Science.gov

Sample records for resonance energy transfer-based

  1. Resonant energy transfer based biosensor for detection of multivalent proteins.

    SciTech Connect

    Song, X.; Swanson, Basil I.

    2001-01-01

    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  2. Fluorescence resonance energy transfer-based stoichiometry in living cells.

    PubMed Central

    Hoppe, Adam; Christensen, Kenneth; Swanson, Joel A

    2002-01-01

    Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks. PMID:12496132

  3. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis.

    PubMed

    Zhao, Shulin; Huang, Yong; Shi, Ming; Liu, Rongjun; Liu, Yi-Ming

    2010-03-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were approximately 10(-9) M for biogenic amines including dopamine and epinephrine and approximately 10(-8) M for biogenic thiols (e.g., glutathione and acetylcysteine), organic acids (i.e., ascorbic acid and uric acid), estrogens, and native amino acids. These were 10-1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser-induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids, including Lys, Ser, Ala, Glu, Trp, etc., were detected. The contents ranged from 3 to 31 amol/cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  4. Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2012-12-01

    This paper presents a method of information processing using biomolecular input signals and fluorescence resonance energy transfer (FRET) signaling constructed on a DNA scaffold. Logic operations are achieved by encoding molecular inputs into an arrangement of fluorescence dyes using simple DNA reactions and by evaluating a logic expression using local photonic signaling that is much faster than DNA reactions. Experimental results verify the operation of a complete set of Boolean logic functions (AND, OR, NOT) and combinational logic operations using a FRET-signal cascade.

  5. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes.

    PubMed

    Junager, Nina P L; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  6. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    PubMed

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. PMID:26302361

  7. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor.

    PubMed

    Shojaei, Taha Roodbar; Salleh, Mohamad Amran Mohd; Sijam, Kamaruzaman; Rahim, Raha Abdul; Mohsenifar, Afshin; Safarnejad, Reza; Tabatabaei, Meisam

    2016-12-01

    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program. PMID:27380305

  8. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications. PMID:22242647

  9. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays.

    PubMed

    Ayoub, Mohammed Akli; Landomiel, Flavie; Gallay, Nathalie; Jégot, Gwenhael; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2015-01-01

    Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose-response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic

  10. Assessing Gonadotropin Receptor Function by Resonance Energy Transfer-Based Assays

    PubMed Central

    Ayoub, Mohammed Akli; Landomiel, Flavie; Gallay, Nathalie; Jégot, Gwenhael; Poupon, Anne; Crépieux, Pascale; Reiter, Eric

    2015-01-01

    Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, β-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose–response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and β-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for β-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full β-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that β-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic

  11. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  12. Synthesis of a fluorescence resonance energy transfer-based probe containing a tricyclic nucleoside analog for single nucleotide polymorphism typing.

    PubMed

    Hayai, Aya; Maeda, Yusuke; Ueno, Yoshihito

    2016-08-01

    Here, we report the synthesis of a fluorescence resonance energy transfer (FRET)-based probe for single nucleotide polymorphism (SNP) typing. The probe contains a fluorescent tricyclic base, 8-amino-3-(2,3-dihydroxypropyl)imidazo[4',5':5,6]pyrido[2,3-d]pyrimidine, as a donor molecule and 7-diethylaminocoumarin-3-carboxylic acid as an acceptor molecule. FRET was observed between the donor and acceptor molecules on the probe. The identity of the target bases on DNA and RNA strands could be determined using the probe. PMID:27329795

  13. Resonance energy transfer based on shallow and deep energy levels of biotin-polyethylene glycol/polyamine stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Lü, W.; Tokuhiro, Y.; Umezu, I.; Sugimura, A.; Nagasaki, Y.

    2006-10-01

    Fluorescent resonance energy transfer between the poly(ethylene glycol)-b-poly(2-(N ,N-dimethylamino)ethyl methacrylate) stabilized CdS quantum dots (QDs) and texas-red streptavidin was observed. We propose a four-state model to explain photoluminescence (PL) process of CdS QDs and suggest that there are two emission processes originated from shallow and deep trap energy levels corresponding to fast and slow components of PL decay, respectively. Energy transfer mechanism was discussed based on Dexter theory [J. Chem. Phys. 21, 863 (1953)] and the proposed four-state model. It is found that the energy transfer efficiency of deep energy level is higher than that of shallow energy level. The calculated distance between QD and texas red with the parameters of shallow energy level is the same with that of deep level, which indicates that the proposed model is reasonable for explaining the PL dynamics of CdS QDs.

  14. Noninvasive Evaluation of Heavy Metal Uptake and Storage in Micoralgae Using a Fluorescence Resonance Energy Transfer-Based Heavy Metal Biosensor1[C][W][OPEN

    PubMed Central

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard

    2014-01-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336

  15. Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe

    NASA Astrophysics Data System (ADS)

    Solomon, Metasebya; Guo, Kevin; Sudlow, Gail P.; Berezin, Mikhail Y.; Edwards, W. Barry; Achilefu, Samuel; Akers, Walter J.

    2011-06-01

    Cancer-related enzyme activity can be detected noninvasively using activatable fluorescent molecular probes. In contrast to ``always-on'' fluorescent molecular probes, activatable probes are relatively nonfluorescent at the time of administration due to intramolecular fluorescence resonance energy transfer (FRET). Enzyme-mediated hydrolysis of peptide linkers results in reduced FRET and increase of fluorescence yield. Separation of signal from active and inactive probe can be difficult with conventional intensity-based fluorescence imaging. Fluorescence lifetime (FLT) measurement is an alternative method to detect changes in FRET. Thus, we investigate FLT imaging for in vivo detection of FRET-based molecular probe activation in an orthotopic breast cancer model. Indeed, the measured FLT of the enzyme-activatable molecular probe increases from 0.62 ns just after injection to 0.78 ns in tumor tissue after 4 h. A significant increase in FLT is not observed for an always-on targeted molecular probe with the same fluorescent reporter. These results show that FLT contrast is a powerful addition to preclinical imaging because it can report molecular activity in vivo due to changes in FRET. Fluorescence lifetime imaging exploits unique characteristics of fluorescent molecular probes that can be further translated into clinical applications, including noninvasive detection of cancer-related enzyme activity.

  16. Continuous Monitoring of Specific mRNA Expression Responses with a Fluorescence Resonance Energy Transfer-Based DNA Nano-tweezer Technique That Does Not Require Gene Recombination.

    PubMed

    Shigeto, Hajime; Nakatsuka, Keisuke; Ikeda, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Funabashi, Hisakage

    2016-08-16

    This letter discusses the feasibility of continuously monitoring specific mRNA expression responses in a living cell with a probe structured as a fluorescence resonance energy transfer (FRET)-based DNA nano-tweezer (DNA-NT). The FRET-based DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from an open state to a closed state in recognition of a target mRNA, resulting in the closing of the distal relation of previously modified FRET-paired fluorescent dyes and generating a FRET signal. The expressions of glucose transporters (GLUT) 1 and 4 in a mouse hepato-carcinoma (Hepa 1-6 cells) were selected as the target model. Live-cell imaging analysis of Hepa 1-6 cells with both FRET-based DNA-NTs indicated that the behaviors of the FRET signals integrated in each individual cell were similar to those measured with the conventional mass analysis technique of semiquantitative real-time (RT) polymerase chain reaction (PCR). From these results, it is concluded that continuous monitoring of gene expression response without gene recombination is feasible with a FRET-based DNA-NT, even in a single cell manner. PMID:27458920

  17. Fluorescence resonance energy transfer based immunosensing of human IgG by using quantum dot/GIgG-gold nanoparticles/IgG conjugation.

    PubMed

    Luo, Lin; Liu, Zhao; Li, Jianjun; Zhu, Jian

    2014-06-01

    A novel immunosensor of human immune globulin (IgG) was fabricated based on the fluorescence transfer between luminescent semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs). AuNPs and CdSe/ZnS QDs were respectively labeled with immune reaction pair:IgG and goat anti-human immunoglobulin (GIgG), by optimizing the conditions including pH value and protein amount. In the assembled QD-GIgG-IgG-AuNP fluorescence resonance energy transfer (FRET) immunocomplex system, the presence of AuNP-IgG directly reduced the fluorescence intensity of the GIgG conjugated QDs. As a result, the concentration of AuNP-IgG had a linear relationship with the fluorescence decrease in a range of 0-1.57 microg/mL. Furthermore, the mechanism of the QDs' fluorescence decay has also been discussed and attributed to the light-induced photobleaching. This novel sensing method achieves quantitative detection of trace proteins, suggesting the potential of biomolecule-AuNPs conjugation based analytical methods in further application. PMID:24738348

  18. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors.

    PubMed

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2015-10-01

    Retinoid X receptors (RXRs) play a role as master regulators because of their capacity to form heterodimers with other nuclear receptors (NRs). Accordingly, retinoid signaling is involved in multiple biologic processes, including development, cell differentiation, metabolism, and cell death. However, the role and function of RXRs in different heterodimer complexes remain unidentified, mainly because most RXR drugs (called rexinoids) are not selective of specific heterodimer complexes. The lack of selectivity strongly limits the use of rexinoids for specific therapeutic approaches. To better characterize rexinoids at specific NR complexes, we have developed and optimized luciferase (Luc) protein complementation(PCA)-based bioluminescence resonance energy transfer (BRET) assays that can directly measure recruitment of a coactivator (CoA) motif fused to yellow fluorescent protein (YFP) by specific NR dimers. To validate the assays, we compared rexinoid modulation of CoA recruitment by the RXR homodimer and by the heterodimers Nur77/RXR and Nurr1/RXR. Results revealed that some rexinoids display selective CoA recruitment activities with homo- or heterodimer complexes. In particular, SR11237 (BMS649) has stronger potency for recruitment of CoA motif and transcriptional activity with the heterodimer Nur77/RXR than other complexes. This technology should be useful in identifying new compounds with specificity for individual dimeric species formed by NRs. PMID:26148973

  19. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture.

    PubMed

    Wu, Liang; Guo, Qing-Sheng; Liu, Yu-Qian; Sun, Qing-Jiang

    2015-05-19

    In this work, we report the design and application of a new ratiometric fluorescent probe, which contains different-colored quantum dots (QDs) as dual fluorophores, ultrathin silica shell as spacer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as receptor, for Zn(2+) detection in aqueous solution and living cells. In the architecture of our designed probe, the silica shell plays the key roles in controlling the locations of QDs, TSPP, and Zn(2+), preventing the direct contact between QDs and Zn(2+) but affording fluorescence resonance energy transfer (FRET) from dual-color QDs to TSPP. In the presence of Zn(2+), the analyte-receptor reaction changes the absorption in the range of the Q-band of TSPP and accordingly the efficiencies of two independent FRET processes from the dual-colored QDs to the acceptor, respectively, leading to fluorescence enhancement of green-emission QDs whereas fluorescence quenching of yellow-emission QDs. Benefiting from the well-resolved dual emissions from different-colored QDs and the large range of emission ratios, the probe solution displays continuous color changes from yellow to green, which can be clearly observed by the naked eye. Under physiological conditions, the probe exhibits a stable response for Zn(2+) from 0.3 to 6 μM, with a detection limit of 60 nM in aqueous solutions. With respect to single-emission probes, this ratiometric probe has demonstrated to feature excellent selectivity for Zn(2+) over other physiologically important cations such as Fe(3+) and Cu(2+). It has been preliminarily used for ratiometric imaging of Zn(2+) in living cells with satisfying resolution. PMID:25932651

  20. Förster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula.

    PubMed

    Hamano, Nobuhito; Murata, Masaharu; Kawano, Takahito; Piao, Jing Shu; Narahara, Sayoko; Nakata, Ryosuke; Akahoshi, Tomohiko; Ikeda, Tetsuo; Hashizume, Makoto

    2016-03-01

    Postoperative pancreatic fistula (POPF) is the most serious and challenging complication following gastroenterological surgery. Activated pancreatic juice leaking from the organ remnant contains proteases that attack the surrounding tissue, potentially leading to severe inflammation, tissue necrosis, and fistula formation. However, it is difficult to observe pancreatic leakage during surgery and to evaluate the protease activity of leaked fluid at the patient's bedside. This report describes a protein nanocage-based protease ratiometric sensor comprising a pancreatic protease-sensitive small heat-shock protein (HSP) 16.5, which is a naturally occurring protein in Methanococcus jannaschii that forms a spherical structure by self-assembly of 24 subunits, and a chemically conjugated donor-acceptor dye pair for Förster resonance energy transfer (FRET). The HSP-FRET probe was constructed by subunit exchange of each dye-labeled engineered HSP, resulting in a spherical nanocage of approximately 10 nm in diameter, which exhibited very high stability against degradation in blood plasma and no remarkable toxicity in mice. The efficiency of FRET was found to depend on both the dye orientation and the acceptor/donor ratio. Pancreatic proteases, including trypsin, α-chymotrypsin, and elastase, were quantitatively analyzed by fluorescence recovery with high specificity using the HSP-FRET nanoprobe. Furthermore, the HSP-FRET nanoprobe was sufficiently sensitive to detect POPF in the pancreatic juice of patients using only the naked eye within 10 min. Thus, this novel nanoprobe is proposed as an effective and convenient tool for the detection of POPF and the visualization of activated pancreatic juice during gastroenterological surgery. PMID:26845508

  1. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit.

    PubMed

    Mahalingam, Mohana; Perez, Claudio F; Fessenden, James D

    2016-06-24

    The skeletal muscle dihydropyridine receptor α1S subunit plays a key role in skeletal muscle excitation-contraction coupling by sensing membrane voltage changes and then triggering intracellular calcium release. The cytoplasmic loops connecting four homologous α1S structural domains have diverse functions, but their structural arrangement is poorly understood. Here, we used a novel FRET-based method to characterize the relative proximity of these intracellular loops in α1S subunits expressed in intact cells. In dysgenic myotubes, energy transfer was observed from an N-terminal-fused YFP to a FRET acceptor, ReAsH (resorufin arsenical hairpin binder), targeted to each α1S intracellular loop, with the highest FRET efficiencies measured to the α1S II-III loop and C-terminal tail. However, in HEK-293T cells, FRET efficiencies from the α1S N terminus to the II-III and III-IV loops and the C-terminal tail were significantly lower, thus suggesting that these loop structures are influenced by the cellular microenvironment. The addition of the β1a dihydropyridine receptor subunit enhanced FRET to the II-III loop, thus indicating that β1a binding directly affects II-III loop conformation. This specific structural change required the C-terminal 36 amino acids of β1a, which are essential to support EC coupling. Direct FRET measurements between α1S and β1a confirmed that both wild type and truncated β1a bind similarly to α1S These results provide new insights into the role of muscle-specific proteins on the structural arrangement of α1S intracellular loops and point to a new conformational effect of the β1a subunit in supporting skeletal muscle excitation-contraction coupling. PMID:27129199

  2. Fluorescence resonance energy transfer-based real-time polymerase chain reaction method without DNA extraction for the genotyping of F5, F2, F12, MTHFR, and HFE.

    PubMed

    Martinez-Serra, Jordi; Robles, Juan; Nicolàs, Antoni; Gutierrez, Antonio; Ros, Teresa; Amat, Juan Carlos; Alemany, Regina; Vögler, Oliver; Abelló, Aina; Noguera, Aina; Besalduch, Joan

    2014-01-01

    Blood samples are extensively used for the molecular diagnosis of many hematological diseases. The daily practice in a clinical laboratory of molecular diagnosis in hematology involves using a variety of techniques, based on the amplification of nucleic acids. Current methods for polymerase chain reaction (PCR) use purified genomic DNA, mostly isolated from total peripheral blood cells or white blood cells (WBC). In this paper we describe a real-time fluorescence resonance energy transfer-based method for genotyping directly from blood cells. Our strategy is based on an initial isolation of the WBCs, allowing the removal of PCR inhibitors, such as the heme group, present in the erythrocytes. Once the erythrocytes have been lysed, in the LightCycler(®) 2.0 Instrument, we perform a real-time PCR followed by a melting curve analysis for different genes (Factors 2, 5, 12, MTHFR, and HFE). After testing 34 samples comparing the real-time crossing point (CP) values between WBC (5×10(6) WBC/mL) and purified DNA (20 ng/μL), the results for F5 Leiden were as follows: CP mean value for WBC was 29.26±0.566 versus purified DNA 24.79±0.56. Thus, when PCR was performed from WBC (5×10(6) WBC/mL) instead of DNA (20 ng/μL), we observed a delay of about 4 cycles. These small differences in CP values were similar for all genes tested and did not significantly affect the subsequent analysis by melting curves. In both cases the fluorescence values were high enough, allowing a robust genotyping of all these genes without a previous DNA purification/extraction. PMID:25028568

  3. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  4. Fluorescence Resonance Energy Transfer Based on Interaction of PII and PipX Proteins Provides a Robust and Specific Biosensor for 2-Oxoglutarate, a Central Metabolite and a Signaling Molecule.

    PubMed

    Chen, Hai-Lin; Bernard, Christophe S; Hubert, Pierre; My, Laetitia; Zhang, Cheng-Cai

    2013-12-26

    2-Oxoglutarate is a central metabolite and a signalling molecule in both prokaryotes and eukaryotes. The cellular levels of 2-oxoglutarate vary rapidly in response to environmental changes, but an easy and reliable approach is lacking for the measurement of 2-oxoglutarate. Here we report a biosensor of 2-oxoglutarate based on the 2-oxoglutarate-dependent dissociation of the PII-PipX protein complex from cyanobacteria. Fusions of PII and PipX to either CFP or YFP could form a complex and their interaction could be detected by FRET (Fluorescence Resonance Energy Transfer). Mutations in PII or PipX that affect their interaction strongly decrease the FRET signal. Furthermore, the FRET signal is negatively affected, in a specific and concentration-dependent manner, by the presence of 2-oxoglutarate. This 2-oxoglutarate biosensor responds specifically and rapidly to a large range of 2-oxoglutarate levels, and is highly robust under different conditions, including in bacterial cell extracts. We further used this biosensor to study the interaction between PII and its effectors, and our data indicate that excess in Mg(2+) ions is a key factor for PII to respond efficiently to an increase in 2-oxoglutarate levels. This study paves the way for probing the dynamics of 2-oxoglutarate in various organisms and provides a valuable tool for the understanding of the molecular mechanism in metabolic regulation. PMID:24373496

  5. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  6. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  7. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ.

    PubMed

    Meng, Fanjie; Suchyna, Thomas M; Sachs, Frederick

    2008-06-01

    To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable alpha-helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 degrees C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the alpha-helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney-293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such alpha-actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen-19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally. PMID:18479457

  8. Energy saver prototype accelerating resonator

    SciTech Connect

    Kerns, Q.; May, M.; Miller, H.W.; Reid, J.; Turkot, F.; Webber, R.; Wildman, D.

    1981-06-01

    A fixed frequency rf accelerating resonator has been built and tested for the Fermilab Energy Saver. The design parameters and prototype resonator test results are given. The resonator features a high permeability nickel alloy resistor which damps unwanted modes and corona rolls designed with the aid of the computer code SUPERFISH. In bench measurements, the prototype resonator has achieved peak accelerating voltages of 500 kV for a 1% duty cycle and cw operation at 360 kV. 4 refs.

  9. [Energy resonance through cutaneous stimulation].

    PubMed

    Fouchier, Patrick

    2014-12-01

    Energy resonance through cutaneous stimulation is a method basedon "listening" through the fingers to the body's vibrations at various points on the skin corresponding to the meridians used in Chinese medicine. It helps to relieve the patient by balancing the body's energies. It can be carried out by any caregiver after specific training. PMID:25630081

  10. Energy transfer based emission analysis of (Tb³⁺, Sm³⁺): lithium zinc phosphate glasses.

    PubMed

    Reddy, C Parthasaradhi; Naresh, V; Ramaraghavulu, R; Rudramadevi, B H; Reddy, K T Ramakrishna; Buddhudu, S

    2015-06-01

    The present paper reports on the results pertaining to photoluminescence properties of Tb(3+), Sm(3+) and energy transfer from Tb(3+) to Sm(3+) ions in lithium zinc phosphate (LZP) glass matrix prepared by melt quenching method. Besides photoluminescence studies thermal stability for the LZP glass is also evaluated from TG-DTA measurement. Tb(3+) doped glasses have exhibited a prominent green emission at 547 nm assigned to (5)D4→(7)F5 transitions on exciting at λ(exci)=377 nm. The quenching phenomenon in Tb(3+) emission on varying its concentration has been discussed from cross-relaxations. Sm(3+) incorporated glasses have shown strong orange emission at 603 nm assigned to (4)G5/2→(6)H7/2 transition upon exciting with λ(exci)=404 nm. The possibility of energy transfer process taking place between these two ions is understood from the significant spectral overlap of Sm(3+) absorption and Tb(3+) emission. Migration of excitation energy from Tb(3+) ions to Sm(3+) ions at λ(exci)=375 nm is evaluated from the emission spectra of (0.5 mol.% Tb(3+)+(0.5-2.0 mol.%) Sm(3+)) co-doped glasses. The emission intensity of Sm(3+) has enhanced while Tb(3+) emission intensity decreased with an increase in Sm(3+) concentration suggesting the occurrence of energy transfer through cross-relaxations from Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2). The mechanism behind energy transfer process has been further explained from energy level diagram, decay profiles and confirmed by calculating energy transfer parameters (energy transfer efficiency (η) and energy transfer probability (P)) of co-doped glasses. The dipole-dipole interaction is found to be more responsible for energy transfer Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2) ions in LZP glass matrix. PMID:25756686

  11. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. PMID:25704499

  12. Microwave energy storage in resonant cavities

    SciTech Connect

    Alvarez, R.A.

    1983-02-01

    One method of generating short, high-power microwave pulses is to store rf energy in a resonant cavity over a relatively long fill time and extract is rapidly. A power gain roughly equal to the ratio of fill time to extraction time can be obtained. During the filling of a resonant cavity some of the energy is lost in heating the cavity walls, and some will generally be reflected at the input coupling of the cavity. In this paper we discuss the time dependence of the stored energy and related quantities and the way in which it depends on the coupling of the source to the cavity.

  13. Internal resonance for nonlinear vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Cao, D. X.; Leadenham, S.; Erturk, A.

    2015-11-01

    The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

  14. Energy localization in weakly dissipative resonant chains.

    PubMed

    Kovaleva, Agnessa

    2016-08-01

    Localization of energy in oscillator arrays has been of interest for a number of years, with special attention paid to the role of nonlinearity and discreteness in the formation of localized structures. This work examines a different type of energy localization arising due to the presence of dissipation in nonlinear resonance arrays. As a basic model, we consider a Klein-Gordon chain of finite length subjected to a harmonic excitation applied at an edge of the chain. It is shown that weak dissipation may be a key factor preventing the emergence of resonance in the entire chain, even if its nondissipative analog is entirely captured into resonance. The resulting process in the dissipative oscillator array represents large-amplitude resonant oscillations in a part of the chain adjacent to the actuator and small-amplitude oscillations in the distant part of the chain. The conditions of the emergence of resonance as well as the conditions of energy localization are derived. An agreement between the obtained analytical results and numerical simulations is demonstrated. PMID:27627299

  15. Energy localization in weakly dissipative resonant chains

    NASA Astrophysics Data System (ADS)

    Kovaleva, Agnessa

    2016-08-01

    Localization of energy in oscillator arrays has been of interest for a number of years, with special attention paid to the role of nonlinearity and discreteness in the formation of localized structures. This work examines a different type of energy localization arising due to the presence of dissipation in nonlinear resonance arrays. As a basic model, we consider a Klein-Gordon chain of finite length subjected to a harmonic excitation applied at an edge of the chain. It is shown that weak dissipation may be a key factor preventing the emergence of resonance in the entire chain, even if its nondissipative analog is entirely captured into resonance. The resulting process in the dissipative oscillator array represents large-amplitude resonant oscillations in a part of the chain adjacent to the actuator and small-amplitude oscillations in the distant part of the chain. The conditions of the emergence of resonance as well as the conditions of energy localization are derived. An agreement between the obtained analytical results and numerical simulations is demonstrated.

  16. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  17. Classical Approach to Multichromophoric Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A.

    2015-09-01

    A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between NA acceptors and ND donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation.

  18. Classical approach to multichromophoric resonance energy transfer.

    PubMed

    Duque, Sebastián; Brumer, Paul; Pachón, Leonardo A

    2015-09-11

    A classical formulation of the quantum multichromophoric theory of resonance energy transfer is developed on the basis of classical electrodynamics. The theory allows for the identification of a variety of processes of different order in the interactions that contribute to the energy transfer in molecular aggregates with intracoupling in donors and acceptor chromophores. Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by this theory. Specifically, in a coupling configuration between N_{A} acceptors and N_{D} donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs. As an example, the theory, applied to the transfer rate in light harvesting II, gives results in excellent agreement with experiment. Finally, it is explicitly shown that as long as linear response theory holds, the classical multichromophoric theory formally coincides with the quantum formulation. PMID:26406811

  19. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  20. Resonance energy transfer: Dye to metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-01

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  1. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  2. Plasmon-induced resonance energy transfer for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; Cushing, Scott K.; Meng, Fanke; Senty, Tess R.; Bristow, Alan D.; Wu, Nianqiang

    2015-09-01

    In Förster resonance energy transfer (FRET), energy non-radiatively transfers from a blue-shifted emitter to a red-shifted absorber by dipole-dipole coupling. This study shows that plasmonics enables the opposite transfer direction, transferring the plasmonic energy towards the short-wavelength direction to induce charge separation in a semiconductor. Plasmon-induced resonance energy transfer (PIRET) differs from FRET because of the lack of a Stoke's shift, non-local absorption effects and a strong dependence on the plasmon's dephasing rate and dipole moment. PIRET non-radiatively transfers energy through an insulating spacer layer, which prevents interfacial charge recombination losses and dephasing of the plasmon from hot-electron transfer. The distance dependence of dipole-dipole coupling is mapped out for a range of detuning across the plasmon resonance. PIRET can efficiently harvest visible and near-infrared sunlight with energy below the semiconductor band edge to help overcome the constraints of band-edge energetics for single semiconductors in photoelectrochemical cells, photocatalysts and photovoltaics.

  3. Resonant vibrational energy transfer in ice Ih

    SciTech Connect

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  4. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  5. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  6. A vibration energy harvesting device with bidirectional resonance frequency tunability

    NASA Astrophysics Data System (ADS)

    Challa, Vinod R.; Prasad, M. G.; Shi, Yong; Fisher, Frank T.

    2008-02-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22-32 Hz to enable a continuous power output 240-280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined.

  7. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  8. Characterization of energy trapping in a bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2010-12-01

    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic wave resonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measured dispersion properties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.

  9. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Kang, Misook; Bhaskar Kumar, G.; Ratnakaram, Y. C.

    2016-04-01

    Er3+, Pr3+ singly doped and co-doped PEO + PVP polymer composites have been synthesized by conventional solution casting method. The structural analysis has been carried out for all these polymer composites from XRD analysis. Raman spectral studies confirm the ion-polymer interactions and polymer complex formation. Thermal properties of pure polymer film has also been clearly elucidated by TG/DTA profiles. Well defined optical absorption bands pertaining to Er3+ and Pr3+ are observed in the absorption spectral profile and these bands are assigned with corresponding electronic transitions. The polymer films containing singly doped Er3+ and Pr3+ ions have displayed green and red emissions at 510 nm (2H11/2 → 4I15/2) and 688 nm (3P0 → 3F3) respectively under UV excitation source. Comparing the emission spectra of singly Er3+ and co-doped Er3+ + Pr3+: PEO + PVP polymer films, a significant red emission pertaining to Pr3+ions is remarkably enhanced in co-doped polymer system. This could be ascribed to possible energy transfer from Er3+ to Pr3+ in co-doped polymer system. The energy transfer mechanism is clearly demonstrated using their emission performances, overlapped spectral profiles and also life time decay dynamics. Thus, it could be suggested that Er3+: PEO + PVP, Pr3+: PEO + PVP and (Er3+ + Pr3+): PEO + PVP blended polymer films are potential materials for several photonic applications.

  10. Through-bond energy transfer-based ratiometric two-photon probe for fluorescent imaging of Pd(2+) ions in living cells and tissues.

    PubMed

    Zhou, Liyi; Wang, Qianqian; Zhang, Xiao-Bing; Tan, Weihong

    2015-04-21

    Palladium can cause severe skin and eye irritation once it enters the human body. Ratiometric two-photon fluorescent probes can both eliminate interference from environmental factors and realize deep-tissue imaging with improved spatial localization. To quantitatively track Pd(2+) in biosystems, we report here a colorimetric and two-photon ratiometric fluorescent probe, termed Np-Rh-Pd, which consists of a two-photon fluorophore (naphthalene derivative with a D-π-A structure) and a rhodamine B dye. The two fluorophores are directly linked to form a two-photon ratiometric fluorescent probe for Pd(2+) based on a through-bond energy transfer (TBET) strategy. It exhibits highly efficient energy transfer (90%) with two well-resolved emission peaks (wavelength difference of 100 nm), which could efficiently diminish the cross talk between channels and is especially favorable for ratiometric bioimaging applications. A signal-to-background ratio of 31.2 was observed for the probe, which affords a high sensitivity for Pd(2+) with a detection limit of 2.3 × 10(-7) M. It was also found that acidity does not affect the fluorescent response of the probe to Pd(2+), which is favorable for its applications in practical samples. The probe was further used for fluorescence imaging of Pd(2+) ions in live cells and tissue slices under two-photon excitation, which showed significant tissue-imaging depths (90-270 μm) and a high resolution for ratiometric imaging. PMID:25809980

  11. Influence of Donor on the Sensing Performance of a Series of Through-Bond Energy Transfer-Based Two-photon Fluorescent Cu(2+) Probes.

    PubMed

    Zhang, Yu-Jin; Wang, Xin; Zhou, Yong; Wang, Chuan-Kui

    2016-07-01

    Optical properties of a series of molecular two-photon fluorescent Cu(2+) probes containing the same acceptor (rhodamine group) are analyzed using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the presence of Cu(2+) . In this study, the compound with naphthalene as the donor is shown to be excellent ratiometric fluorescent chemosensor, whereas the compound with quinoline derivative as the donor shows off/on-typed colorimetric fluorescent response. For the compound with naphthalimide derivative as the donor, changing the connection between the donor and acceptor can efficiently prevent the fluorescent quenching of the probe both in the absence and presence of Cu(2+) . The donor moiety and the connection between donor and acceptor are thus found to play dominant roles on sensing performance of these probes. Moreover, distributions of molecular orbitals involved in the excitation and emission of the probes are analyzed to explore responsive mechanism of the probes. The through-bond energy transfer process is theoretically demonstrated. Our results are used to elucidate the available experimental measurements. This work is helpful to understand the relationships of structure with optical properties for the studied probes. PMID:27144496

  12. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.

    PubMed

    Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-11-15

    Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. PMID:27315518

  13. Resonance formation in low energy electron scattering from uracil

    NASA Astrophysics Data System (ADS)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2014-05-01

    We present detailed ab initio results for resonance formation in low energy electron scattering from uracil obtained with the R-matrix method. We identify a larger number of resonances than any previous theoretical study. Most of these resonances have core-excited shape character and appear to be associated to the ring structure of the molecule. Their link to DEA spectra and to the resonances present in electron scattering from pyrimidine are discussed. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  14. Effect of energy and momentum conservation on fluid resonances for resonant magnetic perturbations in a tokamak

    SciTech Connect

    Leitner, Peter; Heyn, Martin F.; Kernbichler, Winfried; Ivanov, Ivan B.; Kasilov, Sergei V.

    2014-06-15

    In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results.

  15. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  16. Resonant double photoionization of lithium studied with medium energy resolution

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.; Juranić, P. N.

    2006-10-01

    We have measured the relative photoionization cross section for the formation of Li2+ ions between 148 and 161eV photon energy with higher photon-energy resolution than in previous Li2+ studies. This energy region is characterized by double and triple excitations that lead to strong enhancements in the Li2+ cross section. As a result, the double-to-single photoionization ratio shows a dramatic resonance structure not seen before. We have determined the resonance positions and widths using Fano-profile fits to the Li2+ data and compare them to previously published values and a calculated Li2+ cross-section curve.

  17. Resonant energy transfer assisted by off-diagonal coupling.

    PubMed

    Wu, Ning; Sun, Ke-Wei; Chang, Zhe; Zhao, Yang

    2012-03-28

    Dynamics of resonant energy transfer of a single excitation in a molecular dimer system are studied in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. It is found that, at given temperatures, the off-diagonal coupling can enhance both the coherence of the resonant energy transfer and the net quantity of energy transferred from an initially excited monomer to the other. Also studied is the dynamics of entanglement between the dimer system and the phonon bath as measured by the von Neumann entanglement entropy, and the inter-monomer entanglement dynamics for the excitonic system. PMID:22462880

  18. On the resonance energy of the strange dibaryon

    SciTech Connect

    Yoichi Ikeda, Hiroyuki Kamano, Toru Sato

    2010-03-01

    The three-body resonance energies of the strange dibaryon are studied with the View the MathML source coupled-channels Faddeev equations. Our resonance energies are compared with those of an effective potential approach (EPA), where a coupling to the πYN channel is simulated by an effective View the MathML source potential, and the spectator momentum in the πYN Green function is neglected. About a 30% reduction of the binding energies due to neglecting the spectator momentum in the πYN Green's function is observed.

  19. Enhanced vibrational energy harvesting using nonlinear stochastic resonance

    NASA Astrophysics Data System (ADS)

    McInnes, C. R.; Gorman, D. G.; Cartmell, M. P.

    2008-12-01

    Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification by noise. However, this apparently counter-intuitive phenomenon does not appear to have been exploited as a tool to enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism without periodic forcing. In order to illustrate this novel effect, a conceptually simple, but plausible model of such a device is proposed to explore the use of stochastic resonance to enhance vibrational energy harvesting.

  20. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan J.; Bancu, Mirela G.; Bauer, Joseph M.; Cook, Eugene H.; Kumar, Parshant; Newton, Eric; Nyinjee, Tenzin; Perlin, Gayatri E.; Ricker, Joseph A.; Teynor, William A.; Weinberg, Marc S.

    2015-08-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (~16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip.

  1. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  2. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  3. Measurement of Inositol 1,4,5-Trisphosphate in Living Cells Using an Improved Set of Resonance Energy Transfer-Based Biosensors

    PubMed Central

    Tóth, Dániel J.; Kurucz, István; Hunyady, László; Balla, Tamas; Várnai, Péter

    2015-01-01

    Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of InsP3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications. PMID:25932648

  4. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  5. Plasmon resonance energy transfer and plexcitonic solar cell.

    PubMed

    Nan, Fan; Ding, Si-Jing; Ma, Liang; Cheng, Zi-Qiang; Zhong, Yu-Ting; Zhang, Ya-Fang; Qiu, Yun-Hang; Li, Xiaoguang; Zhou, Li; Wang, Qu-Quan

    2016-08-11

    Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance. The enhanced local field and plasmon resonance energy transfer are experimentally revealed by monitoring the ultrafast dynamical processes of the plexcitons and the photocurrent flows of the assembled plexciton-SSCs. By tuning the Fano factor and anti-resonance wavelengths, we find that the local field is largely enhanced and the efficiency of plexciton-SSCs consisting of ultrathin TiO2 films is significantly improved. Most strikingly, the output power of the plexciton-SSCs is much larger than the sum of those of the individual plasmon- and exciton-SSCs. Our observations provide a practical approach to monitor energy and electron transfer in plasmon-exciton hybrids at a strong coupling regime and also offer a new strategy to design photovoltaic nanodevices. PMID:27481652

  6. Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi

    2013-09-01

    A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.

  7. Resonance versus aerodynamics for energy savings in agile natural flyers

    NASA Astrophysics Data System (ADS)

    Kok, Jia M.; Chahl, Javaan

    2014-03-01

    Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.

  8. Paths to Förster's resonance energy transfer (FRET) theory

    NASA Astrophysics Data System (ADS)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  9. Resonant frequency tuning of an industrial vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Toh, T. T.; Wright, S. W.; Mitcheson, P. D.

    2014-11-01

    This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.

  10. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    NASA Astrophysics Data System (ADS)

    Fabbietti, L.

    2016-01-01

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N* resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c2 in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000)++ are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  11. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    NASA Astrophysics Data System (ADS)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  12. Bond resonance energy and verification of the isolated pentagon rule

    SciTech Connect

    Aihara, Jun Ichi

    1995-04-12

    The isolated pentagon rule (IPR) states that fullerenes with isolated pentagons are kinetically much more stable than their fused pentagon counterparts. This rule can be verified in terms of a graph-theoretically defined bond resonance energy. In general, a {pi} bond shared by two pentagons has a large negative bond resonance energy, thus contributing significantly to the increase in kinetic instability or chemical reactivity of the molecule. The existence of such highly antiaromatic local structures sharply distinguishes IPR-violating fullerenes from isolated-pentagon isomers. {pi}bonds shared by two pentagons are shared by many antiaromatic conjugated circuits but not by relatively small aromatic conjugated circuits. 39 refs., 3 figs., 5 tabs.

  13. Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro; Tomii, Kazuki; Hagiwara, Saori; Miyake, Shuntaro; Hasegawa, Yuichi; Sato, Takamitsu; Kaneko, Yuta; Nishioka, Yasushiro

    2013-12-01

    Acoustic energy harvesters that function in environments where sound pressure is extremely high (~150 dB), such as in engine rooms of aircrafts, are expected to be capable of powering wireless health monitoring systems. This paper presents the power generation performances of a lead-zirconate-titanate (PZT) acoustic energy harvester with a vibrating PZT diaphragm. The diaphragm had a diameter of 2 mm, consisting of Al(0.1 μm)/PZT(1 μm)/Pt(0.1 μm)/Ti(0.1 μm)/SiO2(1.5 μm). The harvester generated a power of 1.7×10-13 W under a sound pressure level of 110 dB at the first resonance frequency of 6.28 kHz. It was found that the generated power was increased to 6.8×10-13 W using a sound-collecting Helmholtz resonator cone with the height of 60 mm. The cone provided a Helmholtz resonance at 5.8 kHz, and the generated power increased from 3.4×10-14 W to 1.4×10-13 W at this frequency. The cone was also effective in increasing the bandwidth of the energy harvester.

  14. Autoparametric Resonance Systems for Vibration-Based Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Kurmann, L.; Hoffmann, D.; Folkmer, B.; Manoli, Y.; Woias, P.; Anderegg, R.

    2015-12-01

    Motivation for this paper is the creation of a new kind of (vibration) kinetic energy harvester systems that can effectively transfer environmental mechanical vibrations into electrical energy over a wider frequency bandwidth than conventional devices. This paper presents a potential improvement in the 1DoF vibration transducer class and examining therefore analytically the behavior of such systems using strong nonlinear springs. Then a new 2DoF class of vibration transducer is presented having a strong nonlinear characteristic which is well suited for autoparametric resonance vibrations.

  15. Tuning a resonant energy harvester using a generalized electrical load

    NASA Astrophysics Data System (ADS)

    Cammarano, A.; Burrow, S. G.; Barton, D. A. W.; Carrella, A.; Clare, L. R.

    2010-05-01

    A fundamental drawback of vibration-based energy harvesters is that they typically feature a resonant mass/spring mechanical system to amplify the small source vibrations; the limited bandwidth of the mechanical amplifier restricts the effectiveness of the energy harvester considerably. By extending the range of input frequencies over which a vibration energy harvester can generate useful power, e.g. through adaptive tuning, it is not only possible to open up a wider range of applications, such as those where the source frequency changes over time, but also possible to relax the requirements for precision manufacture or the need for mechanical adjustment in situ. In this paper, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented. It is demonstrated that the reactive component of the electrical load can be used to tune the harvester system to significantly increase the output power away from the resonant peak of the device. An analytical model of the system is developed, which includes non-ideal components arising from the physical implementation, and the results are confirmed by experiment. The - 3 dB (half-power) bandwidth of the prototype energy harvester is shown to be over three times greater when presented with an optimized load impedance compared to that for the same harvester presented with an optimized resistive only load.

  16. Investing relational energy: the hallmark of resonant leadership.

    PubMed

    Cummings, Greta

    2004-11-01

    Recent research has shown that hospital restructuring that included staff layoff has adversely affected the role, health and well-being of nurses who remained employed. Further research found that nurses working in environments that reflected resonant (emotionally intelligent) leadership reported the least negative effects to their healt and well-being following hospital restructuring. What remained unclear was the mechanism by which this mitigation occurred. The purpose of this paper is to explore additional findings from this leadership research and discuss one explanation unique to the academic literature for the mitigation variable--the investment of relational energy by resonant nursing leadership to build relationships with nurses and manage emotion in the workplace. PMID:15656250

  17. Complementary split ring resonator arrays for electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Alavikia, Babak; Almoneef, Thamer S.; Ramahi, Omar M.

    2015-07-01

    This work demonstrates the viability of Ground-backed Complementary Split-Ring Resonator (G-CSRR) arrays with significant power conversion efficiency and bandwidth enhancement in comparison to the technology used in current electromagnetic energy harvesting systems. Through numerical full-wave analysis, we demonstrated correlation between either the resonance frequency or the input impedance of G-CSRR cells with the periodicity of the array. A comparative study of power harvesting efficiency through numerical analysis and laboratory measurement was presented where an array of G-CSRRs is compared to an array of microstrip patch antennas. We demonstrated that a G-CSRR array yields power conversion efficiency of 92%, which represents a significant improvement in comparison to the single G-CSRR reported in our earlier work.

  18. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  19. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    SciTech Connect

    Augspurger, Ashley E.; Stender, Anthony S.; Han, Rui; Fang, Ning

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  20. Fluorescence resonance energy transfer from allophycocyanin to malachite green

    NASA Astrophysics Data System (ADS)

    Rolinski, O. J.; Birch, D. J. S.; McCartney, L. J.; Pickup, J. C.

    1999-08-01

    The near-infrared fluorescence resonance energy transfer kinetics of the phycobiliprotein allophycocyanin (APC) to malachite green (MG) have been investigated. A model is proposed to account for the fluorescence decay whereby MG binds to APC with a donor-acceptor site distribution which can be best described by 2D quenching kinetics. The results highlight a potential fallacy when interpreting the dimensionality of complex systems or the location of binding sites from Förster decay kinetics. The use of APC in trans-dermal measurements is proposed.

  1. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  2. Quantum electrodynamics of resonance energy transfer in nanowire systems

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.

    2016-02-01

    Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy between contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless, the well-established Förster formalism commonly used to represent RET was developed for energy transfer primarily between molecular blocks (i.e., from one molecule, or part of a molecule, to another). Although deviations from Förster theory for functional blocks such as NWs have been studied previously, the role of the relative distance, the orientation of transition dipole moment pairs, and the passively interacting matter on electronic energy transfer are to a large extent unknown. Thus, a comprehensive theory that models RET in NWs is required. In this context, analytical insights to give a deeper and more intuitive understanding of the distance and orientation dependence of RET in NWs is presented within the framework of quantum electrodynamics. Additionally, the influence of an included intermediary on the rate of excitation energy transfer is illustrated, embracing indirect energy transfer rate and quantum interference. The results deliver equations that afford new intuitions into the behavior of virtual photons. In particular, results indicate that RET efficiency in a NW system can be explicitly expedited or inhibited by a neighboring mediator, depending on the relative spacing and orientation of NWs.

  3. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues. PMID:27424898

  4. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  5. Shape resonances in low-energy-electron collisions with halopyrimidines

    SciTech Connect

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  6. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.). PMID:24785025

  7. Nucleon-nucleon resonances at intermediate energies using a complex energy formalism

    NASA Astrophysics Data System (ADS)

    Papadimitriou, G.; Vary, J. P.

    2015-06-01

    We apply our method of complex scaling, valid for a general class of potentials, in a search for nucleon-nucleon S-matrix poles up to 2 GeV laboratory kinetic energy. We find that the realistic potentials JISP16, constructed from inverse scattering, and chiral field theory potentials N3LO and N2LOopt support resonances in energy regions well above their fit regions. In some cases these resonances have widths that are small when compared with the real part of the S-matrix pole.

  8. Resonance behavior of internal conversion coefficients at low γ-ray energy

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Kibédi, T.; Nikulin, V. K.

    2010-02-01

    A resonance-like structure of internal conversion coefficients (ICCs) at low γ-ray energy (≲100 keV) is studied. Our calculations revealed new, previously unknown resonance minima in the energy dependence of ICCs for the ns shells at E2-E5 transitions. The resonances are the most defined for ICCs in light and medium elements with Z≲ 50. It is shown that ICCs may have up to four resonances for outer shells while it has been assumed so far that only one resonance exists. Well-pronounced resonances in ICCs at E1 transition were discovered for the ns shells with n⩾2 as well as for the np shells with n⩾3 and the nd shells with n⩾4 of all elements up to superheavy ones. Simple expressions for approximate values of the E1 resonance energy were obtained which are of importance for determination of the resonance energy range where the interpolation of ICCs taken from tables or databases may give significant errors. The occurrence of resonances in ICCs is explained by vanishing conversion matrix elements under changes of sign. The peculiarities of the behavior of the matrix elements and electron wave functions at the resonance energy are considered. Available experimental ICCs for electric transitions with energies near the expected position of resonances satisfactory agree with our calculations.

  9. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  10. Resonant photonuclear isotope detection using medium-energy photon beam

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Shima, Tatsushi

    2012-02-01

    Resonant photonuclear isotope detection (RPID) is a nondestructive detection/assay of nuclear isotopes by measuring γ rays following photonuclear reaction products. Medium-energy wideband photons of Eγ=12-16MeV are used for the photonuclear (γ,n) reactions and γ rays characteristic of the reaction products are measured by means of high-sensitivity Ge detectors. Impurities of stable and radioactive isotopes of the orders of μgr—ngr and ppm—ppb are investigated. RPID is used to study nuclear isotopes of astronuclear and particle physics interests and those of geological and historical interests. It is used to identify radioactive isotopes of fission products as well.

  11. Resonance energy transfer: The unified theory via vector spherical harmonics.

    PubMed

    Grinter, Roger; Jones, Garth A

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon's fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules. PMID:27544087

  12. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  13. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  14. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  15. Reaction dynamics of F+HD-->HF+D at low energies: Resonant tunneling mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Dong, Feng; Liu, Kopin

    2002-05-01

    The complete state-resolved differential cross section σ(v',j',θ;Ec), investigated in a crossed-beam scattering study, is presented for the title reaction at six initial collision energies (Ec) which are below or near the barrier energy. At low energies, all reactive flux is gated through a trapped resonance state via a tunneling process. Hence, it serves as a benchmark system for better understanding the reactive resonance phenomenon. In addition to highlighting various resonance fingerprints of experimental observable, the concept of resonant tunneling reaction mechanism is elucidated. Particular emphasis is placed on its distinction from the more conventional transition-state reaction mechanism.

  16. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei

    2016-01-01

    We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  17. Molecular distances determined with resonant vibrational energy transfers.

    PubMed

    Chen, Hailong; Wen, Xiewen; Li, Jiebo; Zheng, Junrong

    2014-04-01

    In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline samples, the closest anion distance was determined to be 3.9 ± 0.3 Å, consistent with the XRD result. In the 1.8 and 1 M KSCN aqueous solutions, the anion distances in the ion clusters were determined to be 4.4 ± 0.4 Å. The clustered anion distances in aqueous solutions are very similar to the closest anion distance in the KSCN crystal but significantly shorter than the average anion distance (0.94-1.17 nm) in the aqueous solutions if ion clustering did not occur. The result suggests that ions in the strong electrolyte aqueous solutions can form clusters inside of which they have direct contact with each other. PMID:24641170

  18. Fluorescence resonance energy transfer imaging by maximum likelihood estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yupeng; Yuan, Yumin; Holmes, Timothy J.

    2004-06-01

    Fluorescence resonance energy transfer (FRET) is a fluorescence microscope imaging process involving nonradiative energy transfer between two fluorophores (the donor and the acceptor). FRET is used to detect the chemical interactions and, in some cases, measure the distance between molecules. Existing approaches do not always well compensate for bleed-through in excitation, cross-talk in emission detection and electronic noise in image acquisition. We have developed a system to automatically search for maximum-likelihood estimates of the FRET image, donor concentration and acceptor concentration. It also produces other system parameters, such as excitation/emission filter efficiency and FRET conversion factor. The mathematical model is based upon a Poisson process since the CCD camera is a photon-counting device. The main advantage of the approach is that it automatically compensates for bleed-through and cross-talk degradations. Tests are presented with synthetic images and with real data referred to as positive and negative controls, where FRET is known to occur and to not occur, respectively. The test results verify the claimed advantages by showing consistent accuracy in detecting FRET and by showing improved accuracy in calculating FRET efficiency.

  19. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Peters, Christian; Maurath, Dominic; Schock, Wolfram; Mezger, Florian; Manoli, Yiannos

    2009-09-01

    This paper presents a novel electrically tunable structure which can be used as a resonator for vibration-based energy harvesters. The adjustment of the resonance frequency is provided by mechanical stiffening of the structure using piezoelectric actuators. This concept can easily be stand-alone integrated to realize an autonomous, tunable harvester. The resonator was simulated using ANSYS to find the optimum operation point concerning tuning range. The scalability of this tuning concept is also investigated in this work. A phase shift control circuit was developed for very efficient autonomous closed-loop control of the resonance frequency. Prototypes of the resonators were fabricated and measured with and without the control circuit. The tuning voltage can be kept as low as ±5 V leading to a measured resonance shift of ±15% for the larger resonator (40 mm) and around ±8% for the smaller resonator (27 mm). This tuning range can be simply enhanced by increasing the tuning voltage.

  20. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  1. Rotational piezoelectric wind energy harvesting using impact-induced resonance

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Shen, Qinlong; Jin, Jiamei; Wang, Yiping; Qian, Wangjie; Yuan, Dewang

    2014-08-01

    To improve the output power of a rotational piezoelectric wind energy harvester, impact-induced resonance is proposed to enable effective excitation of the piezoelectric cantilevers' vibration modes and obtain optimum deformation, which enhances the mechanical/electrical energy transformation. The impact force is introduced by forming a piezoelectric bimorph cantilever polygon that is fixed at the circumference of the rotating fan's internal surface. Elastic balls are placed inside the polygon. When wind rotates the device, the balls strike the piezoelectric cantilevers, and thus electricity is generated by the piezoelectric effect. The impact point is carefully chosen to use the first bending mode as much as possible, and thus maximize the harvesting efficiency. The design enables each bimorph to be struck in a similar area and every bimorph is struck in that area at different moments. As a result, a relatively stable output frequency can be obtained. The output frequency can also be changed by choosing different bimorph dimensions, which will also make the device simpler and the costs lower. A prototype piezoelectric energy harvester consisting of twelve piezoelectric cantilevers was constructed. The piezoelectric cantilevers were made from phosphor bronze, the lead zirconium titanate (PZT)-based bimorph cantilever had dimensions of 47 mm × 20 mm × 0.5 mm, and the elastic balls were made from steel with a diameter of 10 mm. The optimal DC output power was 613 μW across the 20 kΩ resistor at a rotation speed of 200 r/min with an inscribed circle diameter of 31 mm.

  2. Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2012-06-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  3. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect

    Hunter, Scott Robert; Lavrik, Nickolay V; Mostafa, Salwa; Rajic, Slobodan; Datskos, Panos G

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal

  4. Energy Approach to Resonance states of Compound Superheavy Nucleus and EPPP in Heavy Nuclei Collisions

    SciTech Connect

    Glushkov, Alexander V.

    2005-10-26

    A consistent unified energy approach (operator perturbation theory) is used for numerical calculations of the electron-positron pair production cross-section in heavy nuclei collisions. Resonance phenomena in the nuclear subsystem lead to the structurization of the positron spectrum produced. The positron spectrum narrow peaks are treated as resonance states of the compound superheavy nucleus. Calculation results for the differential cross-sections of the U-U collision energies E1 (E1=162.0keV- third s-resonance; E1=247.6keV- the fourth s-resonance) are presented.

  5. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  6. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide). PMID:16785636

  7. Förster resonance energy transfer and kinesin motor proteins.

    PubMed

    Prevo, Bram; Peterman, Erwin J G

    2014-02-21

    Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the donor and the acceptor. FRET efficiency can thus be used as an effective and accurate reporter of distance between two fluorophores and changes thereof. Over the last 50 years or so, FRET has been used as a spectroscopic ruler to measure conformations and conformational changes of biomolecules. More recently, FRET has been combined with microscopy, ultimately allowing measurement of FRET between a single donor and a single acceptor pair. In this review, we will explain the physical foundations of FRET and how FRET can be applied to biomolecules. We will highlight the power of the different FRET approaches by focusing on its application to the motor protein kinesin, which undergoes several conformational changes driven by enzymatic action, that ultimately result in unidirectional motion along microtubule filaments, driving active transport in the cell. Single-molecule and ensemble FRET studies of different aspects of kinesin have provided numerous insights into the complex chemomechanical mechanism of this fascinating protein. PMID:24071719

  8. Concentric Förster resonance energy transfer imaging.

    PubMed

    Wu, Miao; Algar, W Russ

    2015-08-18

    Concentric Förster resonance energy transfer (cFRET) configurations based on semiconductor quantum dots (QDs) are promising probes for biological sensing because they offer multiplexing capability in a single vector with robust ratiometric detection by exploiting a network of FRET pathways. To expand the scope and utility of cFRET probes, it is necessary to develop and validate cFRET imaging methodology. In this technical note, we present such a methodology using a protease-sensitive cFRET configuration that comprises a green-emitting QD, Alexa Fluor 555 (A555), and Alexa Fluor 647 (A647). Photoluminescence (PL) images were acquired with three filter-based emission channels to permit measurement of A555/QD and A647/QD PL ratios. With reference to calibration samples, these PL ratios were used to calculate quantitative progress curves for proteolytic activity in regions of interest in the acquired images. Importantly, the imaging methodology reproduces quantitative results obtained with a monochromator-based fluorescence plate reader. Spatiotemporal resolution is demonstrated by tracking the activity of two prototypical proteases, trypsin and chymotrypsin, as they diffuse down the length of a capillary. This methodology is expected to enable the future use of cFRET probes for cellular sensing and other imaging assays. PMID:26214686

  9. A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun

    2012-01-01

    A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.

  10. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    SciTech Connect

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  11. The use of the equivalence between boxing and scaling to determine resonance energies

    NASA Astrophysics Data System (ADS)

    Garcia-Sucre, M.; Lefebvre, R.

    1986-10-01

    It is shown that the stabilization graphs obtained by enclosing a quantum system in a box of varying size can be exploited through analytical continuation to derive resonance energies. The similarity between this approach and that based on the variation of a scaling factor in the basis set used to represent the resonance wavefunction is emphasized.

  12. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  13. Energy Dependence of $\\bar{K}N$ Interactions and Resonance Pole of Strange Dibaryons

    SciTech Connect

    Ikeda, Y.; Kamano, H.; Sato, T.

    2010-09-01

    We study the resonance energy of the strange dibaryons using two models with the energy-independent and energy-dependent potentials for the s-wave $\\bar{K}N$ interaction, both of which are derived by certain reductions from the leading order term of the effective chiral Lagrangian. These potential models produce rather different off-shell behaviors of the two-body $\\bar{K}N$ - $\\pi\\Sigma$ amplitudes in $I=0$ channel, i.e., the model with energy-independent (energy-dependent) potential predicts one (two) resonance pole in the $\\Lambda(1405)$ region, while they describe the available data equally well. We find that the energy-independent potential model predicts one resonance pole of the strange dibaryons, whereas the energy-dependent potential model predicts two resonance poles: one is the shallow quasi-bound state of the $\\bar{K}NN$, and another is the resonance of the $\\pi Y N$ with large width. An investigation of the binding energy of the strange dibaryons will make a significant contribution to clarify resonance structure of s-wave $\\bar{K}N$ -$\\pi\\Sigma$ around the $\\Lambda(1405)$ region.

  14. Energy transfer based photoluminescence spectra of co-doped (Dy3+ + Sm3+): Li2O-LiF-B2O3-ZnO glasses for orange emission

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Vijayalakshmi, R. P.

    2016-07-01

    The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.

  15. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    NASA Astrophysics Data System (ADS)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  16. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab.

  17. Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Herzing, Andrew A.; Guler, Urcan; Zhou, Xiuli; Boltasseva, Alexandra; Shalaev, Vladimir; Norris, Theodore B.

    2016-04-01

    The plasmon resonance characteristics of refractory TiN thin films were analyzed using electron energy-loss spectroscopy (EELS). A bulk plasmon resonance was observed at 2.81 eV and a weaker surface plasmon resonance peak was detected at 2.05 eV. These findings are compared to finite-difference time-domain simulations based on measured optical data. The calculated values for both the bulk and surface resonances (2.74 eV and 2.15 eV, respectively) show reasonable agreement with those measured via EELS. The amplitude of the experimentally observed surface resonance was weaker than that typically encountered in noble metal nanostructures, and this is discussed in the context of electron density and reduced spatial confinement of the resonance mode in the thin-film geometry.

  18. Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam

    SciTech Connect

    Lan, Chunbo; Qin, Weiyang Deng, Wangzheng

    2015-08-31

    We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.

  19. Biomolecular interactions probed by fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Lange, Daniela Charlotte

    2000-09-01

    This thesis describes how a physical phenomenon, Fluorescence Resonance Energy Transfer (FRET), can be exploited for the study of interactions between biomolecules. The physical basis of this phenomenon is discussed and it is described how some of its characteristics can be exploited in measurement. A recently introduced method, photobleaching FRET microscopy, was implemented and its image analysis refined to suit our biological context. Further, a new technique is proposed, which combines FRET with confocal laser scanning microscopy to optimize resolution and to allow for 3D-studies in living cells. The first part of this thesis presents the application of FRET to the study of oligomerization of G-protein coupled receptors (GPCRs), which was performed at the Fraser Laboratories at McGill University in Montreal. It is demonstrated how FRET microscopy allowed us to circumvent problems of traditional biochemical approaches and provided the first direct evidence for GPCR oligomerization in intact cells. We found that somatostatin receptors (SSTRs) functionally interact by forming oligomers with their own kind, with different SSTR isoforms, and even with distantly related GPCRs, such as dopamine receptors, the latter of which is breaking with the dogma that GPCRs would only pair up with their own kind. The high sensitivity of the FRET technique allowed us to characterize these interactions under more physiological conditions, which lead to the observation that oligomerization is induced by receptor agonist. We further studied the differential effects of agonists and antagonists on receptor oligomerization, leading to a model for the molecular mechanism underlying agonist/antagonist function and receptor activation. The second part was carried out at the Neurobiology Laboratory of the VA Medical Center in Newington, CT. The objective was to further our understanding of Niemann- Pick type C disease, which is characterized by a defect in intracellular cholesterol

  20. The Evaluation of Empirical Resonance Energies as Reaction Enthalpies with Particular Reference to Benzene.

    ERIC Educational Resources Information Center

    George, Philip; And Others

    1984-01-01

    Discusses the nature of experimental resonance energy, explaining how its magnitude depends upon choice of reference molecules from which bond energies are derived. Also explains how it can be evaluated more simply, without recourse to bond energies, as enthalpy change for a reaction predetermined by choice of reference molecules. (JN)

  1. The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti

    2014-04-01

    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.

  2. Development and comparison of a Primer-Probe Energy Transfer based assay and a 5' conjugated Minor Groove Binder assay for sensitive real-time PCR detection of infectious laryngotracheitis virus.

    PubMed

    McMenamy, M J; McKillen, J; Hjertner, B; Kiss, I; Yacoub, A; Leijon, M; Duffy, C; Belák, S; Welsh, M; Allan, G

    2011-08-01

    In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2×10(8) to 2×10(2)copies/μl. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. PMID:21539859

  3. Improving energy harvesting by stochastic resonance in a laminated bistable beam

    NASA Astrophysics Data System (ADS)

    Li, HaiTao; Qin, WeiYang; Deng, Wangzheng; Tian, Ruilan

    2016-03-01

    This paper presents a bistable energy harvesting device as piezoelectric beam acted upon by a harmonic axial load and a transverse random excitation. A comprehensive analytical study for stochastic resonance in the bistable mechanical system is carried out, from which the system can harvest energy at a high efficiency. The bistable electromechanical model is set up and the corresponding equations are derived by extended Hamilton principle. The condition for occurrence of stochastic resonance is derived by Kramers rate. Numerical simulation is carried out and results are obtained. Stochastic resonance is proved and observed when the system is excited by a Gaussian white noise. The output voltage and power conversion in the condition of stochastic resonance is noticeably higher than those in other conditions. These results can provide a theoretical method for preliminary design and optimization of parameters, which can improve the efficiency of energy harvester.

  4. Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Liao, Meiyong; Toda, Masaya; Sang, Liwen; Hishita, Shunichi; Tanaka, Shuji; Koide, Yasuo

    2014-12-01

    The authors report the resonance frequency and the energy dissipation of single crystal diamond cantilevers with different dimensions, which were fabricated by ion implantation assisted technique. The resonance frequency well followed the inverse power law relationship with the length of the cantilevers and exhibited a high reproducibility with varying the dimensions. The energy dissipation decreased with increasing the cantilever length and saturated or reduced at a certain value. For the shorter cantilevers, clamping loss governed the energy dissipation. As the cantilever length increased to a certain value, defects relaxation or surface effect became dominant. The possible origins for these energy dissipations were discussed.

  5. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  6. Wave resonances and the partition of energy in ideal compressible magnetohydrodynamic fluids

    SciTech Connect

    Zorzan, C.; Cally, P. S.

    2012-11-15

    Phase mixing and resonant absorption are two processes that have been under scrutiny for some time because of their role in wave damping and in providing a mechanism for heating space and laboratory plasmas. The accumulation or absorption of energy that develops within a resonant layer is usually attributed to a logarithmic singularity, but it will be shown that this build up of energy is inextricably tied to a discontinuity in the fluid displacement at the resonant point. This change in the dynamics of the problem will be examined by establishing a partition of energy that identifies and isolates the individual resonances within the fluid. The partition is based on a variational description of the Fourier transformed equations and is guided by an electrical model of the MHD system that not only illustrates the resonant structure threading the fluid but also exposes the mechanism driving the resonant absorption process. A simplified version of this model is then constructed to help determine the approximate rate of energy absorption.

  7. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  8. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-11-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  9. Resonance-induced enhancement of the energy harvesting performance of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Michelin, Sébastien; Doaré, Olivier

    2015-12-01

    The spontaneous flapping of a flag can be used to produce electrical energy from a fluid flow when coupled to a generator. In this paper, the energy harvesting performance of a flag covered by a single pair of polyvinylidene difluoride piezoelectric electrodes is studied both experimentally and numerically. The electrodes are connected to a resistive-inductive circuit that forms a resonant circuit with the piezoelectric's intrinsic capacitance. Compared with purely resistive circuits, the resonance between the circuit and the flag's flapping motion leads to a significant increase in the harvested energy. Our experimental study also validates our fluid-solid-electric nonlinear numerical model.

  10. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate. PMID:24081260

  11. Nuclear structure constrains on resonant energies: A solution of the cosmological 7Li problem?

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Mosquera, M. E.

    2013-01-01

    In this work, we study the cosmological 7Li problem from a nuclear structure point of view, by including resonances in the reactions which populate beryllium. The calculation of primordial abundances is performed by solving the balance equations semi-analytically. It is found that the primordial abundance of lithium is indeed reduced, as a consequence of the presence of resonant channels in the relevant cross sections. We set limits on the resonant energy for each reaction relevant for the chain leading to 7Li, by performing a statistical analysis of the available observational data.

  12. Analytical energy and bandwidth model for compact silicon photonic microdisk resonators.

    SciTech Connect

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2009-04-01

    Microdisk resonators for use as low energy modulators in telecom and datacom applications have been fabricated using vertical PN junctions which operate in reverse bias. These devices have demonstrated the lowest energy/bit thus far. In this paper we show that the reverse biased PN junction diodes follow the analytical depletion approximation based on numerical simulation.

  13. Calculation of the quasi-energies and resonances behavior of the hydrogen Lyman-alpha problem

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.

    1992-01-01

    Recently, Bakshi and Kalman presented numerical results for the quasi-energies of the n = 2 multiplet in the hydrogen Lyman-alpha transition for a plasma in which both strong static and oscillating electric fields are present. Recent work on related magnetic and optical resonance problems provides a simplified mathematical treatment, as well as greater insight into the complex resonance behavior of this interaction.

  14. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    NASA Astrophysics Data System (ADS)

    Raeder, Sebastian; Fies, Silke; Gottwald, Tina; Mattolat, Christoph; Rothe, Sebastian; Wendt, Klaus

    2010-02-01

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm - 1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  15. Quantum mechanical resonance calculations using an energy selected basis in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Montgomery, Jason

    2007-12-01

    Scattering resonances play a key role in many chemical processes, including unimolecular and bimolecular reactions and photodissociation. A significant theoretical emphasis over the past several decades has been placed on accurate resonance calculations for polyatomic systems. In spite of such efforts, a quantum treatment of molecular systems which exhibit a high density of states and strong coordinate coupling near dissociation remains a formidable task. The research described herein employs improved quantum mechanical methods to calculate a representation of nuclear motion, both bound and unbound, which is used subsequently to calculate accurate resonance energies and lifetimes for two triatomic systems: the neon trimer and ozone. Specifically, theory and results are given regarding the construction of an optimal, L2 eigenbasis using techniques such as the discrete variable representation, the energy selected basis (ESB) method, and iterative diagonalization methods. A new energy selection method is also developed and implemented for the neon trimer. Subsequent resonance calculations are described which make use of the artificial boundary inhomogeneity (ABI) method, adapted to work with the above mentioned ESB and hyperspherical coordinates. The ABI method is used to calculate a set of linearly independent wavefunctions (LIWs) at a given energy for the representation of the scattering wavefunction. Resonance parameters are obtained by imposing scattering boundary conditions on a linear combination of LIWs and solving for the S-matrix, S, its energy derivative, dS/dE, and the Smith lifetime matrix, Q. When available, comparisons are made with previously reported calculations.

  16. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    NASA Astrophysics Data System (ADS)

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2014-11-01

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  17. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    SciTech Connect

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  18. Introducing novel amorphous carbon nanoparticles as energy acceptors into a chemiluminescence resonance energy transfer immunoassay system.

    PubMed

    Wang, Zhenxing; Gao, Hongfei; Fu, Zhifeng

    2013-11-21

    A novel chemiluminescence resonance energy transfer (CRET) system for competitive immunoassay of biomolecules was developed by using novel amorphous carbon nanoparticles (CNPs) prepared from candle soot as energy acceptors. The CNPs were firstly prepared to bind with the antigen (Ag) for obtaining the nanocomposite CNP-Ag, and this obtained CNP-Ag was then reacted with the horseradish peroxidase-labeled antibody (HRP-Ab) to assemble the CRET system. The luminol catalyzed by HRP serving as the energy donor for CNPs triggered the CRET phenomenon between luminol and CNPs, which led to the chemiluminescence signal decrease. Due to the competitive immunoreaction of the target antigen and the CNP-Ag, a part of the CNP-Ag was replaced from the HRP-Ab, and then resulted in a weaker interaction between luminol and CNPs. Thus the competitive immunoreaction led to a higher chemiluminescence emission. This CNP-based CRET system was successfully applied to detect the human IgG as a model analyte, and a linear range of 10-200 ng mL(-1) and a detection limit of 1.9 ng mL(-1) (S/N = 3) were obtained. The results for real sample analysis demonstrated its application potential in some important areas such as clinical diagnosis. PMID:23979821

  19. Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Xiong, Liuyang; Tang, Lihua; Mace, Brian R.

    2016-05-01

    An internal resonance based broadband vibration energy harvester is proposed by introducing an auxiliary oscillator to the main nonlinear harvesting oscillator. Compared to conventional nonlinear energy harvesters, the natural frequencies of this two-degree-of-freedom nonlinear system can be easily adjusted to be commensurable which will result in more resonant peaks and better wideband performance. Experimental measurements and equivalent circuit simulations demonstrate that this design outperforms its linear counterpart. In addition to the open-circuit voltage, the optimal resistance to obtain the maximum power is determined. Nearly 130% increase in the bandwidth is achieved compared to the linear counterpart at an excitation level of 2 m/s2. The findings provide insight for the design of a broadband energy harvester when there is nonlinearity and internal resonance.

  20. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching

    PubMed Central

    Rieger, Johannes; Isacsson, Andreas; Seitner, Maximilian J.; Kotthaus, Jörg P.; Weig, Eva M.

    2014-01-01

    Clamping losses are a widely discussed damping mechanism in nanoelectromechanical systems, limiting the performance of these devices. Here we present a method to investigate this dissipation channel. Using an atomic force microscope tip as a local perturbation in the clamping region of a nanoelectromechanical resonator, we increase the energy loss of its flexural modes by at least one order of magnitude. We explain this by a transfer of vibrational energy into the cantilever, which is theoretically described by a reduced mechanical impedance mismatch between the resonator and its environment. A theoretical model for this mismatch, in conjunction with finite element simulations of the evanescent strain field of the mechanical modes in the clamping region, allows us to quantitatively analyse data on position and force dependence of the tip-induced damping. Our experiments yield insights into the damping of nanoelectromechanical systems with the prospect of engineering the energy exchange in resonator networks. PMID:24594876

  1. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload

    NASA Astrophysics Data System (ADS)

    Leland, Eli S.; Wright, Paul K.

    2006-10-01

    Vibration energy scavenging, harvesting ambient vibrations in structures for conversion into usable electricity, provides a potential power source for emerging technologies including wireless sensor networks. Most vibration energy scavenging devices developed to date operate effectively at a single specific frequency dictated by the device's design. However, for this technology to be commercially viable, vibration energy scavengers that generate usable power across a range of driving frequencies must be developed. This paper details the design and testing of a tunable-resonance vibration energy scavenger which uses the novel approach of axially compressing a piezoelectric bimorph to lower its resonance frequency. It was determined that an axial preload can adjust the resonance frequency of a simply supported bimorph to 24% below its unloaded resonance frequency. The power output to a resistive load was found to be 65-90% of the nominal value at frequencies 19-24% below the unloaded resonance frequency. Prototypes were developed that produced 300-400 µW of power at driving frequencies between 200 and 250 Hz. Additionally, piezoelectric coupling coefficient values were increased using this method, with keff values rising as much as 25% from 0.37 to 0.46. Device damping increased 67% under preload, from 0.0265 to 0.0445, adversely affecting the power output at lower frequencies. A theoretical model modified to include the effects of preload on damping predicted power output to within 0-30% of values obtained experimentally. Optimal load resistance deviated significantly from theory, and merits further investigation.

  2. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  3. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  4. Nonradiative resonance energy transfer between semiconductor quantum dots

    SciTech Connect

    Samosvat, D. M. Chikalova-Luzina, O. P.; Zegrya, G. G.

    2015-07-15

    A microscopic analysis of the mechanisms of nonradiative energy transfer in a system of two semiconductor QDs caused by Coulomb interaction of donor and acceptor electrons is performed. The energy transfer rate is calculated for QDs based on III–V compounds using the Kane model. Conditions are analyzed under which energy transfer from a donor to an acceptor is possible. The mixing in of the p states of the valence band to the s states of the conduction band is found to give rise to additional contributions to the matrix element of energy transfer. It is shown that these additional contributions play a considerable role in the energy transfer process at distances between QDs close to contact distances or much greater. The influence of the exchange interaction on the energy transfer mechanism is analyzed, and it is shown that this interaction should be taken into account for a quantitative description of the energy transfer when QDs are separated by a distance close to the contact distance.

  5. Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer

    PubMed Central

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-01-01

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F− ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity. PMID:25959016

  6. Theoretical study of resonances in low-energy collisions of three identical atoms

    NASA Astrophysics Data System (ADS)

    Yuen, Chi Hong; Kokoouline, Viatcheslav

    2016-05-01

    Resonances in low-energy collisions of three identical atoms are studied theoretically using hyperspherical coordinates. Two different methods are used and compared to determine positions and widths of three-body resonances: the complex absorbing potential and eigenchannel R-matrix approaches. Good agreement between the results of the two approaches is found. Cross sections for dimer formation in three-body recombination is determined. For this purpose the formula of Ref. is used (and re-derived). The developed code is applied to study collisions of three hydrogen atoms at low energies. Supported by the National Science Foundation, Grant No PHY-15-06391.

  7. Mesoscopic order and the dimensionality of long-range resonance energy transfer in supramolecular semiconductors

    NASA Astrophysics Data System (ADS)

    Daniel, Clément; Makereel, François; Herz, Laura M.; Hoeben, Freek J. M.; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W.; Silva, Carlos

    2008-09-01

    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral helical stacks, while the second set form less organized "frustrated" stacks. Here we study the effects of supramolecular organization on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Förster theory. Our results and analysis show that control of supramolecular order in the nanometer length scale has a dominant effect on the efficiency and dimensionality of resonance energy transfer.

  8. Fano resonances in high energy electron transport in nanowires of variable cross-section

    NASA Astrophysics Data System (ADS)

    Baskin, L. M.; Kabardov, M. M.; Sharkova, N. M.

    2015-09-01

    Electron ballistic transport in 2D quantum waveguide with two narrowings is considered. For longitudinal electron motion such narrowings play the role of effective potential barriers and conditions for resonant tunneling arise. If the electron energy is sufficiently high the electron wave can scatter into different quantum states (transverse channels of the leads) which results in complicated E-dependence of the scattering amplitudes. Numerical simulations have shown that the scattering amplitudes resonances are of Fano type. The form of the transmission probability curve is conditioned by interference of the quantum states into which the electron wave is scattered by the narrowings. The suggested interference model makes possible to find the resonance parameters with high precision and to link them to the closed resonator eigenvalues.

  9. Resonant gate driver with efficient gate energy recovery and switching loss reduction

    NASA Astrophysics Data System (ADS)

    Kim, I.-G.; Kwak, S.-S.

    2016-04-01

    This article describes a novel resonant gate driver for charging the gate capacitor of power metal-oxide semiconductor field-effect-transistors (MOSFETs) that operate at a high switching frequency in power converters. The proposed resonant gate driver is designed with three small MOSFETs to build up the inductor current in addition to an inductor for temporary energy storage. The proposed resonant gate driver recovers the CV2 gate loss, which is the largest loss dissipated in the gate resistance in conventional gate drivers. In addition, the switching loss is reduced at the instants of turn on and turn off in the power MOSFETs of power converters by using the proposed gate driver. Mathematical analyses of the total loss appearing in the gate driver circuit and the switching loss reduction in the power switch of power converters are discussed. Finally, the proposed resonant gate driver is verified with experimental results at a switching frequency of 1 MHz.

  10. Energy loss by resonance line photons in an absorbing medium

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Kunasz, P. B.

    1980-01-01

    The mean path length of photons undergoing repeated scatterings in media of large optical thickness is calculated from accurate numerical solutions of the transfer equation including the effect of frequency redistribution characteristic of combined Doppler and natural broadening. Energy loss by continuous absorption processes, such as ionization or dust absorption, is discussed, and asymptotic scaling laws for the energy loss, the mean path length, and the mean number of scatterings are inferred from the numerical data.

  11. English to Sanskrit Machine Translation Using Transfer Based approach

    NASA Astrophysics Data System (ADS)

    Pathak, Ganesh R.; Godse, Sachin P.

    2010-11-01

    Translation is one of the needs of global society for communicating thoughts and ideas of one country with other country. Translation is the process of interpretation of text meaning and subsequent production of equivalent text, also called as communicating same meaning (message) in another language. In this paper we gave detail information on how to convert source language text in to target language text using Transfer Based Approach for machine translation. Here we implemented English to Sanskrit machine translator using transfer based approach. English is global language used for business and communication but large amount of population in India is not using and understand the English. Sanskrit is ancient language of India most of the languages in India are derived from Sanskrit. Sanskrit can be act as an intermediate language for multilingual translation.

  12. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  13. Chemical process yielding stimulating emission of visible radiation via fast near resonant energy transfer

    SciTech Connect

    Gole, J.L.; Woodward, J.R.; Cobb, S.H.

    1991-05-28

    This patent describes a chemical process yielding stimulated emission of visible radiation via fast rear resonant intermolecular energy transfer. It comprises: providing a first source of vapor selected from the group consisting of metal or semimetal vapor; providing a second source of atomic vapor selected from the group consisting of metal or semimetal vapor to serve as receptor atoms to receive the energy; providing a source of reactant to react with the first source of vapor in a highly exothermic reaction which liberates energy exceeding 2.5 eV; chemically reacting the reactant and the first source of vapor to form metastable states of a final reaction product; transferring energy stored in the metastable states of the the reaction product to the second source of atomic vapor serving as receptor atoms by means of near resonant energy transfer; and providing a mirror configuration having first and second mirrors and windows associated with the mirrors.

  14. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  15. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.

    PubMed

    Zuo, Lei; Cui, Wen

    2013-10-01

    This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load. PMID:23918165

  16. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    NASA Astrophysics Data System (ADS)

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-01

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  17. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  18. General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.

    2012-10-01

    This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.

  19. Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Ahmed-Seddik, B.; Despesse, G.; Boisseau, S.; Defay, E.

    2013-12-01

    This paper reports on the design, fabrication and testing of an innovative 33-mode piezoelectric vibration energy harvester (VEH). This system is able to change its resonant frequency in real time to follow the main frequency of a vibration source. The system proposed in this paper enables to adapt VEH characteristics (resonant frequency, electrical damping) to vibration parameters variations (frequency and amplitude) in order to optimize the extraction of energy and then the output power at any time. This solution allows up to 40% of resonant frequency tuning ratio; moreover, the adaptation is made in real time and the consumption of the regulation electronic is less than 10% of the VEH output power (480μW@0.1g-276Hz).

  20. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    NASA Astrophysics Data System (ADS)

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-12-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

  1. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    NASA Astrophysics Data System (ADS)

    Tosaki, Mitsuo; Rauhala, Eero

    2015-10-01

    Backscattering spectra for 4He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50-100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp (4He, 12C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  2. Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein

    NASA Astrophysics Data System (ADS)

    Vetrone, Fiorenzo; Naccache, Rafik; Morgan, Christopher G.; Capobianco, John A.

    2010-07-01

    Water dispersible upconverting polyethylenimine (PEI)-capped NaYF4 nanoparticles co-doped with trivalent erbium (Er3+) and ytterbium (Yb3+) were prepared via solvothermal synthesis with an 18 nm average particle diameter. These upconverting nanoparticles can be used to sensitize a light-harvesting phycobiliprotein (R-Phycoerythrin) via luminescence resonance energy transfer (LRET).

  3. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  4. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  5. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  6. Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters.

    PubMed

    Gaind, Vaibhav; Kularatne, Sumith; Low, Philip S; Webb, Kevin J

    2010-05-01

    We demonstrate the in vivo reconstruction of all fluorescence resonance energy transfer (FRET) parameters, including the nanometer donor-acceptor distance, in a mouse. The FRET chemical targets cancer cells, and on internalization, the acceptor is released, in lieu of a targeted anticancer drug in chemotherapy. Our method provides a new vehicle for studying disease by imaging FRET parameters in deep tissue. PMID:20436553

  7. Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein.

    PubMed

    Vetrone, Fiorenzo; Naccache, Rafik; Morgan, Christopher G; Capobianco, John A

    2010-07-01

    Water dispersible upconverting polyethylenimine (PEI)-capped NaYF(4) nanoparticles co-doped with trivalent erbium (Er(3+)) and ytterbium (Yb(3+)) were prepared via solvothermal synthesis with an 18 nm average particle diameter. These upconverting nanoparticles can be used to sensitize a light-harvesting phycobiliprotein (R-Phycoerythrin) via luminescence resonance energy transfer (LRET). PMID:20648347

  8. Enhanced fluorescent resonant energy transfer of DNA conjugates complexed with surfactants and divalent metal ions.

    PubMed

    Oh, Taeseok; Choi, Jae-Young; Heller, Michael J

    2016-04-21

    Dimerization and resultant quenching of donor and acceptor dyes conjugated on DNA causes loss of fluorescent resonant energy transfer (FRET) efficiency. However, when complexed with surfactants and divalent metal ions, sheathing effects insulate and shield the DNA structures, reducing dimerization and quenching which leads to significant enhancement of FRET efficiency. PMID:26985458

  9. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L.; Walker, Brian J.; Musselman, Kevin P.; Greenham, Neil C.; Friend, Richard H.; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures.

  10. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals.

    PubMed

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L; Walker, Brian J; Musselman, Kevin P; Greenham, Neil C; Friend, Richard H; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures. PMID:25282509

  11. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Saha, Jaba; Datta Roy, Arpan; Dey, Dibyendu; Chakraborty, Santanu; Bhattacharjee, D.; Paul, P. K.; Hussain, Syed Arshad

    2015-10-01

    Fluorescence Resonance Energy Transfer between two organic dyes Fluorescein and Rhodamine 6G was investigated in aqueous solution in presence and absence of synthetic clay laponite. Spectroscopic studies suggest that both the dyes were present mainly as monomer in solution. Fluorescence Resonance Energy Transfer occurred from Fluorescein to Rhodamine 6G in solutions. Energy transfer efficiency increases in presence of laponite and the maximum efficiency was 72.00% in aqueous laponite dispersion. Energy transfer efficiency was found to be pH sensitive. It has been demonstrated that with proper calibration it is possible to use the present system under investigation to sense pH over a wide range from 1.5 to 8.0.

  12. Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade.

    PubMed

    Okada, Daichi; Nakamura, Takashi; Braam, Daniel; Dao, Thang Duy; Ishii, Satoshi; Nagao, Tadaaki; Lorke, Axel; Nabeshima, Tatsuya; Yamamoto, Yohei

    2016-07-26

    Color-tunable resonant photoluminescence (PL) was attained from polystyrene microspheres doped with a single polymorphic fluorescent dye, boron-dipyrrin (BODIPY) 1. The color of the resonant PL depends on the assembling morphology of 1 in the microspheres, which can be selectively controlled from green to red by the initial concentration of 1 in the preparation process of the microspheres. Studies on intersphere PL propagation with multicoupled microspheres, prepared by micromanipulation technique, revealed that multistep photon transfer takes place through the microspheres, accompanying energy transfer cascade with stepwise PL color change. The intersphere energy transfer cascade is direction selective, where energy donor-to-acceptor down conversion direction is only allowed. Such cavity-mediated long-distance and multistep energy transfer will be advantageous for polymer photonics device application. PMID:27348045

  13. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  14. Ultrafast resonance energy transfer in the umbelliferone-alizarin bichromophore.

    PubMed

    Lapini, Andrea; Fabbrizzi, Pierangelo; Piccardo, Matteo; di Donato, Mariangela; Lascialfari, Luisa; Foggi, Paolo; Cicchi, Stefano; Biczysko, Malgorzata; Carnimeo, Ivan; Santoro, Fabrizio; Cappelli, Chiara; Righini, Roberto

    2014-06-01

    In this work we present the synthesis, time-resolved spectroscopic characterization and computational analysis of a bichromophore composed of two very well-known naturally occurring dyes: 7-hydroxycoumarin (umbelliferone) and 1,2-dihydroxyanthraquinone (alizarin). The umbelliferone donor (Dn) and alizarin acceptor (Ac) moieties are linked to a triazole ring viaσ bonds, providing a flexible structure. By measuring the fluorescence quantum yields and the ultrafast transient absorption spectra we demonstrate the high efficiency (∼85%) and the fast nature (∼1.5 ps) of the energy transfer in this compound. Quantum chemical calculations, within the density functional theory (DFT) approach, are used to characterize the electronic structure of the bichromophore (Bi) in the ground and excited states. We simulate the absorption and fluorescence spectra using the TD-DFT methods and the vertical gradient approach (VG), and include the solvent effects by adopting the conductor-like polarizable continuum model (CPCM). The calculated electronic structure suggests the occurrence of weak interactions between the electron densities of Dn and Ac in the excited state, indicating that the Förster-type transfer is the appropriate model for describing the energy transfer in this system. The average distance between Dn and Ac moieties calculated from the conformational analysis (12 Å) is in very good agreement with the value estimated from the Förster equation (∼11 Å). At the same time, the calculated rate constant for energy transfer, averaged over multiple conformations of the system (3.6 ps), is in reasonable agreement with the experimental value (1.6 ps) estimated by transient absorption spectroscopy. The agreement between experimental results and computational data leads us to conclude that the energy transfer in Bi is well described by the Förster mechanism. PMID:24513677

  15. Control of localized surface plasmon resonance energy in monolayer structures of gold and silver nanoparticles.

    PubMed

    Yokota, Hiroki; Taniguchi, Taichi; Watanabe, Taichi; Kim, DaeGwi

    2015-10-28

    Monolayer structures of Au and Ag nanoparticles (NPs) were fabricated by a dipping method to realize the control of localized surface plasmon resonance (LSPR) energy. The mean inter-particle distance in the monolayer was controlled by changing the concentration of NPs in the colloidal solution used for the monolayer assembly. The extinction-peak energy of the monolayer structure was red-shifted with decreasing inter-particle distance, reflecting plasmon coupling between NPs. PMID:26411840

  16. Resonant scattering and charm showers in ultrahigh-energy neutrino interactions

    NASA Technical Reports Server (NTRS)

    Wilczek, F.

    1985-01-01

    Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.

  17. Measurement of radiative capture resonance energies with an extended gas target

    NASA Astrophysics Data System (ADS)

    Hutcheon, D. A.; Ruiz, C.; Fallis, J.; D'Auria, J. M.; Davids, B.; Hager, U.; Martin, L.; Ottewell, D. F.; Reeve, S.; Rojas, A.

    2012-10-01

    The DRAGON facility for the study of radiative capture reactions has an extended gas target, surrounded by an array of BGO detectors. The distribution of detected gamma rays amongst the segmented array permits an estimate of the reaction position and consequently of the resonance energy. We report a study of the technique, using the 24Mg(p, γ)25Al reaction. Energy determination to better than 0.5% has been demonstrated.

  18. ''Magic'' Energies for Detecting Light Elements with Resonant Alpha Particle Backscattering

    SciTech Connect

    Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R.; He, X-M.; Lee, D-H.

    1998-11-04

    Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are ''magic'' energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed.

  19. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge

    SciTech Connect

    Golubev, S. V.; Izotov, I. V.; Mansfeld, D. A.; Semenov, V. E.

    2012-02-15

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy.

  20. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge.

    PubMed

    Golubev, S V; Izotov, I V; Mansfeld, D A; Semenov, V E

    2012-02-01

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy. PMID:22380303

  1. Solid state nuclear magnetic resonance investigations of advanced energy materials

    NASA Astrophysics Data System (ADS)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  2. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    NASA Astrophysics Data System (ADS)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  3. Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz U.; Adiba, Afifa; Banerjee, Sourav

    2015-04-01

    This article presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) and use them in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. Concurrent wave filtering and energy harvesting mechanism is previously presented using local resonance phenomenon in phononic crystal, however energy harvesting capabilities of AEMM is not reported extensively. Traditionally acoustic metamaterials are used in filtering acoustic waves by trapping or guiding the acoustic energy, whereas this work presents that the trapped dynamic energy inside the soft constituent (matrix) of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell model, we asserted that at lower acoustic frequencies maximum power in the micro Watts (~36μW) range can be generated, which is significantly higher than the existing harvesters of same kind. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. In this work we propose sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a broadband energy scavenger (ES) with multi-cell model is designed with varying geometrical properties.

  4. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  5. Harvesting under transient conditions: harvested energy as a proxy for optimal resonance frequency detuning

    NASA Astrophysics Data System (ADS)

    Hynds, Taylor D.; Kauffman, Jeffrey L.

    2015-04-01

    Piezoelectric-based vibration energy harvesting is of interest in a wide range of applications, and a number of harvesting schemes have been proposed and studied { primarily when operating under steady state conditions. However, energy harvesting behavior is rarely studied in systems with transient excitations. This paper will work to develop an understanding of this behavior within the context of a particular vibration reduction technique, resonance frequency detuning. Resonance frequency detuning provides a method of reducing mechanical response at structural resonances as the excitation frequency sweeps through a given range. This technique relies on switching the stiffness state of a structure at optimal times to detune its resonance frequency from that of the excitation. This paper examines how this optimal switch may be triggered in terms of the energy harvested, developing a normalized optimal switch energy that is independent of the open- and short-circuit resistances. Here the open- and short-circuit shunt resistances refer to imposed conditions that approximate the open- and short-circuit conditions, via high and low resistance shunts. These conditions are practically necessary to harvest the small amounts of power needed to switch stiffness states, as open-circuit and closed-circuit refer to infinite resistance and zero resistance, respectively, and therefore no energy passes through the harvesting circuit. The limiting stiffness states are then defined by these open- and short-circuit resistances. The optimal switch energy is studied over a range of sweep rates, damping ratios, and coupling coefficients; it is found to increase with the coupling coefficient and decrease as the sweep rate and damping ratio increase, behavior which is intuitive. Higher coupling means more energy is converted by the piezoelectric material, and therefore more energy is harvested in a given time; an increased sweep rate means resonance is reached sooner, and there will less

  6. Resonant energy transfer between Eu luminescent sites and their local geometry in GaN

    SciTech Connect

    Timmerman, Dolf; Wakamatsu, Ryuta; Tanaka, Kazuteru; Lee, Dong-gun; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-10-12

    Eu-doped GaN is a solid state material with promising features for quantum manipulation. In this study, we investigate the population dynamics of Eu in ions in this system by resonant excitation. From differences in the emission related to transitions between the {sup 5}D{sub 0} and {sup 7}F{sub 2} manifold in the Eu ions, we can distinguish different luminescence sites and observe that a resonant energy transfer takes place between two of these sites which are in proximity of each other. The time constants related to this energy transfer are on the order of 100 μs. By using different substrates, the energy transfer efficiency could be strongly altered, and it is demonstrated that the coupling between ions has an out-of-plane character. Based on these results, a microscopic model of this combined center is presented.

  7. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  8. Resonance Energy of an Arene Hydrocarbon from Heat of Combustion Measurements

    PubMed Central

    Kolesnichenko, Vladimir L.

    2015-01-01

    A simple experimental method for determination of the resonance energy by measuring the energies of combustion for two isomeric compounds, aromatic 1-tert-butyl-3,5-dimethylbenzene and nonaromatic trans,trans,cis-1,5,9-cyclododecatriene is proposed. Both compounds not only have the same molecular formula, but also contain the same number of sp2 and sp3 carbon atoms. After converting the obtained values into the gas phase heats of combustion and subtracting one value from another, the resulting mean resonance energy of 184 kJ/mol was obtained. The proposed method can be offered as an experiment for an undergraduate physical chemistry lab curriculum. PMID:26997668

  9. Broadband vibration energy harvesting by application of stochastic resonance from rotational environments

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.; Cartmell, M. P.

    2015-11-01

    A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.

  10. Classification of vibrational resonances in the energy spectrum of the formaldehyde molecule and Katz's branch points

    NASA Astrophysics Data System (ADS)

    Bykov, A. D.; Duchko, A. N.

    2016-05-01

    The Rayleigh-Schrödinger perturbation theory of high orders and the algebraic Padé-Hermite approximants are used to determine the singular points of a vibrational energy function of the formaldehyde molecule dependent on a complex perturbation parameter as on the argument. It is shown that the Fermi, Darling-Dennison, and other higher-order vibrational resonances are related to Katz's points—common branch points on the complex plane of the energy of two vibrational states. Analysis of Katz's points that connect different vibrational states allows one to reveal essential resonance perturbations, to introduce an additional classification for them, and to determine the polyad structure of an energy spectrum.

  11. Anomalies in the theory of viscous energy losses due to shear in rotational MEMS resonators.

    SciTech Connect

    Walsh, Timothy Francis; Klody, Kelly Anne; Jenkins, Mark W.; Dohner, Jeffrey Lynn

    2003-12-01

    In this paper, the effect of viscous wave motion on a micro rotational resonator is discussed. This work shows the inadequacy of developing theory to represent energy losses due to shear motion in air. Existing theory predicts Newtonian losses with little slip at the interface. Nevertheless, experiments showed less effect due to Newtonian losses and elevated levels of slip for small gaps. Values of damping were much less than expected. Novel closed form solutions for the response of components are presented. The stiffness of the resonator is derived using Castigliano's theorem, and viscous fluid motion above and below the resonator is derived using a wave approach. Analytical results are compared with experimental results to determine the utility of existing theory. It was found that existing macro and molecular theory is inadequate to describes measured responses.

  12. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  13. sup 56 Fe resonance parameters for neutron energies up to 850 keV

    SciTech Connect

    Perey, C.M.; Perey, F.G.; Harvey, J.A.; Hill, N.W.; Larson, N.M.

    1990-12-01

    High-resolution neutron measurements for {sup 56}Fe-enriched iron targets were made at the Oak Ridge Electron Linear Accelerator (ORELA) in transmission below 20 MeV and in differential elastic scattering below 5 MeV. Transmission measurements were also performed with a natural iron target below 160 keV. The transmission data were analyzed from 5 to 850 keV with the multilevel R-matrix code SAMMY which uses Bayes' theorem for the fitting process. This code provides energies and neutron widths of the resonances inside the 5- to 850-keV energy region, as well as possible parameterization for resonances external to the analyzed region to describe the smooth cross section from a few eV to 850 keV. The resulting set of resonance parameters yields the accepted values for the thermal total and capture cross sections. The differential elastic-scattering data at several scattering angles were compared to theoretical calculations from 40 to 850 keV using the R-matrix code RFUNC based on the Blatt-Biedenharn formalism. Various combinations of spin and parity were tried to predict cross sections for the well defined {ell} > 0 resonances; comparison of these predictions with the data allowed us to determine the most likely spin and parity assignments for these resonances. The results of a capture data analysis by Corvi et al. (COR84), from 2 to 350 keV, were combined with our results to obtain the radiation widths of the resonances below 350 keV observed in transmission, capture, and differential elastic-scattering experiments.

  14. Three New Low-Energy Resonances in the 22Ne (p ,γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Corvisiero, P.; Davinson, T.; di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Scott, D. A.; Somorjai, E.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2015-12-01

    The 22Ne (p ,γ )23Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between 20Ne and 27Al in asymptotic giant branch stars and novae. The 22Ne(p ,γ )23Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the 22Ne (p ,γ )23Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless 22Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars.

  15. Superconducting resonator used as a phase and energy detector for linac setup

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  16. Three New Low-Energy Resonances in the ^{22}Ne(p,γ)^{23}Na Reaction.

    PubMed

    Cavanna, F; Depalo, R; Aliotta, M; Anders, M; Bemmerer, D; Best, A; Boeltzig, A; Broggini, C; Bruno, C G; Caciolli, A; Corvisiero, P; Davinson, T; di Leva, A; Elekes, Z; Ferraro, F; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Imbriani, G; Junker, M; Menegazzo, R; Mossa, V; Pantaleo, F R; Prati, P; Scott, D A; Somorjai, E; Straniero, O; Strieder, F; Szücs, T; Takács, M P; Trezzi, D

    2015-12-18

    The ^{22}Ne(p,γ)^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between ^{20}Ne and ^{27}Al in asymptotic giant branch stars and novae. The ^{22}Ne(p,γ)^{23}Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the ^{22}Ne(p,γ)^{23}Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless ^{22}Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars. PMID:26722918

  17. Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations

    NASA Astrophysics Data System (ADS)

    Honarvar, Hossein; Hussein, Mahmoud I.

    2016-02-01

    A nanophononic metamaterial is a new type of nanostructured material that features an array, or a forest, of intrinsically distributed resonating substructures. Each substructure exhibits numerous local resonances, each of which may hybridize with the phonon dispersion of the underlying host material, causing significant reductions in the group velocities and consequently a reduction in the lattice thermal conductivity. In this Rapid Communication, molecular dynamics simulations are utilized to investigate both the dynamics and the thermal transport properties of a nanophononic metamaterial configuration consisting of a freely suspended silicon membrane with an array of silicon nanopillars standing on the surface. The simulations yield results consistent with earlier lattice-dynamics-based predictions which showed a reduction in the thermal conductivity due to the presence of the local resonators. Using a spectral energy density approach, in which only simulation data are utilized and no a priori information on the nanostructure resonant phonon modes is provided, we show direct evidence of the existence of resonance hybridizations as an inherent mechanism contributing to the slowing down of thermal transport in the host medium.

  18. Continuous energy, multi-dimensional discrete ordinates transport calculations for problem dependent resonance treatment

    NASA Astrophysics Data System (ADS)

    Zhong, Zhaopeng

    In the past twenty 20 years considerable progress has been made in developing new methods for solving the multi-dimensional transport problem. However the effort devoted to the resonance self-shielding calculation has lagged, and much less progress has been made in enhancing resonance-shielding techniques for generating problem-dependent multi-group cross sections (XS) for the multi-dimensional transport calculations. In several applications, the error introduced by self-shielding methods exceeds that due to uncertainties in the basic nuclear data, and often they can be the limiting factor on the accuracy of the final results. This work is to improve the accuracy of the resonance self-shielding calculation by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. A new method has been developed, it can calculate the continuous-energy neutron fluxes for the whole two-dimensional domain, which can be utilized as weighting function to process the self-shielded multi-group cross sections for reactor analysis and criticality calculations, and during this process, the two-dimensional heterogeneous effect in the resonance self-shielding calculation can be fully included. A new code, GEMINEWTRN (Group and Energy-Pointwise Methodology Implemented in NEWT for Resonance Neutronics) has been developed in the developing version of SCALE [1], it combines the energy pointwise (PW) capability of the CENTRM [2] with the two-dimensional discrete ordinates transport capability of lattice physics code NEWT [14]. Considering the large number of energy points in the resonance region (typically more than 30,000), the computational burden and memory requirement for GEMINEWTRN is tremendously large, some efforts have been performed to improve the computational efficiency, parallel computation has been implemented into GEMINEWTRN, which can save the computation and memory requirement a lot; some energy points reducing

  19. Evaluation of silicon neutron resonance parameters in the thermal to 1800 keV energy range.

    PubMed

    Derrien, H; Leal, L C; Guber, K H; Larson, N M

    2005-01-01

    Because silicon is a major constituent of concrete and soil, neutron and gamma ray information on silicon is important for reactor shielding and criticality safety calculations. Therefore, much effort was put into the ENDF/B-VI evaluation for the three stable isotopes of silicon. The neutron capture cross section of natural silicon was recently measured at the Oak Ridge Electron Linear Accelerator (ORELA) in the energy range 1-700 keV. Using the ENDF/B-VI evaluation for initial values, a new evaluation of the resonance parameters was performed by adding the results of the ORELA capture measurements to the experimental database. The computer code SAMMY was used for the analysis of the experimental data; the new version of SAMMY allows accurate calculations of the self-shielding and multiple scattering effects in the capture measurements. The accuracy of the radiative capture widths of the resonances was improved by this analysis. Accurate values of the s-, p- and d-wave neutron strength functions were also obtained. Although the resonance capture component of the present evaluation is 2-3 times smaller than that in ENDF/B-VI, the total capture cross section is much larger, at least for energies >250 keV, because the direct capture component contributes values of the same order of magnitude as the resonance component. The direct component was not taken into account in the ENDF/B-VI evaluation and was calculated for the first time in the present evaluation. PMID:16381717

  20. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    SciTech Connect

    Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  1. Classification of zero-energy resonances by dissociation of Feshbach molecules

    SciTech Connect

    Hanna, Thomas M.; Goral, Krzysztof; Koehler, Thorsten; Witkowska, Emilia

    2006-08-15

    We study the dissociation of Feshbach molecules by a magnetic field sweep across a zero-energy resonance. In the limit of an instantaneous magnetic field change, the distribution of atomic kinetic energy can have a peak indicating dominance of the molecular closed-channel spin configuration over the entrance channel. The extent of this dominance influences physical properties such as stability with respect to collisions, and so the readily measurable presence or absence of the corresponding peak provides a practical method of classifying zero-energy resonances. Currently achievable ramp speeds, e.g., those demonstrated by Duerr et al. [Phys. Rev. A 70, 031601 (2005)], are fast enough to provide magnetic field changes that may be interpreted as instantaneous. We study the transition from sudden magnetic field changes to asymptotically wide, linear ramps. In the latter limit, the predicted form of the atomic kinetic energy distribution is independent of the specific implementation of the two-body physics, provided that the near-resonant scattering properties are properly accounted for.

  2. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  3. Pion elastic scattering from polarized sup 13 C in the energy region of the (3,3) resonance

    SciTech Connect

    Tanaka, N.

    1990-01-01

    In this work we measured the angular distributions of the analyzing power and the differential cross section at one energy below and one energy above the (3,3) resonance. A search for the predicted large asymmetries at momentum transfers near the second minimum of the differential cross sections was also performed at several energies across the resonance. Most of the data have been analyzed. One, for T{sub {pi}} = 162 MeV, is currently in progress.

  4. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ou, Yi; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Wen

    2015-07-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  5. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    SciTech Connect

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  6. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  7. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Pérez Moyet, Richard; Stace, Joseph; Amin, Ahmed; Finkel, Peter; Rossetti, George A.

    2015-10-01

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]C-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  8. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  9. A resonance mechanism of efficient energy transfer mediated by Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Miklaszewski, Wiesław

    2012-04-01

    The Wigner-Weisskopf-type model developed by Alicki and Giraldi [J. Phys. B 44, 154020 (2011)], 10.1088/0953-4075/44/15/154020 is applied to the biological process of energy transfer from a large peripheral light harvesting antenna to the reaction center. This process is mediated by the Fenna-Matthews-Olson (FMO) photosynthetic complex with a remarkably high efficiency. The proposed model provides a simple resonance mechanism of this phenomenon employing exciton coherent motion and is described by analytical formulas. A coupling to the vibrational environment is a necessary component of this mechanism as well as a fine-tuning of the FMO complex Hamiltonian. The role of the relatively strong coupling to the energy sink in achieving the resonance condition and the absence of heating of the vibrational environment are emphasized.

  10. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  11. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  12. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  13. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  14. Energy harvesting using rattleback: Theoretical analysis and simulations of spin resonance

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Singla, Puneet; Karami, M. Amin

    2016-05-01

    This paper investigates the spin resonance of a rattleback subjected to base oscillations which is able to transduce vibrations into continuous rotary motion and, therefore, is ideal for applications in Energy harvesting and Vibration sensing. The rattleback is a toy with some curious properties. When placed on a surface with reasonable friction, the rattleback has a preferred direction of spin. If rotated anti to it, longitudinal vibrations are set up and spin direction is reversed. In this paper, the dynamics of a rattleback placed on a sinusoidally vibrating platform are simulated. We can expect base vibrations to excite the pitch motion of the rattleback, which, because of the coupling between pitch and spin motion, should cause the rattleback to spin. Results are presented which show that this indeed is the case-the rattleback has a mono-peak spin resonance with respect to base vibrations. The dynamic response of the rattleback was found to be composed of two principal frequencies that appeared in the pitch and rolling motions. One of the frequencies was found to have a large coupling with the spin of the rattleback. Spin resonance was found to occur when the base oscillatory frequency was twice the value of the coupled frequency. A linearized model is developed which can predict the values of the two frequencies accurately and analytical expressions for the same in terms of the parameters of the rattleback have been derived. The analysis, thus, forms an effective and easy method for obtaining the spin resonant frequency of a given rattleback. Novel ideas for applications utilizing the phenomenon of spin resonance, for example, an energy harvester composed of a magnetized rattleback surrounded by ferromagnetic walls and a small scale vibration sensor comprising an array of several magnetized rattlebacks, are included.

  15. 239PU(N, f) at Resonance Energies and its Multi-Modal Interpretation

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Bax, H.; Ruskov, I.; Demattè, L.

    2003-10-01

    A measurement of fission fragment total kinetic energy (TKE) and mass yield distributions Y (A,TKE) in the 239Pu(n,f) resolved resonance region has been performed applying the twin Frisch gridded ionization chamber technique. Special emphasis was devoted to cope with the strong α-activity of this isotope by an improved pile-up rejection system. Up to about 200 eV all fission resonances could be resolved and their two-dimensional mass yield and TKE distribution, Y(A,TKE), measured. Compared to the results on 235U(n,f), much smaller fluctuations of the fission fragment mass and TKE have been observed in the case of 239Pu. From a physical point of view such fluctuations have been expected for the fission fragment properties, because the only possible lowenergy spin states (Jπ=0+,1+) belong to well separated (about 1.25 MeV) transition state bands. Hence, it was expected to observe differences in the fission fragment mass and TKE distributions between spin 0+ and 1+ resonances. However, no spin dependence and only a slight anti-correlation of the TKE with the prompt neutron multiplicity, νp. has been found in the resolved resonance energy region above 1 eV. Within the multi-modal random neck-rupture (MM-RNR) model the Y(A,TKE) distributions have been fitted assuming three fission modes, two asymmetric and one symmetric one. The branching ratio of the two asymmetric modes shows similar fluctuations as the experimental TKE. Recently, a new theoretical approach has given a solution to the absence of pronounced fluctuations of the fission properties in the case of 239Pu. Since only one transition state is involved in the fission of 0+ and 1+ resonances with a given fission fragment distribution, no fluctuations are expected.

  16. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  17. Piezoelectric Wind-Energy-Harvesting Device with Reed and Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Ji, Jun; Kong, Fanrang; He, Liangguo; Guan, Qingchun; Feng, Zhihua

    2010-05-01

    A wind-energy-harvesting device utilizing the principle of a harmonica was created. A reed in a resonant cavity vibrated efficiently with the blowing wind, and a piezoelectric element stuck on the reed generated electricity. The dimensions of the wind inlet were approximately 30×20 mm2. The device was investigated with a wind speed ranging from 2.8 to 10 m/s. An output power of 0.5-4.5 mW was obtained with a matching load of 0.46 MΩ. The energy conversion efficiency of the device could reach up to 2.4%.

  18. Method and apparatus for transferring and injecting rf energy from a generator to a resonant load

    DOEpatents

    Hoffert, William J.

    1987-01-01

    Improved apparatus and method are provided for the coherent amplification and injection of radio-frequency (rf) energy into a load cavity using a plurality of amplifier tubes. A plurality of strip line cavities (30, 32, 34, 36, 40, 42, 44) are laterally joined to define a continuous closed cavity (48), with an amplifier tube (50, 52, 54, 56, 58, 60, 62, 64) mounted within each resonant strip cavity. Rf energy is injected into the continuous cavity (48) from a single input (70) for coherent coupling to all of the amplifier tubes for amplification and injection into the load cavity (76).

  19. Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Bruch, Anton; Nitzan, Abraham

    2016-07-01

    We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B 89, 161306 (2014), 10.1103/PhysRevB.89.161306; Phys. Rev. B 93, 115318 (2016), 10.1103/PhysRevB.93.115318] have found, for a resonant electronic level interacting with a thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440 (2015), 10.1103/PhysRevB.92.235440]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely, width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.

  20. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  1. Dynamics and coherence resonance of tri-stable energy harvesting system

    NASA Astrophysics Data System (ADS)

    Haitao, Li; Weiyang, Qin; Chunbo, Lan; Wangzheng, Deng; Zhiyong, Zhou

    2016-01-01

    To improve the efficiency of energy harvesting, this paper presents a tri-stable energy harvesting device, which can realize inter-well oscillation at low-frequency base excitation and obtain a high harvesting efficiency by tri-stable coherence resonance. First, the model of a magnetic coupling tri-stable piezoelectric energy harvester is established and the corresponding equations are derived. The formula for the magnetic repulsion force between three magnets is given. Then, the dynamic responses of a system subject to harmonic excitation and Gaussian white noise excitation are explored by a numerical method and validated by experiments. Compared with a bi-stable energy harvester, the threshold for inter-well oscillation to occur can be moved forward to the low frequency, and the tri-stable device can create a dense high output voltage and power at the low intensity of stochastic excitation. Results show that for a definite deterministic or stochastic excitation, the system can be optimally designed such that it increases the frequency bandwidth and achieves a high energy harvesting efficiency at coherence resonance.

  2. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Gu, Seuli; Kang, Hyun-Ju; Kwon, Deuk-Chul; Kim, Yu-Sin; Chang, Yoon-Min; Chung, Chin-Wook

    2016-06-01

    The electron bounce resonance was experimentally investigated in a low pressure planar inductively coupled plasma. The electron energy probability functions (EEPFs) were measured at different chamber heights and the energy diffusion coefficients were calculated by the kinetic model. It is found that the EEPFs begin to flatten at the first electron bounce resonance condition, and the plateau shifts to a higher electron energy as the chamber height increases. The plateau which indicates strong electron heating corresponds not only to the electron bounce resonance condition but also to the peaks of the first component of the energy diffusion coefficients. As a result, the plateau formation in the EEPFs is mainly due to the electron bounce resonance in a finite inductive discharge.

  3. Resonant charge transfer in low-energy ion scattering: Information depth in the reionization regime.

    PubMed

    Primetzhofer, D; Spitz, M; Taglauer, E; Bauer, P

    2011-11-01

    Time-Of-Flight Low-energy ion scattering (TOF-LEIS) experiments were performed for He(+) ions scattered from Cu(100) and Cu(0.5)Au(0.5)(100). Probabilities for resonant neutralization and reionization in close collisions were deduced in a wide energy range. To learn about the information depth in LEIS, in a next step ion spectra were analyzed for polycrystalline Cu samples. The relative yield of backscattered projectiles, which have undergone distinct charge exchange processes, was calculated. Results indicate a strong contribution to the ion yield that origins from particles reionized in a close collision in deeper layers when experiments are performed at energies where reionization is prominent. The surface sensitivity of the ion signal at different energies is quantified. Based on these results, the total ion spectrum was quantitatively modelled by two consistent, but different approaches. PMID:22053118

  4. A deterministic and statistical energy analysis of tyre cavity resonance noise

    NASA Astrophysics Data System (ADS)

    Mohamed, Zamri; Wang, Xu

    2016-03-01

    Tyre cavity resonance was studied using a combination of deterministic analysis and statistical energy analysis where its deterministic part was implemented using the impedance compact mobility matrix method and its statistical part was done by the statistical energy analysis method. While the impedance compact mobility matrix method can offer a deterministic solution to the cavity pressure response and the compliant wall vibration velocity response in the low frequency range, the statistical energy analysis method can offer a statistical solution of the responses in the high frequency range. In the mid frequency range, a combination of the statistical energy analysis and deterministic analysis methods can identify system coupling characteristics. Both methods have been compared to those from commercial softwares in order to validate the results. The combined analysis result has been verified by the measurement result from a tyre-cavity physical model. The analysis method developed in this study can be applied to other similar toroidal shape structural-acoustic systems.

  5. Rotational energy transfer in HF(v = 2): Double resonance measurements and fitting law analysis

    SciTech Connect

    Copeland, R.A.; Crim, F.F.

    1983-05-01

    Data from overtone vibration-laser double resonance experiments show extremely rapid rotational relaxation in HF (v = 2) for rotational states up to J = 6 and serve to test energy based fitting laws for rotational energy transfer rate constants. The observed rotational states equilibrate in less than a gas kinetic collision with some individual rates being more than twice the hard sphere collision rate. Energy based fitting laws reproduce the observed evolution of the state populations to within 30% but fail systematically for higher (J = 5 and 6) rotational levels. Fitting laws formulated for collisions between an atom and a molecule are virtually as successful as those for collisions between two molecules. The extracted rate constants show that multiple rotational quantum energy transfer is an important aspect of relaxation dynamics.

  6. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    PubMed Central

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  7. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho; Kim, Yong-Joe

    2013-05-01

    A novel and practical acoustic energy harvesting mechanism to harvest traveling sound at low audible frequency is introduced and studied both experimentally and numerically. The acoustic energy harvester in this study contains a quarter-wavelength straight tube resonator with lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonance frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric plates, resulting in the generation of electricity. To increase the total voltage and power, multiple PZT plates were placed inside the tube. The number of PZT plates to maximize the voltage and power is limited due to the interruption of air particle motion by the plates. It has been found to be more beneficial to place the piezoelectric plates in the first half of the tube rather than along the entire tube. With an incident sound pressure level of 100 dB, an output voltage of 5.089 V was measured. The output voltage increases linearly with the incident sound pressure. With an incident sound pressure of 110 dB, an output voltage of 15.689 V and a power of 12.697 mW were obtained. The corresponding areal and volume power densities are 0.635 mW cm-2 and 15.115 μW cm-3, respectively.

  8. Effect of functionalization and charging on resonance energy and radial breathing modes of metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Öberg, S.; Adjizian, J.-J.; Erbahar, D.; Rio, J.; Humbert, B.; Dossot, M.; Soldatov, A.; Lefrant, S.; Mevellec, J.-Y.; Briddon, P.; Rayson, M. J.; Ewels, C. P.

    2016-01-01

    While changes in resonant Raman scattering measurements are commonly used to measure the effect of chemical functionalization on single-walled carbon nanotubes, the precise effects of functionalization on these spectra have yet to be clearly identified. In this density functional theory study, we explore the effects of functionalization on both the nanotube resonance energy and frequency shifts in radial breathing mode. Charge transfer effects cause a shift in the first Van Hove singularity spacings, and hence resonance excitation energy, and lead to a decrease in the radial breathing mode frequency, notably when the Fermi level decreases. By varying stochastically the effective mass of carbon atoms in the tube, we simulate the mass effect of functionalization on breathing mode frequency. Finally, full density functional calculations are performed for different nanotubes with varying functional group distribution and concentration using fluorination and hydrogenation, allowing us to determine overall effect on radial breathing mode and charge transfer. The results concur well with experiment, and we discuss the importance when using Raman spectroscopy to interpret experimental functionalization treatments.

  9. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses.

    PubMed

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  10. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  11. Nuclear Poincaré cycle synchronizes with the incident de Broglie wave to predict regularity in neutron resonance energies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Makio

    2016-06-01

    In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.

  12. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  13. Parallelization in SCALE continuous-energy resonance module GEMINEWTRN and transport module NEWT

    SciTech Connect

    Zhong, Z.; Downar, T. J.; DeHart, M. D.; Williams, M. L.

    2006-07-01

    A new resonance module, GEMINEWTRN, has been developed in SCALE, it can calculate the continuous-energy neutron flux within the whole two-dimensional geometry, providing us a rigorous solution. However, the new code needs tremendously amount of computation and memory for practical problem. To relieve the computational burden and memory requirement, parallelization has been implemented into GEMINEWTRN, both angular and spatial decomposition have been adopted so that both the computation and the memory requirement on each processor can be saved considerably, and this effort makes the new resonance method much feasible for practical use. Because the two-dimensional geometry capability and SN/ESC solver of GEMINEWTRN come from lattice physics code NEWT, the similar parallel technique has also been implemented into NEWT, which can also save the computation considerably. (authors)

  14. Colloidal aluminum nanoparticles with tunable localized surface plasmon resonances for energy applications

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna

    Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.

  15. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers

    PubMed Central

    2015-01-01

    Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. PMID:26191119

  16. Non-resonant electromagnetic energy harvester for car-key applications

    NASA Astrophysics Data System (ADS)

    Li, X.; Hehn, T.; Thewes, M.; Kuehne, I.; Frey, A.; Scholl, G.; Manoli, Y.

    2013-12-01

    This paper presents a novel non-resonant electromagnetic energy harvester for application in a remote car-key, to extend the lifetime of the battery or even to realize a fully energy autonomous, maintenance-free car-key product. Characteristic for a car-key are low frequency and large amplitude motions during normal daily operation. The basic idea of this non-resonant generator is to use a round flat permanent magnet moving freely in a round flat cavity, which is packaged on both sides by printed circuit boards embedded with multi-layer copper coils. The primary goal of this structure is to easily integrate the energy harvester with the existing electrical circuit module into available commercial car-key designs. The whole size of the energy harvester is comparable to a CR2032 coin battery. To find out the best power-efficient and optimal design, several magnets with different dimensions and magnetizations, and various layouts of copper coils were analysed and built up for prototype testing. Experimental results show that with an axially magnetized NdFeB magnet and copper coils of design variant B a maximum open circuit voltage of 1.1V can be observed.

  17. Resonance energy transfer in nano-bio hybrid structures can be modulated by UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Krivenkov, V. A.; Solovyeva, D. O.; Samokhvalov, P. S.; Grinevich, R. S.; Brazhnik, K. I.; Kotkovskii, G. E.; Lukashev, E. P.; Chistyakov, A. A.

    2014-11-01

    A method for targeted variation of the radiation properties of quantum dots (QDs) to control the efficiency of resonance energy transfer in nanocrystal assemblies and nano-bio hybrid materials has been developed. The method is based on strong ultraviolet (UV) laser irradiation of QDs and allows the extinction and luminescence spectra to be controlled and the luminescence quantum yield and decay kinetics to be varied. Water-soluble QDs have been synthesized and used for analyzing the effect of energy transfer from semiconductor nanocrystals on the photocycle of the photosensitive protein bacteriorhodopsin (bR) in bR-QD complexes. The UV irradiation mode has been selected in a way permitting the modulation of QD optical parameters without modification of their structure or physico-chemical properties. It is concluded that the QD interaction with bR accelerates its photocycle, but this acceleration is determined by electrostatic interactions, rather than Förster resonance energy transfer from QDs to bR. The method of UV laser irradiation of fluorescent semiconductor QDs has proven to be an efficient technique for variation of nanocrystal optical properties without affecting their structure, as well as for fine modulation of the energy transfer processes in the nanocrystal assemblies and nano-bio hybrid materials.

  18. Temporal Homogenization of Linear ODEs, with Applications to Parametric Super-Resonance and Energy Harvest

    NASA Astrophysics Data System (ADS)

    Tao, Molei; Owhadi, Houman

    2016-04-01

    We consider the temporal homogenization of linear ODEs of the form {dot{x}=Ax+ɛ P(t)x+f(t)}, where P( t) is periodic and {ɛ} is small. Using a 2-scale expansion approach, we obtain the long-time approximation {x(t)≈ exp(At) ( Ω(t)+int_0^t exp(-A τ) f(τ) dτ )}, where {Ω} solves the cell problem {dot{Ω}=ɛ B Ω + ɛ F(t)} with an effective matrix B and an explicitly-known F( t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a O(ɛ^{-1})} time-scale), and show how B can be computed (at a cost independent of {ɛ}). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold κ proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than nκ. Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits ({n≈ 1000} for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.

  19. Excited-State-Proton-Transfer-Triggered Fluorescence Resonance Energy Transfer: from 2-Naphthylamine to Phenosafranin

    NASA Astrophysics Data System (ADS)

    Ghosh, Debanjana; Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin

    2009-09-01

    Excited-state proton transfer (ESPT) and fluorescence resonance energy transfer (FRET) have been linearly coupled leading to an efficient pH-sensitive energy transfer from 2-naphthylamine (2NA) to a potentially bioactive cationic phenazinium dye, phenosafranin (PSF). The prototropic product produced exclusively from the photoexcited 2NA in the presence of added alkali serves as the donor for the energy transfer process. The energy transfer process is turned on at pH ≥ 12, whereas the process is turned off at a pH lower than that. Within the range of pH 12 to 13, the energy transfer efficiency (E) has been shown to follow a linear relation with the solution pH establishing the governing role of pH of the solution on the energy transfer process. The energy transfer follows a long-range dipole-dipole interaction mechanism. The critical energy transfer distance (R0) and the distance between the acceptor and the donor (r) have been determined for the ESPT-promoted FRET process at an optimum pH of 13. The present study involving the coupled processes is simple but has its implication due to its potential to be exploited for designing a pH-sensitive molecular switch.

  20. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    PubMed Central

    Griep, Mark H.; Winder, Eric M.; Lueking, Donald R.; Garrett, Gregory A.; Karna, Shashi P.; Friedrich, Craig R.

    2012-01-01

    An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies. PMID:22737583

  1. R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 eV

    SciTech Connect

    Leal, L.C.

    2001-02-27

    The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.

  2. Advancements in gene transfer-based therapy for hemophilia A

    PubMed Central

    Doering, Christopher B; Spencer, H Trent

    2010-01-01

    Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A. PMID:20577574

  3. Ultrafast Studies of Resonance Energy Transfer in Myoglobin: A-Helix and Local Conformational Fluctuations

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey A.; Link, Justin J.; Kao, Ya-Ting; Zang, Chen; Guo, Lijun; Zhong, Dongping

    2009-06-01

    Myoglobin (Mb), a heme containing protein, is involved in the storage and release of ligands. We report here our studies of resonance energy transfer in Mb using an intrinsic tryptophan (Trp) and the prosthetic heme as an energy transfer pair. With site-directed mutagenesis, we placed one-at-a-time a single Trp donor into four locations on the A-helix. Utilizing the femtosecond up-conversion method, we examined a series of energy transfer dynamics in Mb. A molecular dynamics (MD) simulation was also used to infer structure and dipole orientation fluctuations for specific Trp. Both methodologies were used to characterize the local dynamic nature of Mb in solution compared to the static crystal structure.

  4. Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Ad; Wubs, Martijn; Mosk, Allard P.; Subramaniam, Vinod; Vos, Willem L.

    2012-11-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Förster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Förster distance, in contrast to common lore that this distance is fixed for a given FRET pair.

  5. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  6. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-01

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs. PMID:26900763

  7. Electromagnetic production of mesons and nucleon resonances at GeV energies

    SciTech Connect

    Lee, T.S.H.; Pichowsky, M.; Sato, T.

    1995-08-01

    A coupled-channels model for investigating the electromagnetic excitation of nucleon resonances (N*) at energies accessible to CEBAF, was developed. Motivated by the existing QCD-based hadron models, we assume that the basic resonant interaction mechanisms of the model Hamiltonian are the absorption and emission of photons and mesons by a bare quark core. The matrix elements of nonresonant interactions are deduced from low-order Feynman diagrams of an effective Lagrangian with chiral symmetry. The standard projection operator technique was applied to obtain a set of unitary scattering equations for describing {pi}N and {gamma}N reactions up to the GeV energy region. By assuming that the nonresonant two-pion continuum can be approximated as a fictitious {sigma}N state, the scattering equations can then be cast into a set of coupled-channels equations involving only two-particle {gamma}N, {pi}N, {eta}N, {rho}N, {pi}{Delta}, {omega}N and {sigma}N channels, which can be solved by well-developed numerical methods. The bare coupling constants and the range parameters of the hadronic form factors are adjusted to reproduce {pi}N scattering phase shifts up to 2-GeV incident pion energy. We then explore the dependence of the {gamma}N {yields} {pi}N and N(e,e{prime}{pi}) observables on the {gamma}N {yields} N* excitation strengths predicted by various QCD-based models of hadrons.

  8. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).

    PubMed

    Kim, Young-Pil; Jin, Zongwen; Kim, Eunkyung; Park, Sunyoung; Oh, Young-Hee; Kim, Hak-Sung

    2009-05-01

    We demonstrated in vitro small ubiquitin-like modifier (SUMO)-mediated modification (SUMOylation) of RanGTPase activating protein-1 (RanGAP1) by using bioluminescence resonance energy transfer (BRET) for studying protein interactions. Renilla luciferase (Rluc) was fused to SUMO, and RanGAP1, the binding partner of SUMO, was fused to enhanced yellow fluorescence protein (EYFP). Upon binding of SUMO and RanGAP1, BRET was observed between EYFP (donor) and Rluc (acceptor) in the presence of E1 (Aos1/Uba2) and E2 (Ubc9) enzymes, whereas mutation (K524A) of RanGAP1 at its SUMO binding site prevented significant energy transfer. Comparing BRET and fluorescence resonance energy transfer (FRET) efficiencies using this in vitro model system, we observed that BRET efficiency was 3-fold higher than FRET efficiency, due to the lower background signal intensity of EYFP in the BRET system. Consequently, BRET system is expected to be useful for in vitro analysis of SUMOylation as well as studying other protein interactions. PMID:19289109

  9. [Identification of high-lying odd energy levels of uranium by resonant ionization mass spectrometry].

    PubMed

    Du, H; Shi, G; Huang, M; Jin, C

    2000-06-01

    Single-colour and two-colour multiphoton resonant ionization spectra of uranium atom were studied extensively with a Nd:YAG laser-pumped dye laser atomic beam apparatus time-of-flight mass spectrometer in our laboratory. The energy locations of high-lying odd-parity levels in the region 33,003-34,264 cm-1, measured by a two-colour three-step ionization technique, were reported here. The angular momentum quantum number J was uniquely assigned for these levels by using angular momentum selection rules. PMID:12958925

  10. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  11. Highly sensitive fluorescence resonance energy transfer (FRET)-based nanosensor for rapid detection of clenbuterol

    NASA Astrophysics Data System (ADS)

    Nghia Nguyen, Duc; Ngo, Trinh Tung; Liem Nguyen, Quang

    2012-09-01

    In this study we investigate the fabrication of a fluorescence resonance energy transfer (FRET)-based nanosensor for the detection of clenbuterol. The nanosensor consists of CdTe quantum dots coated by clenbuterol recognizable agent naphthol and diazotized clenbuterol. Changes in maximal photoluminescent intensities of the nanosensor were utilized to measure clenbuterol concentrations. The maximal photoluminescent intensities of the nanosensor were found to decrease with increasing clenbuterol concentrations, following a linear correlation. We have successfully fabricated a nanosensor for detection of clenbuterol with sensitivity up to 10 pg ml‑1.

  12. Local Orientational Order in Liquids Revealed by Resonant Vibrational Energy Transfer

    NASA Astrophysics Data System (ADS)

    Panman, M. R.; Shaw, D. J.; Ensing, B.; Woutersen, S.

    2014-11-01

    We demonstrate that local orientational ordering in a liquid can be observed in the decay of the vibrational anisotropy caused by resonant transfer of vibrational excitations between its constituent molecules. We show that the functional form of this decay is determined by the (distribution of) angles between the vibrating bonds of the molecules between which energy transfer occurs, and that the initial drop in the decay reflects the average angle between nearest neighbors. We use this effect to observe the difference in local orientational ordering in the two hydrogen-bonded liquids ethanol and N -methylacetamide.

  13. Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D

    SciTech Connect

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lehnen, M.; Stoschus, H.

    2012-01-01

    In this paper, results of a direct comparison of TEXTOR and DIII-D experiments with resonant magnetic perturbation (RMP) fields are presented. This comparison of resistive L-mode plasmas at TEXTOR with highly conductive H-mode plasmas at DIII-D is useful to identify generic physics mechanisms during application of RMP fields with a strong field line pitch angle alignment in the plasma edge. A reduction in the pedestal electron pressure p(e) with increasing extension of the vacuum modelled stochastic layer and p(e) recovery with decreasing layer width is found caused by a q(95) resonant reduction in the edge (0.8 < Psi(N) < 0.95) electron temperature T-e(q(95)) on both devices. For RMP edge-localized mode (ELM) suppressed H-mode plasmas at DIII-D, the gradients del T-e and nominal values of T-e are reduced in this edge region while increasing in the pedestal (0.95 < Psi(N) < 1.0) with RMP field applied and both are highly dependent on q(95). In contrast, an increase in the central ion temperature with strong steepening of the ion temperature profile at mid-radius is found-again being highly dependent on q(95). However, these resonant thermal transport effects are only seen in high triangularity plasmas revealing a strong shape dependence of the thermal transport. In contrast to the highly q(95) dependent thermal transport features, the reduction of n(e)-known as density pump out-shows a much weaker dependence on q(95). We show the potential to reduce the RMP induced particle pump out by fine tuning of the RMP spectral properties. At low resonant field amplitudes enhanced particle confinement is seen in high-field side limited L-mode discharges on both devices while higher resonant field amplitudes yield particle pumps out.

  14. Design and development of high bioluminescent resonance energy transfer efficiency hybrid-imaging constructs.

    PubMed

    Kumar, Manoj; Kovalski, Letícia; Broyles, David; Hunt, Eric A; Daftarian, Pirouz; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K

    2016-04-01

    Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin-biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications. PMID:26772160

  15. Heavy baryonic resonances, multistrange hadrons, and equilibration at energies available at the GSI Schwerionensynchrotron, SIS18

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Lorenz, M.; Becattini, F.; Stock, R.; Bleicher, M.

    2016-06-01

    We study the details and time dependence of particle production in nuclear collisions at a fixed target beam energy of Elab=1.76 A GeV with the UrQMD transport model. We find that the previously proposed production mechanisms for multistrange hadrons ϕ and Ξ are possible due to secondary interactions of incoming nuclei of the projectile and target with already created nuclear resonances, while the Fermi momenta of the nuclei play only a minor role. We also show how the centrality dependence of these particle multiplicities can be used to confirm the proposed mechanism, as it strongly depends on the number of participants in the reaction. Furthermore we investigate the time dependence of particle production in collisions of Ca + Ca at this beam energy, in order to understand the origins of the apparent chemical equilibration of the measured particle yields. We find that indeed the light hadron yields appear to be in equilibrium already from the very early stage of the collision, while in fact no local equilibration, through multicollision processes, takes place. The apparent equilibrium is reached only through the decay of the resonances according to available phase space.

  16. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    PubMed

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis. PMID:26807518

  17. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor.

    PubMed

    Jo, Eun-Jung; Mun, Hyoyoung; Kim, Su-Ji; Shim, Won-Bo; Kim, Min-Gon

    2016-03-01

    We report a chemiluminescence resonance energy transfer (CRET) aptasensor for the detection of ochratoxin A (OTA) in roasted coffee beans. The aptamer sequences used in this study are 5'-DNAzyme-Linker-OTA aptamer-3'-dabcyl. Dabcyl at the end of the OTA aptamer region plays as a quencher in CRET aptasensor. When hemin and OTA are added, the dabcyl-labeled OTA aptamer approaches to the G-quadruplex-hemin complex by formation of the G-quadruplex-OTA complex. The G-quadruplex-hemin complexes possess horseradish peroxidase (HRP)-like activity, and therefore, the HRP-mimicking DNAzyme (HRPzyme) catalyzes peroxidation in the presence of luminol and H2O2. Resonance energy transfer between luminol (donor) and dabcyl (acceptor) enables quenching of chemiluminescence signals. The signal decreases with increasing the concentration of OTA within the range of 0.1-100ngmL(-1) (limit of detection 0.22ngmL(-1)), and the level of recovery of the respective 1ngmL(-1) and 10ngmL(-1) spiked coffee samples was 71.5% and 93.3%. These results demonstrated the potential of the proposed method for OTA analysis in diverse foods. PMID:26471659

  18. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats. PMID:26970745

  19. Energy operator demodulating of optimal resonance components for the compound faults diagnosis of gearboxes

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Yu, Dejie; Zhang, Wenyi

    2015-11-01

    Compound faults diagnosis is a challenge for rotating machinery fault diagnosis. The vibration signals measured from gearboxes are usually complex, non-stationary, and nonlinear. When compound faults occur in a gearbox, weak fault characteristic signals are always submerged by the strong ones. Therefore, it is difficult to detect a weak fault by using the demodulating analysis of vibration signals of gearboxes directly. The key to compound faults diagnosis of gearboxes is to separate different fault characteristic signals from the collected vibration signals. Aiming at that problem, a new method for the compound faults diagnosis of gearboxes is proposed based on the energy operator demodulating of optimal resonance components. In this method, the genetic algorithm is first used to obtain the optimal decomposition parameters. Then the compound faults vibration signals of a gearbox are subject to resonance-based signal sparse decomposition (RSSD) to separate the fault characteristic signals of the gear and the bearing by using the optimal decomposition parameters. Finally, the separated fault characteristic signals are analyzed by energy operator demodulating, and each one’s instantaneous amplitude can be calculated. According to the spectra of instantaneous amplitudes of fault characteristic signals, the faults of the gear and the bearing can be diagnosed, respectively. The performance of the proposed method is validated by using the simulation data and the experiment vibration signals from a gearbox with compound faults.

  20. Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases.

    PubMed Central

    Loura, L M; Fedorov, A; Prieto, M

    1996-01-01

    Resonance energy transfer between octadecyl rhodamine B (donor) and 1,1',3,3,3',3'-hexamethylindotricarbocyanine (acceptor) was studied in a model system of membranes (large unilamellar vesicles of dipalmitoylphosphatidylcholine), using both steady-state and time-resolved techniques. In the fluid phase (temperature = 50 degrees C) the decay law and the steady-state theoretical curve for energy transfer in two dimensions are verified. In the gel phase (temperature = 25 degrees C) an apparent reduction of dimensionality is observed, which is explained on the basis of probe segregation to the defect lines (grain boundaries). An estimation of the domain size from the model recovered linear probe concentrations is approximately 1750-2000 lipid molecules. In both phases, the existence of a fractal geometry was ruled out. PMID:8889159

  1. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-01-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  2. Bioanalytical systems based on bioluminescence resonance energy transfer using firefly luciferase.

    PubMed

    Smirnova, Darya V; Ugarova, Natalia N

    2015-01-01

    Bioanalytical systems based on the Bioluminescence Resonance Energy Transfer (BRET) are widely used in fundamental biochemical studies, as well as for screening and analysis of biologically active compounds. The Renilla luciferase is the most often used energy donor in this system despite the fact that it has low bioluminescence quantum yield and demonstrates not so stable luminescence in time as the firefly luciferase. Moreover, the bioluminescence λmax is observed in the green region of the spectrum, which complicates signal recording in tissues during in vivo experiments. The firefly luciferases do not have such drawbacks and show great promise for applications in BRET systems. Different versions of BRET systems based on firefly luciferases and the methods for increasing their efficiency are considered in this review; examples of the use of BRET systems based on the firefly luciferases for highly sensitive determination of proteases and for homogeneous immunoassays are presented. PMID:26377546

  3. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  4. Probing the Förster resonance energy transfer between fluorescent copper nanoclusters and cobalt complex

    NASA Astrophysics Data System (ADS)

    Patel, Arun Singh; Sahoo, Harekrushna; Mohanty, Tanuja

    2014-08-01

    In the present study, we report the Förster resonance energy transfer (FRET) from fluorescent copper nanoclusters (Cu NCs) as donor to cobalt complex (nitrate (Co (NO3)2)) as acceptor. Fluorescent Cu NCs have been synthesized on bovine serum albumin template by wet chemistry method; these NCs show fluorescence maxima at 435 nm. The fluorescence intensity of Cu NCs is quenched in proximity presence of acceptors, and subsequently, energy is transferred. In such type of system, these Cu NCs are found to be efficient donor with Förster distance (R0) 8.9 Å and FRET efficiency (E) up to 42%. The Förster distance obtained is found to be the lowest among other reported values for donor/acceptor pair till today.

  5. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  6. Localized description of surface energy gap effects in the resonant charge exchange between atoms and surfaces.

    PubMed

    Iglesias-García, A; García, Evelina A; Goldberg, E C

    2011-02-01

    The resonant charge exchange between atoms and surfaces is described by considering a localized atomistic view of the solid within the Anderson model. The presence of a surface energy gap is treated within a simplified tight-binding model of the solid, and a proper calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is performed. It is found that interference terms jointly with a surface projected gap maximum at the Γ point and the Fermi level inside it, lead to hybridization widths negligible around the Fermi level. This result can explain experimental observations related to long-lived adsorbate states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems. PMID:21406877

  7. Preliminary investigation into the design of thermally responsive Forster resonance energy transfer colloids

    NASA Astrophysics Data System (ADS)

    Bedford, Monte Scott

    While nuclear imaging techniques (Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography) have proven effective for diagnosis and treatment of disease in the human body, fluorescence-enhanced optical imaging offers additional benefits. Fluorescent imaging provides high resolution with real-time response, persistent lifetime (hours to days), cell targeting, and transdermal penetration with minimal physical encumbrance. Malignant cells can be targeted by absorbance of exogenous fluorescent nanoprobe contrast agents. Imaging is improved by fluorescent enhancement, especially by energy transfer between attached dyes. Also for use against cancer are heat-active treatments, such as hyperthermal, photothermal, and chemothermal therapies. Helpful to these treatments is the thermal response from nanoprobes, within human cells, which provide real-time feedback. The present study investigates the design and feasibility of a nanoprobe molecular device, absorbable into malignant human cells, which provides real-time tracking and thermal response, as indicated by enhanced fluorescence by energy transfer. A poly(propargyl acrylate) colloidal suspension was synthesized. The particles were modified with a triblock copolymer, previously shown to be thermally responsive, and an end-attached fluorescent dye. A second dye was modeled for attachment in subsequent work. When two fluorescent dyes are brought within sufficiently close proximity, and excitation light is supplied, energy can be transferred between dyes to give enhanced fluorescence with a large Stokes shift (increase in wavelength between excitation and emission). The dye pair was modeled for overlap of emission and absorbance wavelengths, and energy transfer was demonstrated with 23% efficiency and a 209 nm Stokes shift. The quantum yield of the donor dye was determined at 70%, and the distance for 50% energy transfer was calculated at 2.9 nm, consistent with reports for similar compounds. When

  8. Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA

    NASA Astrophysics Data System (ADS)

    Fujii, Ryo; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2015-04-01

    We report on a nanoscale energy-route selector consisting of multiple fluorescence resonance energy transfer (FRET) structures switched by external signaling with multiple wavelengths of light. In each FRET structure, a specific activator molecule is incorporated to a FRET pair of a donor and an acceptor to control the activation of the acceptor. Owing to this configuration, the FRET structures are switched independently, and an energy route is selected. Two photo-switchable FRET structures, one consists of Alexa Fluor 568 (donor), Cy5 (acceptor), and Alexa Fluor 405 (activator), and the other consists of Alexa Fluor 568 (donor), Cy5.5 (acceptor), and Cy3 (activator), were constructed using DNA strands modified with fluorescence molecules. Switching rates for the individual FRET structures were measured as 64 and 49 %, respectively. An energy-route selector was then assembled with the FRET structures which share a single donor. Experimental results demonstrate that the energy route can be changed repeatedly by activation control using three wavelengths of light.

  9. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  10. Investigations and system design for simultaneous energy and data transmission through inductively coupled resonances

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Lloret Fuentes, E.; Buchholz, M.

    2015-11-01

    Wireless Power Transfer (WPT) with simultaneous data transmission through coupled magnetic resonators is investigated in this paper. The development of this system is dedicated to serve as a basis for applications in the field of Ambient Assisted Living (AAL), for example tracking vital parameters remotely, charge and control sensors and so on. Due to these different scenarios we consider, it is important to have a system which is reliable under the circumstance of changing positioning of the receiving device. State of the art radio systems would be able to handle this. Nevertheless, energy harvesting from far field sources is not sufficient to power the devices additionally on mid-range distances. For this reason, coupled magnetic resonant circuits are proposed as a promising alternative, although suffering from more complex positioning dependency. Based on measurements on a simple prototype system, an equivalent circuit description is used to model the transmission system dependent on different transmission distances and impedance matching conditions. Additionally, the simulation model is used to extract system parameters such as coupling coefficients, coil resistance and self-capacitance, which cannot be calculated in a simple and reliable way. Furthermore, a mathematical channel model based on the schematic model has been built in MATLAB©. It is used to point out the problems occurring in a transmission system with variable transmission distance, especially the change of the passband's centre frequency and its bandwidth. Existing solutions dealing with this distance dependent behaviour, namely the change of the transmission frequency dependent on distance and the addition of losses to the resonators to increase the bandwidth, are considered as not inventive. First, changing the transmission frequency increases the complexity in the data transmission system and would use a disproportional total bandwidth compared to the actually available bandwidth

  11. Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lehnen, M.; Stoschus, H.; Unterberg, E. A.; Coenen, J. W.; Frerichs, H.; Jakubowski, M. W.; Laengner, R.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Osborne, T. H.; Reimerdes, H.; Reiter, D.; Samm, U.; Unterberg, B.; DIII-D, the; TEXTOR Teams

    2012-04-01

    In this paper, results of a direct comparison of TEXTOR and DIII-D experiments with resonant magnetic perturbation (RMP) fields are presented. This comparison of resistive L-mode plasmas at TEXTOR with highly conductive H-mode plasmas at DIII-D is useful to identify generic physics mechanisms during application of RMP fields with a strong field line pitch angle alignment in the plasma edge. A reduction in the pedestal electron pressure pe with increasing extension of the vacuum modelled stochastic layer and pe recovery with decreasing layer width is found caused by a q95 resonant reduction in the edge (0.8 < ΨN < 0.95) electron temperature Te(q95) on both devices. For RMP edge-localized mode (ELM) suppressed H-mode plasmas at DIII-D, the gradients ∇Te and nominal values of Te are reduced in this edge region while increasing in the pedestal (0.95 < ΨN < 1.0) with RMP field applied and both are highly dependent on q95. In contrast, an increase in the central ion temperature with strong steepening of the ion temperature profile at mid-radius is found—again being highly dependent on q95. However, these resonant thermal transport effects are only seen in high triangularity plasmas revealing a strong shape dependence of the thermal transport. In contrast to the highly q95 dependent thermal transport features, the reduction of ne—known as density pump out—shows a much weaker dependence on q95. We show the potential to reduce the RMP induced particle pump out by fine tuning of the RMP spectral properties. At low resonant field amplitudes enhanced particle confinement is seen in high-field side limited L-mode discharges on both devices while higher resonant field amplitudes yield particle pumps out. This is the paper of the IAEA contribution by Schmitz O. et al 2010 Key results from the DIII-D/TEXTOR Collaboration on the Physics of Stochastic Boundaries projected to ELM control at ITER, EXD/P3-30.

  12. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  13. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly

    NASA Astrophysics Data System (ADS)

    Medintz, I. L.; Konnert, J. H.; Clapp, A. R.; Stanish, I.; Twigg, M. E.; Mattoussi, H.; Mauro, J. M.; Deschamps, J. R.

    2004-06-01

    The first generation of luminescent semiconductor quantum dot (QD)-based hybrid inorganic biomaterials and sensors is now being developed. It is crucial to understand how bioreceptors, especially proteins, interact with these inorganic nanomaterials. As a model system for study, we use Rhodamine red-labeled engineered variants of Escherichia coli maltose-binding protein (MBP) coordinated to the surface of 555-nm emitting CdSe-ZnS core-shell QDs. Fluorescence resonance energy transfer studies were performed to determine the distance from each of six unique MBP-Rhodamine red dye-acceptor locations to the center of the energy-donating QD. In a strategy analogous to a nanoscale global positioning system determination, we use the intraassembly distances determined from the fluorescence resonance energy transfer measurements, the MBP crystallographic coordinates, and a least-squares approach to determine the orientation of the MBP relative to the QD surface. Results indicate that MBP has a preferred orientation on the QD surface. The refined model is in agreement with other evidence, which indicates coordination of the protein to the QD occurs by means of its C-terminal pentahistidine tail, and the size of the QD estimated from the model is in good agreement with physical measurements of QD size. The approach detailed here may be useful in determining the orientation of proteins in other hybrid protein-nanoparticle materials. To our knowledge, this is the first structural model of a hybrid luminescent QD-protein receptor assembly elucidated by using spectroscopic measurements in conjunction with crystallographic and other data. maltose-binding protein | three-dimensional structure | nanotechnology | nanocrystal

  14. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  15. Electron thermal effects on electron acceleration and energy cascades in geomagnetic field line resonances

    NASA Astrophysics Data System (ADS)

    Damiano, P. A.; Johnson, J.; Wright, A. N.

    2010-12-01

    Some of the most intense electron precipitation and largest ion outflows are found in regions of intense, Alfvenic waves. Recent analysis of auroral turbulence suggests that large-scale waves couple energy to smaller scale lengths on the order of the electron inertial, ion-acoustic or ion-gyroradius. In this presentation, we examine the effects of electron temperature on the characteristics of electron acceleration and cross-scale energy coupling of wave energy using a hybrid MHD-kinetic electron simulation of Field Line Resonances in a dipolar coordinate system. The simulations describe a cascade of energy from a large-scale global driver to kinetic scales principally in the auroral acceleration region where electron inertial effects dominate and electron acceleration occurs. However, the fine scale transverse structuring of the upward current associated with this cascade appears to depend on the temperature of the ambient electron population suggesting that the ion acoustic scale length (which is dominant at higher altitudes) can influence the characteristics of the current fragmentation. Additionally, although the majority of the electron acceleration remains in the auroral acceleration region, the higher temperature cases appear to require a more extended (along the field line) source of electrons in order to carry the parallel current. We also consider the possible mechanisms by which coupling of large and small perpendicular scale lengths occurs and what effects the addition of ion gyro-radius physics may have on the characteristics of the acceleration and cascade.

  16. Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer

    PubMed Central

    Estruch, Sara B.; Fisher, Simon E.

    2014-01-01

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA. PMID:24893771

  17. Amorphous carbon nanoparticle used as novel resonance energy transfer acceptor for chemiluminescent immunoassay of transferrin.

    PubMed

    Gao, Hongfei; Wang, Wenwen; Wang, Zhenxing; Han, Jing; Fu, Zhifeng

    2014-03-28

    Amorphous carbon nanoparticles (ACNPs) showing highly efficient quenching of chemiluminescence (CL) were prepared from candle soot with a very simple protocol. The prepared ACNP was employed as the novel energy acceptor for a chemiluminescence resonance energy transfer (CRET)-based immunoassay. In this work, ACNP was linked with transferrin (TRF), and horseradish peroxidase (HRP) was conjugated to TRF antibody (HRP-anti-TRF). The immunoreaction rendered the distance between the ACNP acceptor and the HRP-catalyzed CL emitter to be short enough for CRET occurring. In the presence of TRF, this antigen competed with ACNP-TRF for HRP-anti-TRF, thus led to the decreased occurrence of CRET. A linear range of 20-400 ng mL(-1) and a limit of detection of 20 ng mL(-1) were obtained in this immunoassay. The proposed method was successfully applied for detection of TRF levels in human sera, and the results were in good agreement with ELISA method. Moreover, the ACNPs show higher energy transfer efficiency than other conventional nano-scaled energy acceptors such as graphene oxide in CRET assay. It is anticipated that this approach can be developed for determination of other analytes with low cost, simple manipulation and high specificity. PMID:24636417

  18. Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J. J.; Kornilov, Oleg

    2016-04-01

    Autoionizing Rydberg states of molecular N2 are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14 ±1 fs , while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  19. Design and manufacture of perpendicular bi-stable cantilever for vibrational energy harvesting on the basis of stochastic resonance

    NASA Astrophysics Data System (ADS)

    Kawano, M.; Zhang, Y.; Zheng, R.; Nakano, K.; Kim, B.

    2015-12-01

    This paper describes extremely simple configuration of novel vibrational energy harvester, which can harness low frequency (less than 5 Hz, such as various environmental vibrations) over a broad frequency band for the first time. A design that utilizes a phenomenon called stochastic resonance can give significantly enhanced vibration mode for increasing efficiency, and simple bi-stable cantilever with tip mass installed a basement vertically fulfils the requirements for stochastic resonance. We fabricated bi-stable cantilever with tip mass and validated whether the cantilever could be used as an effective low frequency vibration energy harvester. In the experiment, when a 1 Hz periodic force and environmental noise vibration were applied, stochastic resonance occurred. The amplitude of the energy harvester increased over tenfold (over 30 mm).

  20. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance. PMID:27152799

  1. Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems

    NASA Astrophysics Data System (ADS)

    Lucas, Dan; Bustamante, Miguel; Quinn, Brenda

    2014-11-01

    The precise mechanisms by which energy is most efficiently transferred in a turbulent system remain an important open question for the fluid mechanics community. In this talk we present a newly discovered resonance which is found to drive transfers across the spectrum of Fourier modes in a nonlinear wave system. Quadratic nonlinearity results in modes interacting in triads and, by considering the ``truly dynamical degrees of freedom'' (amplitudes and triad phases) and the precessional frequencies of the triads, we show transfers are maximal when the precession resonates with the nonlinear temporal frequencies. This can lead to a collective state of synchronised triads with intense cascades at intermediate nonlinearity; we find greatest transfer between the traditional weak and strong turbulence regimes and discover that this new mechanism is dominant here. We present the effect in a hierarchy of models including a full DNS of the Charney-Hasegawa-Mima equation and confirm analytical predictions. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.

  2. Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances

    NASA Astrophysics Data System (ADS)

    Leadenham, S.; Erturk, A.

    2015-05-01

    It has been well demonstrated over the past few years that vibration energy harvesters with intentionally designed nonlinear stiffness components can be used for frequency bandwidth enhancement under harmonic excitation for sufficiently high vibration amplitudes. In order to overcome the need for high excitation intensities that are required to exploit nonlinear dynamic phenomena, we have developed an M-shaped piezoelectric energy harvester configuration that can exhibit a nonlinear frequency response under very low vibration levels. This configuration is made from a continuous bent spring steel with piezoelectric laminates and a proof mass but no magnetic components. Careful design of this nonlinear architecture that minimizes piezoelectric softening further enables the possibility of achieving the jump phenomenon in hardening at few milli-g base acceleration levels. In the present work, such a design is explored for both primary and secondary resonance excitations at different vibration levels and load resistance values. Following the primary resonance excitation case that offers a 660% increase in the half-power bandwidth as compared to the linear system at a root-mean-square excitation level as low as 0.04g, secondary resonance behavior is investigated with a focus on 1:2 and 1:3 superharmonic resonance neighborhoods. A multi-term harmonic balance formulation is employed for a computationally effective yet high-fidelity analysis of this high-quality-factor system with quadratic and cubic nonlinearities. In addition to primary resonance and secondary (superharmonic) resonance cases, multi-harmonic excitation is modeled and experimentally validated.

  3. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  4. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  5. Impact of low-energy multipole excitations and pygmy resonances on radiative nucleon captures

    NASA Astrophysics Data System (ADS)

    Tsoneva, N.; Lenske, H.

    2016-01-01

    Nuclear structure theory is considered in the framework of the development of a microscopic model for nucleon-capture astrophysical implementations. In particular, microscopically obtained strength functions from a theoretical method incorporating density functional theory and quasiparticle-phonon model are used as an input in a statistical reaction model. The approach is applied in systematic investigations of the impact of low-energy multipole excitations and pygmy resonances on dipole photoabsorption and radiative neutronand proton-capture cross sections of key s- and r-process nuclei which is discussed in comparison with the experiment. For the cases of the short-lived isotopes 89Zr and 91Mo theoretical predictions are made.

  6. Evidence for enhanced optical properties through plasmon resonance energy transfer in silver silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Mol, Beena; Joy, Lija K.; Thomas, Hysen; Thomas, Vinoy; Joseph, Cyriac; Narayanan, T. N.; Al-Harthi, Salim; Unnikrishnan, N. V.; Anantharaman, M. R.

    2016-02-01

    Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix.

  7. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  8. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

    PubMed Central

    Ding, Shaowei; Cargill, Allison A.; Das, Suprem R.; Medintz, Igor L.; Claussen, Jonathan C.

    2015-01-01

    Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed. PMID:26110411

  9. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    NASA Astrophysics Data System (ADS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  10. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Holmstrom, Erik D.; Nesbitt, David J.

    2016-05-01

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  11. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  12. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  13. Full counting statistics of energy fluctuations in a driven quantum resonator

    SciTech Connect

    Clerk, A. A.

    2011-10-15

    We consider the statistics of time-integrated energy fluctuations of a driven bosonic single-mode resonator, as measured by a quantum nondemolition (QND) detector, using the standard Keldysh prescription to define higher moments. We find that, due to an effective cascading of fluctuations, these statistics are surprisingly nonclassical: the low-temperature, quantum probability distribution is not equivalent to the high-temperature classical distribution evaluated at some effective temperature. Moreover, for a sufficiently large drive detuning and low temperatures, the Keldysh-ordered quasiprobability distribution characterizing these fluctuations fails to be positive-definite; this is similar to the full counting statistics of charge in superconducting systems. We argue that this indicates a kind of nonclassical behavior akin to that tested by Leggett-Garg inequalities.

  14. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz. PMID:24985867

  15. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm-3 volume power density at 170-206 Hz.

  16. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal.

    PubMed

    Poudel, Amrit; Chen, Xin; Ratner, Mark A

    2016-03-17

    The high density of evanescent modes in the vicinity of a metal leads to enhancement of the near-field Förster resonant energy transfer (FRET) rate. We present a classical approach to calculate the FRET rate based on the dyadic Green's function of an arbitrary dielectric environment and consider the nonlocal limit of material permittivity in the case of the metallic half-space and thin film. In a dimer system, we find that the FRET rate is enhanced due to shared evanescent photon modes bridging a donor and an acceptor. Furthermore, a general expression for the FRET rate for multimer systems is derived. The presence of a dielectric environment and the path interference effect enhance the transfer rate, depending on the combination of distance and geometry. PMID:26913686

  17. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Forster resonance energy transfer measurements.

    PubMed

    Hoffmann, Birgit; Zimmer, Thomas; Klöcker, Nikolaj; Kelbauskas, Laimonas; König, Karsten; Benndorf, Klaus; Biskup, Christoph

    2008-01-01

    Since its discovery, green fluorescent protein (GFP) and its variants have proven to be a good and convenient fluorescent label for proteins: GFP and other visible fluorescent proteins (VFPs) can be fused selectively to the protein of interest by simple cloning techniques and develop fluorescence without additional cofactors. Among the steadily growing collection of VFPs, several pairs can be chosen that can serve as donor and acceptor fluorophores in Forster resonance energy transfer (FRET) experiments. Among them, the cyan fluorescent proteins (ECFP/Cerulean) and the enhanced yellow fluorescent protein (EYFP) are most commonly used. We show that ECFP and Cerulean have some disadvantages despite their common use: Upon irradiation with light intensities that are commonly used for intensity- and lifetime-based FRET measurements, both the fluorescence intensity and the fluorescence lifetime of ECFP and Cerulean decrease. This can hamper both intensity- and lifetime-based FRET measurements and emphasizes the need for control measurements to exclude these artifacts. PMID:18601529

  18. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.

    PubMed

    Holmstrom, Erik D; Nesbitt, David J

    2016-05-27

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding. PMID:27215819

  19. Coumarin meets fluorescein: a Förster resonance energy transfer enhanced optical ammonia gas sensor.

    PubMed

    Widmer, Susanne; Dorrestijn, Marko; Camerlo, Agathe; Urek, Špela Korent; Lobnik, Aleksandra; Housecroft, Catherine E; Constable, Edwin C; Scherer, Lukas J

    2014-09-01

    This study focuses on the development of an optical ammonia gas sensor, the sensing mechanism of which is based on Förster resonance energy transfer (FRET) between coumarin and fluorescein. The dyes were immobilized into an organically modified silicate matrix during polymerizing methyltriethoxysilane with trifluoropropyltrimethoxysilane on a poly(methyl methacrylate) substrate. The resulting dye-doped xerogel films were exposed to different gaseous ammonia concentrations. A logarithmic decrease of the coumarin fluorescence emission band at 442 nm was observed with increasing gaseous ammonia concentrations, which was due to enhanced FRET between coumarin and fluorescein. The coumarin/fluorescein composition was optimized in order to obtain the best ammonia sensitivity. First experiments in a flow cell gas sensor setup demonstrated a sensitive and reversible response to gaseous ammonia. PMID:25004956

  20. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    PubMed Central

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  1. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer.

    PubMed Central

    Ghosh, S S; Eis, P S; Blumeyer, K; Fearon, K; Millar, D P

    1994-01-01

    The kinetics of PaeR7 endonuclease-catalysed cleavage reactions of fluorophor-labeled oligonucleotide substrates have been examined using fluorescence resonance energy transfer (FRET). A series of duplex substrates were synthesized with an internal CTCGAG PaeR7 recognition site and donor (fluorescein) and acceptor (rhodamine) dyes conjugated to the opposing 5' termini. The time-dependent increase in donor fluorescence resulting from restriction cleavage of these substrates was continuously monitored and the initial rate data was fitted to the Michaelis-Menten equation. The steady state kinetic parameters for these substrates were in agreement with the rate constants obtained from a gel electrophoresis-based fixed time point assay using radiolabeled substrates. The FRET method provides a rapid continuous assay as well as high sensitivity and reproducibility. These features should make the technique useful for the study of DNA-cleaving enzymes. Images PMID:8065930

  2. Use of Resonance Energy Transfer Techniques for In Vivo Detection of Chemokine Receptor Oligomerization.

    PubMed

    Martínez-Muñoz, Laura; Rodríguez-Frade, José Miguel; Mellado, Mario

    2016-01-01

    Since the first reports on chemokine function, much information has been generated on the implications of these molecules in numerous physiological and pathological processes, as well as on the signaling events activated through their binding to receptors. As is the case for other G protein-coupled receptors, chemokine receptors are not isolated entities that are activated following ligand binding; rather, they are found as dimers and/or higher order oligomers at the cell surface, even in the absence of ligands. These complexes form platforms that can be modified by receptor expression and ligand levels, indicating that they are dynamic structures. The analysis of the conformations adopted by these receptors at the membrane and their dynamics is thus crucial for a complete understanding of the function of the chemokines. We focus here on the methodology insights of new techniques, such as those based on resonance energy transfer for the analysis of chemokine receptor conformations in living cells. PMID:27271913

  3. High Efficiency Forster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells

    SciTech Connect

    Mor, Gopal K.; Basham, James; Paulose, Maggie; Kim, Sanghoon; Varghese, Oomman K.; Vaish, Amit; Yoriya, Sorachon; Grimes, Craig A.

    2010-07-14

    Solid-state dye-sensitized solar cells (SS-DSCs) offer the potential to make low cost solar power a reality, however their photoconversion efficiency must first be increased. The dyes used are commonly narrow band with high absorption coefficients, while conventional photovoltaic operation requires proper band edge alignment significantly limiting the dyes and charge transporting materials that can be used in combination. We demonstrate a significant enhancement in the light harvesting and photocurrent generation of SS-DSCs due to Förster resonance energy transfer (FRET). TiO{sub 2} nanotube array films are sensitized with red/near IR absorbing SQ-1 acceptor dye, subsequently intercalated with Spiro-OMeTAD blended with a visible light absorbing DCM-pyran donor dye. The calculated Förster radius is 6.1 nm. The donor molecules contribute a FRET-based maximum IPCE of 25% with a corresponding excitation transfer efficiency of approximately 67.5%.

  4. FRETView: a computer program to simplify the process of obtaining fluorescence resonance energy transfer parameters.

    PubMed

    Stevens, Nathan; Dyer, Joanne; Martí, Angel A; Solomon, Marissa; Turro, Nicholas J

    2007-08-01

    The process of modeling the fluorescence resonance energy transfer (FRET) process for a donor-acceptor pair can be rather challenging, yet few computer programs exist that allow such modeling to be done with relative ease. In order to address this, we have developed a Java-based program, FRETView, which allows numerous FRET parameters to be obtained with just a few mouse clicks. Being a Java-based program, it runs equally well on all the major operating systems such as Windows, Mac OS X, Linux, Solaris. The program allows the user to effortlessly input pertinent information about the donor-acceptor pair, including the absorption and/or emission spectra, and outputs the calculated FRET parameters in table format, as well as graphical plots. PMID:17668122

  5. Effect of diffusion on Förster resonance energy transfer in low-viscosity solution

    NASA Astrophysics Data System (ADS)

    Muratsugu, Atsushi; Watanabe, Junji; Kinoshita, Shuichi

    2014-06-01

    The effect of translational diffusion on Förster resonance energy transfer between rhodamine 6G (the donor) and malachite green (the acceptor) was investigated by examining the donor's fluorescence decay profile. Eight straight-chain alkyl alcohols were used, and the temperature of ethanol was changed to vary the viscosity; the decay profiles were analyzed using the theory developed by Gösele. The critical transfer distance obtained from the decay profile is in good agreement with that evaluated using the spectroscopic quantities, and the diffusion coefficients are consistent with the Stokes-Einstein relation. The fluorescence decay profile was described well by Gösele's theory and the effect of diffusion is clearly verified by the temperature/viscosity dependence of the diffusion constant.

  6. Near infrared bioluminescence resonance energy transfer from firefly luciferase--quantum dot bionanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Zylstra, Joshua; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2014-12-12

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (∼5.5 nm). Due to this, high BRET efficiency ratios of ∼5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications. PMID:25414169

  7. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    NASA Astrophysics Data System (ADS)

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-03-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test.

  8. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer

    NASA Astrophysics Data System (ADS)

    Alavikia, Babak; Almoneef, Thamer S.; Ramahi, Omar M.

    2015-12-01

    This work demonstrates the viability of wideband Ground-backed Complementary Split-Ring Resonator (WG-CSRR) arrays with significant power conversion efficiency and bandwidth enhancement in comparison to the technology used in current electromagnetic energy harvesting systems. Through numerical full-wave analysis, we demonstrated the correlation between the topology of the WG-CSRR patch and the electric current distribution over the patch at different frequencies. A comparative study of power harvesting efficiency and frequency bandwidth through numerical analysis was presented where an array of WG-CSRRs is compared to an array of G-CSRRs and an array of microstrip patch antennas. A significant improvement in bandwidth is achieved in comparison to the G-CSRR array reported in earlier work.

  9. Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2014-12-01

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.

  10. Evidence for enhanced optical properties through plasmon resonance energy transfer in silver silica nanocomposites.

    PubMed

    Mol, Beena; Joy, Lija K; Thomas, Hysen; Thomas, Vinoy; Joseph, Cyriac; Narayanan, T N; Al-Harthi, Salim; Unnikrishnan, N V; Anantharaman, M R

    2016-02-26

    Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix. PMID:26808999

  11. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer.

    PubMed

    Thaler, Christopher; Koushik, Srinagesh V; Blank, Paul S; Vogel, Steven S

    2005-10-01

    Protein labeling with green fluorescent protein derivatives has become an invaluable tool in cell biology. Protein quantification, however, is difficult when cells express constructs with overlapping fluorescent emissions. Under these conditions, signal separation using emission filters is inherently inefficient. Spectral imaging solves this problem by recording emission spectra directly. Unfortunately, linear unmixing, the algorithm used for quantifying individual fluorophores from emission spectra, fails when resonance energy transfer (RET) is present. We therefore sought to develop an unmixing algorithm that incorporates RET. An equation for spectral emission incorporating RET was derived and an assay based on this formalism, spectral RET (sRET), was developed. Standards with defined RET efficiencies and with known Cerulean/Venus ratios were constructed and used to test sRET. We demonstrate that sRET analysis is a comprehensive, photon-efficient method for imaging RET efficiencies and accurately determines donor and acceptor concentrations in living cells. PMID:16040744

  12. Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Vos, Willem L.

    2016-05-01

    Motivated by the ongoing debate about nanophotonic control of Förster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency overlap range of donor and acceptor. This system allows us to obtain the following two new insights. Firstly, we derive that the FRET rate only depends on the static part of the Green function. Hence, the FRET rate is independent of frequency, in contrast to spontaneous-emission rates and LDOS that are strongly frequency dependent in nanophotonic media. Therefore, the position-dependent FRET rate and the LDOS at the donor transition frequency are completely uncorrelated for any nondispersive medium. Secondly, we derive an exact expression for the FRET rate as a frequency integral of the imaginary part of the Green function. This leads to very accurate approximation for the FRET rate that features the LDOS that is integrated over a huge bandwidth ranging from zero frequency to far into the UV. We illustrate these general results for the analytic model system of a pair of ideal dipole emitters—donor and acceptor—in the vicinity of an ideal mirror. We find that the FRET rate is independent of the LDOS at the donor emission frequency. Moreover, we observe that the FRET rate hardly depends on the frequency-integrated LDOS. Nevertheless, the FRET is controlled between inhibition and 4×enhancement at distances close to the mirror, typically a few nm. Finally, we discuss the consequences of our results to applications of Förster resonance energy transfer, for instance in quantum information processing.

  13. Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.

    PubMed

    Gao, Yuan; Yu, Guannan; Wang, Yue; Dang, Cuong; Sum, Tze Chien; Sun, Handong; Demir, Hilmi Volkan

    2016-07-21

    Thanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications. PMID:27388758

  14. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed. PMID:18315202

  15. Chaotic Energy Exchange Through Auto-Parametric Resonance in Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    POPOV, A. A.; THOMPSON, J. M. T.; MCROBIE, F. A.

    2001-11-01

    Internal auto-parametric instabilities in the free non-linear vibrations of a cylindrical shell are studied numerically, focusing on two modes (a concertina mode and a chequerboard mode) whose non-linear interaction breaks the in-out symmetry of the linear vibration theory. The two-mode interaction leads to preferred vibration patterns with larger deflection inwards than outwards, and at internal resonance, significant energy transfer occurs between the modes. This has regular and chaotic features. Here, direct numerical integration is employed to examine chaotic motions. Using a set of 2-D Poincaré sections, each valid for a fixed level of the Hamiltonian, H, the instability under increasing H appears, as a supercritical period-doubling pitchfork bifurcation. Chaotic motions near a homoclinic separatrix appear immediately after the bifurcation, giving an irregular exchange of energy. This chaos occurs at arbitrarily low amplitude as perfect tuning is approached. The instability manifests itself as repeating excursions around the separatrix, and a number of practical predictions can be made. These include the magnitude of the excursion, the time taken to reach this magnitude and the degree of chaos and unpredictability in the outcome. The effect of small damping is to pull the motion away from what was the chaotic separatrix, giving a response that resembles, for a while, the lower-energy quasi-periodic orbits of the underlying Hamiltonian system.

  16. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.

    PubMed

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Chen, Jianqiu

    2015-03-01

    Water-soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water-soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05-10.10), concentration of Eosin Y (2-80 mg/L) and concentration of CdS QDs (2-80 mg/L), were investigated and refined. Donor-to-acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water-soluble CdS QDs and Eosin Y at pH 5.0; donor-to-acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively. PMID:24888328

  17. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    SciTech Connect

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  18. Near-resonant rotational energy transfer in HCl–H{sub 2} inelastic collisions

    SciTech Connect

    Lanza, Mathieu; Lique, François; Kalugina, Yulia; Wiesenfeld, Laurent

    2014-02-14

    We present a new four-dimensional (4D) potential energy surface for the HCl–H{sub 2} van der Waals system. Both molecules were treated as rigid rotors. Potential energy surface was obtained from electronic structure calculations using a coupled cluster with single, double, and perturbative triple excitations method. The four atoms were described using the augmented correlation-consistent quadruple zeta basis set and bond functions were placed at mid-distance between the HCl and H{sub 2} centers of mass for a better description of the van der Waals interaction. The global minimum is characterized by the well depth of 213.38 cm{sup −1} corresponding to the T-shape structure with H{sub 2} molecule on the H side of the HCl molecule. The dissociation energies D{sub 0} are 34.7 cm{sup −1} and 42.3 cm{sup −1} for the complex with para- and ortho-H{sub 2}, respectively. These theoretical results obtained using our new PES are in good agreement with experimental values [D. T. Anderson, M. Schuder, and D. J. Nesbitt, Chem. Phys. 239, 253 (1998)]. Close coupling calculations of the inelastic integral rotational cross sections of HCl in collisions with para-H{sub 2} and ortho-H{sub 2} were performed at low and intermediate collisional energies. Significant differences exist between para- and ortho-H{sub 2} results. The strongest collision-induced rotational HCl transitions are the transitions with Δj = 1 for collisions with both para-H{sub 2} and ortho-H{sub 2}. Rotational relaxation of HCl in collision with para-H{sub 2} in the rotationally excited states j = 2 is dominated by near-resonant energy transfer.

  19. Resonance energy transfer: Influence of neighboring matter absorbing in the wavelength region of the acceptor

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Ford, Jack S.

    2013-07-01

    In many of the materials and systems in which resonance energy transfer occurs, the individual chromophores are embedded within a superstructure of significantly different chemical composition. In accounting for the influence of the surrounding matter, the simplest and most widely used representation is commonly cast in terms of a dependence on local refractive index. However, such a depiction is a significant oversimplification, as it fails to register the electronic and local geometric effects of material specifically in the vicinity of the chromophores undergoing energy transfer. The principal objective of this study is to construct a detailed picture of how individual photon interaction events are modified by vicinal, non-absorbing chromophores. A specific aim is to discover what effects arise when input excitation is located in the neighborhood of other chromophores that have a slightly shorter wavelength of absorption; this involves a passive effect exerted on the transfer of energy at wavelengths where they themselves display no significant absorption. The theory is based on a thorough quantum electrodynamical analysis that allows the identification of specific optical and electronic chromophore attributes to expedite or inhibit electronic energy transfer. The Clausius-Mossotti dispersion relationship is then deployed to elicit a dependence on the bulk refractive index of the surroundings. A distinction is drawn between cases in which the influence on the electromagnetic coupling between the donor and the acceptor is primarily due to the static electric field produced by a polar medium, and converse cases in which the mechanism for modifying the form of energy transfer involves the medium acquiring an induced electric dipole. The results provide insights into the detailed quantum mechanisms that operate in multi-chromophore systems, pointing to factors that contribute to the optimization of photosystem characteristics.

  20. Near-resonant rotational energy transfer in HCl-H2 inelastic collisions.

    PubMed

    Lanza, Mathieu; Kalugina, Yulia; Wiesenfeld, Laurent; Lique, François

    2014-02-14

    We present a new four-dimensional (4D) potential energy surface for the HCl-H2 van der Waals system. Both molecules were treated as rigid rotors. Potential energy surface was obtained from electronic structure calculations using a coupled cluster with single, double, and perturbative triple excitations method. The four atoms were described using the augmented correlation-consistent quadruple zeta basis set and bond functions were placed at mid-distance between the HCl and H2 centers of mass for a better description of the van der Waals interaction. The global minimum is characterized by the well depth of 213.38 cm(-1) corresponding to the T-shape structure with H2 molecule on the H side of the HCl molecule. The dissociation energies D0 are 34.7 cm(-1) and 42.3 cm(-1) for the complex with para- and ortho-H2, respectively. These theoretical results obtained using our new PES are in good agreement with experimental values [D. T. Anderson, M. Schuder, and D. J. Nesbitt, Chem. Phys. 239, 253 (1998)]. Close coupling calculations of the inelastic integral rotational cross sections of HCl in collisions with para-H2 and ortho-H2 were performed at low and intermediate collisional energies. Significant differences exist between para- and ortho-H2 results. The strongest collision-induced rotational HCl transitions are the transitions with Δj = 1 for collisions with both para-H2 and ortho-H2. Rotational relaxation of HCl in collision with para-H2 in the rotationally excited states j = 2 is dominated by near-resonant energy transfer. PMID:24527924

  1. Near-resonant rotational energy transfer in HCl-H2 inelastic collisions

    NASA Astrophysics Data System (ADS)

    Lanza, Mathieu; Kalugina, Yulia; Wiesenfeld, Laurent; Lique, François

    2014-02-01

    We present a new four-dimensional (4D) potential energy surface for the HCl-H2 van der Waals system. Both molecules were treated as rigid rotors. Potential energy surface was obtained from electronic structure calculations using a coupled cluster with single, double, and perturbative triple excitations method. The four atoms were described using the augmented correlation-consistent quadruple zeta basis set and bond functions were placed at mid-distance between the HCl and H2 centers of mass for a better description of the van der Waals interaction. The global minimum is characterized by the well depth of 213.38 cm-1 corresponding to the T-shape structure with H2 molecule on the H side of the HCl molecule. The dissociation energies D0 are 34.7 cm-1 and 42.3 cm-1 for the complex with para- and ortho-H2, respectively. These theoretical results obtained using our new PES are in good agreement with experimental values [D. T. Anderson, M. Schuder, and D. J. Nesbitt, Chem. Phys. 239, 253 (1998)]. Close coupling calculations of the inelastic integral rotational cross sections of HCl in collisions with para-H2 and ortho-H2 were performed at low and intermediate collisional energies. Significant differences exist between para- and ortho-H2 results. The strongest collision-induced rotational HCl transitions are the transitions with Δj = 1 for collisions with both para-H2 and ortho-H2. Rotational relaxation of HCl in collision with para-H2 in the rotationally excited states j = 2 is dominated by near-resonant energy transfer.

  2. 57Co (n,γ) 58Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    NASA Astrophysics Data System (ADS)

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The 57Co (n,γ) 58Co thermal and resonance integral cross section were measured as 51 (5) b and 20.0 (19) b , respectively, by irradiating aliquots of 57Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  3. {sup 57}Co(n,{gamma}){sup 58}Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    SciTech Connect

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The {sup 57}Co(n,{gamma}){sup 58}Co thermal and resonance integral cross section were measured as 51(5) b and 20.0(19) b, respectively, by irradiating aliquots of {sup 57}Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  4. Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor.

    PubMed

    Wang, Yuhui; Wu, Zhengjun; Liu, Zhihong

    2013-01-01

    We report a new upconversion fluorescence resonance energy transfer (UC-FRET) biosensor using poly-m-phenylenediamine (PMPD) nanospheres as the energy acceptor in this paper. A single-stranded DNA (ssDNA) tagged with a sulfydryl group at the 5'-terminus was covalently linked to poly(ethylenimine) (PEI) functionalized upconversion phosphors (UCPs, the energy donor). Because of the π-rich electronic structure of PMPD, self-assembly of the donor and the acceptor was achieved through the π-π stacking interaction between ssDNA and PMPD. The fluorescence of the donor was quenched by the acceptor in a PMPD-concentration-dependent manner. A maximum quenching degree of 90% was acquired, which was among the highest levels of all previous reports. Upon the formation of double-stranded DNA (dsDNA) between the target DNA and the probe DNA, the energy acceptor was separated from the donor due to the weakened interaction between dsDNA and PMPD. The fluorescence of UCPs was accordingly restored, and a linear response was obtained with the target concentration ranging from 0.1 to 6.0 nM. The limit of detection was calculated as 0.036 nM, which was a highly competitive sensitivity. The sensor also showed high precision, pronounced specificity, and the applicability to complicated sample matrix (human serum). The UCPs-PMPD FRET sensing platform takes advantages of both the optical merits of the upconversion donors and the superquenching ability and good water-solubility of the aromatic polymer nanoparticles. This study will open the opportunity to develop a new class of UC-FRET biosensors. PMID:23186324

  5. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer

    PubMed Central

    2004-01-01

    We describe a fluorescence resonance energy transfer (FRET)-based method for finding in living cells the fraction of a protein population (αT) forming complexes, and the average number (n) of those protein molecules in each complex. The method relies both on sensitized acceptor emission and on donor de-quenching (by photobleaching of the acceptor molecules), coupled with full spectral analysis of the differential fluorescence signature, in order to quantify the donor/acceptor energy transfer. The approach and sensitivity limits are well suited for in vivo microscopic investigations. This is demonstrated using a scanning laser confocal microscope to study complex formation of the sterile 2 α-factor receptor protein (Ste2p), labelled with green, cyan, and yellow fluorescent proteins (GFP, CFP, and YFP respectively), in budding yeast Saccharomyces cerevisiae. A theoretical model is presented that relates the efficiency of energy transfer in protein populations (the apparent FRET efficiency, Eapp) to the energy transferred in a single donor/acceptor pair (E, the true FRET efficiency). We determined E by using a new method that relies on Eapp measurements for two donor/acceptor pairs, Ste2p–CFP/Ste2p–YFP and Ste2p–GFP/Ste2p–YFP. From Eapp and E we determined αT≈1 and n≈2 for Ste2 proteins. Since the Ste2p complexes are formed in the absence of the ligand in our experiments, we conclude that the α-factor pheromone is not necessary for dimerization. PMID:15352875

  6. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    PubMed Central

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  7. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting.

    PubMed

    Jia, Yu; Du, Sijun; Seshia, Ashwin A

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  8. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-07-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a ‑3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.

  9. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  10. High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2016-04-01

    We report high-energy linearly polarized operation of an Er:YAG laser at 1617 nm, resonantly pumped by quasi-continuous-wave 1470-nm laser diodes. A U-shape resonator incorporating two 0.25 at.% Er:YAG rods and an acousto-optic Q-switch was employed. Polarized output with pulse energy of 20.5 mJ and pulse width of 52 ns at a 50 Hz repetition rate was obtained. At the maximum output energy, the output beam quality M 2 was approximately 1.02 and 1.03 in horizontal and vertical directions, respectively. To the best of our knowledge, this polarized pulse energy is the highest ever reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  11. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Ichiki, Akihisa; Kusano, Yuya; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2015-09-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  12. Proximity hybridization-regulated chemiluminescence resonance energy transfer for homogeneous immunoassay.

    PubMed

    Liu, Mengmeng; Wu, Jie; Yang, Kaili; Zong, Chen; Lei, Jianping; Ju, Huangxian

    2016-07-01

    Chemiluminescence resonance energy transfer (CRET) and the proximity ligation assay have been widely used in design of sensors for the bioanalysis. Here, a wash-free and homogeneous strategy was proposed to detect carcino-embryonic antigen (CEA) based on proximity hybridization-regulated CRET. The Cy5 demonstrated strong chemiluminescence (CL) via the oxidation of TCPO in the presence of H2O2 and energy transfer between excited TCPO and Cy5. Graphene oxide (GO) as an excellent quencher was used to produce the "Signal off" mode that little CL emission was observed through CRET between GO and the Cy5-labelled DNA3. Once CEA was introduced, the target-induced proximity hybridization occurred to form a proximate complex, which inhibited the CRET by preventing GO from absorbing Cy5-labelled DNA3. Furthermore, taking advantage of nicking endonuclease Nt.BbvCI for in situ recycling, the signal could be further amplified for highly sensitive CL detection. Our results showed that this strategy enabled a specific response to CEA with a detection range of 5 orders of magnitude, along with a detection limit of 3.2pg mL(-1). Apart from its easy operation, high sensitivity and acceptable accuracy, the proposed method needed only 0.3μL of sample, indicating its great opportunity for commercial application. PMID:27154699

  13. Intramolecular fluorescence resonance energy transfer and living cell imaging of novel pyridyltriphenylamine dye

    NASA Astrophysics Data System (ADS)

    Cao, Duojun; Qian, Ying

    2016-07-01

    A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.

  14. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  15. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  16. Resonance interactions in acyclic systems. 1. Energies and charge distributions in allyl anions and related compounds

    SciTech Connect

    Wiberg, K.B.; Breneman, C.M.; LePage, T.J. )

    1990-01-03

    The energies of dissociation of propane to 1-propyl cation and anion and of propene to allyl cation and anion may be satisfactorily reproduced via ab initio calculations at the MP4/6-311++G**//6-31G* level. The reaction of 1-propyl cation with propene to give the unconjugated allyl cation was found to be endothermic, whereas the corresponding reaction of the anion was exothermic. The rotational barrier for allyl cation was 36 kcal/mol, whereas that for the anion was 19 kcal/mol. These data were analyzed in terms of electron delocalization and the electrostatic energies of the ions, and it was concluded that whereas the cation had significant resonance stabilization, the anion had little stabilization. A series of allyl type anions were examined making use of 6-311++G** wave functions calculated at the 6-31G* geometries. Correction for electron correlation at the MP3 level led to calculated proton affinities which agreed well with the experimental values. Electronegative atoms at the central position had little affect on the proton affinities, but when they were at the terminal positions, there was a large change. The changes in electron population among the amions were studied via numerical integration of the charge densities within boundaries which may be assigned to the atoms in the ions. The more stable anions are characterized by a -+- charge distribution for the three atoms in the allylic system, leading to internal coulombic stabilization.

  17. Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters.

    PubMed

    Gaind, Vaibhav; Webb, Kevin J; Kularatne, Sumith; Bouman, Charles A

    2009-08-01

    Fluorescence resonance energy transfer (FRET) is a nonradiative energy transfer process based on dipole-dipole interaction between donor and acceptor fluorophores that are spatially separated by a distance of a few nanometers. FRET has proved to be of immense value in the study of cellular function and the underlying cause of disease due to, for example, protein misfolding (of consequence in Alzheimer's disease). The standard parameterization in intramolecular FRET is the lifetime and yield, which can be related to the donor-acceptor (DA) distance. FRET imaging has thus far been limited to in vitro or near-surface microscopy because of the deleterious effects of substantial scatter. We show that it is possible to extract the microscopic FRET parameters in a highly scattering environment by incorporating the FRET kinetics of an ensemble of DA molecules connected by a flexible or rigid linker into an optical diffusion tomography (ODT) framework. We demonstrate the efficacy of our approach for extracting the microscopic DA distance through simulations and an experiment using a phantom with scattering properties similar to tissue. Our method will allow the in vivo imaging of FRET parameters in deep tissue, and hence provide a new vehicle for the fundamental study of disease. PMID:19649115

  18. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study.

    PubMed Central

    Bassi, G S; Murchie, A I; Walter, F; Clegg, R M; Lilley, D M

    1997-01-01

    The ion-induced folding transitions of the hammerhead ribozyme have been analysed by fluorescence resonance energy transfer. The hammerhead ribozyme may be regarded as a special example of a three-way RNA junction, the global structure of which has been studied by comparing the distances (as energy transfer efficiencies) between the ends of pairs of labelled arms for the three possible end-to-end vectors as a function of magnesium ion concentration. The data support two sequential ion-dependent transitions, which can be interpreted in the light of the crystal structures of the hammerhead ribozyme. The first transition corresponds to the formation of a coaxial stacking between helices II and III; the data can be fully explained by a model in which the transition is induced by a single magnesium ion which binds with an apparent association constant of 8000-10 000 M-1. The second structural transition corresponds to the formation of the catalytic domain of the ribozyme, induced by a single magnesium ion with an apparent association constant of approximately 1100 M-1. The hammerhead ribozyme provides a well-defined example of ion-dependent folding in RNA. PMID:9405376

  19. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    SciTech Connect

    Takeda, Yasuhiko Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  20. Direct and third-body mediated resonance energy transfer in dimensionally constrained nanostructures

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Andrews, David L.

    2015-07-01

    The process of resonance energy transfer (RET) in a nanostructure influenced by a vicinal, nonabsorbing third body is studied within the framework of molecular quantum electrodynamics. Direct RET and the influence of neighboring matter have been studied previously, mainly for molecules. However, a complete study or unified understanding of direct and indirect RET in nanostructures with different dimensionalities is still lacking. Therefore, there is a strong need for a complete theory that models RET for the cases of quantum wells, nanowires, and quantum dots. We construct a detailed picture of excitation energy transfer in nanostructures and how it is affected by another quantum object, which includes the derivation of quantum amplitudes based on second- and fourth-order time-dependent perturbation theories, and the derivation of transfer rates and distance dependencies, providing a complete picture and understanding of RET in nanostructures. The results of the derivations indicate that the dimensionality of the nanostructure determines the controllability of the RET rate. Furthermore, third-body mediation leads to a nonvanishing RET in the coupling of nanowire to nanowire and quantum dot to quantum dot.

  1. White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red.

    PubMed

    Joshi, Neeraj K; Polgar, Alexander M; Steer, Ronald P; Paige, Matthew F

    2016-05-11

    Simple composite films consisting of a polymer blended with organic emitters have the potential for broad-band "white" light emission that can be used for general lighting applications. In the present work, a simple mixture of 3-hydroxyisoquinoline (HIQ) with Nile Red (NR) in a polymeric matrix of polyvinyl alcohol (PVA) is used to generate white light through a non-radiative excitation energy transfer (NREET) mechanism. NREET between HIQ and NR doped in PVA films is investigated using a combination of steady state and time resolved fluorescence spectroscopic methods. It is observed that NR has very weak fluorescence in the PVA film upon excitation at 400 nm, but upon mixing NR with HIQ, sensitized emission of NR is observed with decreased emission of HIQ. The behavior of the sensitized emission of NR is consistent with Förster resonance energy transfer (FRET) between the donor HIQ and acceptor NR. By adjusting the relative fractions of HIQ and NR in the films, the extent of FRET could be regulated and the overall film emission color could be manipulated to enable overall "white" (CIE color coordinates 0.34, 0.38) emission. The films showed excellent photostability with 405 nm diode illumination, along with mechanical flexibility, suggesting good potential utility as a down converting element for lighting applications. PMID:26928071

  2. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo.

    PubMed

    Kamkaew, Anyanee; Sun, Haiyan; England, Christopher G; Cheng, Liang; Liu, Zhuang; Cai, Weibo

    2016-05-19

    A small luciferase protein (Nluc) was conjugated to QDs as a bioluminescence resonance energy transfer (BRET) pair. The conjugate showed 76% BRET efficiency and lymph node mapping was successfully performed. The cRGD peptide was conjugated to QD-Nluc for tumor targeting. The self-illuminating QD-Nluc showed excellent energy transfer in a living system and offered an optimal tumor-to-background ratio (>85). PMID:27157466

  3. Two-atom energy spectrum in a harmonic trap near a Feshbach resonance at higher partial waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Liang, Yi; Bhaduri, Rajat K.

    2009-09-01

    Two atoms in an optical lattice may be made to interact strongly at higher partial waves near a Feshbach resonance. These atoms, under appropriate constraints, could be bosonic or fermionic. The universal l=2 energy spectrum for such a system, with a caveat, is presented in this paper and checked with the spectrum obtained by direct numerical integration of the Schrödinger equation. The results reported here extend those of Yip for p -wave resonance [S.-K. Yip, Phys. Rev. A 78, 013612 (2008)], while exploring the limitations of a universal expression for the spectrum for the higher partial waves.

  4. Magnetic Separation-Assistant Fluorescence Resonance Energy Transfer Inhibition for Highly Sensitive Probing of Nucleolin.

    PubMed

    Li, Yan-Ran; Liu, Qian; Hong, Zhangyong; Wang, He-Fang

    2015-12-15

    For the widely used "off-on" fluorescence (or phosphorescence) resonance energy transfer (FRET or PRET) system, the separation of donors and acceptors species was vital for enhancing the sensitivity. To date, separation of free donors from FRET/PRET inhibition systems was somewhat not convenient, whereas separation of the target-induced far-between acceptors has hardly been reported yet. We presented here a novel magnetic separation-assistant fluorescence resonance energy transfer (MS-FRET) inhibition strategy for highly sensitive detection of nucleolin using Cy5.5-AS1411 as the donor and Fe3O4-polypyrrole core-shell (Fe3O4@PPY) nanoparticles as the NIR quenching acceptor. Due to hydrophobic interaction and π-π stacking of AS1411 and PPY, Cy5.5-AS1411 was bound onto the surface of Fe3O4@PPY, resulting in 90% of fluorescence quenching of Cy5.5-AS1411. Owing to the much stronger specific interaction of AS1411 and nucleolin, the presence of nucleolin could take Cy5.5-AS1411 apart from Fe3O4@PPY and restore the fluorescence of Cy5.5-AS1411. The superparamagnetism of Fe3O4@PPY enabled all separations and fluorescence measurements complete in the same quartz cell, and thus allowed the convenient but accurate comparison of the sensitivity and fluorescence recovery in the cases of separation or nonseparation. Compared to nonseparation FRET inhibition, the separation of free Cy5.5-AS1411 from Cy5.5-AS1411-Fe3O4@PPY solution (the first magnetic separation, MS-1) had as high as 25-fold enhancement of the sensitivity, whereas further separation of the nucleolin-inducing far-between Fe3O4@PPY from the FRET inhibition solution (the second magnetic separation, MS-2) could further enhance the sensitivity to 35-fold. Finally, the MS-FRET inhibition assay displayed the linear range of 0.625-27.5 μg L(-1) (8.1-359 pM) and detection limit of 0.04 μg L(-1) (0.05 pM) of nucleolin. The fluorescence intensity recovery (the percentage ratio of the final restoring fluorescence intensity

  5. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  6. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.

    PubMed

    Day, Richard N

    2014-03-15

    The method of fluorescence lifetime imaging microscopy (FLIM) is a quantitative approach that can be used to detect Förster resonance energy transfer (FRET). The use of FLIM to measure the FRET that results from the interactions between proteins labeled with fluorescent proteins (FPs) inside living cells provides a non-invasive method for mapping interactomes. Here, the use of the phasor plot method to analyze frequency domain (FD) FLIM measurements is described, and measurements obtained from cells producing the 'FRET standard' fusion proteins are used to validate the FLIM system for FRET measurements. The FLIM FRET approach is then used to measure both homologous and heterologous protein-protein interactions (PPI) involving the CCAAT/enhancer-binding protein alpha (C/EBPα). C/EBPα is a transcription factor that controls cell differentiation, and localizes to heterochromatin where it interacts with the heterochromatin protein 1 alpha (HP1α). The FLIM-FRET method is used to quantify the homologous interactions between the FP-labeled basic leucine zipper (BZip) domain of C/EBPα. Then the heterologous interactions between the C/EBPa BZip domain and HP1a are quantified using the FRET-FLIM method. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. PMID:23806643

  7. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  8. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  9. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    SciTech Connect

    Rahmanseresht, Sheema; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.; Milas, Peker

    2015-05-11

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  10. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer

    PubMed Central

    Looyenga, Brendan; VanOpstall, Calvin; Lee, Zion; Bell, Jed; Lodge, Evans; Wrobel, Katherine; Arnoys, Eric; Louters, Larry

    2016-01-01

    The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes—which express particularly high levels of GLUT1—have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells. PMID:27357903

  11. Single-molecule-sensitive fluorescence resonance energy transfer in freely-diffusing attoliter droplets

    NASA Astrophysics Data System (ADS)

    Rahmanseresht, Sheema; Milas, Peker; Ramos, Kieran P.; Gamari, Ben D.; Goldner, Lori S.

    2015-05-01

    Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

  12. In Vivo Fluorescence Resonance Energy Transfer Imaging for Targeted Anti-Cancer Drug Delivery Kinetics

    NASA Astrophysics Data System (ADS)

    Webb, Kevin; Gaind, Vaibhav; Tsai, Hsiaorho; Bentz, Brian; Chelvam, Venkatesh; Low, Philip

    2012-02-01

    We describe an approach for the evaluation of targeted anti-cancer drug delivery in vivo. The method emulates the drug release and activation process through acceptor release from a targeted donor-acceptor pair that exhibits fluorescence resonance energy transfer (FRET). In this case, folate targeting of the cancer cells is used - 40 % of all human cancers, including ovarian, lung, breast, kidney, brain and colon cancer, over-express folate receptors. We demonstrate the reconstruction of the spatially-dependent FRET parameters in a mouse model and in tissue phantoms. The FRET parameterization is incorporated into a source for a diffusion equation model for photon transport in tissue, in a variant of optical diffusion tomography (ODT) called FRET-ODT. In addition to the spatially-dependent tissue parameters in the diffusion model (absorption and diffusion coefficients), the FRET parameters (donor-acceptor distance and yield) are imaged as a function of position. Modulated light measurements are made with various laser excitation positions and a gated camera. More generally, our method provides a new vehicle for studying disease at the molecular level by imaging FRET parameters in deep tissue, and allows the nanometer FRET ruler to be utilized in deep tissue.

  13. Re-evaluation of biotin-streptavidin conjugation in Förster resonance energy transfer applications

    PubMed Central

    Saremi, Bahar; Wei, Ming-Yuan; Liu, Yuan; Cheng, Bingbing; Yuan, Baohong

    2014-01-01

    Abstract. Bioaffinity conjugation between streptavidin (SA) and biotin has been widely used to link donors and acceptors for investigating the distance-dependent Förster resonance energy transfer (FRET). When studying a commonly used FRET system of (QD-SA)-(biotin-DNA-dye) [donor: quantum dot (QD); acceptor: small organic fluorescent dye; and linker: deoxyribose nucleic acid (DNA) molecule via SA-biotin conjugation], however, a contradictory finding was recently reported in the literature. It was found that the FRET lost its dependence on the number of DNA base pairs when using a phosphate-buffered saline (PBS) solution. We found that the conflicted results were caused by the ionic strength of the adopted buffer solutions. Our results suggest that the dependent FRET on the number of DNA bases is favorable in a low-ionic-strength buffer, whereas in relatively high-ionic-strength buffers, the FRET loses the DNA length dependence. We propose that the independence is mainly caused by the conformational change of DNA molecules from a stretched to a coiled mode when the cations in the high-ionic-strength buffer neutralize the negatively charged backbone of DNA molecules, thereby bringing the acceptors close to the donors. PMID:25162908

  14. Probing Polytopic Membrane Protein-Substrate Interactions by Luminescence Resonance Energy Transfer.

    PubMed

    Musial-Siwek, Monika; Jaffee, Marcie B; Imperiali, Barbara

    2016-03-23

    Integral membrane proteins play essential roles in all living systems; however, major technical hurdles challenge analyses of this class of proteins. Biophysical approaches that provide structural information to complement and leverage experimentally determined and computationally predicted structures are urgently needed. Herein we present the application of luminescence resonance energy transfer (LRET) for investigating the interactions of the polytopic membrane-bound oligosaccharyl transferases (OTases) with partner substrates. Monomeric OTases, such as the PglBs from Campylobacter jejuni and Campylobacter lari, catalyze transfer of glycans from membrane-associated undecaprenol diphosphate-linked substrates to proteins in the bacterial periplasm. LRET-based distance measurements are enabled by the inclusion of an encoded N-terminal lanthanide-binding tag (LBT), and LRET between the luminescent (LBT)-Tb(3+) donor complex and fluorescently labeled peptide and glycan substrates provides discrete distance measurements across the span of the membrane. LRET-based measurements of detergent-solubilized PglB from C. lari allowed direct comparison with the distances based on the previously reported the C. lari PglB crystal structure, thereby validating the approach in a defined system. Distance measurements between peptide and glycan substrates and the C. jejuni PglB offer new experimental information on substrate binding to the related, but structurally uncharacterized, eukaryotic OTase. PMID:26918528

  15. Thrombin detection in murine plasma using engineered fluorescence resonance energy transfer aptadimers

    NASA Astrophysics Data System (ADS)

    Trapaidze, Ana; Brut, Marie; Mazères, Serge; Estève, Daniel; Gué, Anne-Marie; Bancaud, Aurélien

    2015-12-01

    Biodetection strategies, in which two sides of one target protein are targeted simultaneously, have been shown to increase specificity, selectivity, and affinity, and it has been suggested that they constitute excellent candidates for protein sensing in complex media. In this study we propose a method to engineer the sequence of a DNA construct dedicated to reversible thrombin detection. This construct, called Fluorescence Resonance Energy Transfer (FRET) aptadimer, is assembled with two aptamers, which target different epitopes of thrombin, interconnected with a DNA linker that contains a FRET couple and a reversible double helix stem. In the absence of target, the stem is stable maintaining a FRET couple in close proximity, and fluorescence is unquenched upon thrombin addition due to the dehybridization of the stem. We define design rules for the conception of FRET aptadimers, and develop a software to optimize their functionality. One engineered FRET aptadimer sequence is subsequently characterized experimentally by temperature scanning fluorimetry, demonstrating the relevance of our technology for thrombin sensing in bulk and diluted murine plasma.

  16. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells

    NASA Astrophysics Data System (ADS)

    Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng

    2015-03-01

    Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (RC) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD˜nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and RC values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.

  17. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay.

    PubMed

    Carmona, Adriana K; Schwager, Sylva L; Juliano, Maria A; Juliano, Luiz; Sturrock, Edward D

    2006-01-01

    Angiotensin I-converting enzyme (ACE) is involved in various physiological and physiopathological conditions; therefore, the measurement of its catalytic activity may provide essential clinical information. This protocol describes a sensitive and rapid procedure for determination of ACE activity using fluorescence resonance energy transfer (FRET) substrates containing o-aminobenzoic acid (Abz) as the fluorescent group and 2,4-dinitrophenyl (Dnp) as the quencher acceptor. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that can be detected continuously, allowing quantitative measurement of the enzyme activity. The FRET substrates provide a useful tool for kinetic studies and for ACE determination in biological fluids and crude tissue extracts. An important benefit of this method is the use of substrates selective for the two active sites of the enzyme, namely Abz-SDK(Dnp)P-OH for N-domain, Abz-LFK(Dnp)-OH for C-domain and Abz-FRK(Dnp)P-OH for somatic ACE. This methodology can be adapted for determinations using a 96-well fluorescence plate reader. PMID:17487185

  18. Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy.

    PubMed

    Kim, Jiho; Grailhe, Regis

    2016-08-01

    Fluorescence and bioluminescence resonance energy transfer (FRET, BRET) techniques are powerful tools for studying protein-protein interactions in cellular assays. In contrast to fluorescent proteins, chemiluminescent proteins do not require excitation light, known to trigger autofluorescence, phototoxicity, and photobleaching. Regrettably, low signal intensity of luciferase systems restricts their usage as they require specialized microscopes equipped with ultra low-light imaging cameras. In this study, we report that bioluminescence quantification in living cells using a standard widefield automated microscope dedicated to screening and high content analysis is possible with the newer luciferase systems, Nanoluciferase (Nluc). With such equipment, we showed that robust intramolecular BRET can be measured using a combination of Nluc and yellow fluorescent protein (YFP). Using the human Superoxide Dismutase 1 (SOD1) dimer model, we next validated that intermolecular BRET could be quantified at a single cell level. The enhanced signal brightness of Nluc enabling BRET imaging to widefield microscopy shows strong potential to open up single cell protein-protein interactions studies to a wider audience. © 2016 International Society for Advancement of Cytometry. PMID:27144967

  19. An automated real-time microscopy system for analysis of fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bernardini, André; Wotzlaw, Christoph; Lipinski, Hans-Gerd; Fandrey, Joachim

    2010-05-01

    Molecular imaging based on Fluorescence Resonance Energy Transfer (FRET) is widely used in cellular physiology both for protein-protein interaction analysis and detecting conformational changes of single proteins, e.g. during activation of signaling cascades. However, getting reliable results from FRET measurements is still hampered by methodological problems such as spectral bleed through, chromatic aberration, focal plane shifts and false positive FRET. Particularly false positive FRET signals caused by random interaction of the fluorescent dyes can easily lead to misinterpretation of the data. This work introduces a Nipkow Disc based FRET microscopy system, that is easy to operate without expert knowledge of FRET. The system automatically accounts for all relevant sources of errors and provides various result presentations of two, three and four dimensional FRET data. Two examples are given to demonstrate the scope of application. An interaction analysis of the two subunits of the hypoxia-inducible transcription factor 1 demonstrates the use of the system as a tool for protein-protein interaction analysis. As an example for time lapse observations, the conformational change of the fluorophore labeled heat shock protein 33 in the presence of oxidant stress is shown.

  20. Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER

    NASA Astrophysics Data System (ADS)

    Astone, P.; Babusci, D.; Bassan, M.; Bonifazi, P.; Cavallari, G.; Coccia, E.; D'Antonio, S.; Fafone, V.; Giordano, G.; Ligi, C.; Marini, A.; Mazzitelli, G.; Minenkov, Y.; Modena, I.; Modestino, G.; Moleti, A.; Pallottino, G. V.; Pizzella, G.; Quintieri, L.; Rocchi, A.; Ronga, F.; Terenzi, R.; Visco, M.

    2008-11-01

    The cryogenic resonant gravitational wave detectors NAUTILUS and EXPLORER, made of an aluminum alloy bar, can detect cosmic ray showers. At temperatures above 1 K, when the material is in the normal-conducting state, the measured signals are in good agreement with the expected values based on the cosmic rays data and on the thermo-acoustic model. When NAUTILUS was operated at the temperature of 0.14 K, in superconductive state, large signals produced by cosmic ray interactions, more energetic than expected, were recorded. The NAUTILUS data in this case are in agreement with the measurements done by a dedicated experiment on a particle beam. The biggest recorded event was in EXPLORER and excited the first longitudinal mode to a vibrational energy of ˜670 K, corresponding to ˜360 TeV absorbed in the bar. Cosmic rays can be an important background in future acoustic detectors of improved sensitivity. At present, they represent a useful tool to verify the gravitational wave antenna performance.

  1. Ultrafast fluorescence resonance energy transfer in a reverse micelle: Excitation wavelength dependence

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip Kumar; Ghosh, Subhadip; Sahu, Kalyanasis; Mandal, Ujjwal; Bhattacharyya, Kankan

    2006-12-01

    Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to fluorescein 548 (F548) in a sodium dioctyl sulfosuccinate (AOT) reverse micelle is studied by picosecond and femtosecond emission spectroscopy. In bulk water, at the low concentration of the donor (C480) and the acceptor (F548), no FRET is observed. However, when the donor (C480) and the acceptor (F548) are confined in a AOT reverse micelle very fast FRET is observed. The time constants of FRET were obtained from the rise time of the emission of the acceptor (F548). In a AOT microemulsion, FRET is found to occur in multiple time scales—3, 200, and 2700ps. The 3ps component is assigned to FRET in the water pool of the reverse micelle with a donor-acceptor distance, 16Å. The 200ps component corresponds to a donor-acceptor distance of 30Å and is ascribed to the negatively charged acceptor inside the water pool and the neutral donor inside the alkyl chains of AOT. The very long 2700ps component may arise due to FRET from a donor outside the micelle to an acceptor inside the water pool and also from diffusion of the donor from bulk heptane to the reverse micelle. With increase in the excitation wavelength from 375to405nm the relative contribution of the FRET due to C480 in the AOT reverse micelle (the 3 and 200ps components) increases.

  2. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    PubMed

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  3. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes.

    PubMed

    Liu, Xiaoqing; Freeman, Ronit; Golub, Eyal; Willner, Itamar

    2011-09-27

    The incorporation of hemin into the thrombin/G-quadruplex aptamer assembly or into the ATP/G-quadruplex nanostructure yields active DNAzymes that catalyze the generation of chemiluminescence. These catalytic processes enable the detection of thrombin and ATP with detection limits corresponding to 200 pM and 10 μM, respectively. The conjugation of the antithrombin or anti-ATP aptamers to CdSe/ZnS semiconductor quantum dots (QDs) allowed the detection of thrombin or ATP through the luminescence of the QDs that is powered by a chemiluminescence resonance energy-transfer (CRET) process stimulated by the hemin/G-quadruplex/thrombin complex or the hemin/G-quadruplex/ATP nanostructure, in the presence of luminol/H(2)O(2). The advantages of applying the CRET process for the detection of thrombin or ATP, by the resulting hemin/G-quadruplex DNAzyme structures, are reflected by low background signals and the possibility to develop multiplexed aptasensor assays using different sized QDs. PMID:21866963

  4. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.

    PubMed

    Heyduk, T; Niedziela-Majka, A

    Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. PMID:11987181

  5. Ultrafast fluorescence resonance energy transfer in a reverse micelle: excitation wavelength dependence.

    PubMed

    Mondal, Sudip Kumar; Ghosh, Subhadip; Sahu, Kalyanasis; Mandal, Ujjwal; Bhattacharyya, Kankan

    2006-12-14

    Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to fluorescein 548 (F548) in a sodium dioctyl sulfosuccinate (AOT) reverse micelle is studied by picosecond and femtosecond emission spectroscopy. In bulk water, at the low concentration of the donor (C480) and the acceptor (F548), no FRET is observed. However, when the donor (C480) and the acceptor (F548) are confined in a AOT reverse micelle very fast FRET is observed. The time constants of FRET were obtained from the rise time of the emission of the acceptor (F548). In a AOT microemulsion, FRET is found to occur in multiple time scales--3, 200, and 2700 ps. The 3 ps component is assigned to FRET in the water pool of the reverse micelle with a donor-acceptor distance, 16 A. The 200 ps component corresponds to a donor-acceptor distance of 30 A and is ascribed to the negatively charged acceptor inside the water pool and the neutral donor inside the alkyl chains of AOT. The very long 2700 ps component may arise due to FRET from a donor outside the micelle to an acceptor inside the water pool and also from diffusion of the donor from bulk heptane to the reverse micelle. With increase in the excitation wavelength from 375 to 405 nm the relative contribution of the FRET due to C480 in the AOT reverse micelle (the 3 and 200 ps components) increases. PMID:17176157

  6. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: Absence of feedback from the flagellar motors

    PubMed Central

    Shimizu, Thomas S.; Delalez, Nicolas; Pichler, Klemens; Berg, Howard C.

    2006-01-01

    We looked for a feedback system in Escherichia coli that might sense the rotational bias of flagellar motors and regulate the activity of the chemotaxis receptor kinase. Our search was based on the assumption that any machinery that senses rotational bias will be perturbed if flagellar rotation stops. We monitored the activity of the kinase in swimming cells by bioluminescence resonance energy transfer (BRET) between Renilla luciferase fused to the phosphatase, CheZ, and yellow fluorescent protein fused to the response regulator, CheY. Then we jammed the flagellar motors by adding an antifilament antibody that crosslinks adjacent filaments in flagellar bundles. At steady state, the rate of phosphorylation of CheY is equal to the rate of dephosphorylation of CheY-P, which is proportional to the degree of association between CheZ and CheY-P, the quantity sensed by BRET. No changes were observed, even upon addition of an amount of antibody that stopped the swimming of >95% of cells within a few seconds. So, the kinase does not appear to be sensitive to motor output. The BRET technique is complementary to one based on FRET, described previously. Its reliability was confirmed by measurements of the response of cells to the addition of attractants. PMID:16452163

  7. Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.

    PubMed

    Nellore, Vishwa; Xi, Sam; Dwyer, Chris

    2015-12-22

    Modern authentication and communication protocols increasingly use physical keys in lieu of conventional software-based keys for security. This shift is primarily driven by the ability to derive a unique, unforgeable signature from a physical key. The sole demonstration of an unforgeable key, thus far, has been through quantum key distribution, which suffers from limited communication distances and expensive infrastructure requirements. Here, we show a method for creating unclonable keys by molecular self-assembly of resonance energy transfer (RET) devices. It is infeasible to clone the RET-key due to the inability to characterize the key using current technology, the large number of input-output combinations per key, and the variation of the key's response with time. However, the manufacturer can produce multiple identical devices, which enables inexpensive, secure authentication and communication over classical channels, and thus any distance. Through a detailed experimental survey of the nanoscale keys, we demonstrate that legitimate users are successfully authenticated 99.48% of the time and the false-positives are only 0.39%, over two attempts. We estimate that a legitimate user would have a computational advantage of more than 10(340) years over an attacker. Our method enables the discovery of physical key based multiparty authentication and communication schemes that are both practical and possess unprecedented security. PMID:26525314

  8. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer.

    PubMed

    Looyenga, Brendan; VanOpstall, Calvin; Lee, Zion; Bell, Jed; Lodge, Evans; Wrobel, Katherine; Arnoys, Eric; Louters, Larry

    2016-01-01

    The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes-which express particularly high levels of GLUT1-have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells. PMID:27357903

  9. Resonant-Like Enhancement of the High-Energy Plateau in ATD

    NASA Astrophysics Data System (ADS)

    Krajewska, Katarzyna; Fabrikant, Ilya I.; Starace, Anthony F.

    2006-05-01

    We calculate the intensity variation of above-threshold detachment (ATD) rates for H^- and F^- in the high-energy plateau region, by solving the time-dependent Schr"odinger equation within the Sturmian-Floquet approach [1]. We find pronounced enhancement of the ATD spectra as the laser-field intensity induces ATD channel closings. We confirm previous results on negative ions with an active s-electron [2], and extend them to the case of p-symmetry of the initial state. Depending on the symmetry of the initial state, we show that the enhancement is most pronounced for even- or odd-channel closures. Similar resonant-like enhancements have been observed experimentally in above-threshold ionization spectra for rare gases [3], calculations for which are in progress. [1] R. M. Potvliege, Comp. Phys. Comm. 114, 42 (1998); [2] B. Borca et al., Phys. Rev. Lett. 88, 193001 (2002); [3] See, e.g., F. Grasbon et al., Phys. Rev. Lett. 91, 173003 (2003).

  10. General Bioluminescence Resonance Energy Transfer Homogeneous Immunoassay for Small Molecules Based on Quantum Dots.

    PubMed

    Yu, Xuezhi; Wen, Kai; Wang, Zhanhui; Zhang, Xiya; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong

    2016-04-01

    Here, we describe a general bioluminescence resonance energy transfer (BRET) homogeneous immunoassay based on quantum dots (QDs) as the acceptor and Renilla luciferase (Rluc) as the donor (QD-BRET) for the determination of small molecules. The ratio of the donor-acceptor that could produce energy transfer varied in the presence of different concentrations of free enrofloxacin (ENR), an important small molecule in food safety. The calculated Förster distance (R0) was 7.86 nm. Under optimized conditions, the half-maximal inhibitory concentration (IC50) for ENR was less than 1 ng/mL and the linear range covered 4 orders of magnitude (0.023 to 25.60 ng/mL). The cross-reactivities (CRs) of seven representative fluoroquinolones (FQs) were similar to the data obtained by an enzyme-linked immunosorbent assay (ELISA). The average intra- and interassay recoveries from spiked milk of were 79.8-118.0%, and the relative standard deviations (RSDs) were less than 10%, meeting the requirement of residue detection, which was a satisfactory result. Furthermore, we compared the influence of different luciferase substrates on the performance of the assay. Considering sensitivity and stability, coelenterazine-h was the most appropriate substrate. The results from this study will enable better-informed decisions on the choice of Rluc substrate for QD-BRET systems. For the future, the QD-BRET immunosensor could easily be extended to other small molecules and thus represents a versatile strategy in food safety, the environment, clinical diagnosis, and other fields. PMID:26948147

  11. Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions

    PubMed Central

    Kuzmenkina, Elza V.; Heyes, Colin D.; Nienhaus, G. Ulrich

    2005-01-01

    Proteins are highly complex systems, exhibiting a substantial degree of structural variability in their folded state. In the presence of denaturants, the heterogeneity is greatly enhanced, and fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways. Here, we have studied the structure and dynamics of the small enzyme ribonuclease HI (RNase H) in the presence of the chemical denaturant guanidinium chloride (GdmCl) using single-molecule fluorescence microscopy, with a particular focus on the characterization of the unfolded-state ensemble. A dye pair was specifically attached to the enzyme to measure structural changes through Förster resonance energy transfer (FRET). Enzyme immobilization on star-polymer surfaces that were specially developed for negligible interaction with folded and unfolded proteins enabled us to monitor conformational changes of individual proteins for several hundred seconds. FRET efficiency histograms were calculated from confocal scan images. They showed an expansion of the unfolded proteins with increasing GdmCl concentration. Cross-correlation analysis of donor and acceptor fluorescence intensity time traces from single molecules revealed reconfiguration of the polypeptide chain on a timescale of ≈20 μs at 1.7 M GdmCl. Slow conformational dynamics gave rise to characteristic, stepwise FRET efficiency changes. Transitions between folded and unfolded enzyme molecules occurred on the 100-s timescale, in excellent agreement with bulk denaturation experiments. Transitions between unfolded conformations were more frequent, with characteristic times of ≈2 s. These data were analyzed to obtain information on the free energy landscape of RNase H in the presence of chemical denaturants. PMID:16221762

  12. Chemiluminescent detection of cell apoptosis enzyme by gold nanoparticle-based resonance energy transfer assay.

    PubMed

    Huang, Xiangyi; Liang, Yiran; Ruan, Lingao; Ren, Jicun

    2014-09-01

    We report a new chemiluminescence resonance energy transfer (CRET) technique, using gold nanoparticles (AuNPs) as efficient energy acceptor, for homogeneous measurement of cell apoptosis enzyme with high sensitivity. In the design of the CRET system, we chose the highly sensitive chemiluminescence (CL) reaction between luminol and hydrogen peroxide catalysed by horseradish peroxidase (HRP) because the CL spectrum of luminol (λ max 425 nm) partially overlaps the visible absorption bands of AuNPs. In this system, the peptide substrate (DEVD) of caspase 3 was linked to the AuNP surface by Au-S linkage. HRP was attached to the AuNP surface by means of a bridge formed by the streptavidin-biotin reaction. CRET occurred as a result of formation of AuNP-peptide-biotin-streptavidin-HRP complexes. The CL of luminol was significantly reduced, because of the quenching effect of AuNPs. The quenched CL was recovered after cleavage of DEVD by caspase 3, an enzyme involved in the apoptotic process. Experimental conditions were systematically investigated. Under the optimum conditions the increase of the CL signal was linearly dependent on caspase 3 concentration within the concentration range 25 pmol L(-1) to 800 pmol L(-1) and the detection limit of caspase 3 was as low as 20 pmol L(-1), one order of magnitude lower than for FRET sensors based on graphene oxides. Our method was successfully used to detect drug-induced apoptosis of cells. This approach is expected to be extended to other assays, i.e., using other enzymes, analytes, CL substances, and even other nanoparticles (e.g., quantum dots and graphene). PMID:24481623

  13. Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses.

    PubMed

    Dillon, Christopher; Roemer, Robert; Payne, Allison

    2015-07-01

    This study presents a new approach for evaluating bioheat transfer equation (BHTE) models used in treatment planning, control and evaluation of all thermal therapies. First, 3D magnetic resonance temperature imaging (MRTI) data are used to quantify blood flow-related energy losses, including the effects of perfusion and convection. Second, this information is used to calculate parameters of a BHTE model: in this paper the widely used Pennes BHTE. As a self-consistency check, the BHTE parameters are utilized to predict the temperatures from which they were initially derived. The approach is evaluated with finite-difference simulations and implemented experimentally with focused ultrasound heating of an ex vivo porcine kidney perfused at 0, 20 and 40 ml/min (n = 4 each). The simulation results demonstrate accurate quantification of blood flow-related energy losses, except in regions of sharp blood flow discontinuities, where the transitions are spatially smoothed. The smoothed transitions propagate into estimates of the Pennes perfusion parameter but have limited effect on the accuracy of temperature predictions using these estimates. Longer acquisition time periods mitigate the effects of MRTI noise, but worsen the effect of flow discontinuities. For the no-flow kidney experiments the estimates of a uniform, constant Pennes perfusion parameter are approximately zero, and at 20 and 40 ml/min the average estimates increase with flow rate to 3.0 and 4.2 kg/m(3) /s, respectively. When Pennes perfusion parameter values are allowed to vary spatially, but remain temporally constant, BHTE temperature predictions are more accurate than when using spatially uniform, constant Pennes perfusion values, with reductions in RMSE values of up to 79%. Locations with large estimated perfusion values correspond to high flow regions of the kidney observed in T1 -weighted MR images. This novel, MRTI-based technique holds promise for improving understanding of thermal therapy biophysics

  14. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.

    PubMed

    Müller, Sara M; Galliardt, Helena; Schneider, Jessica; Barisas, B George; Seidel, Thorsten

    2013-01-01

    Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy. PMID:24194740

  15. Application of bias voltage to tune the resonant frequency of membrane-based electroactive polymer energy harvesters

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Grissom, Michael; Fisher, Frank T.

    2016-05-01

    Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.

  16. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  17. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation

    PubMed Central

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-01-01

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave. PMID:26628291

  18. Spectroscopy of strongly correlated systems: Resonant x-ray scattering without energy resolution in the scattered beam

    NASA Astrophysics Data System (ADS)

    Braicovich, L.; Tagliaferri, A.; Annese, E.; Ghiringhelli, G.; Dallera, C.; Fracassi, F.; Palenzona, A.; Brookes, N. B.

    2007-02-01

    The total emission of photons excited by x rays (90° between incident and detected photons) is measured vs the incident photon energy at the CeM4,5 edges in CeIn3 , CeSnIn2 , CeAl2 , CePd3 , and CeRh2 , and at the NiL2,3 edges in NiO. The results show the signature of a second-order process; these experiments must be interpreted as genuine resonant inelastic scattering (though without energy resolution of the emitted photons) and not as absorption spectroscopy measured by the total fluorescence yield. In Ce compounds, information on bulk hybridization can thus be obtained simply and with high sensitivity. The branching ratio between the different scattering channels is also measured. This approach opens innovative perspectives in resonant inelastic x-ray scattering.

  19. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  20. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Lijuan; He, Nan; Lu, Chao

    2015-01-20

    The emergence of aggregation-induced emission (AIE) has opened up a new avenue for scientists. There is a great demand for the development of a new generation chemiluminescence resonance energy transfer (CRET) acceptors with AIE characteristics due to the aggregation-caused chemiluminescence (CL) quenching effect commonly observed in the conventional fluorophore CL acceptors at high concentrations. However, the systematical studies involving in AIE-amplified CL are still scarce. Herein, it is the first report that the gold nanocluster aggregates (a type of well-defined AIE molecules) are used to study their influence on the bis(2,4,6-trichlorophenyl) oxalate (TCPO)-H2O2 CL reaction. Interestingly, the AIE molecules in the diluted solution are unable to boost the CL signal of the TCPO-H2O2 system, but their aggregates display a strongly enhanced CL emission compared to their counterparts of fluorophore molecules, thanks to the unique AIE effect of gold nanoclusters. In comparison to rhodamine B with the aid of an imidazole catalyst, the detection limit of the gold nanocluster aggregate-amplified CL probe for H2O2 (S/N = 3) is low in the absence of any catalyst. Finally, the other two typical AIE molecules, Au(I)-thiolate complexes and 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene (BSPSA), are investigated to verify the generality of the AIE molecule-amplified CL emissions. These results demonstrate effective access to highly fluorescent AIE molecules with practical applications in avoiding the aggregation-induced CL quenching at high concentrations, which can be expected to provide a novel and sensitive platform for the CL amplified detection. PMID:25526522

  1. Using nonfluorescent Förster resonance energy transfer acceptors in protein binding studies.

    PubMed

    Ruan, Qiaoqiao; Skinner, Joseph P; Tetin, Sergey Y

    2009-10-15

    The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5-13(C10A) and full-length BNP1-32 with the dissociation constants 0.26+/-0.01 and 0.05+/-0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs=1.9 and 3.8) of the nonfluorescent FRET acceptor, K(D) values of 0.04+/-0.02 and 0.059(-0.004)(+0.006) nM, respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded K(D) values of 1.26+/-0.04, 1.25+/-0.05, and 1.14+/-0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies. PMID:19563765

  2. Characterization of DNA/Lipid Complexes by Fluorescence Resonance Energy Transfer

    PubMed Central

    Madeira, Catarina; Loura, Luís M. S.; Aires-Barros, M. Raquel; Fedorov, Aleksander; Prieto, Manuel

    2003-01-01

    Fluorescence resonance energy transfer (FRET) is a potential method for the characterization of DNA-cationic lipid complexes (lipoplexes). In this work, we used FRET models assuming a multilamellar lipoplex arrangement. The application of these models allows the determination of the distance between the fluorescent intercalator on the DNA and a membrane dye on the lipid, and/or the evaluation of encapsulation efficiencies of this liposomal vehicle. The experiments were carried out in 1,2-dioleoyl-3-trimethylammonium-propane/pUC19 complexes with different charge ratios. We used 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and 2-(4,4-difluoro-5-octyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-PC) as membrane dyes, and ethidium bromide (EtBr) and BOBO-1 as DNA intercalators. In cationic complexes (charge ratios (+/−) ≥ 2), we verified that BOBO-1 remains bound to DNA, and FRET occurs to the membrane dye. This was also confirmed by anisotropy and lifetime measurements. In complexes with all DNA bound to the lipid (charge ratio (+/−) = 4), we determined 27 Å as the distance between the donor and acceptor planes (half the repeat distance for a multilamellar arrangement). In complexes with DNA unbound to the lipids (charge ratio (+/−) = 0.5 and 2), we calculated the encapsulation efficiencies. The presented FRET methodology is, to our knowledge, the first procedure allowing quantification of lipid-DNA contact. PMID:14581211

  3. Measuring cooperative Rev protein-protein interactions on Rev responsive RNA by fluorescence resonance energy transfer

    PubMed Central

    Vercruysse, Thomas; Pawar, Sonalika; De Borggraeve, Wim; Pardon, Els; Pavlakis, George N; Pannecouque, Christophe; Steyaert, Jan; Balzarini, Jan

    2011-01-01

    The export of viral RNA from the nucleus to the cytoplasm of the cellular host is a crucial step in the life cycle of HIV-1 that is mediated by the viral Rev protein. One aspect of the Rev function, its multimerization, is still unexplored as a target for antiviral therapy. This is partly due to the lack of a fast and solid system to measure Rev multimerization. We have developed a high throughput in vitro Rev multimerization assay based on fluorescence resonance energy transfer (FRET) in which real-time Rev-Rev interactions can be measured both in the absence and the presence of Rev specific RRE RNA. Well-characterized Rev multimerization deficient mutants showed reduced FRET as well as unlabeled Rev molecules were able to inhibit the FRET signal demonstrating the specificity of the assay. Upon multimerization along RRE RNA the FRET signal significantly increased but dropped again at equimolar Rev/RRE ratios suggesting that in this condition most Rev molecules are bound as monomers to the RRE. Furthermore, using this assay, we demonstrate that a previously selected llama heavy-chain only antibody was shown to not only prevent the development of Rev multimers but also disassemble the already formed complexes confirming the dynamic nature of the Rev-Rev interactions. The in vitro FRET based multimerization assay facilitates the further study of the basic mechanism of cooperative Rev multimerization along the RRE and is also widely applicable to study the assembly of other functional complexes involving protein homo-multimerization or cooperative protein-protein interactions on RNA or DNA. PMID:21358282

  4. Cytochrome c-Lipid Interactions: New Insights from Resonance Energy Transfer

    PubMed Central

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Molotkovsky, Julian G.; Kinnunen, Paavo K.J.

    2010-01-01

    Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Carlo analysis of multiple data sets revealed a subtle interplay between 1), exchange of the neutral and acidic lipid in the protein-lipid interaction zone; 2), CL transition into the extended conformation; and 3), formation of the hexagonal phase. The switch between these states was found to be controlled by CL content and salt concentration. At ionic strengths ≥40 mM, lipid bilayers with CL fraction not exceeding 5 mol % exhibited the tendency to transform from lamellar to hexagonal phase upon cyt c adsorption, whereas at higher contents of CL, transition into the extended conformation seems to become thermodynamically favorable. At lower ionic strengths, deviations from homogeneous lipid distributions were observed only for model membranes containing 2.5 mol % CL, suggesting the existence of a certain surface potential critical for assembly of lipid lateral domains in protein-lipid systems that may subsequently undergo morphological transformations depending on ambient conditions. These characteristics of cyt c-CL interaction are of great interest, not only from the viewpoint of regulating cyt c electron transfer and apoptotic propensities, but also to elucidate the general mechanisms by which membrane functional activities can be modulated by protein-lipid interactions. PMID:20858419

  5. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    PubMed

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-04-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell. PMID:10786853

  6. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    PubMed Central

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-01-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell. PMID:10786853

  7. Mode- and Direction-Dependent Mechanical Energy Dissipation in Single-Crystal Resonators due to Anharmonic Phonon-Phonon Scattering

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth S.; Candler, Robert N.

    2016-03-01

    In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal resonators due to anharmonic phonon-phonon scattering in the Akhiezer (Ω τ ≪1 ) regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction- and polarization-dependent mode-Grüneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. This expression reveals the fundamental differences among the internal friction limits for different types of bulk-mode elastic waves. For cubic crystals, 2D-extensional modes have increased dissipation compared to width-extensional modes because the biaxial deformation opposes the natural Poisson contraction of the solid. Additionally, we show that shear-mode vibrations, which preserve volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to pure-shear phonon branches, indicating that Lamé- or wineglass-mode resonators will have the highest upper limit on mechanical efficiency. Finally, we employ key simplifications to evaluate the quality factor limits for common mode shapes in single-crystal silicon devices, explicitly including the correct effective elastic storage moduli for different vibration modes and crystal orientations. Our expression satisfies the pressing need for a reliable analytical model that can predict the phonon-phonon dissipation limits for modern resonant microelectromechanical systems, where precise manufacturing techniques and accurate finite-element methods can be used to select particular vibrational mode shapes and crystal orientations.

  8. Low energy excitations in iridates studied with Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Liu, Xuerong

    2013-03-01

    In the iridium oxides, the strong spin-orbit coupling (SOC) of the 5d iridium electrons entangles the orbital and spin degrees of freedom, providing opportunities for exotic magnetic states with highly anisotropic exchange interactions. At the same time, the spatially extended 5d electrons are expected to have much stronger hybridization with the oxygen 2p orbitals, comparing with that in 3d transition element compounds. Both factors make crystal symmetry and local environment crucial in determining the electronic and magnetic properties of the iridates. We present here our resonant inelastic X-ray scattering (RIXS) studies of a number of octahedrally coordinated iridates with special structures, exploring these effects. In particular, for the 1-D spin 1/2 chain compound, Sr3CuIrO6, the wavefunction of the hole in the t2g manifold was reconstructed based on the RIXS spectra. Our results show that it is significantly modified from the isotropic shape expected for Jeff = 1 / 2 states in the strong SOC limit, due to the distortion of the oxygen octahedral cage. This distortion is comparable to, or smaller than, that present in most iridates and thus this work emphasizes the importance of local symmetry for the iridate families. Further, the magnetic excitations of this material were also measured. A large gap of ~30 meV, was found, comparable to the magnetic dispersion bandwidth. This is in contrast to the gapless dispersion expected for linear chain with isotropic Heisenberg exchange interaction. We also studied Na4Ir3O8 which has a hyperkagome lattice, and is a candidate quantum spin liquid. Here, a low energy continuum is observed below the d-d excitations. Optical conductivity measurements performed on the same sample and polarization dependence of the RIXS signal suggest that these excitations are magnetic in origin, agreeing with the spin-liquid state prediction. The work at Brookhaven was supported by the U.S. Department of Energy, Division of Materials Science

  9. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    PubMed Central

    Chen, Nai-Tzu; Cheng, Shih-Hsun; Liu, Ching-Ping; Souris, Jeffrey S.; Chen, Chen-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2012-01-01

    Förster resonance energy transfer (FRET) may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery. PMID:23443121

  10. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.

    PubMed

    Vogt, Jochen; Huck, Christian; Neubrech, Frank; Toma, Andrea; Gerbert, David; Pucci, Annemarie

    2015-09-01

    We report on the impact of the differing spectral near- and far-field properties of resonantly excited gold nanoantennas on the vibrational signal enhancement in surface-enhanced infrared absorption (SEIRA). The knowledge on both spectral characteristics is of considerable importance for the optimization of plasmonic nanostructures for surface-enhanced spectroscopy techniques. From infrared micro-spectroscopic measurements, we simultaneously obtain spectral information on the plasmonic far-field response and, via SEIRA spectroscopy of a test molecule, on the near-field enhancement. The molecular test layer of 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was deposited on the surface of gold nanoantennas with different lengths and thus different far-field resonance energies. We carefully studied the Fano-type vibrational lines in a broad spectral window, in particular, how the various vibrational signals are enhanced in relation to the ratio of the far-field plasmonic resonance and the molecular vibrational frequencies. As a detailed experimental proof of former simulation studies, we show the clearly red-shifted maximum SEIRA enhancement compared to the far-field resonance. PMID:25516198

  11. FAST TRACK COMMUNICATION: Different patterns of high-energy and low-energy electrons in an atmospheric-pressure microplasma generated by a hairpin resonator

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-02-01

    A newly developed device, a hairpin resonator, is used to generate an atmospheric-pressure microplasma with a 1.8 GHz power supply in argon. The two-dimensional distributions of emission lines in such a microplasma are obtained by a spatially resolved optical system. For the first time, it is found that the distributions of high-energy and low-energy electrons have different patterns. The density distribution of the high-energy electrons (with energy higher than that of argon 2p levels) is obtained from the line intensity, while the density of the low-energy ones (approximately equal to the total electron density) is deduced from the emission line ratios. The difference in distribution between the two groups of electrons is related to the different energy-loss characteristic lengths.

  12. A Finite Element Model Of Self-Resonating Bimorph Microcantilever For Fast Temperature Cycling In A Pyroelectric Energy Harvester

    SciTech Connect

    Mostafa, Salwa; Lavrik, Nickolay V; Bannuru, Thirumalesh; Rajic, Slobodan; Islam, Syed K; Datskos, Panos G; Hunter, Scott Robert

    2011-01-01

    A self resonating bimorph cantilever structure for fast temperature cycling in a pyroelectric energy harvester has been modeled using a finite element method. The effect of constituting material properties and system parameters on the frequency and magnitude of temperature cycling and the efficiency of energy recycling using the proposed structure has been investigated. Results show that thermal contact conductance and heat source temperature play a key role in dominating the cycling frequency and efficiency of energy recycling. An optimal solution for the most efficient energy scavenging process has been sought by studying the performance trend with different variable parameters such as thermal contact conductance, heat source temperature, device aspect ratio and constituent materials of varying thermal conductivity and expansion coefficients.

  13. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.

    PubMed

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-01-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469

  14. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators

    NASA Astrophysics Data System (ADS)

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-05-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.

  15. On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach.

    PubMed

    Varriale, Antonio; Marzullo, Vincenzo Manuel; Di Giovanni, Stefano; Scala, Andrea; Capo, Alessandro; Majoli, Adelia; Pennacchio, Angela; Staiano, Maria; D'Auria, Sabato

    2016-09-01

    Ephedrine is one of the main precursor compounds used in the illegal production of amphetamines and related drugs. Actually, conventional analytical methods such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and gas chromatography-mass spectrometry (GC-MS) are used for the detection of ephedrine; sadly, these methods require qualified personnel and are time-consuming and expensive. In order to overcome these problems, in recent years, different methods have been developed based on the surface plasmon resonance (SPR) and electrochemical method. In this work, we present a simple, rapid, and effective method to detect the presence of ephedrine in solution, based on competitive fluorescence resonance energy transfer (FRET) assay. The antibody anti-ephedrine and ephedrine derivative were produced and labeled respectively, with two different fluorescent probes (donor and acceptor). The change in FRET signal intensity between donor and acceptor ephedrine compounds gives the possibility of detecting ephedrine traces of at least 0.81 ± 0.04 ppm (LOD). Graphical abstract A new Time-resolved Fluorescence Resonance Energy Transfer (FRET) assay for ephedrine detection. PMID:27395357

  16. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators

    PubMed Central

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-01-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469

  17. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  18. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    SciTech Connect

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  19. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  20. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  1. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas

    SciTech Connect

    Schachter, L. Dobrescu, S.; Stiebing, K. E.

    2014-02-15

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  2. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  3. Reexamination of the Energy Levels of 15F by 14O + 1H ElasticResonance Scattering with BEARS

    SciTech Connect

    Guo, F.Q.; Powell, J.; Lee, D.W.; Leitner, D.; McMahan, M.A.; Moltz, D.M.; O'Neil, J.P.; Perajarvi, K.; Phair, L.; Ramsey, C.A.; Xu,X.J.; Cerny, Joseph

    2005-05-30

    The energy levels of 15F have been measured by the p(14O,p)14O reaction. The 120 MeV 14O radioactive ion beam was produced by the BEARS coupled cyclotron system at an intensity averaging 1x104 particles/second on target. Energy calibration was obtained using resonances from the p(14N,p)14N reaction. The two lowest resonances in 15F were fitted with an R-matrix calculation. The fit to the ground state had Jp = 1/2+ at 1.23+-0.05 MeV (width 0.5-0.84 MeV), and the first excited state was Jp=5/2+ at 2.81+-0.02 MeV (width 0.30+-0.06 MeV), both relative to the mass-energy of the proton and 14O. The 15F ground state energy supports the disappearance of the Z=8 proton magic number for odd Z, Tz=-3/2 nuclei.

  4. The inhibition of fluorescence resonance energy transfer between multicolor quantum dots for rapid and sensitive detection of Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Wang, Beibei; Wang, Qi; Ma, Meihu; Cai, Zhaoxia

    2015-01-01

    In this paper, we constructed the fluorescence resonance energy transfer (FRET) system between two multi-color quantum dots (QDs) of two sizes for rapid and sensitive detection of Staphylococcus aureus. In this system, green-emitting QDs conjugated with rabbit anti-S. aureus antibodies were used as energy donors while orange-emitting QDs conjugated with goat-anti-rabbit IgG were used as energy acceptors to form FRET system. Pre-binding of Staphylococcus aureus (S. aureus) on the donor occupied the binding sites and thus blocked resonance energy transfer between two colors QDs, leading to the quenching fluorescence of the acceptor. The fluorescence of acceptor has a linear calibration graph with the concentrations of S. aureus from 52 to 2.6 × 105 CFU mL-1. The low detection limit was 10 CFU/mL. It was worth mentioning that the detection method of S. aureus had been applied to the analysis of apple juice and milk samples, which could potentially be developed into a sensor in the further study.

  5. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  6. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  7. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  8. Direct measurement of several resonance strengths and energies in 34S(α , γ) 38 Ar within the T = 2 . 2 GK Gamow window with DRAGON

    NASA Astrophysics Data System (ADS)

    Connolly, D.; O'Malley, P.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L. E.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, Ulrike; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2015-10-01

    Radiative α capture on 34S can impact nucleosynthesis in several astrophysical environments, including oxygen burning, explosive oxygen burning (Type II supernovae), and Type Ia supernovae. However, there exist discrepancies in the literature for the resonance strengths of two strong resonances within the Gamow window for oxygen burning temperatures (E0 +/- Δ / 2 = 3183 +/- 897 keV at T = 2 . 2 GK). Previous measurements suffered from systematic uncertainties inherent in the experimental technique. Furthermore, there are several states in 38Ar in the energy range of interest for which no 34S + α resonance strength/energy measurements have been performed. This measurement was performed in inverse kinematics at the DRAGON recoil separator at TRIUMF in BC, Canada. DRAGON's experimental technique allows direct measurement of quantities such as stopping power and resonance energy, alleviating the need for external inputs and reducing uncertainty. This talk will discuss DRAGON's experimental technique, analysis methods and results.

  9. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  10. Constraints on the neutron skin and symmetry energy from the anti-analog giant dipole resonance in 208Pb

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Roca-Maza, X.; Colò, G.; Sagawa, H.

    2015-09-01

    We investigate the impact of the neutron skin thickness, Δ Rn p , on the energy difference between the anti-analog giant dipole resonance (AGDR), EAGDR, and the isobaric analog state (IAS), EIAS, in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the droplet model that linearly connects the energy difference EAGDR-EIAS with Δ Rn p . To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self-consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic approach and we can compare our results with available experimental data in 208Pb in order to extract a preferred value for Δ Rn p and, in turn, for the symmetry energy parameters. Averaging the results from two available experimental data, our analysis gives Δ Rn p = 0.236 ±0.018 fm, J = 33.2 ±1.0 MeV, and a slope parameter of the symmetry energy at saturation L = 97.3 ±11.2 MeV. The errors include the experimental uncertainties and a lower-limit estimate of model uncertainties. These results are consistent with those extracted from different experimental data albeit L and Δ Rn p are somewhat large when compared to previous estimations based on giant resonance studies. Possible hints whether model dependence can explain this difference are provided.

  11. Effects of excluded volume and correlated molecular orientations on Förster resonance energy transfer in liquid water

    SciTech Connect

    Yang, Mino

    2014-04-14

    Förster theory for the survival probability of excited chromophores is generalized to include the effects of excluded volume and orientation correlation in the molecular distribution. An analytical expression for survival probability was derived and written in terms of a few simple elementary functions. Because of the excluded volume, the survival probability exhibits exponential decay at early times and stretched exponential decay at later times. Experimental schemes to determine the size of the molecular excluded volume are suggested. With the present generalization of theory, we analyzed vibrational resonance energy transfer kinetics in neat water. Excluded volume effects prove to be important and slow down the kinetics at early times. The majority of intermolecular resonance energy transfer was found to occur with exponential kinetics, as opposed to the stretched exponential behavior predicted by Förster theory. Quantum yields of intra-molecular vibrational relaxation, intra-, and intermolecular energy transfer were calculated to be 0.413, 0.167, and 0.420, respectively.

  12. Incident energy and polarization-dependent resonant inelastic x-ray scattering study of La2CuO4

    NASA Astrophysics Data System (ADS)

    Lu, L.; Hancock, J. N.; Chabot-Couture, G.; Ishii, K.; Vajk, O. P.; Yu, G.; Mizuki, J.; Casa, D.; Gog, T.; Greven, M.

    2006-12-01

    We present a detailed Cu K -edge resonant inelastic x-ray scattering (RIXS) study of the Mott insulator La2CuO4 in the 1-7eV energy loss range. As initially found for the high-temperature superconductor HgBa2CuO4+δ , the spectra exhibit a multiplet of weakly dispersive electron-hole excitations, which are revealed by utilizing the subtle dependence of the cross section on the incident photon energy. The close similarity between the fine structures for in-plane and out-of-plane polarizations is indicative of the central role played by the 1s core hole in inducing charge excitations within the CuO2 planes. On the other hand, we observe a polarization dependence of the spectral weight, and careful analysis reveals two separate features near 2eV that may be related to different charge-transfer processes. The polarization dependence indicates that the 4p electrons contribute significantly to the RIXS cross section. Third-order perturbation arguments and a shake-up of valence excitations are then applied to account for the final-energy resonance in the spectra. As an alternative scenario, we discuss fluorescence-like emission processes due to 1s→4p transitions into a narrow continuum 4p band.

  13. Non-resonant elastic scattering of low-energy photons by atomic sodium confined in quantum plasmas

    SciTech Connect

    Ghosh, Avijit Ray, Debasis

    2015-03-15

    The non-resonant elastic scattering of low-energy photons by the bound valence electron in the ground state 3s of atomic sodium confined in quantum plasmas is investigated theoretically. The incident photon energy is assumed to be much smaller than the 3s-3p excitation energy. The alkali atom sodium is first formulated as an effective one-electron problem in which the attractive interaction between the valence electron and the atomic ion core is simulated by a spherically symmetric model potential. The Shukla-Eliasson oscillatory exponential cosine screened-Coulomb potential model is then used to mimic the effective two-body (valence-core) interaction within quantum plasmas. Non-relativistic calculations performed within the electric dipole approximation indicate that the non-resonant elastic photon scattering cross-section undergoes a dramatic growth by several orders of magnitude as the quantum wave number increases. A qualitative explanation of this phenomenon is presented. In the absence of the oscillatory cosine screening term, a similar growth is observed at larger values of the quantum wave number. Our computed relevant atomic data are in very good agreement with the experimental as well as the previous theoretical data for the zero-screening (free atom) case, and with the very limited, accurate theoretical results available for the case of exponential screened-Coulomb two-body interaction, without the cosine screening term.

  14. A theoretical study of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Xu-Xu, J.; Barrero-Gil, A.; Velazquez, A.

    2015-11-01

    This paper presents a theoretical study of the coupling between a vortex-induced vibration (VIV) cylindrical resonator and its associated linear electromagnetic generator. The two-equation mathematical model is based on a dual-mass formulation in which the dominant masses are the stator and translator masses of the generator. The fluid-structure interaction implemented in the model equations follows the so-called ‘advanced forcing model’ whose closure relies on experimental data. The rationale to carry out the study is the fact that in these types of configurations there is a two-way interaction between the moving parts in such a way that their motions influence each other simultaneously, thereby affecting the energy actually harvested. It is believed that instead of mainly resorting to complementary numerical simulations, a theoretical model can shed some light on the nature of the interaction and, at the same time, provide scaling laws that can be used for practical design and optimization purposes. It has been found that the proposed configuration has a maximum hydrodynamic to mechanical to electrical conversion efficiency (based on the VIV resonator oscillation amplitude) of 8%. For a cylindrical resonator 10 cm long with a 2 cm diameter, this translates into an output power of 20 to 160 mW for water stream velocities in the range from 0.5 to 1 m s-1.

  15. Self-consistent energy bands in aluminum and electronic surface states and resonances on the (001) surface

    NASA Astrophysics Data System (ADS)

    Seel, M.

    1983-07-01

    The band structure of aluminum has been calculated self-consistently with the use of the Kohn-Sham-Gaspar local exchange potential and the linear combination of Gaussian orbitals method. The resulting band structure, using a basis set of 28 contracted Gaussian-type orbitals, is in excellent agreement with the previous work of Singhal and Callaway in which a basis set of 60 uncontracted Gaussian functions was used. After projection of the bulk bands onto the two-dimensional (001) surface Brillouin zone, surface states and resonances have been calculated along the Δ¯ line with the use of the Green's-function formalism. At point Γ¯, the surface state is located 2.92 eV below EF, in excellent agreement with the experimental result, 2.8+/-0.2 eV below EF. In addition, a resonance is found 0.7 eV below EF with a half-width of 0.4 eV, hitherto interpreted only as Fermi edge intensity. From the midpoint of the Δ¯ axis moving onward up to the Fermi energy, the observed main peak is attributed to surface resonances.

  16. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    SciTech Connect

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO/sub 2/ + CO/sub 2/ collisions have been measured. All data were obtained by double resonance spectroscopy with CO/sub 2/ lasers in a 2.5 meter absorption cell at 700/sup 0/K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ..delta..J up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 ..-->.. 101) and hot-band (011 ..-->.. 110) lasting have been used to observe resonant nu/sub 3/-transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments.

  17. Probing Nucleic Acid Interactions and Pre-mRNA Splicing by Förster Resonance Energy Transfer (FRET) Microscopy

    PubMed Central

    Šimková, Eva; Staněk, David

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental approaches recently used for either in vitro or in vivo studies. Next, we summarize how FRET contributed to the understanding of pre-mRNA splicing and spliceosome assembly. PMID:23203103

  18. Direct visualization of triplex DNA molecular dynamics by fluorescence resonance energy transfer and atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ching; Lin, Po-Yen; Chen, Yen-Fu; Chang, Chia-Seng; Kan, Lou-Sing

    2007-11-01

    We have detected the dynamics of 17-mer DNA triplex dissociation mechanism at the molecular level. Fluorescence resonance energy transfer (FRET) was used as an indicator of intermolecular interaction in nanometer range, whereas atomic force microscopy (AFM) was employed to address single molecule with sub-angstrom precision. The maximum rupture force of DNA triplex was found at pH 4.65, consistent with macroscopic observations. These results indicated that the FRET together with an AFM detection system could be used to reveal the DNA triplex interaction in nanometer scale unambiguously.

  19. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866

  20. CLASSICAL MODEL FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER

    SciTech Connect

    Orel, Ann E.; Miller, William H.

    1980-11-01

    A recently developed classical model for electronically nonadiabatic collision processes is applied to electronic-vibrational energy transfer in a collinear atom~diatom system, A + BC(v=1) + A*+ BC(v=0), which closely resembles Br-H{sub 2}. This classical model, which treats electronic as well as heavy particle (i.e., translation, rotation, and vibration) degrees of freedom by classical mechanics, is found to describe the resonance features in this process reasonably well. The usefulness of the approach is that it allows one to extend standard Monte Carlo classical trajectory methodology to include electronically non-adiabatic processes in a dynamically consistent way,

  1. /sup 187/Os + n resonance parameters in the interval 27-500 eV neutron energies

    SciTech Connect

    Winters, R.R.; Carlton, R.F.; Harvey, J.A.; Hill, N.W.

    1982-01-01

    The neutron total cross section for /sup 187/Os, in the energy range, 27 eV to 500 eV, has been measured at the ORELA facility by the neutron time-of-flight technique, utilizing a 2.0 gm osmium sample (n = 0.008401 Os-nuclei/barn) enriched to 70.38% /sup 187/Os. Measurements were performed at a 80 m flight station with an energy resolution, ..delta..E/E, of 0.1% using a /sup 6/Li glass scintillator. Resolved resonances have been analyzed by a Reich-Moore multilevel code (SAMMY) to obtain parameters for 85 resonances up to 500 eV. Preliminary determinations of the level spacing (5 eV) and s-wave strength function (3.9 x 10/sup -4/) for /sup 187/Os are in agreement with recent analyses of the osmium isotopes, made in connection with the use of the Re/Os chronometer for estimating the duration of stellar nucleosynthesis.

  2. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT.

    PubMed

    Gao, Daming; Wang, Zhenyang; Liu, Bianhua; Ni, Lin; Wu, Minghong; Zhang, Zhongping

    2008-11-15

    This paper reports a resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles for the ultrasensitive detection of 2,4,6-trinitrotoluene (TNT) in solution and vapor environments. Fluorescence dye and organic amine were covalently modified onto the surface of silica nanoparticles to form a hybrid monolayer of dye fluorophores and amine ligands. The fluorescent silica particles can specifically bind TNT species by the charge-transfer complexing interaction between electron-rich amine ligands and electron-deficient aromatic rings. The resultant TNT-amine complexes bound at the silica surface can strongly suppress the fluorescence emission of the chosen dye by the fluorescence resonance energy transfer (FRET) from dye donor to the irradiative TNT-amine acceptor through intermolecular polar-polar interactions at spatial proximity. The quenching efficiency of the hybrid nanoparticles with TNT is greatly amplified by at least 10-fold that of the corresponding pure dye. The nanoparticle-assembled arrays on silicon wafer can sensitively detect down to approximately 1 nM TNT with the use of only 10 microL of solution (approximately 2 pg TNT) and several ppb of TNT vapor in air. The simple FRET-based nanoparticle sensors reported here exhibit a high and stable fluorescence brightness, strong analyte affinity, and good assembly flexibility and can thus find many applications in the detection of ultratrace analytes. PMID:18847285

  3. Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET)

    PubMed Central

    Litke, Jacob L.; Li, Yan; Nocka, Laura M.; Mukerji, Ishita

    2016-01-01

    Holliday Junctions are critical DNA intermediates central to double strand break repair and homologous recombination. The junctions can adopt two general forms: open and stacked-X, which are induced by protein or ion binding. In this work, fluorescence spectroscopy, metal ion luminescence and thermodynamic measurements are used to elucidate the ion binding site and the mechanism of junction conformational change. Förster resonance energy transfer measurements of end-labeled junctions monitored junction conformation and ion binding affinity, and reported higher affinities for multi-valent ions. Thermodynamic measurements provided evidence for two classes of binding sites. The higher affinity ion-binding interaction is an enthalpy driven process with an apparent stoichiometry of 2.1 ± 0.2. As revealed by Eu3+ luminescence, this binding class is homogeneous, and results in slight dehydration of the ion with one direct coordination site to the junction. Luminescence resonance energy transfer experiments confirmed the presence of two ions and indicated they are 6–7 Å apart. These findings are in good agreement with previous molecular dynamics simulations, which identified two symmetrical regions of high ion density in the center of stacked junctions. These results support a model in which site-specific binding of two ions in close proximity is required for folding of DNA Holliday junctions into the stacked-X conformation. PMID:26978349

  4. Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics

    NASA Astrophysics Data System (ADS)

    Andreakou, P.; Brossard, M.; Bernechea, M.; Konstantatos, G.; Lagoudakis, P.

    2012-02-01

    Semiconductor Quantum Dots (QDs) are promising materials for photovoltaic applications because they can be engineered to absorb light from visible to near infrared and single absorbed photons can generate multiple excitons. However, these materials suffer from low carrier mobility, which severely limits the prospects of efficient charge extraction and carrier transport. We take advantage of the optical properties of QDs and overcome their drawback by using a hybrid photovoltaic device. This photovoltaic configuration exploits the absorption of solar photons in the QDs and the transfer of excitons from the QDs to a silicon p-n junction. We study the Resonance Energy Transfer (RET) mechanism to inject excitons from the QDs into the depletion layer of a silicon p-n junction. Lead sulphide (PbS) nanocrystals are deposited onto the silicon substrate and the efficiency of Resonance Energy Transfer (RET) from the PbS nanoparticles to bulk silicon is investigated. We study the efficiency of this transfer channel between the PbS nanocrystals and silicon by varying their separation distance. These results demonstrate RET from colloidal quantum dots to bulk silicon. Temperature measurements are also presented and show that the RET efficiency is as high as 44% at room temperature. Such a hybrid photovoltaic device makes a potentially inexpensive scheme for achieving highefficiency and low-cost solar-cell platforms.

  5. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  6. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  7. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  8. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  9. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.

    PubMed

    Xu, Jinjia; Takai, Atsuro; Takeuchi, Masayuki

    2016-09-01

    A red-green-blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi-colour emission was constructed; the blue-emitting cationic oligofluorene nanoparticle acted as an energy-donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red-emitting dye embedded in the nanoparticle (interior FRET) and to a green-emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual-FRET system exhibits multi-colour emission, including white, in aqueous solution and film state. A characteristic white-emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit. PMID:27487175

  10. Development of precise tuning method of inter-dot spacing and resonant energy transfer between Au clusters

    NASA Astrophysics Data System (ADS)

    Inada, Mitsuru; Yoshihara, Yoshihiro; Kawasaki, Hideya; Iwasaki, Yasuhiko; Saitoh, Tadashi; Umezu, Ikurou; Sugimura, Akira

    2011-09-01

    A device to control strength of interactions between adjacent nanostructures, namely Precise Interaction Control System for Nanostructures (PICSN) is developed. The PICSN is operated by combinations of DC motor and capacitancepositioning sensor. In this system, nanostructures are deposited on a flexible substrate and the strength of interactions can be controlled by changing a distance between adjacent nanostructures, stretching or shrinking the flexible substrate. Using the PICSN, we investigate photoluminescence of Au nanoclusters (NCs), which include at least Au5, Au8 and Au13 NCs, deposited on poly(dimethylsiloxane) substrate. We observed a blue shift of PL peak position with increasing interdot distance. Considering the relationship between absorption and emission energies of Au NCs, the blue shift is thought to be a result of fluorescent resonant energy transfer from smaller sized Au NCs to larger ones.

  11. Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye.

    PubMed

    Olivero, Francesco; Carniato, Fabio; Bisio, Chiara; Marchese, Leonardo

    2014-01-01

    A new hybrid photostable saponite clay with embedded donor-acceptor dyes was prepared and characterized in this work. The saponite is intercalated with a luminescent polyhedral oligomeric silsesquioxane, which transfers the photoexcitation energy directly to an acceptor dye (rhodamine B). The obtained composite material was characterized by means of XRD, TEM microscopy, and UV/Vis and photoluminescence spectroscopy. A physicochemical study showed that the system behaved as an efficient Förster resonance energy transfer pair, owing to the very good spectral overlap of donor emission (λem =510-540 nm) and acceptor absorption in the λ=530-570 nm range. The hybrid material represents the first example of a photonic antenna based on a synthetic saponite clay and can be considered a step forward in the search for new, efficient, and stable materials suitable for light-harvesting applications. PMID:24124165

  12. Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force

    NASA Astrophysics Data System (ADS)

    Ghalambaz, Mohammad; Ghalambaz, Mehdi; Edalatifar, Mohammad

    2016-03-01

    The energy balance method is utilized to analyze the oscillation of a nonlinear nanoelectro-mechanical system resonator. The resonator comprises an electrode, which is embedded between two substrates. Two types of clamped-clamped and cantilever nano-resonators are studied. The effects of the van der Waals attractions, Casimir force, the small size, the fringing field, the mid-plane stretching, and the axial load are taken into account. The governing partial differential equation of the resonator is reduced using the Galerkin method. The energy method is applied to obtain an analytical solution without considering any linearization or small parameter. The results of the present study are compared with the results available in the literature. In addition, the results of the present analytical solution are compared with the Runge-Kutta numerical results. An excellent agreement between the present analytical solution, numerical solution, and the results available in the literature was found. The influences of the van der Waals force, Casimir force, size effect, and fringing field effect on the oscillation frequency of resonators are studied. The results indicate that the presence of the intermolecular forces (van der Waals), Casimir force, and fringing field effect decreases the oscillation frequency of the resonator. In contrast, the presence of the size effect increases the oscillation frequency of the resonator.

  13. Calibration of mass transfer-based models to predict reference crop evapotranspiration

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-03-01

    The present study aims to compare mass transfer-based models to determine the best model under different weather conditions. The results showed that the Penman model estimates reference crop evapotranspiration better than other models in most provinces of Iran (15 provinces). However, the values of R 2 were less than 0.90 for 24 provinces of Iran. Therefore, the models were calibrated, and precision of estimation was increased (the values of R 2 were less than 0.90 for only ten provinces in the modified models). The mass transfer-based models estimated reference crop evapotranspiration in the northern (near the Caspian Sea) and southern (near the Persian Gulf) Iran (annual relative humidity more than 65 %) better than other provinces. The best values of R 2 were 0.96 and 0.98 for the Trabert and Rohwer models in Ardabil (AR) and Mazandaran (MZ) provinces before and after calibration, respectively. Finally, a list of the best performances of each model was presented to use other regions and next studies according to values of mean, maximum, and minimum temperature, relative humidity, and wind speed. The best weather conditions to use mass transfer-based equations are 8-18 °C (with the exception of Ivanov), <25.5 °C, <15 °C, >55 % for mean, maximum, and minimum temperature, and relative humidity, respectively.

  14. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  15. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations

    PubMed Central

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D.

    2013-01-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-57Fe-enriched [Fe4S4Cl4]= and 10%-57Fe and 90%-54Fe labeled [Fe4S4Cl4]= has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3–4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  16. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework

    PubMed Central

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2013-01-01

    The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114

  17. Note: resonant microwave compressor with two output ports for synchronous energy extraction.

    PubMed

    Avgustinovich, V A; Artemenko, S N; Kaminsky, V L; Novikov, S A; Yushkov, Yu G

    2011-04-01

    The brief theoretical analysis shows the resonant microwave compressor provides the output pulse power higher than the traveling wave power in the storage cavity. The experimental study was made with the model of the S-band microwave compressor. The power of pulses generated by the device reached the value three times as much as the value of the traveling wave power in the storage cavity at the maximum amplification 23 dB, peak power 400 MW, and pulse width 4-5 ns. PMID:21529048

  18. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  19. Communication: energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach.

    PubMed

    Liu, Zhen-Fei; Neaton, Jeffrey B

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals. PMID:25296777

  20. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    SciTech Connect

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-07

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  1. Resonances and threshold effects in low-energy electron collisions with methyl halides

    SciTech Connect

    Gallup, Gordon A.; Fabrikant, Ilya I.

    2007-03-15

    Cross sections for elastic and inelastic electron collisions with CH{sub 3}X (X=Cl,Br,I) molecules are calculated. For the lowest partial wave, the resonance R-matrix theory, and for the higher partial waves, the theory of scattering by dipolar plus polarization potential, are used. It is shown that the rotationally elastic scattering amplitude for a polar molecule in the fixed-nuclei approximation is logarithmically divergent for the forward direction, and a closure formula is derived to speed up the convergence at small angles. In treating the nuclear motion, only C-X stretch vibrations are taken into account. The dipole moment as a function of the C-X distance is modeled by a function incorporating the experimental value of the molecular dipole moments at the equilibrium distance and the derivatives of the dipole moments extracted from the experimental data on infrared intensities. This is supplemented by ab initio calculations of the dipole moment function for CH{sub 3}Br using the multiconfigurational valence bond method. The results for scattering cross sections show pronounced features caused by vibrational Feshbach resonances and threshold cusps. The features are most noticeable at the v=6, 7, and 8 thresholds in CH{sub 3}Cl, at the v=3 and 4 thresholds in CH{sub 3}Br, and at the v=1 threshold in CH{sub 3}I.

  2. Nonresonant and resonant mode-specific intermolecular vibrational energy transfers in electrolyte aqueous solutions.

    PubMed

    Bian, Hongtao; Chen, Hailong; Li, Jiebo; Wen, Xiewen; Zheng, Junrong

    2011-10-27

    The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was found to be able to describe the intermolecular mode specific vibrational energy transfer. Under the assumption of the dipole-dipole approximation, the distance between anions in the aqueous solutions was obtained from the vibrational energy transfer measurements, confirmed with measurements on the corresponding crystalline samples. The result demonstrates that the mode-specific vibrational energy transfer method holds promise as an angstrom molecular ruler. PMID:21916443

  3. Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer.

    PubMed Central

    Kubitscheck, U; Schweitzer-Stenner, R; Arndt-Jovin, D J; Jovin, T M; Pecht, I

    1993-01-01

    The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components. PMID:8431535

  4. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method

    NASA Astrophysics Data System (ADS)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk

    2016-04-01

    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  5. Observation of ultrahigh-energy electrons by resonance absorption of high-power microwaves in a pulsed plasma.

    PubMed

    Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y

    2001-07-01

    The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms. PMID:11461406

  6. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  7. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-01

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters. PMID:25747062

  8. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  9. Spin polarized low energy electron microscopy of quantum well resonances in Fe films on the Cu-covered W(110) surface.

    PubMed

    Wu, Qiang; Altman, M S

    2013-07-01

    Spin polarized low energy electron microscopy has been used to investigate the quantum size effect (QSE) in electron reflectivity from Fe films grown on a pseudomorphic Cu layer on a W(110) surface. Intensity oscillations caused by the QSE as functions of Fe film thickness and incident electron energy identify quantum well resonance conditions in the film. Evaluation of these intensity oscillations using the phase accumulation model provides information on the unoccupied spin polarized band structure in the Fe film above the vacuum level. We also find evidence that the presence of the non-magnetic Cu layer shifts spin polarized quantum well resonances in the Fe layer uniformly downward in energy by 1.1eV compared to Fe/W(110) films without an interface Cu layer, suggesting that the Cu layer gives a small degree of control over the quantum well resonances. PMID:23628648

  10. Re-determination of bound state resonance energies in He/graphite scattering

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kara, A.; Frankl, D. R.

    1986-05-01

    Binding energies of 4He atoms physisorbed on graphite (0001) surfaces were re-determined with improved resolution and precision. Energies are several tenths of an meV deeper than found in previous determinations, and an additional high-lying level is resolved. These results are in good agreement with recent theoretical calculations.

  11. High accuracy 235U(n,f) data in the resonance energy region

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Duran, I.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Isaev, S.; Le Naour, C.; Stephan, C.; Tarrío, D.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Gonçalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haight, R.; Heil, M.; Igashira, M.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Krticka, M.; Lampoudis, C.; Lederer, C.; Leeb, H.; Lindote, A.; Lukic, S.; Marganiec, J.; Martinez, T.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Pancin, S., J.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Weiss, C.; Wiesher, M.; Wisshak, K.

    2016-03-01

    The 235U neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n_TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided.

  12. Controlled ultraviolet resonance energy transfer between bovine serum albumin donors and cadmium sulfide quantum dots acceptors

    NASA Astrophysics Data System (ADS)

    Ghali, Mohsen; El-Kemary, Maged; Ramadan, Mahmoud

    2015-08-01

    We report on Förester resonance nergy transfer (FRET) within a bioconjugated system composed of cadmium sulfide (CdS) quantum dots (QDs) and transport protein bovine serum albumin (BSA). The optical properties of these two elements of the bioconjugate were exploited to produce FRET in the ultraviolet (UV) region with a maximum efficiency of 22% from BSA donors to QD acceptors. In contrast to previous studies, which were limited to FRET in the visible light, we used 2.6 nm CdS QDs because they emit light with a shorter wavelength (∼370 nm) that facilitates the UV-FRET process. UV-FRET was controlled by tuning the spectral overlap between BSA and CdS QDs.

  13. Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate results

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Periasamy, Ammasi

    2010-03-01

    Förster resonance energy transfer (FRET) microscopy is commonly used to monitor protein interactions with filter-based imaging systems, which require spectral bleedthrough (or cross talk) correction to accurately measure energy transfer efficiency (E). The double-label (donor+acceptor) specimen is excited with the donor wavelength, the acceptor emission provided the uncorrected FRET signal and the donor emission (the donor channel) represents the quenched donor (qD), the basis for the E calculation. Our results indicate this is not the most accurate determination of the quenched donor signal as it fails to consider the donor spectral bleedthrough (DSBT) signals in the qD for the E calculation, which our new model addresses, leading to a more accurate E result. This refinement improves E comparisons made with lifetime and spectral FRET imaging microscopy as shown here using several genetic (FRET standard) constructs, where cerulean and venus fluorescent proteins are tethered by different amino acid linkers.

  14. Resonance strength measurement at astrophysical energies: The {sup 17}O(p,α){sup 14}N reaction studied via Trojan Horse Method

    SciTech Connect

    Sergi, M. L. La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-15

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  15. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    NASA Astrophysics Data System (ADS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-09-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  16. [Determination of Trace Boron Based on Gold Nanorod Plasmonic Resonance Rayleigh Scattering Energy Transfer to the Coordinate].

    PubMed

    Ye, Ling-ling; Li, Ting-sheng; Luo, Yang-he; Wen, Gui-qing; Liang, Ai-hui; Jiang, Zhi-liang

    2015-05-01

    B is a necessary trace element for human and animals, but the excess intake of B caused poison. Thus, it is very important to determination of B in foods and water. The target of this study is development of a new, sensitive and selective resonance Rayleigh scattering energy transfer (RRS-ET) for the determination of B. The combination of energy transfer with resonance Rayleigh scattering (RRS) has developed a new technology called RRS-ET, which can realize selective and sensitive detection of boric acid. The gold nanorods in diameter of 12 nm and length of 37 nm were prepared by the seed growth procedure. In pH 5. 6 NH4 Ac-HAc buffer solution and in the presence of azomethine-H (AMH), the gold nanorod particles exhibited a strong resonance Rayleigh scattering (RRS) peak at 404 nm. In the presence of boric acid, it reacts with AMH to form AMH-boric acid (AMH-B) complexes. When the complexe as a receptor close to the gold nanorod as a donor, the resonance Rayleigh scattering energy transfer (RRS-ET) take placed that resulted in the Rayleigh scattering signal quenching. With the increase of the concentration of boric acid, the formed complexes increased, the scattering light energy of gold nanorod transfer to the complexes increased, resulting in the Rayleigh scattering intensity linearly reduced at 404 nrn. The decreased RRS intensity responds linearly to the concentration of boron over 10~750 ng . mL-1 B, with a regress equation of ΔI404 nm =3. 53c+24 and a detection of 5 ng mL-1 B. The influence of coexistence substances on the RRS-ET determination of 2. 3 X 10(-7) mol . L-1 B was considered in details. Results showed that this new RRS-ET method is of high selectivity, that is, 4 X 10(-4) mol . L-1 Mn2+, Cd2+, Zn2+, Bi+, Na+, Al3+, glucose, Hg2+, IO3-, F-, SO(2-)3, SiO3-, NO3-, CIO4-, H2O2, mannitol, glycerol, and ethylene glycol, 4X 10(-5) mol . L-1 L-tyrosine, and 2 X 10(-4) mol . L-1 L-glutamic acid do not interfere with the determination. Based on this, a new

  17. Following Glucose Oxidase Activity by Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Processes Involving Enzyme-DNAzyme Conjugates

    PubMed Central

    Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar

    2011-01-01

    A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2. The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose. PMID:22346648

  18. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates.

    PubMed

    Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar

    2011-01-01

    A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H(2)O(2). The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose. PMID:22346648

  19. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes.

    PubMed

    Chiou, Chiuan-Chian; Chen, Shiau-Wen; Luo, Ji-Dung; Chien, Yu-Tzu

    2011-09-01

    Triplex-forming oligonucleotides (TFOs) are sequence-dependent DNA binders that may be useful for DNA targeting and detection. A sensitive and convenient method to monitor triplex formation by a TFO and its target DNA duplex is required for the application of TFO probes. Here we describe a novel design by which triplex formation can be monitored homogeneously without prelabeling the target duplex. The design uses a TFO probe tagged with a fluorophore that undergoes fluorescence resonance energy transfer with fluorescent dyes that intercalate into the target duplex. Through color compensation analysis, the specific emission of the TFO probe reveals the status of the triple helices. We used this method to show that triple helix formation with TFOs is magnesium dependent. We also demonstrated that the TFO probe can be used for detection of sequence variation in melting analysis and for DNA quantitation in real-time polymerase chain reaction. PMID:21609711

  20. Vibrational analysis of HOCl up to 98{percent} of the dissociation energy with a Fermi resonance Hamiltonian

    SciTech Connect

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-10-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous {ital ab initio} calculations [J. Chem. Phys. {bold 109}, 2662 (1998); {bold 109}, 10273 (1998)]. Up to approximately 13&hthinsp;000 cm{sup {minus}1}, the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13&hthinsp;000 cm{sup {minus}1} the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v{sub 1}=0). In addition to v{sub 1}, these levels can only be assigned a so-called polyad quantum number P=2v{sub 2}+v{sub 3}, where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v{sub 1}{ge}2 remain assignable with three v{sub i} quantum numbers up to the dissociation (D{sub 0}=19&hthinsp;290&hthinsp;cm{sup {minus}1}). The interaction between the bending and the OCl stretch ({omega}{sub 2}{congruent}2{omega}{sub 3}) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from {ital ab initio} calculations, which in turn enables the assignment of many additional {ital ab initio} vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18&hthinsp;885 cm{sup {minus}1} above the (0,0,0) ground level, that is, at about 98{percent} of D{sub 0}. In addition, 84 {open_quotes}resonances{close_quotes} located above D{sub 0} have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 {ital ab initio} levels, the rms deviation being of 5.3 cm{sup {minus}1}. This set of 725 fitted levels includes the full set of levels up to No. 702 at 18&hthinsp;650 cm{sup {minus}1}. The {ital ab initio} levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a

  1. Generalized master equation with non-Markovian multichromophoric Förster resonance energy transfer for modular exciton densities.

    PubMed

    Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K Birgitta

    2014-10-31

    A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments. PMID:25396397

  2. Generalized Master Equation with Non-Markovian Multichromophoric Förster Resonance Energy Transfer for Modular Exciton Densities

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K. Birgitta

    2014-10-01

    A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.

  3. Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer

    PubMed Central

    2012-01-01

    Sulfonated aluminum phthalocyanines (AlPcSs), commonly used photosensitizers for photodynamic therapy of cancers (PDT), were conjugated with amine-dihydrolipoic acid-coated quantum dots (QDs) by electrostatic binding, achieving 70 AlPcSs per QD. The AlPcS-QD conjugates can utilize the intense light absorptions of conjugated QDs to indirectly excite AlPcSs producing singlet oxygen via fluorescence resonance energy transfer (FRET), demonstrating a new excitation model for PDT. The AlPcS-QD conjugates easily penetrated into human nasopharyngeal carcinoma cells and carried out the FRET in cells, with efficiency around 80%. Under the irradiation of a 532-nm laser, which is at the absorption region of QDs but not fit for the absorption of AlPcSs, the cellular AlPcS-QD conjugates can destroy most cancer cells via FRET-mediated PDT, showing the potential of this new strategy for PDT. PMID:22784858

  4. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  5. Chemiluminescence Resonance Energy Transfer Competitive Immunoassay Employing Hapten-Functionalized Quantum Dots for the Detection of Sulfamethazine.

    PubMed

    Ma, Mingfang; Wen, Kai; Beier, Ross C; Eremin, Sergei A; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong; Wang, Zhanhui

    2016-07-20

    We describe a new strategy for using chemiluminescence resonance energy transfer (CRET) by employing hapten-functionalized quantum dots (QDs) in a competitive immunoassay for detection of sulfamethazine (SMZ). Core/multishell QDs were synthesized and modified with phospholipid-PEG. The modified QDs were functionalized with the hapten 4-(4-aminophenyl-sulfonamido)butanoic acid. The CRET-based immunoassay exhibited a limit of detection for SMZ of 9 pg mL(-1), which is >4 orders of magnitude better than a homogeneous fluorescence polarization immunoassay and is 2 orders of magnitude better than a heterogeneous enzyme-linked immunosorbent assay. This strategy represents a simple, reliable, and universal approach for detection of chemical contaminants. PMID:27362827

  6. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    NASA Astrophysics Data System (ADS)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis

    2014-11-01

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  7. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    SciTech Connect

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  8. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt

    PubMed Central

    Broussard, Joshua A; Rappaz, Benjamin; Webb, Donna J; Brown, Claire M

    2013-01-01

    This protocol describes procedures for performing fluorescence resonance energy transfer (FRET) microscopy analysis by three different methods: acceptor photobleaching, sensitized emission and spectral imaging. We also discuss anisotropy and fluorescence lifetime imaging microscopy–based FRET techniques. By using the specific example of the FRET probe Akind (Akt indicator), which is a version of Akt modified such that FRET occurs when the probe is activated by phosphorylation, indicating Akt activation. The protocol provides a detailed step-by-step description of sample preparation, image acquisition and analysis, including control samples, image corrections and the generation of quantitative FRET/CFP ratio images for both sensitized emission and spectral imaging. The sample preparation takes 2 d, equipment setup takes 2–3 h and image acquisition and analysis take 6–8 h. PMID:23306460

  9. Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer.

    PubMed

    Qiu, Xue; Hildebrandt, Niko

    2015-08-25

    The detection of next generation microRNA (miRNA) biomarkers has become a highly important aspect for clinical diagnostics. We use multiplexed Förster resonance energy transfer (FRET) between a luminescent Tb complex and three different semiconductor quantum dots (QDs) to sensitively detect three different miRNAs from a single 150 μL sample with ca. 1 nM (subpicomol) detection limits. The rapid and amplification-free mix-and-measure assay format is based on careful design of miRNA base pairing and stacking to selectively detect different miRNAs with very strong sequence homologies. Clinical applicability is demonstrated by sensitive multiplexed quantification of three miRNAs at low (2 to 10 nM) and varying concentrations in samples that contained up to 10% serum. PMID:26192765

  10. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer

    PubMed Central

    Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.

    2005-01-01

    The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. PMID:15728351

  11. Evidence of single-nanoparticle translocation through a solid-state nanopore by plasmon resonance energy transfer.

    PubMed

    Cao, Yue; Lin, Yao; Qian, Ruo-Can; Ying, Yi-Lun; Si, Wei; Sha, Jingjie; Chen, Yunfei; Long, Yi-Tao

    2016-04-18

    This work proposes a gold nanoparticle (AuNP) based probe to study the single-nanoparticle translocation behavior through a silicon nitride (SiNx) solid-state nanopore. The AuNP probe is functionalized with a rhodamine derivative molecule, termed Rhod-DPA, whose fluorescence can be activated in the presence of Cu(2+) due to the binding between Rhod-DPA and Cu(2+). The Cu(2+) triggered configuration change of Rhod-DPA on the probe surface can induce the plasmon resonance energy transfer (PRET) from single AuNPs to the transformed fluorescent molecules, which can be detected by the color change of AuNP probes under dark-field microscopy (DFM) and their scattering spectra recorded on a spectrometer. By analyzing the peak shifts before and after the addition of Cu(2+), evidence of single nanoparticle translocation through the nanopore has been obtained, proving the successful establishment of the tracking strategy. PMID:26936436

  12. Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor.

    PubMed

    Ritt, Michael; Sivaramakrishnan, Sivaraj

    2016-04-01

    Adenylyl cyclase (AC) activity relies on multiple effectors acting through distinct binding sites. Crystal structures have revealed the location of these sites, and biochemical studies have explored the kinetics of ACs, but the interplay between conformation and activity remains incompletely understood. Here, we describe a novel fluorescence resonance energy transfer (FRET) sensor that functions both as a soluble cyclase and a reporter of complementation within the catalytic domain. We report a strong linear correlation between catalytic domain complementation and cyclase activity upon stimulation with forskolin and Gαs. Exploiting this, we dissect the mechanism of action of a series of forskolin analogs and a P-site inhibitor, 2'-d3'-AMP. Finally, we demonstrate that this sensor is functional in live cells, wherein it reports forskolin-stimulated activity of AC. PMID:26801393

  13. Single-excitation dual-color coherent lasing by tuning resonance energy transfer processes in porous structured nanowires.

    PubMed

    Wang, Zhaona; Shi, Xiaoyu; Yu, Ruomeng; Wei, Sujun; Chang, Qing; Wang, Yanrong; Liu, Dahe; Wang, Zhong Lin

    2015-10-01

    Single-excitation dual-color coherent lasing was achieved in a mixed random system of a binary dye and the suspension of gold-silver porous nanowires with plenty of nanogaps. This greatly enhanced the local electromagnetic field in the visible range and guaranteed a low threshold and high Q factor (>10 000) operator for simultaneous dual-color lasing. By tuning the resonance energy transfer process in the stimulated emission, triple output modes (single chartreuse lasing, chartreuse and red dual-color lasing, and single red coherent lasing) were easily obtained. This triple-mode coherent random lasing introduces a new approach to designing multi-functional micro-optoelectronic devices for multi-color speckle-free imaging and interference. PMID:26349545

  14. Resonant vortex-core reversal in magnetic nano-spheres as robust mechanism of efficient energy absorption and emission

    PubMed Central

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Jae-Hyeok; Kim, Min-Kwan

    2016-01-01

    We report on novel vortex-core reversal dynamics in nano-spheres of single-vortex spin configuration as revealed by micromagnetic simulations combined with analytical derivations. When the frequency of an AC magnetic field is tuned to the frequency of the vortex-core precession around the direction of a given static field, oscillatory vortex-core reversals occur, and additionally, the frequency is found to change with both the strength of the applied AC field and the particle size. Such resonant vortex-core reversals in nano-spheres may provide a new and efficient means of energy absorption by, and emission from, magnetic nanoparticles, which system can be effectively implemented in bio-applications such as magnetic hyperthermia. PMID:27531408

  15. DNAzyme-based biosensor for Cu(2+) ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique.

    PubMed

    Chen, Ying; Chen, Ling; Ou, Yidian; Wang, Zhenhua; Fu, Fengfu; Guo, Liangqia

    2016-08-01

    A novel signal amplification strategy based on Cu(2+)-dependent DNAzyme was developed for sensing Cu(2+) ion by combining hybridization chain reaction (HCR) with fluorescence resonance energy transfer (FRET) technique. In the presence of Cu(2+) ion, the substrate strands of Cu(2+)-dependent DNAzyme immobilized on magnetic beads were specifically cleaved and released. The released strands initiated the HCR process of hairpin H1 and H2 labeled with FAM as the donor and TAMRA as the acceptor, respectively. Long nicked dsDNA structures were self-assembled to bring the donor and the acceptor in close proximity, resulting in a FRET process. The relative ratio of fluorescent intensities of the acceptor and donor was used to quantitatively detect Cu(2+) ion with a limit of detection of 0.5nmolL(-1). This proposed biosensor was applied to detect Cu(2+) ion in tap water with satisfactory results. PMID:27216680

  16. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    PubMed

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. PMID:26724763

  17. Simple Model for Gold Nano Particles Concentration Dependence of Resonance Energy Transfer Intensity

    NASA Astrophysics Data System (ADS)

    Hoa, N. M.; Ha, C. V.; Nga, D. T.; Lan, N. T.; Nhung, T. H.; Viet, N. A.

    2016-06-01

    Gold nano particles (GNPs) concentration dependence of the energy transfer occurs between the fluorophores and GNPs is investigated. In the case of theses pairs, GNPs can enhance or quench the fluorescence of fluorophores depending upon the relative magnitudes of two energy transfer mechanisms: i) the plasmonic field enhancement at the fluorophores emission frequencies (plasmon coupled fluorescence enhancement) and ii) the localized plasmon coupled Forster energy transfer from fluorescent particles to gold particles, which quenches the fluorescence. The competition of these mechanisms is depending on the spectral overlap of fluorophores and GNPs, their relative concentration, excitation wavelength. Simple two branches surface plasmon polariton model for GNPs concentration dependence of the energy transfer is proposed. The experimental data and theoretical results confirm our findings.

  18. N(+)-N long-range interaction energies and resonance charge exchange

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  19. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  20. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay.

    PubMed

    Jensen, Jesper Langholm; Jacobsen, Jonas; Moss, Marcia L; Rasmussen, Fred; Qvist, Karsten Bruun; Larsen, Sine; van den Brink, Johannes M

    2015-05-01

    Enzymatic coagulation of bovine milk can be divided in 2 steps: an enzymatic step, in which the Phe105-Met106 bond of the milk protein bovine κ-casein is cleaved, and an aggregation step. The aspartic peptidases bovine and camel chymosin (EC 3.4.23.4) are typically used to catalyze the enzymatic step. The most commonly used method to study chymosin activity is the relative milk-clotting activity test that measures the end point of the enzymatic and aggregation step. This method showed that camel chymosin has a 2-fold higher milk-clotting activity toward bovine milk than bovine chymosin. To enable a study of the enzymatic step independent of the aggregation step, a fluorescence resonance energy transfer assay has been developed using a peptide substrate derived from the 98-108 sequence of bovine κ-casein. This assay and Michaelis-Menten kinetics were employed to determine the enzymatic activity of camel and bovine chymosin under milk clotting-like conditions (pH 6.65, ionic strength 80 mM). The results obtained show that the catalytic efficiency of camel chymosin is 3-fold higher than bovine chymosin. The substrate affinity and catalytic activity of bovine and camel chymosin increase at lower pH (6.00 and 5.50). The glycosylation of bovine and camel chymosin did not affect binding of the fluorescence resonance energy transfer substrate, but doubly glycosylated camel chymosin seems to have slightly higher catalytic efficiency. In the characterization of the enzymes, the developed assay is easier and faster to use than the traditionally used relative milk-clotting activity test method. PMID:25726113

  1. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  2. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  3. Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin.

    PubMed

    Krivenkov, Victor; Samokhvalov, Pavel; Solovyeva, Daria; Bilan, Regina; Chistyakov, Alexander; Nabiev, Igor

    2015-04-01

    Energy transfer from nanostructures to biological supramolecular photosystems is an important fundamental issue related to the possible influence of nanoobjects on biological functions. We demonstrate here two-photon-induced Förster resonance energy transfer (FRET) from fluorescent CdSe/ZnS quantum dots (QDs) to the photosensitive protein bacteriorhodopsin (bR) in a QD-bR hybrid material. The two-photon absorption cross section of QDs has been found to be about two orders of magnitude larger than that of bR. Therefore, highly selective two-photon excitation of QDs in QD-bR complexes is possible. Moreover, the efficiency of FRET from QDs to bR is sufficient to initiate bR photoconversion through two-photon excitation of QDs in the infrared spectral region. The data demonstrate that the effective spectral range in which the bR biological function is excited can be extended beyond the band where the protein itself utilizes light energy, which could open new ways to use this promising biotechnological material. PMID:25831354

  4. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum.

    PubMed

    Xu, Sai; Xu, Shihan; Zhu, Yongsheng; Xu, Wen; Zhou, Pingwei; Zhou, Chunyang; Dong, Biao; Song, Hongwei

    2014-11-01

    There has been great progress in the development of fluorescence biosensors based on quantum dots (QDs) for the detection of lead ions. However, most methods are detecting lead ions in aqueous solution rather than in human serum due to the influence of protein autofluorescence in serum excited by visible light. Thus, we developed a novel fluorescence resonance energy transfer (FRET) biosensor by choosing the upconversion NaYF4:Yb(3+)/Tm(3+) nanoparticles as the energy donor and the CdTe QDs as the energy acceptor for lead ion detection. It is the first near infrared (NIR)-excited fluorescent probe for determination of lead ions in serum that is capable of overcoming self-luminescence from serum excitation with visible light. The sensor also shows high selectivity, a low detection limit (80 nm) and good linear Stern-Volmer characteristics (R = 0.996), both in the buffer and serum. This biosensor has great potential for versatile applications in lead ion detection in biological and analytical fields. PMID:25184968

  5. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.

    PubMed

    Mo, Xiu-Lei; Fu, Haian

    2016-01-01

    Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc(®) luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells. PMID:27317001

  6. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice.

    PubMed

    Li, Ping; Liu, Lu; Xiao, Haibin; Zhang, Wei; Wang, Lulin; Tang, Bo

    2016-03-01

    Despite significant developments in optical imaging of superoxide anion (O2(•-)) as the preliminary reactive oxygen species, novel visualizing strategies that offer ultrahigh sensitivity are still imperative. This is mainly because intrinsic concentrations of O2(•-) are extremely low in living systems. Herein, we present the rational design and construction of a new polymer nanoprobe PCLA-O2(•-) for detecting O2(•-) based on chemiluminescence (CL) resonance energy transfer without an external excitation source. Structurally, PCLA-O2(•-) contains two moieties linked covalently, namely imidazopyrazinone that is capable of CL triggered by O2(•-) as the energy donor and conjugated polymers with light-amplifying property as the energy acceptor. Experiment results demonstrate that PCLA-O2(•-) exhibits ultrahigh sensitivity at the picomole level, dramatically prolonged luminescence time, specificity, and excellent biocompatibility. Without exogenous stimulation, this probe for the first time in situ visualizes O2(•-) level differences between normal and tumor tissues of mice. These exceptional features ensure that PCLA-O2(•-) as a self-luminescing probe is an alternative in vivo imaging approach for ultralow level O2(•-). PMID:26908223

  7. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  8. Construction of a controllable Förster resonance energy transfer system based on G-quadruplex for DNA sensing.

    PubMed

    Yue, Qiaoli; Shen, Tongfei; Wang, Changna; Wang, Lei; Li, Haibo; Xu, Shuling; Wang, Huaisheng; Liu, Jifeng

    2013-02-15

    Conjugations of oligonucleotides, chromophores, and gold nanoparticles (GNPs) can be used for energy transfer assays to detect DNA. Herein, a homogenous Förster resonance energy transfer (FRET) system employing two-step modification of oligonucleotide on GNPs was reported. The distance between the donor (fluorescein attached onto DNA) and the acceptor (GNPs) was controlled by using the G-rich DNA. In the presence of porphyrin or berberine, which can act as ligands of G-quadruplexes, the G-rich DNA spacer can result into G-quadruplex structure. Therefore, the intimate contact between the fluorophore and the GNP results in efficient energy transfer and fluorescence quenching. After hybridization with target DNA, the G-quadruplex stretched and resulted in an enhancement of fluorescence. So the present FRET system can be used for target DNA sensing with detection limit as low as 40 pM (S/N=3). In this study, a relation between the fluorescence quenching efficiency and GNP sizes was found and bigger GNPs had higher fluorescence enhancement after hybridization with target DNA. PMID:22794935

  9. Low-energy physical properties of high- Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Yu; Shih, C. T.; Chou, C. P.; Huang, S. M.; Lee, T. K.; Xiang, T.; Zhang, F. C.

    2006-06-01

    In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high-temperature superconducting (SC) Cu oxides. Here we extend previous calculations to study more systematically the low-energy physical properties of the plain vanilla d -wave RVB state, and to compare the results with the available experiments. We use a renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0) , the superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes (including kF , the Fermi velocity vF , and the velocity along Fermi surface v2 ), and the SC order parameter are studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.

  10. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.

    PubMed

    Peng, Jianhong; Wang, Yuhui; Wang, Jialan; Zhou, Xin; Liu, Zhihong

    2011-10-15

    In this work, a new glucose sensor based on up-converting fluorescence resonance energy transfer (UC-FRET) was developed. Up-converting phosphors (UCPs, NaYF(4): Yb, Er), which were covalently labeled with Concanavalin A (ConA), were used as the energy donor with thiolated β-cyclodextrins (SH-β-CDs) functionalized gold nanoparticles as the energy acceptor. Due to the combination between ConA and SH-β-CDs, the energy donor and the acceptor were brought to close proximity, resulting in the quenching of the fluorescence of UCPs by gold nanoparticles. In the presence of glucose which competed with SH-β-CDs towards the binding sites of ConA, the biosensor (UCPs-ConA-SH-β-CDs-Au) was decomposed and the energy donor was separated from the acceptor. Therefore, the fluorescence of UCPs was restored dependent on the concentration of glucose. The increase of UCPs fluorescence intensity was proportional to glucose concentration within the range from 0.4 μM to 10μM in aqueous buffer, with a limit of detection (LOD) of 0.043 μM. A same linear range of glucose concentration was obtained in a human serum matrix (which was pretreated and thus contained no glucose) with a slightly higher LOD (0.065 μM). The glucose sensor was applied to real human serum samples with the results consistent with that of a classic hexokinase (HK) method, indicating that the UC-FRET biosensor was competent for directly sensing glucose in serum samples without optical interference, which benefited from the near infrared (NIR) excitation nature of UCPs. The results of this work suggested that the UC-FRET technique could be a promising alternative for detecting biomolecules in complex biological sample matrixes for diagnostic purposes. PMID:21852101

  11. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift. PMID:26760436

  12. ALINET: neural net automatic alignment of high-energy laser resonator optical elements

    NASA Astrophysics Data System (ADS)

    Hart, George A.; Bailey, Adam W.; Palumbo, Louis J.; Kuperstein, Michael

    1993-10-01

    A novel neural net approach has successfully solved the time consuming practical problem of aligning the many optical elements used in the resonator of high power chemical lasers. Moreover, because the neural net can achieve optimal performance in only 2 - 4 steps, as compared with 50 for other techniques, the important ability to effect real time control is gained. This represents a significant experimental breakthrough because of the difficulty previously associated with this alignment process. Use of either near or far field image information produces excellent performance. The method is very robust in the presence of noise. For cases where the initial misalignment falls outside the regime encompassed by the training set, a hybrid approach utilizing an advanced conventional method can bring the optical system within the capture range of the neural net. This reported use of a neural net to rapidly convert imagery information into high precision control information is of broad applicability to optical, acoustic, or electromagnetic alignment, positioning, and control problems.

  13. Blinking fluorescence of single donor-acceptor pairs: Important role of ``dark'' states in resonance energy transfer via singlet levels

    NASA Astrophysics Data System (ADS)

    Osad'ko, I. S.; Shchukina, A. L.

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=IA/(IA+ID), where ID and IA are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FTD/(1+FTD). Here F is the rate of energy transfer, and TD is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FTD≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F¯(F)TD/[1+F¯(F)TD]. Here F¯(F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F¯(F) are derived. In this case the energy transfer efficiency will be far from 100% even at FTD≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities wND(t) and wNA(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy transfer rate F and for all four types of D-A pair. Comparison of the calculated D

  14. Interferometric phase detection at x-ray energies via Fano resonance control.

    PubMed

    Heeg, K P; Ott, C; Schumacher, D; Wille, H-C; Röhlsberger, R; Pfeifer, T; Evers, J

    2015-05-22

    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x rays. Our results form a first step towards x-ray quantum state tomography and provide new avenues for structure determination and precision metrology via x-ray Fano interference. PMID:26047250

  15. Resonance lines and energy levels of Cs III, Ba IV, and La V

    NASA Technical Reports Server (NTRS)

    Epstein, G. L.; Reader, J.

    1976-01-01

    Spectra of Cs III, Ba IV, and La V were photographed in a low-voltage sliding spark on a 10.7 m normal-incidence vacuum spectrograph. These ions are isoelectronic with neutral iodine and display a halogen-like energy level structure. Detailed isoelectronic comparisons, level transition diagrams, and tabular data on the transitions of the ions and percentage compositions of Cs III configurations are presented.

  16. Exciton transport in organic semiconductors: Förster resonance energy transfer compared with a simple random walk

    NASA Astrophysics Data System (ADS)

    Feron, K.; Zhou, X.; Belcher, W. J.; Dastoor, P. C.

    2012-02-01

    Förster resonance energy transfer theory (FRET) and a simple random walk (RW) are both implemented in a dynamic Monte Carlo simulation with the aim of determining the exciton diffusion length from photoluminescence (PL) measurements. The calculated diffusion lengths obtained from both models are shown to be the same. As such, given that the computational time of a random walk is typically 2-3 orders of magnitude smaller than the FRET approach, this work shows that the RW methodology can be a preferable model for the determination of diffusion lengths. We also show that the RW approach may also be implemented in Monte Carlo simulations that describe organic solar cells. Despite the fact that (compared with FRET) RW does not account for non-nearest neighbor hopping or energy relaxation, we show that the resulting overestimation of the simulated current will not exceed 2% for typical OPV parameters. In addition, by taking advantage of the gain in speed we are able to investigate the impact of the exciton diffusion length on the optimal interface distance and show that materials with longer exciton diffusion lengths are less sensitive to variations in the morphology of the active layer of an organic solar cell.

  17. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion.

    PubMed

    Hellstrand, Erik; Kukora, Stephanie; Shuman, Cynthia F; Steenbergen, Sara; Thulin, Eva; Kohli, Anita; Krouse, Beth; Linse, Sara; Åkerfeldt, Karin S

    2013-06-01

    This study explores the influence of long-range intra-protein electrostatic interactions on the conformation of calmodulin in solution. Ensemble Förster resonance energy transfer (FRET) is measured for calmodulin with a fluorophore pair incorporated specifically with a donor at residue 17 and an acceptor at position 117. This construct was generated by a combination of solid phase peptide synthesis, cloning, expression and native chemical ligation. This labelling method has not previously been used with calmodulin and represents a convenient method for ensuring the explicit positioning of the fluorophores. The ensemble FRET experiments reveal significant electrostatic repulsion between the globular domains in the calcium-free protein. At low salt, calmodulin has a relatively extended conformation and the distance between the domains is further increased by denaturation, by heat or by non-ionic denaturants. The repulsion between domains is screened by salt and is also diminished by calcium binding, which changes the protein net charge from -23 to -15. Compared with the calcium-free form at low salt, the FRET efficiency for the calcium-bound form has, on average, increased 10-fold. The conformation of the calcium form is insensitive to salt screening. These results imply that when the two globular domains of calmodulin interact with target, there is no significant free energy penalty due to electrostatic interactions. PMID:23552119

  18. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  19. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering.

    PubMed

    Braicovich, L; Minola, M; Dellea, G; Le Tacon, M; Moretti Sala, M; Morawe, C; Peffen, J-Ch; Supruangnet, R; Yakhou, F; Ghiringhelli, G; Brookes, N B

    2014-11-01

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B4C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L3 edge on a high-Tc superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%. PMID:25430146

  20. Ultrasensitive detection and quantification of acidic disaccharides using capillary electrophoresis and quantum dot-based fluorescence resonance energy transfer

    PubMed Central

    Chang, Yuqing; Cai, Chao; Li, Lingyun; Miao, Jianjun; Ucakturk, Ebru; Li, Guoyun; Ly, Mellisa; Linhardt, Robert J.

    2013-01-01

    Rapid and highly sensitive detection of the carbohydrate components of glycoconjugates is critical for advancing glycobiology. Fluorescence (or Forster) resonance energy transfer (FRET) is commonly used in detection of DNA, in protein structural biology, and in protease assays, but is less frequently applied to glycan analysis due to difficulties in inserting two fluorescent tags into small glycan structures. We report an ultrasensitive method for the detection and quantification of a chondroitin sulfate disaccharide based on FRET, involving a CdSe-ZnS core-shell nanocrystal quantum dot (QD)-streptavidin conjugate donor and a Cy5 acceptor. The disaccharide was doubly labeled with biotin and Cy5. QDs then served to concentrate the target disaccharide, enhancing the overall energy transfer efficiency, with unlinked QDs and Cy5-hydrazide producing nearly zero background signal in capillary electrophoresis using laser-induced fluorescence detection with two different band-pass filters. This method is generally applicable to the ultrasensitive analysis of acidic glycans and offers promise for the high-throughput disaccharide analysis of glycosaminoglycans. PMID:23985015