Science.gov

Sample records for resonance nqr experiments

  1. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  2. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  3. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  4. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  5. 63Cu NQR in copper (II) compounds

    NASA Astrophysics Data System (ADS)

    Bastow, T. J.; Campbell, I. D.; Whitfield, H. J.

    1980-01-01

    We report observations of 63Cu NQR in CuF 2, KCuF 3, and RbCuF 3 in the paramagnetic state, NQR line widths of 63Cu in CuF 2 and CuBr 2 and of 81Br in CuBr 2, SnBr 2 and ZnBr 2. The NQR resonances of certain Cu (II) paramagnetic compounds are exchange-narrowed to values commensurate with linewidths of the diamagnetic infinite-lattice compounds.

  6. Nanoscale NMR and NQR with Nitrogen Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Lovchinsky, Igor; Sanchez-Yamagishi, Javier; Choi, Soonwon; Bylinskii, Alexei; Dwyer, Bo; Andersen, Trond; Sushkov, Alex; Park, Hongkun; Lukin, Mikhail

    2016-05-01

    Nuclear quadrupole resonance (NQR) is a powerful tool which is used to detect quadrupolar interaction in nuclear spins with I > 1/2. Conventional NQR and NMR technology, however, rely on measuring magnetic fields from a macroscopic number of spins. Extending NMR and NQR techniques to the nanoscale could allow us to learn structural information about interesting materials and biomolecules. We present recent progress on using Nitrogen-Vacancy (NV) centers in diamond to perform room temperature nanoscale NMR and NQR spectroscopy on small numbers of nuclear spins in hexagonal boron nitride.

  7. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  8. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K. PMID:9650797

  9. NQR Characteristics of an RDX Plastic Explosives Simulant.

    PubMed

    Turecek, J; Schwitter, B; Miljak, D; Stancl, M

    2012-12-01

    For reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive. The highly discriminating bulk detection characteristics of nuclear quadrupole resonance (NQR) especially constrain simulant design. This paper describes the development of an inexplosive RDX simulant suited to a wide range of measurement methods, including NQR. Measurements are presented that confirm an RDX NQR response from the simulant. The potential use of the simulant for field testing a prototype handheld NQR-based RDX detector is analyzed. Only modest changes in prototype operation during field testing would be required to account for the use of simulant rather than real explosive. PMID:23204647

  10. NQR studies on 2,5-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Kasturi, Alapati; Venkatacharyulu, P.; Premaswarup, D.

    1990-11-01

    Nuclear quadrupole resonance (NQR) Zeeman effect studies were carried out on cylindrical single crystals of 2,5-dichlorophenol, using the two 35Cl-NQR frequencies. A self-quenched superregenerative NQR spectrometer was used, and the spectra were analysed ot obtain information on the nature of the crystalline unit cell. An analysis of the experimental data reveals that: (1) the results are in good agreement with the structural reports of Bavoux and Perrin; (2) the crystal unequivocally belongs to the monoclinic system; (3) there are two crystallographically equivalent but physically inequivalent directions for the principal field gradient axes for both the low- and high-frequency resonance lines; (4) as the number of physically inequivalent directions for each of the two resonance lines is two, the minimum number of molecules per unit cell is two; (5) the b axis (90°,90°) is identified as the symmetry axis; (6) the growth axis is slightly inclined to the c axis; (7) the asymmetry parameters obtained for the loci corresponding to the low-frequency line, which is hydrogen bonded, are greater than those for the high-frequency line, which is nonhydrogen bonded; (8) the double-bond character is greater for the hydrogen-bonded chlorine than for the non-hydrogen-bonded chlorine; (9) the ratios of the various bond characters estimated for both the low- and high-frequency resonance lines are 69:24:7 and 74:24:2.

  11. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  12. NQR in tert-butyl chloride

    NASA Astrophysics Data System (ADS)

    Brunetti, Aldo H.

    2004-03-01

    Tert-butyl chloride has been broadly studied experimentally through various techniques such as X-ray crystallography, DTA, and NMR. It was also studied experimentally through nuclear quadrupole resonance (NQR), but this study was limited and incomplete. In this paper, we present a more detailed study of TBC through the NQR of 35Cl. Our results show that near 120 K, the onset of the CH 3 groups semirotations around symmetry axis C3 takes place with an activation energy U=16.1 kJ mol -1. This intramolecular movement produces a T1 minimum near 148 K and is the dominant mechanism of the nuclear spin-lattice relaxation in phase III of this compound. In phase II of TBC, we show that there are not only methyl groups semirotations, but also semirotations of the whole molecule around a different axis from the symmetry axis C' 3 (C-Cl bond) with an activation energy of E=10.4 kJ mol -1.

  13. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  14. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  15. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  16. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  17. Temperature dependence of 35Cl NQR in 3,4-Dichlorophenol

    NASA Astrophysics Data System (ADS)

    Chandramani, R.; Devaraj, N.; Indumathy, A.; Ramakrishna, J.

    NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.

  18. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  19. INSTRUMENTS AND METHODS OF INVESTIGATION: New technologies: nuclear quadrupole resonance as an explosive and narcotic detection technique

    NASA Astrophysics Data System (ADS)

    Grechishkin, Vadim S.; Sinyavskii, Nikolai Ya

    1997-04-01

    Possibilities of detecting nuclear quadrupole resonance (NQR) signals in explosives and drugs are considered. Direct and indirect NQR techniques for searching substances are described and the potentialities of various experimental methods are compared.

  20. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.

    PubMed

    Ramu, L; Ramesh, K P; Chandramani, R

    2013-01-01

    The pressure dependences of (35)Cl nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T(1)) were investigated in 3,4-dichlorophenol. T(1) was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T(1) for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W(1) and W(2) for the Δm = ±1 and Δm = ±2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state. PMID:23161529

  1. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

  2. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  3. Nuclear Quadrupole Resonance Study of the Nitrogen Mustards and Local Anesthetics.

    NASA Astrophysics Data System (ADS)

    Buess, Michael Lee

    The density matrix description of pulsed nitrogen -14 nuclear quadrupole resonance (NQR) spin-echoes is presented. The parallel between this problem, when formulated in terms of the fictitious spin- 1/2 operators, and that of spin - 1/2 NMR spin-echoes in liquids is discussed along with the complications which arise in multiple-pulse NQR experiments in powders due to the random orientation of the electric field gradient tensors. The equipment and procedures involved in searching for, detecting and identifying NQR resonances using pulsed techniques are described. The ('14)N NQR spectra of several nitrogen mustard compounds in the solid state are reported and analyzed in the framework of the Townes and Dailey theory. For the aniline derivatives, a correlation exists between l -(sigma), l being the nitrogen lone-pair electron density and (sigma) the average N-C sigma bond electron density, and the enhanced Hammett sigma constant (sigma)('-). An improved correlation is obtained between l-(sigma) and (sigma)(,R)('-), which emphasizes the importance of resonance effects in determining l-(sigma). The increase of hydrolysis and alkylation rates with increasing values of l-(sigma) is in agreement with the identification of the cyclic immonium ion as the intermediate in the hydrolysis and alkylation processes of the aromatic nitrogen mustards. A possible correlation is noted between the ('35)Cl NQR spectra for some of the mustards and measures of toxic and antitumor activity. ('14)N NQR spectra for several local anesthetics in the solid state are also reported and analyzed using the Townes and Dailey approach. The changes in the electron distributions at various nitrogen sites, produced by protonating the tertiary amino nitrogen, are discussed and shown to be in general agreement with expectations bases on the increased electrophilic character of the protonated amino group.

  4. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    NASA Astrophysics Data System (ADS)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  5. (121,123)Sb and (75)As NMR and NQR investigation of the tetrahedrite (Cu12Sb4S13)--Tennantite (Cu12As4S13) system and other metal arsenides.

    PubMed

    Bastow, T J; Lehmann-Horn, J A; Miljak, D G

    2015-10-01

    This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages. PMID:26453410

  6. Electron density distribution in cladribine (2-chloro-2‧-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Latosińska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

    2009-07-01

    2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

  7. Dielectric square resonator investigated with microwave experiments

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Bogomolny, E.; Dietz, B.; Miski-Oglu, M.; Richter, A.

    2014-11-01

    We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.

  8. Dielectric square resonator investigated with microwave experiments.

    PubMed

    Bittner, S; Bogomolny, E; Dietz, B; Miski-Oglu, M; Richter, A

    2014-11-01

    We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model. PMID:25493860

  9. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S.; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M.; Steuber, Julia; Fritz, Günter

    2014-01-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA–NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1–377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution. PMID:25005105

  10. Radiative widths of resonances (experiments)

    SciTech Connect

    Gidal, G.

    1988-07-01

    After a hiatus of several years, this conference brings us considerable new data on resonance production in photon photon interactions. I will first discuss the contributions concerning the tensor, pseudoscalar and scalar mesons, then review the current status of the (c/ovr string/c /eta//sub c/) and finally summarize the exciting new results concerning the spin 1 mesons. 40 refs., 21 figs., 7 tabs.

  11. Radio-frequency tunable atomic magnetometer for detection of solid-state NQR

    NASA Astrophysics Data System (ADS)

    Lee, S.-K.; Sauer, K. L.; Seltzer, S. J.; Alem, O.; Romalis, M. V.

    2007-06-01

    We constructed a potassium atomic magnetometer which resonantly detects rf magnetic fields with subfemtotesla sensitivity. The resonance frequency is set by the Zeeman resonance of the potassium atoms in a static magnetic field applied to the magnetometer cell. Strong optical pumping of the potassium atoms into a stretched state reduces spin-exchange broadening of the Zeeman resonance, resulting in relatively small linewidth of about 200 Hz (half-width at half-maximum). The magnetometer was used to detect ^14N NQR signal from powdered ammonium nitrate at 423 kHz, with sensitivity an order of magnitude higher than with a conventional room temperature pickup coil with comparable geometry. The demonstrated sensitivity of 0.24 fT/Hz^1/2 can be improved by several means, including use of higher power lasers for pumping and probing. Our technique can potentially be used to develop a mobile, open-access NQR spectrometer for detection of nitrogen-containing solids of interest in security applications.

  12. 14N NQR investigation of some thermochromic and photochromic salicylideneanilines and related compounds

    NASA Astrophysics Data System (ADS)

    Hadjoudis, E.; Milia, F.; Seliger, J.; Zagar, V.; Blinc, R.

    1991-09-01

    The temperature dependence of the 14N NQR frequencies have been measured in a series of thermochromic and photochromic salicylideneanilines and related compounds using nuclear quadrupole double resonance. The results show that, in agreement with previous measurements, there is a fast exchange between inequivalent sites in the OH…N bond. The energy difference Δ E of the two proton sites was calculated for all the compounds and shows that it depends on their thermochromic behavior which is connected with the structure of the compounds.

  13. 63Cu NQR spectra of dicoordinated Cu(I) cations with imidazole and pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Khajenhouri, Fereidoun; Motallebi, Shahrock; Lucken, Edwin A. C.

    1995-02-01

    The 63Cu NQR spectra of five dicoordinated complex cations of Cu(I) with substituted imidazoles as ligands and six analogous complexes with substituted pyrazoles as ligands are reported. The structures of four of these complexes have been previously determined and the relationship of their 63Cu resonance frequency to the average CuN bond length is compared to that of the analogous lutidine or collidine complexes. It is concluded that there are probably significant differences between the electronic structures of the pyridine complexes and those of the pyrazole or imidazole series.

  14. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group. PMID:18298367

  15. Undergraduate Electron-Spin-Resonance Experiment.

    ERIC Educational Resources Information Center

    Willis, James S.

    1980-01-01

    Describes the basic procedures for use of an electron-spin resonance spectrometer and potassium azide (KN3) in an experiment which extends from the phase of sample preparation (crystal growth, sample mounting, and orientation) through data taking to the stages of calculation and theoretical explanation. (Author/DS)

  16. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  17. Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.

    PubMed

    Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

    2012-03-01

    DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, χ and asymmetry parameter, η. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (χ, η) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

  18. Resonance Structure with Polarization Experiments at MAMI

    SciTech Connect

    Arends, Hans-Juergen

    2011-10-21

    The Mainz Microtron MAMI is an ideal facility to study the hadron structure with the electromagnetic probe. With the new accelerator stage, the Harmonic Double-Sided Microtron (HDSM), which is in operation since 2007, high-intensity polarized electron and photon beams with energies up to 1.6 GeV are delivered to the experiments. Polarized proton, deuteron, {sup 3}He targets, and recoil proton polarimeters are available to allow a broad range of polarization observables for low-mass nucleon resonances to be measured. In this talk, an overview over selected recent double polarization experiments at MAMI is given.

  19. Single crystal zeeman effect studies on 35Cl NQR lines of 2,6-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Prasad, N. V. L. N.; Venkatacharyulu, P.; Premaswarup, D.

    1987-10-01

    Zeeman effect studies on the two 35Cl NQR lines in cylindrical single crystals of 2,6-dichlorophenol were carried out using a self-quenched super-regenerative NQR spectrometer to obtain information on the nature of the crystalline unit cell and the effect of hydrogen bonding on the electric field gradient tensor. Analysis of the experimental data reveals: (1) the results are in good agreement with those reported from X-ray studies; (2) the crystal is unequivocally identified as belonging to the orthorhombic system; (3) there are two crystallographically equivalent and four physically nonequivalent directions for the principal field gradients for both the low and high frequency resonance lines; (4) the directions of the crystalline a, b, c axes are uniquely identified as (90°, 0°), (0°, -), and (90°, 90°); (5) the b-axis is identified as the growth axis; (6) there are a minimum of four molecules per unit cell, the four molecules lie in different planes, which are, however, connected by symmetry operations; (7)_there exists a weak intramolecular hydrogen bonding in the crystal; (8) the asymmetry parameters for the loci corresponding to the low frequency resonance line, which is affected by hydrogen bonding, are less than the asymmetry parameters of the loci corresponding to the high frequency resonance line, which is not affected by hydrogen bonding; (9) the single bond and ionic bond characters for the hish frequency line are less than that of the low frequency line, while the double bond character for the low frequency line is less than that of the high frequency line and (10) the small deviation between the single bond and double bond characters of the two resonance lines is attributed to the existence of weak hydrogen bonding in the crystal.

  20. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  1. Resonance Parameter Adjustment Based on Integral Experiments

    DOE PAGESBeta

    Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; Forget, Benoit

    2016-06-02

    Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less

  2. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGESBeta

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  3. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  4. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd2As2: 75As NMR-NQR measurements

    NASA Astrophysics Data System (ADS)

    Ding, Q.-P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-01

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T ) dependence of the nuclear spin lattice relaxation rates (1 /T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1 /T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T , confirming a conventional s -wave SC. In addition, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  5. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  6. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22366169

  7. Quantitative 35Cl nuclear quadrupole resonance in tablets of the antidiabetic medicine Diabinese.

    PubMed

    Tate, Elizabeth; Althoefer, Kaspar; Barras, Jamie; Rowe, Michael D; Smith, John A S; Pearce, Gareth E S; Wren, Stephen A C

    2009-07-01

    Pulsed (35)Cl nuclear quadrupole resonance (NQR) experiments have been performed on 250-mg tablets of the antidiabetic medicine Diabinese to establish the conditions needed for noninvasive quantitative analysis of the medicine in standard bottles. One important condition is the generation of a uniform radio-frequency (RF) field over the sample, which has been achieved by two designs of sample coil: one of variable pitch, and the other a resonator that has been fabricated from a single turn of copper sheet with a longitudinal gap bridged by tuning capacitors. The results from blind tests show that the number of tablets in a bottle could be predicted to within +/-3%. PMID:19492808

  8. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  9. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  10. Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    Burnier, R. C.; Freiser, B. S.

    1979-01-01

    Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)

  11. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  12. 35Cl NQR study of lattice dynamic and magnetic property of a crystalline coordination polymer {CuCA(phz)(H 2O) 2} n

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuma; Terao, Takeshi; Asaji, Tetsuo

    2007-01-01

    Copper(II) compounds {CuCA(phz)(H 2O) 2} n (H 2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H 2O) 2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣ J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm -1 from the T1 value of the range 20-210 K. Comparing this value with that of J = -1.84 cm -1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H 2O) 2} n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.

  13. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing

    2015-10-01

    We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.

  14. Detecting body cavity bombs with nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  15. Rabi resonance in spin systems: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Layton, Kelvin J.; Tahayori, Bahman; Mareels, Iven M. Y.; Farrell, Peter M.; Johnston, Leigh A.

    2014-05-01

    The response of a magnetic resonance spin system is predicted and experimentally verified for the particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental results demonstrate phenomena not previously observed in magnetic resonance systems, including a secondary resonance condition when the amplitude of the excitation equals the modulation frequency. This secondary resonance produces a relatively large steady state magnetisation with Fourier components at harmonics of the modulation frequency. Experiments are in excellent agreement with the theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework for future developments in NMR spectroscopy and imaging.

  16. Local resonance bandgaps in periodic media: theory and experiment.

    PubMed

    Raghavan, L; Phani, A Srikantha

    2013-09-01

    Periodic composites such as acoustic metamaterials use local resonance phenomenon in designing low frequency sub-Bragg bandgaps. These bandgaps emerge from a resonant scattering interaction between a propagating wave and periodically arranged resonators. This paper develops a receptance coupling technique to combine the dynamics of the resonator with the unit cell dynamics of the background medium to analyze flexural wave transmission in a periodic structure, involving a single degree of freedom coupling between the medium and the resonator. Receptance techniques allow for a straightforward extension to higher dimensional systems with multiple degrees of freedom coupling and for easier experimental measurements. Closed-form expressions for the location and width of sub-Bragg bandgaps are obtained. Rigid body modes of the unit cell of the background medium are shown to set the bounding frequencies for local resonance bandgaps. Results from the receptance analysis compare well with Bloch wave analysis and experiments performed on a finite structural beam with periodic masses and resonators. Stronger coupling and inertia of the resonator increase the local resonance bandgap width. Two-fold periodicity widens the Bragg bandgap, narrowed by local resonators, thus expanding the design space and highlighting the advantages of hierarchical periodicity. PMID:23967928

  17. Nuclear magnetic and quadrupole resonance studies of the stripes materials

    NASA Astrophysics Data System (ADS)

    Grafe, H.-J.

    2012-11-01

    Nuclear Magnetic and Quadrupole Resonance (NMR/NQR) is a powerful tool to probe electronic inhomogeneities in correlated electron systems. Its local character allows for probing different environments due to spin density modulations or inhomogeneous doping distributions emerging from the correlations in these systems. In fact, NMR/NQR is not only sensitive to magnetic properties through interaction of the nuclear spin, but also allows to probe the symmetry of the charge distribution and its homogeneity, as well as structural modulations, through sensitivity to the electric field gradient (EFG). We review the results of NMR and NQR in the cuprates from intrinsic spatial variations of the hole concentration in the normal state to stripe order at low temperatures, thereby keeping in mind the influence of doping induced disorder and inhomogeneities. Finally, we briefly discuss NQR evidence for local electronic inhomogeneities in the recently discovered iron pnictides, suggesting that electronic inhomogeneities are a common feature of correlated electron systems.

  18. Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy.

    PubMed

    Chen, Cheng; Zhang, Fengchao; Barras, Jamie; Althoefer, Kaspar; Bhunia, Swarup; Mandal, Soumyajit

    2016-01-01

    The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines. PMID:26841409

  19. (14)N NQR, relaxation and molecular dynamics of the explosive TNT.

    PubMed

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In this paper we discuss such measurements for a number of the ν+ and ν- NQR lines of monoclinic and orthorhombic TNT and relate the temperature variation results to molecular dynamics. The temperature variation of the (14)N spin-lattice relaxation times T1 is interpreted as due to hindered rotation of the NO2 group about the C-NO2 bond with an activation energy of 89 kJ mol(-1) for the ortho and para groups of monoclinic TNT and 70 kJ mol(-1) for the para group of orthorhombic TNT. PMID:26440130

  20. An overview of resonance measurements at the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Knospe, A. G.

    2016-05-01

    Resonances play a unique role in the study of ultra-relativistic heavy-ion collisions. Resonance yields, which may be modified by rescattering and regeneration after hadronization, can be used to study the properties of the hadronic phase of the collision. The transversemomentum spectra of the proton and the ϕ(1020) can be used to study the mechanisms of particle production. In addition, resonance measurements in pp and p-Pb collisions help to distinguish initial-state effects from the effects of the hot and dense final state. The ALICE Collaboration has studied the K*(892)0 and ϕ(1020) mesons in pp, p-Pb, and Pb-Pb collisions. Measurements of many resonance properties, including pT spectra, integrated yields, masses, widths, mean pT values, and the nuclear modification factors RAA and RpPb, are presented and compared to measurements from other experiments, non-resonances, and the predictions of theoretical models.

  1. /sup 127/I NQR spectra of carborane-containing compounds of polycoordinated iodine

    SciTech Connect

    Semin, G.K.; Grushin, V.V.; Gushchin, S.I.; Lisichkina, I.N.; Petokhov, S.A.; Tolstaya, T.P.

    1985-05-20

    The NQR spectra of polycoordinated iodine compounds is studied. A table presents the I 127 NQR spectra of electroneutral PhIC1/sub 2/ derivatives with intermolecular coordination in the solid state and ionic compounds including compounds with interionic coordination. A considerable increase in the quadrupole coupling constants and significant decrease in the asymmetry parameter is found in carborane-containing CBIC1/sub 2/ and PhCBIX compounds in comparison with the corresponding phenyl and diphenyl derivatives.

  2. The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Hamaed, Hiyam; Schurko, Robert W.

    2010-09-01

    The acquisition of nuclear quadrupole resonance (NQR) spectra with wideband uniform rate and smooth truncation (WURST) pulses is investigated. 75As and 35Cl NQR spectra acquired with the WURST echo sequence are compared to those acquired with standard Hahn-echo sequences and echo sequences which employ composite refocusing pulses. The utility of WURST pulses for locating NQR resonances of unknown frequency is investigated by monitoring the integrated intensity and signal to noise of 35Cl and 75As NQR spectra acquired with transmitter offsets of several hundreds kilohertz from the resonance frequencies. The WURST echo sequence is demonstrated to possess superior excitation bandwidths in comparison to the pulse sequences which employ conventional monochromatic rectangular pulses. The superior excitation bandwidths of the WURST pulses allows for differences in the characteristic impedance of the receiving and excitation circuits of the spectrometer to be detected. Impedance mismatches have previously been reported by Marion and Desvaux [D.J.Y. Marion, H. Desvaux, J. Magn. Reson. (2008) 193(1) 153-157] and Muller et al. [M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. (2009) 198(1) 73-79]. In this regard, WURST pulse sequences may afford an efficient new method for experimentally detecting impedance mismatches between receiving and excitation circuits, allowing for the optimization of solids and solution NMR and NQR spectrometer systems. The use of the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence for signal enhancement of NQR spectra acquired with WURST pulses and conventional pulses is also investigated. Finally, the utility of WURST pulses for the acquisition of wideline NQR spectra is demonstrated by acquiring part of the 63/65Cu NQR spectrum of CuCN.

  3. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  4. 35C NQR studies in 2,4,6-,2,3,6-, and 2,3,4-trichloro anisoles

    NASA Astrophysics Data System (ADS)

    Rukmani, K.; Ramakrishna, J.

    1985-02-01

    The chlorine-35 NQR frequencies and their temperature variation in 2,4,6-, 2,3,6- and 2,3,4-trichloro anisoles have been studied and compared with the corresponding chlorophenols with a view to studying the effect of hydrogen bonding. The observed frequencies have been assigned to the various chlorines with the help of the additive model of the substituent effect. The temperature dependence has been analysed in terms of the Bayer—Kushida—Brown models. The torsional frequencies and their temperature dependence have been calculated numerically under a two mode approximation. A comparison of the trichloro anisoles with the corresponding trichloro phenols has shown that the resonance frequency decreases due to hydrogen bonding while the torsional frequencies are not affected.

  5. Studies of Ga NMR and NQR in SrGa4

    NASA Astrophysics Data System (ADS)

    Niki, H.; Higa, N.; Nakamura, S.; Kuroshima, H.; Toji, T.; Yogi, M.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2015-04-01

    In order to microscopically investigate the properties in SrGa4, the Ga NMR measurements of a powder sample were carried out. The Ga NMR spectra corresponding to Ga(I) and Ga(II) sites are obtained. The NMR spectra of 69&71Ga (a nuclear spin I = 3/2) in the powder sample of SrGa4 do not take a typical powder pattern caused by the NQR interaction, but take the spectra consisting of three well resolved resonance-lines, which indicates that the nonuniform distribution of crystal orientation in the powder sample occurs because of the magnetic anisotropy. From the analysis of the Ga NMR spectrum, it is found that the ab-plane of the crystal is parallel to the external magnetic field, which would be attributed to the anisotropy of the magnetic susceptibility with the easy axis parallel to the ab-plane. This result is also confirmed by the 69Ga NQR in SrGa4. The Knight shifts of the 69Ga(I) and 69Ga(II) shift slightly to the negative side with decreasing temperature due to the core polarization of the d-electrons. The values of the Knight shift of the 69Ga(I) and 69Ga(II) are 0.01 and -0.11 % at 4.2 K, and 0.09 and -0.08 % at 300 K, respectively. The values of the 1/ T 1 T of the NMR of both 69Ga(I) and 69Ga(II) are almost constant between 4.2 and 100 K, whose values are 1.5 s -1 K -1 at 69Ga(I) and 0.12 s -1 K -1 at 69Ga(II), while the 1/ T 1 T slightly increase above 100K with increasing temperature. The value of T 1 of 69Ga(I) is one order of magnitude less than that of 69Ga(II).

  6. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

    2007-02-06

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental

  7. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  8. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature

    NASA Astrophysics Data System (ADS)

    Norte, R. A.; Moura, J. P.; Gröblacher, S.

    2016-04-01

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Qm sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si3 N4 ) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Qm˜108, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  9. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    PubMed

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-01

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature. PMID:27104723

  10. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-10-13

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  11. Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, Michael J.; Barry, Devin P.; Burke, John A.; Drindak, Noel J.; Leinweber, Greg; Ballad, Robert V.; Slovacek, Rudy E.; Danon, Yaron; Block, Robert C.

    2005-05-24

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions.Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen-section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  12. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

  13. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  14. Long-term operating experience for the ATLAS superconducting resonators

    SciTech Connect

    Pardo, R.; Zinkann, G.

    1999-12-21

    Portions of the ATLAS accelerator have been operating now for over 21 years. The facility has accumulated several million resonator-hours of operation at this point and has demonstrated the long-term reliability of RF superconductivity. The overall operating performance of the ATLAS facility has established a level of beam quality, flexibility, and reliability not previously achieved with heavy-ion accelerator facilities. The actual operating experience and maintenance history of ATLAS are presented for ATLAS resonators and associated electronics systems. Solutions to problems that appeared in early operation as well as current problems needing further development are discussed.

  15. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  16. Coexistence of multiple charge-density waves and superconductivity in SrPt2As2 revealed by 75As-NMR /NQR and 195Pt-NMR

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing

    2015-02-01

    The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.

  17. Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    NASA Astrophysics Data System (ADS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-02-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at TCurie˜ 3 K and TS˜ 0.8 K [Huy et al.: Phys. Rev. Lett. 99 (2007) 067006], in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above TCurie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2 and YCo2. The onset SC transition is identified at TS˜ 0.7 K, below which 1/T1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T1, which follows a T3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T1 showing a \\sqrt{T} dependence below TS. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.

  18. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  19. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGESBeta

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  20. Experiments on statistical mechanics using resonance ionization spectroscopy

    SciTech Connect

    Iturbe, J.; Allman, S.L.; Hurst, G.S.; Payne, M.G.

    1984-04-01

    Five different fluctuation phenomena at the atomic and molecular levels have been studied by resonance ionization spectroscopy techniques with one-atom detection sensitivity. The Poisson distribution described the observed frequency distributions suggesting random behavior. In addition, a gedanken experiment suggested by Einstein and Furth on the diffusion of atoms was performed in order to test the equality between time and ensemble averages. The obtained results confirmed the ergodicity of the studied system.

  1. Closing supersymmetric resonance regions with direct detection experiments

    SciTech Connect

    Kelso, Chris

    2014-01-01

    One of the few remaining ways that neutralinos could potentially evade constraints from direct detection experiments is if they annihilate through a resonance, as can occur if 2m{sub χ⁰} falls within about ~10% of either m{sub A/H}, m{sub h}, or m{sub Z}. Assuming a future rate of progress among direct detection experiments that is similar to that obtained over the past decade, we project that within 7 years the light Higgs and Z pole regions will be entirely closed, while the remaining parameter space near the A/H resonance will require that 2m{sub χ₀} be matched to the central value (near m{sub A}) to within less than 4%. At this rate of progress, it will be a little over a decade before multi-ton direct detection experiments will be able to close the remaining, highly-tuned, regions of the A/H resonance parameter space.

  2. Thomson’s ring experiment with resonant LC circuit

    NASA Astrophysics Data System (ADS)

    Haidar, Sajjad

    2016-01-01

    Thomson’s jumping ring experiment is conducted using a low voltage (24 V) electronic circuit. A coil (L) is connected with a capacitor (C) in parallel and is driven at its resonant frequency to obtain a high current in the coil. A circuit sends current pulses to the LC tank circuit at around its resonant frequency. The oscillating current in the coil induces a voltage in a copper-loop on top of it. The induced current interacts with the radial part of the coil-magnetic field; the resulting force levitates the loop. In a separate coil, a ferrite core and a copper ring are used to demonstrate the jumping-ring effect. The levitation and the jumping effect can be controlled by changing the duty cycle and frequency. In this report simple formulae and approximations are used to calculate the levitating force on the loop.

  3. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    SciTech Connect

    Furukawa, Yuji; Roy, Beas; Ran, Sheng; Budko, Sergey L.; Canfield, Paul C.

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  4. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  5. Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2002-06-01

    We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.

  6. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  7. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-01

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

  8. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  9. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  10. Cryogenic resonator design for trapped ion experiments in Paul traps

    NASA Astrophysics Data System (ADS)

    Brandl, M. F.; Schindler, P.; Monz, T.; Blatt, R.

    2016-06-01

    Trapping ions in Paul traps require high radio frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  11. Temperature variation of ultralow frequency modes and mean square displacements in solid lasamide (diuretic drug) studied by 35Cl-NQR, X-ray and DFT/QTAIM.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Kasprzak, Jerzy; Tomczak, Magdalena; Maurin, Jan Krzysztof

    2012-10-25

    The application of combined (35)Cl-NQR/X-ray/DFT/QTAIM methods to study the temperature variation of anisotropic displacement parameters and ultralow frequency modes of anharmonic torsional vibrations in the solid state is illustrated on the example of 2,4-dichloro-5-sulfamolybenzoic acid (lasamide, DSBA) which is a diuretic and an intermediate in the synthesis of furosemide and thus its common impurity. The crystallographic structure of lasamide is solved by X-ray diffraction and refined to a final R-factor of 3.06% at room temperature. Lasamide is found to crystallize in the triclinic space group P-1, with two equivalent molecules in the unit cell a = 7.5984(3) Å, b = 8.3158(3) Å, c = 8.6892(3) Å; α = 81.212(3)°, β = 73.799(3)°, γ = 67.599(3)°. Its molecules form symmetric dimers linked by two short and linear intermolecular hydrogen bonds O-H···O (O-H···O = 2.648 Å and ∠OHO = 171.5°), which are further linked by weaker and longer intermolecular hydrogen bonds N-H···O (N-H···O = 2.965 Å and ∠NHO = 166.4°). Two (35)Cl-NQR resonance frequencies, 36.899 and 37.129 MHz, revealed at room temperature are assigned to chlorine sites at the ortho and para positions, relative to the carboxyl functional group, respectively. The difference in C-Cl(1) and C-Cl(2) bond lengths only slightly affects the value of (35)Cl-NQR frequencies, which results mainly from chemical inequivalence of chlorine atoms but also involvement in different intermolecular interactions pattern. The smooth decrease in both (35)Cl-NQR frequencies with increasing temperature in the range of 77-300 K testifies to the averaging of EFG tensor at each chlorine site due to anharmonic torsional vibrations. Lasamide is thermally stable; no temperature-induced release of chlorine or decomposition of this compound is detected. The temperature dependence of ultralow frequency modes of anharmonic small-angle internal torsional vibrations averaging EFG tensor and mean square angle

  12. Optical Resonators in Current and Future Experiments of the ALPS Collaboration

    SciTech Connect

    Meier, T.

    2010-08-30

    The ALPS collaboration runs a 'light shining through a wall' (LSW) experiment to search for weakly interacting sub-eV particles (WISPs). Its sensitivity is significantly enhanced by the incorporation of a large-scale production resonator and a small-scale high-power resonant second harmonic generator. Here we report on important experimental details and limitations of these resonators and derive recommendations for further experiments. A very promising improvement for a future ALPS experiment is the incorporation of an additional large-scale regeneration resonator. We present a rough sketch of how to combine a regeneration resonator with a single-photon counter (SPC) as detector for regenerated photons.

  13. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  14. Sb-NQR study on novel superconductivity in (Pr 1-xLa x)Os 4Sb 12

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Yogi, Mamoru; Imamura, Yoju; Mukuda, Hidekazu; Kitaoka, Yoshio; Kikuchi, Daisuke; Sugawara, Hitoshi; Sato, Hideyuki

    2007-03-01

    We report on superconducting (SC) properties in a series of filled-skutterudite compounds (Pr 1-xLa x)Os 4Sb 12 through the Sb nuclear-quadrupole-resonance (NQR). In the SC state, the nuclear spin-lattice relaxation rate 1/ T1Pr at Pr-cage decreases exponentially with no coherence peak below TC, consistent with the results for the pure PrOs 4Sb 12. In the Pr-rich compounds of x=0.05 and 0.2, the residual density of states (RDOS) at the Fermi level are induced below TC due to the La substitution. It is concluded that the RDOS is not due to the impurity effect that used to be observed in unconventional superconductors with line-node gap. Rather, a part of the Fermi surface that contributes to 5.5% of the total is suggested to become gapless for x=0.05 and 0.2, yielding the RDOS. For the La-rich compounds of x=0.4, 0.8 and 1, as the Pr-substitution for La increases, TC increases and a size of energy gap increases. The Pr-substitution for La makes the pairing interaction for forming the Cooper pairs strong and causes an anisotropy in its energy-gap structure.

  15. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    SciTech Connect

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  16. Electron cyclotron resonance heating in the microwave tokamak experiment

    SciTech Connect

    Allen, S.L.; Casper, T.A.; Fenstermacher, M.E.

    1992-09-01

    This paper presents the results from a series of Electron Cyclotron Resonance Heating (ECRH) experiments on the Microwave Tokamak Experiment (MTX). On-axis heating at B{sub T} = 5T (f{sub ce} = 140 GHz) has been performed at electron densities up to cutoff. We have used both a long-pulse gryotron ({approximately}200 kW, {approximately}0.1s) and a pulsed Free Electron Laser (FEL) as microwave sources. Gyrotron experiments with power densities corresponding to 4 MW m{sup {minus}3}. A far infrared (FIR) polarimeter measured peaking of plasma current profiles in some discharges during the ECRH pulse. During high-power single-pulse FEL experiments, single-pass microwave !transmission measurements show nonlinear effects; i.e., higher transmission than predicted by linear theory. A corrugated-wall duct was used in the tokamak port to increase the gradient of the parallel refractive index n{sub parallel} of the incident wave, and increased absorption was observed. Evidence of electron tail heating during FEL pulses was observed on soft x-ray and ECE diagnostics. These results are in agreement with predictions of nonlinear theory; extrapolation of this theory to reactor-like conditions indicates efficient absorption and heating. A Laser Assisted Particle Probe Spectroscopy (LAPPS) diagnostic provided estimates of the vacuum electric field of the FEL which were consistent with the measured power. Multiple pulse operation of the ETA-II accelerator for the FEL has also been demonstrated, indicating the feasibility of high-average power FEL operation.

  17. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2016-12-01

    The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  18. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  19. Magnetic resonance imaging of the female pelvis: initial experience

    SciTech Connect

    Hricak, H.; Alpers, C.; Crooks, L.E.; Sheldon, P.E.

    1983-12-01

    The potential of magnetic resonance imaging (MRI) was evaluated in 21 female subjects: seven volunteers, 12 patients scanned for reasons unrelated to the lower genitourinary tract, and two patients referred with gynecologic disease. The uterus at several stages was examined; the premenarcheal uterus (one patient), the uterus of reproductive age (12 patients), the postmenopausal uterus (two patients), and in an 8 week pregnancy (one patient). The myometrium and cyclic endometrium in the reproductive age separated by a low-intensity line (probably stratum basale), which allows recognition of changes in thickness of the cyclic endometrium during the menstrual cycle. The corpus uteri can be distinguished from the cervix by the transitional zone of the isthmus. The anatomic relation of the uterus to bladder and rectum is easily outlined. The vagina can be distinguished from the cervix, and the anatomic display of the closely apposed bladder, vagina, and rectum is clear on axial and coronal images. The ovary is identified; the signal intensity from the ovary depends on the acquisition parameter used. Uterine leiomyoma, endometriosis, and dermoid cyst were depicted, but further experience is needed to ascertain the specificity of the findings.

  20. Broadband echo sequence using a pi composite pulse for the pure NQR of a spin I = 32 powder sample

    PubMed

    Odin

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = 32 powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 x 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-tau-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)(0)-tau-(0.35)(0)(2.1)(pi)(0.35)(0), the pulse angles omega(RF)t(p) being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some

  1. Isotope effect on the temperature dependence of the 35Cl NQR frequency in (NH4)2RuCl6

    NASA Astrophysics Data System (ADS)

    Kume, Yoshio; Amino, Daiki; Asaji, Tetsuo

    2013-07-01

    The 35Cl nuclear quadrupole resonance frequencies and spin-lattice relaxation times for (NH4)2RuCl6, (ND4)2RuCl6, (NH4)2SnCl6, and (ND4)2SnCl6 were measured in the temperature range 4.2-300 K. In these four compounds, it was confirmed that no phase transition occurs in the observed temperature range. At 4.2 K, discrepancies of the NQR frequency between non-deuterated and deuterated compounds, which are attributed to the difference in the spatial distributions of hydrogen (deuterium) atoms in the ground states of the rotational motion of ammonium ion, reached to 24 kHz and 23 kHz for the ruthenate compounds and the stannate compounds, respectively. The separation between the ground and the first excited states of the rotational motion of the ammonium ion was estimated to be 466 J mol-1 and 840 J mol-1 for (ND4)2RuCl6 and (NH4)2RuCl6, respectively, by least-square fitting calculations of temperature dependence of the NQR frequency. For (ND4)2SnCl6 and (NH4)2SnCl6, these quantities were estimated to be 501 J mol-1 and 1544 J mol-1, respectively. It was clarified that the T1 minimum, which has been observed for the stannate compounds at around 60 K as a feature of the temperature dependence, was dependent on a method of sample preparation. It is concluded that the minimum is not an essential character of the ammonium hexachlorostannate(IV) since the crystals prepared in strong acid condition to prevent a partial substitution of chlorine atoms by hydroxyl groups, did not show such T1 minimum.

  2. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  3. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  4. Nuclear quadrupole resonance single-pulse echoes.

    PubMed

    Prescott, David W; Miller, Joel B; Tourigny, Chris; Sauer, Karen L

    2008-09-01

    We report the first detection of a spin echo after excitation of a powder sample by a single pulse at the resonance frequency during nuclear quadrupole resonance (NQR). These echoes can occur in samples that have an inhomogeneously broadened line, in this case due to the distribution of electric field gradients. The echoes are easily detectable when the Rabi frequency approaches the linewidth and the average effective tipping angle is close to 270 degrees. When limited by a weak radio-frequency field, the single-pulse echo can be used to increase the signal to noise ratio over conventional techniques. These effects can be used to optimize the NQR detection of contraband containing quadrupole nuclei and they are demonstrated with glycine hemihydrochloride and hexhydro-1,3,5-trinitro-1,3,5-triazine (RDX). PMID:18571445

  5. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  6. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. PMID:25776345

  7. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  8. Buffer-gas effects on dark resonances: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Erhard, Michael; Helm, Hanspeter

    2001-04-01

    Dark resonances with widths below 30 Hz have been observed in a rubidium cell filled with neon as buffer gas at room temperature. We compare an approximate analytic solution of a Λ system to our data and show that under our experimental conditions the presence of the buffer gas reduces the power broadening of the dark resonances by two orders of magnitude. We also present numerical calculations that take into account the thermal motion and velocity-changing collisions with the buffer-gas atoms. The resulting dark-resonance features exhibit strong Dicke-type narrowing effects and thereby explain the elimination of Doppler shifts and Doppler broadening, leading to observation of a single ultranarrow dark line.

  9. Low latitude geomagnetic field line resonance: Experiment and modeling

    SciTech Connect

    Waters, C.L.; Menk, F.W.; Fraser, B.J.

    1994-09-01

    The authors describe work to detect field line resonances, or the observation of Pc 3-5 geomagnetic pulsation events, at low latitude sites. These signals are extracted from ground based magnetometer arrays. The authors found one field line resonance structure in 5 weeks of data at L=1.8. At L=2.8 they were able to observe up to 4 harmonics concurrently. They compare these frequency spectra with the results of two different models of the plasma density in the lower ionosphere.

  10. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  11. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2015-05-01

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  12. Laboratory Experiments for Exploring the Surface Plasmon Resonance

    ERIC Educational Resources Information Center

    Pluchery, Olivier; Vayron, Romain; Van, Kha-Man

    2011-01-01

    The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…

  13. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  14. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  15. Hadronic resonance production measured by the ALICE experiment at LHC

    NASA Astrophysics Data System (ADS)

    Malaev, Mikhail

    2016-01-01

    Hadronic resonances are among the most interesting probes of the hot and dense matter created in Pb-Pb collisions. Due to their short lifetime, they are sensitive to the anticipated chiral symmetry restoration as well as to suppression and regeneration due to hadronic interactions in the final state. At intermediate and high transverse momenta the hadron resonances, which cover the range of masses between the light pions and heavier protons, contribute to the systematic study of the baryon anomaly and parton energy loss in the dense medium. Measurements in pp collisions are used as a reference for collision of heavier systems and contribute to precision tests of pQCD and of the currently available parameterizations of fragmentation functions. Studies in p-Pb collisions are important for the interpretation of heavy ion results as they allow the decoupling of the initial nuclear effects from hot matter final state effects.

  16. Whispering gallery resonators with broken axial symmetry: Theory and experiment.

    PubMed

    Fürst, J; Sturman, B; Buse, K; Breunig, I

    2016-09-01

    Axial symmetry is the cornerstone for theory and applications of high-Q optical whispering gallery resonators (WGRs). Nevertheless, research on birefringent crystalline material persistently pushes towards breaking this symmetry. We show theoretically and experimentally that the effect of broken axial symmetry, caused by optical anisotropy, is modest for the resonant frequencies and Q-factors of the WGR modes. Thus, the most important equatorial whispering gallery modes can be quantitatively described and experimentally identified. At the same time, the effect of broken axial symmetry on the light field distribution of the whispering gallery modes is typically very strong. This qualitatively modifies the phase-matching for the χ(2) nonlinear processes and enables broad-band second harmonic generation and optical parametric oscillation. The effect of weak geometric ellipticity in nominally symmetric WGRs is also considered. Altogether our findings pave the way for an extensive use of numerous birefringent (uniaxial and biaxial) crystals with broad transparency window and large χ(2) coefficients in nonlinear optics with WGRs. PMID:27607622

  17. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  18. Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods

    NASA Astrophysics Data System (ADS)

    Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.

    2001-10-01

    Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.

  19. γ-aminobutyric acid as a metabolite: Interpreting magnetic resonance spectroscopy experiments.

    PubMed

    Myers, James Fm; Nutt, David J; Lingford-Hughes, Anne R

    2016-05-01

    The current rise in the prevalence of magnetic resonance spectroscopy experiments to measure γ-aminobutyric acid in the living human brain is an exciting and productive area of research. As research spreads into clinical populations and cognitive research, it is important to fully understand the source of the magnetic resonance spectroscopy signal and apply appropriate interpretation to the results of the experiments. γ-aminobutyric acid is present in the brain not only as a neurotransmitter, but also in high intracellular concentrations, both as a transmitter precursor and a metabolite. γ-aminobutyric acid concentrations measured by magnetic resonance spectroscopy are not necessarily implicated in neurotransmission and therefore may reflect a very different brain activity to that commonly suggested. In this perspective, we examine some of the considerations to be taken in the interpretation of any γ-aminobutyric acid signal measured by magnetic resonance spectroscopy. PMID:27005308

  20. A resonance phenomenon observed in a swept frequency experiment on a mother-daughter ionospheric rocket

    NASA Technical Reports Server (NTRS)

    Folkestad, K.; Troim, J.

    1974-01-01

    The report presents observations obtained in a swept frequency experiment conducted in a mother-daughter rocket flight at auroral latitudes. The discussion is essentially restricted to the possible interpretation of the experimental signal structures noted at and in the vicinity of a resonance frequency where signal components apparently are generated by nonlinear mechanisms. Various resonance frequencies have been considered in attempts to identify this multichannel response frequency. It is concluded that of all the possibilities invoked, the best consistency is provided by identifying the frequency concerned with the cone resonance frequency demonstrated experimentally in the case of a laboratory plasma by Fisher and Gould (1971).

  1. Resonant Discharge Simulations; Comparisons with Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Birdsall, C. K.; Bowers, K. J.

    1998-10-01

    Discharges driven at the series resonance frequency have a small input resistance. The voltage drive is small (like Te), and the average plasma potential is low (like 10Te). Such were observed experimentally by Godyak et al. (paper 3C9, IEEE ICOPS, Santa Fe NM, 6-8 June 1994). Our PIC-MCC simulations and theory [K. Bowers, accompanying paper, and Cooperberg and Birdsall (PSST, Vol. 7, Feb and May 1998)], show similar results. The electron heating profile (J.E) is different from that of a low pressure capacitive discharge. Our scaling laws, at fixed pressure, show peak electron density proportional to the cube of the drive frequency (cap. have as the square), as derived by Godyak (Sov. J. Plasma Phys. Vol. 2, p.78 1976). The electron energy distribution in the bulk is bi-maxwellian. The ion energy distribution at the target (wall) has a peak at the peak average potential, with a narrow ion angular spread about the normal, at low pressures. Results will be shown for a range of pressures from collisionless to collisional. We are supported by DOE DE-FG03-97ER54446 and AFOSR FDF 49620-96-1-0154.

  2. Nuclear Quadrupole Resonance Studies of Charge Distributions in Molecular Solids.

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven Garry

    A detailed description of an NMR-NQR double resonance spectrometer designed and constructed in this laboratory is given, including some instruction on its use. ('14)N NQR data obtained by pulse methods for six classes of nitrogen-containing compounds are presented and analyzed in the framework of the Townes and Dailey theory. A study of the anti-cancer drugs cyclophosphamide, isophosphamide and triphosphamide suggests the existence of a correlation between the substance's chemotherapeutic efficacy and the (pi) - (sigma)(,NP) charge density at the trigonal nitrogen. Satisfactory correlations of the NQR spectra of 22 monosubstituted anilines with both the Hammett (sigma) parameters and the in vitro biological activities of the corresponding sulfanilamides have been found, indicating that the nitrogen lone-pair orbital is more sensitive than the nitrogen-carbon sigma orbital is to substituent effects. NQR spectra of several N-acetyl amino acids and related compounds are reported. The inductive effect of the chloroacetyl group on the nitrogen is discussed. A positive correlation between the (pi) - (sigma)(,NC) electron density at the nitrogen and the Taft inductive parameter (sigma)* is observed, suggesting that the nitrogen (pi) -charge density in the N-acetyl amino acids does not vary appreciably. Both ('14)N and ('35)Cl NQR data have been obtained for a series of compounds containing nitrogen directly bonded to chlorine. The existence of a linear correlation between the ('14)N and ('35)Cl quadrupole coupling constants is interpreted in terms of a simple model dealing with charge excesses and deficiencies at the respective nuclei. A study of two complexes of 4-aminopyridine (4AP) addresses the loss of pyridine nitrogen lone-pair charge upon formation of the strong and asymmetric N-H-N bond characteristic of these complexes. Evidence of hydrogen bonding interactions involving the amino nitrogens is found to be in agreement with a published neutron diffraction study

  3. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  4. Vibrate... Resonate... Quicken the Educational Experience into Intensest Life

    ERIC Educational Resources Information Center

    Chin, Christina

    2011-01-01

    In the quest for more effective education, how can direct personal engagement with actual aesthetic experiences--attendance of performances, participation in artistic workshops and activities, and viewing of actual artworks--play an important role? Art educators have a tremendous opportunity to guide students to engage mind, body, and soul--until…

  5. Temperature and baric dependence of nuclear quadruple resonance spectra in indium and gallium monoselenides

    NASA Astrophysics Data System (ADS)

    Khandozhko, Victor; Raranskii, Nikolai; Balazjuk, Vitaly; Samila, Andriy; Kovalyuk, Zahar

    2013-12-01

    Pulsed radiospectroscopy method has been used to study nuclear quadruple resonance (NQR) spectra of 69Ga and 115In isotopes in the layered semiconductors GaSe and InSe. It has been found that in GaSe and InSe there is a considerable temperature dependence of NQR frequency which in the temperature range of 250 to 390 K is practically linear with conversion slope 1.54 kHz/degree for 69Ga and 2.35 kHz/degree for 115In. In the same crystals the effect of uniaxial pressure on NQR spectra applied along the optical axis с up to the values of 500 kg/сm2 has been studied. A strong attenuation of NQR spectra intensity with increase in pressure on layered crystal package has been established. The unvaried multiplicity of resonance spectra indicates the absence of structural transformations in these layered crystals over the investigated range of temperatures and pressures.

  6. 14N NQR and the Molecular Charge Topology in Coordinated Ammonia

    NASA Astrophysics Data System (ADS)

    Murgich, Juan; Aray, Yosslen; Ospina, Edgar

    1992-02-01

    14N NQR spectra of [Co(NH3 ) 6 ] • 3Cl, [Co(NH3 ) 5CO3 ] • NO 3 , [Zn(NH3 ) 4 ] • 2Cl, [Zn(NH3 ) 4 ] •(BF4)2, and [Ag(NH3) 4 ] • NO 3 were obtained at 77 K. The results, analyzed by means of the topology of the charge distribution obtained from ab-initio MO calculations of free and of a model of coordinated NH3 , showed that bonding to the metal-ion produces a strong decrease (Co ≫ Zn ≈Ag) in the N nonbonded density ("lone pair") and an increase in the bonded maxima found in the N - H bond direction of the N valence shell.

  7. Resonating with the ghost of a hand: A TMS experiment.

    PubMed

    Craighero, Laila; Jacono, Marco; Mele, Sonia

    2016-04-01

    An impressive body of literature in the past 20 years has revealed a possible role played by cortical motor areas in action perception. One question that has been of interest is whether these areas are selectively tuned to process the actions of biological agents. However, no experiments directly testing the effects of the main characteristics identifying a biological agent (physical appearance and movement kinematics) on corticospinal excitability (CS) are present in literature. To fill this gap, we delivered single-pulse transcranial magnetic stimulation to the primary motor cortex and we recorded motor evoked potentials from contralateral hand muscles during observation of point-light-displays stimuli representing a hand having lost its physical appearance (Experiment 1) and kinematics characteristics (Experiment 2). Results showed that physical appearance, natural kinematics, and the possibility to identify the action behind the stimulus are not necessary conditions to modulate CS excitability during stimuli observation. We propose that the involvement of the motor system can be mandatory whenever the perceived movement, executed by a human, by an animal or by an object, is recognized as reproducible in its final outcome (e.g., position in space, direction of movement, posture of a body part, to-be-produced sound, specific interaction with an object, etc.), and that the peculiar relationship existing between others' actions and the actions executed by the observer could just represent the extreme in which the motor system is able to almost perfectly reproduce the observed stimulus as it unfolds and, consequently, contribute to stimulus perception in the most efficient way. PMID:26902157

  8. Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans

    SciTech Connect

    Teranishi, T.; Sakaguchi, S.; Uesaka, T.; Kubono, S.; Wakabayashi, Y.; Yamaguchi, H.; Kurihara, Y.; Bihn, D. N.; Kahl, D.; Watanabe, S.; Hashimoto, T.; Hayakawa, S.; Khiem, L. H.; Cuong, P. V.; Goto, A.

    2013-04-19

    Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

  9. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

  10. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: theory versus experiment.

    PubMed

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard; Zakharova, Anna

    2015-03-01

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit. PMID:25833433

  11. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard; Zakharova, Anna

    2015-03-01

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.

  12. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment

    SciTech Connect

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard Zakharova, Anna

    2015-03-15

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.

  13. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  14. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    PubMed

    Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  15. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  16. Third interger resonance slow extraction schemem for a mu->e experiment at Fermilab

    SciTech Connect

    Nagaslaev, V.; Amundson, J.; Johnstone, J.; Michelotti, L.; Park, C.S.; Werkema, S.; Syphers, M.; /Michigan State U.

    2010-09-01

    The current design of beam preparation for a proposed mu->e conversion experiment at Fermilab is based on slow resonant extraction of protons from the Debuncher. The Debuncher ring will have to operate with beam intensities of 3 x 10{sup 12} particles, approximately four orders of magnitude larger than its current value. The most challenging requirements on the beam quality are the spill uniformity and low losses in the presence of large space charge and momentum spread. We present results from simulations of third integer resonance extraction assisted by RF knock-out (RFKO), a technique developed for medical accelerators. Tune spreads up to 0.05 have been considered.

  17. A 15N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein.

  18. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  19. Results of Resonant Activation and Macroscopic Quantum Tunneling Experiments in Magnesium Diboride Thin Film Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Ramos, Roberto; Carabello, Steve; Lambert, Joseph; Mlack, Jerome; Dai, Wenqing; Shen, Yi.; Li, Qi; Cunnane, Daniel; Zhuang, C. G.; Chen, Ke; Xi, X. X.

    2012-02-01

    The Josephson junction is an experimental testbed widely used to study resonant activation and macroscopic quantum tunneling. These phenomena have been observed in junctions based on conventional low-temperature superconductors such as Nb and Al, and even in high-Tc, intrinsic superconductors. We report results of superconducting-to normal state switching experiments below 1 K using MgB2-based Josephson heterojunctions with Pb and Nb counter-electrodes. Measurements were made with and without RF excitation. With microwaves, we see evidence of a resonant peak, in addition to the primary escape (from ground state) peak -- consistent with resonant activation. We also observe features suggestive of macroscopic quantum tunneling including peaks in the escape rate enhancements and an ``elbow'' in the graph of calculated escape temperatures Tesc versus sample temperature.

  20. Generation of energetic electrons at second harmonic cyclotron resonance in ionospheric HF heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Rubinraut, M.

    2005-10-01

    The theory of electron acceleration by upper hybrid waves at second harmonic cyclotron resonance is presented. The results show that the meter-scale upper hybrid waves can incorporate the finite Larmour radius effect to make a second harmonic cyclotron resonance interaction effective. The finite Larmour radius effect provides a positive feedback to the interaction, thus the energies of the accelerated electrons increase in time exponentially, rather than linearly as in the case of fundamental cyclotron resonance. Consequently, energetic electrons (having energies larger than 10.7 eV) can be generated even at very low upper hybrid wave intensities. The threshold field for parametric excitation of meter-scale upper hybrid waves by O-mode HF heating wave is shown to be very low. The theory can be a reasonable basis for explaining the enhancement of airglow at 777.4 nm observed in recent low-heating-power experiment at HAARP.

  1. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  2. Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments

    SciTech Connect

    Mowry, Andrew; Kubasek, James; Friedman, Jonathan R.; Chen, Yiming

    2015-01-15

    When used in electron-spin resonance measurements, superconducting thin-film resonators must be precisely oriented relative to the external magnetic field in order to prevent the trapping of magnetic flux and the associated degradation of resonator performance. We present a compact design solution for this problem that allows in-situ control of the orientation of the resonator at cryogenic temperatures. Tests of the apparatus show that when proper alignment is achieved, there is almost no hysteresis in the field dependence of the resonant frequency.

  3. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    SciTech Connect

    TonThat, D.M.; Clarke, J. |

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}

  4. The 7-gap-resonator-accelerator for the REX-ISOLDE-experiment at CERN

    NASA Astrophysics Data System (ADS)

    Podlech, H.; Grieser, M.; von Hahn, R.; Papureanu, S.; Repnow, R.; Schwalm, D.

    1998-04-01

    The Radioactive Beam Experiment at ISOLDE (REX-ISOLDE-Experiment) which presently is being developed and under construction at CERN serves to investigate exotic, very neutron rich, radioactive nuclei [1](Radioactive beam EXperiment at ISOLDE: Coloumb Excitation and Neutron Transfer Reactions of Exotic Nuclei, Proposal to the ISOLDE commitee, CERNSIC94-25). A linear accelerator delivers radioactive ions which are produced by the isotope separator ISOLDE with energies between 0.85 and 2.2 MeV/u. The Linac will consist of a RFQ-accelerator, an interdigital H-Structure (IH) and three 7-gap-resonators with variable energy. While the LMU Munich is responsible for the frontpart of the accelerator, the backpart is being built by the MPI [2](H. Podlech, Master Thesis, MPI-H-V21-1997, Heidelburg, 1997). After estimation of the voltage of one resonator to 1.75 MV at 90 kW, the design velocities were fixed to 5.4%, 6.0% and 6.6% of the velocity of light. Three downscaled models (1:2.5) were built in order to optimize the shuntimpedance and the field-distribution at the operation frequency of the amplifiers of 101.28 MHz. The optimization of all low power resonators is now successfully finished. Extensive beam dynamic calculations were made in order to optimize the transmission of the beam up to the target. It turned out that final energies between 0.85 and 2.2 MeV/u with nearly 100% transmission can be achieved. The acceptance in the x-plane is 1.2π mm mrad (norm.) and in the y-plane 3.0π mm mrad (norm.). The bunchlength of the fully accelerated beam (2.2 MeV/u) is 2.4 ns at the target. The development of the resonators was accompanied by extensive MAFIA calculations. It could be demonstrated that spiral-resonators like 7-gap-resonators can be calculated with MAFIA with an accuracy of 1% in comparison with experimental results. Presently, the tanks and the half shells of the power type resonators are manufactured in the workshops of the MPI.

  5. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  6. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  7. Studies of Structure and Phase Transition in [C(NH2)3]HgBr3 and [C(NH2)3]HgI3 by Means of Halogen NQR, 1H NMR, and Single Crystal X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Terao, Hiromitsu; Hashimoto, Masao; Hashimoto, Shinichi; Furukawa, Yoshihiro

    2000-02-01

    The crystal structure of [C(NH2)3]HgBr3 was determined at room temperature: monoclinic, space group C2/c, Z = 4, a = 775.0(2), b = 1564.6(2), c = 772.7(2) pm, β = 109.12(2)°. In the crystal, almost planar HgBr3- ions are connected via Hg ··· Br bonds, resulting in single chains of trigonal bipyramidal HgBr5 units which run along the c direction. [C(NH2)3]HgI3 was found to be isomorphous with the bromide at room temperature. The temperature dependence of the halogen NQR frequencies (77 < 77K < ca. 380) and the DTA measurements evidenced no phase transition for the bromide, but a second-order phase transition at (251 ± 1) K (Tc1) and a first-order one at (210 ± 1) K for the iodide. The transitions at Tc2are accompanied with strong supercooling and significant superheating. The room temperature phase (RTP) and the intermediate temperature phase (ITP) of the iodide are characterized by two 127I(m=1/2↔3/2) NQR lines which are assigned to the terminal and the bridging I atoms, respectively. There exist three lines in the lowest temperature phase (LTP), indicating that the resonance line of the bridging atom splits into two. The signal intensities of the 127I(m =1/2↔3/2) NQR lines in the LTP decrease with decreasing temperature resulting in no detection below ca. 100 K. The 127I(m=1/2↔3/2) NQR frequency vs. temperature curves are continuous at Tcl, but they are unusual in the LTP. The T1vs. Tcurves of 1H NMR for the bromide and iodide are explainable by the reorientational motions of the cations about their pseudo three-fold axes. The estimated activation energies of the motions are 35.0 kJ/mol for the bromide, and 24.1, 30.1, and 23.0 kJ/mol for the RTP, FTP, and LTP of the iodide, respectively

  8. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Gallagher, N.C. Jr.; Lang, D.D.; Pedrotti, L.R.; Rubert, R.R.; Stallard, B.W.; Sweeney, D.W.

    1983-11-18

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system.

  9. An accessible two-dimensional solution nuclear magnetic resonance experiment on human ubiquitin*.

    PubMed

    Rovnyak, David; Thompson, Laura E

    2005-03-01

    Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have implemented an experiment that is ideal for more commonly available 4.8-7.0 Tesla, double-channel NMR instruments that would not usually be used for biomolecular NMR work. We analyzed a commercially available, (15) N-enriched human ubiquitin sample with a two-dimensional correlation experiment using indirect (1) H evolution and direct (15) N detection, which produced spectra with high resolution on a spectrometer operating at 7.0 Tesla (300 MHz (1) H resonance frequency). The simplicity of the experiment makes it possible to be configured by undergraduate students with minimal supervision from the instructor. Students gain experience in acquiring multidimensional biomolecular NMR experiments, confirm that ubiquitin is stably folded, and observe the correspondence between specific signals and individual amino acids in ubiquitin. PMID:21638557

  10. Isoscalar giant resonance studies in a stored-beam experiment within EXL

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, K.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, T.; Kuilman, M.; Litvinov, S.; Litvinov, Yu A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.; the EXL Collaboration

    2015-11-01

    In the first campaign of the exotic nuclei studied with light-ion induced reaction in storage rings (EXL) collaboration at the existing storage ring experimental heavy-ion storage ring (ESR) at Helmholtz Center for Heavy Ion Research (GSI), we performed the first experiments using a stored beam of 58Ni and an internal helium gas-jet target aiming for the investigation of isoscalar giant resonances in inverse kinematics. In this experiment, inelastically scattered recoil particles (at very forward angles, {θ }{cm}≤slant 1°) were detected with a dedicated setup, including ultra-high vacuum (UHV)-compatible double-sided silicon strip detector (DSSDs). Preliminary results show evidence for the excitation of the isoscalar giant monopole resonance (ISGMR) in the 58Ni nucleus. This opens the opportunity to study in the near future giant resonances also with stored radioactive beams, like 56Ni, and extract important information about the nuclear matter incompressibility. In the present work the current status of the data analysis and results are shown and discussed.

  11. Dynamic field-frequency lock for tracking magnetic field fluctuations in electron spin resonance experiments

    NASA Astrophysics Data System (ADS)

    Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen

    Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.

  12. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.

    PubMed

    Jiang, Bin; Yu, Binhan; Zhang, Xu; Liu, Maili; Yang, Daiwen

    2015-08-01

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is a powerful NMR method to study protein dynamics on the microsecond-millisecond time scale. J-coupling, resonance offset, radio frequency field inhomogeneity, and pulse imperfection often introduce systematic errors into the measured transverse relaxation rates. Here we proposed a modified continuous wave decoupling CPMG experiment, which is more unaffected by resonance offset and pulse imperfection. We found that it is unnecessary to match the decoupling field strength with the delay between CPMG refocusing pulses, provided that decoupling field is strong enough. The performance of the scheme proposed here was shown by simulations and further demonstrated experimentally on a fatty acid binding protein. PMID:26037134

  13. A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.

    2015-04-01

    We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.

  14. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    SciTech Connect

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-05-15

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  15. Initial Experience with the Resonance Metallic Stent for Antegrade Ureteric Stenting

    SciTech Connect

    Wah, Tze M. Irving, Henry C.; Cartledge, Jon

    2007-07-15

    Background and purpose. We describe our initial experience with a new metallic ureteric stent which has been designed to provide long-term urinary drainage in patients with malignant ureteric strictures. The aim is to achieve longer primary patency rates than conventional polyurethane ureteric stents, where encrustation and compression by malignant masses limit primary patency. The Resonance metallic double-pigtail ureteric stent (Cook, Ireland) is constructed from coiled wire spirals of a corrosion-resistant alloy designed to minimize tissue in-growth and resist encrustation, and the manufacturer recommends interval stent change at 12 months. Methods. Seventeen Resonance stents were inserted via an antegrade approach into 15 patients between December 2004 and March 2006. The causes of ureteric obstruction were malignancies of the bladder (n = 4), colon (n = 3), gynecologic (n = 5), and others (n = 3). Results. One patient had the stent changed after 12 months, and 3 patients had their stents changed at 6 months. These stents were draining adequately with minimal encrustation. Four patients are still alive with functioning stents in situ for 2-10 months. Seven patients died with functioning stents in place (follow-up periods of 1 week to 8 months). Three stents failed from the outset due to bulky pelvic malignancy resulting in high intravesical pressure, as occurs with conventional plastic stents. Conclusion. Our initial experience with the Resonance metallic ureteric stent indicates that it may provide adequate long-term urinary drainage (up to 12 months) in patients with malignant ureteric obstruction but without significantly bulky pelvic disease. This obviates the need for regular stent changes and would offer significant benefit for these patients with limited life expectancy.

  16. Resonant Frequency Spin Flipper for the nHe3 Experiment

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher

    2014-03-01

    The n3He experiment, currently being installed on beamline-13 at ORNL's Spallation Neutron Source (SNS), is designed to measure the proton asymmetry associated with the interaction of neutrons with a gas of 3He via n +23He =13H +11H + 765 KeV . The experiment uses a Resonant Frequency Spin Flipper (RFSF) to flip the neutron spins. The spin flipper is similar to the one described by P.N. Seo et al. (PR ST Accel. Beams 11, 084701 2008) with significant improvements. Most important is the inclusion of a ``double cosine-theta'' winding pattern that provides a highly uniform interior field with no fringing. A critical feature of the coil is complex flux returns whose construction was made possible through the utilization of 3D print technology.

  17. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  18. Optimization of surface plasmon resonance experiments: Case of high mobility group box 1 (HMGB1) interactions.

    PubMed

    Anggayasti, Wresti L; Mancera, Ricardo L; Bottomley, Steven; Helmerhorst, Erik

    2016-04-15

    Surface plasmon resonance (SPR) is a powerful technique for evaluating protein-protein interactions in real time. However, inappropriately optimized experiments can often lead to problems in the interpretation of data, leading to unreliable kinetic constants and binding models. Optimization of SPR experiments involving "sticky" proteins, or proteins that tend to aggregate, represents a typical scenario where it is important to minimize errors in the data and the kinetic analysis of those data. This is the case of High Mobility Group Box 1 and the receptor of advanced glycation end products. A number of improvements in protein purification, buffer composition, immobilization conditions, and the choice of flow rate are shown to result in substantial improvements in the accurate characterization of the interactions of these proteins and the derivation of the corresponding kinetic constants. PMID:26869083

  19. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  20. Ferromagnetic resonance experiments in an obliquely deposited FeCo-Al2O3 film system

    NASA Astrophysics Data System (ADS)

    Lesnik, N. A.; Oates, C. J.; Smith, G. M.; Riedi, P. C.; Kakazei, G. N.; Kravets, A. F.; Wigen, P. E.

    2003-11-01

    Granular cermet films (Fe50Co50)x-(Al2O3)1-x fabricated using the electron-beam coevaporation technique at oblique incidence of FeCo and alumina atom fluxes have been found to exhibit both oblique and in-plane uniaxial magnetic anisotropy. This anisotropy first appears just below the percolation threshold due to a magnetic coupling of particles taking place at a certain stage of their growth and coalescence. The FeCo content x varied from 0.07 to 0.49. A simple model of the film microstructure is presented based on the results of magnetization measurements and ferromagnetic resonance at intermediate (9.4 GHz) and high (94 GHz) frequencies. At 94 GHz the concentration dependence of the effective anisotropy field follows the solid solution law, since then the magnetic field is sufficient to magnetize the films close to saturation. The 9.4 GHz data points deviate from the solid solution line below the percolation threshold due to both modification of the resonance fields by intergranular interactions in nonsaturated films and the reduction of the average magnetization of granules, comparing to the saturation magnetization, at room temperature. Different mechanisms of line broadening observed at frequencies used in experiments are also discussed.

  1. Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Lamsal, Jagat; Montfrooij, Wouter

    2016-06-01

    Resonant x-ray scattering experiments on high-temperature superconductors and related cuprates have revealed the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV. The excitation energies appear to show very similar behavior across all compounds, ranging from magnetically ordered, via superconductors, to heavy fermion systems. However, we argue that this apparent behavior has been inferred from the data through model fitting which implicitly imposes such similarities. Using model fitting that is free from such restrictions, we show that the paramagnons are not nearly as well defined as has been asserted previously, and that some paramagnons might not represent propagating excitations at all. Our work indicates that the data published previously in the literature will need to be reanalyzed with proper models.

  2. Space Time Reversal Experiment by Use of Pulsed Neutron Ramsey Resonance

    SciTech Connect

    Masuda, Y.; Jeong, S. C.; Watanabe, Y.; Skoy, V.; Ino, T.

    2007-06-13

    We have developed a pulsed neutron Ramsey resonance for a T-violation experiment on polarized neutron transmission through a polarized nuclear target. Two separated oscillatory fields were placed in a pulsed neutron beam line, which were synchronized with a neutron pulse for precision neutron spin manipulation. We observed neutron Larmor precession between the two oscillatory fields as a function of a neutron time of flight (TOF). We modulated the phase of the second oscillatory field with respect to the first oscillatory field. The effect of the phase modulation was found in a neutron intensity modulation as a function of the TOF. From the neutron intensity modulation, the neutron spin direction as well as the neutron velocity between the two oscillatory fields was precisely obtained.

  3. Absolute measurement of thermal noise in a resonant short-range force experiment

    NASA Astrophysics Data System (ADS)

    Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

    2014-10-01

    Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10-21 J, is in agreement with the expected value of 1/2{{k}B}T.

  4. Optimization of Capacitive Acoustic Resonant Sensor Using Numerical Simulation and Design of Experiment

    PubMed Central

    Haque, Rubaiyet Iftekharul; Loussert, Christophe; Sergent, Michelle; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    Optimization of the acoustic resonant sensor requires a clear understanding of how the output responses of the sensor are affected by the variation of different factors. During this work, output responses of a capacitive acoustic transducer, such as membrane displacement, quality factor, and capacitance variation, are considered to evaluate the sensor design. The six device parameters taken into consideration are membrane radius, backplate radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of factors on the output responses of the transducer are investigated using an integrated methodology that combines numerical simulation and design of experiments (DOE). A series of numerical experiments are conducted to obtain output responses for different combinations of device parameters using finite element methods (FEM). Response surface method is used to identify the significant factors and to develop the empirical models for the output responses. Finally, these results are utilized to calculate the optimum device parameters using multi-criteria optimization with desirability function. Thereafter, the validating experiments are designed and deployed using the numerical simulation to crosscheck the responses. PMID:25894937

  5. Detailed design of a resonantly enhanced axion-photon regeneration experiment

    SciTech Connect

    Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; Bibber, Karl van

    2009-10-01

    A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/{pi}){sup 2}, where F is the finesse of each cavity. This gain could feasibly be as high as 10{sup 10}, corresponding to an improvement in the sensitivity to the axion-photon coupling, g{sub a{gamma}}{sub {gamma}}, of order (F/{pi}){sup 1/2}{approx}300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

  6. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    SciTech Connect

    Meier, Thomas; Haase, Jürgen

    2015-12-15

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al{sub 2}O{sub 3}), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  7. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2015-12-01

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures. PMID:26724046

  8. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Haase, Jürgen

    2015-12-01

    Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

  9. Optimization of capacitive acoustic resonant sensor using numerical simulation and design of experiment.

    PubMed

    Haque, Rubaiyet Iftekharul; Loussert, Christophe; Sergent, Michelle; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    Optimization of the acoustic resonant sensor requires a clear understanding of how the output responses of the sensor are affected by the variation of different factors. During this work, output responses of a capacitive acoustic transducer, such as membrane displacement, quality factor, and capacitance variation, are considered to evaluate the sensor design. The six device parameters taken into consideration are membrane radius, backplate radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of factors on the output responses of the transducer are investigated using an integrated methodology that combines numerical simulation and design of experiments (DOE). A series of numerical experiments are conducted to obtain output responses for different combinations of device parameters using finite element methods (FEM). Response surface method is used to identify the significant factors and to develop the empirical models for the output responses. Finally, these results are utilized to calculate the optimum device parameters using multi-criteria optimization with desirability function. Thereafter, the validating experiments are designed and deployed using the numerical simulation to crosscheck the responses. PMID:25894937

  10. Theory and Experiments on Unstable Resonator and Quantum Well Gallium Arsenide/gallium Aluminum Arsenide Lasers

    NASA Astrophysics Data System (ADS)

    Mittelstein, Michael

    Structures of GaAs/GaAlAs lasers and their performance characteristics are investigated experimentally and theoretically. A self-consistent model for the longitudinal gain and intensity distribution in injection lasers is introduced. The model is applied to unstable-resonator semiconductor lasers to evaluate their lateral losses and quantum efficiencies, and an advanced design is presented. Symmetric, unstable -resonator semiconductor lasers are manufactured and a virtual source point inside the laser more than an order of magnitude narrower than the width of the near field is demonstrated. Young's double-slit experiment is adopted for lateral coherence measurements in semiconductor lasers. A high degree of lateral coherence is found, indicating operation of the unstable-resonator lasers in predominantly one mode. In the pulsed measurements on broad-area, single -quantum-well, graded-index wave-guide, separate-confinement -heterostructure lasers, very high quantum efficiencies, very low losses, and very high output powers are observed. The devices are found to exhibit beam divergence narrower than two times the diffraction limit in single-lobed, far-field patterns. Using these single-quantum-well lasers, the "second quantized-state lasing" is found experimentally, and a simple model is developed to explain it. A general model for the gain spectrum and required current density of quantum-well lasers is introduced. The eigenfunctions and eigenvalues of the charge carriers and optical mode of the transverse structure are used to derive the gain spectrum and current density from the Einstein coefficients. The two-dimensional density of states for the charge carriers and the effective width of the optical mode (not the width of the quantum well) are identified as the dominant parameters. The model includes a new heuristic approach to account for the observed smeared onset of subbands, eliminating convolution calculations. Applications of the model for a typical

  11. Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation

    NASA Astrophysics Data System (ADS)

    Choi, J.; Raguin, L. G.

    2010-10-01

    Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.

  12. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  13. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts

    SciTech Connect

    Not Available

    1991-12-17

    The primary objective of the project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. We have undertaken to investigate the magnetic character by studying the Nuclear Quadrupole resonance of copper and (Zerofield) Nuclear Magnetic Resonance of cobalt in copper cobalt catalysts.

  14. Nuclear magnetic and quadrupole resonance in metallic powders in the presence of strong quadrupole interaction: Rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Maglione, M.; Borsa, F.

    1988-03-01

    The nuclear-magnetic-resonance and nuclear-quadrupole-resonance (NQR-NMR) spectra of /sup 187/Re and /sup 185/Re in a powder of rhenium metal were measured in the temperature range 5--10 K both in zero field and with an external magnetic field. The zero-field NQR spectrum is severely broadened by a nonuniform distribution of quadrupole interactions. The average quadrupole coupling frequencies measured at 5 K are, for the two isotopes, ..nu../sub Q/ = 39 +- 0.2 MHz (/sup 187/Re) and ..nu../sub Q/ = 40.8 +- 0.3 MHz (/sup 185/Re). The spectra obtained in the presence of an external magnetic field can be interpreted satisfactorily in terms of transitions among the eigenstates of the full Hamiltonian (Zeeman plus quadrupolar). Measurements of relaxation rates yield T/sub 1/T = 0.03 sK, indicating a relaxation mechanism driven by the hyperfine interaction with the conduction electrons. The feasibility of NQR-NMR studies in small metal particles in the presence of strong inhomogeneous quadrupole interactions is assessed

  15. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  16. Anesthesia during high-field intraoperative magnetic resonance imaging experience with 80 consecutive cases.

    PubMed

    Schmitz, Bernd; Nimsky, Christopher; Wendel, Georg; Wienerl, Juergen; Ganslandt, Oliver; Jacobi, Klaus; Fahlbusch, Rudolf; Schüttler, Juergen

    2003-07-01

    Intraoperative magnetic resonance imaging (MRI) has been used for years to update neuronavigation and for intraoperative resection control. For this purpose, low-field (0.1-0.2 T) MR scanners have been installed in the operating room, which, in contrast to machines using higher magnetic field strength, allowed the use of standard anesthetic and surgical equipment. However, these low-field MR systems provided only minor image quality and a limited battery of MR sequences, excluding functional MRI, diffusion-weighted MRI, or MR angiography and spectroscopy. Based on these advantages, a concept using high-field MRI (1.5 T) with intraoperative functional neuronavigational guidance has been developed that required adaptation of the anesthetic regimen to working in the close vicinity to the strong magnetic field. In this paper the authors present their experience with the first 80 consecutive patients who received anesthesia in a specially designed radio frequency-shielded operating room equipped with a high-field (1.5 T) MR scanner. We describe the MR-compatible anesthesia equipment used including ventilator, monitoring, and syringe pumps, which allow standard neuroanesthesia in this new and challenging environment. This equipment provides the use of total intravenous anesthesia with propofol and remifentanil allowing rapid extubation and neurologic examination following surgery. In addition, extended intraoperative monitoring including EEG monitoring required for intracranial surgery is possible. Moreover, problems and dangers related to the effects of the strong magnetic field are discussed. PMID:12826974

  17. Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment

    SciTech Connect

    Park, Chong Shik; Amundson, James; Michelotti, Leo

    2015-02-13

    The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number of features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.

  18. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Center.

    PubMed

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A; Scheloske, S; Spädtke, P; Tinschert, K

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5 GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year. PMID:18315121

  19. Rapid estimation of nuclear magnetic resonance experiment time in low-concentration environmental samples.

    PubMed

    Masoom, Hussain; Courtier-Murias, Denis; Farooq, Hashim; Soong, Ronald; Simpson, Myrna J; Maas, Werner; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, André J

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is an essential tool for studying environmental samples but is often hindered by low sensitivity, especially for the direct detection of nuclei such as(13) C. In very heterogeneous samples with NMR nuclei at low abundance, such as soils, sediments, and air particulates, it can take days to acquire a conventional(13) C spectrum. The present study describes a prescreening method that permits the rapid prediction of experimental run time in natural samples. The approach focuses the NMR chemical shift dispersion into a single spike, and, even in samples with extremely low carbon content, the spike can be observed in two to three minutes, or less. The intensity of the spike is directly proportional to the total concentration of nuclei of interest in the sample. Consequently, the spike intensity can be used as a powerful prescreening method that answers two key questions: (1) Will this sample produce a conventional NMR spectrum? (2) How much instrument time is required to record a spectrum with a specific signal-to-noise (S/N) ratio? The approach identifies samples to avoid (or pretreat) and permits additional NMR experiments to be performed on samples producing high-quality NMR data. Applications in solid- and liquid-state(13) C NMR are demonstrated, and it is shown that the technique is applicable to a range of nuclei. PMID:23065696

  20. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.

    PubMed

    Wei, Qingtao; Chen, Jiajing; Mi, Juan; Zhang, Jiahai; Ruan, Ke; Wu, Jihui

    2016-07-01

    Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins. PMID:27276173

  1. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  2. WURST-QCPMG sequence and "spin-lock" in 14N nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Gregorovič, Alan; Apih, Tomaž

    2013-08-01

    14N nuclear quadrupole resonance (NQR) is a promising method for the analysis of pharmaceuticals or for the detection of nitrogen based illicit compounds, but so far, the technique is still not widely used, mostly due to the very low sensitivity. This problem is already acute in the preliminary NQR stage, when a compound is being examined for the first time and the NQR frequencies are being searched for, by scanning a wide frequency range step-by-step. In the present work, we experimentally show how to increase the efficiency of this initial stage by using a combination of a wideband excitation achieved with frequency swept pulses (WURST) and a "spin-lock" state obtained with a quadrupolar-CPMG (QCPMG) sequence. In the first part we show that WURST pulses provide a much larger excitation bandwidth compared to common rectangular pulses. This increased bandwidth allows to increase the frequency step and reduces the total number of steps in a scanning stage. In the second part we show that the "spin-lock" decay time T2eff obtained with the WURST-QCPMG combination is practically identical with the T2eff obtained with the most common "spin-lock" sequence, the SLSE, despite a very different nature and length of excitation pulses. This allows for a substantial S/N increase through echo averaging in every individual step and really allows to exploit all the advantages of the wider excitation in the NQR frequency scanning stage. Our experimental results were obtained on a sample of trinitrotoluene, but identical behavior is expected for all compounds where a "spin-lock" state can be created.

  3. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  4. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    SciTech Connect

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  5. Injection Seeding of Ti:Al2O3 in an unstable resonator theory and experiment

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Wang, L. G.; Barnes, N. P.; Edwards, W. C.; Cheng, W. A.; Hess, R. V.; Lockard, G. E.; Ponsardin, P. L.

    1991-01-01

    Injection Seeding of a Ti:Al2O3 unstable resonator using both a pulsed single-mode Ti:Al2O3 laser and a continuous wave laser diode has been characterized. Results are compared with a theory which calculates injection seeding as function of seed and resonator alignment, beam profiles, and power.

  6. Using split-ring resonators to measure the electromagnetic properties of materials: An experiment for senior physics undergraduates

    NASA Astrophysics Data System (ADS)

    Bobowski, J. S.

    2013-12-01

    A spilt-ring resonator experiment suitable for senior physics undergraduates is described and demonstrated in detail. The apparatus consists of a conducting hollow cylinder with a narrow slit along its length and can be accurately modelled as a series LRC circuit. The resonance frequency and quality factor of the split-ring resonator are measured when the apparatus is suspended in air, submerged in water, and submerged in an aqueous solution of various concentrations of NaCl. The experimental results are used to extract the dielectric constant of water and to investigate the dependence of the resonator quality factor on the conductivity of the NaCl solution. The apparatus provides opportunities to experimentally examine radiative losses, complex permittivity, the electromagnetic skin depth, and cutoff frequencies of rf propagation in cylindrical waveguides, which are all concepts introduced in an undergraduate course in electrodynamics. To connect with current research, the use of split-ring resonators as a tool to precisely measure the electromagnetic properties of materials is emphasized.

  7. Microwave bandpass filters based on thin-film acoustic resonators: theory and experiment

    NASA Astrophysics Data System (ADS)

    Dvoesherstov, M. Yu.; Cherednik, V. I.

    2015-11-01

    We theoretically and experimentally analyze microwave thin-film acoustoelectronic bandpass ladder filters built on AlN-based thin-film acoustoelectronic microwave resonators operating in the frequency range 4.6-5 GHz and describe the technology of their fabrication. We demonstrate that the parameters of filters are mainly determined by the characteristics of resonators that make up the filter and show that the characteristics of a three-section ladder filter can be significantly improved by optimizing the areas of the upper electrodes of the series and parallel resonators contained in it.

  8. Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

    PubMed Central

    Park, Jun Woo; Kim, Hak Jin; Han, Hyung Soo

    2010-01-01

    Objective The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations. PMID:20379473

  9. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    PubMed

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions. PMID:27140144

  10. A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue

    NASA Astrophysics Data System (ADS)

    Russell, Greg; Harkins, Kevin D.; Secomb, Timothy W.; Galons, Jean-Philippe; Trouard, Theodore P.

    2012-02-01

    A new finite difference (FD) method for calculating the time evolution of complex transverse magnetization in diffusion-weighted magnetic resonance imaging and spectroscopy experiments is described that incorporates periodic boundary conditions. The new FD method relaxes restrictions on the allowable time step size employed in modeling which can significantly reduce computation time for simulations of large physical extent and allow for more complex, physiologically relevant, geometries to be simulated.

  11. An ultrahigh-vacuum apparatus for resonant diffraction experiments using soft x rays (hnu=300-2000 eV).

    PubMed

    Takeuchi, T; Chainani, A; Takata, Y; Tanaka, Y; Oura, M; Tsubota, M; Senba, Y; Ohashi, H; Mochiku, T; Hirata, K; Shin, S

    2009-02-01

    We have developed an ultrahigh-vacuum instrument for resonant diffraction experiments using polarized soft x rays in the energy range of hnu=300-2000 eV at beamline BL17SU of SPring-8. The diffractometer consists of modified differentially pumped rotary feedthroughs for theta-2theta stages, a sample manipulator with motor-controlled x-y-z-, tilt (chi)-, and azimuth (phi)-axes, and a liquid helium flow-type cryostat for temperature dependent measurements between 30 and 300 K. Test results indicate that the diffractometer exhibits high reproducibility (better than 0.001 degrees ) for a Bragg reflection of alpha-quartz 100 at a photon energy of hnu=1950 eV. Typical off- and on-resonance Bragg reflections in the energy range of 530-1950 eV could be measured using the apparatus. The results show that x-ray diffraction experiments with energy-, azimuth-, and incident photon polarization-dependence can be reliably measured using soft x rays in the energy range of approximately 300-2000 eV. The facility can be used for resonant diffraction experiments across the L-edge of transition metals, M-edge of lanthanides, and up to the Si K-edge of materials. PMID:19256660

  12. Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ≤x ≤0.02 ) studied by 59Co nuclear quadrupole resonance measurements

    NASA Astrophysics Data System (ADS)

    Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

    2015-02-01

    In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

  13. A novel method of studying total body water content using a resonant cavity: experiments and numerical simulation

    NASA Astrophysics Data System (ADS)

    Robinson, Martin P.; Clegg, Janet; Stone, Darren A.

    2003-01-01

    A novel electromagnetic method of obtaining total body water is proposed, in which the water content is obtained from the dielectric properties as measured by a resonant perturbation technique. A screened room acts as a radio-frequency cavity, in our case resonating at 59 MHz, a frequency at which both real and imaginary parts of the complex permittivity of tissues are correlated to their moisture content. The presence of a human subject in the room leads to both a negative shift in the room's resonant frequency and a reduction in its Q-factor. We simulated the room and the body using the transmission line matrix (TLM) method, a computational electromagnetic code which models the problem in the time domain. Experiment and numerical model showed good agreement for two orientations of the subject. The sensitivity of the technique was investigated by measuring the response before and after the subject drank a small quantity of water, less than 2% of body mass. The resulting change in the resonant frequency was significant, and was also predicted by the numerical model. The proposed technique for studying body composition is simple, non-invasive and employs non-ionizing radio waves at low power.

  14. Search for narrow resonances in π p elastic scattering from the EPECUR experiment

    NASA Astrophysics Data System (ADS)

    Gridnev, A.; Alekseev, I. G.; Andreev, V. A.; Bordyuzhin, I. G.; Briscoe, W. J.; Filimonov, Ye. A.; Golubev, V. V.; Kalinkin, D. V.; Koroleva, L. I.; Kozlenko, N. G.; Kozlov, V. S.; Krivshich, A. G.; Kuznetsov, V. A.; Morozov, B. V.; Nesterov, V. M.; Novinsky, D. V.; Ryltsov, V. V.; Sadler, M.; Strakovsky, I. I.; Sulimov, A. D.; Sumachev, V. V.; Svirida, D. N.; Tarakanov, V. I.; Trautman, V. Yu.; Workman, R. L.

    2016-06-01

    The analysis of high-precision π±p →π±p cross-sectional data from the EPECUR Collaboration based on the multichannel K -matrix approach is presented. The sharp structures seen in these data are studied in terms of both opening thresholds and new resonance contributions. Some prominent features are found to be due to the opening K Σ channel. However, a complete description of the data is improved with the addition of two narrow resonant structures at W ˜1.686 and W ˜1.720 GeV . These structures are interpreted as manifestations of S11 and P11 resonances. The underlying nature of the observed phenomena is discussed.

  15. Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Chindam, Chandraprakash; Nama, Nitesh; Ian Lapsley, Michael; Costanzo, Francesco; Jun Huang, Tony

    2013-11-01

    Bubble-based microfluidic devices have been proven to be useful for many biological and chemical studies. These bubble-based microdevices are particularly useful when operated at the trapped bubbles' resonance frequencies. In this work, we present an analytical expression that can be used to predict the resonant frequency of a bubble trapped over an arbitrary shape. Also, the effect of viscosity on the dispersion characteristics of trapped bubbles is determined. A good agreement between experimental data and theoretical results is observed for resonant frequency of bubbles trapped over different-sized rectangular-shaped structures, indicating that our expression can be valuable in determining optimized operational parameters for many bubble-based microfluidic devices. Furthermore, we provide a close estimate for the harmonics and a method to determine the dispersion characteristics of a bubble trapped over circular shapes. Finally, we present a new method to predict fluid properties in microfluidic devices and complement the explanation of acoustic microstreaming.

  16. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    PubMed

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed. PMID:26772565

  17. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-01-01

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180∘ at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X˜ 2A2, A˜ 2B1, and B˜ 2B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B˜ 2B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  18. Pulsed Fourier-transform NQR of 14N with a dc SQUID

    NASA Astrophysics Data System (ADS)

    Hürlimann, M. D.; Pennington, C. H.; Fan, N. Q.; Clarke, John; Pines, A.; Hahn, E. L.

    1992-07-01

    The zero-field free induction decay of solid ammonium perchlorate at 1.5 K has been directly detected with a dc superconducting quantum interference device. The Fourier-transform spectrum consists of three sharp lines at 17.4, 38.8, and 56.2 kHz arising from pure 14N nuclear quadrupole resonance transitions. The absence of splittings and resonance transitions from dipolar-coupled proton spins is attributed to reorientation of the ammonium groups by quantum tunneling in combination with motional averaging in the three proton levels characterized by the irreducible representation T. The measured 14N spin-spin relaxation time is 22+/-2 ms and the spin-lattice relaxation time is 63+/-6 ms.

  19. The use of magnetic resonance imaging in diagnosing equine deep digital flexor tendinopathies--own experience.

    PubMed

    Jaskólska, M; Adamiak, Z; Zhalniarovich, Y; Przyborowska, P; Peczyński, Z

    2014-01-01

    Deep digital flexor tendinopathy is a common problem in horses of different athletic disciplines. Nowadays, the use of magnetic resonance imaging is considered to be a noninvasive and superior choice for recognizing bone and soft tissue pathologies especially related to difficult to access structures within the hoof capsule. PMID:25286667

  20. Effect of granular media on the vibrational response of a resonant structure: theory and experiment.

    PubMed

    Valenza, John J; Hsu, Chaur-Jian; Johnson, David Linton

    2010-11-01

    The acoustic response of a structure that contains a cavity filled with a loose granular material is analyzed. The inputs to the theory are the effective masses of each subsystem: that of the empty-cavity resonating structure and that of the granular medium within the cavity. This theory accurately predicts the frequencies, widths, and relative amplitudes of the various flexural mode resonances observed with rectangular bars, each having a cavity filled with loose tungsten granules. Inasmuch as the dominant mechanism for damping is due to adsorbed water at the grain-grain contacts, the significant effects of humidity on both the effective mass of the granular medium as well as on the response of the grain-loaded bars are monitored. Here, depending upon the humidity and the preparation protocol, it is possible to observe one, two, or three distinct resonances in a wide frequency range (1-5 kHz) over which the empty bar has but one resonance. These effects are understood in terms of the theoretical framework, which may simplify in terms of perturbation theories. PMID:21110572

  1. An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin

    ERIC Educational Resources Information Center

    Rovnyak, David; Thompson, Laura E.

    2005-01-01

    Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

  2. Toward Resonant, Imaginative Experiences in Ecological and Democratic Education. A Response to "Imagination and Experience: An Integrative Framework"

    ERIC Educational Resources Information Center

    Derby, Michael; Blenkinsop, Sean; Telford, John; Piersol, Laura; Caulkins, Michael

    2013-01-01

    In this response to Fettes's "Imagination and Experience," the authors further consider the varieties of educational experience that inspire ecological flourishing and a living democracy. The essential interconnectedness of encounter-driven and language-driven ways of knowing are explored with particular reference to the…

  3. HCCCH Experiment for Through-Bond Correlation of Thymine Resonances in 13C-Labeled DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sklenář, Vladimír.; Masse, James E.; Feigon, Juli

    1999-04-01

    Application of heteronuclear magnetic resonance pulse methods to13C,15N-labeled nucleic acids is important for the accurate structure determination of larger RNA and DNA oligonucleotides and protein-nucleic acid complexes. These methods have been applied primarily to RNA, due to the availability of labeled samples. The two major differences between DNA and RNA are at the C2‧ of the ribose and deoxyribose and the additional methyl group on thymine versus uracil. We have enzymatically synthesized a13C,15N-labeled 32 base DNA oligonucleotide that folds to form an intramolecular triplex. We present two- and three-dimensional versions of a new HCCCH-TOCSY experiment that provides intraresidue correlation between the thymine H6 and methyl resonances via the intervening carbons (H6-C6-C5-Cme-Hme).

  4. H(C)Ag: a triple resonance NMR experiment for (109) Ag detection in labile silver-carbene complexes.

    PubMed

    Weske, Sebastian; Li, Yingjia; Wiegmann, Sara; John, Michael

    2015-04-01

    In silver complexes, indirect detection of (109) Ag resonances via (1) H,(109) Ag-HMQC frequently suffers from small or absent JHAg couplings or rapid ligand dissociation. In these cases, it would be favourable to employ H(X)Ag triple resonance spectroscopy that uses the large one-bond JXAg coupling (where the donor atom of the ligand X is the relay nucleus). We have applied an HMQC-based version of the H(C)Ag experiment to a labile silver-NHC complex (NHC=N-heterocyclic carbene) at natural (13) C isotopic abundance and variable temperature. In agreement with simulations, H(C)Ag detection became superior to (1) H,(109) Ag-HMQC detection above -20 °C. PMID:25641122

  5. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-12-21

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  6. Nucleon Resonances Spin Structure - RSS: Experiment 01-006 at Jefferson Lab

    SciTech Connect

    Rondon-Aramayo, Oscar

    2006-07-01

    We have measured the spin structure of the nucleon in the region of the resonances (final state mass W <~ 2 GeV) at intermediate four-momentum transfer Q^2 ~ 1.3 (GeV/c)^2. Double-spin inclusive asymmetries for longitudinally polarized 5.75 GeV electrons incident on longitudinal and transverse solid polarized targets were measured in Jefferson Lab's Hall C. Frozen ammonia and deuterated ammonia were used as the polarized materials. The neutron spin structure is extracted from the proton and deuteron asymmetries. We present new results for the proton measured asymmetries A|| and A[perpendicular] and spin structure functions g_1 and g_2, and preliminary results for the deuteron asymmetries. These are the first measurements of the transverse proton and deuteron spin structure in the resonances. We also report on our measurement of the ratio of the proton electromagnetic form factors with our polarized target.

  7. Nucleon Resonances Spin Structure - RSS: Experiment 01-006 at Jefferson Lab

    SciTech Connect

    Rondon, Oscar A.

    2006-07-11

    We have measured the spin structure of the nucleon in the region of the resonances (final state mass W <{approx} 2 GeV) at intermediate four-momentum transfer Q2 {approx} 1.3 (GeV/c)2. Double-spin inclusive asymmetries for longitudinally polarized 5.75 GeV electrons incident on longitudinal and transverse solid polarized targets were measured in Jefferson Lab's Hall C. Frozen ammonia and deuterated ammonia were used as the polarized materials. The neutron spin structure is extracted from the proton and deuteron asymmetries. We present new results for the proton measured asymmetries A parallel and A perpendicular and spin structure functions g1 and g2, and preliminary results for the deuteron asymmetries. These are the first measurements of the transverse proton and deuteron spin structure in the resonances. We also report on our measurement of the ratio of the proton electromagnetic form factors with our polarized target.

  8. Resonant discharges: Initiation and steady state. Comparisons with theory, simulation and experiment

    SciTech Connect

    Bowers, K.J.; Qiu, D.W.; Birdsall, C.K.

    1999-07-01

    Discharges driven at the series resonance frequency have many desirable properties. The input resistance is small, and the voltage and current are in phase. The voltage drive is small ({approximately} Te) and the average plasma potential is low ({approximately} 10 Te). Such is observed experimentally in [1] and in the PIC-MCC simulations. Scaling laws at fixed pressure show peak electron density proportional to the cube of the drive frequency (capacitive discharge is as the square), permitting the density to be controlled. Simulation results show at low pressure, the ion energy distribution at the target has a sharp peak at the plasma potential with narrow angular spread about the normal. The V-I phase angle versus I curve is measured in simulation and compared with experimental results and the theoretical scaling laws are compared with simulation results and the transition of a capacitively coupled plasma to a resonantly sustained plasma is discussed. During this transition or lock-on (which occurs in a few RF cycles, a time scale much faster then ion related frequencies), the plasma changes dramatically: the electron kinetic energy and the plasma potential more than doubles; the circuit impedance of the discharge goes from capacitive to resistive; the motion of bulk plasma changes from nearly in phase to nearly out of phase with the voltage drive; and the characteristic heating pattern of these discharges takes shape. In these discharges, the formation of high velocity electron bunches in the sheath regions is seen. During an RF cycle, these bunches are alternately accelerated from each sheath into the bulk plasma. The authors speculate these bunches provide the ionization in resonantly sustained discharges. They also speculate that the lock-on process is similar to the mode-jumping seen in other resonantly and surface wave sustained discharges.

  9. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    NASA Astrophysics Data System (ADS)

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-01

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T1-T2 and diffusion-T2), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  10. 93Nb Nuclear Quadrupole Resonance in Orthorhombic Phase of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Abe, Yoshihito

    1982-05-01

    The 93Nb NQR has been investigated in one phase of NbBr5 which was identified to be orthorhombic by the X-ray analysis. The resonance frequencies have been measured between 4.2 K and 423 K, its melting point. The coupling constant showed a positive temperature dependence up to melting point. The temperature dependence of the coupling constant is compared between NbBr5 and NbCl5 from the view point of π-bond character.

  11. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    SciTech Connect

    Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.

    2013-09-15

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  12. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments.

    PubMed

    Smith, Doran D; Alexson, Dimitri A; Garbini, Joseph L

    2013-09-01

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner. PMID:24089869

  13. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    NASA Astrophysics Data System (ADS)

    Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.

    2013-09-01

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  14. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures.

    PubMed

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-01

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously-a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK. PMID:26133831

  15. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    SciTech Connect

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-15

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  16. A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2015-06-01

    We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

  17. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model. PMID:22588584

  18. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  19. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  20. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    NASA Astrophysics Data System (ADS)

    Lu, Qishao; Gu, Huaguang; Yang, Zhuoqin; Shi, Xia; Duan, Lixia; Zheng, Yanhong

    2008-12-01

    Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.

  1. Search for resonances decaying to top and bottom quarks with the CDF experiment

    SciTech Connect

    Aaltonen, Timo Antero

    2015-08-03

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √s = 1.96 TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb–1. No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W' → tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300–900 GeV/c2 range. As a result, the limits presented here are the most stringent for a charged resonance with mass in the range 300–600 GeV/c2 decaying to top and bottom quarks.

  2. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Anzà, F.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bianchi, L.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-08-01

    We report on a search for charged massive resonances decaying to top (t ) and bottom (b ) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √{s }=1.96 TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb-1 . No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to t b . Using a standard model extension with a W'→t b and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300 - 900 GeV /c2 range. The limits presented here are the most stringent for a charged resonance with mass in the range 300 - 600 GeV /c2 decaying to top and bottom quarks.

  3. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    NASA Astrophysics Data System (ADS)

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-05-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate.

  4. Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Anzà, F; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bianchi, L; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-08-01

    We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √[s]=1.96  TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5  fb(-1). No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W'→tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300-900  GeV/c(2) range. The limits presented here are the most stringent for a charged resonance with mass in the range 300-600  GeV/c(2) decaying to top and bottom quarks. PMID:26296108

  5. Neutron emission spectroscopy results for internal transport barrier and mode conversion ion cyclotron resonance heating experiments at JET

    SciTech Connect

    Giacomelli, L.; Hjalmarsson, A.; Hellesen, C.; Conroy, S.; Sunden, E. Andersson; Ericsson, G.; Johnson, M. Gatu; Sjoestrand, H.; Weiszflog, M.; Kaellne, J.; Tardocchi, M.; Gorini, G.

    2008-10-15

    The effect of ion cyclotron resonance heating (ICRH) on ({sup 3}He)D plasmas at JET was studied with the time of flight optimized rate (TOFOR) spectrometer dedicated to 2.5 MeV dd neutron measurements. In internal transport barrier (ITB) plasma experiments with large {sup 3}He concentrations (X({sup 3}He)>15%) an increase in neutron yield was observed after the ITB disappeared but with the auxiliary neutral beam injection and ICRH power still applied. The analysis of the TOFOR data revealed the formation of a high energy (fast) D population in this regime. The results were compared to other mode conversion experiments with similar X({sup 3}He) but slightly different heating conditions. In this study we report on the high energy neutron tails originating from the fast D ions and their correlation with X({sup 3}He) and discuss the light it can shed on ICRH-plasma power coupling mechanisms.

  6. A p-spin high-pass filter using radiofrequency field gradients for homonuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Canet, Daniel; Mutzenhardt, Pierre; Brondeau, Jean

    Traditional multiple-quantum filtering in nuclear magnetic resonance spectroscopy relies on the acquisition of several transients along with appropriate phase cycling. It is shown that similar results can be obtained in one transient by using a cluster of two radiofrequency field (B1) gradient pulses (g1)x(rg1)y where g1 and rg1 denote the durations of the B1 gradient pulses and the subscripts x and y the transmitter phases. This filter acts on single-quantum antiphase coherences and is of high-pass nature. The choice of r determines the order of the filter (according to the number of spins belonging to the system considered). This property is demonstrated theoretically and verified experimentally by dedicated one-dimensional experiments and COSY-type two-dimensional experiments.

  7. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  8. Switching from visibility to invisibility via Fano resonances: theory and experiment.

    PubMed

    Rybin, Mikhail V; Filonov, Dmitry S; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

    2015-01-01

    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324

  9. Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2015-03-01

    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.

  10. Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment

    PubMed Central

    Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2015-01-01

    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324

  11. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    SciTech Connect

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  12. Accurate protein-peptide titration experiments by nuclear magnetic resonance using low-volume samples.

    PubMed

    Köhler, Christian; Recht, Raphaël; Quinternet, Marc; de Lamotte, Frederic; Delsuc, Marc-André; Kieffer, Bruno

    2015-01-01

    NMR spectroscopy allows measurements of very accurate values of equilibrium dissociation constants using chemical shift perturbation methods, provided that the concentrations of the binding partners are known with high precision and accuracy. The accuracy and precision of these experiments are improved if performed using individual capillary tubes, a method enabling full automation of the measurement. We provide here a protocol to set up and perform these experiments as well as a robust method to measure peptide concentrations using tryptophan as an internal standard. PMID:25749962

  13. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W. ); Downs, E.A. Cornell Univ., Ithaca, NY ); James, R.A. Lawrence Livermore National Lab., CA ); Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gors

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15[degree] to the radial. In this experiment, with pulse lengths [approx equal] 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of [approx equal] 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21[degree] off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths [approx equal] 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  14. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W.; Downs, E.A. |; James, R.A. |; Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gorshkov, A.V.; Gorelov, Y.A.; Esipchuk, Y.V.; Ivanov, N.V.; Kislov, A.Y.; Kislov, D.A.; Lysenko, S.E.; Medvedev, A.A.; Mirenskii, V.Y.; Notkin, G.E.; Parail, V.V.; Pavlov, Y.D.; Razumova, K.A.; Roi, I.N.; Savrukhin, P.V.; Sannikov, V.V.; Sushkov, A.V.; Trukhin, V.M.; Vasin, N.L.; Volkov, V.V.; Denisov, G.G.; Petelin, M.I.; Flyagin, V.A.

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15{degree} to the radial. In this experiment, with pulse lengths {approx_equal} 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of {approx_equal} 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21{degree} off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths {approx_equal} 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  15. Magnetic Resonance-Guided Percutaneous Cryoablation of Uterine Fibroids: Early Clinical Experiences

    SciTech Connect

    Sakuhara, Yusuke Shimizu, Tadashi; Kodama, Yoshihisa; Sawada, Akihiro; Endo, Hideho; Abo, Daisuke; Hasegawa, Tenshu; Miyasaka, Kazuo

    2006-08-15

    Purpose. Uterine fibroids (leiomyomas) are the most common tumors of the uterus. The present study evaluated the feasibility and effectiveness of magnetic resonance (MR)-guided percutaneous cryoablation for uterine fibroids as a minimally invasive treatment alternative. Methods. From August 2001 to June 2002, MR-guided percutaneous cryoablation was performed on seven uterine fibroids in 6 patients who displayed clinical symptoms related to tumors. Using a horizontal-type open MR system, cryoablation probes were percutaneously placed in fibroids. Fibroids were ablated, and the site and size of ice balls were monitored on MR imaging. Postoperatively, patients completed a questionnaire to assess changes in presenting clinical symptoms, and MR images were obtained for all patients at follow-up. Changes in clinical symptoms and tumor volume were evaluated in each patient. Results. All treated patients showed reductions in tumor size. Mean volume reduction rate was 40.3% at 6 weeks postoperatively, and 79.4% at 9-12 months. All patients reported fever after treatment. Surgical drainage was required for abscess in the probe channel in one patient, and transient liver damage occurred in another. Subjective symptoms improved in all patients except one who had multiple tumors, and no patient complained of new symptoms after cryoablation during follow-up. Conclusion. MR-guided percutaneous cryoablation represents a feasible and effective treatment for uterine fibroids.

  16. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au.

    PubMed

    Capelli, R; Mahne, N; Koshmak, K; Giglia, A; Doyle, B P; Mukherjee, S; Nannarone, S; Pasquali, L

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states. PMID:27421398

  17. Development of Low Temperature Nuclear Magnetic Resonance Force Microscopy (NMRFM) Experiments for Probing Nanoscale Films and Microcrystals

    NASA Astrophysics Data System (ADS)

    Paster, Jeremy; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    2014-03-01

    Force detection of nuclear spins is accomplished by coupling NMR spin-flip sequences to a mechanical oscillator. A thin ferromagnet deposited on the tip of the oscillator sets up a large gradient magnetic field in the vicinity of the spins. This provides a magnetic force signature which we can distinguish from the thermal noise of the oscillator. The gradient field also traces out a slice in space in which spins are resonantly tuned to the RF field. We review the advantages of various strategies for inducing nuclear spin flips including cantilever-driven and RF-modulation techniques. We also report on the current state of the project, highlighting important developments and experimental results. In particular, we've adapted a low temperature NMRFM probe for easy transition between thin-film and microcrystal experiments. In one configuration, we orient the oscillator perpendicular to the sample plane so we can work in the region where the ferromagnet's field gradient is largest. Conversely, we can rotate the oscillator 90 degrees to change the geometry of the gradient field. With this orientation we maximize resolution in one dimension by using the flat part of the resonance slice to pick up as many in-plane nuclei as we can.

  18. Resonant infrared laser-induced desorption of methane condensed on NaCl(100): isotope mixture experiments.

    PubMed

    Redlich, Britta; Zacharias, Helmut; Meijer, Gerard; von Helden, Gert

    2006-01-28

    Resonantly enhanced infrared laser-induced desorption of methane condensed on a single-crystal NaCl(100) surface is observed after excitation with the widely tunable infrared laser output of the free-electron laser at the free-electron laser for infrared experiments facility using mass spectroscopic detection and time-of-flight analysis. Desorption of methane is observed only when the exciting light is in resonance with an internal vibrational mode of the molecule. Different intramolecular modes of the three methane isotopologues under study--CH(4), CD(4), and CD(3)H--are excited; the degenerate deformation mode nu(4) is observed for CH(4) and CD(4) at 7.69 and 10.11 microm, respectively, as well as the nu(2) and nu(4) modes of CD(3)H at 7.79, 9.75, and 9.98 microm. The desorption signals for the pure layers of these different methane isotopologues as well as for different mixtures of two of these are investigated as a function of the infrared wavelength and the laser fluence. The desorption behavior for pure and mixed layers is compared and the underlying desorption mechanism is discussed. PMID:16460197

  19. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    NASA Astrophysics Data System (ADS)

    Capelli, R.; Mahne, N.; Koshmak, K.; Giglia, A.; Doyle, B. P.; Mukherjee, S.; Nannarone, S.; Pasquali, L.

    2016-07-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  20. Nuclear Quadrupole Resonance Studies of the Sorc Sequence and Nuclear Magnetic Resonance Studies of Polymers.

    NASA Astrophysics Data System (ADS)

    Jayakody, Jayakody R. Pemadasa

    1993-01-01

    The behavior of induction signals during steady -state pulse irradiation in ^{14} N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, Cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work Nitrocellulose isotopically highly enriched with ^{15}N was studied at four different temperatures between 27^ circ and 120^circ Celsius and the correlation times for polymer backbone motions were obtained. Nafion films containing, water (D_2 O and H_2^{17}O) and methanol (CH_3OD, CH _3^{17}OH), have been studied using Deuteron and Oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the ^2H NMR lineshapes. Activation energies extracted from ^2H spin-lattice relaxation data on the high temperature side of the T_1 minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotropy of the host polymer. Activation volumes corresponding to a specific dynamical

  1. Focusing twist reflector for electron-cyclotron resonance heating in the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Stallard, B.W.; Coffield, F.E.; Felker, B.; Taska, J.; Christensen, T.E.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1984-05-01

    A twist reflector plate is described that linearly polarizes and focuses the TE/sub O/sub 1// circular waveguide mode for heating hot electrons in the thermal barrier of the Tandem Mirror Experiment-Upgrade (TMX-U). The plate polarizing efficiency is 95%, and it has operated satisfactorily at 150 kW power level.

  2. Geomagnetic field-line resonant harmonics measured by the Viking and AMPTE/CCE magnetic field experiments

    NASA Technical Reports Server (NTRS)

    Zanetti, L. J.; Potemra, T. A.; Erlandson, R. E.; Engebretson, M. J.; Acuna, M. H.

    1987-01-01

    The first simultaneous observations of multiple harmonic, azimuthally polarized, ULF pulsations at two points along a geomagnetic flux tube in space are reported. In March 1986, the elliptically orbiting equatorial AMPTE/CCE satellite was oriented with the apogee near 0830 h MLT, and the orbital plane of the polar-orbiting Viking satellite was at 1000 MLT. The satellites were situated within approximately the same flux tube but with an effective separation of approximately 10 R(e) near L = 8 on the inbound pass of the AMPTE/CCE orbit. Structured harmonic pulsations were observed by the magnetic field experiments on both spacecraft, and they appeared to turn off and on simultaneously at both locations. Both the observations and the relative amplitudes along the magnetic field lines support recent ideas of multiple field-line resonances of Alfven waves.

  3. Construction of a 100kW Electron Cyclotron Resonant Heating (ECRH) system on the Madison Plasma Dynamo Experiment (MPDX)

    NASA Astrophysics Data System (ADS)

    Clark, M. M.; Milhone, J.; Nonn, P.; Wallace, J. P.; Forest, C. B.; WiPAL Team

    2015-11-01

    A system of five 20 kW magnetrons is being installed for the Madison Plasma Dynamo Experiment (MPDX) to produce and heat the plasma with RF energy. Each magnetron will receive 2.5A of 14kV DC power. The source of the DC power is from a 240V three phase line which is transformed to high voltage, rectified, and processed through a series modulator regulator circuit. The RF is transmitted to the vessel via WR284 waveguide. The actions taken to develop the DC power source will be discussed and illustrated. The vessel of MPDX is a 3 meter diameter sphere comprised of two nearly identical hemispherical shells of 1.25'' thick cast aluminum. 36 Rings of SmCo magnets attached to the inner vessel surface create a cusp field to contain the plasma and provide a resonance surface for the RF.

  4. High-resolution solid-state nuclear magnetic resonance experiments on highly radioactive ceramics

    NASA Astrophysics Data System (ADS)

    Farnan, Ian; Cho, Herman; Weber, William J.; Scheele, Randall D.; Johnson, Nigel R.; Kozelisky, Anne E.

    2004-12-01

    A triple-containment magic-angle spinning rotor insert system has been developed and a sample handling procedure formulated for safely analyzing highly radioactive solids by high-resolution solid-state NMR. The protocol and containment system have been demonstrated for magic-angle spinning (MAS) experiments on ceramic samples containing 5-10 wt % 239Pu and 238Pu at rotation speeds of 3500 Hz. The technique has been used to demonstrate that MAS NMR experiments can be used to measure amorphous atomic number fractions produced by accelerated internal radiation damage. This will allow incorporated α-emitters with short half-lives to be used to model the long-term radiation tolerance of potential ceramic radioactive waste forms. This is an example of MAS NMR spectroscopy on samples containing fissionable isotopes.

  5. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.

    PubMed

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  6. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation

    NASA Astrophysics Data System (ADS)

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  7. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments

    PubMed Central

    Elgabarty, Hossam; Khaliullin, Rustam Z.; Kühne, Thomas D.

    2015-01-01

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol−1. The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems. PMID:26370179

  8. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments.

    PubMed

    Elgabarty, Hossam; Khaliullin, Rustam Z; Kühne, Thomas D

    2015-01-01

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol(-1). The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems. PMID:26370179

  9. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented. PMID:26931949

  10. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Thomae, R.; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  11. Dynamics of cross polarization in solid state nuclear magnetic resonance experiments of amorphous and heterogeneous natural organic substances.

    PubMed

    Conte, Pellegrino; Berns, Anne E

    2008-09-01

    Nuclear magnetic resonance (NMR) experiments on carbon-13 in the solid state were done with cross polarization (CP) and magic angle spinning (MAS) in order to overcome the low NMR sensitivity of (13)C and the chemical shift anisotropy, respectively. In the present research, CPMAS (13)C-NMR spectra were collected by modulating the contact time needed for cross polarization (variable contact times experiments, VCT) on two different humic acids (a soil-HA and a coal-HA). VCT data were fitted by a model containing either a monotonic or a non-monotonic cross polarization term. The non-monotonic model, which fitted the experimental results better than the monotonic one, provided two cross-polarization rates, thereby suggesting that two different mechanisms for the energy transfer from protons to carbons arise in amorphous and heterogeneous humic substances. The first mechanism was a fast proton-to-carbon energy transfer due to protons directly bound to carbons. The second mechanism was related to a slow transfer mediated by local segmental motions. Different domains in the humic acids were identified. Soil-HA was made of rigid domains, containing mainly aromatic and carboxylic moieties, and fast moving domains, containing alkyl, C-O and C-O groups. Coal-HA showed a rigid aromatic domain that was differentiated from a very mobile domain made of alkyl and COOH groups. PMID:18781033

  12. Low-energy physical properties of high- Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Yu; Shih, C. T.; Chou, C. P.; Huang, S. M.; Lee, T. K.; Xiang, T.; Zhang, F. C.

    2006-06-01

    In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high-temperature superconducting (SC) Cu oxides. Here we extend previous calculations to study more systematically the low-energy physical properties of the plain vanilla d -wave RVB state, and to compare the results with the available experiments. We use a renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0) , the superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes (including kF , the Fermi velocity vF , and the velocity along Fermi surface v2 ), and the SC order parameter are studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.

  13. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    USGS Publications Warehouse

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging, T 2, to the relaxation parameter T 2 * measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T 2 data were transformed to pseudo-T 2 * data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T 2 * obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources. Copyright 2012 by the American Geophysical Union.

  14. SU-E-J-181: Magnetic Resonance Image-Guided Radiation Therapy Workflow: Initial Clinical Experience

    SciTech Connect

    Green, O; Kashani, R; Santanam, L; Wooten, H; Li, H; Rodriguez, V; Hu, Y; Mutic, S; Hand, T; Victoria, J; Steele, C

    2014-06-01

    Purpose: The aims of this work are to describe the workflow and initial clinical experience treating patients with an MRI-guided radiotherapy (MRIGRT) system. Methods: Patient treatments with a novel MR-IGRT system started at our institution in mid-January. The system consists of an on-board 0.35-T MRI, with IMRT-capable delivery via doubly-focused MLCs on three {sup 60} Co heads. In addition to volumetric MR-imaging, real-time planar imaging is performed during treatment. So far, eleven patients started treatment (six finished), ranging from bladder to lung SBRT. While the system is capable of online adaptive radiotherapy and gating, a conventional workflow was used to start, consisting of volumetric imaging for patient setup using visible tumor, evaluation of tumor motion outside of PTV on cine images, and real-time imaging. Workflow times were collected and evaluated to increase efficiency and evaluate feasibility of adding the adaptive and gating features while maintaining a reasonable patient throughput. Results: For the first month, physicians attended every fraction to provide guidance on identifying the tumor and an acceptable level of positioning and anatomical deviation. Average total treatment times (including setup) were reduced from 55 to 45 min after physician presence was no longer required and the therapists had learned to align patients based on soft-tissue imaging. Presently, the source strengths were at half maximum (7.7K Ci each), therefore beam-on times will be reduced after source replacement. Current patient load is 10 per day, with increase to 25 anticipated in the near future. Conclusion: On-board, real-time MRI-guided RT has been incorporated into clinical use. Treatment times were kept to reasonable lengths while including volumetric imaging, previews of tumor movement, and physician evaluation. Workflow and timing is being continuously evaluated to increase efficiency. In near future, adaptive and gating capabilities of the system will

  15. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.

    PubMed

    Pensala, Tuomas; Ylilammi, Markku

    2009-08-01

    Zinc-oxide-based thin-film bulk acoustic wave (BAW) resonators operating at 932 MHz are investigated with respect to variation of dimensions of a boundary frame spurious mode suppression structure. A plate wave dispersion-based semi-2-D model and a 2-D finite element method are used to predict the eigenmode spectrum of the resonators to explain the detailed behavior. The models show how the boundary frame method changes the eigenmodes and their coupling to the driving electrical field via the modification of the mechanical boundary condition and leads to emergence of a flat-amplitude piston mode and suppression of spurious modes. Narrow band suppression of a single mode with a nonoptimal boundary frame is observed. Reduction of the effective electromechanical coupling coefficient k2eff as a function of the boundary width is observed and predicted by both models. The simple semi-2-D plate model is shown to predict the device behavior very well, and the 2-D finite element method results are shown to coincide with them with some additional effects. Breaking the resonator behavior down to eigenmodes, which are not directly observable in measurements, by the models, yields insight into the physics of the device operation. PMID:19686989

  16. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  17. Technical challenges in 3 T magnetic resonance spectroscopic imaging of the prostate—A single-institution experience

    PubMed Central

    Underwood, Michelle; Boonsirikamchai, Piyaporn; Matin, Surena; Troncoso, Patricia; Ma, Jingfei

    2014-01-01

    The magnetic resonance spectroscopic imaging (MRSI) is the only technique that is currently available in the clinical practice to provide the metabolic status of prostate tissue at the cellular level with a great potential to improve the clinical patient care. Increasing the field strength from 1.5 to 3 T can theoretically provide proportionately higher signal-to-noise ratio (SNR) and improve spectral separation between prostatic metabolite peaks. The technique, however, has been limited to a few academic institutions that are equipped with a team of experts primarily due to due to serious technical challenges in optimizing the spectral quality. High quality shimming is key to the successful MRSI acquisition. Without optimization of the increased field inhomogeneity and radiofrequency (RF) dielectric effect at 3 T, the spectral peak broadening and residual signal from the periprostatic fat tissue may render the overall spectra non-diagnostic. The purpose of this technical note is to present the practical steps of successful acquisition of 3 T MRSI and to address several important technical challenges in minimizing the effect of the increased magnetic field and RF field inhomogeneity in order to obtain highest possible spectral quality based on our initial experience in using 3 T MRSI prototype software. PMID:25202660

  18. Technical challenges in 3 T magnetic resonance spectroscopic imaging of the prostate-A single-institution experience.

    PubMed

    Choi, Haesun; Underwood, Michelle; Boonsirikamchai, Piyaporn; Matin, Surena; Troncoso, Patricia; Ma, Jingfei

    2014-08-01

    The magnetic resonance spectroscopic imaging (MRSI) is the only technique that is currently available in the clinical practice to provide the metabolic status of prostate tissue at the cellular level with a great potential to improve the clinical patient care. Increasing the field strength from 1.5 to 3 T can theoretically provide proportionately higher signal-to-noise ratio (SNR) and improve spectral separation between prostatic metabolite peaks. The technique, however, has been limited to a few academic institutions that are equipped with a team of experts primarily due to due to serious technical challenges in optimizing the spectral quality. High quality shimming is key to the successful MRSI acquisition. Without optimization of the increased field inhomogeneity and radiofrequency (RF) dielectric effect at 3 T, the spectral peak broadening and residual signal from the periprostatic fat tissue may render the overall spectra non-diagnostic. The purpose of this technical note is to present the practical steps of successful acquisition of 3 T MRSI and to address several important technical challenges in minimizing the effect of the increased magnetic field and RF field inhomogeneity in order to obtain highest possible spectral quality based on our initial experience in using 3 T MRSI prototype software. PMID:25202660

  19. An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators II: design of measurement and experiments.

    PubMed

    Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji

    2004-02-01

    In this paper, we present the design of measurements for single crystals by using the general results in Part I of this paper. The selection of impedance measurement or admittance measurement for both bar and plate type resonators is dependent on whether the cutting orientation l is parallel to or perpendicular to the electric field direction n. Two matrices A and B, which are defined in part I of this paper, are major tools used for the measurement design. For different cutting orientations, the elements in matrix A are associated with different elastic and piezoelectric constants. Matrix B reveals what vibration modes can be excited electrically and how to excite them. With the aid of matrices A and B, the design of measurement becomes straightforward. The measurement for a rhombohedral class (3m) LiNbO3 single crystal is used as an example to demonstrate the experiment and calculation procedures. It is found that by using either three thin bars and one plate or three plates and one thin bar we can completely characterize the complex materials constants of a LiNbO3 single crystal. PMID:15055814

  20. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising. PMID:26979686

  1. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-11-18

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

  2. Variation of the resonance width of HOCl(6{nu}{sub OH}) with total angular momentum: Comparison between {ital ab initio} theory and experiment

    SciTech Connect

    Skokov, S.; Bowman, J.M.

    1999-05-01

    Complex L{sup 2} calculations of the variation of (very narrow) resonance widths of the 6{nu}{sub OH} state of HOCl with total angular momentum are reported, using a recently developed, accurate {ital ab initio} potential energy surface [S. Skokov, J. M. Bowman, and K. A. Peterson, J. Chem. Phys. {bold 109}, 2662 (1998)]. The calculations are carried out within the adiabatic rotation approximation for the overall rotation and a truncation/recoupling method for the vibrational states. Comparisons with recent double-resonance experiments of the Rizzo and Sinha groups are made. The variation of resonance width with {ital J} for {ital K}=0 is shown to be due to rotation-induced coupling of the 6{nu}{sub OH} state with a dense set of states with large excitation in the dissociative coordinate. {copyright} {ital 1999 American Institute of Physics.}

  3. Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab

    SciTech Connect

    Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

    2011-03-01

    The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

  4. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz.

    PubMed Central

    Heerschap, A; Haasnoot, C A; Hilbers, C W

    1983-01-01

    Resonances of the water exchangeable iminoprotons of the tertiary structure of yeast tRNAPhe were studied by experiments involving Nuclear Overhauser Effects (NOE's). Direct NOE evidence is presented for the assignment of all resonances of iminoprotons participating in tertiary basepairing (except that of G19C56 which was assigned by an elimination procedure). The present results in conjunction with our previous assignment of secondary iminoprotons constitute for the first time a complete spectral assignment of all iminoprotons participating in basepairing in yeast tRNAPhe. In addition we have been able to assign the non(internally) hydrogen bonded N1 proton of psi 55 as well as the N3 proton of this residue, which is one of the two iminoprotons hydrogen bonded to a phosphate group according to X-ray results. No evidence could be obtained for the existence in solution of the other iminoproton-phosphate interaction: that between U33 N3H and P36 located in the anticodon loop. Remarkable is the assignment of a resonance at 12.4 - 12.5 ppm to the iminoproton of the tertiary basepair T54m1A58. The resonance positions obtained for the iminoprotons of G18 (9.8 ppm) and m2(2)G26 (10.4 ppm) are surprisingly far upfield considering that these protons are involved in hydrogen bonds according to X-ray diffraction results. As far as reported by changes in chemical shifts of iminoproton resonances the main structural event induced by Mg++ ions takes place near the tertiary interactions U8A14 and G22m7G46. PMID:6346269

  5. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    NASA Technical Reports Server (NTRS)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  6. Improved apparatus for trapped radical and other studies down to 1.5 K. [microwave cavity cryogenic equipment for electron paramagnetic resonance experiments

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Sugawara, K.

    1978-01-01

    A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.

  7. How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward P.; Morrison, Greg; Brooks, Bernard R.; Thirumalai, D.

    2009-03-01

    Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, ⟨E⟩, the distance distribution P(R ) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R ) is determined by equating the calculated and measured ⟨E⟩. In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [⟨E⟩ and P(R )] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed ⟨E⟩ for the GRM and protein L, we infer P(R ) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using ⟨E⟩ and polymer models for P(R ). However, the value extracted for the radius of gyration (Rg) and the persistence length (lp) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred Rg and lp, with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of ⟨E⟩ by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order→disorder transition, the Gaussian P(R ) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET

  8. Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    SciTech Connect

    Baek, Seung H

    2009-01-01

    We report {sup 209}Bi nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U{sub 3}Bi{sub 4}Ni{sub 3}. The {sup 209}Bi nuclear-spin-lattice relaxation rate (T{sub 1}{sup -1}) shows activated behavior and is well fit by a spin gap of 220 K. The {sup 209}Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

  9. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  10. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). PMID:25910551

  11. Long-lived frequency shifts observed in a magnetic resonance force microscope experiment following microwave irradiation of a nitroxide spin probe

    SciTech Connect

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2013-04-01

    We introduce a spin-modulation protocol for force-gradient detection of magnetic resonance that enables the real-time readout of longitudinal magnetization in an electron spin resonance experiment involving fast-relaxing spins. We applied this method to observe a prompt change in longitudinal magnetization following the microwave irradiation of a nitroxide-doped perdeuterated polystyrene film having an electron spin-lattice relaxation time of T{sub 1}{approx}1ms. The protocol allowed us to discover a large, long-lived cantilever frequency shift. Based on its magnitude, lifetime, and field dependence, we tentatively attribute this persistent signal to deuteron spin magnetization created via transfer of polarization from nitroxide spins.

  12. Bonding and molecular motions in the 1:1 molecular complexes of 1,4-diazabicyclo[2.2.2]octane with tetrahalomethane as studied by means of NQR

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Suzuki, T.; Negita, H.

    1983-12-01

    NQR spectra were observed in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with tetrachloromethane and tetrabromomethane at various temperatures. A phase transition was found at 319 K for DABCO·CBr 4. From spin-lattice relaxation times of nitrogen-14 in DABCO·CBr 4, the activation energy of the reorientation of DABCO about the NN axis was calculated to be 18.3 kJ/mol which agrees with the value obtained from the second moment of proton NMR spectra. The bond nature is discussed using the Townes-Dailey treatment.

  13. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  14. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  15. Experiments on multiple-receiver magnetic resonance-based wireless power transfer in low megahertz with metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Le; Hu, Yuli; Zheng, Wei

    2016-04-01

    In this paper, an efficient magnetic resonance-based wireless power transfer (MRWPT) system with metamaterials is proposed. The negative permeability (MNG) metamaterials for this system with low-megahertz frequency is designed, which can be adjusted to work well at a variable receiving angle ranging from 0° to 45° along z-direction. The S-parameters, resonant frequency and permeability of metamaterials are computed for analysis. The transmission efficiency of the multiple-receiver MRWPT system in free space is compared to that in the presence of metamaterials placed in front of transmission and receive coils. The measured results show that the performance of the proposed metamaterials is perfect in improving the efficiency with incident electromagnetic waves from various directions.

  16. Extending the direct laser modulation bandwidth by exploiting the photon-photon resonance: modeling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Dumitrescu, M.; Laakso, A.; Viheriala, J.; Kamp, M.; Bardella, P.; Eisenstein, G.

    2013-03-01

    The direct laser modulation bandwidth can be extended substantially by introducing a supplementary photon-photon resonance (PPR) at a higher frequency than the carrier-photon resonance (CPR). The paper presents a modified rate equation model that takes into account the PPR by treating the longitudinal confinement factor as a dynamic variable. The conditions required for obtaining a strong PPR and an enhancement of the small-signal modulation bandwidth are analyzed and experimental results confirming the model are presented. Since the small-signal modulation bandwidth may not be indicative of the large-signal modulation capability, particularly in case of a small-signal modulation response with substantial variations across the bandwidth, we have also analyzed the influence of the PPR-enhanced small-signal modulation response shape on the large-signal modulation capability as well as the methods that can be employed to flatten the small-signal modulation transfer function between the CPR and PPR.

  17. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite.

    PubMed

    Hwang, Tiffany J; Girard, Erin; Shellikeri, Sphoorti; Setser, Randolph; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie

    2016-03-01

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. PMID:26681438

  18. Anisotropic pairing in superconducting Sr{sub 2}RuO{sub 4}: Ru NMR and NQR studies

    SciTech Connect

    Ishida, K.; Kitaoka, Y.; Asayama, K.; Ikeda, S.; Nishizaki, S.; Maeno, Y.; Yoshida, K.; Fujita, T.

    1997-07-01

    Ru NMR and nuclear quadrupole resonance studies are reported on single-crystal Sr{sub 2}RuO{sub 4} (T{sub c}=0.7 K) with the same layered perovskite structure as La{sub 2}CuO{sub 4}. The Pauli spin susceptibility deduced from the Ru Knight shift is found to be largely enhanced by a factor of {approximately}5.4 as compared with the value from the band calculation. In the superconducting state, the nuclear spin-lattice relaxation rate 1/T{sub 1} exhibits a sharp decrease with no coherence peak just below T{sub c} and the T{sub 1}T=constant behavior well below T{sub c}, suggesting that the anisotropic pairing state is realized as in heavy-fermion and high-T{sub c} superconductors. {copyright} {ital 1997} {ital The American Physical Society}

  19. Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Seo, M. A.; Park, D. J.; Jeoung, S. C.; Park, Q. H.; Lienau, Ch.; Kim, D. S.

    2006-12-01

    We report on a perfect transmission in one-dimensional metallic structure using time-domain terahertz spectroscopy. Fabry-Perot resonance appearing in spectral region below first Rayleigh minimum strongly enhances transmission up to over ninety-nine percent. Theoretical calculations reveal that under the perfect transmission condition, a symmetric eigenmode inside the slits is excited and a funneling of all incident energy onto the slits occurs, resulting in large energy concentration equivalent to the inverse sample coverage and high near-field enhancement of electric and magnetic field intensities. Our work opens way toward near-field terahertz amplification, applicable to high-field terahertz spectroscopy.

  20. 3 Tesla magnetic resonance spectroscopy: cerebral gliomas vs. metastatic brain tumors. Our experience and review of the literature.

    PubMed

    Caivano, R; Lotumolo, A; Rabasco, P; Zandolino, A; D'Antuono, F; Villonio, A; Lancellotti, M I; Macarini, L; Cammarota, A

    2013-08-01

    The aim of the present study is to report about the value of magnetic resonance spectroscopy (MRS) in differentiating brain metastases, primary high-grade gliomas (HGG) and low-grade gliomas (LGG). MRI (magnetic resonance imaging) and MRS were performed in 60 patients with histologically verified brain tumors: 32 patients with HGG (28 glioblastomas multiforme [GBM] and 4 anaplastic astrocytomas), 14 patients with LGG (9 astrocytomas and 5 oligodendrogliomas) and 14 patients with metastatic brain tumors. The Cho/Cr (choline-containing compounds/creatine-phosphocreatine complex), Cho/NAA (N-acetyl aspartate) and NAA/Cr ratios were assessed from spectral maps in the tumoral core and peritumoral edema. The differences in the metabolite ratios between LGG, HGG and metastases were analyzed statistically. Lipids/lactate contents were also analyzed. Significant differences were noted in the tumoral and peritumoral Cho/Cr, Cho/NAA and NAA/Cr ratios between LGG, HGG and metastases. Lipids and lactate content revealed to be useful for discriminating gliomas and metastases. The results of this study demonstrate that MRS can differentiate LGG, HGG and metastases, therefore diagnosis could be allowed even in those patients who cannot undergo biopsy. PMID:23390934

  1. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.

    PubMed

    Ricci, Marilena; Platania, Elena; Lofrumento, Cristiana; Castellucci, Emilio M; Becucci, Maurizio

    2016-07-14

    The properties of o-Safranin (SO) dye in the first electronic excited state were studied with combined experimental and theoretical methods. The electronic absorption spectra of SO molecules are measured in water solution and in the presence of silver nanoparticles. The normal Raman (NRS) and resonance Raman (RR) spectra of solid SO and the surface enhanced Raman (SERS) and surface enhanced resonance Raman (SE[R]RS) spectra of SO adsorbed on silver nanoparticles are measured at different excitation energies. The enhancement factors for selected vibrational bands of the RR, SERS, and SE[R]RS spectra of SO have been obtained with respect to the NRS spectra of the solid after a careful evaluation of the experimental conditions. The data furnished useful information on the excited electronic states and the interactions of SO with silver nanoparticles. The experimental results are discussed on the basis of DFT and TD-DFT calculations (B3LYP/6-311+G(d,p)) on the isolated SO molecule. PMID:27139691

  2. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.

    PubMed

    Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

    1995-01-01

    A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'. PMID:7533569

  3. NEXAFS experiment and multiple scattering calculations on KO2: Effects on the π resonance in the solid phase

    NASA Astrophysics Data System (ADS)

    Pedio, M.; Wu, Z. Y.; Benfatto, M.; Mascaraque, A.; Michel, E.; Ottaviani, C.; Crotti, C.; Peloi, M.; Zacchigna, M.; Comicioli, C.

    2002-10-01

    The high-energy resolution O K-edge absorption near-edge x-ray absorption fine structure spectrum has been measured for in situ prepared potassium superoxide. The experimental data have been analyzed in detail by multiple scattering calculations using self-consistent field potentials. In particular, the so-called π resonance at the rising edge, which presents a double-peak structure, has been totally resolved and reproduced by the calculations. This analysis indicates that the grown material is arranged in a KO2 structure with an O-O distance between 1.31 and 1.34 Å. Moreover, the calculation demonstrates both a complete ionic character of the bound between the O2- anion and K atoms and a strong interaction between the anion and solid-state matrices.

  4. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  5. Dynamic contrast-enhanced and fat suppressed magnetic resonance imaging in suspected recurrent carcinoma of the breast: preliminary experience.

    PubMed

    Kerslake, R W; Fox, J N; Carleton, P J; Imrie, M J; Cook, A M; Bowsley, S J; Horsman, A

    1994-12-01

    20 women with suspected recurrent breast cancer who had undergone previous breast-conserving operations were investigated using dynamic contrast-enhanced gradient echo (GRE) and fat suppressed spin echo (SE) magnetic resonance (MR) imaging. Histologically confirmed recurrent tumour was readily recognized on dynamic GRE scans by virtue of rapid, early and avid enhancement. Benign scars enhanced more slowly and reached lower magnitudes of enhancement. Fat suppressed SE images, which were typically acquired 10 min after contrast administration, were sensitive for the detection of tumour recurrence but lacked specificity. Early scanning after contrast administration offers the best prospects for distinguishing tumour recurrence from benign scarring. The criteria used to distinguish these two entities are highly dependent on the scan technique and the time at which images are obtained post-contrast. PMID:7874413

  6. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone 15N and 13C‧/13Cα chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone 15N(i) chemical shifts with that of 13C‧ (i - 1)/13Cα (i - 1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate 15N chemical shifts and (ii) reduces the signal overlap in F2(15N)-F3(1H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.

  7. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks.

    PubMed

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone (15)N and (13)C'/(13)C(α) chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone (15)N(i) chemical shifts with that of (13)C' (i-1)/(13)C(α) (i-1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate (15)N chemical shifts and (ii) reduces the signal overlap in F2((15)N)-F3((1)H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively. PMID:24161682

  8. Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel

    2013-01-01

    The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810

  9. Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.

  10. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, G. Y.; Breslau, J. A.; Tritz, Kevin; Liu, J. Y.

    2013-07-01

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

  11. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment

    SciTech Connect

    Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.; Tritz, Kevin

    2013-07-15

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

  12. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  13. Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

    NASA Astrophysics Data System (ADS)

    Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine

    2015-02-01

    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

  14. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  15. Manipulation of the surface density of states of Ag(111) by means of resonators: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Moro-Lagares, María; Serrate, D.; Aligia, A. A.

    2016-08-01

    We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G (V )=d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G (V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states.

  16. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  17. Interlayer coupling in Ni80Fe20/Ru/Ni80Fe20 multilayer films: Ferromagnetic resonance experiments and theory

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Nguyen, Hoa T.; Ding, J.; Cottam, M. G.; Adeyeye, A. O.

    2014-08-01

    We present a systematic study of the static and dynamic magnetization behavior of interlayer-coupled Ni80Fe20(200Å)/Ru(tRu)/Ni80Fe20(100 Å) trilayers as a function of the Ru spacer layer thickness tRu. As tRu was varied in the range from 0 to 15.8 Å, we observe a strong antiferromagnetic (AFM) exchange coupling between the two ferromagnetic (FM) layers for tRu = 5 Å, which becomes weak for tRu = 10 Å. For tRu = 14.1 Å, the coupled magnetic system changes from AFM to FM ordering. Using broadband ferromagnetic resonance spectroscopy, we have probed the effects of the different coupling mechanisms on both the acoustic and optic magnetic modes. We found that the biquadratic exchange coupling has a negligible effect compared to Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange coupling, while the uniaxial anisotropy at the Ni80Fe20/Ru interfaces also plays an important role in determining the behaviors of the modes. A mode anticrossing phenomenon is observed when the RKKY exchange interaction term is above a critical value. A theoretical framework developed is in very good agreement with our experimental results.

  18. Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments

    PubMed Central

    Lissau, Henriette; Frisenda, Riccardo; Olsen, Stine T.; Jevric, Martyn; Parker, Christian R.; Kadziola, Anders; Hansen, Thorsten; van der Zant, Herre S. J.; Brøndsted Nielsen, Mogens; Mikkelsen, Kurt V.

    2015-01-01

    The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor–acceptor molecules. Here we report that donor–acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor–acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor–acceptor cruciforms is tuned by small changes in the environment. PMID:26667583

  19. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.

    PubMed

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6(1) and 6(1)1(1) vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62,271 ± 3 cm(-1)). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique. PMID:26133827

  20. Resolving the Role of Plant Glutamate Dehydrogenase. I. in vivo Real Time Nuclear Magnetic Resonance Spectroscopy Experiments

    PubMed Central

    Labboun, Soraya; Tercé-Laforgue, Thérèse; Roscher, Albrecht; Bedu, Magali; Restivo, Francesco M.; Velanis, Christos N.; Skopelitis, Damianos S.; Moshou, Panagiotis N.; Roubelakis-Angelakis, Kalliopi A.; Suzuki, Akira; Hirel, Bertrand

    2009-01-01

    In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time 15N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [15N]Glu or 15NH4+ respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants. PMID:19690000

  1. Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)

    SciTech Connect

    Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.

    1983-12-01

    Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U.

  2. Gyrotron anode modulation of the Electron Cyclotron Resonant Heating (ECRH) from dc to 50 kHz on the Tandem Mirror Experiment-Upgrade (TMX-U)

    SciTech Connect

    Williams, C.W.; Heefner, J.W.; Rupert, R.R.

    1985-11-11

    This paper describes control of gyrotron microwave energy output by modulation of gyrotron anode voltage. At present, Electron Cyclotron Resonant Heating (ECRH) uses five gyrotrons on the Tandem Mirror Experiment-Upgrade (TMX-U) for plasma heating. One is in the 10 kG region of each end plug, one at the 5 kG region of each end plug, and one is used for central-cell heating. Also described are the design and operation of the anode modulation system. The operating advantages of gyrotron anode modulation include power balance, independent control of each gyrotron, an ability to modulate microwave output power up to 50 kHz, and gyrotron tuning. The performance results of anode modulation will be discussed. 9 figs.

  3. Low-energy tail of the giant dipole resonance in Mo98 and Mo100 deduced from photon-scattering experiments

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Schwengner, R.; Dönau, F.; Erhard, M.; Grosse, E.; Junghans, A. R.; Kosev, K.; Schilling, K. D.; Wagner, A.; Bečvář, F.; Krtička, M.

    2008-06-01

    Dipole-strength distributions in the nuclides Mo98 and Mo100 up to the neutron-separation energies have been studied in photon-scattering experiments at the bremsstrahlung facility of the Forschungszentrum Dresden-Rossendorf. To determine the dipole-strength distributions up to the neutron-emission thresholds, statistical methods were developed for the analysis of the measured spectra. The measured spectra of scattered photons were corrected for detector response and atomic background by simulations using the code GEANT3. Simulations of γ-ray cascades were performed to correct the intensities of the transitions to the ground state for feeding from higher-lying levels and to determine their branching ratios. The photoabsorption cross sections obtained for Mo98 and Mo100 from the present (γ,γ') experiments are combined with (γ,n) data from literature, resulting in a photoabsorption cross section covering the range from 4 to about 15 MeV of interest for network calculations in nuclear astrophysics. Novel information about the low-energy tail of the giant dipole resonance and its energy dependence is derived. The photoabsorption cross sections deduced from the present photon-scattering experiments are compared with existing data from neutron capture and He3-induced reactions.

  4. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed.

    PubMed

    Boyce, Christopher M; Holland, Daniel J; Scott, Stuart A; Dennis, John S

    2013-12-18

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  5. Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed

    PubMed Central

    2013-01-01

    Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

  6. Time-resolved contrast-enhanced magnetic resonance angiography of the hand with parallel imaging and view sharing: initial experience.

    PubMed

    Brauck, Katja; Maderwald, Stefan; Vogt, Florian M; Zenge, Michael; Barkhausen, Jörg; Herborn, Christoph U

    2007-01-01

    We sought to compare a three-dimensional, contrast-enhanced, magnetic resonance angiogram (3D CE MRA) sequence combining parallel-imaging (generalised autocalibrating partially parallel acquisitions (GRAPPA)) with a time-resolved echo-shared angiographic technique (TREAT) in an intraindividual comparison to a standard 3D MRA sequence. Four healthy volunteers (27-32 years), and 11 patients (11-82 years) with vascular pathologies of the hand were examined on a 1.5-Tesla (T) MR system (Magnetom Avanto, Siemens, Erlangen, Germany) using two multichannel receiver coils. Following automatic injection (flow rate 2.5 cc/s) of 0.1 mmol/kg gadoterate (Dotarem, Guerbet, Roissy, France), 32 consecutive 3D data sets were collected with the TREAT sequence (TR/TE: 4.02/1.31 ms, FA: 10 degrees, GRAPPA acceleration factor: R=2, TREAT factor: 5, voxel size: 1.0 x 0.7 x 1.3 mm(3)) and a T1-wwighted 3D gradient-echo sequence (TR/TE: 5.3/1.57 ms, FA: 30 degrees, GRAPPA acceleration factor: 2, voxel size: 0.71 x 0.71 x 0.71 mm(3,)). MR data sets were evaluated and compared for image quality and visualisation of vascular details. In the volunteer group, all MR imaging was successful while technical problems prevented acquisition of the standard protocol in two patients. For the corresponding segments, the number of visible segments was equal on both sequences. Overall image quality was significantly better on the standard protocol than on the TREAT protocol. TREAT MRA provided functional information in lesions with rapid blood flow, e.g. detection of feeding and draining vessels in an haemangioma. TREAT-MRA is a robust technique that combines morphological and functional information of the hand vasculature and deals with the very special physiological demands of vascular lesions, such as quick arteriovenous transit time. PMID:16710664

  7. Development of a magnetic resonance imaging protocol to visualize encapsulated contrast agent markers in prostate brachytherapy recipients: initial patient experience

    PubMed Central

    Lim, Tze Yee; Wang, Jihong; Bathala, Tharakeswara; Szklaruk, Janio; Pugh, Thomas J.; Mahmood, Usama; Ibbott, Geoffrey S.; Frank, Steven J.

    2016-01-01

    Purpose Computed tomography (CT)-based prostate post-implant dosimetry allows for definitive seed localization but is associated with high interobserver variation in prostate contouring. Currently, magnetic resonance imaging (MRI)-based post-implant dosimetry allows for accurate anatomical delineation but is limited due to inconsistent seed localization. Encapsulated contrast agent markers were previously proposed to overcome the seed localization limitation on MRI images by placing hyperintense markers adjacent to hypointense seeds. The aim of this study was to assess the appearance of these markers in prostatic tissue, and develop an MRI protocol to enable marker visualization. Material and methods We acquired MRI scans in prostate implant patients (n = 10) on day 0 (day of implant) and day 30 (month after implant). Before implantation of the markers, the routine post-implant MRI protocol included a 3D T2-weighted fast-spin-echo (FSE) sequence with which markers and seeds could not be clearly visualized. To visualize the MRI markers, a 3D fast radiofrequency-spoiled gradient-recalled echo (FSPGR) sequence was evaluated for marker and seed visibility, as well as prostate boundary definitions. Results The 3D FSPGR sequence allowed for the visualization of markers in the prostate, enabling the distinction of signal voids as seeds versus needle tracks. The updated post-implant MRI protocol consists of this 3D FSPGR scan and an optional 3D T2-weighted FSE scan. The optional 3D T2-weighted FSE sequence may be employed to better visualize intraprostatic detail. We also described the observed image artifacts, including seed susceptibility, marker chemical shift, partial volume averaging, motion, and wraparound artifacts. Conclusions We have demonstrated an MRI protocol for use with hyperintense encapsulated contrast agent markers to assist in the identification of hypointense seeds. PMID:27504133

  8. Early detection of cervical spondylotic myelopathy using diffusion tensor imaging: Experiences in 1.5-tesla magnetic resonance imaging.

    PubMed

    Ahmadli, Uzeyir; Ulrich, Nils H; Yuqiang, Yao; Nanz, Daniel; Sarnthein, Johannes; Kollias, Spyros S

    2015-10-01

    The purpose of this study was to investigate the usefulness of diffusion tensor imaging (DTI) for early detection of pathological alterations in the myelon in patients with cervical spondylotic myelopathy (CSM) without T2-weighted imaging (T2W) signal abnormalities but with a narrowed spinal canal with corresponding clinical correlation. Axial DTI at 1.5T together with routine magnetic resonance imaging was performed on 18 patients fulfilling above mentioned criteria. Quantitative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated. Values at the narrowest cervical levels were compared to pre- and poststenotic levels and the interindividual means were tested for statistically significant differences by means of paired t-tests. The correlation between the grade and width of canal stenosis in the axial plane was measured. FA was significantly reduced at the stenotic level, compared to prestenotic level, whereas no significant differences were found when compared to poststenotic level. No significant differences between ADC values at stenotic level versus both adjacent non-stenotic levels were found, suggesting very early stage of degeneration. ADC values correlated significantly with the width of the spinal canal at the prestenotic level, but not at the poststenotic level. Findings indicate sufficient robustness of routine implementation of DTI at 1.5T to detect abnormalities in the spinal cord of CSM patients, before apparent T2W signal abnormalities and marked clinical deterioration. Therefore, larger and long-term studies should be conducted to establish the DTI scalar metrics that would indicate early intervention for a better clinical outcome in patients with clinical signs of CSM. PMID:26452521

  9. Comparing hepatic 2D and 3D magnetic resonance elastography methods in a clinical setting – Initial experiences

    PubMed Central

    Forsgren, Mikael F.; Norén, Bengt; Kihlberg, Johan; Dahlqvist Leinhard, Olof; Kechagias, Stergios; Lundberg, Peter

    2015-01-01

    Purpose Continuous monitoring of liver fibrosis progression in patients is not feasible with the current diagnostic golden standard (needle biopsy). Recently, magnetic resonance elastography (MRE) has emerged as a promising method for such continuous monitoring. Since there are different MRE methods that could be used in a clinical setting there is a need to investigate whether measurements produced by these MRE methods are comparable. Hence, the purpose of this pilot study was to evaluate whether the measurements of the viscoelastic properties produced by 2D (stiffness) and 3D (elasticity and ‘Gabs,Elastic’) MRE are comparable. Materials and methods Seven patients with diffuse or suspect diffuse liver disease were examined in the same day with the two MRE methods. 2D MRE was performed using an acoustic passive transducer, with a 1.5 T GE 450 W MR system. 3D MRE was performed using an electromagnetic active transducer, with a 1.5 T Philips Achieva MR system. Finally, mean viscoelastic values were extracted from the same anatomical region for both methods by an experienced radiologist. Results Stiffness correlated well with the elasticity, R2 = 0.96 (P < 0.001; slope = 1.08, intercept = 0.61 kPa), as well as with ‘Gabs,Elastic’ R2 = 0.96 (P < 0.001; slope = 0.95, intercept = 0.28 kPa). Conclusion This pilot study shows that different MRE methods can produce comparable measurements of the viscoelastic properties of the liver. The existence of such comparable measurements is important, both from a clinical as well as a research perspective, since it allows for equipment-independent monitoring of disease progression. PMID:26937438

  10. The use of election paramagnetic resonance spectroscopy in early preformulation experiments: the impact of different experimental formulations on the release of a lipophilic spin probe into gastric juice.

    PubMed

    Bittner, B; Isel, H; Mountfield, R J

    2001-03-01

    The lipophilic spin probe TEMPOL-benzoate was dissolved in different experimental formulations, including polyethylene glycol 400 (PEG 400), Miglyol, glycerol monooleate (GMO), and Cremophor RH-40. Samples were measured by electron paramagnetic resonance (EPR) spectroscopy before and after addition to human gastric juice. The distance between the first and the third peak in the EPR spectrum (2a(N)) was measured to monitor the polarity of the spin probe's microenvironment. Moreover, the ratio between the signal amplitudes of the second and the third peak (a/b ratio) was used to monitor the mobility of the spin probe in a certain formulation. Thus, by calculating 2a(N) and the a/b ratio of the EPR spectra it was possible to determine a potential release of the spin probe from different formulations into gastric juice. It was found that oily and surface-active vehicles (Miglyol, Cremophor RH-40, and GMO) were more suitable to protect a lipophilic compound from being released within a gastric environment than PEG 400. Our results demonstrate that EPR spectroscopy seems to be a promising tool in early preformulation experiments to monitor the release of spin probes from formulations of different nature. This kind of experiment can be of value for the optimization of exploratory formulations. PMID:11226824

  11. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance

    SciTech Connect

    Hintenlang, D.E.; Jamil, K.; Iselin, L.H.

    1992-01-01

    Radiation effects on urea, thiourea, guanidine carbonate and guanine sulfate were evaluated for both photon and neutron irradiations. Hydration of these materials typically provides a greatly increased sensitivity to both forms of radiation exposure, although not all materials lend themselves to this treatment without changing the chemical structure of the compound. Urea was found to be the most stable hydrated compound and provides the best sensitivity for quantifying radiation effects using NQR techniques. Urea permits a straight-forward quantification of each of the important parameters of the observed NQR signal, the FID. Several advanced data analysis methods were developed to assist in quantifying NQR spectra, both from urea and materials having more complex molecular structures, such as thiourea and guanidine sulfate. Unfortunately, these analysis techniques are frequently quite time consuming for the complex NQR spectra that result from some of these materials. The simpler analysis afforded by urea has therefore made it the prime candidate for an NQR dosimetry material. The moderate sensitivity of hydrated urea to photon irradiation does not permit this material to achieve the levels of performance required for a personnel dosimeter. It does, however, demonstrate acceptable sensitivity over dose ranges where it could provide a good biological dosimeter for several areas of radiation processing. The demonstrated photon sensitivity could permit hydrated urea to be used in applications such as food irradiation dosimetry. This material also exhibits a good sensitivity to neutron irradiation. The precise correlation between neutron exposure and the parameters of the resulting NQR spectra are currently being developed.

  12. Nuclear Magnetic Resonance in the Superconducting States of Two Heavy Fermion Superconductors, Cerium Dicopper - and URANIUM-BERYLLIUM(13)

    NASA Astrophysics Data System (ADS)

    Tien, Cheng

    Nuclear magnetic resonance (NMR) experiments have been carried out in two heavy fermion superconductors, CeCu(,2)Si(,2) and U(,1-x)Th(,x)Be(,13) (x = 0, 0.0331). The unusual normal-state and superconducting state behavior of CeCu(,2)SDi(,2) and UBe(,13) has recently been discovered. Both compounds exhibit enormous values of the normal-state low -temperature magnetic susceptibility (chi) and the linear specific heat coefficient (gamma). Standard analyses of (chi) and (gamma) result in a two order of magnitude enhancement of the conduction-electron mass, but the ratio (chi)/(gamma) retains a value appropriate to a free-electron gas. It is of interest to obtain as much microscopic information as possible. In one of our CeCu(,2)Si(,2) superconducting specimens, the observed temperature dependence of the spin-lattice relaxation rate 1/T(,1) (T) is consistent with a conventional quasiparticle excitation spectrum below the superconducting transition temperature T(,c). In the other superconducting CeCu(,2)Si(,2) sample, the nuclear spin-lattice relaxation rate decreases drastically just below T(,c) without the apparent enhancement observed in the first sample. This lack of enhancement in 1/T(,1) (T) suggests that the superconductivity in CeCu(,2)Si(,2) is not due to a conventional mechanism. Some unusual features in 1/T(,1) (T) between T(,c) and 1.2 K appear to signal a phase transition, possibly structural in nature. NQR measurements of the nonsuperconducting CeCu(,2)Si(,2) sample are consistent with extensive disorder in the Cu site occupation. The spin-lattice relaxation rate in UBe(,13) varies approximately as T('3) well below the transition temperature T(,c). This behavior is consistent with a class of anisotropic pairing models for which the superconducting gap vanishes along lines on the Fermi surface. Two phase transitions have been observed in the specific heat measurements of U(,0.9669)Th(,0.0331)Be(,13) at T(,c1) and T(,c2). For T(,c2) < T < T(,c1), 1/T(,1

  13. β-detected nuclear quadrupole resonance and relaxation of 8Li+ in sapphire

    NASA Astrophysics Data System (ADS)

    Salman, Z.; Chow, K. H.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Wang, D.; MacFarlane, W. A.

    2014-12-01

    We report detailed behaviour of low energy 8Li implanted near the surface of α- Al2O3 single crystal, as revealed by beta-detected NQR of 8Li. We find that the implanted 8Li occupies at least two sites with non-cubic symmetry in the Al2O3 lattice. In both sites the 8Li experiences axially symmetric electric field gradient, with the main principal axis along the c-crystallographic direction. The temperature and field dependence of the spin lattice relaxation of 8Li in α-Al2O3, indicate that the 8Li diffusion is negligible on the scale of its lifetime, 1.21 s.

  14. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, June 15--September 15, 1991

    SciTech Connect

    Not Available

    1991-12-17

    The primary objective of the project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. We have undertaken to investigate the magnetic character by studying the Nuclear Quadrupole resonance of copper and (Zerofield) Nuclear Magnetic Resonance of cobalt in copper cobalt catalysts.

  15. Study of the Pygmy Dipole Resonance in (p,p'γ) and (d,pγ) experiments with SONIC@HORUS

    NASA Astrophysics Data System (ADS)

    Pickstone, S. G.; Derya, V.; Hennig, A.; Mayer, J.; Spieker, M.; Weinert, M.; Wilhelmy, J.; Zilges, A.

    2015-05-01

    Last year, the new silicon-detector array SONIC with up to 8 silicon-detector positions was installed inside the existing γ-ray spectrometer HORUS consisting of 14 HPGe detectors. The combined setup SONIC@HORUS allows for a coincident detection of γ-rays and light charged particles in the exit channel of inelastic scattering and transfer reactions. As a first physics case, the Pygmy Dipole Resonance (PDR) in 92Mo has been investigated in a (p,p'γ) experiment at Ep = 10.5 MeV. Since specific excitation energy can be chosen offline in the coincidence data, the sensitivity to weak decay branchings of PDR states is increased. Additionally, a second reaction mechanism for the excitation of PDR states has been tested with the new setup. In a 119Sn(d,pγ) transfer reaction at Ed = 8.5 MeV, PDR states in 120Sn could be excited. Since this one-neutron transfer reaction is sensitive to the neutron single-particle structure, it could reveal new information on the microscopic structure of the PDR.

  16. Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump-probe experiments.

    PubMed

    Doering, D; Chuang, Y-D; Andresen, N; Chow, K; Contarato, D; Cummings, C; Domning, E; Joseph, J; Pepper, J S; Smith, B; Zizka, G; Ford, C; Lee, W S; Weaver, M; Patthey, L; Weizeorick, J; Hussain, Z; Denes, P

    2011-07-01

    The designs of a compact, fast CCD (cFCCD) camera, together with a resonant soft x-ray scattering endstation, are presented. The cFCCD camera consists of a highly parallel, custom, thick, high-resistivity CCD, readout by a custom 16-channel application specific integrated circuit to reach the maximum readout rate of 200 frames per second. The camera is mounted on a virtual-axis flip stage inside the RSXS chamber. When this flip stage is coupled to a differentially pumped rotary seal, the detector assembly can rotate about 100°/360° in the vertical/horizontal scattering planes. With a six-degrees-of-freedom cryogenic sample goniometer, this endstation has the capability to detect the superlattice reflections from the electronic orderings showing up in the lower hemisphere. The complete system has been tested at the Advanced Light Source, Lawrence Berkeley National Laboratory, and has been used in multiple experiments at the Linac Coherent Light Source, SLAC National Accelerator Laboratory. PMID:21806178

  17. Improving Resolution in Fast Rotating-Frame Experiments

    NASA Astrophysics Data System (ADS)

    Casanova, F.; Robert, H.; Pusiol, D.

    2001-07-01

    The rapid rotating-frame technique allows significant reduction in data-acquisition time compared with the two-dimensional method by stroboscopic observation of the nuclear magnetization during its evolution in the rotating frame. A onefold reduction in the dimensionality of the original rotating-frame experiment is achieved by using a train of strong radiofrequency pulses separated by short acquisition windows. The penalty for shortening experimental time is a reduction in spectral resolution compared with the two-dimensional method due to relaxation of transverse magnetization components during the observation windows. A variant of the rapid-rotating frame technique for improving spectral resolution based on undersampling and self-phase encoding is presented. An M-fold resolution improvement requires M experiments, thus, making possible a tradeoff between spectral resolution and experimental time. The technique was applied for spatial localization of quadrupole nuclei in powder solids, and resolution improvement is demonstrated on one- and two-dimensional NQR images.

  18. Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory

    SciTech Connect

    Popov, M. A.; Zavislyak, I. V.; Chumak, H. L.; Strugatsky, M. B.; Yagupov, S. V.; Srinivasan, G.

    2015-07-07

    The high-frequency properties of a composite resonator comprised single crystal iron borate (FeBO{sub 3}), a canted antiferromagnet with a weak ferromagnetic moment, and a polycrystalline dielectric were investigated at 9–10 GHz. Ferromagnetic resonance in this frequency range was observed in FeBO{sub 3} for bias magnetic fields of ∼250 Oe. In the composite resonator, the magnetic mode in iron borate and dielectric mode are found to hybridize strongly. It is shown that the hybrid mode can be tuned with a static magnetic field. Our studies indicate that coupling between the magnetic mode and the dielectric resonance can be altered from maximum hybridization to a minimum by adjusting the position of resonator inside the waveguide. Magnetic field tuning of the resonance frequency by a maximum of 145 MHz and a change in the transmitted microwave power by as much as 16 dB have been observed for a bias field of 250 Oe. A model is discussed for the magnetic field tuning of the composite resonator and theoretical estimates are in reasonable agreement with the data. The composite resonator with a weak ferromagnet and a dielectric is of interest for application in frequency agile devices with electronically tunable electrodynamic characteristics for the mm and sub-mm wave bands.

  19. Feshbach resonances in ultracold gases

    SciTech Connect

    Chin Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite

    2010-04-15

    Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

  20. In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience.

    PubMed

    Yoneyama, Taku; Sun, Jie; Hippe, Daniel S; Balu, Niranjan; Xu, Dongxiang; Kerwin, William S; Hatsukami, Thomas S; Yuan, Chun

    2016-01-01

    Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers. PMID:26169389

  1. Kinetic and Thermodynamic Evaluation of Kynurenic Acid Binding to GluR1270-300 Polypeptide by Surface Plasmon Resonance Experiments.

    PubMed

    Juhász, Ádám; Csapó, Edit; Ungor, Ditta; Tóth, Gábor K; Vécsei, László; Dékány, Imre

    2016-08-18

    This work clearly demonstrates an evaluation process that is easily performed and is simply based on the fitting of temperature-dependent surface plasmon resonance (SPR) sensorgrams to provide detailed thermodynamic characterization of biologically relevant interactions. The reversible binding of kynurenic acid (KYNA) on human glutamate receptor (GluR1) polypeptide (GluR1270-300)-modified gold surface has been studied at various temperatures under physiological conditions by two-dimensional SPR experiments. The registered sensorgrams were fitted by using different kinetic models without application of any commercial software. Assuming that the association of GluR1270-300-KYNA complex is first order in both reactants, the association (ka) and dissociation (kd) constants as well as the equilibrium constants (KA) and the Gibbs free-energy change (ΔG°) were given at 10, 20, 30, and 40 °C. Moreover, the enthalpy (ΔH° = -27.91 kJ mol(-1)), entropy (ΔS° = -60.33 J mol(-1) K(-1)), and heat capacity changes (ΔCp = -1.28 kJ mol(-1) K(-1)) of the model receptor-ligand system were also calculated using a spreadsheet program. Negative values of ΔG° and ΔH° indicate the exothermic formation of a stable GluR1270-300-KYNA complex, because the |ΔH| > |TΔS| relation suggests an enthalpy-driven binding process. The negative ΔH° and ΔS° values strongly support the formation of a salt bridge between KYNA and the positively charged residues of the polypeptide (Arg, Lys) at pH 7.4, confirmed by molecular docking calculations as well. PMID:27459050

  2. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  3. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  4. Passive linearization of nonlinear resonances

    NASA Astrophysics Data System (ADS)

    Habib, G.; Grappasonni, C.; Kerschen, G.

    2016-07-01

    The objective of this paper is to demonstrate that the addition of properly tuned nonlinearities to a nonlinear system can increase the range over which a specific resonance responds linearly. Specifically, we seek to enforce two important properties of linear systems, namely, the force-displacement proportionality and the invariance of resonance frequencies. Numerical simulations and experiments are used to validate the theoretical findings.

  5. Fabrication of a microtoroidal resonator with picometer precise resonant wavelength.

    PubMed

    Liu, Xiao-Fei; Lei, Fuchuan; Gao, Ming; Yang, Xu; Qin, Guo-Qing; Long, Gui-Lu

    2016-08-01

    Fabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO2 laser pulses, to the traditional fabrication process. It can tailor resonant wavelength to a red or blue direction by choosing a proper laser power. Also, this shift can be controlled by the exposure time. Meanwhile, quality factor remains nearly unchanged during this tailoring process. Our method can greatly reduce the difficulties of experiments where precise resonances are required. PMID:27472629

  6. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  7. Magneto-electric interactions at bending resonance in an asymmetric multiferroic composite: Theory and experiment on the influence of electrode position

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Qu, P.; Petrov, V. M.; Qu, Hongwei; Srinivasan, G.

    2015-05-01

    In magnetostrictive-piezoelectric bilayers the strength of mechanical strain mediated magneto-electric (ME) interactions shows a resonance enhancement at bending modes. Such composites when operating under frequency modulation at bending resonance have very high ME sensitivity and are of importance for ultrasensitive magnetometers. This report provides an avenue for further enhancement in the ME sensitivity by strategic positioning of the electrodes in the bilayer. We discuss the theory and measurements on the dependence of ME coupling on the position of electrodes in a lead zirconate titanate-permendur bilayer. Samples of effective length L with full electrodes and partial electrodes of length l = L/3 are studied. A five-fold increase in ME voltage coefficient (MEVC) at bending resonance and a 75% increase in low-frequency MEVC are measured as the partial electrode position is moved from the free-end to clamped-end of the bilayer. When the partial electrode is close to the clamped end, the low-frequency and resonance MEVC are 22% and 45% higher, respectively, than for fully electroded bilayer. According to the model discussed here these observations could be attributed to non-uniform stress along the sample length under flexural deformation. Such deformations are stronger at the free-end than at the clamped-end, thereby reducing the stress produced by applied magnetic fields and a reduction in MEVC. Estimates of MEVC are in good agreement with the data.

  8. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  9. Resonant Auger decay of Xe{sup *} 4d{sub 5/2}{sup -1}6p: A contribution to the complete experiment from fluorescence polarization studies

    SciTech Connect

    O'Keeffe, P.; Aloiese, S.; Meyer, M.; Lohmann, B.; Kleiman, U.; Grum-Grzhimailo, A. N.

    2004-07-01

    Fluorescence polarimetry has been used to determine the relative partial-wave Auger decay widths for transitions to states of the Xe II 5p{sup 4}6p multiplet after photoexcitation of the Xe{sup *} 4d{sub 5/2}{sup -1}6p(J{sup *}=1) resonance by linearly and circularly polarized synchrotron radiation. Combination with data on the angular distribution and spin polarization of the Auger electrons, providing information on the relative phases of the amplitudes, constitutes the complete experiment on the Auger decay. Multiconfiguration relativistic calculations of the amplitudes have been performed and compared to the measurements.

  10. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  11. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  12. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  13. Investigation of Very Slowly Tumbling Spin Labels by Nonlinear Spin Response Techniques: Theory and Experiment for Stationary Electron Electron Double Resonance

    PubMed Central

    Smigel, Murray D.; Dalton, Larry R.; Hyde, James S.; Dalton, Lauraine A.

    1974-01-01

    The investigation of very slowly tumbling spin labels by nonlinear electron spin response techniques is discussed. Such techniques permit characterization of rotational processes with correlation times from 10-3 to 10-7 sec even though the linear spin response (ESR) technique is insensitive to motion in this region. Nonlinear techniques fall into two categories: (a) Techniques (referred to as passage techniques) in which the distribution of saturation throughout the spin system is determined both by the applied magnetic field modulation of the resonance condition and by the modulation of the resonance frequency induced by the molecular motion. The time dependence of this distribution produces phase and amplitude changes in the observed signals. (b) Techniques that measure the integral of the distribution function of the time required for saturated spin packets to move between pumped and observed portions of the spectrum [stationary and pulsed electron electron double resonance (ELDOR) techniques]. Quantitative analysis of passage ESR and stationary ELDOR techniques can be accomplished employing a density matrix treatment that explicitly includes the interaction of the spins with applied radiation and modulation fields. The effect of molecular motion inducing a random modulation of the anisotropic spin interactions can be calculated by describing the motion by the diffusion equation appropriate to the motional model assumed. For infinitesimal steps the eigen-functions of the diffusion operator are known analytically, while for random motion of arbitrary step size they are determined by diagonalizing the transition matrix appropriate for the step model used. The present communication reports investigation of the rotational diffusion of the spin label probes 2,2,6,6-tetramethyl-4-piperidinol-1-oxyl and 17β-hydroxy-4′,4′-dimethylspiro-[5α-androstane-3,2′-oxazolidin]-3′-oxyl in sec-butylbenzene. Experimental spectra are compared with computer simulations of

  14. Accuracy of magnetic resonance cholangiography compared to operative endoscopy in detecting biliary stones, a single center experience and review of literature

    PubMed Central

    Polistina, Francesco A; Frego, Mauro; Bisello, Marco; Manzi, Emy; Vardanega, Antonella; Perin, Bortolo

    2015-01-01

    AIM: To compare diagnostic sensitivity, specificity and accuracy of magnetic resonance cholangiopancreatography (MRCP) without contrast medium and endoscopic ultrasound (EUS)/endoscopic retrograde cholangiopancreatography (ERCP) for biliary calculi. METHODS: From January 2012 to December 2013, two-hundred-sixty-three patients underwent MRCP at our institution, all MRCP procedure were performed with the same machinery. In two-hundred MRCP was done for pure hepatobiliary symptoms and these patients are the subjects of this study. Among these two-hundred patients, one-hundred-eleven (55.5%) underwent ERCP after MRCP. The retrospective study design consisted in the systematic revision of all images from MRCP and EUS/ERCP performed by two radiologist with a long experience in biliary imaging, an experienced endoscopist and a senior consultant in Hepatobiliopancreatic surgery. A false positive was defined an MRCP showing calculi with no findings at EUS/ERCP; a true positive was defined as a concordance between MRCP and EUS/ERCP findings; a false negative was defined as the absence of images suggesting calculi at MRCP with calculi localization/extraction at EUS/ERCP and a true negative was defined as a patient with no calculi at MRCP ad at least 6 mo of asymptomatic follow-up. Biliary tree dilatation was defined as a common bile duct diameter larger than 6 mm in a patient who had an in situ gallbladder. A third blinded radiologist who examined the MRCP and ERCP data reviewed misdiagnosed cases. Once obtained overall data on sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) we divided patients in two groups composed of those having concordant MRCP and EUS/ERCP (Group A, 72 patients) and those having discordant MRCP and EUS/ERCP (Group B, 20 patients). Dataset comparisons had been made by the Student’s t-test and χ2 when appropriate. RESULTS: Two-hundred patients (91 men, 109 women, mean age 67.6 years, and range 25

  15. Analysis of the performance of a phase alternated multiple pulse sequence in spin I = 7/2 zero-field NQR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, A.

    Zero-field nuclear magnetic resonance spectroscopy of solids containing quadrupole nuclei usually results in broad spectral lines. This line-broadening is due mainly to the inhomogeneity of the electric field gradient (EFG) at the quadrupolar nuclear site. High resolution spectra of such solids can be obtained with the application of suitably designed multiple radiofrequency (RF) pulse sequences. The performance is reported for a periodic and cyclic phase alternated multiple RF pulse sequence (PAPS) in a spin I = 7/2 system in zero external magnetic field. Average Hamiltonian theory based on the Magnus expansion is used to solve the time-dependent Liouville-von Neumann equation of motion of the spin system under the effect of the PAPS sequence. Single transition operators are employed in the spin dynamics calculations. It is shown that the multiple pulse seqeuncearation pulse, suppresses the EFG inhomogeneity to a maximum extent when = 2 . [-- ] 2 , where is the prep1 2 2 N 1 2 1

  16. Fast response resonance fluorescence CO measurements aboard the C-130: Instrument characterization and measurements made during North Atlantic Regional Experiment 1993

    NASA Astrophysics Data System (ADS)

    Gerbig, Christoph; Kley, Dieter; Volz-Thomas, Andreas; Kent, Joss; Dewey, Ken; McKenna, Danny S.

    1996-12-01

    The resonance fluorescence instrument for the measurement of atmospheric CO described by Volz and Kley [1985] was characterized in the laboratory and adapted for use on aircraft. A major finding was that the background signal is largely due to continuum resonance Raman scattering by molecular oxygen and thus cannot be reduced by better design. The instrument was deployed on the United Kingdom Meteorological Office (UKMO) C-130 Hercules during August 1993 and in subsequent missions. The instrument achieved a detection limit (3σ) of 5 ppb at a time resolution of 30 s. For a typical CO concentration of 100 ppb, the signal-to-noise ratio (1σ) was 15 for an integration time of 2 s, which was the minimum time resolution that could be obtained during the flights because of limited pump capacity. Data collected over the North Atlantic show distinct layers of CO above the atmospheric boundary layer (ABL) that are well correlated with enhanced NOy mixing ratios and indicate transport of pollution from the American continent. Such layers, albeit much less pronounced, were encountered in westerly flow in the midtroposphere west of the coast of Portugal. Fairly high mixing ratios were observed in the lower troposphere associated with transport from southern Europe.

  17. An Electromagnetic Resonance Circuit for Liquid Level Detection

    ERIC Educational Resources Information Center

    Hauge, B. L.; Helseth, L. E.

    2012-01-01

    Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

  18. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  19. New experiment on search for the resonance absorption of solar axion emitted in the M1 transition of 83Kr nuclei

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. N.; Derbin, A. V.; Drachnev, I. S.; Kazalov, V. V.; Kobychev, V. V.; Kuz'minov, V. V.; Muratova, V. N.; Panasenko, S. I.; Ratkevich, S. S.; Semenov, D. A.; Tekueva, D. A.; Unzhakov, E. V.; Yakimenko, S. P.

    2015-05-01

    Axions with an energy of 9.4 keV emitted in the M1 transition of 83Kr nuclei in the Sun have been sought in the resonance absorption reaction A + 83Kr → 83Kr* → 83Kr + γ, e (9.4 keV). A proportional gas chamber filled with krypton and placed in a low-background setup at the underground laboratory of the Baksan neutrino observatory was used to detect γ-ray photons and electrons appearing after the decay of a nuclear level. As a result, a new constraint has been determined on the isoscalar and isovector coupling constants of the axion with nucleons: | g {/AN 3}- g {/AN 0}| ≤ 1.29 × 10-6. This constraint results in the following new bound on the mass of the axion in the hadronic axion model: m A ≤ 100 eV (95% C.L.).

  20. Resonance searches with the t$\\bar{t}$ invariant mass distribution measured with the DØ experiment at √s=1.96 TeV

    SciTech Connect

    Schliephake, Thorsten Dirk

    2010-06-01

    masses are therefore presumed to be a window to test the SM for deviations caused by new physics. The heaviest fundamental particle which is in our reach is the top quark. Its mass is almost as large as that of a complete tungsten atom. It is so heavy, that it decays faster than it can hadronize. It seems the perfect probe to study new physics at the moment. In this analysis the top quark is used as a probe to search for a new resonance, whose properties are similar to a SM Z boson but is much more massive. This analysis will study t{bar t} decays to search for an excess in the invariant mass distribution of the t$\\bar{t}$ pairs. Resonant states are suggested for massive Z-like bosons in extended gauge theories, Kaluza Klein states of the gluon or Z, axigluons, topcolor, and other beyond the Standard Model theories. Independent of the exact model a resonant production mechanism should be visible in the t$\\bar{t}$ invariant mass distribution. In this thesis a model-independent search for a narrow-width heavy resonance X decaying into t$\\bar{t}$ is performed. In the SM, the top quark decays into a W boson and a b quark nearly 100% of the time, which has been proven experimentally, too. The t$\\bar{t}$ event signature is fully determined by the W boson decay modes. In this analysis, only the lepton+jets final state, which results from the leptonic decay of one of the W bosons and the hadronic decay of the other, is considered. The event signature is an isolated electron or muon with high transverse momentum, large transverse energy imbalance due to the undetected neutrino, and at least three jets, two of which result from the hadronization of b quarks.

  1. Fundamental mode rectangular waveguide system for electron-cyclotron resonant heating (ECRH) for tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Rubert, R.R.; Felker, B.; Stallard, B.W.; Williams, C.W.

    1983-12-01

    We present a brief history of TMX-U's electron cyclotron resonant heating (ECRH) progress. We emphasize the 2-year performance of the system, which is composed of four 200-kW pulsed gyrotrons operated at 28 GHz. This system uses WR42 waveguide inside the vacuum vessel, and includes barrier windows, twists, elbows, and antennas, as well as custom-formed waveguides. Outside the TMX-U vessel are directional couplers, detectors, elbows, and waveguide bends in WR42 rectangular waveguide. An arc detector, mode filter, eight-arm mode converter, and water load in the 2.5-in. circular waveguide are attached directly to the gyrotron. Other specific areas discussed include the operational performance of the TMX-U pulsed gyrotrons, windows and component arcing, alignment, mode generation, and extreme temperature variations. Solutions for a number of these problems are described.

  2. Prostate Postbrachytherapy Seed Distribution: Comparison of High-Resolution, Contrast-Enhanced, T1- and T2-Weighted Endorectal Magnetic Resonance Imaging Versus Computed Tomography: Initial Experience

    SciTech Connect

    Bloch, B. Nicolas Lenkinski, Robert E.; Helbich, Thomas H.; Ngo, Long; Oismueller, Renee; Jaromi, Silvia; Kubin, Klaus; Hawliczek, Robert; Kaplan, Irving D.; Rofsky, Neil M.

    2007-09-01

    Purpose: To compare contrast-enhanced, T1-weighted, three-dimensional magnetic resonance imaging (CEMR) and T2-weighted magnetic resonance imaging (T2MR) with computed tomography (CT) for prostate brachytherapy seed location for dosimetric calculations. Methods and Materials: Postbrachytherapy prostate MRI was performed on a 1.5 Tesla unit with combined surface and endorectal coils in 13 patients. Both CEMR and T2MR used a section thickness of 3 mm. Spiral CT used a section thickness of 5 mm with a pitch factor of 1.5. All images were obtained in the transverse plane. Two readers using CT and MR imaging assessed brachytherapy seed distribution independently. The dependency of data read by both readers for a specific subject was assessed with a linear mixed effects model. Results: The mean percentage ({+-} standard deviation) values of the readers for seed detection and location are presented. Of 1205 implanted seeds, CEMR, T2MR, and CT detected 91.5% {+-} 4.8%, 78.5% {+-} 8.5%, and 96.1% {+-} 2.3%, respectively, with 11.8% {+-} 4.5%, 8.5% {+-} 3.5%, 1.9% {+-} 1.0% extracapsular, respectively. Assignment to periprostatic structures was not possible with CT. Periprostatic seed assignments for CEMR and T2MR, respectively, were as follows: neurovascular bundle, 3.5% {+-} 1.6% and 2.1% {+-} 0.9%; seminal vesicles, 0.9% {+-} 1.8% and 0.3% {+-} 0.7%; periurethral, 7.1% {+-} 3.3% and 5.8% {+-} 2.9%; penile bulb, 0.6% {+-} 0.8% and 0.3% {+-} 0.6%; Denonvillier's Fascia/rectal wall, 0.5% {+-} 0.6% and 0%; and urinary bladder, 0.1% {+-} 0.3% and 0%. Data dependency analysis showed statistical significance for the type of imaging but not for reader identification. Conclusion: Both enumeration and localization of implanted seeds are readily accomplished with CEMR. Calculations with MRI dosimetry do not require CT data. Dose determinations to specific extracapsular sites can be obtained with MRI but not with CT.

  3. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment

    PubMed Central

    Dashti, Hesam; Tonelli, Marco

    2015-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  4. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Markley, John L

    2015-07-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) is a software package whose Bayesian core uses on-the-fly chemical shift assignments to guide data acquisition by non-uniform sampling from a panel of through-bond NMR experiments. The new version of ADAPT-NMR (ADAPT-NMR v3.0) has the option of utilizing 2D tilted-plane versions of 3D fast spectral acquisition with BEST-type pulse sequences, while also retaining the capability of acquiring and processing data from tilted-plane versions of conventional sensitivity-enhanced experiments. The use of BEST experiments significantly reduces data collection times and leads to enhanced performance by ADAPT-NMR. PMID:26021595

  5. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  6. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ‒35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  7. Sensitivity of the curve-to-growth technique utilized in rocket experiments to determine the line shape of solar He I resonance lines

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Ogawa, H. S.

    1986-01-01

    The sensitivity of the curve-of-growth (COG) technique utilized in rocket measurements to determine the line profiles of the solar He I resonance emissions is theoretically examined with attention to the possibility of determining the line core shape using this technique. The line at 584.334 A is chosen as an illustration. Various possible source functions of the solar line have been assumed in the computation of the integrated transmitted intensity. A recent observational data set obtained by the present researchers is used as the constraint of the computation. It is confirmed that the COG technique can indeed provide a good measurement of the solar line width. However, to obtain detailed knowledge of the solar profile at line center and in the core region, (1) it is necessary to be able to carry out relative solar flux measurements with a 1-percent or better precision, and (2) it must be possible to measure the He gas pressure in the absorption cell to lower than 0.1 mtorr. While these numbers apply specifically to the present geometry, the results are readily scaled to other COG measurements using other experimental parameters.

  8. Cavities for electron spin resonance: predicting the resonant frequency

    NASA Astrophysics Data System (ADS)

    Colton, John; Miller, Kyle; Meehan, Michael; Spencer, Ross

    Microwave cavities are used in electron spin resonance to enhance magnetic fields. Dielectric resonators (DRs), pieces of high dielectric material, can be used to tailor the resonant frequency of a cavity. However, designing cavities with DRs to obtain desired frequencies is challenging and in general can only be done numerically with expensive software packages. We present a new method for calculating the resonant frequencies and corresponding field modes for cylindrically symmetric cavities and apply it to a cavity with vertically stacked DRs. The modes of an arbitrary cavity are expressed as an expansion of empty cavity modes. The wave equation for D gives rise to an eigenvalue equation whose eigenvalues are the resonant frequencies and whose eigenvectors yield the electric and magnetic fields of the mode. A test against theory for an infinitely long dielectric cylinder inside an infinite cavity yields an accuracy better than 0.4% for nearly all modes. Calculated resonant frequencies are also compared against experiment for quasi-TE011 modes in resonant cavities with ten different configurations of DRs; experimental results agree with predicted values with an accuracy better than 1.0%. MATLAB code is provided at http://www.physics.byu.edu/research/coltonlab/cavityresonance.

  9. Photorefractivity in WGM resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Ilchenko, Vladimir; Maleki, Lute

    2006-01-01

    We report on observation of photorefractive effects in whispering gallery mode resonators made of as-grown and magnesium doped lithium niobate and lithium tantalate in the near as well as far infrared. The effects manifested themselves as dynamic modification of the spectra as well as quality factors of the resonators coupled to the laser radiation. We have observed a significant (exceeding 10-4) change of the ordinary index of refraction of all the materials exposed with 780 nm light. Photorefractive effects have also been detected at 1550 nm. Our experiments support the conclusion that the photorefractivity does not have a distinct red boundary. We show that the maximum saturated refractive index change in the infrared is of the same order of magnitude as in the visible light.

  10. Magnetic Resonance Imaging (MRI) with retrograde intralumen contrast enhancement of the rectum in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer. Experience of application

    NASA Astrophysics Data System (ADS)

    Usova, A.; Frolova, I.; Afanasev, S.; Tarasova, A.; Molchanov, S.

    2016-02-01

    Experiment of use of MRI in diagnostics of rectovaginal fistulas after combination therapy of rectal cancer is shown on clinical examples. We used retrograde contrasting of a rectum with 150ml ultrasonic gel to make MRI more informative in case of low diagnostic efficiency of ultrasound, colonoscopy and gynecological examination.

  11. Humanitarian mine detection by acoustic resonance

    SciTech Connect

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  12. Investigations of the radial propagation of blob-like structure in a non-confined electron cyclotron resonance heated plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak

    SciTech Connect

    Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T.; Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nishino, N.; Collaboration: QUEST Group

    2011-09-15

    A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.

  13. RCNP E398 {sup 16}O,{sup 12}C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to {sup 16}O,{sup 12}C(ν,ν’) reactions

    SciTech Connect

    Ou, I.; Yamada, Y.; Mori, T.; Yano, T.; Sakuda, M.; Tamii, A.; Suzuki, T.; Yosoi, M.; Aoi, N.; Ideguchi, E.; Hashimoto, T.; Miki, K.; Ito, T.; Iwamoto, C.; Yamamoto, T.; Akimune, H.

    2015-05-15

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of {sup 16}O and {sup 12}C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (E{sub x}=5-30MeV) at the forward scattering angles (0°-3°) of the {sup 16}O, {sup 12}C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (E{sub γ}) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions.

  14. First clinical experience with the magnetic resonance imaging contrast agent and superoxide dismutase mimetic mangafodipir as an adjunct in cancer chemotherapy-a translational study.

    PubMed

    Karlsson, Jan Olof G; Adolfsson, Karin; Thelin, Bo; Jynge, Per; Andersson, Rolf Gg; Falkmer, Ursula G

    2012-02-01

    Preclinical research suggests that the clinically approved magnetic resonance imaging contrast agent mangafodipir may protect against adverse events (AEs) caused by chemotherapy, without interfering negatively with the anticancer efficacy. The present translational study tested if pretreatment with mangafodipir lowers AEs during curative (adjuvant) FOLFOX6 chemotherapy in stage III colon cancer (Dukes' C). The study was originally scheduled to include 20 patients, but because of the unforeseen withdrawal of mangafodipir from the market, the study had to be closed after 14 patients had been included. The withdrawal of mangafodipir was purely based on commercial considerations from the producer and not on any safety concerns. The patients were treated throughout the first 3 of 12 scheduled cycles. Patients were randomized to a 5-minute infusion of either mangafodipir or placebo (7 in each group). AEs were evaluated according to the National Cancer Institute's (NCI) Common Terminology Criteria for Adverse Events and the Sanofi-NCI criteria. The primary end points were neutropenia and neurosensory toxicity. There were four AEs of grade 3 (severe) and one AE of grade 4 (life threatening) in four patients in the placebo group, whereas there were none in the mangafodipir group (P < .05). Of the grade 3 and 4 events, two were neutropenia and one was neurosensory toxicity. Furthermore, white blood cell count was statistically, significantly higher in the mangafodipir group than in the placebo group (P < .01) after treatment with FOLFOX. This small feasibility study seems to confirm what has been demonstrated preclinically, namely, that pretreatment with mangafodipir lowers AEs during adjuvant 5-fluorouracil plus oxaliplatin-based chemotherapy in colon cancer patients. PMID:22348174

  15. Resonance Trapping in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Pour, Nader H.

    1998-09-01

    We study dynamics of a planetary system that consists of a star and two planets taking into account dynamical friction. Numerical integrations of a restricted planar circular three body model of this system indicate resonance capture. The main purpose of this paper is to present the results of an extensive numerical experiment performed on this model and also to present analytical arguments for the observed resonance trapping and its consequences. The equations of motion are written in terms of Delaunay variables and the recently developed method of partial averaging near resonance* is employed in order to account for the behavior of the system at resonance. * C.Chicone, B.Mashhoon and D.Retzloff, Ann.Inst.Henri Poincare, Vol.64, no 1, 1996, p.87-125.

  16. Nested trampoline resonators for optomechanics

    NASA Astrophysics Data System (ADS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  17. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  18. High Spatial Resolution Cardiovascular Magnetic Resonance at 7.0 Tesla in Patients with Hypertrophic Cardiomyopathy – First Experiences: Lesson Learned from 7.0 Tesla

    PubMed Central

    Prothmann, Marcel; von Knobelsdorff-Brenkenhoff, Florian; Töpper, Agnieszka; Dieringer, Matthias A.; Shahid, Etham; Graessl, Andreas; Rieger, Jan; Lysiak, Darius; Thalhammer, C.; Huelnhagen, Till; Kellman, Peter; Niendorf, Thoralf; Schulz-Menger, Jeanette

    2016-01-01

    Background Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the detection of small morphological details. CMR at 7.0T improves spatial resolution versus today’s clinical protocols. This capability is as yet untapped in HCM patients. We aimed to examine the feasibility of CMR at 7.0T in HCM patients and to demonstrate its capability for the visualization of subtle morphological details. Methods We screened 131 patients with HCM. 13 patients (9 males, 56 ±31 years) and 13 healthy age- and gender-matched subjects (9 males, 55 ±31years) underwent CMR at 7.0T and 3.0T (Siemens, Erlangen, Germany). For the assessment of cardiac function and morphology, 2D CINE imaging was performed (voxel size at 7.0T: (1.4x1.4x2.5) mm3 and (1.4x1.4x4.0) mm3; at 3.0T: (1.8x1.8x6.0) mm3). Late gadolinium enhancement (LGE) was performed at 3.0T for detection of fibrosis. Results All scans were successful and evaluable. At 3.0T, quantification of the left ventricle (LV) showed similar results in short axis view vs. the biplane approach (LVEDV, LVESV, LVMASS, LVEF) (p = 0.286; p = 0.534; p = 0.155; p = 0.131). The LV-parameters obtained at 7.0T where in accordance with the 3.0T data (pLVEDV = 0.110; pLVESV = 0.091; pLVMASS = 0.131; pLVEF = 0.182). LGE was detectable in 12/13 (92%) of the HCM patients. High spatial resolution CINE imaging at 7.0T revealed hyperintense regions, identifying myocardial crypts in 7/13 (54%) of the HCM patients. All crypts were located in the LGE-positive regions. The crypts were not detectable at 3.0T using a clinical protocol. Conclusions CMR at 7.0T is feasible in patients with HCM. High spatial resolution gradient echo 2D CINE imaging at 7.0T allowed the detection of subtle morphological details in regions of extended hypertrophy and LGE. PMID:26863618

  19. Shedding light on diphoton resonances

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Draper, Patrick; Kilic, Can; Thomas, Scott

    2016-06-01

    The experimental and theoretical implications of heavy digauge boson resonances that couple to, or are comprised of, new charged and strongly interacting matter are investigated. Observation and measurement of ratios of the resonant digauge boson channels W W , Z Z , γ γ , Z γ , and g g in the form of dijets provide a rather direct—and for some ratios a rather robust—probe of the gauge representations of the new matter. For a spin-zero resonance with the quantum numbers of the vacuum, the ratios of resonant W W and Z Z to γ γ channels, as well as the longitudinal vs transverse polarization fractions in the W W and Z Z channels, provide probes for possible mixing with the Higgs boson, while di-Higgs and ditop resonant channels, h h and t t , provide somewhat less sensitivity. We present a survey of possible underlying models for digauge boson resonances by considering various limits for the mass of the new charged and strongly interacting matter fields as well as the confinement scale of new hypergauge interactions under which they may also be charged. In these limits, resonances may be included as elementary weakly coupled spin-zero states or can correspond to hyperglueballs, hyperonia, or pseudoscalar hypermesons. For each of these cases, we make predictions for additional states that could be resonantly or pair produced and observed at the Large Hadron Collider or in future collider experiments. Heavy digauge boson resonances can provide a unified explanation for a number of small discrepancies and excesses in reported data from the Large Hadron Collider.

  20. Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kazazic, Sasa; Zhang, Hui-Min; Schaub, Tanner M; Emmett, Mark R; Hendrickson, Christopher L; Blakney, Gregory T; Marshall, Alan G

    2010-04-01

    Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Delta m(50%) > or = 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins. PMID:20116280

  1. Conformational dynamics of phenylene rings in poly(p-phenylene vinylene) as revealed by 13C magic-angle-spinning exchange nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    deAzevedo, E. R.; Franco, R. W. A.; Marletta, A.; Faria, R. M.; Bonagamba, T. J.

    2003-08-01

    Poly(p-phenylene vinylene) (PPV) has shown a great potential for electro-optical applications due to its electroluminescent and semiconducting properties. Such properties are directly related with the polymer chain conformation and dynamics. Then, it is important to understand in detail the local chain motions. In this work, three 13C solid-state magic-angle-spinning (MAS) exchange NMR techniques were used to study conformational dynamics of phenylene rings in PPV. The standard 2D MAS exchange experiment was used to identify exchange processes between equivalent and nonequivalent sites. Centerband-only detection of exchange (CODEX) experiments were applied to determine the amplitude of the phenylene ring flips and small-angle oscillations. Additionally, a new version of the CODEX technique, which allows for the selective observation of segments executing exchange between non-equivalent sites, is demonstrated and applied to determine the flipping fractions and the activation energies of the phenylene ring rotations. It was found that, at -15 °C, (26±3)% of the rings undergo 180° flips in the millisecond time scale, with average imprecision of (30±5)° and activation energies of (23±3) kJ/mol. Other (31±10)% of the rings perform only small-angle oscillations with an average amplitude of (9±2)°. These results corroborate previous experimental data and agree with recent ab initio calculations of potential energies barriers in phenylenevinylene oligomers.

  2. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  3. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  4. Elemental bioimaging of thulium in mouse tissues by laser ablation-ICPMS as a complementary method to heteronuclear proton magnetic resonance imaging for cell tracking experiments.

    PubMed

    Reifschneider, Olga; Wentker, Kristina S; Strobel, Klaus; Schmidt, Rebecca; Masthoff, Max; Sperling, Michael; Faber, Cornelius; Karst, Uwe

    2015-04-21

    Due to the fact that cellular therapies are increasingly finding application in clinical trials and promise success by treatment of fatal diseases, monitoring strategies to investigate the delivery of the therapeutic cells to the target organs are getting more and more into the focus of modern in vivo imaging methods. In order to monitor the distribution of the respective cells, they can be labeled with lanthanide complexes such as thulium-1,4,7,10-tetraazacyclodoecane-α,α,α,α-tetramethyl-1,4,7,10-tetraacetic acid (Tm(DOTMA)). In this study, experiments on a mouse model with two different cell types, namely, tumor cells and macrophages labeled with Tm(DOTMA), were performed. The systemic distribution of Tm(DOTMA) of both cell types was investigated by means of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS). Using the high resolution of 25 μm, distribution maps of Tm in different tissues such as tumor, liver, lung, and spleen as well as in explanted gel pellets were generated and the behavior of the labeled cells inside the tissue was investigated. Additionally, quantitative data were obtained using homemade matrix-matched standards based on egg yolk. Using this approach, limits of detection and quantification of 2.2 and 7.4 ng·g(-1), respectively, and an excellent linearity over the concentration range from 0.01 to 46 μg·g(-1) was achieved. The highest concentration of the label agent, 32.4 μg·g(-1), in tumor tissue was observed in the area of the injection of the labeled tumor cells. Regarding the second experiment with macrophages for cell tracking, Tm was detected in the explanted biogell pellet with relatively low concentrations below 60 ng·g(-1) and in the liver with a relatively high concentration of 10 μg·g(-1). Besides thulium, aluminum was detected with equal distribution behavior in the tumor section due to a contamination resulting from the labeling procedure, which includes the usage of an Al electrode. PMID:25791208

  5. Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: Experiment and theory for the cesium D1 line

    NASA Astrophysics Data System (ADS)

    Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalnins, U.; Kalvans, L.; Rundans, R.; Sarkisyan, D.

    2015-02-01

    We have measured magneto-optical signals obtained by exciting the D1 line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than 1 μ m , and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions with relaxation rates that were obtained directly from the thermal velocities of the atoms and the length scales involved. Furthermore, the interactions of the atoms with different regions of the laser beam were modeled separately to account for the varying laser beam intensity over the beam profile as well as saturation effects that become important near the center of the beam at the relatively high laser intensities used during the experiments in order to obtain measurable signals. The model described the experimentally measured signals for laser intensities for magnetic fields up to 55 G and laser intensities up to 1 W/cm2 with excellent agreement.

  6. Bimodal loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Piasecki, W.; Froncisz, W.; Hyde, James S.

    1996-05-01

    A bimodal loop-gap resonator for use in electron paramagnetic resonance (EPR) spectroscopy at S band is described. It consists of two identical one-loop-one-gap resonators in coaxial juxtaposition. In one mode, the currents in the two loops are parallel and in the other antiparallel. By introducing additional capacitors between the loops, the frequencies of the two modes can be made to coincide. Details are given concerning variable coupling to each mode, tuning of the resonant frequency of one mode to that of the other, and adjustment of the isolation between modes. An equivalent circuit is given and network analysis carried out both experimentally and theoretically. EPR applications are described including (a) probing of the field distributions with DPPH, (b) continuous wave (cw) EPR with a spin-label line sample, (c) cw electron-electron double resonance (ELDOR), (d) modulation of saturation, and (e) saturation-recovery (SR) EPR. Bloch induction experiments can be performed when the sample extends half way through the structure, but microwave signals induced by Mx and My components of magnetization cancel when it extends completely through. This latter situation is particularly favorable for SR, modulation of saturation, and ELDOR experiments, which depend on observing Mz indirectly using a second weak observing microwave source.

  7. Measuring the acoustic response of Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

    2015-04-01

    Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

  8. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  9. Indirect (J) coupling of inequivalent ^75As nuclei in crystalline and glassy As_2Se3 and As_2S_3

    NASA Astrophysics Data System (ADS)

    Whitaker, J.; Ahn, E.; Hart, P.; Williams, G. A.; Taylor, P. C.; Facelli, J. C.

    2004-03-01

    Indirect nuclear spin-spin couplings, or J couplings, were first observed in liquids using nuclear magnetic resonance (NMR) techniques [1]. Because of the nature of the quadrupole Hamiltonian in pure nuclear quadrupole resonance (NQR) experiments J couplings should be observable between inequivalent nuclei [2]. We present results of ^75As NQR measurements in crystalline and glassy As_2S3 and As_2Se_3. These ^75As NQR measurements were performed at various frequencies between about 55 and 75 MHz. The NQR frequency is determined by the electric field gradient (EFG) at the nucleus, and in these materials there are two non-equivalent sites in each of the two crystals. The J coupling can occur through several chemical bonds, and in our case this coupling must go through two As-S covalent bonds since the nearest neighbor As sites are separated by chalcogen atoms. Instead of the monotonic decay expected from relaxation spin-spin theory, the decays of the NQR Hahn echoes following a 90^0-180^0pulse sequence exhibit damped oscillations superimposed on an exponential decay. These damped oscillations can be explained by an indirect coupling (J coupling). Experimental values of the J couplings were obtained from the periods of the oscillations and calculations of the most probable transitions using 2^nd order perturbation theory. The value estimated by this method for the ^2J(^75As-S-^75As) in crystalline As_2S3 compares well with empirical estimates, which are obtained using an existing value of ^2J(^31P-S-^31P) and known scalings with atomic number from the literature. 1. E. L. Hahn and D. E Maxwell, Phys. Rev. 84, 1246 (1951). 2. T. P. Das and E. L. Hahn, Solid State Physics, supp 1, Nuclear Quadrupole Resonance Spectroscopy, p. 28, Academic Press 1958.

  10. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    form of musical consumption and experience. The three pieces draw lines connecting different aspects of persistence, resistance, and resonance.

  11. Resonance in a head massager

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-04-01

    Mechanical structures such as pendula, bridges, or buildings always exhibit one (or more) natural oscillation frequency.1 If that structure is subjected to oscillatory forces of this same frequency, resonance occurs, with consequent increase of the structure oscillation amplitude. There is no shortage of simple experiments for demonstrating resonance in high school classes using a variety of materials, such as saw blades,2 guitars,3 pendulums,4 wine glasses,5 bottles,6 Ping-Pong balls,7 and pearl strings.8 We present here an experimental demonstration using only an inexpensive head (or scalp) massager, which can be purchased for less than a dollar.

  12. Dependence of SAW resonator 1/f noise on device size.

    PubMed

    Parker, T E

    1993-01-01

    Experiments were conducted with eight 450-MHz surface acoustic wave (SAW) resonators which demonstrate that a resonator's 1/f noise depends approximately inversely on the active acoustic area of the device. This observation is consistent with a proposed theory that 1/f noise in acoustic resonators is caused by localized velocity or dimensional fluctuations. PMID:18263254

  13. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    NASA Astrophysics Data System (ADS)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  14. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage. PMID:21638364

  15. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  16. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  17. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  18. Stochastic resonance in visual sensitivity.

    PubMed

    Kundu, Ajanta; Sarkar, Sandip

    2015-04-01

    It is well known from psychophysical studies that stochastic resonance, in its simplest threshold paradigm, can be used as a tool to measure the detection sensitivity to fine details in noise contaminated stimuli. In the present manuscript, we report simulation studies conducted in the similar threshold paradigm of stochastic resonance. We have estimated the contrast sensitivity in detecting noisy sine-wave stimuli, with varying area and spatial frequency, as a function of noise strength. In all the cases, the measured sensitivity attained a peak at intermediate noise strength, which indicate the occurrence of stochastic resonance. The peak sensitivity exhibited a strong dependence on area and spatial frequency of the stimulus. We show that the peak contrast sensitivity varies with spatial frequency in a nonmonotonic fashion and the qualitative nature of the sensitivity variation is in good agreement with human contrast sensitivity function. We also demonstrate that the peak sensitivity first increases and then saturates with increasing area, and this result is in line with the results of psychophysical experiments. Additionally, we also show that critical area, denoting the saturation of contrast sensitivity, decreases with spatial frequency and the associated maximum contrast sensitivity varies with spatial frequency in a manner that is consistent with the results of psychophysical experiments. In all the studies, the sensitivities were elevated via a nonlinear filtering operation called stochastic resonance. Because of this nonlinear effect, it was not guaranteed that the sensitivities, estimated at each frequency, would be in agreement with the corresponding results of psychophysical experiments; on the contrary, close agreements were observed between our results and the findings of psychophysical investigations. These observations indicate the utility of stochastic resonance in human vision and suggest that this paradigm can be useful in psychophysical studies

  19. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1988

    1988-01-01

    Describes four physics experiments including "Investigation of Box Resonances Using a Micro"; "A Direct Reading Wattmeter, DC or AC"; "Exercises in the Application of Ohm's Law"; and "Hysteresis on Gas Discharges." Discusses procedures, instrumentation, and analysis in each example. (CW)

  20. Electroweak-scale resonant leptogenesis

    SciTech Connect

    Pilaftsis, Apostolos; Underwood, Thomas E.J.

    2005-12-01

    We study minimal scenarios of resonant leptogenesis near the electroweak phase transition. These models offer a number of testable phenomenological signatures for low-energy experiments and future high-energy colliders. Our study extends previous analyses of the relevant network of Boltzmann equations, consistently taking into account effects from out of equilibrium sphalerons and single lepton flavors. We show that the effects from single lepton flavors become very important in variants of resonant leptogenesis, where the observed baryon asymmetry in the Universe is created by lepton-to-baryon conversion of an individual lepton number, for example, that of the {tau}-lepton. The predictions of such resonant {tau}-leptogenesis models for the final baryon asymmetry are almost independent of the initial lepton-number and heavy neutrino abundances. These models accommodate the current neutrino data and have a number of testable phenomenological implications. They contain electroweak-scale heavy Majorana neutrinos with appreciable couplings to electrons and muons, which can be probed at future e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -} high-energy colliders. In particular, resonant {tau}-leptogenesis models predict sizable 0{nu}{beta}{beta} decay, as well as e- and {mu}-number-violating processes, such as {mu}{yields}e{gamma} and {mu}{yields}e conversion in nuclei, with rates that are within reach of the experiments proposed by the MEG and MECO collaborations.

  1. Virtual magnetic resonance colonography

    PubMed Central

    Debatin, J; Lauenstein, T

    2003-01-01

    Colorectal cancer screening has vast potential. Beyond considerations for cost and diagnostic accuracy, the effectiveness of any colorectal screening strategy will be dependent on the degree of patient acceptance. Magnetic resonance (MR) colonography has been shown to be accurate regarding the detection of clinically relevant colonic polyps exceeding 10 mm in size, with reported sensitivity and specificity values exceeding 95%. To further increase patient acceptance, strategies for fecal tagging have recently been developed. By modulating the signal of fecal material to be identical to the signal characteristics of the enema applied to distend the colon, fecal tagging in conjunction with MR colonography obviates the need for bowel cleansing. The review will describe the techniques underlying MR colonography and describe early clinical experience with fecal tagging techniques. PMID:12746264

  2. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  3. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  4. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  5. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  6. Proton Resonance Frequency Chemical Shift Thermometry: Experimental Design and Validation Towards High-Resolution Non-Invasive Temperature Monitoring, and in vivo Experience in a Non-human Primate Model of Acute Ischemic Stroke

    PubMed Central

    Mao, Hui; Howell, Leonard; Zhang, Xiaodong; Pate, K S; Magrath, P R; Tong, Frank; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2016-01-01

    BACKGROUND AND PURPOSE Applications for non-invasive biological temperature monitoring are widespread in biomedicine, and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation therefore remains controversial, motivating the development of non-invasive approaches such as temperature-sensitive NMR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry (MRT) employing proton resonance frequency chemical shift. Three methodologies were tested, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3.0 Tesla. MATERIALS AND METHODS A conventional, paired approach (DIFF-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MRT derived simultaneously from temperature-sensitive changes in the water proton chemical shift (~0.01 ppm/°C). MRT was subsequently performed in a series of in vivo non-human primate experiments under physiologic and ischemic conditions testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all three approaches (DIFF-1 linear regression R2=0.994, p<0.001, acquisition time 4 min 40 s; DIFF-2 R2=0.996, p<0.001, acquisition time 4 min; DIFF-3 R2=0.998, p<0.001, acquisition time 40 s). CONCLUSION These findings confirm the comparability in performance of three competing approaches MRT, and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. PMID:25655874

  7. Nonlinear induction detection of electron spin resonance

    NASA Astrophysics Data System (ADS)

    Bachar, Gil; Suchoi, Oren; Shtempluck, Oleg; Blank, Aharon; Buks, Eyal

    2012-07-01

    We present an approach to the induction detection of electron spin resonance (ESR) signals exploiting the nonlinear properties of a superconducting resonator. Our experiments employ a yttrium barium copper oxide superconducting stripline microwave (MW) resonator integrated with a microbridge. A strong nonlinear response of the resonator is thermally activated in the microbridge when exceeding a threshold in the injected MW power. The responsivity factor characterizing the ESR-induced change in the system's output signal is about 100 times larger when operating the resonator near the instability threshold, compared to the value obtained in the linear regime of operation. Preliminary experimental results, together with a theoretical model of this phenomenon are presented. Under appropriate conditions, nonlinear induction detection of ESR can potentially improve upon the current capabilities of conventional linear induction detection ESR.

  8. Integral data analysis for resonance parameters determination

    SciTech Connect

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.

  9. Quantum interference between resonant and nonresonant photorecombination

    NASA Astrophysics Data System (ADS)

    Tu, B.; Xiao, J.; Yao, K.; Shen, Y.; Yang, Y.; Lu, D.; Li, W. X.; Qiu, M. L.; Wang, X.; Chen, C. Y.; Fu, Y.; Wei, B.; Zheng, C.; Huang, L. Y.; Zhang, B. H.; Tang, Y. J.; Hutton, R.; Zou, Y.

    2016-03-01

    In this paper, we present experimental and theoretical studies on the interference between resonant and nonresonant photorecombinations for the main resonances of ground-state He-, Be-, B-, C-, N-, and O-like W ions. Experiments were done using a fast electron energy scanning technique at the upgraded Shanghai electron-beam ion trap. Asymmetric resonances were observed, and their Fano factors, which measure the interference degree, were determined. The calculations were done under the framework of Fano's theory by using the flexible atomic code, in which the relativistic configuration interaction method was employed. Among the nine resonances studied in this work, eight experimental results agree with the calculation within experimental uncertainties. But the experimental result for the resonance of Be-like W ions, through the intermediate state of [(1s2s22p 1 /2) 12 p3 /2] 5 /2, deviates from its corresponding theoretical result by 1.3 times experimental uncertainty.

  10. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  11. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  12. Resonance-spacing tuning over whole free spectral range in a single microring resonator

    NASA Astrophysics Data System (ADS)

    Gao, Ge; Yuan, Shuai; Li, Danping; Xia, Jinsong

    2016-03-01

    In this paper, we present a single microring resonator structure formed by incorporating a reflectivity-tunable loop mirror for the tuning of resonance spacing. Based on the optical mode-splitting in the resonator structure, spacing between two adjacent resonances can be tuned from zero to one whole free spectral range (FSR) by controlling the coupling strength between the two counter-propagating degenerate modes in the microring resonator. In experiment, by integrating metallic microheater, the resonance-spacing tuning over the whole FSR (1.17 nm) is achieved within 9.82 mW heating power dissipation. The device is expected to have potential applications in reconfigurable optical filtering and microwave photonics.

  13. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  14. Resonant Raman scattering in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.; Chubukov, Andrey V.

    1997-10-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B1g geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by Chubukov and Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final-state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ω(1)res~2Δ+3J and ω(2)res~2Δ+8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ω(1)res to a symmetric form around ω(2)res. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest-neighbor hopping term t', and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2 and YBa2Cu3O6.1 and Rübhausen et al. on PrBa2Cu3O7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.

  15. An Inexpensive Resonance Demonstration

    ERIC Educational Resources Information Center

    Dukes, Phillip

    2005-01-01

    The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

  16. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  17. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  18. Unstable resonators with excited converging wave

    SciTech Connect

    Hodgson, N. ); Weber, H. )

    1990-04-01

    This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.

  19. Efficient second harmonic generation in a metamaterial with two resonant modes coupled through two varactor diodes

    NASA Astrophysics Data System (ADS)

    Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao

    2012-01-01

    We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes to effective SH radiation. In the experiment, we observe 19.6 dB enhancement in the SH radiation in comparison with the nonlinear metamaterial that resonates only for the fundamental waves.

  20. Alpha resonant scattering for astrophysical reaction studies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7Be(α,γ) reaction, and proposed a new cluster band in 11C.

  1. Resonant 2-photon-ionization of Xe

    SciTech Connect

    Meyer, M.; Lacoursiere, J.; Nahon, L.; Gisselbrecht, M.; Morin, P.; Larzilliere, M.

    1997-01-15

    The combination of laser and synchrotron radiation has been used to investigate in a pump-probe arrangement the ionization of Xe atoms via the resonant state Xe*5p{sup 5}5d[3/2]{sub 1}. In a first type of experiments the synchronization between the pulses of a mode-locked Ar{sup +} laser and the synchrotron radiation has been demonstrated by measuring the lifetime of the intermediate, resonantly excited states. In addition, a tuneable dye laser has been used to excite the Xe*5p{sup 5}4f[5/2]{sub 2} autoionization resonance.

  2. Alpha resonant scattering for astrophysical reaction studies

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  3. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  4. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  5. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  6. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  7. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  8. Resonance splitting in gyrotropic ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred

    2010-10-15

    We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator. PMID:20967092

  9. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  10. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  11. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control.

    PubMed

    Loveday, P W; Rogers, C A

    1998-01-01

    A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing operations, used to adjust the resonant frequency, by displacement feedback and for determining the velocity feedback required to produce a particular bandwidth. Experiments were performed on a cylindrical resonator with discrete piezoelectric actuation and sensing elements to demonstrate the principles. Good agreement between analysis and experiment was obtained, and it was shown that this type of resonator could be balanced by displacement feedback. The analysis method presented also is applicable to micromachined piezoelectric gyroscopes. PMID:18244281

  12. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    mechanical energy and back. Such an electrostatic tweeter type excitation of a mechanical resonator will be tested at 5 MHz. Finite element calculation will be applied to resonator design for the desired resonator frequency and optimum configuration. The experiment consists of the sapphire resonator sandwiched between parallel electrodes. A DC+AC voltage can be applied to generate a force to act on a sapphire resonator. With the frequency of the AC voltage tuned to the sapphire resonator frequency, a resonant condition occurs and the sapphire Q can be measured with a high-frequency impedance analyzer. To achieve high Q values, many experimental factors such as vacuum seal, gas damping effects, charge buildup on the sapphire surface, heat dissipation, sapphire anchoring, and the sapphire mounting configuration will need attention. The effects of these parameters will be calculated and folded into the resonator design. It is envisioned that the initial test configuration would allow for movable electrodes to check gap spacing dependency and verify the input impedance prediction. Quartz oscillators are key components in nearly all ground- and space-based communication, tracking, and radio science applications. They play a key role as local oscillators for atomic frequency standards and serve as flywheel oscillators or to improve phase noise in high performance frequency and timing distribution systems. With ultra-stable performance from one to three seconds, an Earth-orbit or moon-based MSAR can enhance available performance options for spacecraft due to elimination of atmospheric path degradation.

  13. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1985

    1985-01-01

    Describes: (1) two experiments using a laser (resonant cavity for light and pinhole camera effect with a hologram); (2) optical differaction patterns displayed by microcomputer; and (3) automating the Hall effect (with comments on apparatus needed and computer program used); and (4) an elegant experiment in mechanical equilibrium. (JN)

  14. Excitonic surface lattice resonances

    NASA Astrophysics Data System (ADS)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  15. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  16. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  17. Nonlinear ferromagnetic resonance shift in nanostructures

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Belova, Lyuba; McMichael, Robert

    2014-03-01

    In dynamic magnetic systems, various experiments have shown that the ferromagnetic resonance frequency can shift up or down with increasing driving power in the nonlinear regime. The resonance shift is important in understanding nonlinear physics in nanomagnets and for applications of spin-torque oscillators. Here, we present a systematic study on the sign of the nonlinear coefficient, i.e. the direction of the resonance field/frequency shift. We use ferromagnetic resonance force microscopy (FMRFM) to measure the ferromagnetic resonance of a series of submicron NiFe ellipses with varying aspect ratios. We find the sign of the resonance shift is determined by both the applied field and the anisotropy field. Our measurement and micromagnetic modeling results are in qualitative agreement with a macro-spin analysis developed by Slavin and Tiberkevich. However, both measurement and modeling results exhibit values of the nonlinear coefficient that are more positive (meaning that the resonance tends to shift toward low field direction) than are predicted by the macrospin model. We attribute the difference to the non-uniformity of the precession modes in the ellipses. By analogy with standing spin waves, we show that nonuniform precession tends to increase the nonlinear frequency coefficient through a magnetostatic mechanism.

  18. Narrowband feedback for narrowband control of resonant and non-resonant vibration

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Myeong; Brennan, Michael J.; Abreu, Gustavo L. C. M.

    2016-08-01

    This paper presents a simple feedback methodology that uses second order filters to control narrowband resonant and non-resonant vibration of a structural system. In particular, a single degree-of-freedom system is studied throughout the paper. The idea of the methodology is based on the fact that direct feedback is effective for in-phase vibration control. Thus, the position, velocity and acceleration are respectively fed back to control the low, resonant and high frequency vibration of the system. Each of these is passed through a band pass filter of second order that is inserted to extract and feed back the in-phase signal component only. This is called narrowband feedback. It is demonstrated with experiments that narrowband feedback is useful for narrowband control of resonant and non-resonant vibration.

  19. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  20. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, Murugappan

    We study the translocation of a flexible polymer in a confined geometry subjected to a time-periodic external drive to explore stochastic resonance. We describe the equilibrium translocation process in terms of a Fokker-Planck description and use a discrete two-state model to describe the effect of the external driving force on the translocation dynamics. We observe that no stochastic resonance is possible if the associated free-energy barrier is purely entropic in nature. The polymer chain experiences a stochastic resonance effect only in presence of an energy threshold in terms of polymer-pore interaction. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  1. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  2. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    NASA Astrophysics Data System (ADS)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  3. Characterization of nuclear material by Neutron Resonance Transmission Analysis

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Alaerts, G.; Becker, B.; Heyse, J.; Kopecky, S.; Moens, A.; Mondelaers, W.; Schillebeeckx, P.; Wynants, R.; Harada, H.; Kitatani, F.; Koizumi, M.; Tsuchiya, H.

    2016-11-01

    The use of Neutron Resonance Transmission Analysis for the characterization of nuclear materials is discussed. The method, which relies on resonance structures in neutron-induced reaction cross sections, can be applied as a non-destructive method to characterise complex nuclear materials such as melted fuel resulting from a severe nuclear accident. Results of a demonstration experiment at the GELINA facility reveal that accurate data can be obtained at a compact facility even in the case of strong overlapping resonances.

  4. Fourth-integral resonance study on Alladin at SRC

    SciTech Connect

    Liu, J.; Crosbie, E.; Teng, L.; Bridges, J.; Ciarlette, D.; Symon, K.; Trzeciak, W.

    1995-07-01

    The fourth-integral betatron resonance driven by sextupoles was studied on the electron storage ring Aladdin at SRC. The resonance feature of capturing the phase space particles in the resonance islands was dearly demonstrated. In a computer simulation, the finite beam size is simulated by multi-particle tracking and the decoherence of the betatron oscillation was shown to agree well with experiment observation.

  5. Stochastic resonance in passive and active electronic circuits

    SciTech Connect

    Anishchenko, V.S.; Khovanov, I.A.; Shulgin, B.V.

    1996-06-01

    The phenomenon of stochastic resonance in a bistable system modeling overdamped oscillator is studied by numerical simulations and experiments. Experimental data are compared with theoretical results. Stochastic resonance in Chua{close_quote}s circuit is investigated in detail for different regimes of its own dynamics. The main characteristics of stochastic resonance for different regimes under the adiabatic approximation are compared. {copyright} {ital 1996 American Institute of Physics.}

  6. Tuning of resonance spacing over whole free spectral range based on Autler-Townes splitting in a single microring resonator.

    PubMed

    Gao, Ge; Li, Danping; Zhang, Yong; Yuan, Shuai; Armghan, Ammar; Huang, Qingzhong; Wang, Yi; Yu, Jinzhong; Xia, Jinsong

    2015-10-19

    In this paper, a single microring resonator structure formed by incorporating a reflectivity-tunable loop mirror is demonstrated for the tuning of resonance spacing. Autler-Townes splitting in the resonator is utilized to tune the spacing between two adjacent resonances by controlling the strength of coupling between the two counter-propagating degenerate modes in the microring resonator. A theoretical model based on the transfer matrix method is built to analyze the device. The theoretical analysis indicates that the resonance spacing can be tuned from zero to one free spectral range (FSR). In experiment, by integrating metallic microheater, the tuning of resonance spacing in the range of the whole FSR (1.17 nm) is achieved within 9.82 mW heating power dissipation. The device has potential for applications in reconfigurable optical filtering and microwave photonics. PMID:26480351

  7. The resonator handbook

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Zhou, Shiliang

    1993-01-01

    The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

  8. Resonances in heavy systems

    SciTech Connect

    Betts, R.R.

    1983-01-01

    The experimental situation for the study of resonances in heavy-ion collisions is reviewed, with emphasis on the heaviest systems. New data are presented which show some of the systematics of this phenomenon. The narrow resonance structures are established as a feature of the nuclear structure of the composite system rather than a purely entrance channel effect.

  9. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  10. Unstable optical resonators.

    PubMed

    Kahn, W K

    1966-03-01

    A technique, firmly based on a development from ray optics, is presented for calculating the loss due to the finite sizes of curved mirrors when these form an unstable optical resonator. If paraxial rays launched within such a resonator are confined near the resonator axis, the resonator is termed stable; otherwise it is termed unstable, and is known to have high losses. Siegman has recently presented a geometrical method, brilliantly constructed ad hoc, for calculating these losses in unstable resonators, and indicated where these might be advantageous in laser application. The ray optical theory presented here, which employs the concept of ray modes in an equivalent beam waveguide, is shown to yield results equivalent to those of Siegman for all cases considered by him. However, being derived from conventional ray optics, the validity of the formulas is independently established, and these formulas are immediately applicable to re-entrant resonators and resonators containing inhomogeneous media. The fractional loss per resonator pass is equal to 1-|lambda(2)|, where |lambda(2)| < this 1 is an eigenvalue of the transfer matrix T, representing the corresponding ray transformation. PMID:20048863

  11. Nanofiber-segment ring resonator

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Hickman, G. T.; Franson, J. D.; Pittman, T. B.

    2016-08-01

    We describe a fiber ring resonator comprised of a relatively long loop of standard single-mode fiber with a short nanofiber segment. The evanescent mode of the nanofiber segment allows the cavity-enhanced field to interact with atoms in close proximity to the nanofiber surface. We report on an experiment using a warm atomic vapor and low-finesse cavity, and briefly discuss the potential for reaching the strong coupling regime of cavity QED by using trapped atoms and a high-finesse cavity of this kind.

  12. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was

  13. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  14. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  15. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  16. Electrodynamics of a ring-shaped spiral resonator

    NASA Astrophysics Data System (ADS)

    Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.

    2014-02-01

    We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

  17. Electrodynamics of a ring-shaped spiral resonator

    SciTech Connect

    Maleeva, N.; Karpov, A.; Averkin, A.; Fistul, M. V.; Zhuravel, A. P.; Jung, P.; Ustinov, A. V.

    2014-02-14

    We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f{sub 1}:f{sub 2}:f{sub 3}:f{sub 4}… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

  18. Hands-on resonance-enhanced photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2001-10-01

    The design of an improved photoacoustic converter cell using kitchen equipment is described. It operates by changing manually the Helmholtz resonance frequency of bottles by adjusting the distance between the bottleneck and the outer ear. The experiment helps to gain insights in ear performance, in photoacoustic detection methods, in resonance phenomena and their role for detecting small periodic signals in the presence of noise.

  19. Resonant inelastic x-ray scattering from molecules and atoms

    SciTech Connect

    Arp, U.; Deslattes, R.D.; Miyano, K.E.; Southworth, S.H.

    1995-12-31

    X-ray fluorescence spectroscopy is one of the most powerful methods for the understanding of the electronic structure of matter. We report here on fluorescence experiments in the 2 to 6 keV photon energy range using tunable synchrotron radiation and the resulting experimental programs on resonant inelastic scattering in atoms and on polarization measurements in resonant molecular excitations.

  20. Seeing, Acting, Understanding: Motor Resonance in Language Comprehension

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Taylor, Lawrence J.

    2006-01-01

    Observing actions and understanding sentences about actions activates corresponding motor processes in the observer-comprehender. In 5 experiments, the authors addressed 2 novel questions regarding language-based motor resonance. The 1st question asks whether visual motion that is associated with an action produces motor resonance in sentence…

  1. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    SciTech Connect

    Carretta, P.; Corti, M.; Rigamonti, A. )

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  2. New Microscopic Mechanism for Secondary Relaxation in Glasses

    SciTech Connect

    Zuriaga, M.; Pardo, L. C.; Tamarit, J. Ll.; Veglio, N.; Barrio, M.; Lunkenheimer, P.; Loidl, A.; Bermejo, F. J.

    2009-08-14

    The dynamics of simple molecular systems showing glassy properties has been explored by dielectric spectroscopy and nuclear quadrupole resonance (NQR) on the halogenomethanes CBr{sub 2}Cl{sub 2} and CBrCl{sub 3} in their low-temperature monoclinic phases. The dielectric spectra display features which correspond to alpha- and beta-relaxation processes, commonly observed in canonical glass formers. NQR experiments, also performed in the ergodic monoclinic phase of CCl{sub 4}, enable the determination of the microscopic mechanism underlying the beta dynamics in these simple model glasses: Molecules that are nonequivalent with respect to their molecular environment perform reorientational jumps at different time scales. Thus our findings reveal another mechanism that can give rise to typical beta-relaxation behavior, raising some doubt about the existence of a universal explanation of this phenomenon.

  3. LABCOM resonator Phase 3

    SciTech Connect

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  4. Modelling resonant planetary systems

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V.

    2012-09-01

    Many discovered multi-planet systems are in meanmotion resonances. The aim of this work is to study dynamical processes leading to the formation of resonant configurations on the basis of a unified model described earlier [1]. The model includes gravitational interactions of planets and migration of planets due to the presence of a gas disc. For the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser with planets moving in the 2:1 resonance, it is shown that the capture in this resonance occurs at very wide ranges of parameters of both type I and type II migration. Conditions of migration leading to the formation of the resonant systems HD 45364 и HD 200964 (3:2 and 4:3, respectively) are obtained. Formation scenarios are studied for the systems HD 102272, HD 108874, HD 181433, HD 202206 with planets in high order resonances. We discuss also how gravitational interactions of planets and planetesimal discs lead to the breakup of resonant configurations and the formation of systems similar to the 47 UMa system.

  5. Cyclotron resonance in graphene

    NASA Astrophysics Data System (ADS)

    Henriksen, Erik Alfred

    We present a study of cyclotron resonance in graphene. Graphene is a novel two-dimensional system consisting of a single sheet of atoms arranged in a honeycomb lattice, and exhibits a unique, linear low-energy dispersion. Bilayer graphene, two sheets stacked together, is an equally interesting system displaying a second unique, but hyperbolic, dispersion. In this work, we study the quantized Landau levels of these systems in strong magnetic fields, via Fourier-transform infrared spectroscopy. We have fabricated large area single layer and bilayer graphene devices on infrared-transparent Si/SiO2 substrates, using standard electron beam lithography and thin-film liftoff techniques. At cryogenic temperatures and high magnetic fields, we measure the infrared transmission through these devices as a function of the back gate voltage, which changes the Fermi level and hence the carrier density. We analyze the normalized transmission traces, assigning the observed minima to the cyclotron resonance wherein carriers are excited between Landau levels. In single layer graphene, we study Landau level transitions near the charge neutral Dirac point, and find a set of particle-hole symmetric transitions, both within the conduction and valence band, and between the bands. These experiments confirm the unusual B- and n -dependencies of the LL energies, where B is the magnetic field and n the LL index. The CR selection rule is determined to be Delta n = |nfinal| -- |n initial| = +/-1. The ratio of the observed interband and intraband transitions exceeds the expected value by 5%, and this excess is interpreted as an additional contribution to the transition energy from many-particle effects. We explore several higher LL transitions for both electron and hole doping of single layer graphene. The data are consistent with a renormalization of the carrier band velocity near the Dirac point, and suggest that impurity scattering strengthens at low energies. We also study the CR at the

  6. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  7. Biosensing Configurations Using Guided Wave Resonant Structures

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    Resonant structures are characterized by a high quality factor representing the sensitivity to perturbations in a cavity. In guided wave resonant structures the optical field is evanescent, forming a region where the resonance can be modified by externally varying the refractive index within this evanescence region. The resonance nature of these structures then allows high sensitivity to analytes, gases, or other external index perturbations down to the order of 10-8 RIU. In this article several configurations of guided wave resonant structures and their use for sensing are reviewed with special emphasis on grating coupled resonant structures. The sensor performance is discussed using analytic approaches based on planar waveguide sensors theory and using the 4 × 4 characteristic matrix approaches for multilayered structure and with homogenized grating treated as a uniaxial thin film. The results agree very well with experiment and with rigorous electromagnetic calculations even when the cover is anisotropic medium such as a liquid crystal that can be used for tunable filtering or temperature sensing.

  8. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  9. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K.; Jensen, Kenneth J.; Girit, Caglar; Mickelson, William E.; Grossman, Jeffrey C.

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  10. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  11. Potential Antiferromagnetic Fluctuations in Hole-Doped Iron-Pnictide Superconductor Ba1-xKxFe2As2 Studied by 75As Nuclear Magnetic Resonance Measurement0.1143/JPSJ.81.054704

    SciTech Connect

    Hirano, Masanori; Yamada, Yuji; Saito, Taku; Nagashima, Ryo; Konishi, Takehisa; Toriyama, Tatsuya; Ohta, Yukinori; Fukazawa, Hideto; Kohori, Yoh; Furukawa, Yuji; Kihou, Kunihiro; Lee, Chul-Ho; Eisaki, Hiroshi

    2012-04-12

    We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on single-crystalline Ba1-xKxFe2As2 for x = 0.27–1. 75As nuclear quadruple resonance frequency (νQ) increases linearly with increasing x. The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak temperature T dependence. K increases gradually with increasing x. By contrast, the nuclear spin–lattice relaxation rate 1/T1 in the normal state has a strong T dependence, which indicates the existence of large antiferomagnetic (AF) spin fluctuations for all x's. The T dependence of 1/T1 shows a gaplike behavior below approximately 100 K for 0.6 < x < 0.9. This behaviors is well explained by the change in the band structure with the expansion of hole Fermi surfaces and the shrinkage and disappearance of electron Fermi surfaces at the Brillouin zone (BZ) with increasing x. The anisotropy of 1/T1, represented by the ratio of 1/T1ab to 1/T1c, is always larger than 1 for all x's, which indicates that stripe-type AF fluctuations are dominant in this system. The K in the superconducting (SC) state decreases, which corresponds to the appearance of spin-singlet superconductivity. The T dependence of 1/T1 in the SC state indicates a multiple-SC-gap feature. A simple two-gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and a smaller gap decreases rapidly and nearly vanishes for x > 0.6 where electron pockets in BZ disappear.

  12. Image restoration using fast Fourier and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Harrod, William J.; Nagy, James G.; Plemmons, Robert J.

    1994-02-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  13. Moving spatial solitons in active nonlinear-optical resonators

    NASA Astrophysics Data System (ADS)

    Staliunas, K.; Taranenko, V. B.; Slekys, G.; Viselga, R.; Weiss, C. O.

    1998-01-01

    We investigate spatial solitons in a resonator with a narrow-band gain element and a saturable absorber placed in Fourier-conjugated resonator planes. Solitons are stationary or move at discrete velocities depending on the resonator tuning. The modulus of the velocity of moving solitons is fixed, but the direction of their motion is arbitrary. Solitons compete in velocity space. The experiments are conducted on a photorefractive oscillator with bacteriorhodopsin saturable absorber. Observations agree well with solutions of a general order parameter equation for such resonators.

  14. Repeated passing principle for propagation in optical resonators

    NASA Astrophysics Data System (ADS)

    Keča, Tatjana P.; Headley, William R.; Mashanovich, Goran Z.; Matavulj, Petar S.

    2016-04-01

    In this paper we make comparison between a well-known theoretical model of light propagation through racetrack resonator and experimentally obtained results. Observed differences are studied and some original modifications are made in the existing model so as to achieve better alignment with experiment. The influence of several geometric parameters on racetrack's response is used for further adjustments to be performed. This procedure opens up the possibility to estimate the free spectral range and resonant wavelength for different geometric parameters and consequently to predict resonator functionality and working conditions, as well as functionality of complex photonic devices based on resonant structures.

  15. Superconducting resonators with trapped vortices under direct injection of quasiparticles

    NASA Astrophysics Data System (ADS)

    Nsanzineza, Ibrahim; Patel, Umesh; Dodge, K. R.; McDermott, R. F.; Plourde, B. L. T.

    Nonequilibrium quasiparticles and trapped magnetic flux vortices can significantly impact the performance of superconducting microwave resonant circuits and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing resonator quality factors and qubit lifetimes. Vortices trapped near regions of large microwave currents also contribute excess loss. However, vortices located in current-free areas in the resonator or in the ground plane of a device can actually trap quasiparticles and lead to a reduction in the quasiparticle loss. We will describe experiments involving the controlled trapping of vortices in superconducting resonators with direct injection of quasiparticles using Normal metal-Insulator-Superconductor (NIS)-tunnel junctions.

  16. Resonant Raman Scattering in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Morr, Dirk K.

    1996-03-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B_1g geometry on the frequency of the incoming photon. We present a detailed numerical study of the diagram which was previously identified(A.V. Chubukov and D.M. Frenkel, Phys. Rev. B 52), 9760 (1995) as the most relevant in the resonant regime. We found two maxima of the two-magnon peak hight at transferred frequencies of ω ≈ 3J and ω ≈ 8J. These results agree with recent experiments by Blumberg(G. Blumberg et al.), preprint et al. on Sr_2CuO_2Cl_2. Furthermore, we study how the two-magnon profile depends on a quasiparticle damping and a hopping between next-nearest neighbors. We also study resonance scattering in other scattering geometries, in particular, A_1g scattering.

  17. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-22

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves. PMID:22398451

  18. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  19. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  20. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  1. Resonances in QCD

    NASA Astrophysics Data System (ADS)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  2. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

  3. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  4. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  5. Injector with integrated resonator

    SciTech Connect

    Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

    2014-07-29

    The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

  6. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  7. Resonant dielectric metamaterials

    SciTech Connect

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  8. Quantum phase transition of light in the resonator array

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Wang; Gao, Ming; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu; Quantum Computation Group of NUDT Team

    2015-03-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  9. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  10. Plasmofluidic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-03-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage.

  11. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  12. Resonant Auger studies of metallic systems

    SciTech Connect

    Coulthard, I.; Antel, W. J., Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.; Stampfl, A. P. J.

    1999-10-21

    Results of resonant Auger spectroscopy experiments are presented for Cu, Co, and oxidized Al. Sub-lifetime narrowing of Auger spectra and generation of sub-lifetime narrowed absorption spectra constructed from Auger yield measurements, were observed. Resonant Auger yields are used to identify three valence states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of the authors method.

  13. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  14. Ion Cyclotron Resonance Heating System on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2009-08-01

    Ion cyclotron resonance heating (ICRH) system which will provide at least than 10 MW heating power, with a frequency range from 25 MHz to 100 MHz, is being built up for the EAST. The system includes high-power and wide-frequency radio amplifier, transmission line as well as resonant double loop (RDL) antenna. As a part of this system a sub-ICRH system unit with a ultimate output power of 2.5 MW was set up and employed for heating experiment. The maximum of the launched power reached 200 kW in 2008.

  15. Stochastic Resonance in Protein Folding Dynamics.

    PubMed

    Davtyan, Aram; Platkov, Max; Gruebele, Martin; Papoian, Garegin A

    2016-05-01

    Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics. PMID:26992148

  16. Wave chaos in dielectric resonators: Asymptotic and numerical approaches

    NASA Astrophysics Data System (ADS)

    Tureci, Hakan E.

    Dielectric optical micro-resonators and micro-lasers represent a realization of a wave-chaotic system, where the lack of symmetry in the resonator shape leads to non-integrable ray dynamics in the short-wavelength limit. Understanding and controlling the emission properties of such resonators requires the investigation of the correspondence between classical phase space structures of the ray motion inside the resonator and wave-functions. Semi-classical approaches to the resonances of deformed cylindrical resonators are analyzed first within the closed limit, which corresponds to the quantum billiard problem from the field of quantum chaos. The results are then generalized to the dielectric case. We develop an efficient numerical algorithm to calculate the quasi-bound modes of dielectric resonators, which play a crucial role in determining the emission properties of micro-lasers based on dielectric resonators. Resonances based on stable periodic ray orbits of dielectric cavities are constructed in the short-wavelength limit using the parabolic equation method, and an associated wavevector quantization rule for the complex wavenumbers is derived. The effect of discrete symmetries of the resonator is analyzed and shown to give rise to quasi-degenerate multiplets. A recent experiment on lasing emission from deformed GaN micro-cavities is analyzed, leading to the appearance of scarred modes and non-specular effects in the farfield emission pattern. A framework is presented for treating the non-linear laser equations in a form suitable for treating the dielectric micro-lasers.

  17. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    SciTech Connect

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  18. Initial TMX central-cell ICRH experiments

    SciTech Connect

    Molvik, A.W.; Coffield, F.E.; Falabella, S.; Griffin, D.; McVey, B.; Pickles, W.; Poulsen, P.; Simonen, T.C.; Yugo, J.

    1980-12-09

    Four topics are discussed in this report: the feasibility of applying ion cyclotron resonance heating (ICRH) in the TMX central cell, some applications of heating, the results of preliminary experiments, and plans for further ICRH experiments.

  19. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  20. Tunable Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Montagu, Jean I.

    1987-01-01

    The most attractive features of resonant scanners are high reliability and eternal life as well as extremely low wobble and jitter. Power consumption is also low, electronic drive is simple, and the device is capable of handling large beams. All of these features are delivered at a low cost in a small package. The resonant scanner's use in numerous high precision applications, however, has been limited because of the difficulty in controlling its phase and resonant frequency. This paper introduces the concept of tunable/controllable resonant scanners, discusses their features, and offers a number of tuning techniques. It describes two angular scanner designs and presents data on tunable range and life tests. It also reviews applications for these new tunable resonant scanners that preserve the desirable features of earlier models while removing the old problems with synchronization or time base flexibility. The three major types of raster scanning applications where the tunable resonant scanner may be of benefit are: 1. In systems with multiple time bases such as multiple scanner networks or with scanners keyed to a common clock (the line frequency or data source) or a machine with multiple resonant scanners. A typical application is image and text transmission, also a printer with a large data base where a buffer is uneconomical. 2. In systems sharing data processing or laser equipment for reasons of cost or capacity, typically multiple work station manufacturing processes or graphic processes. 3. In systems with extremely precise time bases where the frequency stability of conventional scanners cannot be relied upon.

  1. Superconducting radio-frequency resonator in magnetic fields up to 6 T

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M. S.; Stallkamp, N.; Quint, W.; Wiesel, M.; Vogel, M.; Martin, A.; Birkl, G.

    2016-07-01

    We have measured the characteristics of a superconducting radio-frequency resonator in an external magnetic field. The magnetic field strength has been varied with 10 mT resolution between zero and 6 T. The resonance frequency and the quality factor of the resonator have been found to change significantly as a function of the magnetic field strength. Both parameters show a hysteresis effect which is more pronounced for the resonance frequency. Quantitative knowledge of such behaviour is particularly important when experiments require specific values of resonance frequency and quality factor or when the magnetic field is changed while the resonator is in the superconducting state.

  2. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  3. Resonances while surmounting a fluctuating barrier

    PubMed

    Iwaniszewski; Kaufman; McClintock; McKane

    2000-02-01

    Electronic analog experiments on escape over a fluctuating potential barrier are performed for the case when the fluctuations are caused by Ornstein-Uhlenbeck noise (OUN). In its dependence on the relation between the two OUN parameters (the correlation time tau and noise strength Q) the nonmonotonic variation of the mean escape time T as a function of tau can exhibit either a minimum (resonant activation), or a maximum (inhibition of activation), or both these effects. The possible resonant nature of these features is discussed. We claim that T is not a good quantity to describe the resonancelike character of the problem. Independently of the specific relation between the OUN parameters, the resonance manifests itself as a maximal lowering of the potential barrier during the escape event, and it appears for tau of the order of the relaxation time toward the metastable state. PMID:11046390

  4. Novel Raman resonance in ladder spin systems

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander; Chubukov, Andrey

    2006-03-01

    We consider Raman intensity in spin S two-leg- spin-ladder, with the goal to understand recent experiments[1,2]. We argue that the Raman intensity has a pseudo-resonance peak whose width is very small at large S. The pseudo-resonance originates from the existence of a local minimum in the magnon excitation spectrum, and is located slightly below twice the magnon energy at the minimum. The physics behind the peak is surprisingly similar to that in the excitonic scenario for the neutron and Raman resonances in a d-wave superconductor. We also consider mid-infrared X-ray scattering in 2D systems and compare the results with recent measurements [3]. [1] A. Gozar et al, Phys. Rev. Lett. 87, 197202 (2001). [2] S. Sugai and M. Suzuki, Phys stat sol (b) 215, 653 (1999). [3] J. P. Hill, G Blumberg et al, [unpublished

  5. Mass loading induced dephasing in nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan

    2012-11-01

    This paper presents a study of dephasing of an underdamped nanomechanical resonator subject to random mass loading of small particles. A frequency noise model is presented which describes dephasing due to the attachment and detachment of particles at random points and particle diffusion along the resonator. This situation is commonly encountered in current mass measurement experiments using nanoelectromechanical (NEM) resonators. The conditions which can lead to inhomogeneous broadening and fine structure in the modes’ absorption spectra are discussed. It is also shown that the spectra of the higher-order cumulants of the (complex) vibrational mode amplitude are sensitive to the parameters characterizing the frequency noise process. Hence, measurement of these cumulants can provide information not only about the mass but also about other parameters of the particles (diffusion coefficient and attachment-detachment rates).

  6. Silicon optomechanical crystal resonator at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Seán M.; Cohen, Justin D.; Gröblacher, Simon; Hill, Jeff T.; Safavi-Naeini, Amir H.; Aspelmeyer, Markus; Painter, Oskar

    2014-07-01

    Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6 GHz are performed at subkelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (Tf=10 mK), the localized mechanical resonance is found to couple at a rate of γi/2π=400 Hz (Qm=9×106) to a thermal bath of temperature Tb≈270 mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.

  7. The LHC diphoton resonance and dark matter

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Arcadi, Giorgio; Djouadi, Abdelhak

    2016-04-01

    A resonance with a mass of approximately 750 GeV has recently been "observed" at the LHC in its diphoton decay. If this state is not simply a statistical fluctuation which will disappear with more data, it could have important implications not only for particle physics but also for cosmology. In this note, we analyze the implications of such a resonance for the dark matter (DM). Assuming a spin-1/2 DM particle, we first verify that indeed the correct relic density can be obtained for a wide range of the particle mass and weak scale coupling, that are compatible with present data. We then show that the combination of near future direct and indirect detection experiments will allow to probe the CP-nature of the mediator resonance, i.e. discriminate whether it is a scalar or a pseudoscalar like particle.

  8. QUASI-RESONANT THEORY OF TIDAL INTERACTIONS

    SciTech Connect

    D'Onghia, Elena; Vogelsberger, Mark; Faucher-Giguere, Claude-Andre; Hernquist, Lars

    2010-12-10

    When a spinning system experiences a transient gravitational encounter with an external perturber, a quasi-resonance occurs if the spin frequency of the victim roughly matches the peak angular speed of the perturber. Such encounters are responsible for the formation of long tails and bridges during galaxy collisions. For high-speed encounters, the resulting velocity perturbations can be described by the impulse approximation. The traditional impulse approximation, however, does not distinguish between prograde and retrograde encounters, and therefore completely misses the resonant response. Here, we modify the impulse approximation to include the effects of quasi-resonant phenomena on stars orbiting within a disk. Explicit expressions are derived for the velocity and energy changes to the stars induced by tidal forces from an external gravitational perturber passing either on a straight line or a parabolic orbit. Comparisons with numerical-restricted three-body calculations illustrate the applicability of our analysis.

  9. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  10. Resonant entrainment of a confined pulsed jet

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Moffat, R. J.

    1982-01-01

    This paper reports the discovery of a new resonant entrainment phenomenon associated with a confined, pulsed jet flow. It was found that a confined jet, when pulsed at an organ-pipe resonant frequency of the confinement tube, experiences greatly enhanced entrainment and mixing near the exit end of the confinement tube compared to a steady confined jet. The mixing and entrainment rates for the resonantly pulsed confined jet approach, and in some cases slightly exceed, those for an unconfined pulsed jet. Both visual and quantitative evidence of this phenomenon is presented. The new effect should be of considerable interest in ejector and combustor design, both of which benefit from any enhancement in mixing between a primary and a secondary flow

  11. Symmetry and Resonance in Periodic FPU Chains

    NASA Astrophysics Data System (ADS)

    Rink, Bob

    The symmetry and resonance properties of the Fermi Pasta Ulam chain with periodic boundary conditions are exploited to construct a near-identity transformation bringing this Hamiltonian system into a particularly simple form. This ``Birkhoff-Gustavson normal form'' retains the symmetries of the original system and we show that in most cases this allows us to view the periodic FPU Hamiltonian as a perturbation of a nondegenerate Liouville integrable Hamiltonian. According to the KAM theorem this proves the existence of many invariant tori on which motion is quasiperiodic. Experiments confirm this qualitative behaviour. We note that one can not expect this in lower-order resonant Hamiltonian systems. So the periodic FPU chain is an exception and its special features are caused by a combination of special resonances and symmetries.

  12. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1983

    1983-01-01

    An experiment on cooling by convection, holographic processes achieved using optical fibers and observation of magnetic domains are described. Also describes four demonstrations: mechanical resonance on air track, independence of horizontal/vertical motion, motion of sphere in fluid medium, and light scattering near the critical point. (JN)

  13. A Vibrating String Experiment

    ERIC Educational Resources Information Center

    Tsutsumanova, Gichka; Russev, Stoyan

    2013-01-01

    A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…

  14. An NMR Kinetics Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Don; And Others

    1982-01-01

    Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

  15. Experimenting with Woodwind Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

  16. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  17. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  18. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Recently, Ho and his colleagues have calculated the positions and widths of a series of resonances in the Ps+H scattering system, using the complex -rotation method and have compared them with estimates that I made many years ago using a quite different technique. I assumed that the resonance mechanism was the existence in the rearrangement channel [e+ + H-] of an infinite series of perturbed Coulomb bound states. Although these must be broadened and shifted by coupling with the open scattering channel, I expected them to lie very close to the actual resonance positions. To verify this, I did a model calculation for S-waves, including the coupling, and found that the first two resonances were not shifted very far from their unperturbed position. The new, detailed calculation agrees with this result, but when the P-wave was examined it was found, surprisingly, that the lowest resonance indeed moved up in energy by a large amount. With the help of Joseph DiRienzi of the College of Notre Dame of Maryland I am now extending the old calculation to P- and D-waves, in an attempt to understand this unexpected energy shift. Results will be presented at the Workshop.

  19. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  20. Electromagnetic resonant modes of dielectric sphere bilayers

    SciTech Connect

    Andueza, A. Pérez-Conde, J.; Sevilla, J.

    2015-05-28

    Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10–25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.