelength. In order to lower the cross sensitivities or interferents with substances with an absorption in the wavelength range of the TATP absorption the probe volume is checked synchronously by a second QCL emitting beside the target absorption wavelength. In laboratory measurements a detection limit of 5 ppm*m TATP are achieved.

  19. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  20. MOS spectroscopy with the JWST Near-Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Beck, Tracy; Gilbert, Karoline; Pontoppidan, Klaus Martin; Curtis, Gary; Shyrokov, Alexander

    2015-08-01

    The James Webb Space Telescope's Near-Infrared Spectrograph (NIRSpec) will feature astronomy’s first space-based, multi-object spectroscopic (MOS) capability enabled by the instrument’s micro-shutter array (MSA). The MSA is a four-quadrant fixed grid of nearly 250,000 tiny shutters that can be configured into slits on multiple astronomical targets in a field. In MOS mode, NIRSpec can obtain spectra of more than 100 targets simultaneously in one of three spectral bands (1.0 - 1.8 μm, 1.7 - 3.0 μm, and 2.9 - 5.0 μm) at medium (R~1000) or high resolution (R~2700) with the gratings, or at lower resolution (R~100, 0.6 - 5.0 μm) with the PRISM. The NIRSpec team and software developers at the Space Telescope Science Institute (STScI) have developed an MSA Planning Tool (MPT) to facilitate the complex observation planning process for a variety of observing strategies. The purpose of the tool is to find optimal pointings on the sky where many sources (or many high-valued sources) can be observed at a given pointing, or through a set of telescope dithers, and to design the associated MSA configurations at each position. The MPT is available to the astronomical community as part of the Astronomer’s Proposal Tool (APT), an integrated software package developed by STScI for the preparation of observing proposals. We will summarize the operational concept for MOS spectroscopy with the instrument, describe the MSA Planning Tool and its algorithms, and highlight recent developments that extend the tool’s applicability to diverse science cases.

  1. Near-infrared Spectroscopy of EX Lupi in Outburst

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Goto, M.; Regály, Zs.; Dullemond, C. P.; Henning, Th.; Juhász, A.; Sicilia-Aguilar, A.; van den Ancker, M.

    2011-07-01

    EX Lup is the prototype of the EXor class of young eruptive stars: objects showing repetitive brightenings due to increased accretion from the circumstellar disk to the star. In this paper, we report on medium-resolution near-infrared spectroscopy of EX Lup taken during its extreme outburst in 2008, as well as numerical modeling with the aim of determining the physical conditions around the star. We detect emission lines from atomic hydrogen, helium, and metals, as well as first overtone bandhead emission from carbon monoxide. Our results indicate that the emission lines are originating from gas located in a dust-free region within ≈0.2 AU of the star. The profile of the CO bandhead indicates that the CO gas has a temperature of 2500 K and is located in the inner edge of the disk or in the outer parts of funnel flows. The atomic metals are probably colocated with the CO. Some metallic lines are fluorescently excited, suggesting direct exposure to ultraviolet photons. The Brackett series indicates emission from hot (10,000 K) and optically thin gas. The hydrogen lines display a strong spectro-astrometric signal, suggesting that the hydrogen emission is probably not coming from an equatorial boundary layer; a funnel flow or disk wind origin is more likely. This picture is broadly consistent with the standard magnetospheric accretion model usually assumed for normally accreting T Tauri stars. Our results also set constraints on the eruption mechanism, supporting a model where material piles up around the corotation radius and episodically falls onto the star.

  2. Challenging near infrared spectroscopy discriminating ability for counterfeit pharmaceuticals detection.

    PubMed

    Storme-Paris, I; Rebiere, H; Matoga, M; Civade, C; Bonnet, P-A; Tissier, M H; Chaminade, P

    2010-01-25

    This study was initiated by the laboratories and control department of the French Health Products Safety Agency (AFSSAPS) as part of the fight against the public health problem of rising counterfeit and imitation medicines. To test the discriminating ability of Near InfraRed Spectroscopy (NIRS), worse cases scenarios were first considered for the discrimination of various pharmaceutical final products containing the same Active Pharmaceutical Ingredient (API) with different excipients, such as generics of proprietary medicinal products (PMP). Two generic databases were explored: low active strength hard capsules of Fluoxetine and high strength tablets of Ciprofloxacin. Then 4 other cases involving suspicious samples, counterfeits and imitations products were treated. In all these cases, spectral differences between samples were studied, giving access to API or excipient contents information, and eventually allowing manufacturing site identification. A chemometric background is developed to explain the optimisation methodology, consisting in the choices of appropriate pretreatments, algorithms for data exploratory analyses (unsupervised Principal Component Analysis), and data classification (supervised cluster analysis, and Soft Independent Modelling of Class Analogy). Results demonstrate the high performance of NIRS, highlighting slight differences in formulations, such as 2.5% (w/w) in API strength, 1.0% (w/w) in excipient and even coating variations (<1%, w/w) with identical contents, approaching the theoretical limits of NIRS sensitivity. All the different generic formulations were correctly discriminated and foreign PMP, constituted of formulations slightly different from the calibration ones, were also all discriminated. This publication addresses the ability of NIRS to detect counterfeits and imitations and presents the NIRS as an ideal tool to master the global threat of counterfeit drugs. PMID:20103090

  3. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  4. Near infrared spectroscopy monitoring in the pediatric cardiac catheterization laboratory.

    PubMed

    Tanidir, Ibrahim Cansaran; Ozturk, Erkut; Ozyilmaz, Isa; Saygi, Murat; Kiplapinar, Neslihan; Haydin, Sertac; Guzeltas, Alper; Odemis, Ender

    2014-10-01

    Near-infrared spectroscopy (NIRS) is a noninvasive method used to evaluate tissue oxygenation. We evaluated the relationship between cerebral and renal NIRS parameters during transcatheter intervention and adverse events in the catheterization room. Between January 1 and May 31, 2012, 123 of 163 pediatric patients undergoing cardiac catheterization were followed by NIRS. All were monitored by electrocardiography, noninvasive blood pressure measurement, pulse oxymetry, initial and final blood lactate level measurement. The number of interventional procedures was 73 (59%). During the procedures, 39 patients experienced a total of 41 adverse events: 18 (19.5%) had desaturation, 10 (8.1%) arrhythmia, three (2.4%) had respiratory difficulty, six (4.8%) had a situation calling for cardiopulmonary resuscitation, three (2.4%) had anemia necessitating transfusion, and one (0.8%) had a cyanotic spell. Cranial NIRS values worsened in 12 (9.8%) and renal measurements worsened in 13 (12.5%) patients. The sensitivity and specificity of a 9% impairment of cranial values were 90 and 61%, respectively, while the corresponding calculations for a 21% fall in renal measurements were 54% sensitivity and 90% specificity. When arrhythmia developed, NIRS values fell simultaneously, while the development of a desaturation problem was heralded by NIRS falling 10-15 s earlier than changes in pulse oxymetry; on improving saturation, NIRS returned to earlier values 10-15 s before pulse oxymetry readings. NIRS monitoring may provide an early warning with regard to complications likely to develop during a procedure. A fall of 9% in cranial NIRS values, or of 21% in renal measurements, should raise clinician awareness. PMID:24404951

  5. [Determination of adulteration in honey using near-infrared spectroscopy].

    PubMed

    Chen, Lan-Zhen; Zhao, Jing; Ye, Zhi-Hua; Zhong, Yan-Ping

    2008-11-01

    The objective of the present research is to study the potential of using Fourier transform near-infrared spectroscopy (FT-NIR) in conjunction with discriminant partial least squares (DPLS) chemometric techniques for the discrimination of honey authenticity. First, seventy one commercial honey samples from Chinese market were analyzed to detect the levels of honey adulteration by stable carbon isotope ratio and the chemical result showed that the samples include unadulterated (n = 27) and adulterated (n = 44) products. The samples were scanned in the spectral region between 4 000 and 11 000 cm(-1) by FT-NIR spectrometer with an optic fiber of 2 mm path-length and an InGaAs detector and then divided randomly five times into two sets, namely calibration sets and validation sets, respectively. Five kinds of mathematic models of honey samples were established for classification of honeys as authentic or adulterated by using DPLS. Different spectra pretreatment methods, spectral range and different principal component factors were selected to optimize the calibration models. The calibration models were successfully validated with exterior cross-validation methods. Through comparison analysis of the results, the overall corrected identification rate of authentic and adulterated honey samples in five calibration models were 91.49%, 94.68%, 92.98%, 93.86% and 94.87%, respectively. The correct classification rate of the validation samples was 93.75%, 89.58%, 89.29%, 92.31% and 86.96% from model one to model five, respectively and 100% of adulterated honey samples were correctly identified and classified in validation models 2, 3 and 4. The results demonstrated that FT-NIR together with DPLS could be used as a rapid and cost-efficient screening tool for discrimination of commercial honey adulteration, and the analytical technique would be significant to Chinese honey quality supervision. PMID:19271491

  6. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  7. Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

    NASA Astrophysics Data System (ADS)

    Wang, G.; Palleau, E.; Amand, T.; Tongay, S.; Marie, X.; Urbaszek, B.

    2015-03-01

    We investigate valley exciton dynamics in MoSe2 monolayers in polarization- and time-resolved photoluminescence (PL) spectroscopy at 4 K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≤5%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the exciton polarization as a function of excitation laser energy and power is monitored in PL excitation experiments. Fast PL emission times are recorded for both the neutral exciton of ≤3 ps and for the charged exciton (trion) of 12 ps.

  8. A CAMAC system controlled by an IBM AT computer for time-resolved spectroscopy

    SciTech Connect

    Lindquist, L.O.; Moss, C.E.

    1987-01-01

    An IBM AT computer interfaced to a small CAMAC system offers considerable power without the complexity and expense of a large general-purpose system. Our system for time-resolved spectroscopy features menu-driven FORTRAN-based software; high-resolution and high-speed (8K channels, 5-..mu..s fixed dead time) ADCs; segmentable histogram memories (24-bit counts) with large memory space for many histogram segments; independently variable separate histogram dwell times; remote control via a CAMAC serial highway; and ground isolation between the data acquisition equipment and control computer by means of fiber optics.

  9. Application of time-resolved resonance Raman spectroscopy to intramolecular electron transfer

    SciTech Connect

    Schoonover, J.R.; Strouse, G.F.; Chen, P.; Bates, D.; Meyer, T.J. )

    1993-06-09

    Time-resolved resonance Raman spectroscopy has been applied for the first time to the study of intramolecular electron transfer in a chromophore-quencher complex, based on a metal-to-ligand charge-transfer (MLCT) excited state. These measurements allow for (1) the identification of redox sites that are reached following excitation and (2) the inferring of structural information in short-lived intermediates. This technique is a more sensitive probe than transient absorption as shown by its application to the redox-separated complex shown below involving a pyridinium acceptor and a phenothiazine donor.

  10. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed. PMID:24856723

  11. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    SciTech Connect

    Milosavljevic, Vladimir; MacGearailt, Niall; Daniels, Stephen; Turner, Miles M.; Cullen, P. J.

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  12. Size Effects in Angle-Resolved Photoelectron Spectroscopy of Free Rare-Gas Clusters

    SciTech Connect

    Rolles, D.; Zhang, H.; Pesic, Z.D.; Bilodeau, R.C.; Wills, A.; Kukk, E.; Rude, B.S.; Ackerman, G.D.; Bozek, J.D.; Muino, R.D.; de Abajo, F.J.G.; Berrah, N.; /Western Michigan U. /LBNL, ALS /Turku U. /SLAC /Basque U., San Sebastian /Madrid, Inst. Optica

    2007-05-23

    The photoionization of free Xe clusters is investigated by angle-resolved time-of-flight photoelectron spectroscopy. The measurements probe the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. While the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the free atoms, distinct differences in the angular distribution point at cluster-size-dependent effects. Multiple scattering calculations trace their origin to elastic photoelectron scattering.

  13. Comparison of organic phantom recipes and characterization by time-resolved diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Quarto, G.; Pifferi, A.; Bargigia, I.; Farina, A.; Cubeddu, R.; Taroni, P.

    2013-06-01

    Three recipes for tissue constituent-equivalent phantoms of water and lipids are presented. Nature phantoms are made using no emulsifying agent, but just a professional disperser, instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30 to 70 percent by mass are proposed and tested. Optical characterization by time-resolved spectroscopy was performed in terms of optical properties, homogeneity, reproducibility and composition retrieval.

  14. A CAMAC system controlled by an IBM AT computer for time-resolved spectroscopy

    SciTech Connect

    Lindquist, L.O.; Moss, C.E.

    1987-08-01

    An IBM AT computer interfaced to a small CAMAC system offers considerable power without the complexity and expense of a large general-purpose system. The authors' system for time-resolved spectroscopy features menu-driven FORTRAN-based software; high-resolution and high-speed 98K channels, 5-..mu..s fixed dead time) ADCs; segmentable histogram memories (24-bit counts) with large memory space for many histogram segments; independently variable separate histogram dwell times; remote control via a CAMAC serial highway; and ground isolation between the data acquisition equipment and control computer by means of fiber optics.

  15. Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Achatz, P.; Nicolaou, A.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Bustarret, E.

    2015-07-01

    The electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Δ (Γ X ) and Σ (Γ K ) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k . p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers.

  16. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  17. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    SciTech Connect

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  18. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  19. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  20. Time-Resolved Vibrational and Electronic Spectroscopy in Shocked Ammonium Perchlorate Single Crystals

    NASA Astrophysics Data System (ADS)

    Gruzdkov, Yuri; Winey, Michael; Feng, Ruqiang

    1997-07-01

    Experimental methods to obtain time-resolved Raman and absorption spectroscopy data on shocked ammonium perchlorate (AP) single crystals were developed. These included: (a) target designs for thin sample shock wave reverberation experiments; (b) techniques to perform Raman measurements with non-transparent flyers; and (c) adaptation of a high-velocity, 20 mm powder gun for optical spectroscopy. Good quality Raman and absorption spectra, with 50 ns resolution, have been obtained for shock compression along the [210] and [001] directions. Results for peak pressures up to 18 GPa and calculated temperatures up to 600 K are presented. Pressure/temperature-induced frequency hardening and broadening of the different AP Raman modes is observed. Evidence for shock-induced chemical decomposition is discussed.

  1. Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahnke, H.; Kleine, D.; Hering, P.; Mürtz, M.

    2001-06-01

    We report on spectroscopic real-time analysis of ethane traces in exhaled human breath. Ethane is considered the most important volatile marker of free-radical induced lipid peroxidation and cell damage in the human body. Our measurements were carried out by means of mid-infrared cavity leak-out spectroscopy in the 3 μm region, a cw variant of cavity ring-down spectroscopy. The spectrometer is based on a CO overtone laser with tunable microwave sidebands. The resulting system proved to be an unique tool with high sensitivity and selectivity for rapid and precise breath testing. With a 5 s integration time, we achieved a detection limit on the order of 100 parts per trillion ethane in human breath. Thus, sample preconcentration is unnecessary. Time-resolved monitoring of the decaying ethane fraction in breath after smoking a cigarette is demonstrated.

  2. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  3. Fourier-Transform Infrared Spectroscopy Analysis of Modified Cotton Trash Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a previous study, Fourier transform infrared spectroscopy (FTIR) was utilized in identifying different types of botanical cotton trash as each was subjected to simulations of ginning and textile processing. Changes in the infrared spectra that occurred after heat treatment indicated that the nee...

  4. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I–VI. The MSRRS sensor is commercially available under the brand name biozoom.

  5. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  6. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    SciTech Connect

    Bromberger, H. Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  8. Time resolved infrared absorption studies of geminate recombination and vibrational relaxation in OClO photochemistry

    NASA Astrophysics Data System (ADS)

    Bolinger, Joshua C.; Hayes, Sophia C.; Reid, Philip J.

    2004-09-01

    Ultrafast time-resolved infrared absorption studies of aqueous chlorine dioxide (OClO) photochemistry are reported. Following photoexcitation at 401 nm, the evolution in optical density at frequencies between 1000 to 1100 cm-1 is monitored to investigate vibrational energy deposition and relaxation along the asymmetric-stretch coordinate following the reformation of ground-state OClO via geminate recombination of the primary photofragments. The measured kinetics are compared to two proposed models for the vibrational-relaxation dynamics along the asymmetric-stretch coordinate. This comparison demonstrates that the perturbation model derived from molecular dynamics studies is capable of qualitatively reproducing the observed kinetics, where the collisional model employed in previous UV-pump, visible probe experiments demonstrates poor agreement with experiment. The ability of the perturbation model to reproduce the optical-density evolution observed in these studies demonstrates that for aqueous OClO, frequency dependence of the solvent-solute coupling is important in defining the level-dependent vibrational relaxation rates along the asymmetric-stretch coordinate. The absence of optical-density evolution corresponding to the population of higher vibrational levels (n>8) along the asymmetric-stretch coordinate suggests that following geminate recombination, energy is initially deposited into a local Cl-O stretch, with the relaxation of vibrational energy from this coordinate providing for delayed vibrational excitation of the asymmetric- and symmetric-stretch coordinates relative to geminate recombination, as previously observed.

  9. The study of many body physics in high temperature superconductors using angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Angle Resolved Photoemission Spectroscopy (ARPES) is an experimental technique that has greatly contributed to our understanding of the electronic structure of the High Temperature Superconductors (HTSC). Over the last few years, it has provided vital information about the electronic structure, the Fermi Surface, gap anisotropy and it's temperature dependence, and a new phenomena known as the pseudogap. In this thesis we apply Angle Resolved Photoemission Spectroscopy to the study of electronic interactions in High Temperature Superconductors. The experimental portion of this thesis comprises three main areas, (i) participation in the construction of a new undulator beamline at the Synchrotron Radiation Center-Madison, Wisconsin, (ii) construction of a new ARPES system and (iii) collection and analysis of the data. The experimental results include precise determination of the Fermi Surface in BISCO 2212 and 2201, first observation of intrinsic ARPES lineshape at the nodal point of the Fermi Surface in BISCO 2212, detailed quantitative study of many body interactions along the nodal direction in normal and superconductive state, precise doping dependence analysis of the lineshape at the antinode.

  10. Differentiation of microstructures of sugar foams by means of spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen Do Trong, Nghia; Watte, Rodrigo; Aernouts, Ben; Verhoelst, Eva; Tsuta, Mizuki; Jakubczyk, Ewa; Gondek, Ewa; Verboven, Pieter; Nicolaï, Bart M.; Saeys, Wouter

    2012-04-01

    Food quality is critically determined by its microstructure and composition. These properties could be quantified noninvasively by means of optical properties (absorption and reduced scattering coefficients) of the food samples. In this research, a spatially-resolved spectroscopy setup based on a fiber-optic probe was developed for acquiring spatiallyresolved diffuse reflectance of three sugar foams with different designed microstructures in the range 500 - 1000 nm. A model for light propagation in turbid media based on diffusion approximation for solving the radiative transport equation was employed to derive optical properties (absorption and reduced scattering coefficients) of these foams. The accuracy of this light propagation model was validated on four liquid phantoms with known optical properties. The obtained results indicated that the optical properties estimation was successfully validated on these liquid phantoms. The estimated reduced scattering coefficients μs' of the foams clearly showed the effect of foaming time on their microstructures. The acquired absorption coefficients μa were also in good agreement with the designed ingredients of these sugar foams. The research results clearly support the potential of spatially-resolved spectroscopy for nondestructive food quality inspection and process monitoring in the food industry.

  11. Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy

    NASA Astrophysics Data System (ADS)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Jones, Gareth R.; Shaw, D. A.; Rommerts, Fokko F.

    1994-08-01

    The Confocal Synchrotron Radiation Microscope at Daresbury was used in a study of the transport and distribution of the steroid Coumestrol in single Leydig cells. The broad spectrum of synchrotron radiation in combination with UV compatible microscope optics affords the extension of confocal microscopy from the visible to the UV region down to about 200 nm. Consequently fluorescent molecules with absorption bands in the UV can be imaged. In addition the pulsed nature of the light source allows us to perform time-resolved fluorescence spectroscopy experiments on microscopic volumes. Coumestrol is a naturally fluorescing plant steroid exhibiting estrogenic activity. In physiological environments it has an absorption peak in the UV at 340 nm and it emits around 440 nm. First results indicate that the Coumestrol transport through the cell membrane is diffusion limited. The weak fluorescence observed in the nuclei of the Leydig cells may be due to fluorescence quenching arising from the interaction of the Coumesterol with nuclear components. However, micro-volume time-resolved fluorescence spectroscopy experiments on cell nuclei have revealed the same decay behavior for Coumesterol in both the cytoplasm and nucleus of the cells.

  12. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  13. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  14. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  15. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    NASA Astrophysics Data System (ADS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a "fast" electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a "fast" mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.

  16. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    SciTech Connect

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-15

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.

  17. Using Visible/Near-Infrared Spectroscopy to Identify Cryptotephra Layers

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Thomson, B. J.; Fisher, E.

    2014-12-01

    Continually accumulating marine sediments incorporate tephra layers within their depositional record that can be linked to individual explosive volcanic events. These layers can range from several meters in thickness, to discrete layers invisible to the naked eye (cryptotephra). Identification of cryptotephra layers is paramount for complete characterization of the eruptive record of a volcanic center, not just the largest eruptive events. However, cryptotephra recognition is hampered by their small volume in most drill cores. A non-destructive method to distinguish tephra layers, particularly those of a high silica nature which may not be readily detectable with magnetic methods, is visible/near-infrared (Vis/NIR) spectroscopy. The Vis/NIR region of the light spectrum contains strong absorption features due to charge-transfer absorptions in transition metals (dominated by iron) and vibration and overtone bands due to hydroxyl and water (including near 1.4 μm, 1.9 μm, and 2.2-2.5 μm). The exact position and nature of these bands provide a means to identify various carbonate-, hydroxyl-, iron-, phyllosilicate-, sulfate-, and water-bearing minerals (e.g., Pieters and Englert, 1993). We produced a series of mixtures of hemipelagic sediment and tephra which were used to identify band positions and features which strongly correlate with the presence of tephra (see figure). The addition of ~15-20 wt.% tephra to a sediment results in recognizable spectral changes. The mixture data was used to create a MATLAB program to run unknown sample analyses through. We then used an ASD FieldSpec to collect Vis/NIR data (0.39-2.5 μm) on the upper 10 m of core collected during IODP 340 (U1396C) off the coast of Montserrat at 0.5 cm resolution and applied our tephra recognition program to this data. We identified 29 potential cryptotephra layers in the 10 m analyzed. Dissolution techniques are being completed to corroborate the spectral data.

  18. Terahertz and Infrared Laboratory Spectroscopy in Support of NASA Missions

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    2015-06-01

    The JPL molecular spectroscopy group supports NASA programs encompassing Astrophysics, Atmospheric Science, and Planetary Science. Ongoing activities include measurement and analysis of molecular spectra in the terahertz and infrared regions under conditions akin to the remote environments under study in NASA missions. This presentation will show the implementation of state-of-the-art spectroscopic techniques to fulfill spectroscopic demands of the Herschel Space Observatory and the Orbiting Carbon Observatory re-flight (OCO-2). A demonstrative example of the significantly improved frequency predictions for the H_3O^+ ground state high-J transitions will be given. This work was critical to Herschel's successful identification of highly excited metastable H_3O^+ Terahertz lines with J=K up to 11, one of the Herschel mission's many surprising observational results. The observation and subsequent laboratory work revealed that (1) these highly excited H_3O^+ lines had already been observed by European Southern Observatory's Atacama Pathfinder Experiment telescope a few years before but had been classified as U-lines; (2) the H_3O^+ number density was previously underestimated by an order of magnitude, due to ignorance of the population in the metastable states. A second example focuses on O_2, an important absorber from the microwave through the deep UV. This work is motivated by the challenge of developing an accurate and complete spectroscopic characterization of molecular oxygen across a wide frequency range for current and planned Earth atmospheric observations. Especially, OCO-2 utilizes the O_2 A-band for air mass calibration; extremely accurate O_2 molecular data, i.e., line positions with uncertainty on the order of MHz for the A-band around 13000 wn, are required to fulfill the demand of the proposed 0.25% precision for the carbon dioxide concentration retrievals. G. Pilbratt, J. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur et al. A&A, 518, L1 (2010

  19. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  20. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...