Science.gov

Sample records for resonance energy transfer-based

  1. Resonant energy transfer based biosensor for detection of multivalent proteins.

    SciTech Connect

    Song, X.; Swanson, Basil I.

    2001-01-01

    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  2. Fluorescence resonance energy transfer-based stoichiometry in living cells.

    PubMed Central

    Hoppe, Adam; Christensen, Kenneth; Swanson, Joel A

    2002-01-01

    Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks. PMID:12496132

  3. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis.

    PubMed

    Zhao, Shulin; Huang, Yong; Shi, Ming; Liu, Rongjun; Liu, Yi-Ming

    2010-03-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were approximately 10(-9) M for biogenic amines including dopamine and epinephrine and approximately 10(-8) M for biogenic thiols (e.g., glutathione and acetylcysteine), organic acids (i.e., ascorbic acid and uric acid), estrogens, and native amino acids. These were 10-1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser-induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids, including Lys, Ser, Ala, Glu, Trp, etc., were detected. The contents ranged from 3 to 31 amol/cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  4. Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2012-12-01

    This paper presents a method of information processing using biomolecular input signals and fluorescence resonance energy transfer (FRET) signaling constructed on a DNA scaffold. Logic operations are achieved by encoding molecular inputs into an arrangement of fluorescence dyes using simple DNA reactions and by evaluating a logic expression using local photonic signaling that is much faster than DNA reactions. Experimental results verify the operation of a complete set of Boolean logic functions (AND, OR, NOT) and combinational logic operations using a FRET-signal cascade.

  5. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes.

    PubMed

    Junager, Nina P L; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  6. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    PubMed

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. PMID:26302361

  7. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor.

    PubMed

    Shojaei, Taha Roodbar; Salleh, Mohamad Amran Mohd; Sijam, Kamaruzaman; Rahim, Raha Abdul; Mohsenifar, Afshin; Safarnejad, Reza; Tabatabaei, Meisam

    2016-12-01

    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program. PMID:27380305

  8. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications. PMID:22242647

  9. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays

    PubMed Central

    Ayoub, Mohammed Akli; Landomiel, Flavie; Gallay, Nathalie; Jégot, Gwenhael; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2015-01-01

    Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose–response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic

  10. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays.

    PubMed

    Ayoub, Mohammed Akli; Landomiel, Flavie; Gallay, Nathalie; Jégot, Gwenhael; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2015-01-01

    Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose-response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic

  11. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  12. Synthesis of a fluorescence resonance energy transfer-based probe containing a tricyclic nucleoside analog for single nucleotide polymorphism typing.

    PubMed

    Hayai, Aya; Maeda, Yusuke; Ueno, Yoshihito

    2016-08-01

    Here, we report the synthesis of a fluorescence resonance energy transfer (FRET)-based probe for single nucleotide polymorphism (SNP) typing. The probe contains a fluorescent tricyclic base, 8-amino-3-(2,3-dihydroxypropyl)imidazo[4',5':5,6]pyrido[2,3-d]pyrimidine, as a donor molecule and 7-diethylaminocoumarin-3-carboxylic acid as an acceptor molecule. FRET was observed between the donor and acceptor molecules on the probe. The identity of the target bases on DNA and RNA strands could be determined using the probe. PMID:27329795

  13. Resonance energy transfer based on shallow and deep energy levels of biotin-polyethylene glycol/polyamine stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Lü, W.; Tokuhiro, Y.; Umezu, I.; Sugimura, A.; Nagasaki, Y.

    2006-10-01

    Fluorescent resonance energy transfer between the poly(ethylene glycol)-b-poly(2-(N ,N-dimethylamino)ethyl methacrylate) stabilized CdS quantum dots (QDs) and texas-red streptavidin was observed. We propose a four-state model to explain photoluminescence (PL) process of CdS QDs and suggest that there are two emission processes originated from shallow and deep trap energy levels corresponding to fast and slow components of PL decay, respectively. Energy transfer mechanism was discussed based on Dexter theory [J. Chem. Phys. 21, 863 (1953)] and the proposed four-state model. It is found that the energy transfer efficiency of deep energy level is higher than that of shallow energy level. The calculated distance between QD and texas red with the parameters of shallow energy level is the same with that of deep level, which indicates that the proposed model is reasonable for explaining the PL dynamics of CdS QDs.

  14. Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe

    NASA Astrophysics Data System (ADS)

    Solomon, Metasebya; Guo, Kevin; Sudlow, Gail P.; Berezin, Mikhail Y.; Edwards, W. Barry; Achilefu, Samuel; Akers, Walter J.

    2011-06-01

    Cancer-related enzyme activity can be detected noninvasively using activatable fluorescent molecular probes. In contrast to ``always-on'' fluorescent molecular probes, activatable probes are relatively nonfluorescent at the time of administration due to intramolecular fluorescence resonance energy transfer (FRET). Enzyme-mediated hydrolysis of peptide linkers results in reduced FRET and increase of fluorescence yield. Separation of signal from active and inactive probe can be difficult with conventional intensity-based fluorescence imaging. Fluorescence lifetime (FLT) measurement is an alternative method to detect changes in FRET. Thus, we investigate FLT imaging for in vivo detection of FRET-based molecular probe activation in an orthotopic breast cancer model. Indeed, the measured FLT of the enzyme-activatable molecular probe increases from 0.62 ns just after injection to 0.78 ns in tumor tissue after 4 h. A significant increase in FLT is not observed for an always-on targeted molecular probe with the same fluorescent reporter. These results show that FLT contrast is a powerful addition to preclinical imaging because it can report molecular activity in vivo due to changes in FRET. Fluorescence lifetime imaging exploits unique characteristics of fluorescent molecular probes that can be further translated into clinical applications, including noninvasive detection of cancer-related enzyme activity.

  15. Continuous Monitoring of Specific mRNA Expression Responses with a Fluorescence Resonance Energy Transfer-Based DNA Nano-tweezer Technique That Does Not Require Gene Recombination.

    PubMed

    Shigeto, Hajime; Nakatsuka, Keisuke; Ikeda, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Funabashi, Hisakage

    2016-08-16

    This letter discusses the feasibility of continuously monitoring specific mRNA expression responses in a living cell with a probe structured as a fluorescence resonance energy transfer (FRET)-based DNA nano-tweezer (DNA-NT). The FRET-based DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from an open state to a closed state in recognition of a target mRNA, resulting in the closing of the distal relation of previously modified FRET-paired fluorescent dyes and generating a FRET signal. The expressions of glucose transporters (GLUT) 1 and 4 in a mouse hepato-carcinoma (Hepa 1-6 cells) were selected as the target model. Live-cell imaging analysis of Hepa 1-6 cells with both FRET-based DNA-NTs indicated that the behaviors of the FRET signals integrated in each individual cell were similar to those measured with the conventional mass analysis technique of semiquantitative real-time (RT) polymerase chain reaction (PCR). From these results, it is concluded that continuous monitoring of gene expression response without gene recombination is feasible with a FRET-based DNA-NT, even in a single cell manner. PMID:27458920

  16. Noninvasive Evaluation of Heavy Metal Uptake and Storage in Micoralgae Using a Fluorescence Resonance Energy Transfer-Based Heavy Metal Biosensor1[C][W][OPEN

    PubMed Central

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard

    2014-01-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336

  17. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors.

    PubMed

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2015-10-01

    Retinoid X receptors (RXRs) play a role as master regulators because of their capacity to form heterodimers with other nuclear receptors (NRs). Accordingly, retinoid signaling is involved in multiple biologic processes, including development, cell differentiation, metabolism, and cell death. However, the role and function of RXRs in different heterodimer complexes remain unidentified, mainly because most RXR drugs (called rexinoids) are not selective of specific heterodimer complexes. The lack of selectivity strongly limits the use of rexinoids for specific therapeutic approaches. To better characterize rexinoids at specific NR complexes, we have developed and optimized luciferase (Luc) protein complementation(PCA)-based bioluminescence resonance energy transfer (BRET) assays that can directly measure recruitment of a coactivator (CoA) motif fused to yellow fluorescent protein (YFP) by specific NR dimers. To validate the assays, we compared rexinoid modulation of CoA recruitment by the RXR homodimer and by the heterodimers Nur77/RXR and Nurr1/RXR. Results revealed that some rexinoids display selective CoA recruitment activities with homo- or heterodimer complexes. In particular, SR11237 (BMS649) has stronger potency for recruitment of CoA motif and transcriptional activity with the heterodimer Nur77/RXR than other complexes. This technology should be useful in identifying new compounds with specificity for individual dimeric species formed by NRs. PMID:26148973

  18. Fluorescence resonance energy transfer based immunosensing of human IgG by using quantum dot/GIgG-gold nanoparticles/IgG conjugation.

    PubMed

    Luo, Lin; Liu, Zhao; Li, Jianjun; Zhu, Jian

    2014-06-01

    A novel immunosensor of human immune globulin (IgG) was fabricated based on the fluorescence transfer between luminescent semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs). AuNPs and CdSe/ZnS QDs were respectively labeled with immune reaction pair:IgG and goat anti-human immunoglobulin (GIgG), by optimizing the conditions including pH value and protein amount. In the assembled QD-GIgG-IgG-AuNP fluorescence resonance energy transfer (FRET) immunocomplex system, the presence of AuNP-IgG directly reduced the fluorescence intensity of the GIgG conjugated QDs. As a result, the concentration of AuNP-IgG had a linear relationship with the fluorescence decrease in a range of 0-1.57 microg/mL. Furthermore, the mechanism of the QDs' fluorescence decay has also been discussed and attributed to the light-induced photobleaching. This novel sensing method achieves quantitative detection of trace proteins, suggesting the potential of biomolecule-AuNPs conjugation based analytical methods in further application. PMID:24738348

  19. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture.

    PubMed

    Wu, Liang; Guo, Qing-Sheng; Liu, Yu-Qian; Sun, Qing-Jiang

    2015-05-19

    In this work, we report the design and application of a new ratiometric fluorescent probe, which contains different-colored quantum dots (QDs) as dual fluorophores, ultrathin silica shell as spacer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as receptor, for Zn(2+) detection in aqueous solution and living cells. In the architecture of our designed probe, the silica shell plays the key roles in controlling the locations of QDs, TSPP, and Zn(2+), preventing the direct contact between QDs and Zn(2+) but affording fluorescence resonance energy transfer (FRET) from dual-color QDs to TSPP. In the presence of Zn(2+), the analyte-receptor reaction changes the absorption in the range of the Q-band of TSPP and accordingly the efficiencies of two independent FRET processes from the dual-colored QDs to the acceptor, respectively, leading to fluorescence enhancement of green-emission QDs whereas fluorescence quenching of yellow-emission QDs. Benefiting from the well-resolved dual emissions from different-colored QDs and the large range of emission ratios, the probe solution displays continuous color changes from yellow to green, which can be clearly observed by the naked eye. Under physiological conditions, the probe exhibits a stable response for Zn(2+) from 0.3 to 6 μM, with a detection limit of 60 nM in aqueous solutions. With respect to single-emission probes, this ratiometric probe has demonstrated to feature excellent selectivity for Zn(2+) over other physiologically important cations such as Fe(3+) and Cu(2+). It has been preliminarily used for ratiometric imaging of Zn(2+) in living cells with satisfying resolution. PMID:25932651

  20. Förster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula.

    PubMed

    Hamano, Nobuhito; Murata, Masaharu; Kawano, Takahito; Piao, Jing Shu; Narahara, Sayoko; Nakata, Ryosuke; Akahoshi, Tomohiko; Ikeda, Tetsuo; Hashizume, Makoto

    2016-03-01

    Postoperative pancreatic fistula (POPF) is the most serious and challenging complication following gastroenterological surgery. Activated pancreatic juice leaking from the organ remnant contains proteases that attack the surrounding tissue, potentially leading to severe inflammation, tissue necrosis, and fistula formation. However, it is difficult to observe pancreatic leakage during surgery and to evaluate the protease activity of leaked fluid at the patient's bedside. This report describes a protein nanocage-based protease ratiometric sensor comprising a pancreatic protease-sensitive small heat-shock protein (HSP) 16.5, which is a naturally occurring protein in Methanococcus jannaschii that forms a spherical structure by self-assembly of 24 subunits, and a chemically conjugated donor-acceptor dye pair for Förster resonance energy transfer (FRET). The HSP-FRET probe was constructed by subunit exchange of each dye-labeled engineered HSP, resulting in a spherical nanocage of approximately 10 nm in diameter, which exhibited very high stability against degradation in blood plasma and no remarkable toxicity in mice. The efficiency of FRET was found to depend on both the dye orientation and the acceptor/donor ratio. Pancreatic proteases, including trypsin, α-chymotrypsin, and elastase, were quantitatively analyzed by fluorescence recovery with high specificity using the HSP-FRET nanoprobe. Furthermore, the HSP-FRET nanoprobe was sufficiently sensitive to detect POPF in the pancreatic juice of patients using only the naked eye within 10 min. Thus, this novel nanoprobe is proposed as an effective and convenient tool for the detection of POPF and the visualization of activated pancreatic juice during gastroenterological surgery. PMID:26845508

  1. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit.

    PubMed

    Mahalingam, Mohana; Perez, Claudio F; Fessenden, James D

    2016-06-24

    The skeletal muscle dihydropyridine receptor α1S subunit plays a key role in skeletal muscle excitation-contraction coupling by sensing membrane voltage changes and then triggering intracellular calcium release. The cytoplasmic loops connecting four homologous α1S structural domains have diverse functions, but their structural arrangement is poorly understood. Here, we used a novel FRET-based method to characterize the relative proximity of these intracellular loops in α1S subunits expressed in intact cells. In dysgenic myotubes, energy transfer was observed from an N-terminal-fused YFP to a FRET acceptor, ReAsH (resorufin arsenical hairpin binder), targeted to each α1S intracellular loop, with the highest FRET efficiencies measured to the α1S II-III loop and C-terminal tail. However, in HEK-293T cells, FRET efficiencies from the α1S N terminus to the II-III and III-IV loops and the C-terminal tail were significantly lower, thus suggesting that these loop structures are influenced by the cellular microenvironment. The addition of the β1a dihydropyridine receptor subunit enhanced FRET to the II-III loop, thus indicating that β1a binding directly affects II-III loop conformation. This specific structural change required the C-terminal 36 amino acids of β1a, which are essential to support EC coupling. Direct FRET measurements between α1S and β1a confirmed that both wild type and truncated β1a bind similarly to α1S These results provide new insights into the role of muscle-specific proteins on the structural arrangement of α1S intracellular loops and point to a new conformational effect of the β1a subunit in supporting skeletal muscle excitation-contraction coupling. PMID:27129199

  2. Fluorescence resonance energy transfer-based real-time polymerase chain reaction method without DNA extraction for the genotyping of F5, F2, F12, MTHFR, and HFE.

    PubMed

    Martinez-Serra, Jordi; Robles, Juan; Nicolàs, Antoni; Gutierrez, Antonio; Ros, Teresa; Amat, Juan Carlos; Alemany, Regina; Vögler, Oliver; Abelló, Aina; Noguera, Aina; Besalduch, Joan

    2014-01-01

    Blood samples are extensively used for the molecular diagnosis of many hematological diseases. The daily practice in a clinical laboratory of molecular diagnosis in hematology involves using a variety of techniques, based on the amplification of nucleic acids. Current methods for polymerase chain reaction (PCR) use purified genomic DNA, mostly isolated from total peripheral blood cells or white blood cells (WBC). In this paper we describe a real-time fluorescence resonance energy transfer-based method for genotyping directly from blood cells. Our strategy is based on an initial isolation of the WBCs, allowing the removal of PCR inhibitors, such as the heme group, present in the erythrocytes. Once the erythrocytes have been lysed, in the LightCycler(®) 2.0 Instrument, we perform a real-time PCR followed by a melting curve analysis for different genes (Factors 2, 5, 12, MTHFR, and HFE). After testing 34 samples comparing the real-time crossing point (CP) values between WBC (5×10(6) WBC/mL) and purified DNA (20 ng/μL), the results for F5 Leiden were as follows: CP mean value for WBC was 29.26±0.566 versus purified DNA 24.79±0.56. Thus, when PCR was performed from WBC (5×10(6) WBC/mL) instead of DNA (20 ng/μL), we observed a delay of about 4 cycles. These small differences in CP values were similar for all genes tested and did not significantly affect the subsequent analysis by melting curves. In both cases the fluorescence values were high enough, allowing a robust genotyping of all these genes without a previous DNA purification/extraction. PMID:25028568

  3. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  4. Fluorescence Resonance Energy Transfer Based on Interaction of PII and PipX Proteins Provides a Robust and Specific Biosensor for 2-Oxoglutarate, a Central Metabolite and a Signaling Molecule.

    PubMed

    Chen, Hai-Lin; Bernard, Christophe S; Hubert, Pierre; My, Laetitia; Zhang, Cheng-Cai

    2013-12-26

    2-Oxoglutarate is a central metabolite and a signalling molecule in both prokaryotes and eukaryotes. The cellular levels of 2-oxoglutarate vary rapidly in response to environmental changes, but an easy and reliable approach is lacking for the measurement of 2-oxoglutarate. Here we report a biosensor of 2-oxoglutarate based on the 2-oxoglutarate-dependent dissociation of the PII-PipX protein complex from cyanobacteria. Fusions of PII and PipX to either CFP or YFP could form a complex and their interaction could be detected by FRET (Fluorescence Resonance Energy Transfer). Mutations in PII or PipX that affect their interaction strongly decrease the FRET signal. Furthermore, the FRET signal is negatively affected, in a specific and concentration-dependent manner, by the presence of 2-oxoglutarate. This 2-oxoglutarate biosensor responds specifically and rapidly to a large range of 2-oxoglutarate levels, and is highly robust under different conditions, including in bacterial cell extracts. We further used this biosensor to study the interaction between PII and its effectors, and our data indicate that excess in Mg(2+) ions is a key factor for PII to respond efficiently to an increase in 2-oxoglutarate levels. This study paves the way for probing the dynamics of 2-oxoglutarate in various organisms and provides a valuable tool for the understanding of the molecular mechanism in metabolic regulation. PMID:24373496

  5. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  6. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  7. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ.

    PubMed

    Meng, Fanjie; Suchyna, Thomas M; Sachs, Frederick

    2008-06-01

    To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable alpha-helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 degrees C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the alpha-helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney-293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such alpha-actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen-19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally. PMID:18479457

  8. Energy saver prototype accelerating resonator

    SciTech Connect

    Kerns, Q.; May, M.; Miller, H.W.; Reid, J.; Turkot, F.; Webber, R.; Wildman, D.

    1981-06-01

    A fixed frequency rf accelerating resonator has been built and tested for the Fermilab Energy Saver. The design parameters and prototype resonator test results are given. The resonator features a high permeability nickel alloy resistor which damps unwanted modes and corona rolls designed with the aid of the computer code SUPERFISH. In bench measurements, the prototype resonator has achieved peak accelerating voltages of 500 kV for a 1% duty cycle and cw operation at 360 kV. 4 refs.

  9. [Energy resonance through cutaneous stimulation].

    PubMed

    Fouchier, Patrick

    2014-12-01

    Energy resonance through cutaneous stimulation is a method basedon "listening" through the fingers to the body's vibrations at various points on the skin corresponding to the meridians used in Chinese medicine. It helps to relieve the patient by balancing the body's energies. It can be carried out by any caregiver after specific training. PMID:25630081

  10. Energy transfer based emission analysis of (Tb³⁺, Sm³⁺): lithium zinc phosphate glasses.

    PubMed

    Reddy, C Parthasaradhi; Naresh, V; Ramaraghavulu, R; Rudramadevi, B H; Reddy, K T Ramakrishna; Buddhudu, S

    2015-06-01

    The present paper reports on the results pertaining to photoluminescence properties of Tb(3+), Sm(3+) and energy transfer from Tb(3+) to Sm(3+) ions in lithium zinc phosphate (LZP) glass matrix prepared by melt quenching method. Besides photoluminescence studies thermal stability for the LZP glass is also evaluated from TG-DTA measurement. Tb(3+) doped glasses have exhibited a prominent green emission at 547 nm assigned to (5)D4→(7)F5 transitions on exciting at λ(exci)=377 nm. The quenching phenomenon in Tb(3+) emission on varying its concentration has been discussed from cross-relaxations. Sm(3+) incorporated glasses have shown strong orange emission at 603 nm assigned to (4)G5/2→(6)H7/2 transition upon exciting with λ(exci)=404 nm. The possibility of energy transfer process taking place between these two ions is understood from the significant spectral overlap of Sm(3+) absorption and Tb(3+) emission. Migration of excitation energy from Tb(3+) ions to Sm(3+) ions at λ(exci)=375 nm is evaluated from the emission spectra of (0.5 mol.% Tb(3+)+(0.5-2.0 mol.%) Sm(3+)) co-doped glasses. The emission intensity of Sm(3+) has enhanced while Tb(3+) emission intensity decreased with an increase in Sm(3+) concentration suggesting the occurrence of energy transfer through cross-relaxations from Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2). The mechanism behind energy transfer process has been further explained from energy level diagram, decay profiles and confirmed by calculating energy transfer parameters (energy transfer efficiency (η) and energy transfer probability (P)) of co-doped glasses. The dipole-dipole interaction is found to be more responsible for energy transfer Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2) ions in LZP glass matrix. PMID:25756686

  11. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. PMID:25704499

  12. Microwave energy storage in resonant cavities

    SciTech Connect

    Alvarez, R.A.

    1983-02-01

    One method of generating short, high-power microwave pulses is to store rf energy in a resonant cavity over a relatively long fill time and extract is rapidly. A power gain roughly equal to the ratio of fill time to extraction time can be obtained. During the filling of a resonant cavity some of the energy is lost in heating the cavity walls, and some will generally be reflected at the input coupling of the cavity. In this paper we discuss the time dependence of the stored energy and related quantities and the way in which it depends on the coupling of the source to the cavity.

  13. Internal resonance for nonlinear vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Cao, D. X.; Leadenham, S.; Erturk, A.

    2015-11-01

    The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

  14. Energy localization in weakly dissipative resonant chains.

    PubMed

    Kovaleva, Agnessa

    2016-08-01

    Localization of energy in oscillator arrays has been of interest for a number of years, with special attention paid to the role of nonlinearity and discreteness in the formation of localized structures. This work examines a different type of energy localization arising due to the presence of dissipation in nonlinear resonance arrays. As a basic model, we consider a Klein-Gordon chain of finite length subjected to a harmonic excitation applied at an edge of the chain. It is shown that weak dissipation may be a key factor preventing the emergence of resonance in the entire chain, even if its nondissipative analog is entirely captured into resonance. The resulting process in the dissipative oscillator array represents large-amplitude resonant oscillations in a part of the chain adjacent to the actuator and small-amplitude oscillations in the distant part of the chain. The conditions of the emergence of resonance as well as the conditions of energy localization are derived. An agreement between the obtained analytical results and numerical simulations is demonstrated. PMID:27627299

  15. Energy localization in weakly dissipative resonant chains

    NASA Astrophysics Data System (ADS)

    Kovaleva, Agnessa

    2016-08-01

    Localization of energy in oscillator arrays has been of interest for a number of years, with special attention paid to the role of nonlinearity and discreteness in the formation of localized structures. This work examines a different type of energy localization arising due to the presence of dissipation in nonlinear resonance arrays. As a basic model, we consider a Klein-Gordon chain of finite length subjected to a harmonic excitation applied at an edge of the chain. It is shown that weak dissipation may be a key factor preventing the emergence of resonance in the entire chain, even if its nondissipative analog is entirely captured into resonance. The resulting process in the dissipative oscillator array represents large-amplitude resonant oscillations in a part of the chain adjacent to the actuator and small-amplitude oscillations in the distant part of the chain. The conditions of the emergence of resonance as well as the conditions of energy localization are derived. An agreement between the obtained analytical results and numerical simulations is demonstrated.

  16. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  17. Classical Approach to Multichromophoric Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A.

    2015-09-01

    A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between NA acceptors and ND donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation.

  18. Classical approach to multichromophoric resonance energy transfer.

    PubMed

    Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A

    2015-09-11

    A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between N_{A} acceptors and N_{D} donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation. PMID:26406811

  19. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  20. Resonance energy transfer: Dye to metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-01

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  1. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  2. Plasmon-induced resonance energy transfer for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; Cushing, Scott K.; Meng, Fanke; Senty, Tess R.; Bristow, Alan D.; Wu, Nianqiang

    2015-09-01

    In Förster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole-dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength direction to induce charge separation in a semiconductor. Plasmon-induced resonance energy transfer (PIRET) differs from FRET because of the lack of a Stoke's shift, non-local absorption effects and a strong dependence on the plasmon's dephasing rate and dipole moment. PIRET non-radiatively transfers energy through an insulating spacer layer, which prevents interfacial charge recombination losses and dephasing of the plasmon from hot-electron transfer. The distance dependence of dipole-dipole coupling is mapped out for a range of detuning across the plasmon resonance. PIRET can efficiently harvest visible and near-infrared sunlight with energy below the semiconductor band edge to help overcome the constraints of band-edge energetics for single semiconductors in photoelectrochemical cells, photocatalysts and photovoltaics.

  3. Resonant vibrational energy transfer in ice Ih

    SciTech Connect

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  4. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  5. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  6. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  7. A vibration energy harvesting device with bidirectional resonance frequency tunability

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Shi, Yong; Fisher, Frank T.

    2008-02-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22-32 Hz to enable a continuous power output 240-280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined.

  8. Characterization of energy trapping in a bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2010-12-01

    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic wave resonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measured dispersion properties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.

  9. Through-bond energy transfer-based ratiometric two-photon probe for fluorescent imaging of Pd(2+) ions in living cells and tissues.

    PubMed

    Zhou, Liyi; Wang, Qianqian; Zhang, Xiao-Bing; Tan, Weihong

    2015-04-21

    Palladium can cause severe skin and eye irritation once it enters the human body. Ratiometric two-photon fluorescent probes can both eliminate interference from environmental factors and realize deep-tissue imaging with improved spatial localization. To quantitatively track Pd(2+) in biosystems, we report here a colorimetric and two-photon ratiometric fluorescent probe, termed Np-Rh-Pd, which consists of a two-photon fluorophore (naphthalene derivative with a D-π-A structure) and a rhodamine B dye. The two fluorophores are directly linked to form a two-photon ratiometric fluorescent probe for Pd(2+) based on a through-bond energy transfer (TBET) strategy. It exhibits highly efficient energy transfer (90%) with two well-resolved emission peaks (wavelength difference of 100 nm), which could efficiently diminish the cross talk between channels and is especially favorable for ratiometric bioimaging applications. A signal-to-background ratio of 31.2 was observed for the probe, which affords a high sensitivity for Pd(2+) with a detection limit of 2.3 × 10(-7) M. It was also found that acidity does not affect the fluorescent response of the probe to Pd(2+), which is favorable for its applications in practical samples. The probe was further used for fluorescence imaging of Pd(2+) ions in live cells and tissue slices under two-photon excitation, which showed significant tissue-imaging depths (90-270 μm) and a high resolution for ratiometric imaging. PMID:25809980

  10. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Kang, Misook; Bhaskar Kumar, G.; Ratnakaram, Y. C.

    2016-04-01

    Er3+, Pr3+ singly doped and co-doped PEO + PVP polymer composites have been synthesized by conventional solution casting method. The structural analysis has been carried out for all these polymer composites from XRD analysis. Raman spectral studies confirm the ion-polymer interactions and polymer complex formation. Thermal properties of pure polymer film has also been clearly elucidated by TG/DTA profiles. Well defined optical absorption bands pertaining to Er3+ and Pr3+ are observed in the absorption spectral profile and these bands are assigned with corresponding electronic transitions. The polymer films containing singly doped Er3+ and Pr3+ ions have displayed green and red emissions at 510 nm (2H11/2 → 4I15/2) and 688 nm (3P0 → 3F3) respectively under UV excitation source. Comparing the emission spectra of singly Er3+ and co-doped Er3+ + Pr3+: PEO + PVP polymer films, a significant red emission pertaining to Pr3+ions is remarkably enhanced in co-doped polymer system. This could be ascribed to possible energy transfer from Er3+ to Pr3+ in co-doped polymer system. The energy transfer mechanism is clearly demonstrated using their emission performances, overlapped spectral profiles and also life time decay dynamics. Thus, it could be suggested that Er3+: PEO + PVP, Pr3+: PEO + PVP and (Er3+ + Pr3+): PEO + PVP blended polymer films are potential materials for several photonic applications.

  11. Influence of Donor on the Sensing Performance of a Series of Through-Bond Energy Transfer-Based Two-photon Fluorescent Cu(2+) Probes.

    PubMed

    Zhang, Yu-Jin; Wang, Xin; Zhou, Yong; Wang, Chuan-Kui

    2016-07-01

    Optical properties of a series of molecular two-photon fluorescent Cu(2+) probes containing the same acceptor (rhodamine group) are analyzed using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the presence of Cu(2+) . In this study, the compound with naphthalene as the donor is shown to be excellent ratiometric fluorescent chemosensor, whereas the compound with quinoline derivative as the donor shows off/on-typed colorimetric fluorescent response. For the compound with naphthalimide derivative as the donor, changing the connection between the donor and acceptor can efficiently prevent the fluorescent quenching of the probe both in the absence and presence of Cu(2+) . The donor moiety and the connection between donor and acceptor are thus found to play dominant roles on sensing performance of these probes. Moreover, distributions of molecular orbitals involved in the excitation and emission of the probes are analyzed to explore responsive mechanism of the probes. The through-bond energy transfer process is theoretically demonstrated. Our results are used to elucidate the available experimental measurements. This work is helpful to understand the relationships of structure with optical properties for the studied probes. PMID:27144496

  12. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-11-15

    Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. PMID:27315518

  13. Resonance formation in low energy electron scattering from uracil

    NASA Astrophysics Data System (ADS)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2014-05-01

    We present detailed ab initio results for resonance formation in low energy electron scattering from uracil obtained with the R-matrix method. We identify a larger number of resonances than any previous theoretical study. Most of these resonances have core-excited shape character and appear to be associated to the ring structure of the molecule. Their link to DEA spectra and to the resonances present in electron scattering from pyrimidine are discussed. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  14. Effect of energy and momentum conservation on fluid resonances for resonant magnetic perturbations in a tokamak

    SciTech Connect

    Leitner, Peter; Heyn, Martin F.; Kernbichler, Winfried; Ivanov, Ivan B.; Kasilov, Sergei V.

    2014-06-15

    In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results.

  15. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  16. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan J.; Bancu, Mirela G.; Bauer, Joseph M.; Cook, Eugene H.; Kumar, Parshant; Newton, Eric; Nyinjee, Tenzin; Perlin, Gayatri E.; Ricker, Joseph A.; Teynor, William A.; Weinberg, Marc S.

    2015-08-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (~16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip.

  17. Resonant energy transfer assisted by off-diagonal coupling.

    PubMed

    Wu, Ning; Sun, Ke-Wei; Chang, Zhe; Zhao, Yang

    2012-03-28

    Dynamics of resonant energy transfer of a single excitation in a molecular dimer system are studied in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. It is found that, at given temperatures, the off-diagonal coupling can enhance both the coherence of the resonant energy transfer and the net quantity of energy transferred from an initially excited monomer to the other. Also studied is the dynamics of entanglement between the dimer system and the phonon bath as measured by the von Neumann entanglement entropy, and the inter-monomer entanglement dynamics for the excitonic system. PMID:22462880

  18. On the resonance energy of the strange dibaryon

    SciTech Connect

    Yoichi Ikeda, Hiroyuki Kamano, Toru Sato

    2010-03-01

    The three-body resonance energies of the strange dibaryon are studied with the View the MathML source coupled-channels Faddeev equations. Our resonance energies are compared with those of an effective potential approach (EPA), where a coupling to the πYN channel is simulated by an effective View the MathML source potential, and the spectator momentum in the πYN Green function is neglected. About a 30% reduction of the binding energies due to neglecting the spectator momentum in the πYN Green's function is observed.

  19. Enhanced vibrational energy harvesting using nonlinear stochastic resonance

    NASA Astrophysics Data System (ADS)

    McInnes, C. R.; Gorman, D. G.; Cartmell, M. P.

    2008-12-01

    Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification by noise. However, this apparently counter-intuitive phenomenon does not appear to have been exploited as a tool to enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism without periodic forcing. In order to illustrate this novel effect, a conceptually simple, but plausible model of such a device is proposed to explore the use of stochastic resonance to enhance vibrational energy harvesting.

  20. Resonant double photoionization of lithium studied with medium energy resolution

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.; Juranić, P. N.

    2006-10-01

    We have measured the relative photoionization cross section for the formation of Li2+ ions between 148 and 161eV photon energy with higher photon-energy resolution than in previous Li2+ studies. This energy region is characterized by double and triple excitations that lead to strong enhancements in the Li2+ cross section. As a result, the double-to-single photoionization ratio shows a dramatic resonance structure not seen before. We have determined the resonance positions and widths using Fano-profile fits to the Li2+ data and compare them to previously published values and a calculated Li2+ cross-section curve.

  1. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  2. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  3. Measurement of Inositol 1,4,5-Trisphosphate in Living Cells Using an Improved Set of Resonance Energy Transfer-Based Biosensors

    PubMed Central

    Tóth, Dániel J.; Kurucz, István; Hunyady, László; Balla, Tamas; Várnai, Péter

    2015-01-01

    Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of InsP3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications. PMID:25932648

  4. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  5. Plasmon resonance energy transfer and plexcitonic solar cell.

    PubMed

    Nan, Fan; Ding, Si-Jing; Ma, Liang; Cheng, Zi-Qiang; Zhong, Yu-Ting; Zhang, Ya-Fang; Qiu, Yun-Hang; Li, Xiaoguang; Zhou, Li; Wang, Qu-Quan

    2016-08-11

    Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance. The enhanced local field and plasmon resonance energy transfer are experimentally revealed by monitoring the ultrafast dynamical processes of the plexcitons and the photocurrent flows of the assembled plexciton-SSCs. By tuning the Fano factor and anti-resonance wavelengths, we find that the local field is largely enhanced and the efficiency of plexciton-SSCs consisting of ultrathin TiO2 films is significantly improved. Most strikingly, the output power of the plexciton-SSCs is much larger than the sum of those of the individual plasmon- and exciton-SSCs. Our observations provide a practical approach to monitor energy and electron transfer in plasmon-exciton hybrids at a strong coupling regime and also offer a new strategy to design photovoltaic nanodevices. PMID:27481652

  6. Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi

    2013-09-01

    A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.

  7. Resonance versus aerodynamics for energy savings in agile natural flyers

    NASA Astrophysics Data System (ADS)

    Kok, Jia M.; Chahl, Javaan

    2014-03-01

    Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.

  8. Paths to Förster's resonance energy transfer (FRET) theory

    NASA Astrophysics Data System (ADS)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  9. Resonant frequency tuning of an industrial vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Toh, T. T.; Wright, S. W.; Mitcheson, P. D.

    2014-11-01

    This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.

  10. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    NASA Astrophysics Data System (ADS)

    Fabbietti, L.

    2016-01-01

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N* resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c2 in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000)++ are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  11. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    NASA Astrophysics Data System (ADS)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  12. Bond resonance energy and verification of the isolated pentagon rule

    SciTech Connect

    Aihara, Jun Ichi

    1995-04-12

    The isolated pentagon rule (IPR) states that fullerenes with isolated pentagons are kinetically much more stable than their fused pentagon counterparts. This rule can be verified in terms of a graph-theoretically defined bond resonance energy. In general, a {pi} bond shared by two pentagons has a large negative bond resonance energy, thus contributing significantly to the increase in kinetic instability or chemical reactivity of the molecule. The existence of such highly antiaromatic local structures sharply distinguishes IPR-violating fullerenes from isolated-pentagon isomers. {pi}bonds shared by two pentagons are shared by many antiaromatic conjugated circuits but not by relatively small aromatic conjugated circuits. 39 refs., 3 figs., 5 tabs.

  13. Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro; Tomii, Kazuki; Hagiwara, Saori; Miyake, Shuntaro; Hasegawa, Yuichi; Sato, Takamitsu; Kaneko, Yuta; Nishioka, Yasushiro

    2013-12-01

    Acoustic energy harvesters that function in environments where sound pressure is extremely high (~150 dB), such as in engine rooms of aircrafts, are expected to be capable of powering wireless health monitoring systems. This paper presents the power generation performances of a lead-zirconate-titanate (PZT) acoustic energy harvester with a vibrating PZT diaphragm. The diaphragm had a diameter of 2 mm, consisting of Al(0.1 μm)/PZT(1 μm)/Pt(0.1 μm)/Ti(0.1 μm)/SiO2(1.5 μm). The harvester generated a power of 1.7×10-13 W under a sound pressure level of 110 dB at the first resonance frequency of 6.28 kHz. It was found that the generated power was increased to 6.8×10-13 W using a sound-collecting Helmholtz resonator cone with the height of 60 mm. The cone provided a Helmholtz resonance at 5.8 kHz, and the generated power increased from 3.4×10-14 W to 1.4×10-13 W at this frequency. The cone was also effective in increasing the bandwidth of the energy harvester.

  14. Autoparametric Resonance Systems for Vibration-Based Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Kurmann, L.; Hoffmann, D.; Folkmer, B.; Manoli, Y.; Woias, P.; Anderegg, R.

    2015-12-01

    Motivation for this paper is the creation of a new kind of (vibration) kinetic energy harvester systems that can effectively transfer environmental mechanical vibrations into electrical energy over a wider frequency bandwidth than conventional devices. This paper presents a potential improvement in the 1DoF vibration transducer class and examining therefore analytically the behavior of such systems using strong nonlinear springs. Then a new 2DoF class of vibration transducer is presented having a strong nonlinear characteristic which is well suited for autoparametric resonance vibrations.

  15. Tuning a resonant energy harvester using a generalized electrical load

    NASA Astrophysics Data System (ADS)

    Cammarano, A.; Burrow, S. G.; Barton, D. A. W.; Carrella, A.; Clare, L. R.

    2010-05-01

    A fundamental drawback of vibration-based energy harvesters is that they typically feature a resonant mass/spring mechanical system to amplify the small source vibrations; the limited bandwidth of the mechanical amplifier restricts the effectiveness of the energy harvester considerably. By extending the range of input frequencies over which a vibration energy harvester can generate useful power, e.g. through adaptive tuning, it is not only possible to open up a wider range of applications, such as those where the source frequency changes over time, but also possible to relax the requirements for precision manufacture or the need for mechanical adjustment in situ. In this paper, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented. It is demonstrated that the reactive component of the electrical load can be used to tune the harvester system to significantly increase the output power away from the resonant peak of the device. An analytical model of the system is developed, which includes non-ideal components arising from the physical implementation, and the results are confirmed by experiment. The - 3 dB (half-power) bandwidth of the prototype energy harvester is shown to be over three times greater when presented with an optimized load impedance compared to that for the same harvester presented with an optimized resistive only load.

  16. Investing relational energy: the hallmark of resonant leadership.

    PubMed

    Cummings, Greta

    2004-11-01

    Recent research has shown that hospital restructuring that included staff layoff has adversely affected the role, health and well-being of nurses who remained employed. Further research found that nurses working in environments that reflected resonant (emotionally intelligent) leadership reported the least negative effects to their healt and well-being following hospital restructuring. What remained unclear was the mechanism by which this mitigation occurred. The purpose of this paper is to explore additional findings from this leadership research and discuss one explanation unique to the academic literature for the mitigation variable--the investment of relational energy by resonant nursing leadership to build relationships with nurses and manage emotion in the workplace. PMID:15656250

  17. Complementary split ring resonator arrays for electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Alavikia, Babak; Almoneef, Thamer S.; Ramahi, Omar M.

    2015-07-01

    This work demonstrates the viability of Ground-backed Complementary Split-Ring Resonator (G-CSRR) arrays with significant power conversion efficiency and bandwidth enhancement in comparison to the technology used in current electromagnetic energy harvesting systems. Through numerical full-wave analysis, we demonstrated correlation between either the resonance frequency or the input impedance of G-CSRR cells with the periodicity of the array. A comparative study of power harvesting efficiency through numerical analysis and laboratory measurement was presented where an array of G-CSRRs is compared to an array of microstrip patch antennas. We demonstrated that a G-CSRR array yields power conversion efficiency of 92%, which represents a significant improvement in comparison to the single G-CSRR reported in our earlier work.

  18. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  19. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    SciTech Connect

    Augspurger, Ashley E.; Stender, Anthony S.; Han, Rui; Fang, Ning

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  20. Fluorescence resonance energy transfer from allophycocyanin to malachite green

    NASA Astrophysics Data System (ADS)

    Rolinski, O. J.; Birch, D. J. S.; McCartney, L. J.; Pickup, J. C.

    1999-08-01

    The near-infrared fluorescence resonance energy transfer kinetics of the phycobiliprotein allophycocyanin (APC) to malachite green (MG) have been investigated. A model is proposed to account for the fluorescence decay whereby MG binds to APC with a donor-acceptor site distribution which can be best described by 2D quenching kinetics. The results highlight a potential fallacy when interpreting the dimensionality of complex systems or the location of binding sites from Förster decay kinetics. The use of APC in trans-dermal measurements is proposed.

  1. Quantum electrodynamics of resonance energy transfer in nanowire systems

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.

    2016-02-01

    Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy between contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless, the well-established Förster formalism commonly used to represent RET was developed for energy transfer primarily between molecular blocks (i.e., from one molecule, or part of a molecule, to another). Although deviations from Förster theory for functional blocks such as NWs have been studied previously, the role of the relative distance, the orientation of transition dipole moment pairs, and the passively interacting matter on electronic energy transfer are to a large extent unknown. Thus, a comprehensive theory that models RET in NWs is required. In this context, analytical insights to give a deeper and more intuitive understanding of the distance and orientation dependence of RET in NWs is presented within the framework of quantum electrodynamics. Additionally, the influence of an included intermediary on the rate of excitation energy transfer is illustrated, embracing indirect energy transfer rate and quantum interference. The results deliver equations that afford new intuitions into the behavior of virtual photons. In particular, results indicate that RET efficiency in a NW system can be explicitly expedited or inhibited by a neighboring mediator, depending on the relative spacing and orientation of NWs.

  2. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  3. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues. PMID:27424898

  4. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  5. Shape resonances in low-energy-electron collisions with halopyrimidines

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  6. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.). PMID:24785025

  7. Nucleon-nucleon resonances at intermediate energies using a complex energy formalism

    NASA Astrophysics Data System (ADS)

    Papadimitriou, G.; Vary, J. P.

    2015-06-01

    We apply our method of complex scaling, valid for a general class of potentials, in a search for nucleon-nucleon S-matrix poles up to 2 GeV laboratory kinetic energy. We find that the realistic potentials JISP16, constructed from inverse scattering, and chiral field theory potentials N3LO and N2LOopt support resonances in energy regions well above their fit regions. In some cases these resonances have widths that are small when compared with the real part of the S-matrix pole.

  8. Resonance behavior of internal conversion coefficients at low γ-ray energy

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Kibédi, T.; Nikulin, V. K.

    2010-02-01

    A resonance-like structure of internal conversion coefficients (ICCs) at low γ-ray energy (≲100 keV) is studied. Our calculations revealed new, previously unknown resonance minima in the energy dependence of ICCs for the ns shells at E2-E5 transitions. The resonances are the most defined for ICCs in light and medium elements with Z≲ 50. It is shown that ICCs may have up to four resonances for outer shells while it has been assumed so far that only one resonance exists. Well-pronounced resonances in ICCs at E1 transition were discovered for the ns shells with n⩾2 as well as for the np shells with n⩾3 and the nd shells with n⩾4 of all elements up to superheavy ones. Simple expressions for approximate values of the E1 resonance energy were obtained which are of importance for determination of the resonance energy range where the interpolation of ICCs taken from tables or databases may give significant errors. The occurrence of resonances in ICCs is explained by vanishing conversion matrix elements under changes of sign. The peculiarities of the behavior of the matrix elements and electron wave functions at the resonance energy are considered. Available experimental ICCs for electric transitions with energies near the expected position of resonances satisfactory agree with our calculations.

  9. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  10. Resonant photonuclear isotope detection using medium-energy photon beam

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Shima, Tatsushi

    2012-02-01

    Resonant photonuclear isotope detection (RPID) is a nondestructive detection/assay of nuclear isotopes by measuring γ rays following photonuclear reaction products. Medium-energy wideband photons of Eγ=12-16MeV are used for the photonuclear (γ,n) reactions and γ rays characteristic of the reaction products are measured by means of high-sensitivity Ge detectors. Impurities of stable and radioactive isotopes of the orders of μgr—ngr and ppm—ppb are investigated. RPID is used to study nuclear isotopes of astronuclear and particle physics interests and those of geological and historical interests. It is used to identify radioactive isotopes of fission products as well.

  11. Resonance energy transfer: The unified theory via vector spherical harmonics.

    PubMed

    Grinter, Roger; Jones, Garth A

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon's fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules. PMID:27544087

  12. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  13. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  14. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  15. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  16. Reaction dynamics of F+HD-->HF+D at low energies: Resonant tunneling mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Dong, Feng; Liu, Kopin

    2002-05-01

    The complete state-resolved differential cross section σ(v',j',θ;Ec), investigated in a crossed-beam scattering study, is presented for the title reaction at six initial collision energies (Ec) which are below or near the barrier energy. At low energies, all reactive flux is gated through a trapped resonance state via a tunneling process. Hence, it serves as a benchmark system for better understanding the reactive resonance phenomenon. In addition to highlighting various resonance fingerprints of experimental observable, the concept of resonant tunneling reaction mechanism is elucidated. Particular emphasis is placed on its distinction from the more conventional transition-state reaction mechanism.

  17. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei

    2016-01-01

    We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  18. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Peters, Christian; Maurath, Dominic; Schock, Wolfram; Mezger, Florian; Manoli, Yiannos

    2009-09-01

    This paper presents a novel electrically tunable structure which can be used as a resonator for vibration-based energy harvesters. The adjustment of the resonance frequency is provided by mechanical stiffening of the structure using piezoelectric actuators. This concept can easily be stand-alone integrated to realize an autonomous, tunable harvester. The resonator was simulated using ANSYS to find the optimum operation point concerning tuning range. The scalability of this tuning concept is also investigated in this work. A phase shift control circuit was developed for very efficient autonomous closed-loop control of the resonance frequency. Prototypes of the resonators were fabricated and measured with and without the control circuit. The tuning voltage can be kept as low as ±5 V leading to a measured resonance shift of ±15% for the larger resonator (40 mm) and around ±8% for the smaller resonator (27 mm). This tuning range can be simply enhanced by increasing the tuning voltage.

  19. Fluorescence resonance energy transfer imaging by maximum likelihood estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yupeng; Yuan, Yumin; Holmes, Timothy J.

    2004-06-01

    Fluorescence resonance energy transfer (FRET) is a fluorescence microscope imaging process involving nonradiative energy transfer between two fluorophores (the donor and the acceptor). FRET is used to detect the chemical interactions and, in some cases, measure the distance between molecules. Existing approaches do not always well compensate for bleed-through in excitation, cross-talk in emission detection and electronic noise in image acquisition. We have developed a system to automatically search for maximum-likelihood estimates of the FRET image, donor concentration and acceptor concentration. It also produces other system parameters, such as excitation/emission filter efficiency and FRET conversion factor. The mathematical model is based upon a Poisson process since the CCD camera is a photon-counting device. The main advantage of the approach is that it automatically compensates for bleed-through and cross-talk degradations. Tests are presented with synthetic images and with real data referred to as positive and negative controls, where FRET is known to occur and to not occur, respectively. The test results verify the claimed advantages by showing consistent accuracy in detecting FRET and by showing improved accuracy in calculating FRET efficiency.

  20. Molecular distances determined with resonant vibrational energy transfers.

    PubMed

    Chen, Hailong; Wen, Xiewen; Li, Jiebo; Zheng, Junrong

    2014-04-01

    In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline samples, the closest anion distance was determined to be 3.9 ± 0.3 Å, consistent with the XRD result. In the 1.8 and 1 M KSCN aqueous solutions, the anion distances in the ion clusters were determined to be 4.4 ± 0.4 Å. The clustered anion distances in aqueous solutions are very similar to the closest anion distance in the KSCN crystal but significantly shorter than the average anion distance (0.94-1.17 nm) in the aqueous solutions if ion clustering did not occur. The result suggests that ions in the strong electrolyte aqueous solutions can form clusters inside of which they have direct contact with each other. PMID:24641170

  1. Rotational piezoelectric wind energy harvesting using impact-induced resonance

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Shen, Qinlong; Jin, Jiamei; Wang, Yiping; Qian, Wangjie; Yuan, Dewang

    2014-08-01

    To improve the output power of a rotational piezoelectric wind energy harvester, impact-induced resonance is proposed to enable effective excitation of the piezoelectric cantilevers' vibration modes and obtain optimum deformation, which enhances the mechanical/electrical energy transformation. The impact force is introduced by forming a piezoelectric bimorph cantilever polygon that is fixed at the circumference of the rotating fan's internal surface. Elastic balls are placed inside the polygon. When wind rotates the device, the balls strike the piezoelectric cantilevers, and thus electricity is generated by the piezoelectric effect. The impact point is carefully chosen to use the first bending mode as much as possible, and thus maximize the harvesting efficiency. The design enables each bimorph to be struck in a similar area and every bimorph is struck in that area at different moments. As a result, a relatively stable output frequency can be obtained. The output frequency can also be changed by choosing different bimorph dimensions, which will also make the device simpler and the costs lower. A prototype piezoelectric energy harvester consisting of twelve piezoelectric cantilevers was constructed. The piezoelectric cantilevers were made from phosphor bronze, the lead zirconium titanate (PZT)-based bimorph cantilever had dimensions of 47 mm × 20 mm × 0.5 mm, and the elastic balls were made from steel with a diameter of 10 mm. The optimal DC output power was 613 μW across the 20 kΩ resistor at a rotation speed of 200 r/min with an inscribed circle diameter of 31 mm.

  2. Energy Approach to Resonance states of Compound Superheavy Nucleus and EPPP in Heavy Nuclei Collisions

    SciTech Connect

    Glushkov, Alexander V.

    2005-10-26

    A consistent unified energy approach (operator perturbation theory) is used for numerical calculations of the electron-positron pair production cross-section in heavy nuclei collisions. Resonance phenomena in the nuclear subsystem lead to the structurization of the positron spectrum produced. The positron spectrum narrow peaks are treated as resonance states of the compound superheavy nucleus. Calculation results for the differential cross-sections of the U-U collision energies E1 (E1=162.0keV- third s-resonance; E1=247.6keV- the fourth s-resonance) are presented.

  3. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  4. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect

    Hunter, Scott Robert; Lavrik, Nickolay V; Mostafa, Salwa; Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  5. Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2012-06-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  6. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide). PMID:16785636

  7. Concentric Förster resonance energy transfer imaging.

    PubMed

    Wu, Miao; Algar, W Russ

    2015-08-18

    Concentric Förster resonance energy transfer (cFRET) configurations based on semiconductor quantum dots (QDs) are promising probes for biological sensing because they offer multiplexing capability in a single vector with robust ratiometric detection by exploiting a network of FRET pathways. To expand the scope and utility of cFRET probes, it is necessary to develop and validate cFRET imaging methodology. In this technical note, we present such a methodology using a protease-sensitive cFRET configuration that comprises a green-emitting QD, Alexa Fluor 555 (A555), and Alexa Fluor 647 (A647). Photoluminescence (PL) images were acquired with three filter-based emission channels to permit measurement of A555/QD and A647/QD PL ratios. With reference to calibration samples, these PL ratios were used to calculate quantitative progress curves for proteolytic activity in regions of interest in the acquired images. Importantly, the imaging methodology reproduces quantitative results obtained with a monochromator-based fluorescence plate reader. Spatiotemporal resolution is demonstrated by tracking the activity of two prototypical proteases, trypsin and chymotrypsin, as they diffuse down the length of a capillary. This methodology is expected to enable the future use of cFRET probes for cellular sensing and other imaging assays. PMID:26214686

  8. Förster resonance energy transfer and kinesin motor proteins.

    PubMed

    Prevo, Bram; Peterman, Erwin J G

    2014-02-21

    Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the donor and the acceptor. FRET efficiency can thus be used as an effective and accurate reporter of distance between two fluorophores and changes thereof. Over the last 50 years or so, FRET has been used as a spectroscopic ruler to measure conformations and conformational changes of biomolecules. More recently, FRET has been combined with microscopy, ultimately allowing measurement of FRET between a single donor and a single acceptor pair. In this review, we will explain the physical foundations of FRET and how FRET can be applied to biomolecules. We will highlight the power of the different FRET approaches by focusing on its application to the motor protein kinesin, which undergoes several conformational changes driven by enzymatic action, that ultimately result in unidirectional motion along microtubule filaments, driving active transport in the cell. Single-molecule and ensemble FRET studies of different aspects of kinesin have provided numerous insights into the complex chemomechanical mechanism of this fascinating protein. PMID:24071719

  9. A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun

    2012-01-01

    A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.

  10. Energy transfer based photoluminescence spectra of co-doped (Dy3+ + Sm3+): Li2O-LiF-B2O3-ZnO glasses for orange emission

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Vijayalakshmi, R. P.

    2016-07-01

    The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.

  11. The use of the equivalence between boxing and scaling to determine resonance energies

    NASA Astrophysics Data System (ADS)

    Garcia-Sucre, M.; Lefebvre, R.

    1986-10-01

    It is shown that the stabilization graphs obtained by enclosing a quantum system in a box of varying size can be exploited through analytical continuation to derive resonance energies. The similarity between this approach and that based on the variation of a scaling factor in the basis set used to represent the resonance wavefunction is emphasized.

  12. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  13. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    SciTech Connect

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  14. Energy Dependence of $\\bar{K}N$ Interactions and Resonance Pole of Strange Dibaryons

    SciTech Connect

    Ikeda, Y.; Kamano, H.; Sato, T.

    2010-09-01

    We study the resonance energy of the strange dibaryons using two models with the energy-independent and energy-dependent potentials for the s-wave $\\bar{K}N$ interaction, both of which are derived by certain reductions from the leading order term of the effective chiral Lagrangian. These potential models produce rather different off-shell behaviors of the two-body $\\bar{K}N$ - $\\pi\\Sigma$ amplitudes in $I=0$ channel, i.e., the model with energy-independent (energy-dependent) potential predicts one (two) resonance pole in the $\\Lambda(1405)$ region, while they describe the available data equally well. We find that the energy-independent potential model predicts one resonance pole of the strange dibaryons, whereas the energy-dependent potential model predicts two resonance poles: one is the shallow quasi-bound state of the $\\bar{K}NN$, and another is the resonance of the $\\pi Y N$ with large width. An investigation of the binding energy of the strange dibaryons will make a significant contribution to clarify resonance structure of s-wave $\\bar{K}N$ -$\\pi\\Sigma$ around the $\\Lambda(1405)$ region.

  15. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    NASA Astrophysics Data System (ADS)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  16. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab.

  17. Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Herzing, Andrew A.; Guler, Urcan; Zhou, Xiuli; Boltasseva, Alexandra; Shalaev, Vladimir; Norris, Theodore B.

    2016-04-01

    The plasmon resonance characteristics of refractory TiN thin films were analyzed using electron energy-loss spectroscopy (EELS). A bulk plasmon resonance was observed at 2.81 eV and a weaker surface plasmon resonance peak was detected at 2.05 eV. These findings are compared to finite-difference time-domain simulations based on measured optical data. The calculated values for both the bulk and surface resonances (2.74 eV and 2.15 eV, respectively) show reasonable agreement with those measured via EELS. The amplitude of the experimentally observed surface resonance was weaker than that typically encountered in noble metal nanostructures, and this is discussed in the context of electron density and reduced spatial confinement of the resonance mode in the thin-film geometry.

  18. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    SciTech Connect

    Lan, Chunbo; Qin, Weiyang Deng, Wangzheng

    2015-08-31

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.

  19. Development and comparison of a Primer-Probe Energy Transfer based assay and a 5' conjugated Minor Groove Binder assay for sensitive real-time PCR detection of infectious laryngotracheitis virus.

    PubMed

    McMenamy, M J; McKillen, J; Hjertner, B; Kiss, I; Yacoub, A; Leijon, M; Duffy, C; Belák, S; Welsh, M; Allan, G

    2011-08-01

    In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2×10(8) to 2×10(2)copies/μl. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. PMID:21539859

  20. Biomolecular interactions probed by fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Lange, Daniela Charlotte

    2000-09-01

    This thesis describes how a physical phenomenon, Fluorescence Resonance Energy Transfer (FRET), can be exploited for the study of interactions between biomolecules. The physical basis of this phenomenon is discussed and it is described how some of its characteristics can be exploited in measurement. A recently introduced method, photobleaching FRET microscopy, was implemented and its image analysis refined to suit our biological context. Further, a new technique is proposed, which combines FRET with confocal laser scanning microscopy to optimize resolution and to allow for 3D-studies in living cells. The first part of this thesis presents the application of FRET to the study of oligomerization of G-protein coupled receptors (GPCRs), which was performed at the Fraser Laboratories at McGill University in Montreal. It is demonstrated how FRET microscopy allowed us to circumvent problems of traditional biochemical approaches and provided the first direct evidence for GPCR oligomerization in intact cells. We found that somatostatin receptors (SSTRs) functionally interact by forming oligomers with their own kind, with different SSTR isoforms, and even with distantly related GPCRs, such as dopamine receptors, the latter of which is breaking with the dogma that GPCRs would only pair up with their own kind. The high sensitivity of the FRET technique allowed us to characterize these interactions under more physiological conditions, which lead to the observation that oligomerization is induced by receptor agonist. We further studied the differential effects of agonists and antagonists on receptor oligomerization, leading to a model for the molecular mechanism underlying agonist/antagonist function and receptor activation. The second part was carried out at the Neurobiology Laboratory of the VA Medical Center in Newington, CT. The objective was to further our understanding of Niemann- Pick type C disease, which is characterized by a defect in intracellular cholesterol

  1. The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti

    2014-04-01

    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.

  2. The Evaluation of Empirical Resonance Energies as Reaction Enthalpies with Particular Reference to Benzene.

    ERIC Educational Resources Information Center

    George, Philip; And Others

    1984-01-01

    Discusses the nature of experimental resonance energy, explaining how its magnitude depends upon choice of reference molecules from which bond energies are derived. Also explains how it can be evaluated more simply, without recourse to bond energies, as enthalpy change for a reaction predetermined by choice of reference molecules. (JN)

  3. Improving energy harvesting by stochastic resonance in a laminated bistable beam

    NASA Astrophysics Data System (ADS)

    Li, HaiTao; Qin, WeiYang; Deng, Wangzheng; Tian, Ruilan

    2016-03-01

    This paper presents a bistable energy harvesting device as piezoelectric beam acted upon by a harmonic axial load and a transverse random excitation. A comprehensive analytical study for stochastic resonance in the bistable mechanical system is carried out, from which the system can harvest energy at a high efficiency. The bistable electromechanical model is set up and the corresponding equations are derived by extended Hamilton principle. The condition for occurrence of stochastic resonance is derived by Kramers rate. Numerical simulation is carried out and results are obtained. Stochastic resonance is proved and observed when the system is excited by a Gaussian white noise. The output voltage and power conversion in the condition of stochastic resonance is noticeably higher than those in other conditions. These results can provide a theoretical method for preliminary design and optimization of parameters, which can improve the efficiency of energy harvester.

  4. Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Liao, Meiyong; Toda, Masaya; Sang, Liwen; Hishita, Shunichi; Tanaka, Shuji; Koide, Yasuo

    2014-12-01

    The authors report the resonance frequency and the energy dissipation of single crystal diamond cantilevers with different dimensions, which were fabricated by ion implantation assisted technique. The resonance frequency well followed the inverse power law relationship with the length of the cantilevers and exhibited a high reproducibility with varying the dimensions. The energy dissipation decreased with increasing the cantilever length and saturated or reduced at a certain value. For the shorter cantilevers, clamping loss governed the energy dissipation. As the cantilever length increased to a certain value, defects relaxation or surface effect became dominant. The possible origins for these energy dissipations were discussed.

  5. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  6. Wave resonances and the partition of energy in ideal compressible magnetohydrodynamic fluids

    SciTech Connect

    Zorzan, C.; Cally, P. S.

    2012-11-15

    Phase mixing and resonant absorption are two processes that have been under scrutiny for some time because of their role in wave damping and in providing a mechanism for heating space and laboratory plasmas. The accumulation or absorption of energy that develops within a resonant layer is usually attributed to a logarithmic singularity, but it will be shown that this build up of energy is inextricably tied to a discontinuity in the fluid displacement at the resonant point. This change in the dynamics of the problem will be examined by establishing a partition of energy that identifies and isolates the individual resonances within the fluid. The partition is based on a variational description of the Fourier transformed equations and is guided by an electrical model of the MHD system that not only illustrates the resonant structure threading the fluid but also exposes the mechanism driving the resonant absorption process. A simplified version of this model is then constructed to help determine the approximate rate of energy absorption.

  7. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  8. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-11-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  9. Resonance-induced enhancement of the energy harvesting performance of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Michelin, Sébastien; Doaré, Olivier

    2015-12-01

    The spontaneous flapping of a flag can be used to produce electrical energy from a fluid flow when coupled to a generator. In this paper, the energy harvesting performance of a flag covered by a single pair of polyvinylidene difluoride piezoelectric electrodes is studied both experimentally and numerically. The electrodes are connected to a resistive-inductive circuit that forms a resonant circuit with the piezoelectric's intrinsic capacitance. Compared with purely resistive circuits, the resonance between the circuit and the flag's flapping motion leads to a significant increase in the harvested energy. Our experimental study also validates our fluid-solid-electric nonlinear numerical model.

  10. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate. PMID:24081260

  11. Nuclear structure constrains on resonant energies: A solution of the cosmological 7Li problem?

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Mosquera, M. E.

    2013-01-01

    In this work, we study the cosmological 7Li problem from a nuclear structure point of view, by including resonances in the reactions which populate beryllium. The calculation of primordial abundances is performed by solving the balance equations semi-analytically. It is found that the primordial abundance of lithium is indeed reduced, as a consequence of the presence of resonant channels in the relevant cross sections. We set limits on the resonant energy for each reaction relevant for the chain leading to 7Li, by performing a statistical analysis of the available observational data.

  12. Analytical energy and bandwidth model for compact silicon photonic microdisk resonators.

    SciTech Connect

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2009-04-01

    Microdisk resonators for use as low energy modulators in telecom and datacom applications have been fabricated using vertical PN junctions which operate in reverse bias. These devices have demonstrated the lowest energy/bit thus far. In this paper we show that the reverse biased PN junction diodes follow the analytical depletion approximation based on numerical simulation.

  13. Calculation of the quasi-energies and resonances behavior of the hydrogen Lyman-alpha problem

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.

    1992-01-01

    Recently, Bakshi and Kalman presented numerical results for the quasi-energies of the n = 2 multiplet in the hydrogen Lyman-alpha transition for a plasma in which both strong static and oscillating electric fields are present. Recent work on related magnetic and optical resonance problems provides a simplified mathematical treatment, as well as greater insight into the complex resonance behavior of this interaction.

  14. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    NASA Astrophysics Data System (ADS)

    Raeder, Sebastian; Fies, Silke; Gottwald, Tina; Mattolat, Christoph; Rothe, Sebastian; Wendt, Klaus

    2010-02-01

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm - 1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  15. Quantum mechanical resonance calculations using an energy selected basis in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Montgomery, Jason

    2007-12-01

    Scattering resonances play a key role in many chemical processes, including unimolecular and bimolecular reactions and photodissociation. A significant theoretical emphasis over the past several decades has been placed on accurate resonance calculations for polyatomic systems. In spite of such efforts, a quantum treatment of molecular systems which exhibit a high density of states and strong coordinate coupling near dissociation remains a formidable task. The research described herein employs improved quantum mechanical methods to calculate a representation of nuclear motion, both bound and unbound, which is used subsequently to calculate accurate resonance energies and lifetimes for two triatomic systems: the neon trimer and ozone. Specifically, theory and results are given regarding the construction of an optimal, L2 eigenbasis using techniques such as the discrete variable representation, the energy selected basis (ESB) method, and iterative diagonalization methods. A new energy selection method is also developed and implemented for the neon trimer. Subsequent resonance calculations are described which make use of the artificial boundary inhomogeneity (ABI) method, adapted to work with the above mentioned ESB and hyperspherical coordinates. The ABI method is used to calculate a set of linearly independent wavefunctions (LIWs) at a given energy for the representation of the scattering wavefunction. Resonance parameters are obtained by imposing scattering boundary conditions on a linear combination of LIWs and solving for the S-matrix, S, its energy derivative, dS/dE, and the Smith lifetime matrix, Q. When available, comparisons are made with previously reported calculations.

  16. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    NASA Astrophysics Data System (ADS)

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2014-11-01

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  17. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    SciTech Connect

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  18. Introducing novel amorphous carbon nanoparticles as energy acceptors into a chemiluminescence resonance energy transfer immunoassay system.

    PubMed

    Wang, Zhenxing; Gao, Hongfei; Fu, Zhifeng

    2013-11-21

    A novel chemiluminescence resonance energy transfer (CRET) system for competitive immunoassay of biomolecules was developed by using novel amorphous carbon nanoparticles (CNPs) prepared from candle soot as energy acceptors. The CNPs were firstly prepared to bind with the antigen (Ag) for obtaining the nanocomposite CNP-Ag, and this obtained CNP-Ag was then reacted with the horseradish peroxidase-labeled antibody (HRP-Ab) to assemble the CRET system. The luminol catalyzed by HRP serving as the energy donor for CNPs triggered the CRET phenomenon between luminol and CNPs, which led to the chemiluminescence signal decrease. Due to the competitive immunoreaction of the target antigen and the CNP-Ag, a part of the CNP-Ag was replaced from the HRP-Ab, and then resulted in a weaker interaction between luminol and CNPs. Thus the competitive immunoreaction led to a higher chemiluminescence emission. This CNP-based CRET system was successfully applied to detect the human IgG as a model analyte, and a linear range of 10-200 ng mL(-1) and a detection limit of 1.9 ng mL(-1) (S/N = 3) were obtained. The results for real sample analysis demonstrated its application potential in some important areas such as clinical diagnosis. PMID:23979821

  19. English to Sanskrit Machine Translation Using Transfer Based approach

    NASA Astrophysics Data System (ADS)

    Pathak, Ganesh R.; Godse, Sachin P.

    2010-11-01

    Translation is one of the needs of global society for communicating thoughts and ideas of one country with other country. Translation is the process of interpretation of text meaning and subsequent production of equivalent text, also called as communicating same meaning (message) in another language. In this paper we gave detail information on how to convert source language text in to target language text using Transfer Based Approach for machine translation. Here we implemented English to Sanskrit machine translator using transfer based approach. English is global language used for business and communication but large amount of population in India is not using and understand the English. Sanskrit is ancient language of India most of the languages in India are derived from Sanskrit. Sanskrit can be act as an intermediate language for multilingual translation.

  20. Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Xiong, Liuyang; Tang, Lihua; Mace, Brian R.

    2016-05-01

    An internal resonance based broadband vibration energy harvester is proposed by introducing an auxiliary oscillator to the main nonlinear harvesting oscillator. Compared to conventional nonlinear energy harvesters, the natural frequencies of this two-degree-of-freedom nonlinear system can be easily adjusted to be commensurable which will result in more resonant peaks and better wideband performance. Experimental measurements and equivalent circuit simulations demonstrate that this design outperforms its linear counterpart. In addition to the open-circuit voltage, the optimal resistance to obtain the maximum power is determined. Nearly 130% increase in the bandwidth is achieved compared to the linear counterpart at an excitation level of 2 m/s2. The findings provide insight for the design of a broadband energy harvester when there is nonlinearity and internal resonance.

  1. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching

    PubMed Central

    Rieger, Johannes; Isacsson, Andreas; Seitner, Maximilian J.; Kotthaus, Jörg P.; Weig, Eva M.

    2014-01-01

    Clamping losses are a widely discussed damping mechanism in nanoelectromechanical systems, limiting the performance of these devices. Here we present a method to investigate this dissipation channel. Using an atomic force microscope tip as a local perturbation in the clamping region of a nanoelectromechanical resonator, we increase the energy loss of its flexural modes by at least one order of magnitude. We explain this by a transfer of vibrational energy into the cantilever, which is theoretically described by a reduced mechanical impedance mismatch between the resonator and its environment. A theoretical model for this mismatch, in conjunction with finite element simulations of the evanescent strain field of the mechanical modes in the clamping region, allows us to quantitatively analyse data on position and force dependence of the tip-induced damping. Our experiments yield insights into the damping of nanoelectromechanical systems with the prospect of engineering the energy exchange in resonator networks. PMID:24594876

  2. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload

    NASA Astrophysics Data System (ADS)

    Leland, Eli S.; Wright, Paul K.

    2006-10-01

    Vibration energy scavenging, harvesting ambient vibrations in structures for conversion into usable electricity, provides a potential power source for emerging technologies including wireless sensor networks. Most vibration energy scavenging devices developed to date operate effectively at a single specific frequency dictated by the device's design. However, for this technology to be commercially viable, vibration energy scavengers that generate usable power across a range of driving frequencies must be developed. This paper details the design and testing of a tunable-resonance vibration energy scavenger which uses the novel approach of axially compressing a piezoelectric bimorph to lower its resonance frequency. It was determined that an axial preload can adjust the resonance frequency of a simply supported bimorph to 24% below its unloaded resonance frequency. The power output to a resistive load was found to be 65-90% of the nominal value at frequencies 19-24% below the unloaded resonance frequency. Prototypes were developed that produced 300-400 µW of power at driving frequencies between 200 and 250 Hz. Additionally, piezoelectric coupling coefficient values were increased using this method, with keff values rising as much as 25% from 0.37 to 0.46. Device damping increased 67% under preload, from 0.0265 to 0.0445, adversely affecting the power output at lower frequencies. A theoretical model modified to include the effects of preload on damping predicted power output to within 0-30% of values obtained experimentally. Optimal load resistance deviated significantly from theory, and merits further investigation.

  3. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  4. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  5. Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer

    PubMed Central

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-01-01

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F− ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity. PMID:25959016

  6. Mesoscopic order and the dimensionality of long-range resonance energy transfer in supramolecular semiconductors

    NASA Astrophysics Data System (ADS)

    Daniel, Clément; Makereel, François; Herz, Laura M.; Hoeben, Freek J. M.; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W.; Silva, Carlos

    2008-09-01

    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral helical stacks, while the second set form less organized "frustrated" stacks. Here we study the effects of supramolecular organization on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Förster theory. Our results and analysis show that control of supramolecular order in the nanometer length scale has a dominant effect on the efficiency and dimensionality of resonance energy transfer.

  7. Theoretical study of resonances in low-energy collisions of three identical atoms

    NASA Astrophysics Data System (ADS)

    Yuen, Chi Hong; Kokoouline, Viatcheslav

    2016-05-01

    Resonances in low-energy collisions of three identical atoms are studied theoretically using hyperspherical coordinates. Two different methods are used and compared to determine positions and widths of three-body resonances: the complex absorbing potential and eigenchannel R-matrix approaches. Good agreement between the results of the two approaches is found. Cross sections for dimer formation in three-body recombination is determined. For this purpose the formula of Ref. is used (and re-derived). The developed code is applied to study collisions of three hydrogen atoms at low energies. Supported by the National Science Foundation, Grant No PHY-15-06391.

  8. Fano resonances in high energy electron transport in nanowires of variable cross-section

    NASA Astrophysics Data System (ADS)

    Baskin, L. M.; Kabardov, M. M.; Sharkova, N. M.

    2015-09-01

    Electron ballistic transport in 2D quantum waveguide with two narrowings is considered. For longitudinal electron motion such narrowings play the role of effective potential barriers and conditions for resonant tunneling arise. If the electron energy is sufficiently high the electron wave can scatter into different quantum states (transverse channels of the leads) which results in complicated E-dependence of the scattering amplitudes. Numerical simulations have shown that the scattering amplitudes resonances are of Fano type. The form of the transmission probability curve is conditioned by interference of the quantum states into which the electron wave is scattered by the narrowings. The suggested interference model makes possible to find the resonance parameters with high precision and to link them to the closed resonator eigenvalues.

  9. Resonant gate driver with efficient gate energy recovery and switching loss reduction

    NASA Astrophysics Data System (ADS)

    Kim, I.-G.; Kwak, S.-S.

    2016-04-01

    This article describes a novel resonant gate driver for charging the gate capacitor of power metal-oxide semiconductor field-effect-transistors (MOSFETs) that operate at a high switching frequency in power converters. The proposed resonant gate driver is designed with three small MOSFETs to build up the inductor current in addition to an inductor for temporary energy storage. The proposed resonant gate driver recovers the CV2 gate loss, which is the largest loss dissipated in the gate resistance in conventional gate drivers. In addition, the switching loss is reduced at the instants of turn on and turn off in the power MOSFETs of power converters by using the proposed gate driver. Mathematical analyses of the total loss appearing in the gate driver circuit and the switching loss reduction in the power switch of power converters are discussed. Finally, the proposed resonant gate driver is verified with experimental results at a switching frequency of 1 MHz.

  10. Nonradiative resonance energy transfer between semiconductor quantum dots

    SciTech Connect

    Samosvat, D. M. Chikalova-Luzina, O. P.; Zegrya, G. G.

    2015-07-15

    A microscopic analysis of the mechanisms of nonradiative energy transfer in a system of two semiconductor QDs caused by Coulomb interaction of donor and acceptor electrons is performed. The energy transfer rate is calculated for QDs based on III–V compounds using the Kane model. Conditions are analyzed under which energy transfer from a donor to an acceptor is possible. The mixing in of the p states of the valence band to the s states of the conduction band is found to give rise to additional contributions to the matrix element of energy transfer. It is shown that these additional contributions play a considerable role in the energy transfer process at distances between QDs close to contact distances or much greater. The influence of the exchange interaction on the energy transfer mechanism is analyzed, and it is shown that this interaction should be taken into account for a quantitative description of the energy transfer when QDs are separated by a distance close to the contact distance.

  11. Energy loss by resonance line photons in an absorbing medium

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Kunasz, P. B.

    1980-01-01

    The mean path length of photons undergoing repeated scatterings in media of large optical thickness is calculated from accurate numerical solutions of the transfer equation including the effect of frequency redistribution characteristic of combined Doppler and natural broadening. Energy loss by continuous absorption processes, such as ionization or dust absorption, is discussed, and asymptotic scaling laws for the energy loss, the mean path length, and the mean number of scatterings are inferred from the numerical data.

  12. Chemical process yielding stimulating emission of visible radiation via fast near resonant energy transfer

    SciTech Connect

    Gole, J.L.; Woodward, J.R.; Cobb, S.H.

    1991-05-28

    This patent describes a chemical process yielding stimulated emission of visible radiation via fast rear resonant intermolecular energy transfer. It comprises: providing a first source of vapor selected from the group consisting of metal or semimetal vapor; providing a second source of atomic vapor selected from the group consisting of metal or semimetal vapor to serve as receptor atoms to receive the energy; providing a source of reactant to react with the first source of vapor in a highly exothermic reaction which liberates energy exceeding 2.5 eV; chemically reacting the reactant and the first source of vapor to form metastable states of a final reaction product; transferring energy stored in the metastable states of the the reaction product to the second source of atomic vapor serving as receptor atoms by means of near resonant energy transfer; and providing a mirror configuration having first and second mirrors and windows associated with the mirrors.

  13. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  14. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  15. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.

    PubMed

    Zuo, Lei; Cui, Wen

    2013-10-01

    This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load. PMID:23918165

  16. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    NASA Astrophysics Data System (ADS)

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-01

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  17. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  18. General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.

    2012-10-01

    This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.

  19. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    NASA Astrophysics Data System (ADS)

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-12-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

  20. Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Ahmed-Seddik, B.; Despesse, G.; Boisseau, S.; Defay, E.

    2013-12-01

    This paper reports on the design, fabrication and testing of an innovative 33-mode piezoelectric vibration energy harvester (VEH). This system is able to change its resonant frequency in real time to follow the main frequency of a vibration source. The system proposed in this paper enables to adapt VEH characteristics (resonant frequency, electrical damping) to vibration parameters variations (frequency and amplitude) in order to optimize the extraction of energy and then the output power at any time. This solution allows up to 40% of resonant frequency tuning ratio; moreover, the adaptation is made in real time and the consumption of the regulation electronic is less than 10% of the VEH output power (480μW@0.1g-276Hz).

  1. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    NASA Astrophysics Data System (ADS)

    Tosaki, Mitsuo; Rauhala, Eero

    2015-10-01

    Backscattering spectra for 4He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50-100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp (4He, 12C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  2. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  3. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  4. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  5. Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters.

    PubMed

    Gaind, Vaibhav; Kularatne, Sumith; Low, Philip S; Webb, Kevin J

    2010-05-01

    We demonstrate the in vivo reconstruction of all fluorescence resonance energy transfer (FRET) parameters, including the nanometer donor-acceptor distance, in a mouse. The FRET chemical targets cancer cells, and on internalization, the acceptor is released, in lieu of a targeted anticancer drug in chemotherapy. Our method provides a new vehicle for studying disease by imaging FRET parameters in deep tissue. PMID:20436553

  6. Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein

    NASA Astrophysics Data System (ADS)

    Vetrone, Fiorenzo; Naccache, Rafik; Morgan, Christopher G.; Capobianco, John A.

    2010-07-01

    Water dispersible upconverting polyethylenimine (PEI)-capped NaYF4 nanoparticles co-doped with trivalent erbium (Er3+) and ytterbium (Yb3+) were prepared via solvothermal synthesis with an 18 nm average particle diameter. These upconverting nanoparticles can be used to sensitize a light-harvesting phycobiliprotein (R-Phycoerythrin) via luminescence resonance energy transfer (LRET).

  7. Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein.

    PubMed

    Vetrone, Fiorenzo; Naccache, Rafik; Morgan, Christopher G; Capobianco, John A

    2010-07-01

    Water dispersible upconverting polyethylenimine (PEI)-capped NaYF(4) nanoparticles co-doped with trivalent erbium (Er(3+)) and ytterbium (Yb(3+)) were prepared via solvothermal synthesis with an 18 nm average particle diameter. These upconverting nanoparticles can be used to sensitize a light-harvesting phycobiliprotein (R-Phycoerythrin) via luminescence resonance energy transfer (LRET). PMID:20648347

  8. Enhanced fluorescent resonant energy transfer of DNA conjugates complexed with surfactants and divalent metal ions.

    PubMed

    Oh, Taeseok; Choi, Jae-Young; Heller, Michael J

    2016-04-21

    Dimerization and resultant quenching of donor and acceptor dyes conjugated on DNA causes loss of fluorescent resonant energy transfer (FRET) efficiency. However, when complexed with surfactants and divalent metal ions, sheathing effects insulate and shield the DNA structures, reducing dimerization and quenching which leads to significant enhancement of FRET efficiency. PMID:26985458

  9. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Saha, Jaba; Datta Roy, Arpan; Dey, Dibyendu; Chakraborty, Santanu; Bhattacharjee, D.; Paul, P. K.; Hussain, Syed Arshad

    2015-10-01

    Fluorescence Resonance Energy Transfer between two organic dyes Fluorescein and Rhodamine 6G was investigated in aqueous solution in presence and absence of synthetic clay laponite. Spectroscopic studies suggest that both the dyes were present mainly as monomer in solution. Fluorescence Resonance Energy Transfer occurred from Fluorescein to Rhodamine 6G in solutions. Energy transfer efficiency increases in presence of laponite and the maximum efficiency was 72.00% in aqueous laponite dispersion. Energy transfer efficiency was found to be pH sensitive. It has been demonstrated that with proper calibration it is possible to use the present system under investigation to sense pH over a wide range from 1.5 to 8.0.

  10. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L.; Walker, Brian J.; Musselman, Kevin P.; Greenham, Neil C.; Friend, Richard H.; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures.

  11. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals.

    PubMed

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L; Walker, Brian J; Musselman, Kevin P; Greenham, Neil C; Friend, Richard H; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures. PMID:25282509

  12. Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade.

    PubMed

    Okada, Daichi; Nakamura, Takashi; Braam, Daniel; Dao, Thang Duy; Ishii, Satoshi; Nagao, Tadaaki; Lorke, Axel; Nabeshima, Tatsuya; Yamamoto, Yohei

    2016-07-26

    Color-tunable resonant photoluminescence (PL) was attained from polystyrene microspheres doped with a single polymorphic fluorescent dye, boron-dipyrrin (BODIPY) 1. The color of the resonant PL depends on the assembling morphology of 1 in the microspheres, which can be selectively controlled from green to red by the initial concentration of 1 in the preparation process of the microspheres. Studies on intersphere PL propagation with multicoupled microspheres, prepared by micromanipulation technique, revealed that multistep photon transfer takes place through the microspheres, accompanying energy transfer cascade with stepwise PL color change. The intersphere energy transfer cascade is direction selective, where energy donor-to-acceptor down conversion direction is only allowed. Such cavity-mediated long-distance and multistep energy transfer will be advantageous for polymer photonics device application. PMID:27348045

  13. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  14. Ultrafast resonance energy transfer in the umbelliferone-alizarin bichromophore.

    PubMed

    Lapini, Andrea; Fabbrizzi, Pierangelo; Piccardo, Matteo; di Donato, Mariangela; Lascialfari, Luisa; Foggi, Paolo; Cicchi, Stefano; Biczysko, Malgorzata; Carnimeo, Ivan; Santoro, Fabrizio; Cappelli, Chiara; Righini, Roberto

    2014-06-01

    In this work we present the synthesis, time-resolved spectroscopic characterization and computational analysis of a bichromophore composed of two very well-known naturally occurring dyes: 7-hydroxycoumarin (umbelliferone) and 1,2-dihydroxyanthraquinone (alizarin). The umbelliferone donor (Dn) and alizarin acceptor (Ac) moieties are linked to a triazole ring viaσ bonds, providing a flexible structure. By measuring the fluorescence quantum yields and the ultrafast transient absorption spectra we demonstrate the high efficiency (∼85%) and the fast nature (∼1.5 ps) of the energy transfer in this compound. Quantum chemical calculations, within the density functional theory (DFT) approach, are used to characterize the electronic structure of the bichromophore (Bi) in the ground and excited states. We simulate the absorption and fluorescence spectra using the TD-DFT methods and the vertical gradient approach (VG), and include the solvent effects by adopting the conductor-like polarizable continuum model (CPCM). The calculated electronic structure suggests the occurrence of weak interactions between the electron densities of Dn and Ac in the excited state, indicating that the Förster-type transfer is the appropriate model for describing the energy transfer in this system. The average distance between Dn and Ac moieties calculated from the conformational analysis (12 Å) is in very good agreement with the value estimated from the Förster equation (∼11 Å). At the same time, the calculated rate constant for energy transfer, averaged over multiple conformations of the system (3.6 ps), is in reasonable agreement with the experimental value (1.6 ps) estimated by transient absorption spectroscopy. The agreement between experimental results and computational data leads us to conclude that the energy transfer in Bi is well described by the Förster mechanism. PMID:24513677

  15. Control of localized surface plasmon resonance energy in monolayer structures of gold and silver nanoparticles.

    PubMed

    Yokota, Hiroki; Taniguchi, Taichi; Watanabe, Taichi; Kim, DaeGwi

    2015-10-28

    Monolayer structures of Au and Ag nanoparticles (NPs) were fabricated by a dipping method to realize the control of localized surface plasmon resonance (LSPR) energy. The mean inter-particle distance in the monolayer was controlled by changing the concentration of NPs in the colloidal solution used for the monolayer assembly. The extinction-peak energy of the monolayer structure was red-shifted with decreasing inter-particle distance, reflecting plasmon coupling between NPs. PMID:26411840

  16. Resonant scattering and charm showers in ultrahigh-energy neutrino interactions

    NASA Technical Reports Server (NTRS)

    Wilczek, F.

    1985-01-01

    Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.

  17. Measurement of radiative capture resonance energies with an extended gas target

    NASA Astrophysics Data System (ADS)

    Hutcheon, D. A.; Ruiz, C.; Fallis, J.; D'Auria, J. M.; Davids, B.; Hager, U.; Martin, L.; Ottewell, D. F.; Reeve, S.; Rojas, A.

    2012-10-01

    The DRAGON facility for the study of radiative capture reactions has an extended gas target, surrounded by an array of BGO detectors. The distribution of detected gamma rays amongst the segmented array permits an estimate of the reaction position and consequently of the resonance energy. We report a study of the technique, using the 24Mg(p, γ)25Al reaction. Energy determination to better than 0.5% has been demonstrated.

  18. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge

    SciTech Connect

    Golubev, S. V.; Izotov, I. V.; Mansfeld, D. A.; Semenov, V. E.

    2012-02-15

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy.

  19. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge.

    PubMed

    Golubev, S V; Izotov, I V; Mansfeld, D A; Semenov, V E

    2012-02-01

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy. PMID:22380303

  20. ''Magic'' Energies for Detecting Light Elements with Resonant Alpha Particle Backscattering

    SciTech Connect

    Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R.; He, X-M.; Lee, D-H.

    1998-11-04

    Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are ''magic'' energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed.

  1. Solid state nuclear magnetic resonance investigations of advanced energy materials

    NASA Astrophysics Data System (ADS)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  2. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    NASA Astrophysics Data System (ADS)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  3. Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz U.; Adiba, Afifa; Banerjee, Sourav

    2015-04-01

    This article presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) and use them in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. Concurrent wave filtering and energy harvesting mechanism is previously presented using local resonance phenomenon in phononic crystal, however energy harvesting capabilities of AEMM is not reported extensively. Traditionally acoustic metamaterials are used in filtering acoustic waves by trapping or guiding the acoustic energy, whereas this work presents that the trapped dynamic energy inside the soft constituent (matrix) of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell model, we asserted that at lower acoustic frequencies maximum power in the micro Watts (~36μW) range can be generated, which is significantly higher than the existing harvesters of same kind. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. In this work we propose sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a broadband energy scavenger (ES) with multi-cell model is designed with varying geometrical properties.

  4. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  5. Harvesting under transient conditions: harvested energy as a proxy for optimal resonance frequency detuning

    NASA Astrophysics Data System (ADS)

    Hynds, Taylor D.; Kauffman, Jeffrey L.

    2015-04-01

    Piezoelectric-based vibration energy harvesting is of interest in a wide range of applications, and a number of harvesting schemes have been proposed and studied { primarily when operating under steady state conditions. However, energy harvesting behavior is rarely studied in systems with transient excitations. This paper will work to develop an understanding of this behavior within the context of a particular vibration reduction technique, resonance frequency detuning. Resonance frequency detuning provides a method of reducing mechanical response at structural resonances as the excitation frequency sweeps through a given range. This technique relies on switching the stiffness state of a structure at optimal times to detune its resonance frequency from that of the excitation. This paper examines how this optimal switch may be triggered in terms of the energy harvested, developing a normalized optimal switch energy that is independent of the open- and short-circuit resistances. Here the open- and short-circuit shunt resistances refer to imposed conditions that approximate the open- and short-circuit conditions, via high and low resistance shunts. These conditions are practically necessary to harvest the small amounts of power needed to switch stiffness states, as open-circuit and closed-circuit refer to infinite resistance and zero resistance, respectively, and therefore no energy passes through the harvesting circuit. The limiting stiffness states are then defined by these open- and short-circuit resistances. The optimal switch energy is studied over a range of sweep rates, damping ratios, and coupling coefficients; it is found to increase with the coupling coefficient and decrease as the sweep rate and damping ratio increase, behavior which is intuitive. Higher coupling means more energy is converted by the piezoelectric material, and therefore more energy is harvested in a given time; an increased sweep rate means resonance is reached sooner, and there will less

  6. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  7. Resonance Energy of an Arene Hydrocarbon from Heat of Combustion Measurements

    PubMed Central

    Kolesnichenko, Vladimir L.

    2015-01-01

    A simple experimental method for determination of the resonance energy by measuring the energies of combustion for two isomeric compounds, aromatic 1-tert-butyl-3,5-dimethylbenzene and nonaromatic trans,trans,cis-1,5,9-cyclododecatriene is proposed. Both compounds not only have the same molecular formula, but also contain the same number of sp2 and sp3 carbon atoms. After converting the obtained values into the gas phase heats of combustion and subtracting one value from another, the resulting mean resonance energy of 184 kJ/mol was obtained. The proposed method can be offered as an experiment for an undergraduate physical chemistry lab curriculum. PMID:26997668

  8. Broadband vibration energy harvesting by application of stochastic resonance from rotational environments

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.; Cartmell, M. P.

    2015-11-01

    A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.

  9. Resonant energy transfer between Eu luminescent sites and their local geometry in GaN

    SciTech Connect

    Timmerman, Dolf; Wakamatsu, Ryuta; Tanaka, Kazuteru; Lee, Dong-gun; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-10-12

    Eu-doped GaN is a solid state material with promising features for quantum manipulation. In this study, we investigate the population dynamics of Eu in ions in this system by resonant excitation. From differences in the emission related to transitions between the {sup 5}D{sub 0} and {sup 7}F{sub 2} manifold in the Eu ions, we can distinguish different luminescence sites and observe that a resonant energy transfer takes place between two of these sites which are in proximity of each other. The time constants related to this energy transfer are on the order of 100 μs. By using different substrates, the energy transfer efficiency could be strongly altered, and it is demonstrated that the coupling between ions has an out-of-plane character. Based on these results, a microscopic model of this combined center is presented.

  10. Classification of vibrational resonances in the energy spectrum of the formaldehyde molecule and Katz's branch points

    NASA Astrophysics Data System (ADS)

    Bykov, A. D.; Duchko, A. N.

    2016-05-01

    The Rayleigh-Schrödinger perturbation theory of high orders and the algebraic Padé-Hermite approximants are used to determine the singular points of a vibrational energy function of the formaldehyde molecule dependent on a complex perturbation parameter as on the argument. It is shown that the Fermi, Darling-Dennison, and other higher-order vibrational resonances are related to Katz's points—common branch points on the complex plane of the energy of two vibrational states. Analysis of Katz's points that connect different vibrational states allows one to reveal essential resonance perturbations, to introduce an additional classification for them, and to determine the polyad structure of an energy spectrum.

  11. Anomalies in the theory of viscous energy losses due to shear in rotational MEMS resonators.

    SciTech Connect

    Walsh, Timothy Francis; Klody, Kelly Anne; Jenkins, Mark W.; Dohner, Jeffrey Lynn

    2003-12-01

    In this paper, the effect of viscous wave motion on a micro rotational resonator is discussed. This work shows the inadequacy of developing theory to represent energy losses due to shear motion in air. Existing theory predicts Newtonian losses with little slip at the interface. Nevertheless, experiments showed less effect due to Newtonian losses and elevated levels of slip for small gaps. Values of damping were much less than expected. Novel closed form solutions for the response of components are presented. The stiffness of the resonator is derived using Castigliano's theorem, and viscous fluid motion above and below the resonator is derived using a wave approach. Analytical results are compared with experimental results to determine the utility of existing theory. It was found that existing macro and molecular theory is inadequate to describes measured responses.

  12. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  13. sup 56 Fe resonance parameters for neutron energies up to 850 keV

    SciTech Connect

    Perey, C.M.; Perey, F.G.; Harvey, J.A.; Hill, N.W.; Larson, N.M.

    1990-12-01

    High-resolution neutron measurements for {sup 56}Fe-enriched iron targets were made at the Oak Ridge Electron Linear Accelerator (ORELA) in transmission below 20 MeV and in differential elastic scattering below 5 MeV. Transmission measurements were also performed with a natural iron target below 160 keV. The transmission data were analyzed from 5 to 850 keV with the multilevel R-matrix code SAMMY which uses Bayes' theorem for the fitting process. This code provides energies and neutron widths of the resonances inside the 5- to 850-keV energy region, as well as possible parameterization for resonances external to the analyzed region to describe the smooth cross section from a few eV to 850 keV. The resulting set of resonance parameters yields the accepted values for the thermal total and capture cross sections. The differential elastic-scattering data at several scattering angles were compared to theoretical calculations from 40 to 850 keV using the R-matrix code RFUNC based on the Blatt-Biedenharn formalism. Various combinations of spin and parity were tried to predict cross sections for the well defined {ell} > 0 resonances; comparison of these predictions with the data allowed us to determine the most likely spin and parity assignments for these resonances. The results of a capture data analysis by Corvi et al. (COR84), from 2 to 350 keV, were combined with our results to obtain the radiation widths of the resonances below 350 keV observed in transmission, capture, and differential elastic-scattering experiments.

  14. Three New Low-Energy Resonances in the 22Ne (p ,γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Corvisiero, P.; Davinson, T.; di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Scott, D. A.; Somorjai, E.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2015-12-01

    The 22Ne (p ,γ )23Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between 20Ne and 27Al in asymptotic giant branch stars and novae. The 22Ne(p ,γ )23Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the 22Ne (p ,γ )23Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless 22Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars.

  15. Superconducting resonator used as a phase and energy detector for linac setup

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  16. Three New Low-Energy Resonances in the ^{22}Ne(p,γ)^{23}Na Reaction.

    PubMed

    Cavanna, F; Depalo, R; Aliotta, M; Anders, M; Bemmerer, D; Best, A; Boeltzig, A; Broggini, C; Bruno, C G; Caciolli, A; Corvisiero, P; Davinson, T; di Leva, A; Elekes, Z; Ferraro, F; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Imbriani, G; Junker, M; Menegazzo, R; Mossa, V; Pantaleo, F R; Prati, P; Scott, D A; Somorjai, E; Straniero, O; Strieder, F; Szücs, T; Takács, M P; Trezzi, D

    2015-12-18

    The ^{22}Ne(p,γ)^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between ^{20}Ne and ^{27}Al in asymptotic giant branch stars and novae. The ^{22}Ne(p,γ)^{23}Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the ^{22}Ne(p,γ)^{23}Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless ^{22}Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars. PMID:26722918

  17. Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations

    NASA Astrophysics Data System (ADS)

    Honarvar, Hossein; Hussein, Mahmoud I.

    2016-02-01

    A nanophononic metamaterial is a new type of nanostructured material that features an array, or a forest, of intrinsically distributed resonating substructures. Each substructure exhibits numerous local resonances, each of which may hybridize with the phonon dispersion of the underlying host material, causing significant reductions in the group velocities and consequently a reduction in the lattice thermal conductivity. In this Rapid Communication, molecular dynamics simulations are utilized to investigate both the dynamics and the thermal transport properties of a nanophononic metamaterial configuration consisting of a freely suspended silicon membrane with an array of silicon nanopillars standing on the surface. The simulations yield results consistent with earlier lattice-dynamics-based predictions which showed a reduction in the thermal conductivity due to the presence of the local resonators. Using a spectral energy density approach, in which only simulation data are utilized and no a priori information on the nanostructure resonant phonon modes is provided, we show direct evidence of the existence of resonance hybridizations as an inherent mechanism contributing to the slowing down of thermal transport in the host medium.

  18. Continuous energy, multi-dimensional discrete ordinates transport calculations for problem dependent resonance treatment

    NASA Astrophysics Data System (ADS)

    Zhong, Zhaopeng

    In the past twenty 20 years considerable progress has been made in developing new methods for solving the multi-dimensional transport problem. However the effort devoted to the resonance self-shielding calculation has lagged, and much less progress has been made in enhancing resonance-shielding techniques for generating problem-dependent multi-group cross sections (XS) for the multi-dimensional transport calculations. In several applications, the error introduced by self-shielding methods exceeds that due to uncertainties in the basic nuclear data, and often they can be the limiting factor on the accuracy of the final results. This work is to improve the accuracy of the resonance self-shielding calculation by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. A new method has been developed, it can calculate the continuous-energy neutron fluxes for the whole two-dimensional domain, which can be utilized as weighting function to process the self-shielded multi-group cross sections for reactor analysis and criticality calculations, and during this process, the two-dimensional heterogeneous effect in the resonance self-shielding calculation can be fully included. A new code, GEMINEWTRN (Group and Energy-Pointwise Methodology Implemented in NEWT for Resonance Neutronics) has been developed in the developing version of SCALE [1], it combines the energy pointwise (PW) capability of the CENTRM [2] with the two-dimensional discrete ordinates transport capability of lattice physics code NEWT [14]. Considering the large number of energy points in the resonance region (typically more than 30,000), the computational burden and memory requirement for GEMINEWTRN is tremendously large, some efforts have been performed to improve the computational efficiency, parallel computation has been implemented into GEMINEWTRN, which can save the computation and memory requirement a lot; some energy points reducing

  19. Evaluation of silicon neutron resonance parameters in the thermal to 1800 keV energy range.

    PubMed

    Derrien, H; Leal, L C; Guber, K H; Larson, N M

    2005-01-01

    Because silicon is a major constituent of concrete and soil, neutron and gamma ray information on silicon is important for reactor shielding and criticality safety calculations. Therefore, much effort was put into the ENDF/B-VI evaluation for the three stable isotopes of silicon. The neutron capture cross section of natural silicon was recently measured at the Oak Ridge Electron Linear Accelerator (ORELA) in the energy range 1-700 keV. Using the ENDF/B-VI evaluation for initial values, a new evaluation of the resonance parameters was performed by adding the results of the ORELA capture measurements to the experimental database. The computer code SAMMY was used for the analysis of the experimental data; the new version of SAMMY allows accurate calculations of the self-shielding and multiple scattering effects in the capture measurements. The accuracy of the radiative capture widths of the resonances was improved by this analysis. Accurate values of the s-, p- and d-wave neutron strength functions were also obtained. Although the resonance capture component of the present evaluation is 2-3 times smaller than that in ENDF/B-VI, the total capture cross section is much larger, at least for energies >250 keV, because the direct capture component contributes values of the same order of magnitude as the resonance component. The direct component was not taken into account in the ENDF/B-VI evaluation and was calculated for the first time in the present evaluation. PMID:16381717

  20. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    SciTech Connect

    Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  1. Classification of zero-energy resonances by dissociation of Feshbach molecules

    SciTech Connect

    Hanna, Thomas M.; Goral, Krzysztof; Koehler, Thorsten; Witkowska, Emilia

    2006-08-15

    We study the dissociation of Feshbach molecules by a magnetic field sweep across a zero-energy resonance. In the limit of an instantaneous magnetic field change, the distribution of atomic kinetic energy can have a peak indicating dominance of the molecular closed-channel spin configuration over the entrance channel. The extent of this dominance influences physical properties such as stability with respect to collisions, and so the readily measurable presence or absence of the corresponding peak provides a practical method of classifying zero-energy resonances. Currently achievable ramp speeds, e.g., those demonstrated by Duerr et al. [Phys. Rev. A 70, 031601 (2005)], are fast enough to provide magnetic field changes that may be interpreted as instantaneous. We study the transition from sudden magnetic field changes to asymptotically wide, linear ramps. In the latter limit, the predicted form of the atomic kinetic energy distribution is independent of the specific implementation of the two-body physics, provided that the near-resonant scattering properties are properly accounted for.

  2. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  3. Pion elastic scattering from polarized sup 13 C in the energy region of the (3,3) resonance

    SciTech Connect

    Tanaka, N.

    1990-01-01

    In this work we measured the angular distributions of the analyzing power and the differential cross section at one energy below and one energy above the (3,3) resonance. A search for the predicted large asymmetries at momentum transfers near the second minimum of the differential cross sections was also performed at several energies across the resonance. Most of the data have been analyzed. One, for T{sub {pi}} = 162 MeV, is currently in progress.

  4. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    SciTech Connect

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  5. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  6. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ou, Yi; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Wen

    2015-07-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  7. A resonance mechanism of efficient energy transfer mediated by Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Miklaszewski, Wiesław

    2012-04-01

    The Wigner-Weisskopf-type model developed by Alicki and Giraldi [J. Phys. B 44, 154020 (2011)], 10.1088/0953-4075/44/15/154020 is applied to the biological process of energy transfer from a large peripheral light harvesting antenna to the reaction center. This process is mediated by the Fenna-Matthews-Olson (FMO) photosynthetic complex with a remarkably high efficiency. The proposed model provides a simple resonance mechanism of this phenomenon employing exciton coherent motion and is described by analytical formulas. A coupling to the vibrational environment is a necessary component of this mechanism as well as a fine-tuning of the FMO complex Hamiltonian. The role of the relatively strong coupling to the energy sink in achieving the resonance condition and the absence of heating of the vibrational environment are emphasized.

  8. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  9. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Pérez Moyet, Richard; Stace, Joseph; Amin, Ahmed; Finkel, Peter; Rossetti, George A.

    2015-10-01

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]C-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  10. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  11. Energy harvesting using rattleback: Theoretical analysis and simulations of spin resonance

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Singla, Puneet; Karami, M. Amin

    2016-05-01

    This paper investigates the spin resonance of a rattleback subjected to base oscillations which is able to transduce vibrations into continuous rotary motion and, therefore, is ideal for applications in Energy harvesting and Vibration sensing. The rattleback is a toy with some curious properties. When placed on a surface with reasonable friction, the rattleback has a preferred direction of spin. If rotated anti to it, longitudinal vibrations are set up and spin direction is reversed. In this paper, the dynamics of a rattleback placed on a sinusoidally vibrating platform are simulated. We can expect base vibrations to excite the pitch motion of the rattleback, which, because of the coupling between pitch and spin motion, should cause the rattleback to spin. Results are presented which show that this indeed is the case-the rattleback has a mono-peak spin resonance with respect to base vibrations. The dynamic response of the rattleback was found to be composed of two principal frequencies that appeared in the pitch and rolling motions. One of the frequencies was found to have a large coupling with the spin of the rattleback. Spin resonance was found to occur when the base oscillatory frequency was twice the value of the coupled frequency. A linearized model is developed which can predict the values of the two frequencies accurately and analytical expressions for the same in terms of the parameters of the rattleback have been derived. The analysis, thus, forms an effective and easy method for obtaining the spin resonant frequency of a given rattleback. Novel ideas for applications utilizing the phenomenon of spin resonance, for example, an energy harvester composed of a magnetized rattleback surrounded by ferromagnetic walls and a small scale vibration sensor comprising an array of several magnetized rattlebacks, are included.

  12. 239PU(N, f) at Resonance Energies and its Multi-Modal Interpretation

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Bax, H.; Ruskov, I.; Demattè, L.

    2003-10-01

    A measurement of fission fragment total kinetic energy (TKE) and mass yield distributions Y (A,TKE) in the 239Pu(n,f) resolved resonance region has been performed applying the twin Frisch gridded ionization chamber technique. Special emphasis was devoted to cope with the strong α-activity of this isotope by an improved pile-up rejection system. Up to about 200 eV all fission resonances could be resolved and their two-dimensional mass yield and TKE distribution, Y(A,TKE), measured. Compared to the results on 235U(n,f), much smaller fluctuations of the fission fragment mass and TKE have been observed in the case of 239Pu. From a physical point of view such fluctuations have been expected for the fission fragment properties, because the only possible lowenergy spin states (Jπ=0+,1+) belong to well separated (about 1.25 MeV) transition state bands. Hence, it was expected to observe differences in the fission fragment mass and TKE distributions between spin 0+ and 1+ resonances. However, no spin dependence and only a slight anti-correlation of the TKE with the prompt neutron multiplicity, νp. has been found in the resolved resonance energy region above 1 eV. Within the multi-modal random neck-rupture (MM-RNR) model the Y(A,TKE) distributions have been fitted assuming three fission modes, two asymmetric and one symmetric one. The branching ratio of the two asymmetric modes shows similar fluctuations as the experimental TKE. Recently, a new theoretical approach has given a solution to the absence of pronounced fluctuations of the fission properties in the case of 239Pu. Since only one transition state is involved in the fission of 0+ and 1+ resonances with a given fission fragment distribution, no fluctuations are expected.

  13. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  14. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  15. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  17. Piezoelectric Wind-Energy-Harvesting Device with Reed and Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Ji, Jun; Kong, Fanrang; He, Liangguo; Guan, Qingchun; Feng, Zhihua

    2010-05-01

    A wind-energy-harvesting device utilizing the principle of a harmonica was created. A reed in a resonant cavity vibrated efficiently with the blowing wind, and a piezoelectric element stuck on the reed generated electricity. The dimensions of the wind inlet were approximately 30×20 mm2. The device was investigated with a wind speed ranging from 2.8 to 10 m/s. An output power of 0.5-4.5 mW was obtained with a matching load of 0.46 MΩ. The energy conversion efficiency of the device could reach up to 2.4%.

  18. Method and apparatus for transferring and injecting rf energy from a generator to a resonant load

    DOEpatents

    Hoffert, William J.

    1987-01-01

    Improved apparatus and method are provided for the coherent amplification and injection of radio-frequency (rf) energy into a load cavity using a plurality of amplifier tubes. A plurality of strip line cavities (30, 32, 34, 36, 40, 42, 44) are laterally joined to define a continuous closed cavity (48), with an amplifier tube (50, 52, 54, 56, 58, 60, 62, 64) mounted within each resonant strip cavity. Rf energy is injected into the continuous cavity (48) from a single input (70) for coherent coupling to all of the amplifier tubes for amplification and injection into the load cavity (76).

  19. Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham

    2016-07-01

    We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.

  20. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  1. Dynamics and coherence resonance of tri-stable energy harvesting system

    NASA Astrophysics Data System (ADS)

    Haitao, Li; Weiyang, Qin; Chunbo, Lan; Wangzheng, Deng; Zhiyong, Zhou

    2016-01-01

    To improve the efficiency of energy harvesting, this paper presents a tri-stable energy harvesting device, which can realize inter-well oscillation at low-frequency base excitation and obtain a high harvesting efficiency by tri-stable coherence resonance. First, the model of a magnetic coupling tri-stable piezoelectric energy harvester is established and the corresponding equations are derived. The formula for the magnetic repulsion force between three magnets is given. Then, the dynamic responses of a system subject to harmonic excitation and Gaussian white noise excitation are explored by a numerical method and validated by experiments. Compared with a bi-stable energy harvester, the threshold for inter-well oscillation to occur can be moved forward to the low frequency, and the tri-stable device can create a dense high output voltage and power at the low intensity of stochastic excitation. Results show that for a definite deterministic or stochastic excitation, the system can be optimally designed such that it increases the frequency bandwidth and achieves a high energy harvesting efficiency at coherence resonance.

  2. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Gu, Seuli; Kang, Hyun-Ju; Kwon, Deuk-Chul; Kim, Yu-Sin; Chang, Yoon-Min; Chung, Chin-Wook

    2016-06-01

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As a result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.

  3. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho; Kim, Yong-Joe

    2013-05-01

    A novel and practical acoustic energy harvesting mechanism to harvest traveling sound at low audible frequency is introduced and studied both experimentally and numerically. The acoustic energy harvester in this study contains a quarter-wavelength straight tube resonator with lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonance frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric plates, resulting in the generation of electricity. To increase the total voltage and power, multiple PZT plates were placed inside the tube. The number of PZT plates to maximize the voltage and power is limited due to the interruption of air particle motion by the plates. It has been found to be more beneficial to place the piezoelectric plates in the first half of the tube rather than along the entire tube. With an incident sound pressure level of 100 dB, an output voltage of 5.089 V was measured. The output voltage increases linearly with the incident sound pressure. With an incident sound pressure of 110 dB, an output voltage of 15.689 V and a power of 12.697 mW were obtained. The corresponding areal and volume power densities are 0.635 mW cm-2 and 15.115 μW cm-3, respectively.

  4. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    PubMed Central

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  5. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  6. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses.

    PubMed

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  7. Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Öberg, S.; Adjizian, J.-J.; Erbahar, D.; Rio, J.; Humbert, B.; Dossot, M.; Soldatov, A.; Lefrant, S.; Mevellec, J.-Y.; Briddon, P.; Rayson, M. J.; Ewels, C. P.

    2016-01-01

    While changes in resonant Raman scattering measurements are commonly used to measure the effect of chemical functionalization on single-walled carbon nanotubes, the precise effects of functionalization on these spectra have yet to be clearly identified. In this density functional theory study, we explore the effects of functionalization on both the nanotube resonance energy and frequency shifts in radial breathing mode. Charge transfer effects cause a shift in the first Van Hove singularity spacings, and hence resonance excitation energy, and lead to a decrease in the radial breathing mode frequency, notably when the Fermi level decreases. By varying stochastically the effective mass of carbon atoms in the tube, we simulate the mass effect of functionalization on breathing mode frequency. Finally, full density functional calculations are performed for different nanotubes with varying functional group distribution and concentration using fluorination and hydrogenation, allowing us to determine overall effect on radial breathing mode and charge transfer. The results concur well with experiment, and we discuss the importance when using Raman spectroscopy to interpret experimental functionalization treatments.

  8. A deterministic and statistical energy analysis of tyre cavity resonance noise

    NASA Astrophysics Data System (ADS)

    Mohamed, Zamri; Wang, Xu

    2016-03-01

    Tyre cavity resonance was studied using a combination of deterministic analysis and statistical energy analysis where its deterministic part was implemented using the impedance compact mobility matrix method and its statistical part was done by the statistical energy analysis method. While the impedance compact mobility matrix method can offer a deterministic solution to the cavity pressure response and the compliant wall vibration velocity response in the low frequency range, the statistical energy analysis method can offer a statistical solution of the responses in the high frequency range. In the mid frequency range, a combination of the statistical energy analysis and deterministic analysis methods can identify system coupling characteristics. Both methods have been compared to those from commercial softwares in order to validate the results. The combined analysis result has been verified by the measurement result from a tyre-cavity physical model. The analysis method developed in this study can be applied to other similar toroidal shape structural-acoustic systems.

  9. Resonant charge transfer in low-energy ion scattering: Information depth in the reionization regime.

    PubMed

    Primetzhofer, D; Spitz, M; Taglauer, E; Bauer, P

    2011-11-01

    Time-Of-Flight Low-energy ion scattering (TOF-LEIS) experiments were performed for He(+) ions scattered from Cu(100) and Cu(0.5)Au(0.5)(100). Probabilities for resonant neutralization and reionization in close collisions were deduced in a wide energy range. To learn about the information depth in LEIS, in a next step ion spectra were analyzed for polycrystalline Cu samples. The relative yield of backscattered projectiles, which have undergone distinct charge exchange processes, was calculated. Results indicate a strong contribution to the ion yield that origins from particles reionized in a close collision in deeper layers when experiments are performed at energies where reionization is prominent. The surface sensitivity of the ion signal at different energies is quantified. Based on these results, the total ion spectrum was quantitatively modelled by two consistent, but different approaches. PMID:22053118

  10. Rotational energy transfer in HF(v = 2): Double resonance measurements and fitting law analysis

    SciTech Connect

    Copeland, R.A.; Crim, F.F.

    1983-05-01

    Data from overtone vibration-laser double resonance experiments show extremely rapid rotational relaxation in HF (v = 2) for rotational states up to J = 6 and serve to test energy based fitting laws for rotational energy transfer rate constants. The observed rotational states equilibrate in less than a gas kinetic collision with some individual rates being more than twice the hard sphere collision rate. Energy based fitting laws reproduce the observed evolution of the state populations to within 30% but fail systematically for higher (J = 5 and 6) rotational levels. Fitting laws formulated for collisions between an atom and a molecule are virtually as successful as those for collisions between two molecules. The extracted rate constants show that multiple rotational quantum energy transfer is an important aspect of relaxation dynamics.

  11. Nuclear Poincaré cycle synchronizes with the incident de Broglie wave to predict regularity in neutron resonance energies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Makio

    2016-06-01

    In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.

  12. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  13. Parallelization in SCALE continuous-energy resonance module GEMINEWTRN and transport module NEWT

    SciTech Connect

    Zhong, Z.; Downar, T. J.; DeHart, M. D.; Williams, M. L.

    2006-07-01

    A new resonance module, GEMINEWTRN, has been developed in SCALE, it can calculate the continuous-energy neutron flux within the whole two-dimensional geometry, providing us a rigorous solution. However, the new code needs tremendously amount of computation and memory for practical problem. To relieve the computational burden and memory requirement, parallelization has been implemented into GEMINEWTRN, both angular and spatial decomposition have been adopted so that both the computation and the memory requirement on each processor can be saved considerably, and this effort makes the new resonance method much feasible for practical use. Because the two-dimensional geometry capability and SN/ESC solver of GEMINEWTRN come from lattice physics code NEWT, the similar parallel technique has also been implemented into NEWT, which can also save the computation considerably. (authors)

  14. Colloidal aluminum nanoparticles with tunable localized surface plasmon resonances for energy applications

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna

    Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.

  15. Advancements in gene transfer-based therapy for hemophilia A

    PubMed Central

    Doering, Christopher B; Spencer, H Trent

    2010-01-01

    Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A. PMID:20577574

  16. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers

    PubMed Central

    2015-01-01

    Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. PMID:26191119

  17. Resonance energy transfer in nano-bio hybrid structures can be modulated by UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Grinevich, R. S.; Brazhnik, K. I.; Kotkovskii, G. E.; Lukashev, E. P.; Chistyakov, A. A.

    2014-11-01

    A method for targeted variation of the radiation properties of quantum dots (QDs) to control the efficiency of resonance energy transfer in nanocrystal assemblies and nano-bio hybrid materials has been developed. The method is based on strong ultraviolet (UV) laser irradiation of QDs and allows the extinction and luminescence spectra to be controlled and the luminescence quantum yield and decay kinetics to be varied. Water-soluble QDs have been synthesized and used for analyzing the effect of energy transfer from semiconductor nanocrystals on the photocycle of the photosensitive protein bacteriorhodopsin (bR) in bR-QD complexes. The UV irradiation mode has been selected in a way permitting the modulation of QD optical parameters without modification of their structure or physico-chemical properties. It is concluded that the QD interaction with bR accelerates its photocycle, but this acceleration is determined by electrostatic interactions, rather than Förster resonance energy transfer from QDs to bR. The method of UV laser irradiation of fluorescent semiconductor QDs has proven to be an efficient technique for variation of nanocrystal optical properties without affecting their structure, as well as for fine modulation of the energy transfer processes in the nanocrystal assemblies and nano-bio hybrid materials.

  18. Non-resonant electromagnetic energy harvester for car-key applications

    NASA Astrophysics Data System (ADS)

    Li, X.; Hehn, T.; Thewes, M.; Kuehne, I.; Frey, A.; Scholl, G.; Manoli, Y.

    2013-12-01

    This paper presents a novel non-resonant electromagnetic energy harvester for application in a remote car-key, to extend the lifetime of the battery or even to realize a fully energy autonomous, maintenance-free car-key product. Characteristic for a car-key are low frequency and large amplitude motions during normal daily operation. The basic idea of this non-resonant generator is to use a round flat permanent magnet moving freely in a round flat cavity, which is packaged on both sides by printed circuit boards embedded with multi-layer copper coils. The primary goal of this structure is to easily integrate the energy harvester with the existing electrical circuit module into available commercial car-key designs. The whole size of the energy harvester is comparable to a CR2032 coin battery. To find out the best power-efficient and optimal design, several magnets with different dimensions and magnetizations, and various layouts of copper coils were analysed and built up for prototype testing. Experimental results show that with an axially magnetized NdFeB magnet and copper coils of design variant B a maximum open circuit voltage of 1.1V can be observed.

  19. Temporal Homogenization of Linear ODEs, with Applications to Parametric Super-Resonance and Energy Harvest

    NASA Astrophysics Data System (ADS)

    Tao, Molei; Owhadi, Houman

    2016-04-01

    We consider the temporal homogenization of linear ODEs of the form {dot{x}=Ax+ɛ P(t)x+f(t)}, where P( t) is periodic and {ɛ} is small. Using a 2-scale expansion approach, we obtain the long-time approximation {x(t)≈ exp(At) ( Ω(t)+int_0^t exp(-A τ) f(τ) dτ )}, where {Ω} solves the cell problem {dot{Ω}=ɛ B Ω + ɛ F(t)} with an effective matrix B and an explicitly-known F( t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a O(ɛ^{-1})} time-scale), and show how B can be computed (at a cost independent of {ɛ}). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold κ proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than nκ. Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits ({n≈ 1000} for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.

  20. R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 eV

    SciTech Connect

    Leal, L.C.

    2001-02-27

    The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.

  1. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    PubMed Central

    Griep, Mark H.; Winder, Eric M.; Lueking, Donald R.; Garrett, Gregory A.; Karna, Shashi P.; Friedrich, Craig R.

    2012-01-01

    An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies. PMID:22737583

  2. Excited-State-Proton-Transfer-Triggered Fluorescence Resonance Energy Transfer: from 2-Naphthylamine to Phenosafranin

    NASA Astrophysics Data System (ADS)

    Ghosh, Debanjana; Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin

    2009-09-01

    Excited-state proton transfer (ESPT) and fluorescence resonance energy transfer (FRET) have been linearly coupled leading to an efficient pH-sensitive energy transfer from 2-naphthylamine (2NA) to a potentially bioactive cationic phenazinium dye, phenosafranin (PSF). The prototropic product produced exclusively from the photoexcited 2NA in the presence of added alkali serves as the donor for the energy transfer process. The energy transfer process is turned on at pH ≥ 12, whereas the process is turned off at a pH lower than that. Within the range of pH 12 to 13, the energy transfer efficiency (E) has been shown to follow a linear relation with the solution pH establishing the governing role of pH of the solution on the energy transfer process. The energy transfer follows a long-range dipole-dipole interaction mechanism. The critical energy transfer distance (R0) and the distance between the acceptor and the donor (r) have been determined for the ESPT-promoted FRET process at an optimum pH of 13. The present study involving the coupled processes is simple but has its implication due to its potential to be exploited for designing a pH-sensitive molecular switch.

  3. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  4. Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Ad; Wubs, Martijn; Mosk, Allard P.; Subramaniam, Vinod; Vos, Willem L.

    2012-11-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Förster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Förster distance, in contrast to common lore that this distance is fixed for a given FRET pair.

  5. Ultrafast Studies of Resonance Energy Transfer in Myoglobin: A-Helix and Local Conformational Fluctuations

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey A.; Link, Justin J.; Kao, Ya-Ting; Zang, Chen; Guo, Lijun; Zhong, Dongping

    2009-06-01

    Myoglobin (Mb), a heme containing protein, is involved in the storage and release of ligands. We report here our studies of resonance energy transfer in Mb using an intrinsic tryptophan (Trp) and the prosthetic heme as an energy transfer pair. With site-directed mutagenesis, we placed one-at-a-time a single Trp donor into four locations on the A-helix. Utilizing the femtosecond up-conversion method, we examined a series of energy transfer dynamics in Mb. A molecular dynamics (MD) simulation was also used to infer structure and dipole orientation fluctuations for specific Trp. Both methodologies were used to characterize the local dynamic nature of Mb in solution compared to the static crystal structure.

  6. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-01

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs. PMID:26900763

  7. Electromagnetic production of mesons and nucleon resonances at GeV energies

    SciTech Connect

    Lee, T.S.H.; Pichowsky, M.; Sato, T.

    1995-08-01

    A coupled-channels model for investigating the electromagnetic excitation of nucleon resonances (N*) at energies accessible to CEBAF, was developed. Motivated by the existing QCD-based hadron models, we assume that the basic resonant interaction mechanisms of the model Hamiltonian are the absorption and emission of photons and mesons by a bare quark core. The matrix elements of nonresonant interactions are deduced from low-order Feynman diagrams of an effective Lagrangian with chiral symmetry. The standard projection operator technique was applied to obtain a set of unitary scattering equations for describing {pi}N and {gamma}N reactions up to the GeV energy region. By assuming that the nonresonant two-pion continuum can be approximated as a fictitious {sigma}N state, the scattering equations can then be cast into a set of coupled-channels equations involving only two-particle {gamma}N, {pi}N, {eta}N, {rho}N, {pi}{Delta}, {omega}N and {sigma}N channels, which can be solved by well-developed numerical methods. The bare coupling constants and the range parameters of the hadronic form factors are adjusted to reproduce {pi}N scattering phase shifts up to 2-GeV incident pion energy. We then explore the dependence of the {gamma}N {yields} {pi}N and N(e,e{prime}{pi}) observables on the {gamma}N {yields} N* excitation strengths predicted by various QCD-based models of hadrons.

  8. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).

    PubMed

    Kim, Young-Pil; Jin, Zongwen; Kim, Eunkyung; Park, Sunyoung; Oh, Young-Hee; Kim, Hak-Sung

    2009-05-01

    We demonstrated in vitro small ubiquitin-like modifier (SUMO)-mediated modification (SUMOylation) of RanGTPase activating protein-1 (RanGAP1) by using bioluminescence resonance energy transfer (BRET) for studying protein interactions. Renilla luciferase (Rluc) was fused to SUMO, and RanGAP1, the binding partner of SUMO, was fused to enhanced yellow fluorescence protein (EYFP). Upon binding of SUMO and RanGAP1, BRET was observed between EYFP (donor) and Rluc (acceptor) in the presence of E1 (Aos1/Uba2) and E2 (Ubc9) enzymes, whereas mutation (K524A) of RanGAP1 at its SUMO binding site prevented significant energy transfer. Comparing BRET and fluorescence resonance energy transfer (FRET) efficiencies using this in vitro model system, we observed that BRET efficiency was 3-fold higher than FRET efficiency, due to the lower background signal intensity of EYFP in the BRET system. Consequently, BRET system is expected to be useful for in vitro analysis of SUMOylation as well as studying other protein interactions. PMID:19289109

  9. [Identification of high-lying odd energy levels of uranium by resonant ionization mass spectrometry].

    PubMed

    Du, H; Shi, G; Huang, M; Jin, C

    2000-06-01

    Single-colour and two-colour multiphoton resonant ionization spectra of uranium atom were studied extensively with a Nd:YAG laser-pumped dye laser atomic beam apparatus time-of-flight mass spectrometer in our laboratory. The energy locations of high-lying odd-parity levels in the region 33,003-34,264 cm-1, measured by a two-colour three-step ionization technique, were reported here. The angular momentum quantum number J was uniquely assigned for these levels by using angular momentum selection rules. PMID:12958925

  10. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.