These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Explosives detection by nuclear quadrupole resonance (NQR)  

Microsoft Academic Search

Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are

Allen N. Garroway; M. L. Buess; J. P. Yesinowski; J. B. Miller; Ronald A. Krauss

1994-01-01

2

Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer  

SciTech Connect

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

Black, B.E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1993-07-01

3

Structure-activity study of thiazides by magnetic resonance methods (NQR, NMR, EPR) and DFT calculations.  

PubMed

The paper presents a comprehensive analysis of the relationship between the electronic structure of thiazides and their biological activity. The compounds of interest were studied in solid state by the resonance methods nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) and quantum chemistry (ab inito and DFT) methods. Detailed parallel analysis of the spectroscopic parameters such as quadrupole coupling constant (QCC) NQR chemical shift (delta), chemical shift anisotropy (CSA), asymmetry parameter (eta), NMR and hyperfine coupling constant (A), EPR was performed and the electronic effects (polarisation and delocalisation) were revealed and compared. Biological activity of thiazides has been found to depend on many factors, but mainly on the physico-chemical properties whose assessment was possible on the basis of electron density determination in the molecules performed by experimental and theoretical methods. PMID:15670953

Latosi?ska, J N

2005-01-01

4

Local electric state of noncentrosymmetric superconductor Mo3Al2C revealed by Mo NQR and NMR experiments  

NASA Astrophysics Data System (ADS)

Mo nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements were performed on a noncentrosymmetric superconductor Mo3Al2C to investigate the local electronic state at Mo nuclei, which carries the electrons responsible for superconductivity. The NQR frequency, which is linked to the electric field gradient at Mo site, was determined from 95Mo NMR spectrum and the result was verified by the independent 97Mo NQR measurement. The experimentally obtained value is compared to the result of a point charge calculation to extract the EFG induced by conduction electrons and reveal the local electronic state.

Ihara, Y.; Kimura, Y.; Kumagai, K.; Bauer, E.; Rogl, G.; Rogl, P.

2012-12-01

5

Two-dimensional NQR using ultra-broadband electronics  

NASA Astrophysics Data System (ADS)

We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as 14N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented.

Mandal, S.; Song, Y.-Q.

2014-03-01

6

Two-dimensional NQR using ultra-broadband electronics.  

PubMed

We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as (14)N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented. PMID:24495675

Mandal, S; Song, Y-Q

2014-03-01

7

NQR investigation and characterization of cocrystals and crystal polymorphs  

NASA Astrophysics Data System (ADS)

The application of 14N NQR to the study of cocrystals and crystal polymorphs is reviewed. In ferroelectric and antiferroelectric organic cocrystals 14N NQR is used to determine proton position in an N-H...O hydrogen bond and proton displacement below TC. In cocrystal isonicitinamide - oxalic acid (2:1) 14N NQR is used to distinguish between two polymorphs and to determine the type of the hydrogen bond (N-...H-O). The difference in the 14N NQR spectra of cocrystal formers and cocrystal is investigated in case of carbamazepine, saccharin and carbamazepine - saccharin (1:1). The experimental resolution allows an unambiguous distinction between the 14N NQR spectrum of the cocrystal and the 14N NQR spectra of the cocrystal formers. The possibility of application of NQR and double resonance for the determination of the inhomogeneity of the sample and for the study of the life time of an unstable polymorph is discussed.

Seliger, Janez; Žagar, Veselko; Asaji, Tetsuo

2013-05-01

8

Landmine detection using feedback NQR  

Microsoft Academic Search

Nuclear quadrupole resonance (NQR) is well suited for detecting land mines with non-metallic cases. It provides both spatial localization and chemical identification of explosives. A search coil produces a train of radio frequency (RF) magnetic pulses that perturb the orientation of nitrogen nuclei contained within the explosive material. Following each RF pulse, the nuclei rotate back to orientations of lower

Andrew J. Blauch; Jeffrey L. Schiano; Mark D. Ginsberg

1999-01-01

9

Nuclear magnetic resonance experiments with dc SQUID amplifiers  

SciTech Connect

The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

Heaney, M.B. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

1990-11-01

10

Quadrupole coupling parameters and structural aspects of crystalline and amorphous solids by NMR and NQR  

SciTech Connect

NMR and NQR techniques were combined to obtain the quadrupole coupling constant (Qcc) and asymmetry parameter ({eta}) and extract structural information for several borate, gallate, and metavanadate compounds and glasses. {sup 71}Ga and {sup 69}Ga NMR was used to study crystalline {beta}-Ga{sub 2}O{sub 3} and several gallate glasses. Quadrupole parameters were acquired for GaO{sub 6} and GaO{sub 4} units in {beta}-Ga{sub 2}O{sub 3} by the computer simulation of the NMR powder patterns. A sensitive CW NQR spectrometer was built to detect NQR resonances below 2 MHz. The spectrometer includes a modified Robinson oscillator-detector, a new bi-symmetric square wave Zeeman modulator and a computerized data acquisition system. {sup 51}V (I = 7/2) NQR resonances below 850 kHz were detected for several metavanadates at both room temperature and liquid nitrogen temperature. Two methods, Zeeman perturbed NQR powder pattern and {sup 10}B NQR, can be employed to obtain both Qcc and {eta}. With a double coil tank circuit design, pure {sup 11}B NQR was used to determine the fraction of borons in BO{sub 3} and BO{sub 4} configurations in hydrated zinc borates. {sup 11}B NMR and NQR were also used to study lead borate glasses.

Mao, Degen.

1991-01-01

11

Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes  

E-print Network

We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.

E. A. Donley; J. L. Long; T. C. Liebisch; E. R. Hodby; T. A. Fisher; J. Kitching

2008-10-21

12

Investigation of structural information for boron-rich solids and aluminates via NMR and NQR studies  

SciTech Connect

Along with NMR, Nuclear Quadrupole Resonance (NQR) has become important recently for obtaining structural information from oxide glasses. The NQR studies prove in this thesis that they provide more accurate structural information than the NMR studies have done. This study presents boron and aluminum NMR, and NQR studies for some borate glasses and compounds, icosahedral boron-rich solids, some crystalline aluminosilicates. Various borates were employed to acquire structural information as well as to determine the quadrupole parameters (the quadrupole coupling constant Qcc and the asymmetry parameter {eta}) using NQR under a guidance of NMR or vice versa. By NQR a previously unknown boron site was observed for vitreous Li{sub 2}O{center dot}B{sub 2}O{sub 3}. The NMR and NQR studies were performed on some icosachedral boron-rich solids: {alpha}-rhombohedral boron (B{sub 12}), {beta}-boron (B{sub 105}) and boron carbide (B{sub 12}C{sub 3}). Three different forms of crystalline aluminosilicate (Al{sub 2}SiO{sub 5}) were studied by NQR. The NQR study yielded more accurate values of the quadrupole parameters for {sup 27}Al than the previous NMR single crystal study did.

Lee, D.

1991-01-01

13

Rapid detection of arsenic minerals using portable broadband NQR  

NASA Astrophysics Data System (ADS)

remote real-time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room-temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations.

Lehmann-Horn, J. A.; Miljak, D. G.; O'Dell, L. A.; Yong, R.; Bastow, T. J.

2014-10-01

14

The two-frequency nuclear quadrupole resonance for explosives detection  

Microsoft Academic Search

The two-frequency nuclear quadrupole resonance (NQR) of14N nuclei is described for purposes of explosives detection. Two applications are known: two-frequency NQR for increasing the\\u000a signal intensity, two-frequency NQR for improved reliability of explosives detection. The two-frequency experiments were carried\\u000a out in hexahydro-1,3,5-trinitro-s-triazine C3H6N6O6 and sodium nitrite NaNO2 as a substitute for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocycine C4H8N8O8. The two-frequency sequences for NQR are proposed

G. V. Mozjoukhine

2000-01-01

15

Measurement of in-situ stress in salt and rock using NQR techniques  

SciTech Connect

A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

Schempp, E.; Hirschfeld, T.; Klainer, S.

1980-12-01

16

New technologies: nuclear quadrupole resonance as an explosive and narcotic detection technique  

Microsoft Academic Search

Possibilities of detecting nuclear quadrupole resonance (NQR) signals in explosives and drugs are considered. Direct and indirect NQR techniques for searching substances are described and the potentialities of various experimental methods are compared.

Vadim S Grechishkin; Nikolai Ya Sinyavskii

1997-01-01

17

Three-dimensional high-inductance birdcage coil for NQR applications.  

PubMed

A birdcage coil capable of operating simultaneously and independently in three orthogonal dimensions has been developed. A co-rotational end-ring mode producing an RF field in the longitudinal direction was utilized in addition to the two common transverse orthogonal modes. Two conductor turns were used for each of the coil's windows, increasing its inductance by a factor of four, thereby, making the coil suitable for low-frequency applications. Two or three-frequency detection can be easily carried out with this device. Orthogonality of the coil's channels allows arbitrarily close frequency positioning of each resonant mode, potentially useful in wide-line NQR studies, in which simultaneous excitation/detection of signals from three adjacent regions of a single wide line can be performed. The coil's performance was evaluated using a three-dimensional scheme, in which a circularly polarized experiment was combined with a linearly polarized measurement at another frequency, resulting in SNR improvement by 55%. PMID:16584871

Peshkovsky, A S; Cerioni, L; Osan, T M; Avdievich, N I; Pusiol, D J

2006-09-01

18

14N NQR in the tetrazole family  

NASA Astrophysics Data System (ADS)

14N NQR frequencies and spin-lattice relaxation times were measured in technologically important 5-aminotetrazole and 5-aminotetrazole monohydrate at different temperatures between 77 K and 300 K. Five NQR triplets ?+, ?- and ?0 were found for the five inequivalent nitrogen atoms in each compound between 0.7 MHz and 4 MHz. Carr-Purcell based multipulse sequences were used to accumulate quadrupole echo signals before the FFT analysis. Assignment of the frequencies to atomic positions was made and the results are analysed in relation to the molecular chemical bonds and possible H-bonds in the crystal structures. The new NQR frequencies are reasonably related to the previously published NQR spectrum of the third family member, 1H-tetrazole.

Pirnat, Janez; Lužnik, Janko; Jazbinšek, Vojko; Žagar, Veselko; Seliger, Janez; Klapötke, Thomas M.; Trontelj, Zvonko

2009-10-01

19

Nuclear Quadrupole Resonance Study of the Nitrogen Mustards and Local Anesthetics.  

NASA Astrophysics Data System (ADS)

The density matrix description of pulsed nitrogen -14 nuclear quadrupole resonance (NQR) spin-echoes is presented. The parallel between this problem, when formulated in terms of the fictitious spin- 1/2 operators, and that of spin - 1/2 NMR spin-echoes in liquids is discussed along with the complications which arise in multiple-pulse NQR experiments in powders due to the random orientation of the electric field gradient tensors. The equipment and procedures involved in searching for, detecting and identifying NQR resonances using pulsed techniques are described. The ('14)N NQR spectra of several nitrogen mustard compounds in the solid state are reported and analyzed in the framework of the Townes and Dailey theory. For the aniline derivatives, a correlation exists between l -(sigma), l being the nitrogen lone-pair electron density and (sigma) the average N-C sigma bond electron density, and the enhanced Hammett sigma constant (sigma)('-). An improved correlation is obtained between l-(sigma) and (sigma)(,R)('-), which emphasizes the importance of resonance effects in determining l-(sigma). The increase of hydrolysis and alkylation rates with increasing values of l-(sigma) is in agreement with the identification of the cyclic immonium ion as the intermediate in the hydrolysis and alkylation processes of the aromatic nitrogen mustards. A possible correlation is noted between the ('35)Cl NQR spectra for some of the mustards and measures of toxic and antitumor activity. ('14)N NQR spectra for several local anesthetics in the solid state are also reported and analyzed using the Townes and Dailey approach. The changes in the electron distributions at various nitrogen sites, produced by protonating the tertiary amino nitrogen, are discussed and shown to be in general agreement with expectations bases on the increased electrophilic character of the protonated amino group.

Buess, Michael Lee

20

A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.  

PubMed

A low frequency (0.5-5MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5W and a total mass of about 3kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

2014-10-01

21

A miniaturized NQR spectrometer for a multi-channel NQR-based detection device  

NASA Astrophysics Data System (ADS)

A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

2014-10-01

22

Radiative widths of resonances (experiments)  

SciTech Connect

After a hiatus of several years, this conference brings us considerable new data on resonance production in photon photon interactions. I will first discuss the contributions concerning the tensor, pseudoscalar and scalar mesons, then review the current status of the (c/ovr string/c /eta//sub c/) and finally summarize the exciting new results concerning the spin 1 mesons. 40 refs., 21 figs., 7 tabs.

Gidal, G.

1988-07-01

23

Heteronuclear and quadrupolar second moment determination of the NQR line of 127I in NaIO4.  

PubMed

This work reports on a theoretical expression of the heteronuclear dipolar second moment (M2IS) of a NQR line of spin 5/2 nuclei. The result is applied to obtain M2IS for the resonance line of 127I in NaIO4, and in addition, an indirect determination of the quadrupolar second moment is given. PMID:10023847

Azurmendi, H F; Nagel, O A; Ramia, M E

1998-12-01

24

Nuclear electric quadrupole moment of 9Li using zero-field ?-detected NQR  

NASA Astrophysics Data System (ADS)

A ?-detected nuclear quadrupole resonance (NQR) spectrometer becomes a powerful tool to study changes in nuclear ground-state properties along isotopic chains when coupled to a laser excitation beamline to polarize the nuclei of interest. Recently, the ?-NQR technique in a zero magnetic field has been applied for the first time to measure the ratio of static nuclear quadrupole moments of 8, 9Li, Q9/Q8 = 0.966 75(9) denoted by Q8 for 8Li and Q9 for 9Li, respectively. This shows agreement with present literature values but with significantly improved precision. Based on the literature, the quadrupole moment for 8Li has been re-evaluated to be |Q8| = 32.6(5) mb. From this, the quadrupole moment for 9Li is calculated as |Q9| = 31.5(5) mb with the error being dominated by the error of Q8.

Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

2011-07-01

25

Undergraduate Electron-Spin-Resonance Experiment.  

ERIC Educational Resources Information Center

Describes the basic procedures for use of an electron-spin resonance spectrometer and potassium azide (KN3) in an experiment which extends from the phase of sample preparation (crystal growth, sample mounting, and orientation) through data taking to the stages of calculation and theoretical explanation. (Author/DS)

Willis, James S.

1980-01-01

26

Staggered magnetization in La2-xSrxCuO4 from 139La NQR and muSR: Effects of Sr doping in the range 0  

Microsoft Academic Search

We have used 139La nuclear quadrupole resonance (NQR) and positive muon spin rotation (muSR) measurements to probe the weakly doped antiferromagnetic (AF) region (x<0.02) of the La2-xSrxCuO4 system below the three-dimensional (3D) AF ordering (Néel) temperature TN(x). From these measurements, our previous 139La NQR measurements [F. C. Chou et al., Phys. Rev. Lett. 71, 2323, (1993)], and auxiliary 139La nuclear

F. Borsa; P. Carreta; J. H. Cho; F. C. Chou; Q. Hu; D. C. Johnston; A. Lascialfari; D. R. Torgeson; R. J. Gooding; N. M. Salem; K. J. E. Vos

1995-01-01

27

The development of pure ?-NQR techniques for measurements of nuclear ground state quadrupole moments in lithium isotopes  

NASA Astrophysics Data System (ADS)

A ?-NQR spectrometer becomes a powerful tool to study changes in nuclear ground state properties along isotopic chains when coupled to a laser excitation beamline to polarise the nuclei of interest. Recently, the ?-NQR technique in a zero magnetic field has been applied for the first-time to measure ratios of static nuclear quadrupole moments of, Li. Preliminary results of the experiment determining the ratios Q9/Q8 and Q11/Q9 show agreement with present literature values with improved precision.

Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

2011-09-01

28

Electron density distribution in cladribine (2-chloro-2?-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations  

NASA Astrophysics Data System (ADS)

2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

Latosi?ska, J. N.; Latosi?ska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

2009-07-01

29

NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity  

NASA Astrophysics Data System (ADS)

The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.

Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.

2004-07-01

30

35Cl-NQR and DFT study of electronic structure of amlodipine and felodipine vascular-selective drugs from the dihydropyridine Ca ++ antagonists group  

NASA Astrophysics Data System (ADS)

Amlodipine (AM) and felodipine (FL) have been studied in solid state by the nuclear quadrupole resonance (NQR) and density functional theory (DFT). The results have shown that NQR data do not permit a differentiation between R and S enantiomers, which is a consequence of the symmetry of the 4-aryl ring, whereas they permit a differentiation between free bases and salts. The HOMO-LUMO gap is smaller for AM than for FL, which suggests smaller energy of excitation for AM. The absolute hardness, chemical potential and electrophilicity of both AM enantiomers are lower than the corresponding values for FL enantiomers, suggesting that AM should be more reactive than FL in unimolecular reactions.

Latosi?ska, J. N.; Latosi?ska, M.; Kasprzak, J.

2008-09-01

31

35 Cl NQR spectra of group 1 and silver dichloromethanesulfonates  

Microsoft Academic Search

The dichloromethanesulfonates of silver and other +1-charged cations, M\\u000a ?+?(Cl2CHSO (M = Ag, Tl, Li, Na, K, Rb, Cs) were synthesized and studied by 35Cl NQR. Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, and was then neutralized\\u000a with the carbonates of the +1-charged cations to produce the corresponding dichloromethanesulfonate salt. This NQR study completed\\u000a the investigation of

Gabriel Gillette; Gary Wulfsberg

2008-01-01

32

Beta-detected NQR in zero field with a low energy beam of 8Li+  

NASA Astrophysics Data System (ADS)

Beta-detected nuclear quadrupole resonances ( ?-NQR) in zero field are observed using a beam of low energy highly polarized radioactive Li+8. The resonances were detected in SrTiO 3, Al 2O 3 and Sr 2RuO 4 single crystals by monitoring the beta-decay anisotropy as a function of a small audio frequency magnetic field. The resonances show clearly that Li+8 occupies one site with non-cubic symmetry in SrTiO 3, two in Al 2O 3 and three sites in Sr 2RuO 4. The resonance amplitude and width are surprisingly large compared to the values expected from transitions between the |±2>?|±1> spin states, indicating a significant mixing between the |±m> quadrupolar split levels.

Salman, Z.; Kiefl, R. F.; Chow, K. H.; MacFarlane, W. A.; Kreitzman, S. R.; Arseneau, D. J.; Daviel, S.; Levy, C. D. P.; Maeno, Y.; Poutissou, R.

2006-03-01

33

Intermetallic solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3}: Synthesis, structure, NQR study and electronic band structure calculations  

SciTech Connect

Unlimited solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3} was prepared from Ga flux. Its crystal structure was refined for Fe{sub 0.5}Co{sub 0.5}Ga{sub 3} (P4{sub 2}/mnm, a=6.2436(9), c=6.4654(13), Z=4) and showed no ordering of the metal atoms. A combination of the electronic band structure calculations within the density functional theory (DFT) approach and {sup 69,71}Ga nuclear quadrupole resonance (NQR) spectroscopy clearly shows that the Fe-Fe and Co-Co dumbbells are preferred to the Fe-Co dumbbells in the crystals structure. The band structure features a band gap of about 0.4 eV, with the Fermi level crossing peaks of a substantial density of electronic states above the gap for x>0. The solid solution is metallic for x>0.025. The study of the nuclear spin-lattice relaxation shows that the rate of the relaxation, 1/T{sub 1}, is very sensitive to the Co concentration and correlates well with the square of the density of states at the Fermi level, N{sup 2}(E{sub F}). - Graphical abstract: Rate of the nuclear spin-lattice relaxation, 1/T{sub 1}, observed in the {sup 69}Ga NQR experiments for the intermetallic solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3} is the highest for x=0.25 with the highest calculated density of electronic states at the Fermi level, N(E{sub F}); in general, 1/T{sub 1} correlates with N{sup 2}(E{sub F}). Highlights: Black-Right-Pointing-Pointer Fe{sub 1-x}Co{sub x}Ga{sub 3} solid solution is prepared in single crystalline form from Ga flux. Black-Right-Pointing-Pointer In the crystal structure Fe-Fe and Co-Co dumbbells are preferred to Fe-Co dumbbells. Black-Right-Pointing-Pointer Metal-to-semiconductor transition occurs at 0NQR spectra efficiently probe local environment of two independent Ga atoms. Black-Right-Pointing-Pointer Rate of nuclear spin-lattice relaxation follows squared DOS at the Fermi level.

Verchenko, V.Yu.; Likhanov, M.S.; Kirsanova, M.A. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)] [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Gippius, A.A; Tkachev, A.V.; Gervits, N.E. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation) [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, Moscow 119333 (Russian Federation); Galeeva, A.V. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)] [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Buettgen, N.; Kraetschmer, W. [Institut fuer Physik, University of Augsburg, Augsburg D-86135 (Germany)] [Institut fuer Physik, University of Augsburg, Augsburg D-86135 (Germany); Lue, C.S. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)] [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Okhotnikov, K.S. [Materials and Environmental Chemistry, Stockholm University, Stockholm (Sweden)] [Materials and Environmental Chemistry, Stockholm University, Stockholm (Sweden); Shevelkov, A.V., E-mail: shev@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

2012-10-15

34

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

E-print Network

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments M. J ­ The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005- to 200-eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. Accurate

Danon, Yaron

35

Resonance in a model for Cooker's sloshing experiment  

E-print Network

Resonance in a model for Cooker's sloshing experiment -- the extended version -- by H. Alemi that they are equivalent. The most important observation is the discovery of an internal 1 : 1 resonance both are coupled to the vessel motion. Numerical evaluation of the resonant and nonresonant modes are presented

Bridges, Tom

36

Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments  

E-print Network

Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments Michael J Department Troy, New York 12180-3590 Abstract. The focus of this work is to determine resonance parameters and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion

Danon, Yaron

37

Observation of sub-kilohertz resonance in Rf-Optical double resonance experiment in rare earth ions in solids  

E-print Network

Observation of sub-kilohertz resonance in Rf-Optical double resonance experiment in rare earth ions-kilohertz resonance structures in RF-optical double resonance experiments of rare-earth-doped solids, when in the course of optical-RF double resonance experiment of rare earth ions in solids. The reso- nance

Shahriar, Selim

38

Narcotics and explosives detection by 14N pure nuclear quadrupole resonance  

Microsoft Academic Search

Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are

Allen N. Garroway; M. L. Buess; J. P. Yesinowski; J. B. Miller

1994-01-01

39

Detection of RDX and TNT mine like targets by nuclear quadrupole resonance  

Microsoft Academic Search

Nuclear quadrupole resonance (NQR) is being researched in order to confirm the presence of explosives as part of landmine sensor suites for the UK MOD hand held and vehicle mounted detection applied research programs. A low power NQR system has been developed as a non-contacting, but short range, detection method for explosives typically found in landmines. The results of stand-off

Robert M. Deas; Ian A. Burch; Daniel M. Port

2002-01-01

40

Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins  

Microsoft Academic Search

We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the ?- and ?-carbon and ?-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments

Keyang Ding; Angela M. Gronenborn

2002-01-01

41

Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.  

PubMed

DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, ? and asymmetry parameter, ?. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (?, ?) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

2012-03-01

42

Miniature Magnet for Electron Spin Resonance Experiments  

ERIC Educational Resources Information Center

Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

Rupp, L. W.; And Others

1976-01-01

43

35Cl NQR spectra of group 1 and silver dichloromethanesulfonates  

NASA Astrophysics Data System (ADS)

The dichloromethanesulfonates of silver and other +1-charged cations, M + (Cl2CHSO3-) ( M = Ag, Tl, Li, Na, K, Rb, Cs) were synthesized and studied by 35Cl NQR. Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, and was then neutralized with the carbonates of the +1-charged cations to produce the corresponding dichloromethanesulfonate salt. This NQR study completed the investigation of the chloroacetates and chloromethanesulfonates of silver, Ag + (Cl x CH3 - x SO3-) and Ag + (Cl x CH3 - x CO2-), and suggests (1) that the ability of organochlorine atoms to coordinate to silver decreases as the number of electron-withdrawing groups (Cl, SO3-, CO2-) attached to the carbon atom increases; (2) that the unusually large NQR spectral width found among M + (Cl2CHCO2-) salts is not present among M + (Cl2CHSO3-) salts, and therefore is not generally characteristic of the dichloromethyl group in salts.

Gillette, Gabriel; Wulfsberg, Gary

2008-01-01

44

27Al-NQR\\/NMR Study of Kondo Semiconductor CeFe2Al10  

Microsoft Academic Search

27Al-NQR\\/NMR measurements have been performed on CeFe2Al10 in relevance to the novel phase below T0=27 K of isostructural CeRu2Al10. NQR peaks are assigned to five crystallographically inequivalent Al sites. No splitting of the NQR spectra down to 1.5 K confirms the lack of phase transition in this compound. The gaplike decrease in the spin-lattice relaxation rate 1\\/T1 above about 20

Yukihiro Kawamura; Shingo Edamoto; Tomoaki Takesaka; Takashi Nishioka; Harukazu Kato; Masahiro Matsumura; Yo Tokunaga; Shinsaku Kambe; Hiroshi Yasuoka

2010-01-01

45

Nuclear Quadrupole Resonance Studies of Charge Distributions in Molecular Solids  

Microsoft Academic Search

A detailed description of an NMR-NQR double resonance spectrometer designed and constructed in this laboratory is given, including some instruction on its use. ('14)N NQR data obtained by pulse methods for six classes of nitrogen-containing compounds are presented and analyzed in the framework of the Townes and Dailey theory. A study of the anti-cancer drugs cyclophosphamide, isophosphamide and triphosphamide suggests

Steven Garry Greenbaum

1982-01-01

46

Resonances production from the NA60 experiment  

NASA Astrophysics Data System (ADS)

The NA60 experiment at the CERN SPS has studied light vector meson production in In-In collisions at 158A GeV. The ? meson was detected via both the K+K- and the ?+?- decay channels. The yields and inverse slope parameters of the mT spectra observed in the two channels are compatible within errors, different from the large discrepancies seen in Pb-Pb collisions between the hadronic (NA49) and dimuon (NA50) decay channels. In the invariant mass region 0.2 < M?? < 2.6 GeV, a strong excess of pairs above the sources that describe the mass spectrum in p-A collisions is observed. The mass spectrum for M?? < 1 GeV is consistent with a dominant contribution from the pion annihilation process ? + ? ? ? ? ?+?-. For M?? > 1 GeV, the excess is found to be prompt, with remarkable differences with respect to the Drell-Yan process. The Teff slope parameter, extracted from the transverse mass spectra, shows a rise with mass up to the ?, followed by a sudden decline for higher masses. The former is consistent with radial flow of a hadronic source, while the latter suggests a dominantly partonic emission source.

De Falco, A.

2012-11-01

47

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

SciTech Connect

The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

2004-10-13

48

35Cl NQR spectra of group 1 and silver dichloromethanesulfonates  

NASA Astrophysics Data System (ADS)

The dichloromethanesulfonates of silver and other +1-charged cations, M +(Cl2CHSO{3/-}) (M=Ag, Tl, Li, Na, K, Rb, Cs) were synthesized and studied by 35Cl NQR. Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, and was then neutralized with the carbonates of the +1-charged cations to produce the corresponding dichloromethanesulfonate salt. This NQR study completed the investigation of the chloroacetates and chloromethanesulfonates of silver, Ag+(Cl x CH3-x SO{3/-}) and Ag+(Cl x CH3-x CO{2/-}), and suggests (1) that the ability of organochlorine atoms to coordinate to silver decreases as the number of electron-withdrawing groups (Cl, SO{3/-} CO{2/-}) attached to the carbon atom increases; (2) that the unusually large NQR spectral width found among M+(Cl2CHCO{2/-}) salts is not present among M+(Cl2CHS0{3/-}) salts, and therefore is not generally characteristic of the dichloromethyl group in salts.

Gillette, Gabriel; Wulfsberg, Gary

49

An ultra-broadband low-frequency magnetic resonance system.  

PubMed

MR probes commonly employ resonant circuits for efficient RF transmission and low-noise reception. These circuits are narrow-band analog devices that are inflexible for broadband and multi-frequency operation at low Larmor frequencies. We have addressed this issue by developing an ultra-broadband MR probe that operates in the 0.1-3MHz frequency range without using conventional resonant circuits for either transmission or reception. This "non-resonant" approach significantly simplifies the probe circuit and allows robust operation without probe tuning while retaining efficient power transmission and low-noise reception. We also demonstrate the utility of the technique through a variety of NMR and NQR experiments in this frequency range. PMID:24632101

Mandal, S; Utsuzawa, S; Cory, D G; Hürlimann, M; Poitzsch, M; Song, Y-Q

2014-05-01

50

I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics  

SciTech Connect

NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C{sub 5}H{sub 5}) and Sn({eta}{sup 1}-C{sub 5}H{sub 5}){sub 4}. This work was undertaken in the hope of gaining insight into the intramolecuhrr dynamics, specifically which fluxional processes exist in the solid state, by what mechanism rearrangements are occurring, and the activation energies by which these processes are governed.

Ziegeweid, M.A.

1995-11-29

51

Bragg Resonator Cyclotron Resonance Maser Experiments Driven by a Microsecond, Intense Electron Beam Accelerator  

Microsoft Academic Search

The cyclotron resonance maser (CRM) has proven to be attractive for many high power microwave applications such as fusion plasma heating, radar\\/communications, and high gradient RF accelerators. Most of the previous CRM experiments with MV electron beams have been conducted with short (<0.1 musec) pulses. The present work contains the first comprehensive experimental study on mode competition in a high-Q

Jin Joo Choi

1991-01-01

52

Spin diffusion of dipolar energy in NQR.  

PubMed

The theory of spin diffusion was extended to the case of nuclear dipolar order in solids containing paramagnetic impurities and nuclei with spin I > 1/2 having nuclear quadrupole moment. We show that spin diffusion process of dipolar order takes place in solids containing paramagnetic impurities. At the start of relaxation process, the direct relaxation regime is realized with non-exponential time dependence. Then the relaxation regime will be changed to diffusion-limited one. Using obtained expressions for the spin lattice relaxation times for these two relaxation regimes, the diffusion coefficient of the dipolar order in nuclear quadrupole resonance can be estimated from experimental data. PMID:10868572

Furman, G B; Goren, S D

2000-06-01

53

Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity  

NASA Astrophysics Data System (ADS)

Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

2013-12-01

54

Meson photoproduction and baryon resonances at MAMBO experiment  

NASA Astrophysics Data System (ADS)

Photoproduction of mesons within the framework of the MAMBO experiment (BGO-OD at Bonn plus MAMI at Mainz) was studied. The results on the operative work of the cryogenic H2/D2 target system during the last commissioning beam times at the March and June 2012 are shown. Investigation of the single charged pion photoproduction was provided using a polarized 3He target at the tagged photon facility of the MAMI accelerator. Unpolarized and helicity dependent cross sections are presented for channels ?N ? ?±X in the ?(1232) baryon resonance region.

Romaniuk, Mariia

2013-03-01

55

Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental ((1)h-(14)n nuclear quadrupole double resonance) and computational (DFT and hirshfeld-based) study.  

PubMed

Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable ? form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline < theobromine < caffeine according to increasing electric field gradient (EFG) at the N(1) and N(7) sites, respectively, reflects the changes in biological activity profile of compounds from the methylxanthines series (different pharmacological effects). This difference is elucidated on the basis of the ability to form intra- and intermolecular interactions (hydrogen bonds and ?···? stacking interactions). The introduction of methyl groups to xanthine restricts the ability of nitrogen atoms to participate in strong hydrogen bonds; as a result, the dominating effect shifts from hydrogen bond (theobromine) to ?···? stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld surface-based approach. The analysis of local environment of the nitrogen nucleus permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given methylxanthine to A1-A2A receptor (target for caffeine in the brain). Although the interactions responsible for linking neighboring methylxanthines molecules in crystals and methylxanthines with targets in the human organism can differ significantly, the knowledge of the topology of interactions provides reliable preliminary information about the nature of this binding. PMID:25184363

Latosi?ska, Jolanta Natalia; Latosi?ska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Zagar, Veselko

2014-09-22

56

Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat  

NASA Technical Reports Server (NTRS)

La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

Borsa, F.; Rigamonti, A.

1991-01-01

57

Copper Nqr and NMR Study of Metal-Substituted Yttrium BARIUM(2) COPPER(3) OXYGEN(7) and Yttrium BARIUM(2) COPPER(4) OXYGEN(8)  

NASA Astrophysics Data System (ADS)

Pulsed nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) have been used to investigate the effect of metal-substitution for copper in YBa_2Cu_3O_7 (YBCO123) and YBa_2Cu_4O_8 (YBCO124). Among many metal substitutions, Zn has an especially dramatic effect in suppressing the superconducting temperature T_{c}, and hence superconductivity. More interesting is that Zn and Fe have the same T_{c} suppression effect in YBCO124. This study focuses on the Zn substitutions in YBCO123 and Zn, Fe, and Co substitutions in YBCO124. In Zn doped YBCO123, Cu(2), plane site, NQR spectra and the frequency dependence of the spin-lattice relaxation rates have been measured over a temperature range from 77 K to 300 K to study the correlation of the suppression of the relaxation rate with the distance between the probe Cu nuclei and the impurity. It is found that the relaxation rate is insensitive to the variation of the NQR resonance frequency. However, by comparing the results of the Zn doped YBCO124 with those of YBCO123, it can be concluded that the suppression of the relaxation rate for both YBCO compounds in the normal state is caused by destruction of short-range antiferromagnetic correlation with substitution of nonmagnetic ion Zn on the Cu(2) sites. NQR and NMR measurements were carried out on both Cu(2), plane, and Cu(1), chain sites, for various concentrations of Zn, Fe, and Co dopants in YBCO124 over a temperature range from 77 K to 300 K. A strong correlation of the enhancement of Cu(2) spin lattice relaxation rate and suppression of superconductivity by impurities was found. The temperature dependence of the Cu(2) NMR linewidth exhibits a strong RKKY type exchange interaction below 225 K for Zn and Fe doped samples, which indicates the formation of the local magnetic moment. The enhancement of the relaxation rate is caused by the local magnetic moment Fe^ {+3} ion and the moments on Cu(2) neighbors when Zn^{+2} is substituted on Cu(2). This study gives us a clear picture of the spin pseudogap behavior in the high temperature superconductor cuprates. It also suggests that the magnetic moment on the CuO_2 plane may relate to the suppression of T_{c} in metal-substituted YBCO124.

Cheng, Show-Jye

58

Optical Resonators in Current and Future Experiments of the ALPS Collaboration  

SciTech Connect

The ALPS collaboration runs a 'light shining through a wall' (LSW) experiment to search for weakly interacting sub-eV particles (WISPs). Its sensitivity is significantly enhanced by the incorporation of a large-scale production resonator and a small-scale high-power resonant second harmonic generator. Here we report on important experimental details and limitations of these resonators and derive recommendations for further experiments. A very promising improvement for a future ALPS experiment is the incorporation of an additional large-scale regeneration resonator. We present a rough sketch of how to combine a regeneration resonator with a single-photon counter (SPC) as detector for regenerated photons.

Meier, T. [Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute (Germany) and Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover, Callinstr. 38, D-30167 Hannover (Germany)

2010-08-30

59

Optical Resonators in Current and Future Experiments of the ALPS Collaboration  

E-print Network

The ALPS collaboration runs a "light shining through a wall" (LSW) experiment to search for weakly interacting sub-eV particles (WISPs). Its sensitivity is significantly enhanced by the incorporation of a large-scale production resonator and a small-scale high-power resonant second harmonic generator. Here we report on important experimental details and limitations of these resonators and derive recommendations for further experiments. A very promising improvement for a future ALPS experiment is the incorporation of an additional large-scale regeneration resonator. We present a rough sketch of how to combine a regeneration resonator with a single-photon counter (SPC) as detector for regenerated photons.

T. Meier; for the ALPS collaboration

2010-03-30

60

Nuclear magnetic resonance with dc SQUID (Super-conducting QUantum Interference Device) preamplifiers  

NASA Astrophysics Data System (ADS)

Sensitive radio-frequency (RF) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 + or - 0.5 dB and 1.7 + or - 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of nuclear spin noise, the emission of photons by Cl-35 nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large RF pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 x 10(16) nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing Cl-35 nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in Sn-119 nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10(18) nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in Pt-195 nuclei has been observed at 55 kHz in a field of 60 gauss.

Fan, N. Q.; Heaney, Michael B.; Clark, John; Newitt, D.; Wald, Lawrence L.; Hahn, Erwin L.; Bierlecki, A.; Pines, A.

1988-08-01

61

27Al-NQR Study on Novel Phase Transition in CeOs2Al10  

NASA Astrophysics Data System (ADS)

We have performed 27Al-NQR measurements in CeOs2Al10 which exhibits a novel phase transition at T0=29 K The NQR parameters determined for all the Al sites in ambient pressure were compared with those in CeRu2Al10 with T0=27 K and CeFe2Al10 with no phase transition. The distinct NQR splitting just below T0=32.5 K under pressure 0.66 GPa ensures an enhancement of T0 and a homogeneous transition. Despite the increase of T0, the nuclear spin-lattice relaxation rate 1/Tl is suppressed over whole range of temperature than in ambient pressure. The characteristic features of no critical slowing down at T0 and of the remarkable decrease of 1/T1T starting at T > T0 become prominent under pressure, suggesting an approach to Kondo semiconductor in a valence fluctuation regime.

Matsumura, M.; Inagaki, T.; Kato, H.; Nishioka, T.; Tanida, H.; Sera, M.

2012-12-01

62

Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements  

NASA Astrophysics Data System (ADS)

The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility ? and the T dependence of 1/T1T?, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

2014-03-01

63

Unconventional superconductivity near quantum critical point revealed by Co-NQR measurements on Nax(H3O)CoO2·yH2O  

NASA Astrophysics Data System (ADS)

The nuclear quadrupole resonance (NQR) frequency of Co nuclei and the nuclear spin lattice relaxation rate 1/T1 were measured on several bilayered hydrate (BLH) Nax(H3O)CoO2·yH2O (y˜1.3) with variety of superconducting (SC) and magnetic transition temperatures, Tc and TM, together with non-SC mono-layered hydrate (MLH) Nax(H3O)CoO2·yH2O (y˜0.7). In the high temperature region above 70 K, 1/T1T in all the samples follows the same temperature dependence which is interpreted as the pseudogap behavior. In the BLH compounds, 1/T1T increases with decreasing temperature below 70 K, and the values of 1/T1T at Tc are large in high-Tc samples. The magnetic ordering is ascertained from the observation of the prominent divergence of 1/T1T at TM in the samples whose NQR frequency is higher than 12.5 MHz. The temperature dependence of 1/T1T is found to be consistently expressed by a unique function with two fitting parameters. We analyze the temperature dependence of 1/T1T on the basis of this function, and investigate the relationship between the magnetic fluctuations and superconductivity in the BLH compounds.

Ihara, Y.; Takeya, H.; Ishida, K.; Michioka, C.; Yoshimura, K.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

2007-11-01

64

Optical control of nuclear resonant absorption: theory and experiment  

E-print Network

Modification of nuclear resonant absorption by means of laser radiation is analyzed both theoretically and experimentally. Theoretical analysis is done on the basis of four-level model of atom. This model includes both electronic and nuclear...

Kolesov, Roman L.

2004-09-30

65

Liquid contact resonance AFM: analytical models, experiments, and limitations  

NASA Astrophysics Data System (ADS)

Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

Parlak, Zehra; Tu, Qing; Zauscher, Stefan

2014-11-01

66

Liquid contact resonance AFM: analytical models, experiments, and limitations.  

PubMed

Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces. PMID:25302928

Parlak, Zehra; Tu, Qing; Zauscher, Stefan

2014-11-01

67

Sensing of chemical substances using SQUID-based nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

Using a high- Tc radio frequency superconducting quantum interference device (rf SQUID) with a normal metal transformer, we successfully detected the nuclear quadrupole resonance (NQR) at about 888 kHz of 14N in p-nitrotoluene (PNT) at room temperature. Only one coil was used as the resonator coil for the transmission and the pickup coil of the transformer. To reduce the influence of the strong excitation field, cross diodes and switches were inserted in the transformer. The signal-to-noise ratio of the NQR spectrum using high- Tc rf SQUID system was comparable to that of using a low noise preamplifier.

Tachiki, M.; He, D. F.; Itozaki, H.

2007-10-01

68

Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR  

NASA Technical Reports Server (NTRS)

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

Brinkmann, D.

1995-01-01

69

Modern Michelson-Morley Experiment using Cryogenic Optical Resonators  

Microsoft Academic Search

We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over ˜1 yr. For a possible anisotropy of the speed of light c, we obtain Deltathetac\\/c0=(2.6±1.7)×10-15. Within the Robertson-Mansouri-Sexl (RMS) test theory, this implies an isotropy violation parameter beta-delta-1\\/2=(-2.2±1.5)×10-9, about 3 times lower than the

Holger Müller; Sven Herrmann; Claus Braxmaier; Stephan Schiller; Achim Peters

2003-01-01

70

Low-frequency nuclear quadrupole resonance with a dc SQUID  

SciTech Connect

Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

Chang, J.W.

1991-07-01

71

Laboratory Experiments for Exploring the Surface Plasmon Resonance  

ERIC Educational Resources Information Center

The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…

Pluchery, Olivier; Vayron, Romain; Van, Kha-Man

2011-01-01

72

Resonance  

NSDL National Science Digital Library

For advanced undergraduate students: Observe resonance in a collection of driven, damped harmonic oscillators. Vary the driving frequency and amplitude, the damping constant, and the mass and spring constant of each resonator. Notice the long-lived transients when damping is small, and observe the phase change for resonators above and below resonance.

Simulations, Phet I.; Dubson, Michael; Loeblein, Patricia; Olson, Jonathan; Perkins, Kathy; Gratny, Mindy

2011-07-20

73

Idea Bank: A Resonance Tube Experiment Using "Boomwhackers"  

NSDL National Science Digital Library

Bring the "sound of music" to your science classroom--this activity uses the lengths and fundamental frequencies of a set of resonance tubes to verify the expression for the relationship between these two quantities and the value of the speed of sound. Students blow into one end of the boomwhackers and capture the sound onto a computer. Analysis of the resulting waveform provides an excellent introduction to the mathematical relationships between the musical intervals in a scale.

Lopresto, Michael

2005-01-01

74

Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat  

NASA Technical Reports Server (NTRS)

La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

Borsa, F.; Rigamonti, A.

1990-01-01

75

Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.  

ERIC Educational Resources Information Center

Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

Hoskins, L. C.

1984-01-01

76

Part I. Analyzing the distribution of gas law questions in chemistry textbooks. Part II. Chlorine-35 NQR spectra of group 1 and silver dichloromethanesulfonates  

NASA Astrophysics Data System (ADS)

Part I. Two studies involving the gas law questions in eight high school and Advanced Placement/college chemistry textbooks were performed using loglinear analysis to look for associations among six variables. These variables included Bloom's Taxonomy (higher-order, lower-order), Book Type (high school, college), Question Format (multiple-choice, problem, short answer), Question Placement (in-chapter, end-of-chapter, test bank), Representation (macroscopic, microscopic, symbolic), and Arkansas Science Standard (conceptual, mathematical; gas laws, pressure conversion, stoichiometry). The first study, involving the conceptual gas law questions, found the Book Type and Question Placement variables had the biggest impact, each appearing in 5 of the 11 significant associations. The second study, involving the mathematical gas law questions, found the Question Placement had the biggest impact, appearing in 7 of the 11 significant associations, followed by Book Type and the Arkansas Science Standard variables, which appeared in 5 of the 11 significant associations. These studies showed that compared to the high school books, college books have fewer multiple-choice questions (compared to short-answer and problem questions), fewer in-chapter questions (compared to end-of-chapter and test bank questions), fewer questions in the chapters and more questions at the end of the chapters and fewer multiple-choice questions in and at the end of the books and more multiple-choice questions in the test banks. Part II. The dichloromethanesulfonate salts of several +1 charged cations, M+Cl2CHSO3 - (M = Li, Na, K, Rb Ag, Cs Tl) were synthesized and studied by 35Cl nuclear quadrupole resonance (NQR). Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, which was neutralized with the metal carbonates to produce the corresponding metal dichloromethanesulfonate salts. This study completed the NQR investigation of the family of chloroacetates and chloromethanesulfonates of silver. The study suggests that the ability of organochlorine atoms to coordinate to silver ions decreases as the number of electron-withdrawing groups attached to carbon atom bound to the coordinating chlorine atom increases. The unusually large NQR spectral width found among M+Cl2CHCO2 - salts are not present among M+Cl2CHSO 3- salts and does not appear to be generally characteristic of the dichloromethyl family of salts.

Gillette, Gabriel

77

Near-field optical experiments on low-symmetry split-ring-resonator arrays.  

PubMed

Effective symmetric and antisymmetric eigenmodes of coupled plasmonic resonances play a crucial role in many photonic metamaterials. Recently, we discussed a particular arrangement of metallic split-ring resonators that is planar, hence enabling direct experimental access to the different eigenmodes via near-field optical microscopy. In this Letter, corresponding optical experiments are presented and compared with simple theoretical modeling, providing a direct confirmation of our previous, more indirect conclusions. PMID:21042383

Diessel, Daniela; Decker, Manuel; Linden, Stefan; Wegener, Martin

2010-11-01

78

Weak itinerant antiferromagnetism in PuIn3 explored using 115In nuclear quadrupole resonance.  

PubMed

The results of (115)In nuclear quadrupole resonance (NQR) measurements on PuIn3 are reported. Three of the four NQR lines of (115)In expected for nuclear spin I = 9/2 are observed. The equal spacing of these lines at 20 K yields the NQR frequency of ?Q = 10.45 MHz, and the asymmetry parameter of the electric field gradient ? = 0. The NQR line profile and the nuclear spin-lattice relaxation rate 1/T1 display an abrupt change at 14 K, which is associated with the onset of long-range antiferromagnetic order. The temperature dependences of the staggered magnetization MQ(T), extracted from the NQR spectra, and 1/T1 below TN = 14 K are well explained by the self-consistent renormalization (SCR) theory for spin fluctuations. In addition, the scaling between T1T and MQ(T)/MQ(0) is also consistent with the predictions of SCR theory, providing further evidence that PuIn3 is a weak itinerant antiferromagnet in which spin fluctuations around the antiferromagnetic wavevector play a major role in the system's behavior at finite temperatures. PMID:24334529

Chudo, H; Koutroulakis, G; Yasuoka, H; Bauer, E D; Tobash, P H; Mitchell, J N; Thompson, J D

2014-01-22

79

14N nuclear quadrupole resonance of p-nitrotoluene using a high-Tc rf SQUID  

NASA Astrophysics Data System (ADS)

Using a high-Tc radio-frequency superconducting quantum interference device (rf SQUID), we successfully detected nuclear quadrupole resonance (NQR) at about 887 kHz for 14N in p-nitrotoluene (PNT). A normal metal transformer made of copper wire was used to improve the sensitivity of the high-Tc rf SQUID and pulse-controlled rf switches and cross diodes were inserted in the transformer to reduce the influence of the strong excitation field. The preliminary results for NQR detection using the high-Tc SQUID had a similar signal-to-noise ratio to that of using a low noise preamplifier.

He, D. F.; Tachiki, M.; Itozaki, H.

2007-03-01

80

Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance  

E-print Network

Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance S 20 November 2006 A radio-frequency tunable atomic magnetometer is developed for detection of nuclearHz 14 N NQR frequency of ammonium nitrate. A potential application of the magnetometer is detection

Romalis, Mike

81

Addition compounds of antimony trichloride and tribromide. Crystal structure and charge transfer from NQR data  

NASA Astrophysics Data System (ADS)

The correlation analysis of the quadrupcle coupling constants(QCC) for the antimony nuclei in the intermolecular compounds of SbCl 3 and SbBr 3 with aromatic hydrocarbons is carried out. The results confirm a supposition about the general similarity of the crystal structures of these complexes. The correlative dependence between the antimony QCC values and also the results of the chlorine and bromine NQR spectra Investigation permit the evaluation of the relative acceptor strength of the antimony trihalide molecules.

Kjuntsel, I. A.; Gordeev, A. D.

82

27Al-NQR/NMR Study of Kondo Semiconductor CeFe2Al10  

NASA Astrophysics Data System (ADS)

27Al-NQR/NMR measurements have been performed on CeFe2Al10 in relevance to the novel phase below T0=27 K of isostructural CeRu2Al10. NQR peaks are assigned to five crystallographically inequivalent Al sites. No splitting of the NQR spectra down to 1.5 K confirms the lack of phase transition in this compound. The gaplike decrease in the spin-lattice relaxation rate 1/T1 above about 20 K, following the Korringa law (T1T = const.) below 20 K, indicates a pseudogap opening near the Fermi level. The gap magnitude of 70 K with a mid-gap state of 42% is estimated based on a rectangular density of states. The gap magnitude is much larger than the gap of 15 K evaluated previously from the electrical resistivity, which suggests CeFe2Al10 to be a Kondo semiconductor with a Kondo temperature much higher than 300 K.

Kawamura, Yukihiro; Edamoto, Shingo; Takesaka, Tomoaki; Nishioka, Takashi; Kato, Harukazu; Matsumura, Masahiro; Tokunaga, Yo; Kambe, Shinsaku; Yasuoka, Hiroshi

2010-10-01

83

Resonance  

NSDL National Science Digital Library

All About Circuits is a website that âÂÂprovides a series of online textbooks covering electricity and electronics.â Written by Tony R. Kuphaldt, the textbooks available here are wonderful resources for students, teachers, and anyone who is interested in learning more about electronics. This specific section, Resonance, is the sixth chapter in the Volume II textbook. Topics covered in this chapter include: electric pendulum, simple parallel resonance, simple series resonance, resonance in series-parallel circuits, and Q and bandwidth of a resonant circuit. Diagrams and detailed descriptions of concepts are included throughout the chapter to provide users with a comprehensive lesson. Visitors to the site are also encouraged to discuss concepts and topics using the All About Circuits discussion forums (registration with the site is required to post materials).

Kuphaldt, Tony R.

2008-07-07

84

Effect of Electric and Magnetic Fields on Spin Dynamics in the Resonant Electric Dipole Moment Experiment  

E-print Network

A buildup of the vertical polarization in the resonant electric dipole moment (EDM) experiment [Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)] is affected by a horizontal electric field in the particle rest frame oscillating at a resonant frequency. This field is defined by the Lorentz transformation of an oscillating longitudinal electric field and a uniform vertical magnetic one. The effect of a longitudinal electric field is significant, while the contribution from a magnetic field caused by forced coherent longitudinal oscillations of particles is dominant. The effect of electric field on the spin dynamics was not taken into account in previous calculations. This effect is considerable and leads to decreasing the EDM effect for the deuteron and increasing it for the proton. The formula for resonance strengths in the EDM experiment has been derived. The spin dynamics has been calculated.

Alexander J. Silenko

2006-04-11

85

4D experiments measured with APSY for automated backbone resonance assignments of large proteins.  

PubMed

Detailed structural and functional characterization of proteins by solution NMR requires sequence-specific resonance assignment. We present a set of transverse relaxation optimization (TROSY) based four-dimensional automated projection spectroscopy (APSY) experiments which are designed for resonance assignments of proteins with a size up to 40 kDa, namely HNCACO, HNCOCA, HNCACB and HN(CO)CACB. These higher-dimensional experiments include several sensitivity-optimizing features such as multiple quantum parallel evolution in a 'just-in-time' manner, aliased off-resonance evolution, evolution-time optimized APSY acquisition, selective water-handling and TROSY. The experiments were acquired within the concept of APSY, but they can also be used within the framework of sparsely sampled experiments. The multidimensional peak lists derived with APSY provided chemical shifts with an approximately 20 times higher precision than conventional methods usually do, and allowed the assignment of 90 % of the backbone resonances of the perdeuterated primase-polymerase ORF904, which contains 331 amino acid residues and has a molecular weight of 38.4 kDa. PMID:23625454

Krähenbühl, Barbara; Boudet, Julien; Wider, Gerhard

2013-06-01

86

Ion Cyclotron Resonant Heating slot antenna for the Tandem Mirror Experiment-Upgrade  

SciTech Connect

The Ion Cyclotron Resonant Heating (ICRH) slot antenna has been a part of the ion and electron plasma heating system in the central cell region of the Tandem Mirror Experiment-Upgrade (TMX-U). This paper presents the mechanical design and arrangement of the antenna, coax feed lines, feedthroughs, and matching network for the slot antenna.

Brooksby, C.A.; Calderson, M.O.; Cummins, W.F.; Ferguson, S.W.; Williamson, V.L.

1985-11-14

87

Functional Magnetic Resonance Imaging Responses Relate to Differences in Real-World Social Experience  

Microsoft Academic Search

Although neuroimaging techniques have proven powerful in assessing neural responses, little is known about whether scanner-based neural activity relates to real-world psychological experience. A joint functional magnetic resonance imaging (fMRI)\\/experience-sampling study investigated whether individual differences in neurocognitive reactivity to scanner-based social rejection related to: (a) moment-to-moment feelings of social rejection during real-world social interactions (\\

Naomi I. Eisenberger; Shelly L. Gable; Matthew D. Lieberman

2007-01-01

88

Search for N* Resonances in Double-Polarization Experiments using CLAS  

SciTech Connect

At medium energies where the strong coupling constant is very large and perturbative methods can no longer be applied, the nature of confinement remains one of the key challenges in our present understanding of QCD. A necessary step is undoubtedly to identify the relevant degrees of freedom in this energy regime and the effective forces between them. Thus, a precise knowledge of the spectrum of baryon resonances and their properties is needed. A large number of states has been found in different analyses. However, only a few of them are well established and confirmed by different experiments. It has been shown that particular resonances have large effects on polarization observables. At Jefferson Laboratory, a major program has been proposed to perform a large set of photoproduction experiments using linearly- and circularly-polarized tagged photon beams as well as longitudinally and transversely-polarized targets. In double-pion production, a major obstacle in the determination of the couplings of baryon resonances are the considerable contributions from non-resonant mechanisms, m this case, polarization observables, which are sensitive to very small resonance contributions, will be helpful in the evaluation of N* properties.

Volker Crede

2007-06-01

89

Results of Resonant Activation and Macroscopic Quantum Tunneling Experiments in Magnesium Diboride Thin Film Josephson Junctions  

NASA Astrophysics Data System (ADS)

The Josephson junction is an experimental testbed widely used to study resonant activation and macroscopic quantum tunneling. These phenomena have been observed in junctions based on conventional low-temperature superconductors such as Nb and Al, and even in high-Tc, intrinsic superconductors. We report results of superconducting-to normal state switching experiments below 1 K using MgB2-based Josephson heterojunctions with Pb and Nb counter-electrodes. Measurements were made with and without RF excitation. With microwaves, we see evidence of a resonant peak, in addition to the primary escape (from ground state) peak -- consistent with resonant activation. We also observe features suggestive of macroscopic quantum tunneling including peaks in the escape rate enhancements and an ``elbow'' in the graph of calculated escape temperatures Tesc versus sample temperature.

Ramos, Roberto; Carabello, Steve; Lambert, Joseph; Mlack, Jerome; Dai, Wenqing; Shen, Yi.; Li, Qi; Cunnane, Daniel; Zhuang, C. G.; Chen, Ke; Xi, X. X.

2012-02-01

90

Early clinical experience with high-field 1.5 Tesla magnetic resonance imaging.  

PubMed

Despite early concerns regarding potential tissue attenuation of signal and lack of inherent contrast, magnetic resonance imaging at 1.5 Tesla has proved to be a valuable extension of magnetic resonance imaging. In this report, we review our initial experience in imaging of the central nervous system, abdomen, chest and pelvis. In the central nervous system, exquisite morphologic detail has been demonstrated. This has added both in terms of sensitivity and specificity to neuroradiologic diagnosis. In the chest and abdomen, despite problems with respiratory and cardiac motion, good morphologic detail can be obtained. In the thorax, our work has demonstrated the ability of magnetic resonance imaging to clearly define the relationship of masses to the hilum and mediastinum. Imaging of the great vessels with magnetic resonance imaging has also proved useful. In the abdomen, magnetic resonance imaging has been useful in looking at the extent of masses identified, in characterizing focal liver masses, and in staging a variety of neoplasms. The high contrast resolution and the ability to image in a variety of planes is particularly helpful in the pelvis. In the male pelvis our work has primarily dealt with staging extracapsular prostatic carcinoma. In the female pelvis, ascertaining the nature of adnexal masses and defining staging primary carcinomas and their response to therapy has been the major thrust of our efforts. Surface coils and other technical improvements will undoubtedly extend the range of application at high field. PMID:3562885

Kressel, H Y

1986-01-01

91

Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance  

PubMed Central

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Hase, Claudia C.

2014-01-01

92

Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.  

PubMed

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

2014-01-01

93

Experiment on bias stability measurement of resonator fiber optic gyro with digital feedback scheme  

Microsoft Academic Search

Experiment on bias stability measurement of resonator fiber optic gyro with a newly developed digital feedback scheme is performed and a sensitivity of 5.6×10-4 rad\\/s is demonstrated. Under the digital control scheme, the short term and long term laser central frequency drift are reduced by the output of a fast loop determined by proportional calculation to the order of several

Xijing Wang; Zuyuan He; Kazuo Hotate

2009-01-01

94

Nuclear quadrupole resonance of explosives: Simultaneous detection of RDX and PETN in semtex  

Microsoft Academic Search

We have used nuclear quadrupole resonance (NQR) for the detection of14N in explosives and introduce a new method for the simultaneous detection of the explosives cyclotrimethylene trinitramine\\u000a (RDX) and pentaerythritol tetranitrate (PETN). We have developed an interleaved pulse sequence, which provides efficient excitation\\u000a of both RDX and PETN, to drive a solenoid coil that is doubly resonant at 3.41 and

R. I. Jenkinson; J. M. Bradley; G. N. Shilstone

2004-01-01

95

Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade  

SciTech Connect

Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system.

Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Gallagher, N.C. Jr.; Lang, D.D.; Pedrotti, L.R.; Rubert, R.R.; Stallard, B.W.; Sweeney, D.W.

1983-11-18

96

Phase diagram in bilayered-hydrate NaxCoO2·yH2O revealed by Co nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

We have performed Co nuclear quadrupole resonance (NQR) measurements in various bilayered-hydrate (BLH) NaxCoO2·yH2O compounds, showing superconducting (SC) and non-SC characteristics. A weak magnetic order was found in a BLH sample with a longer c-axis lattice parameter. We also found that the NQR frequency ?Q arising from the ±{7}/{2}?±{5}/{2} transition is related to the ground state of this system. A phase diagram is developed, in which the superconducting and magnetic-order temperature Tc and TM are plotted with respect to ?Q.

Ishida, K.; Ihara, Y.; Takeya, H.; Michioka, C.; Yoshimura, K.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

2006-05-01

97

Variable-Pitch Rectangular Cross-section Radiofrequency Coils for the Nitrogen-14 Nuclear Quadrupole Resonance Investigation of Sealed Medicines Packets  

PubMed Central

The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis. PMID:23057555

2012-01-01

98

Variable-pitch rectangular cross-section radiofrequency coils for the nitrogen-14 nuclear quadrupole resonance investigation of sealed medicines packets.  

PubMed

The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from (14)N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis. PMID:23057555

Barras, Jamie; Katsura, Shota; Sato-Akaba, Hideo; Itozaki, Hideo; Kyriakidou, Georgia; Rowe, Michael D; Althoefer, Kaspar A; Smith, John A S

2012-11-01

99

Rabi and Larmor nuclear quadrupole double resonance of spin-1 nuclei.  

PubMed

We demonstrate the creation of two novel double-resonance conditions between spin-1 and spin-1/2 nuclei in a crystalline solid. Using a magnetic field oscillating at the spin-1/2 Larmor frequency, the nuclear quadrupole resonance (NQR) frequency is matched to the Rabi or Rabi plus Larmor frequency, as opposed to the Larmor frequency as is conventionally done. We derive expressions for the cross-polarization rate for all three conditions in terms of the relevant secular dipolar Hamiltonian, and demonstrate with these expressions how to measure the strength of the heterogenous dipolar coupling using only low magnetic fields. In addition, the combination of different resonance conditions permits the measurement of the spin-1/2 angular momentum vector using spin-1 NQR, opening up an alternate modality for the monitoring of low-field nuclear magnetic resonance. We use ammonium nitrate to explore these resonance conditions, and furthermore use the oscillating field to increase the signal-to-noise ratio per time by a factor of 3.5 for NQR detection of this substance. PMID:23231223

Prescott, D W; Malone, M W; Douglass, S P; Sauer, K L

2012-12-01

100

Photon production through multi-step processes important in nuclear resonance fluorescence experiments  

NASA Astrophysics Data System (ADS)

We present calculations describing the production of photons through multi-step processes occurring when a beam of gamma-rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of back-scattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

Hagmann, C.; Pruet, J.

2007-06-01

101

A tapered undulator experiment at the ELBE far infrared hybrid-resonator oscillator free electron laser  

SciTech Connect

A tapered undulator experiment was carried out at the ELBE far-infrared free electron laser (FEL). The oscillator FEL makes use of a hybrid optical resonator. The main motivation was to see whether the presence of a dispersive medium in the form of a waveguide in the resonator has any effect on the outcome. The FEL saturated power and the wavelength shifts have been measured as a function of both positive as well as negative undulator field amplitude tapering. In contrast to the typical high-gain FELs where positive tapering proves beneficial for the output power we observed an improvement of performance at negative taper. During the same experiments we studied the characteristics of the detuning curves. The width of the curves indicates a maximum small signal gain for zero taper while the output peak power increases with negative taper. The saturated power output, the detuning curve characteristics, and the wavelength shifts agrees with the theoretical predictions. Details of the experiment are presented.

Asgekar, V. [Physics Department, University of Pune, Pune 411007 (India); Lehnert, U.; Michel, P. [Radiation Source ELBE, Helmholtz-Zentrum Dresden Rossendorf, PF 510119, 01314 Dresden (Germany)

2012-01-15

102

Determination of the Defining Boundary in Nuclear Magnetic Resonance Diffusion Experiments  

NASA Astrophysics Data System (ADS)

While nuclear magnetic resonance diffusion experiments are widely used to resolve structures confining the diffusion process, it has been elusive whether they can exactly reveal these structures. This question is closely related to x-ray scattering and to Kac’s “hear the drum” problem. Although the shape of the drum is not “hearable,” we show that the confining boundary of closed pores can indeed be detected using modified Stejskal-Tanner magnetic field gradients that preserve the phase information and enable imaging of the average pore in a porous medium with a largely increased signal-to-noise ratio.

Laun, Frederik Bernd; Kuder, Tristan Anselm; Semmler, Wolfhard; Stieltjes, Bram

2011-07-01

103

Dynamic analysis of mechanical model for three-dimensional resonant trigger probe and experiment  

NASA Astrophysics Data System (ADS)

A novel three-dimensional resonant trigger probe, which is fabricated with force sensitive components with good resonant characteristics and an integrated micro-stem and microsphere, is a new type of probe for micro/nano coordinating measuring machine (micro/nano CMM). In this paper, its triggering mechanical models are proposed to simulate the nano interaction between sample surface and the microsphere tip of the probe. In the models, the interaction between the sample surface and microsphere tip in Z direction is presumed in tapping mode (TM) and the interactions in X and Y directions are presumed in friction mode (FM). Taking account of air damping, energy dissipation, restoring force of elastic deformation, nanoscale interface friction, interface adhesion and van der Waals force, the models of the interactions between the microsphere tip and the sample surface in X(Y) direction and Z direction are deduced and constructed respectively. Based on the proposed models, the dynamic analysis on the triggering mechanism of the probe is presented. By experiment, the three-dimensional approaching curves of the probe are observed and they are proven to be suitable for the triggering signals of the probe. Preliminary experimental results show that the trigger resolution of the probe is about 0.24 nm in X direction, 0.20 nm in Y direction and 0.18 nm in Z direction. The theoretical analysis and experimental results demonstrate the validity of the novel resonant trigger probe.

Yu, Huijuan; Huang, Qiang-Xian; Li, Zhibo; Wang, Maocui; Wei, Jin-Peng

2013-01-01

104

Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz  

NASA Astrophysics Data System (ADS)

A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect 27Al NQR signals in ruby (Al2O3[Cr3+]) at 359 and 714 kHz.

TonThat, Dinh M.; Clarke, John

1996-08-01

105

Excitation of surface wave solitons in shallow water resonator: experiment and theory  

NASA Astrophysics Data System (ADS)

Strongly nonlinear surface waves excited by harmonic external forcing in a shallow water resonator are investigated. The experiment was carried out in a channel 10 m long and 0.5 m wide for the depth of the water of 0.26 m. The frequency of excitation was chosen to be close to the frequency of the mode having wavelength equal to the length of channel. It was found that, as the amplitude of external force was increased, a sequence of impulses propagating from one end of the channel to the other was excited against the background of standing waves. 1, 2 or 3 impulses were generated on a period of the surface wave, depending on the frequency and amplitude of the external force. We identified this impulses like solitons and bound states of solitons generated on the background of harmonic mode. Multistability was observed: different regimes were realized for the same parameters of external force under different initial conditions. Also revealed was phenomenon of period doubling: the time period of nonlinear waves was two time more than period of external force for the definite range of control parameters. For the theoretical description of generation of such nonlinear waves we used two approaches: (i) numerical simulation of shallow water equations for horizontal velocity and surface displacement in Boussinesq approximation and (ii) analytical studying of equations for soliton - harmonic wave interaction proposed by Gorshkov, Ostrovsky and Papko in 1973. Numerical calculations showed that an increase in the excitation amplitude results in generation of impulses propagating along the channel and that regimes of multistability and period doubling exist.Both the calculations and the experiment verified that nonlinear waves with three impulses on the period of external force were excited for the frequencies less than resonant frequency and one impulse on the period occurred for the frequencies higher than resonance. Conformities in spatio-temporal dynamics of impulses (X-T diagrams) observed in experiments in numerical simulations were also revealed. Analytical approach allowed us calculate the phase shift between soliton and harmonic wave closed to experimental one. Thus, the theoretical models proposed give a correct description of nonlinear regimes of surface wave excitation in shallow water resonators.

Ezersky, A. B.; Polukhina, O. E.; Mutabazi, I.; Brossard, J.; Marin, F.

2003-04-01

106

Initial Experience with the Resonance Metallic Stent for Antegrade Ureteric Stenting  

SciTech Connect

Background and purpose. We describe our initial experience with a new metallic ureteric stent which has been designed to provide long-term urinary drainage in patients with malignant ureteric strictures. The aim is to achieve longer primary patency rates than conventional polyurethane ureteric stents, where encrustation and compression by malignant masses limit primary patency. The Resonance metallic double-pigtail ureteric stent (Cook, Ireland) is constructed from coiled wire spirals of a corrosion-resistant alloy designed to minimize tissue in-growth and resist encrustation, and the manufacturer recommends interval stent change at 12 months. Methods. Seventeen Resonance stents were inserted via an antegrade approach into 15 patients between December 2004 and March 2006. The causes of ureteric obstruction were malignancies of the bladder (n = 4), colon (n = 3), gynecologic (n = 5), and others (n = 3). Results. One patient had the stent changed after 12 months, and 3 patients had their stents changed at 6 months. These stents were draining adequately with minimal encrustation. Four patients are still alive with functioning stents in situ for 2-10 months. Seven patients died with functioning stents in place (follow-up periods of 1 week to 8 months). Three stents failed from the outset due to bulky pelvic malignancy resulting in high intravesical pressure, as occurs with conventional plastic stents. Conclusion. Our initial experience with the Resonance metallic ureteric stent indicates that it may provide adequate long-term urinary drainage (up to 12 months) in patients with malignant ureteric obstruction but without significantly bulky pelvic disease. This obviates the need for regular stent changes and would offer significant benefit for these patients with limited life expectancy.

Wah, Tze M., E-mail: Tze.Wah@leedsth.nhs.uk; Irving, Henry C. [St. James's University Hospital, Department of Radiology (United Kingdom); Cartledge, Jon [St. James's University Hospital, Department of Urology (United Kingdom)

2007-07-15

107

NQR studies of gallium and bismuth trichlorides complexes with n- and ? -donors.  

NASA Astrophysics Data System (ADS)

The 35,37C1, 69,71Ga and 209Bi NQR spectra of the charge-transfer complexes of GaCl 3 with ketones, nitriles and BiCl 3 with methyl substituted derivatives of benzene at 77K have been investigated. The complexing of BiCl 3 with methyl substituted derivatives of benzene leads to an increase in 209Bi Quadrupole Coupling Constant (QCC) along the direction of the maximum field gradient of e 2Qq zzh. The nature of the frequency changes of 35,37 Cl in the acceptor molecule is different for axial and equatorial chlorine atoms. There is a correlation between the QCC 14N of the nitriles and the shifts of the 69Ga on complexing and also between shifts of the 35Cl and 69 Ga frequencies on complexing.

Popkova, L. A.; Guryanova, E. N.; Volkov, A. F.

108

Cooker's sloshing experiment with baffles: a naturally occurring multifold 1: :1 resonance  

E-print Network

discovered a physical system that has an (n + 1)-fold 1 : · · · : 1 resonance for any natural number n : 1 : 1 : 1 resonance are rarer than the 1 : 1 resonance but examples have been discovered. An example of tri-fold resonance is triply- degenerate vibrations of tetrahedral molecules in chemistry (e

Bridges, Tom

109

Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.  

PubMed

Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined ?iso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and ?33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (?11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

Peri?, Berislav; Gautier, Régis; Pickard, Chris J; Bosio?i?, Marko; Grbi?, Mihael S; Požek, Miroslav

2014-01-01

110

Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments  

PubMed Central

Structural measurements in magic-angle-spinning (MAS) solid-state NMR rely heavily on 13C-13C distance measurements. Broadbanded recoupling methods are used to generate many cross-peaks, but have complex polarization transfer mechanisms that limit the precision of distance constraints and can suffer from weak intensities for distant peaks due to relaxation, the broad distribution of polarization, as well as dipolar truncation. Frequency-selective methods that feature narrow-banded recoupling can reduce these effects. Indeed, rotational resonance (R2) experiments have found application in many different biological systems, where they have afforded improved precision and accuracy. Unfortunately, a highly selective transfer mechanism also leads to few cross-peaks in the resulting spectra, which complicates the extraction of multiple constraints. R2-width (R2W) measurements that scan a range of MAS rates to probe the R2 matching conditions of one or more sites can improve precision, and also permit multiple simultaneous distance measurements. Unfortunately, multidimensional R2W can be very time-consuming. Here, we present an approach that facilitates the acquisition of 2D-like spectra based on a series of 1D R2W experiments, by taking advantage of the chemical shift information encoded in the MAS rates where matching occurs. This yields a more time-efficient experiment with many of the benefits of more conventional multidimensional R2W measurements. The obtained spectra reveal long-distance 13C-13C cross-peaks resulting from R2-mediated polarization transfer. This experiment also enables the efficient setup and targeted implementation of traditional R2 or R2W experiments. Analogous applications may extend to other variable-MAS and frequency-selective solid-state NMR experiments. PMID:23475055

Li, Jun; van der Wel, Patrick C. A.

2013-01-01

111

Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques  

SciTech Connect

Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

Yesinowski, J.P.; Buess, M.L.; Garroway, A.N. [Naval Research Lab., Washington, DC (United States); Ziegeweid, M.; Pines, A. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

1995-07-01

112

Structure of the Cu-NQR Spectrum in Hg-1223 Between 4.2 K and 145 K  

NASA Astrophysics Data System (ADS)

An extremely low noise RF preamplifier cooled with liquid helium has been developed and is used to perform Cu-NQR measurements for Hg-1223 (Tc=134 K) at temperatures from 4.2 K to 145 K. At temperatures from 4.2 K to 20 K the spectra are centered at 15 MHz with a spectral width of approximately 2 MHz, similar to the Cu-NQR spectra of the other members of the HgBa2Can-1CunO2n+2+? series. The Cu-NQR spectra in this temperature range exhibit some features indicating an unresolved splitting but they can still be fitted quite well by a set of two pairs of 63/65Cu lines, as expected for the 1223 structure. The spectra at 40 K and above clearly show a structure that can not be fitted suitable by a set of two pairs of 63/65Cu lines. However, a fit with a set of four pairs of 63/65Cu lines is in good agreement with the experimental results. Furthermore, the spectra at 80 K, 85 K and 90 K show a strong variation with respect to each other which might indicate a structural change like the formation of a superstructure, as discussed for other high-Tc compounds, instead of a simple disorder in the crystal lattice.

Breitzke, H.; Lüders, K.; Gippius, A. A.; Antipov, E. V.

113

Absolute measurement of thermal noise in a resonant short-range force experiment  

NASA Astrophysics Data System (ADS)

Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10?21 J, is in agreement with the expected value of 1/2{{k}B}T.

Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

2014-10-01

114

Absolute measurement of thermal noise in a resonant short-range force experiment  

E-print Network

Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite element model. The measured average kinetic energy is in agreement with the expected value of 1/2 kT.

H. Yan; E. A. Housworth; H. O. Meyer; G. Visser; E. Weisman; J. C. Long

2014-02-02

115

Resonant magnetic perturbation experiments on MAST using external and internal coils for ELM control  

NASA Astrophysics Data System (ADS)

Experiments have been performed on MAST using both external (n = 1, 2) and internal (n = 3) resonant magnetic perturbation (RMP) coils. ELM suppression has not been achieved even though vacuum modelling shows that either set of coils can produce a region (??pol > 0.17), for which the Chirikov parameter is greater than 1, wider than that correlated with ELM suppression in DIII-D. Although complete ELM suppression has not been achieved, application of RMPs has triggered ELMs in ELM free H-mode periods (n = 3) and increased the ELM frequency in regularly ELM-ing discharges (n = 2, 3). In addition, the application of RMPs in an n = 3 configuration has produced large changes to the edge turbulence in L-mode discharges.

Kirk, A.; Nardon, E.; Akers, R.; Bécoulet, M.; De Temmerman, G.; Dudson, B.; Hnat, B.; Liu, Y. Q.; Martin, R.; Tamain, P.; Taylor, D.; MAST Team

2010-03-01

116

Detailed design of a resonantly enhanced axion-photon regeneration experiment  

NASA Astrophysics Data System (ADS)

A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/?)2, where F is the finesse of each cavity. This gain could feasibly be as high as 1010, corresponding to an improvement in the sensitivity to the axion-photon coupling, ga??, of order (F/?)1/2˜300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; van Bibber, Karl

2009-10-01

117

Detailed design of a resonantly enhanced axion-photon regeneration experiment  

SciTech Connect

A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon-regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/{pi}){sup 2}, where F is the finesse of each cavity. This gain could feasibly be as high as 10{sup 10}, corresponding to an improvement in the sensitivity to the axion-photon coupling, g{sub a{gamma}}{sub {gamma}}, of order (F/{pi}){sup 1/2}{approx}300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.

Mueller, Guido; Sikivie, Pierre; Tanner, D. B.; Bibber, Karl van [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Naval Postgraduate School, Monterey, California 93943 (United States)

2009-10-01

118

Direct electron heating experiment on the Aditya tokamak using fast waves in the ion cyclotron resonance frequency range  

Microsoft Academic Search

Second harmonic heating experiments using fast waves are carried out on the Aditya tokamak in the ion cyclotron resonance frequency (ICRF) range with the help of a 200 kW, 20-40 MHz RF heating system, which is developed indigenously. Significant direct electron heating is observed in a hydrogen plasma. The rise in electron temperature is prompt with the application of RF

Kishore Mishra; S. V. Kulkarni; D. Rathi; Atul D. Varia; H. M. Jadav; K. M. Parmar; B. R. Kadia; R. Joshi; Y. S. S. Srinivas; Raj Singh; Sunil Kumar; S. Dani; A. Gayatri; R. A. Yogi; Singh Manoj; Y. S. Joisa; C. V. S. Rao; Sameer Kumar; R. Jha; R. Manchanda; J. Ghosh; P. K. Atrey; S. B. Bhatt; C. N. Gupta; P. K. Chattopadhyaya; A. K. Chattopadhyaya; R. Srinivasan; Dhiraj Bora; P. K. Kaw

2011-01-01

119

Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments  

NASA Astrophysics Data System (ADS)

In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

Lerche, E.; Van Eester, D.; Ongena, J.; Mayoral, M.-L.; Laxaback, M.; Rimini, F.; Argouarch, A.; Beaumont, P.; Blackman, T.; Bobkov, V.; Brennan, D.; Brett, A.; Calabro, G.; Cecconello, M.; Coffey, I.; Colas, L.; Coyne, A.; Crombe, K.; Czarnecka, A.; Dumont, R.; Durodie, F.; Felton, R.; Frigione, D.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Graham, M.; Hellesen, C.; Hellsten, T.; Huygen, S.; Jacquet, P.; Johnson, T.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lamalle, P.; Lennholm, M.; Loarte, A.; Maggiora, R.; Maslov, M.; Messiaen, A.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sozzi, C.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Vrancken, M.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

2011-12-01

120

Magnetic Resonance Imaging in Multiple Sclerosis – Patients' Experiences, Information Interests and Responses to an Education Programme  

PubMed Central

Background Magnetic resonance imaging (MRI) is a key diagnostic and monitoring tool in multiple sclerosis (MS) management. However, many scientific uncertainties, especially concerning correlates to impairment and prognosis remain. Little is known about MS patients' experiences, knowledge, attitudes, and unmet information needs concerning MRI. Methods We performed qualitative interviews (n?=?5) and a survey (n?=?104) with MS patients regarding MRI patient information, and basic MRI knowledge. Based on these findings an interactive training program of 2 hours was developed and piloted in n?=?26 patients. Results Interview analyses showed that patients often feel lost in the MRI scanner and left alone with MRI results and images while 90% of patients in the survey expressed a high interest in MRI education. Knowledge on MRI issues was fair with some important knowledge gaps. Major information interests were relevance of lesions as well as the prognostic and diagnostic value of MRI results. The education program was highly appreciated and resulted in a substantial knowledge increase. Patients reported that, based on the program, they felt more competent to engage in encounters with their physicians. Conclusion This work strongly supports the further development of an evidence-based MRI education program for MS patients to enhance participation in health-care. PMID:25415501

Brand, Judith; Köpke, Sascha; Kasper, Jürgen; Rahn, Anne; Backhus, Imke; Poettgen, Jana; Stellmann, Jan-Patrick; Siemonsen, Susanne; Heesen, Christoph

2014-01-01

121

Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade  

SciTech Connect

A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

Falabella, S.

1988-05-11

122

A study of the semiconductor compound ?uAlO2 by the method of nuclear quadrupole resonance of Cu  

NASA Astrophysics Data System (ADS)

The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.

2012-07-01

123

Noise-resilient multi-frequency surface sensor for nuclear quadrupole resonance.  

PubMed

A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection. These modes have smooth distributions of the amplitudes of the corresponding radiofrequency magnetic fields everywhere along the sensor's surface. The phases of the fields, on the other hand, are cyclically shifted across the sensor's surface. Noise signals coming from distant sources, therefore, induce equal-magnitude cyclically phase-shifted currents in different parts of the sensor. When such cyclically phase-shifted currents arrive at the mode connection point, they destructively interfere with each other and are cancelled out. NQR signals of polycrystalline or disordered substances, however, are efficiently detected by these modes because they are insensitive to the phases of the excitation/detection. No blind spots exist along the sensor's surface. The sensor can be used for simultaneous detection of one or more substances in locations with environmental noise. PMID:18667343

Peshkovsky, A S; Cattena, C J; Cerioni, L M; Osán, T M; Forguez, J G; Peresson, W J; Pusiol, D J

2008-10-01

124

Finite-Element Analysis and Corresponding Experiments of Resonant Energy Transfer for Wireless Transmission Devices  

Microsoft Academic Search

A wireless energy transfer system based on resonant energy transfer technology for power transmission and recharging of electrical devices is studied. The relationship between the energy transfer efficiency and several key parameters of the system is analyzed using finite-element method. Thin film resonant cells, consisting of a tape coil on one layer, which is separated by an insulation layer to

Junhua Wang; Siu Lau Ho; Weinong Fu; Cheung Tsz Kit; Mingui Sun

2011-01-01

125

State-to-state rotational relaxation rate constants for CO+Ne from IR–IR double-resonance experiments: Comparing theory to experiment  

Microsoft Academic Search

IR–IR double-resonance experiments were used to study the state-to-state rotational relaxation of CO with Ne as a collision partner. Rotational levels in the range Ji=2–9 were excited and collisional energy transfer of population to the levels Jf=2–8 was monitored. The resulting data set was analyzed by fitting to numerical solutions of the master equation. State-to-state rate constant matrices were generated

David A. Hostutler; Tony C. Smith; Gordon D. Hager; George C. McBane; Michael C. Heaven

2004-01-01

126

State-to-state rotational relaxation rate constants for CO+Ne from IR-IR double-resonance experiments: Comparing theory to experiment  

Microsoft Academic Search

IR-IR double-resonance experiments were used to study the state-to-state rotational relaxation of CO with Ne as a collision partner. Rotational levels in the range Ji=2-9 were excited and collisional energy transfer of population to the levels Jf=2-8 was monitored. The resulting data set was analyzed by fitting to numerical solutions of the master equation. State-to-state rate constant matrices were generated

David A. Hostutler; Tony C. Smith; Gordon D. Hager; George C. McBane; Michael C. Heaven

2004-01-01

127

Study of short-lived resonances with the ALICE Experiment at the LHC  

NASA Astrophysics Data System (ADS)

The study of short-lived resonances allows the investigation of the collision dynamics and of the properties of the hot and dense medium created in high energy collisions. Moreover it is interesting to address the topics of the strangeness production by the analysis of strange resonances. First measurements of the phi(1020), ? *(1520), K*(892), ? *(1530) and doubly charged ?(1232) resonances in pp collisions at a center of mass energy of 7 TeV with the ALICE apparatus at the LHC are presented. Thermal model predictions of particle ratios in proton-proton collisions are shown.

Karasu Uysal, Ayben

2012-02-01

128

Microwave resonances in dielectric samples probed in Corbino geometry: Simulation and experiment  

NASA Astrophysics Data System (ADS)

The Corbino approach, where the sample of interest terminates a coaxial cable, is a well-established method for microwave spectroscopy. If the sample is dielectric and if the probe geometry basically forms a conductive cavity, this combination can sustain well-defined microwave resonances that are detrimental for broadband measurements. Here, we present detailed simulations and measurements to investigate the resonance frequencies as a function of sample and probe size and of sample permittivity. This allows a quantitative optimization to increase the frequency of the lowest-lying resonance.

Felger, M. Maximilian; Dressel, Martin; Scheffler, Marc

2013-11-01

129

Non-invasive magnetic resonance imaging-guided focused ultrasound treatment for uterine fibroids – early experience  

Microsoft Academic Search

ObjectiveTo describe early results regarding efficacy and safety of magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) for the treatment of uterine leiomyomas among a population of Japanese women.

Yutaka Morita; Naoki Ito; Hiromi Hikida; Sawako Takeuchi; Kouji Nakamura; Hirofumi Ohashi

2008-01-01

130

Review of nucleon-nucleon scattering experiments and many dinucleon resonances  

SciTech Connect

Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. A number of candidates are presented for dibaryon resonances which can couple to nucleon-nucleon systems.

Yokosawa, A.

1980-01-20

131

Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis  

E-print Network

Planar microdisk optical resonators fabricated from Ge[subscript 23]Sb[subscript 7]S[subscript 70] chalcogenide glass on a silicon substrate are applied for cavity-enhanced spectroscopic measurement of chemical molecular ...

Kimerling, Lionel C.

132

Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae.  

PubMed

Abstract Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na+ gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na+-dependent transport processes and describe the central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), a primary Na+ pump, in maintaining a Na+-motive force. The Na+-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na+ across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na+-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported. PMID:25205724

Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

2014-12-01

133

? -detected nuclear quadrupole resonance with a low-energy beam of 8Li+  

NASA Astrophysics Data System (ADS)

A nuclear quadrupole resonance (NQR) spectrum of Li8 has been observed in a single crystal of SrTiO3 using a beam of low-energy highly polarized radioactive Li+8 . The resonances were detected by monitoring the ? -decay anisotropy as a function of a small audio frequency magnetic field. These results demonstrate that low energy nuclear spin polarized Li8 can be used as a sensitive probe of the local magnetic and electronic environment in nanostructures and ultrathin films in zero static applied magnetic field.

Salman, Z.; Reynard, E. P.; Macfarlane, W. A.; Chow, K. H.; Chakhalian, J.; Kreitzman, S. R.; Daviel, S.; Levy, C. D. P.; Poutissou, R.; Kiefl, R. F.

2004-09-01

134

Doubly excited resonances in the photoionization spectrum of Li+:experiment and theory  

SciTech Connect

Absolute cross-section measurements for resonant doublephotoexcitation of Li+ ions followed by autoionization have beenperformed at high resolution in the photon energy range from 148 eV, justbelow the (2s2p, 2(0,1)n+) resonance, to 198 eV (the region of the doubleionization threshold). The measurements have been made using thephoton-ion merged-beam endstation at the Advanced Light Source, LawrenceBerkeley National Laboratory, USA. The absolute cross-sectionmeasurements show excellent agreement with theoretical results from theR-matrix plus pseudo-state (RMPS) method. Comparisons between theory andexperiment for the Auger resonance energies, autoionization linewidth (?)and the Fano line profile index q for several members of the principal(2snp, 2(0, 1)n+) and (3snp, 3(1,1)n+) Rydberg series found in thephotoionization spectra for the 1Po symmetry show satisfactoryaccord.

Scully, S.W.J.; Alvarez, I.; Cisneros, C.; Emmons, E.D.; Gharaibeh, M.F.; Leitner, D.; Lubell, M.S.; Muller, A.; Phaneuf, R.A.; Puttner, R.; Schlachter, A.S.; Schippers, S.; Shi, W.; Ballance, C.P.; McLaughlin, B.M.

2007-04-25

135

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

SciTech Connect

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

2013-09-15

136

Radio-frequency muon spin resonance (RF?SR) experiments on condensed matter  

Microsoft Academic Search

In this paper we present an overview of the radio-frequency muon spin resonance (RF?SR) technique, an analogue to continuous-wave\\u000a NMR, and an introduction to time-integral (TI) and time-differential (TD) RF?SR on muons in diamagnetic or in paramagnetic\\u000a environments. The general form of the resonance line for TI-RF?SR as well as the expression for the time-dependence of the\\u000a longitudinal muon spin

R. Scheuermann; L. Schimmele; J. Schmidl; J. Major; D. Herlach; C. A. Scott

1997-01-01

137

Photoluminescence Enhancement by Surface-Plasmon Resonance: Recombination-Rate Theory and Experiments  

E-print Network

with in colloidal mixtures of semiconductor/metal nanoparticles, and calculated as a function of semiconductor.1�11) Surface-plasmon resonance strongly affects the optical properties of nearby semiconductor nano- particles.12�14) Geddes' group synthesized silver core-silica shell nanoparticles of various shell

Park, Byungwoo

138

Nonquasineutral theory of ion-acoustic resonances in bounded nonuniform plasmas and comparison with experiments  

Microsoft Academic Search

A theory is developed of ion-acoustic resonances in inhomogeneous ; plasmas of the positive column type using a fluid plasma description. Poisson's ; equation is properly taken into account, instead of applying the usual assumption ; of wavw quasineutrality. The order of the differential equation describing the ; wave is thereby increased by two and the singularity that previously occurred

R. R. Weynants; A. M. Messiaen; P. E. Vandenplas

1973-01-01

139

Magnetic Resonance Imaging of Implanted Deep Brain Stimulators: Experience in a Large Series  

Microsoft Academic Search

Magnetic resonance imaging (MRI) is a commonly used and important imaging modality to evaluate lead location and rule out complications after deep brain stimulation (DBS) surgery. Recent safety concerns have prompted new safety recommendations for the use of MRI in these patients, including a new recommendation to limit the specific absorption rate (SAR) of the MRI sequences used to less

Paul S. Larson; R. Mark Richardson; Philip A. Starr; Alastair J. Martin

2008-01-01

140

Comparative analysis of edge- and broadside coupled split ring resonators for metamaterial design - theory and experiments  

Microsoft Academic Search

This paper develops a quasi-analytical and self-consistent model to compute the polarizabilities of split ring resonators (SRRs). An experimental setup is also proposed for measuring the magnetic polarizability of these structures. Experimental data are provided and compared with theoretical results computed following the proposed model. By using a local field approach, the model is applied to the obtaining of the

Ricardo Marqués; Francisco Mesa; Jesús Martel; Francisco Medina

2003-01-01

141

Experiment on Impulsive Excitation, Resonance, and Fourier Analysis of a Harmonic Oscillator.  

ERIC Educational Resources Information Center

Describes an electric circuit permitting easy observation and measurement of the response of a damped harmonic oscillator to impulsive excitation. The impulse analysis is carried out and related to experimental observations. The phenomenon of resonance is then interpreted and demonstrated, and through it, contact is made with Fourier analysis.…

Macomber, Hilliard K.

1981-01-01

142

Dissociating Confidence and Accuracy: Functional Magnetic Resonance Imaging Shows Origins of the Subjective Memory Experience  

Microsoft Academic Search

Successful memory typically implies both objective accuracy and subjective confidence, but there are instances when confidence and accuracy diverge. This dissociation suggests that there may be distinct neural patterns of activation related to confidence and accuracy. We used event-related functional magnetic resonance imaging to study the encoding of novel facename associations, assessed with a postscan memory test that included objective

Elizabeth F. Chua; Erin Rand-Giovannetti; Daniel L. Schacter; Marilyn S. Albert; Reisa A. Sperling

2004-01-01

143

An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin  

ERIC Educational Resources Information Center

Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

Rovnyak, David; Thompson, Laura E.

2005-01-01

144

Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy  

NASA Astrophysics Data System (ADS)

Assignment of protein backbone resonances is most routinely carried out using triple resonance three-dimensional NMR experiments involving amide 1H/15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high-degree of backbone shift degeneracy. In this backdrop, a novel reduced-dimensionality (RD) experiment -(5, 3)D-hNCO-CANH- is presented to facilitate/validate the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide-NH peaks. The experiment -in combination with routine triple resonance 3D-NMR experiments involving backbone amide (1H/15N) and carbon (13C?/13C?) chemical shifts- will serve as a powerful complementary tool to achieve the nearly complete assignment of protein backbone resonances in a time efficient manner.

Kumar, Dinesh; Raikwal, Nisha; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

2014-09-01

145

Experience With The SMPTE Test Pattern In Quality Control Of Magnetic Resonance Images  

NASA Astrophysics Data System (ADS)

The SMPTE test pattern has proven to be an effective tool for calibrating and monitoring the image display devices of a magnetic resonance (MR) imaging system. Linearity and size adjustments of video displays are particulary important because of the proximity of magnetic fields. The 5% and 95% intensity levels of the test pattern are extremely useful for adjusting the grayscale of both video displays and multiformat hardcopy devices. An appropriate sequence of operations for adjusting and monitoring image display devices is recommended.

Bronskill, Michael J.

1984-08-01

146

Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS  

SciTech Connect

The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2008-02-15

147

Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model  

NASA Astrophysics Data System (ADS)

A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

Preetham, B. S.; Anderson, M.; Richards, C.

2014-02-01

148

Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS.  

PubMed

The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS. PMID:18315106

Todd, Damon S; Leitner, Daniela; Lyneis, Claude M; Grote, David P

2008-02-01

149

A magnetic-resonance-compatible limb-positioning device to facilitate magic angle experiments in vivo.  

PubMed

Owing to their highly ordered structure, tendons and cartilage appear with low signal intensity when imaged using magnetic resonance imaging (MRI) scanners. A significant increase in signal can be observed when these structures are oriented at 55 degrees (termed the magic angle) with respect to the static field B0. There is a clear clinical importance in exploiting this effect as part of the diagnosis of injury. Experimental studies of this phenomenon have been made harder by the practical difficulties associated with tissue positioning and orientation in the confined environment of closed-bore scanners. An MRI-compatible mechatronic system has been developed, which is capable of positioning a number of limbs to a desired orientation inside the scanner, to be used as a diagnostic and research tool. It is actuated with a novel pneumatic motor consisting of a heavily geared-down air turbine, presenting high torques and good accuracy. The system is shown to be magnetic resonance compatible and the results of preliminary trials using the device to image the Achilles tendon of human volunteers at different orientations are presented. An increase of four fold to thirteen fold in signal intensity can be observed at the magic angle. PMID:18756692

Elhawary, H; Zivanovic, A; Tse, Z T H; Rea, M; Davies, B L; Young, I; Bydder, G; Payley, M; Lamperth, M U

2008-07-01

150

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts  

SciTech Connect

The primary objective of the project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. We have undertaken to investigate the magnetic character by studying the Nuclear Quadrupole resonance of copper and (Zerofield) Nuclear Magnetic Resonance of cobalt in copper cobalt catalysts.

Not Available

1991-12-17

151

Switching from visibility to invisibility via Fano resonances: theory and experiment  

E-print Network

Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering functional metadevices, as well as scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for an uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of hight-index dielectric nanoparticles and the physics of cloaking.

Rybin, Mikhail V; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

2014-01-01

152

Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience.  

PubMed

Late gadolinium enhancement cardiovascular magnetic resonance (CMR) can visualize myocardial interstitial abnormalities. The aim of this study was to assess whether regions of abnormal myocardium can also be visualized by late enhancement gadolinium CMR in the specific cardiomyopathies. A retrospective review of all referrals for gadolinium CMR with specific cardiomyopathy over 20 months. Nine patients with different specific cardiomyopathies were identified. Late enhancement was demonstrated in all patients, with a mean signal intensity of 390 +/- 220% compared with normal regions. The distribution pattern of late enhancement was unlike the subendocardial late enhancement related to coronary territories found in myocardial infarction. The affected areas included papillary muscles (sarcoid), the mid-myocardium (Anderson-Fabry disease, glycogen storage disease, myocarditis, Becker muscular dystrophy) and the global sub-endocardium (systemic sclerosis, Loeffler's endocarditis, amyloid, Churg-Strauss). Focal myocardial late gadolinium enhancement is found in the specific cardiomyopathies, and the pattern is distinct from that seen in infarction. Further systematic studies are warranted to assess whether the pattern and extent of late enhancement may aid diagnosis and prognostic assessment. PMID:18163027

Silva, Caterina; Moon, James C; Elkington, Andrew G; John, Anna S; Mohiaddin, Raad H; Pennell, Dudley J

2007-12-01

153

A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE  

NASA Astrophysics Data System (ADS)

A new decay-spectroscopy station (DSS) has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 ?g/cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108° away, allowing longer-lived species to be studied. Up to three high purity germanium detectors can be placed around the chamber for particle-gamma correlated measurement. The radioactive beam is transported through the CRIS beam line before implantation into a carbon foil at the DSS. All materials used in the DSS are UHV-compatible to maintain high vacuum conditions required by the CRIS beam line. This paper describes the DSS and presents the first data collected at the setup during the commissioning run with 221Fr.

Rajabali, M. M.; Lynch, K. M.; Cocolios, T. E.; Billowes, J.; Bissell, M. L.; De Schepper, S.; Dewolf, K.; Flanagan, K. T.; Le Blanc, F.; Marsh, B. A.; Mason, P. J. R.; Matea, I.; Neyens, G.; Papuga, J.; Procter, T. J.; Rothe, S.; Simpson, G. S.; Smith, A. J.; Stroke, H. H.; Verney, D.; Walker, P. M.; Wendt, K.; Wood, R. T.

2013-04-01

154

The Fetal Magnetic Resonance Imaging Experience in a Large Community Medical Center  

PubMed Central

Fetal magnetic resonance imaging (MRI) continues to prove a useful problem solving tool for diagnostic and management decision making issues encountered in the antenatal period. In this paper, we attempt to review basic fetal MRI protocol considerations and demonstrate key imaging findings through multiple modalities, with pathologic correlation in several cases. A study of five fetal MRI cases, from our institution, were selected in order to highlight both the indications for, and benefits obtained from this advanced imaging technique. Fetal MRI proved useful in each case in better defining fetal anomalies, especially where ultrasound (due to drawbacks such as shadowing by pelvic bones) was unable to be completely diagnostic. The more in-depth study made possible by MRI also helped with formulation of disease prognosis and estimation of survival chances of the fetus. Further, MRI as a diagnostic and prognostic tool has become more ubiquitous across the medical community. This imparts tangible benefit to patients, who are now able to find this service within arm's reach. Whereas previously these patients were obligatorily referred up to 90 miles away from our centre for further medical work-up, now a large percentage can obtain their prenatal imaging and perinatal care locally. In addition, medical education benefits as new types of cases, those with pathology of the antenatal period, are retained for work-up and management in these large community settings. Cases from our institution exemplify these types of pathologies, from fetal chest masses to a syndromic presentation of bilateral renal agenesis. PMID:21966626

Ghobrial, Peter M; Levy, Rebecca A; O'Connor, Stephen C

2011-01-01

155

Focusing twist reflector for electron-cyclotron resonance heating in the Tandem Mirror Experiment-Upgrade  

SciTech Connect

A twist reflector plate is described that linearly polarizes and focuses the TE/sub O/sub 1// circular waveguide mode for heating hot electrons in the thermal barrier of the Tandem Mirror Experiment-Upgrade (TMX-U). The plate polarizing efficiency is 95%, and it has operated satisfactorily at 150 kW power level.

Stallard, B.W.; Coffield, F.E.; Felker, B.; Taska, J.; Christensen, T.E.; Gallagher, N.C. Jr.; Sweeney, D.W.

1984-05-01

156

A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III  

NASA Astrophysics Data System (ADS)

In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.

Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.

2014-04-01

157

Detuned resonances of Tollmien-Schlichting waves in an airfoil boundary layer: Experiment, theory, and direct numerical simulation  

NASA Astrophysics Data System (ADS)

Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.

Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.

2012-09-01

158

Experiments on a 14.5 GHz electron cyclotron resonance source  

NASA Astrophysics Data System (ADS)

The 14.5 GHz ECR4 source supplied to CERN in the framework of the heavy ion facility collaboration provided Pb27+ operational beams to a new heavy ion linac in 1994. This source, which operates in the pulsed "afterglow" mode, has surpassed its design specification of 80 e?A and now provides currents >120 e?A on an operational basis for this charge state. Early tests showed the existence of extremely stable modes of operation which are fully exploited, and in 1996 the source was operational on a 24 h basis for more than 2400 h. Future operational requirements will benefit from the 10 Hz repetition rate of the source, but will require beam pulse length modulation. In the search for higher intensities a number of experiments were performed on gas composition, rf power matching, extraction, plasma chamber liner, and a biased dynode. The results of these tests will be presented.

Hill, C. E.; Langbein, K.

1998-02-01

159

Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience).  

PubMed

Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength. PMID:24671739

Victoria, Teresa; Jaramillo, Diego; Roberts, Timothy Paul Leslie; Zarnow, Deborah; Johnson, Ann Michelle; Delgado, Jorge; Rubesova, Erika; Vossough, Arastoo

2014-04-01

160

Patients' experience of outsourcing and care related to magnetic resonance examinations.  

PubMed

Abstract Background. Outsourcing radiological examinations from public university hospitals affects the patient, who has to attend a different clinic or hospital for the radiological examination. We currently have a limited understanding of how patients view outsourcing and their care related to MR examinations. Aim. To examine the experiences of patients who are sent to private radiology units when their referrals for MR examinations are outsourced from a university hospital, as well as to explore factors which influence patient satisfaction regarding the quality of care related to the MR examination. Methods. A group of patients (n = 160) referred for MR examinations and either examined at a university hospital or at an external private unit were interviewed. The interview was designed as a verbal questionnaire. Data were analyzed using Student's t test, analysis of variance (ANOVA), and Pearson's correlation. Results. Sixty-nine percent of the patients could neither choose nor influence the location at which they were examined. For those who could, aspects that influenced the patient's choice of radiology department were: short waiting time 79% (127/160), ease of traveling to the radiology department 68% (110/160), and short distance to their home or work 58% (93/160). For 40% (60/160) of the patients, a short time in the waiting room was related to a positive experience of the MR examination. Conclusion. If patients were informed about outsourcing and could also choose where to have their examination, key factors contributing to patient satisfaction could be met even when MR examinations are outsourced. PMID:25142133

Tavakol Olofsson, Parvin; Aspelin, Peter; Bergstrand, Lott; Blomqvist, Lennart

2014-11-01

161

Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing  

NASA Astrophysics Data System (ADS)

We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n?1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

2002-02-01

162

Field experiment provides ground truth for surface nuclear magnetic resonance measurement  

NASA Astrophysics Data System (ADS)

The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging, T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2 data were transformed to pseudo- T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

Knight, Rosemary; Grunewald, Elliot; Irons, Trevor; Dlubac, Katherine; Song, Yiqiao; Bachman, Henry N.; Grau, Ben; Walsh, Dave; Abraham, Jared D.; Cannia, Jim

2012-02-01

163

Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment  

NASA Astrophysics Data System (ADS)

Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (?/2? > 0) and tokamak (?/2? = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (?) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Wauters, T.; Aßmus, D.

2014-02-01

164

59Co Nuclear Quadrupole Resonance Studies of Superconducting and Nonsuperconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2\\cdotyH2O  

NASA Astrophysics Data System (ADS)

We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water intercalated sodium cobalt oxides NaxCoO2\\cdotyH2O (BLH) with the superconducting transition temperatures, 2 K < Tc ? 4.6 K, as well as a magnetic BLH sample without superconductivity. We obtained a magnetic phase diagram of Tc and the magnetic ordering temperature TM against the peak frequency ?3 of the 59Co NQR transition Iz = ± 5/2 ?ftrightarrow ± 7/2 and found a dome-shaped superconducting phase. The 59Co NQR spectrum of the nonsuperconducting BLH shows a broadening below TM without the critical divergence of 1/T1 or 1/T2, suggesting an unconventional magnetic ordering. The degree of enhancement of 1/T1T at low temperatures increases with the increase of ?3 though the optimal ?3 of approximately 12.30 MHz. In the NaxCoO2\\cdotyH2O system, the optimal-Tc superconductivity emerges close to the magnetic instability. Tc is suppressed near the phase boundary at ?3 ˜ 12.50 MHz, which is not a conventional magnetic quantum critical point.

Michioka, C.; Ohta, H.; Itoh, Y.; Yoshimura, K.

2006-06-01

165

Investigation of Structural Information for Boron - Solids and Aluminates via NMR and Nqr Studies  

Microsoft Academic Search

Nuclear Magnetic Resonance (NMR) has been prevailed in investigating local structures for a variety of materials: various oxide glasses, zeolites, superconductors, etc. Since glasses have short range ordered structures instead of long range ordered ones in crystals, NMR is usually more useful in determining the local structures for many glasses than any other detection methods do. Along with NMR, Nuclear

Donghoon Lee

1991-01-01

166

Field-tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al NMR, and NQR investigations  

NASA Astrophysics Data System (ADS)

We report magnetization, specific heat, and NMR investigations on YFe2Al10 over a wide range of temperature and magnetic field and zero field (NQR) measurements. Magnetic susceptibility, specific heat, and spin-lattice relaxation rate divided by T(1/T1T) follow a weak power law (˜T-0.4) temperature dependence, which is a signature of the critical fluctuations of Fe moments. The value of the Sommerfeld-Wilson ratio and the linear relation between 1/T1T and ? suggest the existence of ferromagnetic correlations in this system. No magnetic ordering down to 50 mK in Cp(T)/T and the unusual T and H scaling of the bulk and NMR data are associated with a magnetic instability which drives the system to quantum criticality. The magnetic properties of the system are tuned by field wherein ferromagnetic fluctuations are suppressed and a crossover from quantum critical to Fermi-liquid behavior is observed with increasing magnetic field.

Khuntia, P.; Strydom, A. M.; Wu, L. S.; Aronson, M. C.; Steglich, F.; Baenitz, M.

2012-12-01

167

Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2  

SciTech Connect

High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

Millar, J.M.

1986-02-01

168

Switching Reciprocity On and Off in a Magneto-Optical X-Ray Scattering Experiment Using Nuclear Resonance of 57Fe Foils  

E-print Network

Reciprocity is when the scattering amplitude of wave propagation satisfies a symmetry property, connecting a scattering process with an appropriate reversed one. We report on an experiment using nuclear resonance scattering of synchrotron radiation, which demonstrates that magneto-optical materials do not necessarily violate reciprocity. The setting enables to switch easily between reciprocity and its violation. In the latter case, the exhibited reciprocity violation is orders of magnitude larger than achieved by previous wave scattering experiments.

L. Deák; L. Bottyán; T. Fülöp; G. Kertész; D. L. Nagy; R. Rüffer; H. Spiering; F. Tanczikó; G. Vankó

2014-01-07

169

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts  

SciTech Connect

Copper and cobalt are the key elements in syngas conversion catalyst systems used for higher alcohol synthesis. Their proximity and synergy sensitively control the selectivity and efficiency of the process. It is believed that their outer electronic charge distribution which is responsible for their electrical and magnetic properties might be governing their catalytic properties also. To examine the correlation between catalytic and magnetic properties, a series of copper cobalt catalysts (Co/Cu ratio 5:1 to 5:5) with and without a support were prepared. The nuclear quadrupole resonance spectrum of copper and (zero-field) nuclear magnetic resonance spectrum of cobalt and magnetization and hysteresis character of the catalyst were analyzed. Similar to the catalytic results, the magnetic results also were found to be very sensitive to the preparation technique. The results indicate possible electron exchange between copper and cobalt, and cobalt and the support Titania.

Not Available

1991-01-14

170

Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade  

SciTech Connect

The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

1983-11-18

171

Technical challenges in 3 T magnetic resonance spectroscopic imaging of the prostate--A single-institution experience  

PubMed Central

The magnetic resonance spectroscopic imaging (MRSI) is the only technique that is currently available in the clinical practice to provide the metabolic status of prostate tissue at the cellular level with a great potential to improve the clinical patient care. Increasing the field strength from 1.5 to 3 T can theoretically provide proportionately higher signal-to-noise ratio (SNR) and improve spectral separation between prostatic metabolite peaks. The technique, however, has been limited to a few academic institutions that are equipped with a team of experts primarily due to due to serious technical challenges in optimizing the spectral quality. High quality shimming is key to the successful MRSI acquisition. Without optimization of the increased field inhomogeneity and radiofrequency (RF) dielectric effect at 3 T, the spectral peak broadening and residual signal from the periprostatic fat tissue may render the overall spectra non-diagnostic. The purpose of this technical note is to present the practical steps of successful acquisition of 3 T MRSI and to address several important technical challenges in minimizing the effect of the increased magnetic field and RF field inhomogeneity in order to obtain highest possible spectral quality based on our initial experience in using 3 T MRSI prototype software. PMID:25202660

Underwood, Michelle; Boonsirikamchai, Piyaporn; Matin, Surena; Troncoso, Patricia; Ma, Jingfei

2014-01-01

172

Structure and transport properties of stephanite (Ag5SbS4) according to antimony nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

Silver sulfo-antimonide Ag5SbS4 (stephanite) has been studied by nuclear quadrupole resonance (NQR) spectroscopy on antimony nuclei. The temperature dependences of the spectroscopic and relaxation parameters have been examined in the range of 4.2-395 K. A phase transition at 140 K and internal motions with an activation energy of 0.29 eV have been experimentally detected. The nature of the phase transition and diffusion of silver ions has been discussed in view of the reported data.

Orlova, A. Yu.; Gainov, R. R.; Dooglav, A. V.; Pen'kov, I. N.; Korolev, E. A.

2012-11-01

173

State-to-state rotational relaxation rate constants for the CO+X series (X=CO, He, and Ne) using IR-IR double resonance experiments: comparing theory to experiment  

Microsoft Academic Search

IR-IR double resonance experiments were used to study the state-to-state rotational relaxation of CO with CO, He, and Ne as collision partners. Individual rotational lines of the (2 - 0) vibrational overtone band were pumped by a pulsed IR laser and the subsequent rotational relaxation was monitored using a cw source. The resulting data sets were analyzed by fitting to

David A. Hostutler; Tony C. Smith; Gordon D. Hager; George C. McBane; Michael C. Heaven

2004-01-01

174

Variation of the resonance width of HOCl(6{nu}{sub OH}) with total angular momentum: Comparison between {ital ab initio} theory and experiment  

SciTech Connect

Complex L{sup 2} calculations of the variation of (very narrow) resonance widths of the 6{nu}{sub OH} state of HOCl with total angular momentum are reported, using a recently developed, accurate {ital ab initio} potential energy surface [S. Skokov, J. M. Bowman, and K. A. Peterson, J. Chem. Phys. {bold 109}, 2662 (1998)]. The calculations are carried out within the adiabatic rotation approximation for the overall rotation and a truncation/recoupling method for the vibrational states. Comparisons with recent double-resonance experiments of the Rizzo and Sinha groups are made. The variation of resonance width with {ital J} for {ital K}=0 is shown to be due to rotation-induced coupling of the 6{nu}{sub OH} state with a dense set of states with large excitation in the dissociative coordinate. {copyright} {ital 1999 American Institute of Physics.}

Skokov, S.; Bowman, J.M. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)] [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

1999-05-01

175

High-resolution proton magnetic resonance studies of the 3'-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of iminoproton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation.  

PubMed

The "colicin" fragments comprising the 49 3'-terminal nucleotides of 16 S ribosomal RNA have been isolated from wild-type Escherichia coli and from a kasugamycin-resistant mutant that lacks methylation of two geminal adenine residues. Proton nuclear magnetic resonance (n.m.r.) spectra (500 MHz) were recorded at various temperatures. The low-field resonances arising from the hydrogen-bonded iminoprotons of paired bases were assigned using the nuclear Overhauser effect (n.o.e.). Crucial to the interpretation of the spectra are the resonances that originate from the two hydrogen-bonded iminoprotons of a U X G basepair. Combined with temperature-jump relaxation kinetics experiments the n.o.e.s lead to the conclusion that a conserved A X U/U X G junction in the hairpin is a thermolabile dislocation in the helix. The n.m.r. spectra of the wild-type and mutant fragment are only different with respect to the iminoproton resonances of the two base-pairs adjoining the hairpin loop. The spectra recorded at various temperatures tend to indicate that dimethylation of the adenosines labilizes these base-pairs, but no definitive conclusions are drawn. The results confirm our previous views that dimethylation of the adenosine residues affects the conformation of the hairpin loop. PMID:6315954

Heus, H A; van Kimmenade, J M; van Knippenberg, P H; Haasnoot, C A; de Bruin, S H; Hilbers, C W

1983-11-15

176

Multipulse sequences for explosives detection by NQR under conditions of magnetoacoustic and piezoelectric ringing  

Microsoft Academic Search

A number of methods for cancelling magnetoacoustic and piezoelectric ringing signals in the spectroscopy of the nuclear quadrupole\\u000a resonance are presented. The suggested methods include using the sequence (?0)?-(?-?x-2?-?\\u000a y\\u000a -2?-??x\\u000a -2?-??y\\u000a -?)\\u000a n\\u000a and a multipulse analog of the two-pulse Hahn sequence with the first pulse replaced by a short steady-state sequence. Another\\u000a method presented is the method of

V. T. Mikhaltsevitch; T. N. Rudakov; J. H. Flexman; P. A. Hayes; W. P. Chisholm

2004-01-01

177

Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab  

SciTech Connect

The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

2011-03-01

178

Initial Experience with Magnetic Resonance-Guided Vacuum-Assisted Biopsy in Korean Women with Breast Cancer  

PubMed Central

Purpose The aim of this study is to describe our initial experience with magnetic resonance (MR)-guided biopsy and to determine the malignancy rate of additional lesions identified by MR only in Korean women with breast cancer. Methods A retrospective review identified 22 consecutive patients with breast cancer who had undergone MR-guided vacuum-assisted biopsies (VAB) of MR-only identified lesions from May 2009 to October 2011.We evaluated the rate of compliance, the technical success for MR-guided VAB and the MR imaging findings of the target lesions. VAB histology was compared with surgical histology and follow-up imaging findings. Results The biopsy recommendations for MR-only identified lesions were accepted in 46.8% (22/47) of patients. One of 22 procedures failed due to the target's posterior location. Among 21 MR-guided VAB procedures, the target lesions were considered as a mass in 12 cases and a nonmass enhancement in nine cases. VAB histology revealed malignancies in 14% (3/21) of cases, high-risk lesions in 24% (5/21) and benign lesions in 62% (13/21). Eleven cases (52%, 11/21) had a positive surgical correlation, and one of them was upgraded from atypical ductal hyperplasia to invasive ductal carcinoma. In the remaining 10 lesions, follow-up breast ultrasound and mammography were available (range, 15-44 months; mean, 32.1 months) and did not show suspicious lesions. The final malignancy rate was 19% (4/21). Conclusion MR-guided VAB for MR-only identified lesions yielded a 19% malignancy rate in Korean women with breast cancer. MR-guided VAB helps surgeons avoid an unnecessary wide excision or additional excisional biopsy. PMID:25320626

Jung, Hye Na; Ko, Eun Young; Shin, Jung Hee

2014-01-01

179

Building Resonance  

NSDL National Science Digital Library

This demonstration of how buildings respond to seismic shaking uses cardboard and stiff paper (such as postcards or computer cards). The effects of building resonance can be found by experimenting with taller and shorter buildings, and varying the frequency of shaking.

Barker, Jeffrey

180

High-frequency resonant experiments in Fe8 molecular clusters E. del Barco, J. M. Hernandez, and J. Tejada  

E-print Network

by chemical and infrared analysis. The single crystal was placed on the cavity of the resonator with its hard between the di- rection of the applied magnetic field and the hard plane. In fact this angle is the only

del Barco, Enrique

181

In vivo nuclear Overhauser effect in sup 31 P-(1H) double-resonance experiments in a 1. 5-T whole-body MR system  

SciTech Connect

In {sup 31}P-(1H) MR experiments of humans in a 1.5-T whole-body system, signal intensity enhancements of {sup 31}P resonances of up to 68 +/- 4% (for phosphocreatine of the calf muscle) have been observed upon irradiation at proton frequency. This observation is explained as a nuclear Overhauser effect due to the dipolar coupling between {sup 1}H and {sup 31}P spins.

Bachert-Baumann, P.; Ermark, F.; Zabel, H.J.; Sauter, R.; Semmler, W.; Lorenz, W.J. (Institut fuer Radiologie and Pathophysiologie, Heidelberg (Germany, F.R.))

1990-07-01

182

A zero-field NQR and low-field NMR study of NaHF 2 and KHF 2  

NASA Astrophysics Data System (ADS)

The quadrupole coupling constants and asymmetry parameters have been measured for 23Na in NaHF 2 and NaDF 2 and an estimate obtained for the quadrupole coupling constant of 39K in KHF 2 using nuclear quadrupole double-resonance (NQDR) techniques. Both fluorine and hydrogen were used as the detecting nuclear species. Using the same field-cycling techniques as are used in NQDR the very low field NMR of the HF2- ion was measured. By a comparison of theory with experiment it was possible to deduce a F-H bond length of 0.115(1) nm for KHF 2 and 0.113(l) nm for NaHF 2.

Gosling, P.; Edmonds, D. T.; Rabbani, S. R.

183

Coupled unstable resonators  

NASA Astrophysics Data System (ADS)

Coupling of unstable resonators in circulant arrays is considered, in which the array is invariant with respect to the interchange of any pair of resonators. A proof-of-concept experiment performed with six series coupled CO(2) lasers with confocal unstable resonators is reported. Adjoint coupling was used with two symmetrically placed coupling apertures in each resonator output. The results of measurements of the locking range, supermode content, and beam quality for standing wave and ring resonator arrays are presented and interpreted using simplified models. It is pointed out that adjoint coupled unstable resonators provide a modular scaling configuration with modest phase-locking length control requirements.

Palma, G. E.; Benda, J. A.; Townsend, S. S.; Cunningham, P. R.; Forgham, J.

1990-06-01

184

Magnetic resonance imaging of bone and soft tissue tumors: Early experience in 31 patients compared with computed tomography  

Microsoft Academic Search

In 31 patients with 21 soft tissue and 10 bone tumors, magnetic resonance imaging (MRI) and computed tomography (CT) were equally effective in delineating the margins of most soft tissue tumors, and the margins of bone tumors from fat and adjacent normal bone. However, MRI was superior to CT in delineating bone tumors from adjacent muscle, and in showing the

T. M. Hudson; D. J. Hamlin; W. F. Enneking; H. Pettersson

1985-01-01

185

Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment  

ERIC Educational Resources Information Center

Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

2010-01-01

186

MC generator TAUOLA: Implementation of resonance chiral theory for two and three meson modes. Comparison with experiment  

SciTech Connect

We present a partial upgrade of the Monte Carlo event generator TAUOLA with the two and three hadron decay modes using the theoretical models based on Resonance Chiral Theory. These modes account for 88% of total hadronic width of the tau meson. First results of the model parameters have been obtained using BaBar data for 3{pi} mode.

Shekhovtsova, O.; Nugent, I. M.; Przedzinski, T.; Roig, P.; Was, Z. [IFIC, Universitat de Valencia-CSIC, Apt. Correus 22085, E-46071, Valencia (Spain); RWTH Aachen University, III. Physikalisches Institut B, Aachen (Germany); The Faculty of Physics, Astronomy and Applied Computer Science, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland and CERN PH-TH, CH-1211 Geneva 23 (Switzerland); Grup de Fisica Teorica, Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Institute of Nuclear Physics, PAN, Krakow, ul. Radzikowskiego 152, Poland and CERN PH-TH, CH-1211 Geneva 23 (Switzerland)

2012-10-23

187

Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment  

Microsoft Academic Search

A power generator based on a vibration-to-electric energy converter using a variable-resonating capacitor is experimentally demonstrated. The generator consists of a complete system with a mechanical-variable capacitor, a charge-transporting LC tank circuit and an externally powered timing-capture controller. A practical design methodology to maximize the efficiency of the vibration-to-electric energy generation system is also described. The efficiency of the generator

Masayuki Miyazaki; Hidetoshi Tanaka; Goichi Ono; Tomohiro Nagano; Norio Ohkubo; Takayuki Kawahara; Kazuo Yano

2003-01-01

188

Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate  

Microsoft Academic Search

RATIONALE AND OBJECTIVES: We sought to explore the feasibility of magnetic resonance imaging (MRI) of the prostate at 3T, with the knowledge of potential drawbacks of MRI at high field strengths. MATERIAL AND METHOD: MRI, dynamic MRI, and 1H-MR spectroscopic imaging were performed in 10 patients with prostate cancer on 1.5T and 3T whole-body scanners. Comparable scan protocols were used,

J. J. Fütterer; Tom W. J. Scheenen; Henkjan J. Huisman; Dennis W. J. Klomp; Ferdi A. van Dorsten; J Alfred Witjes; Arend Heerschap; Jelle O. Barentsz

2004-01-01

189

Resonances and resonance widths  

SciTech Connect

Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

Collins, T.

1986-05-01

190

Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method  

NASA Technical Reports Server (NTRS)

Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

Hewitt, R. R.

1971-01-01

191

Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment.  

PubMed

A new 1H-13C-31P triple resonance experiment is described which allows unambiguous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4'i and C4'i-1, because of the relatively large JPC4' couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4'i and C4'i-1 coherences are subsequently transferred to, amongst others, H1'i and H1'i-1, respectively, leading to a 2D 1H-31P spectrum which allows a sequential assignment in the 31P-1H1' region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5'(GGGC-CAAA-GCCU)3'. PMID:7533569

Wijmenga, S S; Heus, H A; Leeuw, H A; Hoppe, H; van der Graaf, M; Hilbers, C W

1995-01-01

192

Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience.  

PubMed

Five patients with unifocal, biopsy-proven prostate cancer (PCa) evident on multiparametric magnetic resonance imaging (MRI) were treated with magnetic resonance-guided focused ultrasound (MRgFUS) ablation before radical prostatectomy (RP). An endorectal probe featuring a phased-array focused ultrasound transducer was positioned for lesion ablation under MRI guidance. The tissue temperature and accumulation of thermal damage in the target zone was monitored during the procedure by MRI thermometry. Overlap between the ablation area and the devascularisation of the target lesion was evaluated by contrast-enhanced MRI performed immediately after treatment. The procedure was uneventful, and no adverse events were observed. RP was safely performed without significant surgical difficulties in relation to the previous MRgFUS treatment. The histopathology report showed extensive coagulative necrosis, with no residual tumour in the ablated area. Significant bilateral residual tumour, not evident on pretreatment MRI, was observed outside the treated area in two patients. MRgFUS ablation of focal localised PCa is feasible and, if confirmed in appropriate studies, could represent a valid option for the focal treatment of localised PCa. PMID:23159454

Napoli, Alessandro; Anzidei, Michele; De Nunzio, Cosimo; Cartocci, Gaia; Panebianco, Valeria; De Dominicis, Carlo; Catalano, Carlo; Petrucci, Federico; Leonardo, Costantino

2013-02-01

193

Early Results on Nucleon Spin Structure in the Resonance Region from Jefferson Laboratory Experiment E01-006  

NASA Astrophysics Data System (ADS)

Experiment E01-006 ran in Hall C of Jefferson Laboratory, Newport News, Virginia, for six weeks in early 2002. It featured a continuous beam of polarized electrons at 5.759 GeV hitting a polarized target of solid ammonia. Two types of ammonia, ^15NH3 and ^15ND_3, were used so that proton and deuteron (respectively) structure functions could be measured. Additionally, the polarization axis of the target was changed during the experiment to enable measurement of both longitudinal and transverse structure functions. Some preliminary results of the analysis of this experiment will be presented.

McKee, Paul

2002-10-01

194

Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 ?m  

NASA Astrophysics Data System (ADS)

We report on a single-frequency laser oscillator based on a new Er:YLuAG laser crystal which is spectrally suitable for application as a transmitter in differential absorption lidar measurements of atmospheric CH4. The laser emits singlefrequency laser pulses with 2.3 mJ of energy and 90 ns duration at a repetition rate of 100 Hz. It is resonantly pumped by two linearly polarized single-mode cw fiber lasers at 1532 nm. A scan of the CH4-absorption line at 1645.1 nm was performed and the shape of the line with its substructure was reproduced as theoretically predicted. A 2.5-dimensional performance model was developed, in which pump absorption saturation and laser reabsorption is included. Also the spectral output of the laser oscillator longitudinal multimode operation could be predicted by the laser model.

Meissner, A.; Kucirek, P.; Li, J.; Yang, S.; Hoefer, M.; Hoffmann, D.

2013-03-01

195

A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments.  

PubMed

A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples. PMID:24593487

Vondrasek, R; Palchan, T; Pardo, R; Peters, C; Power, M; Scott, R

2014-02-01

196

Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments  

SciTech Connect

The five-dimensional finite-orbit Monte Carlo code ORBIT-RF [M. Choi , Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger , Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar , Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink , Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3314336

Choi, M. [General Atomics; Green, David L [ORNL; Heidbrink, W. W. [University of California, Irvine; Harvey, R. W. [CompX, Del Mar, CA; Liu, D. [University of California, Irvine; Chan, V. S. [General Atomics, San Diego; Berry, Lee A [ORNL; Jaeger, Erwin Frederick [ORNL; Lao, L.L. [General Atomics, San Diego; Pinsker, R. I. [General Atomics, San Diego; Podesta, M. [University of California, Irvine; Smithe, D. N. [Tech-X Corporation; Park, J. M. [Oak Ridge National Laboratory (ORNL); Bonoli, P. [Massachusetts Institute of Technology (MIT)

2010-01-01

197

63,65Cu Nuclear Resonance Study of the Coupled Spin Dimers and Chains Compound Cu2Fe2Ge4O13  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) of Cu have been measured in a coupled spin dimers and chains compound Cu2Fe2Ge4O13. Cu NQR has also been measured in an isostructural material Cu2Sc2Ge4O13 including only spin dimers. Comparison of the temperature dependence of the 63Cu nuclear spin--lattice relaxation rate between the two compounds reveals that the Fe chains in Cu2Fe2Ge4O13 do not change a spin gap energy of the Cu dimers from that in Cu2Sc2Ge4O13, contributing additionally to the relaxation rate at the Cu site. A modestly large internal field of 3.39 T was observed at the Cu site in the antiferromagnetic state of Cu2Fe2 Ge4O13 at 4.2 K, which is partly because of quantum reduction of the ordered moment of a Cu atom. The internal field and the ordered moment of Cu are noncollinear due to large anisotropy of the hyperfine interaction at the Cu site. A model analysis of the internal field based on the fourfold planar coordination of Cu suggests that a 3d hole of the Cu2+ ion is mainly in the d(x2-y2) orbital state.

Kikuchi, Jun; Nagura, Shiro; Murakami, Kazumasa; Masuda, Takatsugu; Redhammer, Günther J.

2013-03-01

198

Intra-epiphyseal stress injury of the proximal tibial epiphysis: Preliminary experience of magnetic resonance imaging findings.  

PubMed

Stress induced injuries affecting the physeal plate or cortical bone in children and adolescents, especially young athletes, have been well described. However, there are no reports in the current English language literature of stress injury affecting the incompletely ossified epiphyseal cartilage. We present four cases of stress related change to the proximal tibial epiphysis (PTE) along with their respective magnetic resonance imaging (MRI) appearances ranging from subtle oedema signal to a pseudo-tumour like appearance within the epiphyseal cartilage. The site and pattern of intra-epiphyseal injury is determined by the type of tissue that is affected, the maturity of the skeleton and the type of forces that are transmitted through the tissue. We demonstrate how an awareness of the morphological spectrum of MRI appearances in intra-epiphyseal stress injury and the ability to identify concomitant signs of stress in other nearby structures can help reduce misdiagnosis, avoid invasive diagnostic procedures like bone biopsy and reassure patients and their families. PMID:25183557

Tony, G; Charran, A; Tins, B; Lalam, R; Tyrrell, P N M; Singh, J; Cool, P; Kiely, N; Cassar-Pullicino, V N

2014-11-01

199

Trigonal warping-based splitting in the van Hove singularities probed by resonant Raman experiments on isolated metallic carbon nanotubes.  

NASA Astrophysics Data System (ADS)

We studied the splitting in the density of electronic states for individual metallic nanotubes due to trigonal warping by using the G'-band resonant phonon spectra as a probe. The observed splitting in the G'-band phonon spectra is directly correlated with the splitting in the singularities of the density of electronic states, thereby showing that information about the 1D electronic structure, at a meV scale, is extracted from a phonon measurement. The agreement between the calculated and observed splittings give us further evidences for the (n,m) assignment carried out by using Raman spectroscopy measurements at a single nanotube level. By correlating the phonon data using a single laser energy with the calculated electronic structure for several (n,m) nanotubes, we were able to determine the G'-band dispersion [(partial ?_G'/partial E_laser) = 108±6 cm-1/eV] getting good agreement with previous measurements on SWNT bundles using several laser lines.

Souza Filho, A. G.; Jorio, A.; Samsonidze, Ge. G.; Dresselhaus, G.; Dresselhaus, M. S.; Saito, R.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.

2002-03-01

200

Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breedera)  

NASA Astrophysics Data System (ADS)

The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

2014-02-01

201

Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment  

NASA Astrophysics Data System (ADS)

Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

Wang, Feng; Fu, G. Y.; Breslau, J. A.; Tritz, Kevin; Liu, J. Y.

2013-07-01

202

Sensing dissolved methane in aquatic environments: an experiment in the central baltic sea using surface plasmon resonance.  

PubMed

A new sensor for in situ, real time methane (CH4) measurements in aqueous environments is based on the refractive index (RI) modulation of a sensitive film composed of a polydimethylsiloxane (PDMS) layer incorporating molecules of cryptophane-A. The RI varies according to the amount of CH4 bound to the cryptophane-A in the film and is determined using surface plasmon resonance (SPR). Tests of the sensor in the summer of 2012 reveal the expansive range of conditions of the Central Baltic Sea with CH4 concentrations varying from 5 nM up to a few hundred nanomolar. The sensor showed detection limits down to 3 nM, sensitivity of 6 to 7 × 10(-6) RIU/nM, and response times of 1 to 2 min. Best responses were obtained for concentrations up to 200 nM. Side effects (temperature, cross-sensitivity) are reviewed for future improvements to the sensor design. CH4 values are highest in the Landsort Deep up to 1.2 ?M at 400 m depth and lowest in the Gotland Deep with 900 nM at 220 m depth. However, variable values in the upper layers indicate higher mixing rates due to currents and wind driven forces in the Gotland Basin compared with almost constant CH4 values in the Landsort Deep. PMID:23815404

Boulart, Cédric; Prien, Ralf; Chavagnac, Valérie; Dutasta, Jean-Pierre

2013-08-01

203

Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)  

SciTech Connect

Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U.

Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.

1983-12-01

204

Low-energy tail of the giant dipole resonance in {sup 98}Mo and {sup 100}Mo deduced from photon-scattering experiments  

SciTech Connect

Dipole-strength distributions in the nuclides {sup 98}Mo and {sup 100}Mo up to the neutron-separation energies have been studied in photon-scattering experiments at the bremsstrahlung facility of the Forschungszentrum Dresden-Rossendorf. To determine the dipole-strength distributions up to the neutron-emission thresholds, statistical methods were developed for the analysis of the measured spectra. The measured spectra of scattered photons were corrected for detector response and atomic background by simulations using the code GEANT3. Simulations of {gamma}-ray cascades were performed to correct the intensities of the transitions to the ground state for feeding from higher-lying levels and to determine their branching ratios. The photoabsorption cross sections obtained for {sup 98}Mo and {sup 100}Mo from the present ({gamma},{gamma}{sup '}) experiments are combined with ({gamma},n) data from literature, resulting in a photoabsorption cross section covering the range from 4 to about 15 MeV of interest for network calculations in nuclear astrophysics. Novel information about the low-energy tail of the giant dipole resonance and its energy dependence is derived. The photoabsorption cross sections deduced from the present photon-scattering experiments are compared with existing data from neutron capture and {sup 3}He-induced reactions.

Rusev, G.; Schwengner, R.; Doenau, F.; Erhard, M.; Junghans, A. R.; Kosev, K.; Schilling, K. D.; Wagner, A. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Grosse, E. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Becvar, F.; Krticka, M. [Faculty of Mathematics and Physics, Charles University, CZ-18000 Prague 8 (Czech Republic)

2008-06-15

205

The distribution and prognosis of anomalous coronary arteries identified by cardiovascular magnetic resonance: 15 year experience from two tertiary centres  

PubMed Central

Background Aberrant coronary arteries represent a diverse group of congenital disorders. Post-mortem studies reveal a high risk of exercise-related sudden cardiac death in those with an anomalous coronary artery originating from the opposite sinus of Valsalva (ACAOS) with an inter-arterial course. There is little documentation of lifetime history and long-term follow-up of patients with coronary artery anomalies. Methods Patients with anomalous coronary arteries undergoing cardiovascular magnetic resonance over a 15-year period were identified and classified by anatomy and course. Medical records were reviewed for major adverse cardiovascular events (MACE). Revascularisation or myocardial infarction counted only if occurring in the distribution of the anomalous artery. Results Consecutive patients with coronary artery anomalies were retrospectively identified (n?=?172). Median follow-up time was 4.3 years (IQR 2.5–7.8, maximum 15.6). 116 patients had ACAOS of which 64 (55%) had an inter-arterial course (IAC) and 52 (45%) did not. During follow up 110 ACAOS patients were alive, 5 died and 1 lost to follow-up. ACAOS patients experienced 58 MACE events (5 cardiovascular deaths, 5 PCI, 24 CABG and 24 had myocardial infarction). 47 MACE events occurred in ACAOS with IAC and 11 in those without (p?

2014-01-01

206

Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.  

PubMed

The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices. PMID:24593608

Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

2014-02-01

207

^7Li NMR and ^139L NQR in La_2Cu_1.985Li_0.015Cu0_4  

NASA Astrophysics Data System (ADS)

In Li doped La_2CuO4 the Li substitutes in the Cu site and introduces holes which, unlike the Sr doping, are localized. However, the effect of Li doping on the antiferromagnetic transition is much like that of Sr in that the transition is rapidly depressed at low doping concentrations and disappears at 3-4been measured in a 1.5line shows only a small increase in T2 below the transition over that at 300 K, considerably less than the nearest neighbor dipole contribution. The values of T1 also show no dramatic difference above and below the transition. However, the ^139La NQR data show the expected splitting by an internal field below the ordering temperature. This is consistent with the possibility that the the exchange coupling between nearest neighbor Cu's is modified to the extent that they do not participate in the antiferromagnetic order. Complete temperature dependent data of T1 and T2 will be presented.

Kleinhammes, A.; Kuhns, P. L.; Moulton, W. G.; Sarrao, J. L.; Fisk, Cassidy; Sullivan, Z.

1996-03-01

208

The use of election paramagnetic resonance spectroscopy in early preformulation experiments: the impact of different experimental formulations on the release of a lipophilic spin probe into gastric juice.  

PubMed

The lipophilic spin probe TEMPOL-benzoate was dissolved in different experimental formulations, including polyethylene glycol 400 (PEG 400), Miglyol, glycerol monooleate (GMO), and Cremophor RH-40. Samples were measured by electron paramagnetic resonance (EPR) spectroscopy before and after addition to human gastric juice. The distance between the first and the third peak in the EPR spectrum (2a(N)) was measured to monitor the polarity of the spin probe's microenvironment. Moreover, the ratio between the signal amplitudes of the second and the third peak (a/b ratio) was used to monitor the mobility of the spin probe in a certain formulation. Thus, by calculating 2a(N) and the a/b ratio of the EPR spectra it was possible to determine a potential release of the spin probe from different formulations into gastric juice. It was found that oily and surface-active vehicles (Miglyol, Cremophor RH-40, and GMO) were more suitable to protect a lipophilic compound from being released within a gastric environment than PEG 400. Our results demonstrate that EPR spectroscopy seems to be a promising tool in early preformulation experiments to monitor the release of spin probes from formulations of different nature. This kind of experiment can be of value for the optimization of exploratory formulations. PMID:11226824

Bittner, B; Isel, H; Mountfield, R J

2001-03-01

209

A search for a heavy resonance decaying to a top quark and bottom quark with the CMS experiment  

NASA Astrophysics Data System (ADS)

The standard model of particle physics can explain most measurements of elementary particle properties and interactions performed to date. However, it does not naturally explain the relatively light Higgs boson mass or the existence of small neutrino masses, and has no explanation for the dark matter observed in the universe. Many extensions to the standard model have been proposed to attempt to address these questions, and several predict the existence of heavy charged gauge bosons, usually referred to as W' bosons. The Large Hadron Collider at CERN is the largest and most powerful particle accelerator in the world and offers the opportunity to search for W' bosons using the CMS experiment, a large multi-purpose particle detector. Results are presented from a search for a W' boson produced in proton-proton collisions at a center of mass energy sqrt(s)=8 TeV and decaying into a top and a bottom quark, using a dataset collected by the CMS experiment corresponding to an integrated luminosity of 19.5 fb-1. Various models of W' boson production are studied by allowing for an arbitrary combination of left- and right-handed fermionic couplings. The analysis is based on the detection of events with an electron or muon, jets and missing transverse energy in the final state. No evidence for W' boson production is found and 95% confidence level upper limits are obtained on the production cross section for several mass hypotheses and compared to theoretical predictions. For W' bosons with purely right-handed couplings, and for those with left-handed couplings when ignoring interference effects, the observed 95% confidence level limit on the W' boson mass is M(W')>2.05 TeV. These are the most stringent limits obtained to date in this channel.

Sperka, David M.

210

Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study  

SciTech Connect

We report {sup 209}Bi nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U{sub 3}Bi{sub 4}Ni{sub 3}. The {sup 209}Bi nuclear-spin-lattice relaxation rate (T{sub 1}{sup -1}) shows activated behavior and is well fit by a spin gap of 220 K. The {sup 209}Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

Baek, Seung H [Los Alamos National Laboratory

2009-01-01

211

Stochastic Resonance  

E-print Network

Stochastic resonance (SR) - a counter-intuitive phenomenon in which the signal due to a weak periodic force in a nonlinear system can be {\\it enhanced} by the addition of external noise - is reviewed. A theoretical approach based on linear response theory (LRT) is described. It is pointed out that, although the LRT theory of SR is by definition restricted to the small signal limit, it possesses substantial advantages in terms of simplicity, generality and predictive power. The application of LRT to overdamped motion in a bistable potential, the most commonly studied form of SR, is outlined. Two new forms of SR, predicted on the basis of LRT and subsequently observed in analogue electronic experiments, are described.

M. I. Dykman; D. G. Luchinsky; R. Mannella; P. V. E. McClintock; S. M. Soskin; N. D. Stein; N. G. Stocks

1993-07-17

212

A proof of principle experiment: Structural transitions in self-healing poly (ethylene co-methacrylic acid) ionomers using acoustic and ultrasonic time dependent resonant spectroscopy  

NASA Astrophysics Data System (ADS)

We demonstrate a method for assessing structural transitions in self-healing poly (ethylene co-methacrylic acid) ionomers as a function of time, by observing the evolution of their acoustic and ultrasonic resonant spectra and associated quality factors during the post-damage healing phase. Two samples composed of EMAA-0.6Na and EMAA-0.3Na were scanned from 1 kHz to 2 MHz before and after a damage event. After damage, time varying resonances were discovered using time dependent resonant spectroscopy (TDRS), and several of these resonances continued to evolve after visible changes in the samples ceased. These time dependent resonances enable characterization of energy dissipation, relaxation and structural ordering in self-healing ionomers. In addition, TDRS may provide a method for isolating material properties that affect the healing process, such as ion content and their associated structures as well as the effect of sample aging, which may lead to improved structural models.

Pestka, K. A.; Kalista, S. J.; Ricci, A.

2013-08-01

213

Supramolecular synthon pattern in solid clioquinol and cloxiquine (APIs of antibacterial, antifungal, antiaging and antituberculosis drugs) studied by ³?Cl NQR, ¹H-¹?O and ¹H-¹?N NQDR and DFT/QTAIM.  

PubMed

The quinolinol derivatives clioquinol (5-chloro-7-iodo-8-quinolinol, Quinoform) and cloxiquine (5-chloro-8-quinolinol) were studied experimentally in the solid state via ³?Cl NQR, ¹H-¹?O and ¹H-¹?N NQDR spectroscopies, and theoretically by density functional theory (DFT). The supramolecular synthon pattern of O-H···N hydrogen bonds linking dimers and ?-? stacking interactions were described within the QTAIM (quantum theory of atoms in molecules) /DFT (density functional theory) formalism. Both proton donor and acceptor sites in O-H···N bonds were characterized using ¹H-¹?O and ¹H-¹?N NQDR spectroscopies and QTAIM. The possibility of the existence of O-H···H-O dihydrogen bonds was excluded. The weak intermolecular interactions in the crystals of clioquinol and cloxiquine were detected and examined. The results obtained in this work suggest that considerable differences in the NQR parameters for the planar and twisted supramolecular synthons permit differentiation between specific polymorphic forms, and indicate that the more planar supramolecular synthons are accompanied by a greater number of weaker hydrogen bonds linking them and stronger ?···? stacking interactions. PMID:21080020

Latosi?ska, Jolanta Natalia; Latosi?ska, Magdalena; Tomczak, Marzena Agnieszka; Seliger, Janez; Zagar, Veselko

2011-07-01

214

High precision measurement of the 11Li and 9Li quadrupole moment ratio using zero-field ?-NQR  

NASA Astrophysics Data System (ADS)

The ratio of electric quadrupole moments of 11Li and 9Li was measured using the zero-field ?-detected nuclear quadrupole resonance technique at Triumf-Isac. The precision on the ratio Q11/Q9 = 1.0775(12) was improved by more than one order of magnitude and an absolute value for the quadrupole moment of 11Li was inferred. Systematic effects, as argued here, are not expected to contribute to the ratio on this scale. The zero-field spin-lattice relaxation time for 8Li implanted within SrTiO3 at 295?K in zero-field was found to be T1 = 1.73(2)?s. A comparison of the quadrupole moments of 9, 11Li and their ratio is made with the latest models, however, no conclusion may yet be drawn owing to the size of the theoretical uncertainties.

Voss, A.; Pearson, M. R.; Buchinger, F.; Crawford, J. E.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Shelbaya, O. T. J.; Song, Q.; Wang, D.

2014-01-01

215

Resonance scraping  

SciTech Connect

Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

Collins, T.

1986-06-01

216

Institutional Experience With Solid Pseudopapillary Neoplasms: Focus on Computed Tomography, Magnetic Resonance Imaging, Conventional Ultrasound, Endoscopic Ultrasound, and Predictors of Aggressive Histology  

PubMed Central

Objective Solid pseudopapillary neoplasms (SPNs) are low-grade malignancies with an excellent prognosis, albeit with the potential for metastatic disease. This study details our institution's experience with the diagnosis and treatment of SPN, including clinical presentation, multimodality imaging findings, and potential predictors of aggressive tumor behavior. Materials and Methods The institutional pathology database was searched through for all cases of SPN since 1988, yielding 51 patients. The electronic medical record was searched for clinical and demographic information regarding these patients, including age, sex, presenting symptoms, type of surgery, postoperative length of stay, tumor markers, and postsurgical follow-up. All available imaging data were reviewed, including those of 30 patients who underwent multidetector computed tomography, those of 9 patients who underwent magnetic resonance imaging (MRI), those of 3 patients who underwent conventional ultrasound, and those of 11 patients who underwent endoscopic ultrasound. Results A total of 84% of patients were females, with a mean age of only 33 years. Prognosis was excellent, with a mean follow-up of 3 years without recurrence. Only 1 of the 51 patients developed metastatic disease to the liver 8 years after the surgery. On computed tomography, lesions tended to be large (5.3 cm), well circumscribed (29/30), round/oval (20/30), and encapsulated (23/30). The lesions often demonstrated calcification (14/30) and typically resulted in no biliary or pancreatic ductal dilatation. The lesions ranged from completely cystic to completely solid. On MRI, the lesions often demonstrated a T2 hypointense or enhancing capsule (6/9) and demonstrated internal blood products (5/9). The lesions tended to be devoid of vascularity on conventional ultrasound. Ten patients were found to have “aggressive” histology at presentation (T3 tumor, nodal involvement, perineural invasion, or vascular invasion). No demographic, clinical, or multidetector computed tomographic imaging features were found to correlate with aggressive histology. Conclusions Certain imaging features (eg, well-circumscribed mass with calcification, peripheral capsule, internal blood products, and lack of biliary/pancreatic ductal obstruction) on computed tomography and MRI are highly suggestive of the diagnosis of SPN, particularly when visualized in young female patients. However, it is not possible to predict aggressive histology on the basis of imaging findings, clinical presentation, or patient demographic features. PMID:24045264

Raman, Siva P.; Kawamoto, Satomi; Law, Joanna K.; Blackford, Amanda; Lennon, Anne Marie; Wolfgang, Christopher L.; Hruban, Ralph H.; Cameron, John L.; Fishman, Elliot K.

2014-01-01

217

Dielectric resonators  

Microsoft Academic Search

Microwave passive and active devices containing dielectric resonators and the design procedures used to characterize these components are reviewed. The emphasis has been on low noise, small size, low cost and high temperature stability. Both filter and oscillator applications are described. The applications of dielectric resonators in the millimeter-wave frequency band are also discussed

P. Guillon

1988-01-01

218

Superconducting coplanar waveguide resonators for electron spin resonance applications  

NASA Astrophysics Data System (ADS)

Superconducting coplanar waveguide (CPW) resonators are a promising alternative to conventional volume resonators for electron spin resonance (ESR) experiments where the sample volume and thus the number of spins is small. However, the magnetic fields required for ESR could present a problem for Nb superconducting resonators, which can be driven normal. Very thin Nb films (50 nm) and careful alignment of the resonators parallel to the magnetic field avoid driving the Nb normal, but flux trapping can still be an issue. Trapped flux reduces the resonator Q-factor, can lead to resonant frequency instability, and can lead to magnetic field inhomogeneities. At temperatures of 1.9 K and in a magnetic field 0.32 T, we have tested X-band resonators fabricated directly on the surface of a silicon sample. Q-factors in excess of 15,000 have been obtained. A thin layer of GE varnish applied directly to the resonator has been used to glue a sapphire wafer to its surface, and we still find Q-factors of 16,000 or more in the 0.32 T field. ESR applications of these resonators will be discussed.

Sigillito, A. J.; Jock, R. M.; Tyryshkin, A. M.; Malissa, H.; Lyon, S. A.

2013-03-01

219

Acoustic Resonators  

NASA Astrophysics Data System (ADS)

Recently my collection of historical physics teaching apparatus was given a group of 19th-century tuning forks on resonant boxes. Figure 1 shows the smallest fork sitting on the largest one. The large tuning fork oscillates at 128 Hz and has a resonator that is 57.9 cm long. The small fork has a frequency 10 times higher, but its resonator has a length of 11.0 cm instead of the 5.8 cm that simple scaling would suggest. How is this possible?

Greenslade, Thomas B.

2012-11-01

220

Lyapunov exponents in resonance multiplets  

E-print Network

The problem of estimating the maximum Lyapunov exponents of the motion in a multiplet of interacting nonlinear resonances is considered for the case when the resonances have comparable strength. The corresponding theoretical approaches are considered for the multiplets of two, three, and infinitely many resonances (i.e., doublets, triplets, and "infinitets"). The analysis is based on the theory of separatrix and standard maps. A "multiplet separatrix map" is introduced, valid for description of the motion in the resonance multiplet under certain conditions. In numerical experiments it is shown that, at any given value of the adiabaticity parameter (which controls the degree of interaction/overlap of resonances in the multiplet), the value of the maximum Lyapunov exponent in the multiplet of equally-spaced equally-sized resonances is minimal in the doublet case and maximal in the infinitet case. This is consistent with the developed theory.

I. I. Shevchenko

2013-12-19

221

Resonant Excitation of Plasma Wakefields  

SciTech Connect

We describe characteristics of the bunch train and plasma source used in a resonant plasma wakefield experiment at the Brookhaven National Laboratory Accelerator Test Facility. The bunch train has the proper correlated spread to unambiguously observe the expected energy gain by the witness bunch at resonance. The plasma density in the capillary discharge is sufficiently high to reach the resonance with the typical bunch train spacing of this experiment. It is also uniform over more than 3/4 of the 2 cm-long capillary.

Muggli, P.; Allen, B. [University of Southern California, Los Angeles, CA 90089 (United States); Yakimenko, V.; Fedurin, M.; Kusche, K.; Babzien, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-11-04

222

Magnetic Resonance  

Cancer.gov

Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

223

Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments.  

PubMed

This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved. PMID:24374749

Enomoto, Ayano; Hirata, Hiroshi

2014-02-01

224

The use of election paramagnetic resonance spectroscopy in early preformulation experiments: the impact of different experimental formulations on the release of a lipophilic spin probe into gastric juice  

Microsoft Academic Search

The lipophilic spin probe TEMPOL-benzoate was dissolved in different experimental formulations, including polyethylene glycol 400 (PEG 400), Miglyol, glycerol monooleate (GMO), and Cremophor RH-40. Samples were measured by electron paramagnetic resonance (EPR) spectroscopy before and after addition to human gastric juice. The distance between the first and the third peak in the EPR spectrum (2aN) was measured to monitor the

Beate Bittner; Hugues Isel; Richard J. Mountfield

2001-01-01

225

Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors  

Microsoft Academic Search

In this study, we examined the efficacy and limitations of electron paramagnetic resonance (EPR) for estimating the age of human bloodstains. At 77K, human bloodstains give four striking EPR signals in the g=6.2 (g6), 4.3 (g4), 2.27 (H) and 2.005 (R) regions due to ferric high-spin, ferric non-heme, ferric low-spin and free radical species, respectively. We found that plotting double

Yoshihiko Fujita; Koichiro Tsuchiya; Shinji Abe; Yoshiharu Takiguchi; Shin-ichi Kubo; Hiromu Sakurai

2005-01-01

226

Flip-angle measurement by magnetization inversion: Calibration of magnetization nutation angle in hyperpolarized (3) He magnetic resonance imaging lung experiments.  

PubMed

The aim of this work was to establish a new, fast, and robust method of flip-angle calibration for magnetic resonance imaging of hyperpolarized (3) He. The method called flip-angle measurement with magnetization inversion is based on acquiring images from periodically inverted longitudinal magnetization created using the spatial modulation of magnetization technique. By measuring the width of the area where the magnetization was inverted by the spatial modulation of magnetization preparation in phase images, the flip angle can be generated using a simple equation. To validate and establish the limits of the proposed method, flip-angle measurement with magnetization inversion acquisitions were simulated and applied to proton and hyperpolarized (3) He phantoms. Then, the calibration procedure was applied during hyperpolarized (3) He magnetic resonance imaging in a healthy volunteer. The advantage of the flip-angle measurement with magnetization inversion method compared with the conventional method based on the assessment of radiofrequency-decay is that it is free of errors induced by relaxation due to oxygen, by imperfect excitation slice profile and by any diffusion of (3) He into and out of the slice. Another advantage is that it does not require image processing with external software and therefore can be performed using the implemented tools on the magnetic resonance workstation. PMID:20882641

Rivoire, J; Terekhov, M; Meise, F M; Gast, K; Salhi, Z; Schreiber, L M

2011-02-01

227

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, June 15--September 15, 1991  

SciTech Connect

The primary objective of the project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. We have undertaken to investigate the magnetic character by studying the Nuclear Quadrupole resonance of copper and (Zerofield) Nuclear Magnetic Resonance of cobalt in copper cobalt catalysts.

Not Available

1991-12-17

228

Laser Resonator  

NASA Technical Reports Server (NTRS)

An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

Harper, L. L. (inventor)

1983-01-01

229

Resonance conditions  

E-print Network

Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we discuss which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

P. Rebusco

2005-10-14

230

Simple Bridge for Pulsed Nuclear Magnetic Resonance  

Microsoft Academic Search

An asymmetrical rf bridge for pulsed magnetic resonance experiments is described. The balancing adjustments, which can be made quickly and easily, ensure a proper impedance match to transmitter and receiver. The bridge is particularly well suited for pure nuclear quadrupole resonance experiments.

K. R. Jeffrey; R. L. Armstrong

1967-01-01

231

Accurate computer-aided quantification of left ventricular parameters: experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study.  

PubMed

Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. PMID:22021128

Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J

2012-05-01

232

Polariton path to fully resonant dispersive coupling in optomechanical resonators  

NASA Astrophysics Data System (ADS)

Resonant photoelastic coupling opens new perspectives for strongly enhanced light-sound interaction in semiconductor optomechanical resonators. One potential problem, however, is the reduction of the cavity Q factor induced by dissipation when the resonance is approached. We show in this Rapid Communication through Raman-scattering experiments that cavity-polariton mediation in the light-matter process overcomes this limitation allowing for a strongly enhanced photon-phonon coupling without significant lifetime reduction in the strong-coupling regime. Huge optomechanical coupling factors in the petaHz/nm range are envisaged, three orders of magnitude larger than the backaction produced by the mechanical displacement of the cavity mirrors.

Rozas, G.; Bruchhausen, A. E.; Fainstein, A.; Jusserand, B.; Lemaître, A.

2014-11-01

233

Stochastic resonance  

Microsoft Academic Search

Over the last two decades, stochastic resonance has continuously attracted considerable attention. The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The effect requires three basic ingredients: (i) an energetic activation barrier or, more generally,

Luca Gammaitoni; Peter Hänggi; Peter Jung; Fabio Marchesoni

1998-01-01

234

Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors.  

PubMed

In this study, we examined the efficacy and limitations of electron paramagnetic resonance (EPR) for estimating the age of human bloodstains. At 77K, human bloodstains give four striking EPR signals in the g=6.2 (g6), 4.3 (g4), 2.27 (H) and 2.005 (R) regions due to ferric high-spin, ferric non-heme, ferric low-spin and free radical species, respectively. We found that plotting double logarithms of the EPR intensity ratio of H/g4 versus days past bleeding gave a linear correlation up to 432 days with an error range within 25% of the actual number of days under controlled conditions. However, environmental factors such as differences of absorbent, light exposure and fluctuations of storage temperature affected the changes of these EPR-active compounds, which result in misestimation of the time since bleeding occurred. Therefore, one should take such factors into account in estimating the period since bleeding by this method. PMID:15939175

Fujita, Yoshihiko; Tsuchiya, Koichiro; Abe, Shinji; Takiguchi, Yoshiharu; Kubo, Shin-ichi; Sakurai, Hiromu

2005-08-11

235

If It's Resonance, What is Resonating?  

ERIC Educational Resources Information Center

The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

Kerber, Robert C.

2006-01-01

236

Pygmy dipole resonance  

NASA Astrophysics Data System (ADS)

The pygmy dipole resonance (PDR) is a low-energy debris of the 1hslash? El-strength which is pushed by an isovector residual interaction to higher energies to form the giant dipole resonance. It exhausts about 1% of the EWSR below the particle threshold. High energy resolution experiments performed during the last decade reveal fine structure of the PDR in many nuclei. We report on the studies of the PDR fine structure performed within the Quasiparticle-Phonon model. Excited states are described by a wave function which includes one-, two-, and three-phonon configurations, i.e. the configuration space in calculations below the threshold is almost complete. We discuss also some particular features of the PDR excitation in different nuclear reactions.

Ponomarev, Vladimir

2014-09-01

237

Magnetic Resonance Fingerprinting  

PubMed Central

Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches. PMID:23486058

Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L.; Duerk, Jeffrey L.; Griswold, Mark A.

2013-01-01

238

Predicting an ultraviolet-tetraherz double resonance spectrum of formaldehyde  

E-print Network

In preparation for performing a triple resonance experiment to study the Rydberg states of calcium monofluoride (CaF), a double resonance spectrum of formaldehyde will be recorded. A dye laser will populate a level in ...

Fenn, Emily E. (Emily Elizabeth)

2006-01-01

239

14 CFR 29.663 - Ground resonance prevention means.  

...means for preventing ground resonance must be shown either by analysis and tests, or reliable service experience, or by showing through analysis or tests that malfunction or failure of a single means will not cause ground resonance....

2014-01-01

240

14 CFR 27.663 - Ground resonance prevention means.  

...means for preventing ground resonance must be shown either by analysis and tests, or reliable service experience, or by showing through analysis or tests that malfunction or failure of a single means will not cause ground resonance....

2014-01-01

241

Resonance production by neutrinos: The second resonance region  

E-print Network

The article contains new results for spin-3/2 and -1/2 resonances. It specializes to the second resonance region, which includes the $P_{11}(1440)$, $D_{13}(1520)$ and $S_{11}(1535)$ resonances. New data on electroproduction enable us to determine the vector form factors accurately. Estimates for the axial couplings are obtained from decay rates of the resonances with the help of the partially conserved axial current (PCAC) hypothesis. We present cross sections to be compared with the running and future experiments. The article is self--contained and allows the reader to write simple programs for reproducing the cross sections and for obtaining additional differential cross sections.

Olga Lalakulich; Emmanuel A. Paschos; Giorgi Piranishvili

2006-02-22

242

Optimization of a microwave resonator cavity to perform electron spin resonance measurements on quantum dots  

E-print Network

This thesis attempts to improve on an ongoing experiment of detecting electron spin resonance (ESR) on AlGaAs/GaAs lateral quantum dots. The experiment is performed in a 2.5 Tesla magnetic field at temperatures around ...

Burger, Anat

2006-01-01

243

Electroexcitation of nucleon resonances  

NASA Astrophysics Data System (ADS)

We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. We describe current experimental facilities, the experiments performed on ? and ? electroproduction off protons, and theoretical approaches used for the extraction of resonance contributions from the experimental data. The status of 2?, K?, and K? electroproduction is also presented. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV 2 for ?(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large- Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the ?(1232) indicate large pion-cloud contributions at low Q2 and do not show any sign of approaching the pQCD regime for Q2<7 GeV. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3 q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2>0.5 GeV, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

Aznauryan, I. G.; Burkert, V. D.

2012-01-01

244

Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.  

PubMed

Gramicidin A (gA) channels provide an ideal system to test molecular dynamics (MD) simulations of membrane proteins. The peptide backbone lines a cation-selective pore, and due to the small channel size, the average structure and extent of fluctuations of all atoms in the peptide will influence ion permeation. This raises the question of how well molecular mechanical force fields used in MD simulations and potential of mean force (PMF) calculations can predict structure and dynamics as well as ion permeation. To address this question, we undertook a comparative study of nuclear magnetic resonance (NMR) observables predicted by fully atomistic MD simulations on a gA dimer embedded in a sodium dodecyl sulfate (SDS) micelle with measurements of the gA dimer backbone and tryptophan side chain dynamics using solution-state (15)N NMR on gA dimers in SDS micelles (Vostrikov, V. V.; Gu, H.; Ingo?lfsson, H. I.; Hinton, J. F.; Andersen, O. S.; Roux, B.; Koeppe, R. E., II. J. Phys. Chem. B2011, DOI 10.1021/jp200906y , accompanying article). This comparison enables us to examine the robustness of the MD simulations done using different force fields as well as their ability to predict important features of the gA channel. We find that MD is able to predict NMR observables, including the generalized order parameters (S(2)), the (15)N spin-lattice (T(1)) and spin-spin (T(2)) relaxation times, and the (1)H-(15)N nuclear Overhauser effect (NOE), with remarkable accuracy. To examine further how differences in the force fields can affect the channel conductance, we calculated the PMF for K(+) and Na(+) permeation through a gA channel in a dimyristoylphosphatidylcholine (DMPC) bilayer. In this case, we find that MD is less successful in quantitatively predicting the single-channel conductance. PMID:21574563

Ingólfsson, Helgi I; Li, Yuhui; Vostrikov, Vitaly V; Gu, Hong; Hinton, James F; Koeppe, Roger E; Roux, Benoît; Andersen, Olaf S

2011-06-01

245

Resonance Rings  

NSDL National Science Digital Library

This is an activity about resonance and where it is found in related to astronomy. Learners will construct two differently sized rings out of file folder paper and tape them to a piece of cardboard. Next, they will shake the cardboard from side to side, which shakes the rings, and observe what happens when the frequency of the shaking is gradually increased. This activity is from the Stanford Solar Center's All About the Sun: Sun and Stars activity guide for Grades 5-8 and can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity.

246

High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB  

NASA Astrophysics Data System (ADS)

The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C ?, 13C ?, 1H ?, and 1H ?. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H ? and 1H ? chemical shifts are then coded in the line shape of the cross-peaks of 13C ?, 13C ? along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

2003-12-01

247

Evaluation of Water Flow-Paths and Dispersivities in Three-Dimensional Heterogeneous Porous Media Based on Magnetic Resonance Imaging Experiments  

NASA Astrophysics Data System (ADS)

Tracer concentration breakthrough curves (BTCs) depend mainly upon the spatial distribution of hydraulic conductivity (K). Small-scale heterogeneity causes local velocity changes and local concentration gradients which can result in dispersive mixing. To examine the effects of heterogeneity and dispersion coefficients on tracer transport, we used a unique non-intrusive experimental method that measures BTCs from magnetic resonance imaging (MRI) signal intensity profiles at a voxel scale of 0.1875cm x 0.1875cm x 0.225cm in a three-dimensional flowcell (25cm x 8.8cm x 8.5cm) packed with a spatially correlated heterogeneous distributions of K at the 1cm3 scale. Predicted breakthrough profiles obtained with an integrated finite difference code (STOMP) were compared to experimental BTCs averaged over 0.25x0.25 cm2, 1x1 cm2, and the entire heterogeneous flow cell cross sections (8x8 cm2), all in 0.25 cm increments along the main flow direction (x). Different methods of assigning hydraulic conductivity (K) values to these sand fractions based on literature and measured values were tested. At the 0.06525cm2 and 1cm2 scales, the simulated BTCs matched the measured BTCs very well in the highest K sand along the central portion of the flowcell, but matching was poorer in the lower K regions. Root mean squared error (RMSE) values between measured and simulated BTCs were calculated; they were lowest for the flowcell cross-section scale, and increased with decreasing scales (1 cm2 and 0.0625 cm2). The difference is attributed to: (1) a reduction in local effective conductivity caused by the mixing of the coarse and fine sands, and (2) variability between the experimentally packed and the numerical heterogeneous permeability field. The impact of the dispersion coefficients upon the RMSE was also evaluated under the assumption that the ratio of longitudinal to transverse dispersivities equals ten; a minimum RMSE value was obtained when the longitudinal dispersivity was similar to the grain size. The effect of local-scale heterogeneity on differences between measured and predicted BTCs will be further exploited by inverse flow modeling using measured BTCs.

Yoon, H.; Zhang, C.; Werth, C. J.; Valocchi, A. J.

2007-05-01

248

Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments  

NASA Astrophysics Data System (ADS)

We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/?0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 ??0/?Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 ?T Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

2011-09-01

249

Sensitivity improvement during heteronuclear spin decoupling in solid-state nuclear magnetic resonance experiments at high spinning frequencies and moderate radio-frequency amplitudes  

NASA Astrophysics Data System (ADS)

Searching for optimal conditions during one- and multi-dimensional solid-state NMR experiments in high static fields may require spinning the sample at frequencies above 40 kHz. This implies challenging requirements for heteronuclear spin decoupling. We have compared the performance of the latest heteronuclear decoupling schemes at high magic-angle spinning frequencies. The results demonstrate that at commonly used rf amplitudes between 80 and 120 kHz, PISSARRO decoupling provides substantial sensitivity improvement. The performance of low-amplitude decoupling at different spinning speeds is also compared and its dependence on the inherent inhomogeneity of the rf field is probed by numerical simulations.

Purusottam, Rudra N.; Bodenhausen, Geoffrey; Tekely, Piotr

2014-10-01

250

NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, September 14--December 15, 1990  

SciTech Connect

Copper and cobalt are the key elements in syngas conversion catalyst systems used for higher alcohol synthesis. Their proximity and synergy sensitively control the selectivity and efficiency of the process. It is believed that their outer electronic charge distribution which is responsible for their electrical and magnetic properties might be governing their catalytic properties also. To examine the correlation between catalytic and magnetic properties, a series of copper cobalt catalysts (Co/Cu ratio 5:1 to 5:5) with and without a support were prepared. The nuclear quadrupole resonance spectrum of copper and (zero-field) nuclear magnetic resonance spectrum of cobalt and magnetization and hysteresis character of the catalyst were analyzed. Similar to the catalytic results, the magnetic results also were found to be very sensitive to the preparation technique. The results indicate possible electron exchange between copper and cobalt, and cobalt and the support Titania.

Not Available

1991-01-14

251

Extraordinary acoustic transmission mediated by Helmholtz resonators  

NASA Astrophysics Data System (ADS)

We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

Koju, Vijay; Rowe, Ebony; Robertson, William M.

2014-07-01

252

Cyclotron subharmonics resonant (CSR) heating  

NASA Astrophysics Data System (ADS)

Corresponding to the experiment done with the JIPPT-II-U device [Phys. Rev. Lett. 54, 2339 (1985)], the cyclotron subharmonics resonant (CSR) heating mechanism is studied using particle simulation codes with an emphasis on the relationship between CSR and the nonlinear Landau damping.

Abe, Hirotada

1994-08-01

253

The Electromagnetic Spectrum: Resonating Atmosphere  

NSDL National Science Digital Library

Using a paper and tape device, students experience how atoms and molecules of gas in Earthâs atmosphere absorb electromagnetic energy through resonance. This activity is part of Unit 2 in the Space Based Astronomy guide that contains background information, worksheets, assessments, extensions, and standards.

254

Nonlinear optics via double dark resonances  

E-print Network

resonant state, u0&'ud& 1Vc /Vua&, has a small admixture of the excited state, and thus it decays very slowly, which results in a very narrow resonance. In this picture, it is easy to prove that in the all- resonant case, detuning the field Vc by n...RF implies a fre- quency shift of the novel resonance line by nRF . The experiment described in this paper follows a slightly different setup. The states uc& and ud& are degenerate ~i.e., Zeeman sublevels!, whereas the new field, a RF field, has...

Yelin, S. F.; Sautenkov, V. A.; Kash, M. M.; Welch, George R.; Lukin, M. D.

2003-01-01

255

Nonmonotonic Energy Dissipation in Microfluidic Resonators  

E-print Network

Nanomechanical resonators enable a range of precision measurements in air or vacuum, but strong viscous damping makes applications in liquid challenging. Recent experiments have shown that fluid damping is greatly reduced ...

Manalis, Scott R.

256

Resonance production by neutrinos: I. J=3/2 Resonances  

E-print Network

The article contains general formulas for the production of J=3/2 resonances by neutrinos and antineutrinos. It specializes to the P_{33}(1232) resonance whose form factors are determined by theory and experiment and then are compared with experimental results at low and high energies. It is shown that the minimum in the low Q^2 region is a consequence of a combined effect from the vanishing of the vector form factors, the muon mass and Pauli blocking. Several improvements for the future investigations are suggested.

Olga Lalakulich; Emmanuel A. Paschos

2005-01-13

257

Notes on Experiments.  

ERIC Educational Resources Information Center

Describes four physics experiments including "Investigation of Box Resonances Using a Micro"; "A Direct Reading Wattmeter, DC or AC"; "Exercises in the Application of Ohm's Law"; and "Hysteresis on Gas Discharges." Discusses procedures, instrumentation, and analysis in each example. (CW)

Physics Education, 1988

1988-01-01

258

Stochastic resonance  

NASA Astrophysics Data System (ADS)

We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems—an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise.

Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

2004-01-01

259

?-meson photoproduction and N* resonances  

NASA Astrophysics Data System (ADS)

We investigate the ? photoproduction using the effective Lagrangian approach at the tree level. We include eight nucleon resonances, that is, D13(1520), S11(1535), S11(1650), D15(1675), F15(1680), D13(1700), P11(1710), P13(1720) as well as possible background contributions. In addition, we introduce the new nucleon resonance N*(1675) which was announced by the GRAAL, CB-ELSA and Tohoku LNS-GeV-? experiments. We investigate a possible role of the resonance with testing its spin and parity for four different cases of JP = 1/2± and 3/2±. We calculate various cross sections including beam asymmetries for neutron and proton targets. We find noticeable isospin asymmetry in transition amplitudes for proton and neutron targets.

Choi, K. S.; Nam, S. I.; Hosaka, A.; Kim, H. Ch

2009-01-01

260

Electroexcitation of nucleon resonances  

SciTech Connect

We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

Inna Aznauryan, Volker D. Burkert

2012-01-01

261

Cellular spin resonance: Theory and experiment  

Microsoft Academic Search

Living and dead cells, as well as certain inanimate particles, can be made to spin in a rotating electric field, such as that produced by a four-pole electrode system. The theory for the effects and the experimental results for a number of cells are given. Yeast cells (Saccharomyces cerevisiae, dead, and as protoplasts;Schizosaccharomyces octospora); an alga (Chlorella pyrenoidosa); mouse myeloma

Maja Mischel; Herbert A. Pohl

1983-01-01

262

Capacitive microbeam resonator design  

NASA Astrophysics Data System (ADS)

Resonant clamped-clamped microbeams sealed in a hard vacuum cavity are classified as transducers, which can measure physical variables by converting them into axial strain using an appropriate silicon microstructure. These devices can be constructed, using surface micromachining technology, on a single-crystal silicon substrate. They have fundamental resonant frequencies with high sensitivity to strain. Such devices use resonant frequency changes by variables such as pressure, temperature, force, and acceleration to measure these quantities. Electrostatically driven and sensed microbeam resonators may be used for sensor applications. In order to design such microbeam resonators it is useful to use electrical network theory. This requires that the mechanical parameters for the resonator are converted to electrical equivalents. For electrostatically driven and sensed microbeam resonators the drive voltage must contain a dc bias and a small amplitude sinusoid in order to drive the resonators at the resonant frequency. The effects of these dc biases and parasitics on the resonant frequency and the quality factor are clarified here with theoretical calculations using the electrical equivalents of electrostatic microbeam resonators and experimental results. As a result the dc bias and parasitics are dominant factors in determining the performance of capacitive microbeam resonators, especially effecting the resonant frequency and quality factor. The maximum vibration amplitude requirements for pure sinusoidal operation with low power dissipation in the capacitive microbeam resonator have also been identified.

Ahn, Yongchul; Guckel, Henry; Zook, J. David

2001-01-01

263

Potential of Delayed Gadolinium Enhancement Magnetic Resonance for Quantification of Reverse Remodeling of the Peri-Infarct Zone in Patients with Ischemic Cardiomyopathy Treated with Chronic Vasodilator Therapy: Initial Experience  

PubMed Central

Purpose The peri-infarct zone represents the morphological substrate for re-entry ventricular tachycardia after myocardial infarction (MI) and its extent is a strong predictor of major cardiac events. Although delayed gadolinium enhancement magnetic resonance (DGE-MRI) was shown to allow for detailed characterization of MI by quantifying infarct core zone and peri-infarct zone volume, potentials of DGE-MRI for measuring changes in peri-infarct zone volume are unknown. Therefore, we aimed to assess changes in volume of the peri-infarct zone among patients with ischemic cardiomyopathy treated with chronic vasodilator therapy. Materials and Methods Core and peri-infarct zone volumes as assessed with DGE-MRI were measured in 5 patients at baseline and following 6 months treatment with sustained-release dipyridamole. Results Core zone volume remained stable during follow-up [median(range): 19ml(9–42) vs. 16ml(11–46); p=0.785]. The ratio between the peri-infarct zone and the core zone volume decreased significantly at 6 month as compared to baseline [median(range): 0.22(0.19–0.42) vs. 0.18(0.09–0.32); p=0.043], and a trend towards reduction in peri-infarct zone volume was found [median(range): 5ml(2–8) vs. 3ml(2–6); p=0.059]. The peri-infarct zone volume decreased in all but 1 patient over the follow-up. Conclusions This initial experience suggests that reverse remodeling of the peri-infarct zone with reduction in peri-infarct zone volume may take place in patients with ischemic cardiomyopathy. Quantification of this process may be feasible with DGE-MRI, but further studies are needed to confirm this hypothesis and to further clarify the role of DGE-MRI for the assessment of changes in peri-infarct zone volume in patients with ischemic cardiomyopathy. PMID:21552150

Muzzarelli, Stefano; Ordovas, Karen Gomes; Cannavale, Giuseppe; Naeger, David; Michaels, Andrew D.; Higgins, Charles B.

2011-01-01

264

Molecular structure and motion in zero field magnetic resonance  

SciTech Connect

Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

Jarvie, T.P.

1989-10-01

265

Composite arrays of superconducting microstrip line resonators  

NASA Astrophysics Data System (ADS)

A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

Mohebbi, H. R.; Benningshof, O. W. B.; Taminiau, I. A. J.; Miao, G. X.; Cory, D. G.

2014-03-01

266

Integral data analysis for resonance parameters determination  

SciTech Connect

Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.

Larson, N.M.; Leal, L.C.; Derrien, H.

1997-09-01

267

Magnetic resonance of ferrite nanoparticles  

Microsoft Academic Search

Ferromagnetic resonance (FMR) experiments at 9.26GHz on non-interacting maghemite (?-Fe2O3) nanoparticles of ferrofluids are performed as a function of temperature (3.5–300K) and particle diameter (4.8–10nm). The orientational mobility of the particles inside the fluid is employed to monitor the orientational distribution of the anisotropy axes by solidifying the MF matrix under the external field. On those textured suspensions, angular analysis

F. Gazeau; J. C Bacri; F. Gendron; R. Perzynski; Yu. L Raikher; V. I. Stepanov; E. Dubois

1998-01-01

268

Hadronic Resonances from Lattice QCD  

SciTech Connect

The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

Lichtl, Adam C. [RBRC, Brookhaven National Laboratory, Upton, NY 11973 (United States); Bulava, John; Morningstar, Colin [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Edwards, Robert; Mathur, Nilmani; Richards, David [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Fleming, George [Yale University, New Haven, CT 06520 (United States); Juge, K. Jimmy [Department of Physics, University of the Pacific, Stockton, CA 95211 (United States); Wallace, Stephen J. [University of Maryland, College Park, MD 20742 (United States)

2007-10-26

269

Hadronic Resonances from Lattice QCD  

SciTech Connect

The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

2007-06-16

270

Hadronic Resonances from Lattice QCD  

E-print Network

The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

2007-08-15

271

Hadronic Resonances from Lattice QCD  

E-print Network

The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

Bulava, John; Fleming, George; Juge, K Jimmy; Lichtl, Adam C; Mathur, Nilmani; Morningstar, Colin; Richards, David; Wallace, Stephen J

2007-01-01

272

Resonances in barred galaxies  

NASA Astrophysics Data System (ADS)

The inner parts of many spiral galaxies are dominated by bars. These are strong non-axisymmetric features which significantly affect orbits of stars and dark matter particles. One of the main effects is the dynamical resonances between galactic material and the bar. We detect and characterize these resonances in N-body models of barred galaxies by measuring angular and radial frequencies of individual orbits. We found narrow peaks in the distribution of orbital frequencies with each peak corresponding to a specific resonance. We found five different resonances in the stellar disc and two in the dark matter. The corotation resonance (CR) and the inner and outer Lindblad resonances are the most populated. The spatial distributions of particles near resonances are wide. For example, the inner Lindblad resonance is not localized at a given radius. Particles near this resonance are mainly distributed along the bar and span a wide range of radii. On the other hand, particles near the CR are distributed in two broad areas around the two stable Lagrange points. The distribution resembles a wide ring at the corotation radius. Resonances capture disc and halo material in near-resonant orbits. Our analysis of orbits in both N-body simulations and simple analytical models indicates that resonances tend to prevent the dynamical evolution of this trapped material. Only if the bar evolves as a whole, resonances drift through the phase space. In this case particles anchored near resonant orbits track the resonance shift and evolve. The criteria to ensure a correct resonant behaviour discussed by Weinberg and Katz can be achieved with few millions particles because the regions of trapped orbits near resonances are large and evolving.

Ceverino, D.; Klypin, A.

2007-08-01

273

Confinement-induced resonances in anharmonic waveguides  

SciTech Connect

We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a{sub 3D}>0) for a quasi-two-dimensional (2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order transverse ACIRs are identified in experimental data, including up to N=4 transverse c.m. quantum numbers.

Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China); Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Hu Hui; Liu Xiaji; Drummond, Peter D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

2011-10-15

274

[Magnetic resonance in biomedical research].  

PubMed

Magnetic resonances are spectroscopic methods by which some structural changes and metabolic processes in biological systems can be followed on the molecular level. There are two main types of magnetic resonance methods: nuclear magnetic resonance (NMR) and electron paramagnetic (spin) resonance (EPR or ESR). By NMR are followed the atomic nuclei with the magnetic moment; in biological systems these are usually 1H, 13C, 31P. By EPR are followed paramagnetic centres in biological systems; these are ions of the transition metal group (Fe3+, Cu2+, Mn2+), which appear as cofactors of the enzymes, or free radicals, which are intermediates in biochemical reactions. Instead of paramagnetic centres, which are native in biological systems, very often the molecules with a free radical are incorporated into the system--spin labels or spin probes. Centres with the magnetic moment serve as markers conveying the information about the metabolic processes in biological systems and about the changes in these processes in pathological conditions or under the influence of biologically active substances. In this work several typical applications of EPR and NMR in biomedical research are described showing a great variety of issues where magnetic resonances can be used. EPR experiments: Study of the microgeography of acetylcholinesterase active centre and the conformational changes of this centre under the influence of cholinergic substances. Changes in cell membrane fluidity under the influence of neurotoxins. Transport of cocarcinogens, forbolesters, through the cell membrane. Application of magnetic field gradient to the investigation of transport through the tissues. NMR experiments: Application of 1H-NMR to characterization of brain tumours in vitro and possible application of NMR tomography in vivo to diagnosis of tumours and other pathological conditions. Application of 31P-NMR for investigation of metabolic properties of skeletal muscles. PMID:2174235

Sentjurc, M

1990-06-01

275

Nanomechanical resonance detector  

DOEpatents

An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

Grossman, Jeffrey C; Zettl, Alexander K

2013-10-29

276

Magnetic resonance angiography  

MedlinePLUS

MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular Magnetic Resonance Imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 9th ...

277

Mechanical Stochastic Resonance  

NASA Astrophysics Data System (ADS)

Noise and nonlinearity can produce a stochastic resonance that maximizes a system's output signal-to-noise ratio. Stochastic resonance has been observed in electronic, chemical, optical, magnetic, and biological systems. Here, we report stochastic resonance in a simple mechanical system consisting of a bistable pendulum driven by a harmonic oscillator and the broad-band noise of a flapping flag.

Wainwright, Elliot; Lindner, John

2013-03-01

278

Nuclear Magnetic Resonance  

NASA Astrophysics Data System (ADS)

Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

Andrew, E. R.

2009-06-01

279

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY  

E-print Network

CHAPTER 3 ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 1 Sergei A. Dikanov and 2 Antony R. Crofts 1 for the investigation of unpaired electron spins. Two terms are used in the literature: electron paramagnetic resonance (EPR) and electron spin resonance (ESR). We will use the first term in this chapter. During the sixty

Crofts, Antony R.

280

Baryon resonance yields after QGP hadronization  

NASA Astrophysics Data System (ADS)

We study the yields of ?(1232), ?(1385) and ?(1520) baryon resonances in the framework of a kinetic master equations for the case of entropy rich QGP fast hadronization leading to initial above chemical equilibrium yields of hadrons. In this case the resonance yield in a rapidly expanding system does not follow the chemical equilibrium yield as function of time. We find that a significant additional yields of ?(1232), ?(1385) can be produced by the back-reaction of the over- abundance of the decay products of resonances. A more complex situation arises for a relatively narrow resonance such as ?(1520), which can be in part seen as a stable state, which is depopulated to increase the heavier resonance yield. We find that a suppression of yield of such resonances, as compared to statistical hadronization model, is possible. The pattern of deviation of hadron resonance yields from expectations based on statistical hadronization model are another characteristic signature for a fast hadronization of entropy rich QGP. The total yields of the ground state baryons used in analysis of data (such as N, ?) are not affected. The results are in agreement with yields of these resonances reported by RHIC experiments.

Kuznetsova, Inga; Rafelski, Johann

2009-05-01

281

Tailored Asymmetry for Enhanced Coupling to WGM Resonators  

NASA Technical Reports Server (NTRS)

Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

Mohageg, Makan; Maleki, Lute

2008-01-01

282

Stochastic resonance of quantum discord  

E-print Network

We study the stochastic resonance of quantum discord (“discord resonance”) in coupled quantum systems and make a comparison with the stochastic resonance of entanglement (“entanglement resonance”). It is found that the ...

Lee, Chee Kong

283

Instrumental Analysis Experiments  

NSDL National Science Digital Library

This site features laboratory experiments for undergraduate instrumental analysis. Topics include data acquisition, control of instrumentation (gas chromatography, polarography, voltammetry, atomic absorption, robots), infrared spectroscopy, liquid chromatography, and nuclear magnetic resonance. Extensive use of LabView, Excel, and computers. Experiments are available for download in PDF format.

Walters, John P.

2011-04-20

284

Resonant and non-resonant magnetic scattering  

SciTech Connect

The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

1991-12-31

285

Resonant and non-resonant magnetic scattering  

SciTech Connect

The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

1991-01-01

286

Phase-conjugate resonator  

SciTech Connect

By incorporating a phase-conjugating process (Stimulated Brillouin Scattering) with a master oscillator power amplifier laser cavity, a new phase-conjugate resonator (PCR) is obtained. The PCR utilizes flashlamp-pumped dye lasers and a resonator cavity that is formed by a 100% mirror on one end and a Stimulated Brillouin Scattering (SBS) cell on the other end. The SBS cell functions as one of the mirrors of the resonator and causes the entire system to operate as a phase-conjugate resonator. The result is vastly improved (an order of magnitude) beam qualities over conventional resonators for large lamp systems.

Russell, S.D.

1988-11-28

287

State-selective Rabi and Ramsey magnetic resonance line shapes G. Xu and D. J. Heinzen  

E-print Network

State-selective Rabi and Ramsey magnetic resonance line shapes G. Xu and D. J. Heinzen Department-selective Rabi and Ramsey magnetic-resonance experiments on ground-state 133 Cs(F 4) atoms. Novel line shapes-selective Rabi and Ramsey magnetic-resonance experiments on 133 Cs at- oms in their 62 S1/2 , F 4 ground

Heinzen, Daniel J.

288

Optical Helmholtz resonators  

NASA Astrophysics Data System (ADS)

Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the ?/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

2014-08-01

289

Microfiber and Microcoil Resonators and Resonant Sensors  

NASA Astrophysics Data System (ADS)

The manufacture of tapers from optical fibers provides the possibility to get long, uniform, and robust micrometer- or nanometer-size wires. Optical microfibers are fabricated by adiabatically stretching conventional optical fibers and thus preserve the original optical fiber dimensions at their input/output pigtails, allowing ready splicing to standard fibers. Since microfibers have a size comparable to the wavelength of the light propagating in it, a considerable fraction of power can be located in the evanescent field, outside the microfiber physical boundary. When a microfiber is coiled, the mode propagating in it interferes with itself to give a resonator. In this chapter the latest results on the manufacture of optical microfiber resonators are presented. Optical microfibers can be used to fabricate single-loop and multiple-loop (coil) resonators with extremely high Q factors. High Q resonators can be used for refractometric biosensors and because of their design they provide an exceptionally high sensitivity.

Xu, Fei; Brambilla, Gilberto

290

Miniature Sapphire Acoustic Resonator - MSAR  

NASA Technical Reports Server (NTRS)

A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to mechanical energy and back. Such an electrostatic tweeter type excitation of a mechanical resonator will be tested at 5 MHz. Finite element calculation will be applied to resonator design for the desired resonator frequency and optimum configuration. The experiment consists of the sapphire resonator sandwiched between parallel electrodes. A DC+AC voltage can be applied to generate a force to act on a sapphire resonator. With the frequency of the AC voltage tuned to the sapphire resonator frequency, a resonant condition occurs and the sapphire Q can be measured with a high-frequency impedance analyzer. To achieve high Q values, many experimental factors such as vacuum seal, gas damping effects, charge buildup on the sapphire surface, heat dissipation, sapphire anchoring, and the sapphire mounting configuration will need attention. The effects of these parameters will be calculated and folded into the resonator design. It is envisioned that the initial test configuration would allow for movable electrodes to check gap spacing dependency and verify the input impedance prediction. Quartz oscillators are key components in nearly all ground- and space-based communication, tracking, and radio science applications. They play a key role as local oscillators for atomic frequency standards and serve as flywheel oscillators or to improve phase noise in high performance frequency and timing distribution systems. With ultra-stable performance from one to three seconds, an Earth-orbit or moon-based MSAR can enhance available performance options for spacecraft due to elimination of atmospheric path degradation.

Wang, Rabi T.; Tjoelker, Robert L.

2011-01-01

291

Cyclotron Resonances in Electron Cloud Dynamics  

SciTech Connect

A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

2009-04-29

292

Conductive Coupling of Split Ring Resonators: A Path to THz Metamaterials with Ultrasharp Resonances  

NASA Astrophysics Data System (ADS)

We report on a novel metamaterial structure that sustains extremely sharp resonances in the terahertz domain. This system involves two conductively coupled split ring resonators that together exhibit a novel resonance, in broad analogy to the antiphase mode of the so-called Huygens coupled pendulum. Even though this resonance is in principle forbidden in each individual symmetric split ring, our experiments show that this new coupled mode can sustain quality factors that are more than one order of magnitude larger than those of conventional split ring arrangements. Because of the universality of the metamaterial response, the design principle we present here can be applied across the entire electromagnetic spectrum and to various metamaterial resonators.

Al-Naib, Ibraheem; Hebestreit, Erik; Rockstuhl, Carsten; Lederer, Falk; Christodoulides, Demetrios; Ozaki, Tsuneyuki; Morandotti, Roberto

2014-05-01

293

Large mode radius resonators  

NASA Technical Reports Server (NTRS)

Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

Harris, Michael R.

1987-01-01

294

Giant resonance decay  

SciTech Connect

Decay studies of giant multipole resonances are discussed, emphasizing the role of Coulomb excitation with intermediate energy heavy ions, which can provide very large cross sections for both isoscalar and isovector resonances. We discuss measurement of the photon decay of one and two phonon giant resonances, reporting results where available. It is pointed out throughout the presentation that the use of E1 photons as a tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 30 refs., 16 figs., 1 tab.

Beene, J.R.; Bertrand, F.E.

1990-01-01

295

Multi-atom resonant photoemission  

NASA Astrophysics Data System (ADS)

We report here on the first measurements and theoretical considerations of an interatomic multi-atom resonant photoemission (MARPE) effect that can enhance photoelectron intensities by as much as 100% and appears to be generally observable in solid materials. MARPE occurs when the photon energy is tuned to a core-level absorption edge of an atom neighboring the atom from which the photoelectron is being emitted, with the emitting level having a lower binding energy than the resonant level. Large peak intensity enhancements of 30-100% and energy-integrated effects of 10-30% have been seen by our group in various metal oxides and in a metallic system, as well as by other groups now in metal halides and an adsorbate system. The effect has also been observed in solids via the secondary decay processes of Auger emission and fluorescent x-ray emission. Weaker effects also appear to be present in gas-phase electron emission experiments. The range of the effect is so far estimated from both experiment and theory to be about 2-3 nm, with further work needed on this aspect. MARPE should thus provide a new and broadly applicable spectroscopic probe of matter in which the atomic identities and other properties (e.g. magnetic order) of atoms neighboring a given atomic type should be directly derivable. Such interatomic resonance effects also may influence normal x-ray absorption experiments, and in some cases, they may require a consideration of the degree of x-ray beam coherence for their quantitative analysis.

Fadley, Charles S.; Arenholz, Elke; Kay, Alex W.; Garcia de Abajo, Javier; Mun, Bongjin S.; Yang, See-Hun; Hussain, Zahid; Van Hove, Michel

2000-02-01

296

Magnetic resonance imaging and spectroscopy  

SciTech Connect

This book contains 17 selections. Some of the chapter titles are: Basic Principles of Magnetic Resonance Imaging;Evaluation of Demyelinating Diseases;Respiratory Gating in Magnetic Resonance Imaging;Magnetic Resonance Imaging of the Abdomen;Contrast Agents in Magnetic Resonance Imaging;and Economic Considerations in Magnetic Resonance Imaging.

Mettler, F.A.; Muroff, L.R.; Kulkarni, M.V.

1986-01-01

297

Optofluidic ring resonator dye microlasers  

NASA Astrophysics Data System (ADS)

We report on the development of versatile, miniaturized optofluidic ring resonator (OFRR) dye lasers that can be operated regardless of the refractive index (RI) of the liquid. The OFRR is a piece of a thin-walled fused silica capillary that integrates the photonic ring resonator with microfluidics. In an OFRR dye laser, the active lasing materials (such as dye) are passed through the capillary whereas the circular cross section forms a ring resonator and supports whispering gallery modes (WGMs) that provide optical feedback for lasing. Due to the high Q-factors (> 10 9), extremely low lasing threshold can be achieved. The operation wavelength can conveniently be changed by using different dye and fine-tuned with solvent. The laser can be out-coupled through a fiber taper in touch with the capillary, thus providing an easy guiding for the laser emission. Our experiments demonstrate lasing through direct excitation and through efficient energy transfer (ET). Theoretical analysis and experimental results for OFRR lasers are presented.

Shopova, Siyka I.; Lacey, Scott; White, Ian M.; Sun, Yuze; Zhu, Hongying; Zhang, Po; Fan, Xudong

2008-02-01

298

Single Molecule Electron Paramagnetic Resonance  

NASA Astrophysics Data System (ADS)

Electron paramagnetic resonance (EPR) is a powerful spectroscopic tool for studying the dynamics of biomolecular systems. EPR measurements on bulk samples using a commercial X-band spectrometer provide insight into atomic-scale structure and dynamics of ensembles of biomolecules. Separately, single molecule measurements of biomolecular systems allow researchers to capture heterogeneous behaviors that have revealed the molecular mechanisms behind many biological processes. We are merging these two powerful techniques to perform single molecule EPR. In this experiment, we selectively label double-stranded DNA molecules with nitrogen-vacancy (NV) center nanodiamonds and optically detect the magnetic resonance of the NV probe. Shifts and broadening of our EPR peaks indicate the changing position of the attached DNA relative to the applied magnetic field. Using this new technique, we have successfully measured the first EPR spectrum of a single biomolecule. By controlling the geometry of the diamond and the applied magnetic field, we will quantitatively determine the rotational and translational dynamics of single biomolecules. This research provides the foundation for an advanced single molecule magnetic resonance approach to studies of complex biomolecular systems.

Teeling-Smith, Richelle M.; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

2013-03-01

299

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics  

E-print Network

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

Seager, Sara

300

Low frequency double electron muon resonance (Demur) in fused quartz  

Microsoft Academic Search

Double electron muon resonance was studied with comparable amplitudes of the static and rf magnetic fields. The experiments were carried out in fused quartz and employed a resonant linearly-polarized rf field and a small static field. For small amplitudes of the rf field a three-line frequency spectrum was obtained consisting of a central line at the rf frequency and two

T. L. Estle; M. E. Warren; C. Boekema; R. H. Heffner

1984-01-01

301

Resonant Column and Cyclic Triaxial Testing of Tailing Dam Material  

Microsoft Academic Search

Aseries of resonant column and cyclic triaxial tests has been conducted in the frame of the analysis of tailing dam stability during earthquakes, The investigation program for a silty sand fro m uranium tailings is presented. The paper describes the testing procedures and presents all significant results of these experiments, Single-stage and multi-stage resonant co­ lumn tests were performed in

S. A. Savidis; C. Vrettos

302

Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control  

Microsoft Academic Search

A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing operations, used to adjust the resonant frequency, by displacement feedback and for determining the velocity feedback required to produce a particular bandwidth. Experiments

Philip W. Loveday; Craig A. Rogers

1998-01-01

303

Seeing, Acting, Understanding: Motor Resonance in Language Comprehension  

ERIC Educational Resources Information Center

Observing actions and understanding sentences about actions activates corresponding motor processes in the observer-comprehender. In 5 experiments, the authors addressed 2 novel questions regarding language-based motor resonance. The 1st question asks whether visual motion that is associated with an action produces motor resonance in sentence…

Zwaan, Rolf A.; Taylor, Lawrence J.

2006-01-01

304

Electrodynamics of a ring-shaped spiral resonator  

NASA Astrophysics Data System (ADS)

We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.

2014-02-01

305

Understanding motor resonance  

Microsoft Academic Search

The discovery of mirror neurons in monkeys, and the finding of motor activity during action observation in humans are generally regarded to support motor theories of action understanding. These theories take motor resonance to be essential in the understanding of observed actions and the inference of action goals. However, the notions of “resonance,” “action understanding,” and “action goal” appear to

Sebo Uithol; Iris van Rooij; Harold Bekkering; Pim Haselager

2011-01-01

306

Helioseismology The Resonant Sun  

E-print Network

Helioseismology The Resonant Sun Professor Bill Chaplin, School of Physics & Astronomy University Eddington #12;The Unseen Interior ''At first sight it would seem that the deep interior of the sun and stars;Overview What are resonant oscillations of the Sun? How do we observe the oscillations? What can we learn

307

Polaritonic Feshbach resonance  

NASA Astrophysics Data System (ADS)

A Feshbach resonance occurs when the energy of two interacting free particles comes into resonance with a molecular bound state. When approaching this resonance, marked changes in the interaction strength between the particles can arise. Feshbach resonances provide a powerful tool for controlling the interactions in ultracold atomic gases, which can be switched from repulsive to attractive, and have allowed a range of many-body quantum physics effects to be explored. Here we demonstrate a Feshbach resonance based on the polariton spinor interactions in a semiconductor microcavity. By tuning the energy of two polaritons with anti-parallel spins across the biexciton bound state energy, we show an enhancement of attractive interactions and a prompt change to repulsive interactions. A mean-field two-channel model quantitatively reproduces the experimental results. This observation paves the way for a new tool for tuning polariton interactions and to move forward into quantum correlated polariton physics.

Takemura, N.; Trebaol, S.; Wouters, M.; Portella-Oberli, M. T.; Deveaud, B.

2014-07-01

308

Resonant snubber inverter  

DOEpatents

A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

1997-06-24

309

Resonant snubber inverter  

DOEpatents

A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

Lai, Jih-Sheng (Knoxville, TN); Young, Sr., Robert W. (Oak Ridge, TN); Chen, Daoshen (Knoxville, TN); Scudiere, Matthew B. (Oak Ridge, TN); Ott, Jr., George W. (Knoxville, TN); White, Clifford P. (Knoxville, TN); McKeever, John W. (Oak Ridge, TN)

1997-01-01

310

Resonance Phenomena in Fluid Media. Abstract.  

National Technical Information Service (NTIS)

Studies were made to detect the presence of a memory in fluid media. The experiments revealed that the effect of electromagnetic radiation on fluid media can be explained by the phenomenon of resonant response of the system receiving the radiation. Studie...

A. T. Lukyanov, V. M. Inyushin, A. P. Gorokhov

1987-01-01

311

Small-Volume Nuclear Magnetic Resonance Spectroscopy  

Microsoft Academic Search

Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced,

Raluca M. Fratila; Aldrik H. Velders

2011-01-01

312

Optical resonance and two-level atoms  

Microsoft Academic Search

Topics covered include: classical theory of resonance optics; the optical Bloch equations; two-level atoms in steady fields; pulse propagation; pulse propagation experiments; saturation phenomena; quantum electrodynamics and spontaneous emission; N-atom spontaneous emission and superradiant decay; and photon echoes. (GHT)

L. Allen; J. H. Eberly

1975-01-01

313

Nuclear Magnetic Resonance and Magnetic Field Measurements  

NSDL National Science Digital Library

This laboratory is designed for students to become familiar with the principles and detection techniques of Nuclear Magnetic Resonance (NMR), examine the relationship between current and magnetic field in an electromagnet, and gain experience in the use of magnetic field measurement techniques.

2012-01-04

314

LABCOM resonator Phase 3  

SciTech Connect

The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

Keres, L.J.

1990-11-01

315

After the Standard Model: New Resonances at the LHC  

E-print Network

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. In this article, the experiments' capability to observe new resonances in various channels is reviewed.

G. Brooijmans

2009-01-25

316

Localized ferromagnetic resonance force microscopy of permalloy-cobalt films  

SciTech Connect

We report the Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a combined permalloy-cobalt continuous film. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode at the edge of the film provides good quantitative agreement with the experimental data. Our experiments demonstrate the micron scale lateral resolution and allow to extract local magnetic properties in continuous ferromagnetic samples.

Nazaretski, Evgueni [Los Alamos National Laboratory; Movshovich, Roman [Los Alamos National Laboratory; Martin, Ivar [Los Alamos National Laboratory; Cha, Kitty V [Los Alamos National Laboratory; Akhadov, Elshan A [Los Alamos National Laboratory; Obukhov, Yu [OH STATE U; Pelekhov, D C [OH STATE U; Hammel, P C [OH STATE U

2008-01-01

317

Spin resonance strength calculations  

SciTech Connect

In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

Courant,E.D.

2008-10-06

318

Tunable multiwalled nanotube resonator  

DOEpatents

A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

2013-11-05

319

Notes on Experiments.  

ERIC Educational Resources Information Center

An experiment on cooling by convection, holographic processes achieved using optical fibers and observation of magnetic domains are described. Also describes four demonstrations: mechanical resonance on air track, independence of horizontal/vertical motion, motion of sphere in fluid medium, and light scattering near the critical point. (JN)

Physics Education, 1983

1983-01-01

320

Coincidence pio electroproduction experiments in the first resonance region at momentum transfers of 0.3, 0.45, 0.60, 0.76 (GeV\\/c)2  

Microsoft Academic Search

The reaction e-+p-->e-+p+pio has been studied in the region of the first pion nucleon resonance. Four sets of data have been analysed at nominal values of the squared four-momentum transfer to the pion nucleon system, k2, of 0.3, 0.45, 0.6 and 0.76 (GeV\\/c)2. We present results on the variation with k2 of the multipole amplitudes M1+, E1+, S1+ which contribute

R. Siddle; B. Dickinson; M. Ibbotson; R. Lawson; H. E. Montgomery; V. P. R. Nuthakki; O. T. Tumer; W. J. Shuttleworth; A. Sofair; R. D. Hellings; J. Allison; A. B. Clegg; F. Foster; G. Hughes; P. S. Kummer; J. Fannon

1971-01-01

321

Magnetic levitation of metamaterial bodies enhanced with magnetostatic surface resonances  

NASA Astrophysics Data System (ADS)

We propose that macroscopic objects built from negative-permeability metamaterials may experience resonantly enhanced magnetic force in low-frequency magnetic fields. Resonant enhancement of the time-averaged force originates from magnetostatic surface resonances (MSRs), which are analogous to the electrostatic resonances of negative-permittivity particles, well known as surface plasmon resonances in optics. We generalize the classical problem of the MSR of a homogeneous object to include anisotropic metamaterials and consider the most extreme case of anisotropy, where the permeability is negative in one direction but positive in the others. It is shown that deeply subwavelength objects made of such indefinite (hyperbolic) media exhibit a pronounced magnetic dipole resonance that couples strongly to uniform or weakly inhomogeneous magnetic field and provides strong enhancement of the magnetic force, enabling applications such as enhanced magnetic levitation.

Urzhumov, Yaroslav; Chen, Wenchen; Bingham, Chris; Padilla, Willie; Smith, David R.

2012-02-01

322

Giant resonances in single and double charge exchange  

SciTech Connect

A long-standing issue in nuclear physics is whether or not multiple excitations of the giant-dipole resonance do exist. Recent studies at LAMPF using pion-induced double-charge exchange reactions show the existence of previously unobserved giant resonances in the continuum at high-excitation energies. Based on their energies, characteristic angular distributions, and the cross sections at which the resonances are observed, they have been identified as two different types of double-collective-excitation modes of the nucleus: (1) The isovector giant-dipole resonance built on the isobaric analog state and (2) the isovector giant-dipole resonance built on the giant dipole. In this report we will discuss the general features of the new resonances as they have emerged from DCX experiments performed recently at LAMPF. 12 refs., 7 figs.

Mordechai, S. (Ben-Gurion Univ. of the Negev, Beersheba (Israel) Texas Univ., Austin, TX (United States)); Moore, C.F. (Texas Univ., Austin, TX (United States))

1991-01-01

323

Resonance phenomena in Macroscopic Quantum Tunneling: the small viscosity limit  

E-print Network

We present a new theoretical approach to describe the quantum behavior of a macroscopic system interacting with an external irradiation field, close to the resonant condition. Here we consider the extremely underdamped regime for a system described by a double well potential. The theory includes both: transitions from one well to the other and relaxation processes. We simulate resonant phenomena in a rf-SQUID, whose parameters lie in the range typically used in the experiments. The dependence of the transition probability W on the external drive of the system $\\phi_x$ shows three resonance peaks. One peak is connected with the resonant tunneling and the two others with the resonant pumping. The relative position of the two peaks correlated to the resonant pumping depends on the pumping frequency $\

Yu. N. Ovchinnikov; S. Rombetto; B. Ruggiero; V. Corato; P. Silvestrini

2006-11-25

324

Resonant Auger studies of metallic systems  

SciTech Connect

Results of resonant Auger spectroscopy experiments are presented for Cu, Co, and oxidized Al. Sub-lifetime narrowing of Auger spectra and generation of sub-lifetime narrowed absorption spectra constructed from Auger yield measurements, were observed. Resonant Auger yields are used to identify three valence states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of the authors method.

Coulthard, I.; Antel, W. J., Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.; Stampfl, A. P. J.

1999-10-21

325

Resonance Production in Heavy Ion Collisions  

E-print Network

The resonance production of $\\Delta$, K(892), $\\Sigma$(1385), $\\Lambda$(1520) and $\\phi$ from elementary p+p and Au+Au collisions at $\\sqrt{s_{\\rm NN}} = $ 200 GeV from the STAR experiment at RHIC is presented. Yields and spectra are discussed in terms of chemical and thermal freeze-out conditions. Thermal models do not describe sufficiently the yields of the resonance production in central Au+Au collisions. The approach which includes pseudo-elastic and elastic hadronic interactions after chemical freeze-out until thermal freeze-out suggests a time span of $\\Delta \\tau>$5 fm/c.

C. Markert; for the STAR collaboration

2005-01-31

326

Neutron Resonance in the Cuprates and its Effect on Fermionic Excitations Ar. Abanov,1  

E-print Network

Neutron Resonance in the Cuprates and its Effect on Fermionic Excitations Ar. Abanov,1 A argue that the exciton scenario for the magnetic resonance in the cuprate superconductors yields a small spectral weight of the resonance, in agreement with experiment.We show that the small weight is related

Chubukov, Andrey V.

327

Resonant Doppler velocimeter  

NASA Technical Reports Server (NTRS)

Narrow linewidth tunable lasers augur a new kind of laser Doppler velocimetry employing resonant absorption and fluorescence from trace atomic species rather than scattering from particles. This technique may provide better turbulence and small volume information than present velocimetry.

Miles, R. B.

1975-01-01

328

Resonant ultrasound spectroscopy  

DOEpatents

A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

Migliori, Albert (Santa Fe, NM)

1991-01-01

329

Electrically detected ferromagnetic resonance  

SciTech Connect

We study the magnetoresistance properties of thin ferromagnetic CrO{sub 2} and Fe{sub 3}O{sub 4} films under microwave irradiation. Both the sheet resistance {rho} and the Hall voltage V{sub Hall} characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonance (EDFMR) signals closely match the conventional FMR, measured simultaneously, in both resonance fields and line shapes. The sign and the magnitude of the resonant changes {delta}{rho}/{rho} and {delta}V{sub Hall}/V{sub Hall} can be consistently described in terms of a Joule heating effect. Bolometric EDFMR thus is a powerful tool for the investigation of magnetic anisotropy and magnetoresistive phenomena in ferromagnetic micro- or nanostructures.

Goennenwein, S. T. B.; Schink, S. W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R. S.; Klapwijk, T. M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M. S. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft (Netherlands); MINT Center, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Walter Schottky Institut, Technische Universitaet Muenchen, 85748 Garching (Germany)

2007-04-16

330

Resonance Production in Jet  

E-print Network

Hadronic resonances with short life times and strong coupling to the dense medium may exhibit mass shifts and width broadening as signatures of chiral symmetry restoration at the phase transition between hadronic and partonic matter. Resonances with different lifetimes are also used to extract information about the time evolution and temperature of the expanding hadronic medium. In order to collect information about the early stage (at the phase transition) of a heavy-ion collision, resonances and decay particles which are unaffected by the hadronic medium have to be used. We explore a possible new technique to extract signals from the early stage through the selection of resonances from jets. A first attempt of this analysis, using the reconstructed $\\phi$(1020) from 200 GeV Au+Au collisions in STAR, is presented.

Christina Markert "for the" STAR Collaboration

2007-06-05

331

Resonances Do Not Equilibrate  

NASA Astrophysics Data System (ADS)

We discuss, in qualitative and quantitative fashion, the yields of hadron resonances. We show that these yields, in general, are not in chemical equi- librium. We evaluate the non-equilibrium abundances in a dynamic model implementing the 1+2 leftrightarrow 3 resonance formation reactions. Due to the strength of these reactions, we show the Sigma (1385) enhancement, and the Lambda (1520) suppression explicitly.

Kuznetsova, I.; Letessier, J.; Rafelski, J.

2009-04-01

332

Hexagonal quartz resonator  

DOEpatents

A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

Peters, Roswell D. M. (Rustburg, VA)

1982-01-01

333

Nuclear magnetic resonance gyroscope  

SciTech Connect

A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

Grover, B.C.

1984-02-07

334

Anomalous Diffusion Near Resonances  

SciTech Connect

Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

Sen, Tanaji; /Fermilab

2010-05-01

335

Optofluidic ring resonator dye lasers  

Microsoft Academic Search

We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall

Yuze Sun; Jonathan D. Suter; Xudong Fan

2010-01-01

336

QUASI-RESONANT THEORY OF TIDAL INTERACTIONS  

SciTech Connect

When a spinning system experiences a transient gravitational encounter with an external perturber, a quasi-resonance occurs if the spin frequency of the victim roughly matches the peak angular speed of the perturber. Such encounters are responsible for the formation of long tails and bridges during galaxy collisions. For high-speed encounters, the resulting velocity perturbations can be described by the impulse approximation. The traditional impulse approximation, however, does not distinguish between prograde and retrograde encounters, and therefore completely misses the resonant response. Here, we modify the impulse approximation to include the effects of quasi-resonant phenomena on stars orbiting within a disk. Explicit expressions are derived for the velocity and energy changes to the stars induced by tidal forces from an external gravitational perturber passing either on a straight line or a parabolic orbit. Comparisons with numerical-restricted three-body calculations illustrate the applicability of our analysis.

D'Onghia, Elena; Vogelsberger, Mark; Faucher-Giguere, Claude-Andre; Hernquist, Lars, E-mail: edonghia@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-12-10

337

Self-radiation from arrays of niobium Josephson junctions embedded in the open resonator  

NASA Astrophysics Data System (ADS)

This paper focuses on self-radiation from arrays of Josephson junctions embedded in a quasi-optical resonator. The mechanism of coupling this radiation to the principal mode of the open resonator is illustrated using experiments and simulations with CST microwave studio software. Comparing the microstrips and dielectric resonators used as the antennas of the series arrays of discrete Josephson junctions, we demonstrate that the dielectric resonator antennas are more effective than microstrips.

Song, Fengbin; Müller, Franz; Behr, Ralf; Klushin, Alexander M.

2010-10-01

338

Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome p450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments.  

PubMed

An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand. PMID:10601869

Mouro, C; Bondon, A; Jung, C; De Certaines, J D; Simonneaux, G

2000-01-01

339

Resonance searches with the $t\\overline{t}$ Invariant Mass Distribution measured with the D\\O\\, Experiment at $\\sqrt{s}=1.96\\,\\textrm{TeV}  

SciTech Connect

Understanding the universe, its birth and its future is one of the biggest motivations in physics. In order to understand the cosmos, the fundamental particles forming the universe, the components our matter is built of need to be known and understood. Over time physicists have built a theory which describes the physics of the known fundamental particles very well: the Standard Model (SM) of particle physics. The SM describes the particles, their interactions and phenomena with high precision. So far no proven deviations from the SM have been found, though recently evidence for possible physics beyond the SM has been observed. The SM is not describing the mass of the elementary particles however and even with the addition of the Higgs mechanism giving mass to the particles, we have no full theory for all four fundamental forces. We know the model needs to be extended or replaced by another one, as gravitation is not included in the SM. Having a theory which describes all fundamental particles found so far and all but one fundamental interaction is a great success. However, all this describes about 4% of the universe we live in. 23% is dark matter and 73% is dark energy. Dark matter is believed to interact only through gravity and maybe the weak force, which makes it hardly observable. Dark energy is even more elusive. Among other theories the cosmologic constant and scalar fields are discussed to describe it. One should also note that other models exist which for example modify the Newtonian law of gravity. The Higgs mechanism has become the most popular model for mass generation. Alternative theories like Super Symmetry (SUSY), large Extra Dimensions, Technicolor, String Theory, to name just a few, have spread to describe the necessary mass generation or new particles. As proof for new physics beyond the SM has not been found yet, one assumes that new physics will manifest itself at a larger energy scale and therefore a higher particle mass. Particles with high masses are therefore presumed to be a window to test the SM for deviations caused by new physics. The heaviest fundamental particle which is in our reach is the top quark. Its mass is almost as large as that of a complete tungsten atom. It is so heavy, that it decays faster than it can hadronize. It seems the perfect probe to study new physics at the moment. In this analysis the top quark is used as a probe to search for a new resonance, whose properties are similar to a SM Z boson but is much more massive. This analysis will study t{bar t} decays to search for an excess in the invariant mass distribution of the t{bar t} pairs. Resonant states are suggested for massive Z-like bosons in extended gauge theories, Kaluza Klein states of the gluon or Z, axigluons, topcolor, and other beyond the Standard Model theories. Independent of the exact model a resonant production mechanism should be visible in the t{bar t} invariant mass distribution. In this thesis a model-independent search for a narrow-width heavy resonance X decaying into t{bar t} is performed. In the SM, the top quark decays into a W boson and a b quark nearly 100% of the time, which has been proven experimentally, too. The t{bar t} event signature is fully determined by the W boson decay modes. In this analysis, only the lepton+jets final state, which results from the leptonic decay of one of the W bosons and the hadronic decay of the other, is considered. The event signature is an isolated electron or muon with high transverse momentum, large transverse energy imbalance due to the undetected neutrino, and at least three jets, two of which result from the hadronization of b quarks.

Schliephake, Thorsten Dirk; /Wuppertal U.

2010-06-01

340

Split-ball resonator  

E-print Network

We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

2014-01-01

341

Resonances in Positronium Hydride  

NASA Technical Reports Server (NTRS)

Recently, Ho and his colleagues have calculated the positions and widths of a series of resonances in the Ps+H scattering system, using the complex -rotation method and have compared them with estimates that I made many years ago using a quite different technique. I assumed that the resonance mechanism was the existence in the rearrangement channel [e+ + H-] of an infinite series of perturbed Coulomb bound states. Although these must be broadened and shifted by coupling with the open scattering channel, I expected them to lie very close to the actual resonance positions. To verify this, I did a model calculation for S-waves, including the coupling, and found that the first two resonances were not shifted very far from their unperturbed position. The new, detailed calculation agrees with this result, but when the P-wave was examined it was found, surprisingly, that the lowest resonance indeed moved up in energy by a large amount. With the help of Joseph DiRienzi of the College of Notre Dame of Maryland I am now extending the old calculation to P- and D-waves, in an attempt to understand this unexpected energy shift. Results will be presented at the Workshop.

Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

2001-01-01

342

Nonlinear THz Plamonic Disk Resonators  

NASA Astrophysics Data System (ADS)

Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.

Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard

2013-03-01

343

Resonator-QWIPs and FPAs  

NASA Astrophysics Data System (ADS)

The quantum efficiency of QWIPs is difficult to predict and optimize. Recently, we have established a quantitative 3- dimensional electromagnetic model for QE computation. In this work, we used this model to design and optimize new detector structures. In one approach, we adjusted the detector volume to resonate strongly with the scattered light from the diffractive elements (DEs). The resulting intensified field increases the detector QE correspondingly. We tested this resonator-QWIP concept on four detector materials and obtained satisfactory agreements between theory and experiment. The observed single detector QE ranges from 15 to 71%, depending on the realized pixel geometry and the matching detector material. We processed one of the materials into hybridized FPAs and observed a QE of 30% with a conversion efficiency of 11%, in agreement with theory. By using rings as DEs, the FPA spectral nonuniformity can also be minimized with an observed value of 4% in comparison with the 7% for gratings. With a proven EM model, we further designed different R-QWIPs for a wide range of applications, including high conversion efficiency detection, narrow band detection through a medium, narrow band detection at a gaseous medium, simultaneous two-color detection, sequential voltage tunable two-color detection, and broadband detection at Landsat wavelengths. Experimental efforts are underway.

Choi, K. K.; Jhabvala, M. D.; Sun, J.; Jhabvala, C. A.; Waczynski, A.; Olver, K.

2014-06-01

344

Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.  

PubMed

The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications. PMID:23188351

Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

2012-10-01

345

Ultraviolet absorption experiment MA-059  

NASA Technical Reports Server (NTRS)

The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

1976-01-01

346

Effect of Angular Velocity on Sensors Based on Morphology Dependent Resonances  

PubMed Central

We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle. PMID:24759108

Ali, Amir R.; Ioppolo, Tindaro

2014-01-01

347

Magnetostrictive resonance excitation  

DOEpatents

The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

Schwarz, Ricardo B. (Los Alamos, NM); Kuokkala, Veli-Tapani (Tampere, FI)

1992-01-01

348

Magnetic Resonance Online Texts  

NSDL National Science Digital Library

This well-organized and very thorough website was developed by the physicist Stanislav Sykora with the aim of providing free online texts, theses, and course materials on the subjects of magnetic resonance (MR), magnetic resonance imaging (MRI), nuclear-magnetic resonance (NMR) and other related topics. The amount of material on the site is impressive. At the top of the page are links to an "MR Blog", as well as to "MR Links" and the "Site Plan & SEARCH". The NMR/MRI Extras section on the right side of the page is particularly useful for visitors interested in all things about MR. Its links to "Events" provides an up-to-date list of symposia, conferences, and meetings, along with links to the events' sites. The "Societies" link offers at least 50 groups about MR, some of which are country-based, and others that are region- or application-based.

Sãâãâ½kora, Stanislav

349

Coupled-Resonator-Induced Transparency  

NASA Technical Reports Server (NTRS)

We demonstrate that a cancellation of absorption occurs on resonance for two (or any even number of) coupled optical resonators, due to mode splitting and classical destructive interference, particularly when the resonator finesse is large and the loss in the resonator furthest from the excitation waveguide is small. The linewidth and group velocity of a collection of such coupled-resonator structures may be decreased by using larger resonators of equal size, using larger resonators of unequal size where the optical path length of the larger resonator is an integer multiple of that of the smaller one, or by using a larger number of resonators per structure. We explore the analogy between these effects and electromagnetically induced transparency in an atomic system.

Smith, David D.; Chang, Hong-Rok; Fuller, Kirk A.; Rosenberger, A. T.; Boyd, Robert W.

2003-01-01

350

Astrophysically Interesting Resonances; Another Approach  

NASA Astrophysics Data System (ADS)

R.A.E. Austin, R. Kanungo, A. Campbell, S. Colosimo, S. Reeve Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, University of York, UK; P.J. Woods T. Davinson University of Edinburgh; C.-Y. Wu A. Hurst J.A. Becker Lawrence Livermore National Laboratory; G.C. Ball M. Djongolov G. Hackman A.C. Morton, C. Pearson, S.J. Williams TRIUMF; A.A. Phillips, M. Schumaker, University of Guelph H.Boston, A. Grint, D. Oxley, University of Liverpool; D. Cline, A. Hayes, University of Rochester; We describe a prototype experiment to measure resonances of interest in astrophysical reactions. We use the TIGRESS to detect gamma rays in coincidence with charged particles, inelastically scattered in inverse kinematics. The particles are detected with the Bambino detector modified to a ?E-E silicon telescope spanning 15-40 degrees in the lab.

Austin, Roby; Jenkins, David

2008-10-01

351

Using nuclear resonance excitation to observe united atoms in symmetric ion-atom collisions  

SciTech Connect

The authors consider nuclear resonance excitation as a means to observe the distribution of united-atom orbitals in symmetric ion-atom collisions. They develop this possibility with the application of a two-state adiabatic model to an analysis of a /sup 8/Be nuclear resonance experiment. To test their model, and to provide a more direct determination of the nuclear resonance width, they propose that the /sup 8/Be experiment be repeated with metastable helium targets.

Feagin, J.; Kocbach, L.

1983-04-01

352

Nuclear magnetic resonance imaging.  

PubMed

NMR imaging is based on the ability to induce and monitor resonance of the magnetic moment of nuclei with an odd number of protons and/or neutrons in the presence of magnetic fields. By the use of magnetic fields whose strength varies with position, it is possible to define both the location and concentration of resonant nuclei, and, thereby, to create images that reflect their distribution in tissue. Hydrogen because it is the most sensitive of the stable nuclei to NMR and because it is also the most abundant nucleus in the body, is ideally suited for NMR imaging. PMID:7323305

Crooks, L; Herfkens, R; Kaufman, L; Hoenninger, J; Arakawa, M; McRee, R; Watts, J

1981-01-01

353

Resonant optical gun.  

PubMed

We propose a concept of a structure-a resonant optical gun-to realize an efficient propulsion of dielectric microparticles by light forces. The structure is based on a waveguide in which a reversal of the electromagnetic momentum flow of the incident mode is realized by exciting a whispering gallery resonance in the microparticle. The propelling force can reach the value up to the theoretical maximum of twice the momentum flow of the initial wave. The force density oscillates along the particle periphery and has very large amplitude. PMID:24784113

Maslov, A V; Bakunov, M I

2014-05-01

354

Field resonance propulsion concept  

NASA Technical Reports Server (NTRS)

A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

Holt, A. C.

1979-01-01

355

Magnetic resonance annual, 1988  

SciTech Connect

This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

Kressel, H.Y.

1987-01-01

356

Pygmy resonances and nucleosynthesis  

E-print Network

A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

Tsoneva, Nadia

2014-01-01

357

Locally resonant sonic materials  

PubMed

We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz. PMID:10976063

Liu; Zhang; Mao; Zhu; Yang; Chan; Sheng

2000-09-01

358

Optical fiber microcoil resonators  

NASA Astrophysics Data System (ADS)

The optical microfiber coil resonator with self-coupling turns is suggested and investigated theoretically. This type of a microresonator has a three-dimensional geometry and complements the well-known Fabry-Perot (one-dimensional geometry, standing wave) and ring (two-dimensional geometry, traveling wave) types of microresonators. The coupled wave equations for the light propagation along the adiabatically bent coiled microfiber are derived. The particular cases of a microcoil having two and three turns are considered. The effect of microfiber radius variation on the value of Q-factor of resonances is studied.

Sumetsky, M.

2004-05-01

359

Proton resonance spectroscopy  

SciTech Connect

Preparations for studying [sup 30]P via [sup 29]Si(p,[gamma]) have continued. We are exploring both the use of the Fourier transform and the statistical behavior of electromagnetic transition strengths within the shell model as alternate approaches to identifying quantum chaos in nuclei. Analysis of interfering resonances in (p,[alpha]) resonances suggests that improvements in the limits on detailed balance in nuclear reactions are possible, but several issues still must be considered before a definitive conclusion can be reached. Plans for a new control system for the High Resolution Laboratory's electrostatic analyzer are being implemented.

Shriner, J.F. Jr.

1992-11-01

360

Physics of Sports: Resonances  

NASA Astrophysics Data System (ADS)

When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

Browning, David

2000-04-01

361

Physics 2000: Resonance  

NSDL National Science Digital Library

This web page presents the physics of resonance of standing waves in a confined space. It is presented as a conversation between a student and a teacher, making it lively to read. There is a simulation that provides an animated illustration of resonance. The relation between the wavelength and the length of the confined space is described. Some practical examples are also cited. This is part of a tutorial on the physics of microwave ovens and the larger Physics 2000 web site. Physics 2000 introduces some of the results of modern physical science with interactive and engaging web presentations.

Physics 2000; Goldman, Martin

2007-05-15

362

Probing Studentsâ Understanding of Resonance  

NSDL National Science Digital Library

Resonant phenomena play a crucial role in magnetic resonance imaging (MRI), a widely used medical tool in today's society. The basic features of the resonance in MRI can be taught by looking at the resonance of a compass driven by an electromagnetic field. However, resonance in a oscillating magnetic field is not a phenomenon that is familiar to most students. Thus, as a precursor to creating instructional materials, we investigated how students applied their learning about resonance as traditionally taught to this novel system.

Murphy, Sytil K.; Mcbride, Dyan L.; Gross, Josh; Zollman, Dean A.

2010-01-19

363

Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements  

E-print Network

Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous; instead, at some resonance isotopic compositions, the kinetics increases, while at off resonance compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error plus or minus 0.05%) experiment to measure the bacterial growth parameters in minimal media with varying isotopic compositions. A number of predicted resonance conditions were tested, which kinetic enhancements as strong as plus 3% discovered at these conditions. The combined evidence extremely strongly supports the existence of isotopic resonances. This phenomenon has numerous implications for the origin of life and astrobiology, and possible application...

Xie, Xueshu

2014-01-01

364

Resonance of sputum spigot with air vibration.  

PubMed

A mathematical model calculation has been presented on the resonant frequency of the oscillating sputum spigot in a cylindrical pipe, with which we investigated similar phenomena in bronchial tubes. We confirmed the theoretical results by two types of experiments using pseudo-sputum (5 and 10% solutions of mucin) spigots instead of a human pulmonary one, and found the model was suitable for estimating the effects of clinical vibrational treatments expectorating sputum spigots plugged in small bronchi. The main points of the paper are summarized as follows. 1. The validity of the fluid model used was verified using reported experimental data of Litt and co-workers. After adjusting their data in a Casson plot, Casson fluidity was found to be the best parameter to represent viscosity of the sputum. 2. A theoretical investigation on the vibrational sputum spigots in narrow tubes was done using an analytical model calculation. From the resultant formula, which expresses the resonant frequency of the oscillation of the spigot with its physical values (the radius of the airway, the length of the spigot, the elasticity of the sputum, and the surface tension), many points became clear; for example, the resonant frequency of sputum spigot vibration in a narrow bronchial tube is too high to propagate there under the effective influence of surface tension. 3. Two experiments were performed with pseudo-sputum (5 and 10% solutions of mucin) instead of a human pulmonary one. After substituting the resonant frequencies of the pseudo-sputum spigot vibration in our tube experiment into the resultant formula derived from our analytical model calculation we estimated the elasticity values, which agreed with those from our plate experiment. The validity of our theory was strongly supported by this agreement. PMID:16788286

Tarao, Norio

2006-01-01

365

Cyclotron Resonance of Electrons Trapped in a Microwave Cavity  

ERIC Educational Resources Information Center

Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

Elmore, W. C.

1975-01-01

366

Functional Magnetic Resonance Imaging  

ERIC Educational Resources Information Center

Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

Voos, Avery; Pelphrey, Kevin

2013-01-01

367

Micromachined double resonator  

NASA Technical Reports Server (NTRS)

A micromachined resonator mountable to an external support structure has a proof mass coupled to a base structure by a first spring structure, the base structure having a plurality of electrodes, and a second spring structure coupling the base structure to the external support structure.

Gutierrez, Roman (Inventor); Tang, Tony K. (Inventor); Shcheglov, Kirill (Inventor)

2002-01-01

368

Double resonator cantilever accelerometer  

DOEpatents

A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

Koehler, Dale R. (Albuquerque, NM)

1984-01-01

369

Double resonator cantilever accelerometer  

DOEpatents

A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

Koehler, D.R.

1982-09-23

370

Exploring Resonance Phenomena.  

ERIC Educational Resources Information Center

Describes a demonstration where two 0.5-kg masses and two 1.0-kg masses are hung on springs on a suspended meterstick. The masses can be made to resonate by putting one partner mass in motion. Relates the motion to the history of the telegraph. (MVL)

Blacksten, H. Ric

1994-01-01

371

Electron Paramagnetic Resonance  

NSDL National Science Digital Library

Purpose â¢Use microwaves to induce and detect electron paramagnetic resonance. â¢Become familiar with a waveguide spectrometer and phase-sensitive detection. â¢Measure the gyromagnetic ratio and transverse relaxation time of the nearly-free electrons in DPPH.

2012-01-18

372

Magnetic Resonance Annual, 1985  

SciTech Connect

The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

Kressel, H.Y.

1985-01-01

373

Proton resonance spectroscopy  

SciTech Connect

This report discusses the following topics: Complete Level Scheme for {sup 30}P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + {sup 27}Al; The Parity Dependence of Level Densities in {sup 49}V; and A Computer Program for the Calculation of Angular Momentum Coupling.

Shriner, J.F. Jr.

1991-11-01

374

Laser beams and resonators  

Microsoft Academic Search

This paper is a review of the theory of laser beams and resonators. It is meant to be tutorial in nature and useful in scope. No attempt is made to be exhaustive in the treatment. Rather, emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.

H. Kogelnik; T. Li

1966-01-01

375

Magnetic Resonance Imaging  

NSDL National Science Digital Library

This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.

VU Bioengineering RET Program, School of Engineering,

376

Circuit quantum electrodynamics with a nonlinear resonator  

E-print Network

One of the most studied model systems in quantum optics is a two-level atom strongly coupled to a single mode of the electromagnetic field stored in a cavity, a research field named cavity quantum electrodynamics or CQED. CQED has recently received renewed attention due to its implementation with superconducting artificial atoms and coplanar resonators in the so-called circuit quantum electrodynamics (cQED) architecture. In cQED, the couplings can be much stronger than in CQED due to the design flexibility of superconducting circuits and to the enhanced field confinement in one-dimensional cavities. This enabled the realization of fundamental quantum physics and quantum information processing experiments with a degree of control comparable to that obtained in CQED. The purpose of this chapter is to investigate the situation where the resonator to which the atom is coupled is made nonlinear with a Kerr-type nonlinearity, causing its energy levels to be nonequidistant. The system is then described by a nonlinear Jaynes-Cummings Hamiltonian. This considerably enriches the physics since a pumped nonlinear resonator displays bistability, parametric amplification, and squeezing. The interplay of strong coupling and these nonlinear effects constitutes a novel model system for quantum optics that can be implemented experimentally with superconducting circuits. This chapter is organized as follows. In a first section we present the system consisting of a superconducting Kerr nonlinear resonator strongly coupled to a transmon qubit. In the second section, we describe the response of the sole nonlinear resonator to an external drive. In the third section, we show how the resonator bistability can be used to perform a high-fidelity readout of the transmon qubit. In the last section, we investigate the quantum backaction exerted by the intracavity field on the qubit.

P. Bertet; F. R. Ong; M. Boissonneault; A. Bolduc; F. Mallet; A. C. Doherty; A. Blais; D. Vion; D. Esteve

2011-11-02

377

Control of Cavity Resonance Using Steady and Oscillatory Blowing  

NASA Technical Reports Server (NTRS)

An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.

Lamp, Alison M.; Chokani, Ndaona

1999-01-01

378

Low-frequency NMR with a non-resonant circuit  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance typically utilizes a tuned resonance circuit with impedance matching to transmit power and receive signal. The efficiency of such a tuned coil is often described in terms of the coil quality factor, Q. However, in field experiments such as in well-logging, the circuit Q can vary dramatically throughout the depth of the wellbore due to temperature or fluid salinity variations. Such variance can result in erroneous setting of NMR circuit parameters (tuning and matching) and subsequent errors in measurements. This paper investigates the use of a non-resonant transmitter to reduce the circuit sensitivity on Q and demonstrates that such circuits can be efficient in delivering power and current to the coil. We also describe a tuned receiver circuit whose resonant frequency can be controlled digitally. Experimental results show that a range of common NMR experiments can be performed with our circuits.

Hopper, Timothy; Mandal, Soumyajit; Cory, David; Hürlimann, Martin; Song, Yi-Qiao

2011-05-01

379

Low-frequency NMR with a non-resonant circuit.  

PubMed

Nuclear magnetic resonance typically utilizes a tuned resonance circuit with impedance matching to transmit power and receive signal. The efficiency of such a tuned coil is often described in terms of the coil quality factor, Q. However, in field experiments such as in well-logging, the circuit Q can vary dramatically throughout the depth of the wellbore due to temperature or fluid salinity variations. Such variance can result in erroneous setting of NMR circuit parameters (tuning and matching) and subsequent errors in measurements. This paper investigates the use of a non-resonant transmitter to reduce the circuit sensitivity on Q and demonstrates that such circuits can be efficient in delivering power and current to the coil. We also describe a tuned receiver circuit whose resonant frequency can be controlled digitally. Experimental results show that a range of common NMR experiments can be performed with our circuits. PMID:21382732

Hopper, Timothy; Mandal, Soumyajit; Cory, David; Hürlimann, Martin; Song, Yi-Qiao

2011-05-01

380

35-Cl nuclear quadrupole resonance spectra in diazepam and its 1:1 complex with chloral hydrate  

NASA Astrophysics Data System (ADS)

The 35-Cl NQR spectra of diazepam and some of its related compounds are reported; they yield information about the hydrogen bonded complex that diazepam forms with chloral hydrate. The results reflect large changes in electron distribution at the CCl 3 group while the diazepam chlorine at the 7 position remains almost unaffected.

Brisson, Colette; Durand, Marcel; Jugie, Gérard; Pasdeloup, Maurice

1980-11-01

381

Resonance capture at arbitrary inclination  

E-print Network

Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 deg with 5deg increments totalling nearly 6x10^5 numerical simulations. Thirty resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10deg,110deg]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60deg,130deg]. Capture in the 1:1 coorbital resonance occurs with great likelihood at large re...

Namouni, Fathi

2014-01-01

382

Infrared cubic dielectric resonator metamaterial.  

SciTech Connect

Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

2010-06-01

383

Coherent synchro-betatron resonance  

SciTech Connect

Coherent synchro-betatron resonances can present a serious limit for low-energy synchrotrons with strong space charge. Here, an excitation of a dipole transverse mode is considered at resonance condition.

Burov, A.; Lebedev, V.; /Fermilab

2006-12-01

384

Resonantly-enhanced axion-photon regeneration  

SciTech Connect

A resonantly-enhanced photon-regeneration experiment to search for the axion or axion-like particles is discussed. Photons enter a strong magnetic field and some are converted to axions; the axions can pass through an opaque wall and some may convert back to photons in a second high-field region. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon regeneration magnet. The optics for this experiment are discussed, with emphasis on the alignment of the two cavities.

Mueller, Guido; Sikivie, Pierre; Tanner, David B. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Bibber, Karl van [Naval Postgraduate School, Monterey, CA 93943 (United States)

2010-08-30

385

Time-sequenced optical nuclear magnetic resonance of gallium arsenide  

NASA Astrophysics Data System (ADS)

A method of optical detection of nuclear magnetic resonance is demonstrated in which optical nuclear polarization, spin resonance, and optical detection are separated into distinct sequential periods and separately optimized by varying the optical, rf, and static fields. Experiments on the bulk 69Ga resonance of GaAs show that sites imperceptibly perturbed by the optically relevant defect are optically observable with the rf applied in the dark. A signal-to-noise analysis is given that relates the sensitivity to readily measured material properties and indicates applicability to dilute defects.

Buratto, Steven K.; Shykind, David N.; Weitekamp, Daniel P.

1991-10-01

386

Recent developments on hadron interaction and dynamically generated resonances  

NASA Astrophysics Data System (ADS)

In this talk I report on the recent developments in the subject of dynamically generated resonances. In particular I discuss the ?p ? K0?+ and ?n ? K0?0 reactions, with a peculiar behavior around the K*0? threshold, due to a 1/2- resonance around 2035 MeV. Similarly, I discuss a BES experiment, J/? -> ? K*0 {\\bar K}*0 decay, which provides evidence for a new h1 resonance around 1830 MeV that was predicted from the vector-vector interaction. A short discussion is then made about recent advances in the charm and beauty sectors.

Oset, E.; Albaladejo, M.; Xie, Ju-Jun; Ramos, A.

2014-07-01

387

Compact pulley-type microring resonator with high quality factor  

NASA Astrophysics Data System (ADS)

A pulley-type microring resonator with ultra-small dimensions and ultra-high quality factor on a silicon-on-insulator wafer is fabricated and characterized. Simulation results show that the bending loss of the pulley-type microring resonator can be diminished by wrapping the curved waveguide around the microring, and that the energy loss from the output port can be decreased by tuning the width of the bus waveguide to achieve destructive interference. A quality factor of 1.73 × 105 is obtained in this experiment. The compact size of the pulley-type microring resonator with low bending loss is suitable for an integrated optical circuit.

Cai, Dong-Po; Lu, Jyun-Hong; Chen, Chii-Chang; Lee, Chien-Chieh; Lin, Chu-En; Yen, Ta-Jen

2014-11-01

388

Dynamic Nuclear Spin Resonance in n-GaAs  

NASA Astrophysics Data System (ADS)

The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted.

Chen, Y. S.; Reuter, D.; Wieck, A. D.; Bacher, G.

2011-10-01

389

Dynamic nuclear spin resonance in n-GaAs.  

PubMed

The dynamics of optically detected nuclear magnetic resonance is studied in n-GaAs via time-resolved Kerr rotation using an on-chip microcoil for rf field generation. Both optically allowed and optically forbidden NMR are observed with a dynamics controlled by the interplay between dynamic nuclear polarization via hyperfine interaction with optically generated spin-polarized electrons and nuclear spin depolarization due to magnetic resonance absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with master equation simulations, the underlying nuclear spin depolarization mechanism for each resonance is extracted. PMID:22107431

Chen, Y S; Reuter, D; Wieck, A D; Bacher, G

2011-10-14

390

Wave interaction in acoustic resonators with and without hysteresis.  

PubMed

Nonlinear interaction of counterpropagating waves in solids is considered by using a general approach taking into account only the cumulative (resonant) nonlinear perturbations giving a nonzero contribution over the period and, consecutively, potentially able to significantly modify the linear solution. Different stress-strain relations are addressed, including those with hysteresis which serve as basic models for the recent acoustic experiments with rock and metals. An important case of the interaction of counterpropagating waves with close amplitudes in a high-Q resonator (bar) with hysteresis is specially addressed and compared with the case of a ring resonator. PMID:15658687

Ostrovsky, Lev A

2004-12-01

391

NMR-correlated high-field electron paramagnetic resonance spectroscopy  

NASA Astrophysics Data System (ADS)

A high-field electron paramagnetic resonance method is introduced for determining the relative orientation of the g and hyperfine tensors in disordered systems by correlation of NMR frequencies to the electron spin resonance fields. Simple and characteristic correlation patterns are obtained that are only moderately influenced by the violation of the high-field approximation for the nuclear spin. A pulse sequence based on electron-electron double resonance and spectral hole burning is applied to overcome the limitations of excitation bandwidth and deadtime. Experiments on the nitroxide spin probe TEMPOL in a polymer matrix reveal a small but significant non-coincidence of the two principal axes systems.

Jeschke, Gunnar; Spiess, Hans Wolfgang

1998-08-01

392

X-ray topography analysis of bulk acoustic wave resonators  

Microsoft Academic Search

X-ray topography is first used to totally examine the fundamental modes of acoustic oscillations in the bulk-acoustic-wave\\u000a (BAW) resonator on the base of an AT-cut quartz crystal at the first and third harmonics. As is evident from the experiments,\\u000a the anharmonic longitudinal oscillations of the resonator can be visualized, just as the fundamental transverse acoustic oscillations\\u000a can be. The amplitude-frequency

D. V. Irzhak; D. V. Roshchupkin; D. V. Punegov; S. A. Sakharov

2007-01-01

393

Repetitive resonant railgun power supply  

DOEpatents

A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

1988-01-01

394

Eigenproblems in Resonant MEMS Design  

E-print Network

Eigenproblems in Resonant MEMS Design David Bindel UC Berkeley, CS Division Eigenproblems inResonant MEMS Design ­ p.1/21 #12;What are MEMS? Eigenproblems inResonant MEMS Design ­ p.2/21 #12;RF MEMS (better cell phones) Sensing elements (e.g. chemical sensors) Really high-pitch guitars Eigenproblems in

Bai, Zhaojun

395

Magnetic Resonance Facility (Fact Sheet)  

SciTech Connect

This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

Not Available

2012-03-01

396

Arnold Flames Resonance Surface Folds*  

E-print Network

Arnold Flames and Resonance Surface Folds* Richard P. McGehee School of Mathematics University parameter plane bifurcation diagrams are "(Arnold) resonance horns" emanating from zero forcing ampli- tude families by Arnold [1983] and Hall [1984] indi- cate the presence of (Arnold) resonance horns emanating

Peckham, Bruce B.

397

Optical diagnostics for a ring resonator free-electron lasers  

SciTech Connect

The optical cavity of the Boeing free-electron laser (FEL) was reconfigured as a semiconfocal ring resonator with two glancing incidence hyperboloid-paraboloid telescopes. The challenge for this experiment was the complexity of the ring resonator compared to the simplicity of a concentric cavity. The ring resonator's nonspherical mirror surfaces, its multiple elements, and the size of the components contributed to the problems of keeping the optical mode of the resonator matched to the electron beam in the wiggler. Several new optical diagnostics were developed to determine when the optical mode in the FEL was spatially and temporally matched to the electron beam through the wiggler. These included measurements of the focus position and Rayleigh range of the ring resonator optics to determine the spatial match of the optical mode through the wiggler, and a measurement of the position of the optical axis for multiple passes around the ring resonator to determined the stability of the resonator alignment. This paper also describes the optical measurements that were necessary to achieve reliable lasing. The techniques for measuring ring resonator Rayleigh range and focus position, multiple pass alignment, cavity length, optical energy per micropulse, peak power, optical extraction, small signal gain, ringdown loss, lasing wavelength, electron bunch pulse width, and energy slew are discussed.

Laucks, M.L.; Dowell, D.H.; Lowrey, A.R. (Boeing Defense and Space Group, Seattle, WA (United States)); Bender, S.C.; Lumpkin, A.H. (Los Alamos National Lab., NM (United States)); Bentz, M.P. (Rocketdyne Div. of Rockwell International, Canoga Park, CA (United States))

1993-02-01

398

Model Synthesis of Resonance Quasi-Optical Devices: Dispersive Open Resonators, Absorbing Coatings, and Pattern-Forming Structures  

Microsoft Academic Search

Research on resonance wave scattering has made important progress in recent years thanks to a series of profound analytical\\u000a studies on some general issues and widespread implementation of a new methodology of scientific search based on adequate mathematical\\u000a modeling and computational experiment. Some physical effects and phenomena discovered and studied in the course of analyzing\\u000a various resonance structures have become

Yuriy Sirenko; Nataliya Yashina; Staffan Ström

399

Injection-controlled laser resonator  

DOEpatents

A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

Chang, Jim J. (Dublin, CA)

1995-07-18

400

Resonance production from jet fragmentation  

E-print Network

Short lived resonances are sensitive to the medium properties in heavy-ion collisions. Heavy hadrons have larger probability to be produced within the quark gluon plasma phase due to their short formation times. Therefore heavy mass resonances are more likely to be affected by the medium, and the identification of early produced resonances from jet fragmentation might be a viable option to study chirality. The high momentum resonances on the away-side of a triggered di-jet are likely to be the most modified by the partonic or early hadronic medium. We will discuss first results of triggered hadron-resonance correlations in Cu+Cu heavy ion collisions.

Christina Markert; STAR Collaboration

2009-07-17

401

Resonance Ionization spectroscopy  

NASA Astrophysics Data System (ADS)

The paper presents a retrospective view on the appearance and early development of Resonance Ionization Spectroscopy (RIS) and briefly reviews its basic principles and unique characteristics. Most of the paper concentrates on RIS applications that are most active at present time including on-line facilities with particle accelerators, counting noble gas atoms, ultrasensitive and highly selective techniques, analytical systems which use RIS in combination with thermal atomization (TARIS), laser atomization (LARIS), ion sputtering (SIRIS) and collisional ionization (LEI).

Bekov, G. I.

1995-04-01

402

Resonance Ionization spectroscopy  

SciTech Connect

The paper presents a retrospective view on the appearance and early development of Resonance Ionization Spectroscopy (RIS) and briefly reviews its basic principles and unique characteristics. Most of the paper concentrates on RIS applications that are most active at present time including on-line facilities with particle accelerators, counting noble gas atoms, ultrasensitive and highly selective techniques, analytical systems which use RIS in combination with thermal atomization (TARIS), laser atomization (LARIS), ion sputtering (SIRIS) and collisional ionization (LEI)

Bekov, G. I. [Atom Sciences, Inc., 114 Ridgeway Center, Oak Ridge, TN, 37830 (United States); Institute of Spectroscopy Russian Academy of Sciences, Troitsk, Moscow Region 142092 (Russian Federation)

1995-04-01

403

Direct magnetic resonance arthrography.  

PubMed

Magnetic resonance (MR) arthrography has gained increasing popularity as a diagnostic tool in the assessment of intra-articular derangements. Its role has been studied extensively in the shoulder, but it also has been explored in the hip, elbow, knee, wrist and ankle. This article reviews the current role of direct MR arthrography in several major joints, with consideration of pertinent anatomy, techniques and applications. PMID:15351900

Elentuck, Dmitry; Palmer, William E

2004-11-01

404

Microwave dielectric resonators  

NASA Astrophysics Data System (ADS)

A historical review and a status report on the state of the art of microwave dielectric resonators are presented. Early experimental works predating practical applications are noted, including work on rutile in the 1960s and the breakthrough development of stable low-less barium tetratitanate ceramics. Topics include: theory of operation, coupling to microwave structures, ceramic materials, applications, various filters, diode oscillators, and FET or bipolar transistor oscillators.

Fiedziuszko, S. J.

1986-09-01

405

Optical fiber microcoil resonators  

Microsoft Academic Search

The optical microfiber coil resonator with self-coupling turns is suggested and investigated theoretically. This type of a microresonator has a three-dimensional geometry and complements the well-known Fabry-Perot (one-dimensional geometry, standing wave) and ring (two-dimensional geometry, traveling wave) types of microresonators. The coupled wave equations for the light propagation along the adiabatically bent coiled microfiber are derived. The particular cases of

M. Sumetsky

2004-01-01

406

Cardiovascular Magnetic Resonance  

Microsoft Academic Search

\\u000a Cardiovascular magnetic resonance (CMR) creates images from atomic nuclei with uneven spin using radio waves in the presence\\u000a of a magnetic field. Full details of the physical principles can be found elsewhere [1]. For clinical purposes, MR is performed using hydrogen-1, which is abundant in water and fat. Radiofrequency waves excite\\u000a the area of interest to create tissue magnetization, which

Dudley J. Pennell

2001-01-01

407

Damping of nanomechanical resonators.  

PubMed

We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m?9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

2010-07-01

408

Stochastic resonance without tuning  

Microsoft Academic Search

STOCHASTIC resonance1á¤-4 (SR) is a phenomenon wherein the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular, non-zero level of noise5 á¤-7. SR has been proposed as a means for improving signal detection in a wide variety of systems, including superconducting quantum interference devices8, and may be used in some

J. J. Collins; Carson C. Chow; Thomas T. Imhoff

1995-01-01

409

Resonant Tunneling Spin Pump  

NASA Technical Reports Server (NTRS)

The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

Ting, David Z.

2007-01-01

410

Ghost-vibrational resonance  

E-print Network

Ghost-stochastic resonance is a noise-induced resonance at a fundamental frequency missing in the input signal. We investigate the effect of a high-frequency, instead of a noise, in a single Duffing oscillator driven by a multi-frequency signal $F(t)= \\sum^n_{i=1} f_i \\cos(\\omega_i + \\Delta \\omega_0)t$, $\\omega_i=(k+i-1)\\omega_0$, where $k$ is an integer greater than or equal to two. We show the occurrence of a high-frequency induced resonance at the missing fundamental frequency $\\omega_0$. For the case of the two-frequency input signal, we obtain an analytical expression for the amplitude of the periodic component with the missing frequency. We present the influence of the number of forces $n$, the parameter $k$, the frequency $\\omega_0$ and the frequency shift $\\Delta \\omega_0$ on the response amplitude at the frequency $\\omega_0$. We also investigate the signal propagation in a network of unidirectionally coupled Duffing oscillators. Finally, we show the enhanced signal propagation in the coupled oscillators in absence of a high-frequency periodic force.

S Rajamani; S Rajasekar; MAF Sanjuán

2014-04-22

411

Ghost-vibrational resonance  

NASA Astrophysics Data System (ADS)

Ghost-stochastic resonance is a noise-induced resonance at a fundamental frequency missing in the input signal. We investigate the effect of a high-frequency, instead of a noise, in a single Duffing oscillator driven by a multi-frequency signal F(t)=?i=1nficos(?i+??0)t, ?i=(k+i-1)?0, where k is an integer greater than or equal to two. We show the occurrence of a high-frequency induced resonance at the missing fundamental frequency ?0. For the case of the two-frequency input signal, we obtain an analytical expression for the amplitude of the periodic component with the missing frequency. We present the influence of the number of forces n, the parameter k, the frequency ?0 and the frequency shift ??0 on the response amplitude at the frequency ?0. We also investigate the signal propagation in a network of unidirectionally coupled Duffing oscillators. Finally, we show the enhanced signal propagation in the coupled oscillators in absence of a high-frequency periodic force.

Rajamani, S.; Rajasekar, S.; Sanjuán, M. A. F.

2014-11-01

412

Resonant non-gaussianity  

SciTech Connect

We provide a derivation from first principles of the primordial bispectrum of scalar perturbations produced during inflation driven by a canonically normalized scalar field whose potential exhibits small sinusoidal modulations. A potential of this type has been derived in a class of string theory models of inflation based on axion monodromy. We use this model as a concrete example, but we present our derivations and results for a general slow-roll potential with superimposed modulations. We show analytically that a resonance between the oscillations of the background and the oscillations of the fluctuations is responsible for the production of an observably large non-Gaussian signal. We provide an explicit expression for the shape of this resonant non-Gaussianity. We show that there is essentially no overlap between this shape and the local, equilateral, and orthogonal shapes, and we stress that resonant non-Gaussianity is not captured by the simplest version of the effective field theory of inflation. We hope our analytic expression will be useful to further observationally constrain this class of models.

Flauger, Raphael [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pajer, Enrico, E-mail: raphael.flauger@yale.edu, E-mail: ep295@cornell.edu [Department of Physics, Cornell University, Ithaca, NY 14853 (United States)

2011-01-01

413

Nonlinear Fano-Feshbach resonances.  

PubMed

We study the wave scattering in an one-dimensional discrete system with two side-coupled defects. Each of the defects exhibits the Fano resonance as a resonant suppression of transmission, i.e., resonant reflection. We demonstrate that the interaction between two Fano resonances may give rise to a birth of a very narrow resonance. This effect may be understood in terms of the overlapping resonances, as suggested by Feshbach [Ann. Phys. 5, 357 (1958)]. We consider two cases, when the defects are coupled either locally or nonlocally to the discrete array. In the latter case, a sharp asymmetric resonance appears with a large quality factor. We demonstrate that by introducing a nonlinearity at side-coupled defects a closed loop in the nonlinear transmission coefficient may appear, which results in bistable response. PMID:19391867

Miroshnichenko, Andrey E

2009-02-01

414

Nuclear resonant scattering from the subnanosecond lifetime excited state of 201Hg  

NASA Astrophysics Data System (ADS)

We have performed synchrotron based nuclear resonant scattering experiments with the 26.3keV resonance of Hg201 . The precise energy of this 0.9ns lifetime resonance was found to be 26.2738(3)keV . Construction of an optical system with milli-electron-volt resolution allowed measurement of dynamics in liquid mercury, liq-Hg, and Hg atom specific dynamics in ?-HgS (cinnabar). This work extends nuclear inelastic scattering experiments into the regime of subnanosecond lifetime resonances.

Ishikawa, D.; Baron, A. Q. R.; Ishikawa, T.

2005-10-01

415

Nuclear resonant scattering from the subnanosecond lifetime excited state of {sup 201}Hg  

SciTech Connect

We have performed synchrotron based nuclear resonant scattering experiments with the 26.3 keV resonance of {sup 201}Hg. The precise energy of this 0.9 ns lifetime resonance was found to be 26.2738(3) keV. Construction of an optical system with milli-electron-volt resolution allowed measurement of dynamics in liquid mercury, liq-Hg, and Hg atom specific dynamics in {alpha}-HgS (cinnabar). This work extends nuclear inelastic scattering experiments into the regime of subnanosecond lifetime resonances.

Ishikawa, D. [SPring-8/Harima Institute, RIKEN, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5198 (Japan); Baron, A.Q.R. [SPring-8/Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5148 (Japan); Ishikawa, T. [SPring-8/Harima Institute, RIKEN, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5198 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo, 679-5148 (Japan)

2005-10-01

416

Muon spin resonance by strong pulsed r.f. field with pulsed muons  

NASA Astrophysics Data System (ADS)

Muon spin resonance experiments have been performed for the ?+ in H2O and for some other cases, and the first observation has been made of the time-differential pattern of muon spin resonance, namely, spin precession around the r.f. field vector under various resonance conditions. In the present experiment, a high-power pulsed r.f. field was effectively applied to the pulsed muon beam in our laboratory of the KEK-Booster Meson Facility (BOOM). Potential uses of muon spin resonance, particularly for research in the border regions of solid state and nuclear physics, are discussed in comparison with the conventional spin rotation method.

Kitaoka, Y.; Takigawa, M.; Yasuoka, H.; Itoh, M.; Takagi, S.; Kuno, Y.; Nishiyama, K.; Hayano, R. S.; Uemura, Y. J.; Imazato, J.; Nakayama, H.; Nagamine, K.; Yamazaki, T.

1982-05-01

417

Chapter 1 Magnetic Resonance Contributions to Other Sciences  

NASA Astrophysics Data System (ADS)

In 1947, I.I. Rabi invented the molecular beam magnetic resonance method for the important, but limited purpose, of measuring nuclear magnetic moments and five of us working in his laboratory immediately began such experiments. The first experiments with LiCl gave the expected single resonance for each nucleus, but we were surprised to discover six resonances for the proton in H2, which we soon showed was due to the magnetic effects of the other proton and the rotating charged molecule: from these measurements we could also obtain new information on molecular structure. We had another shock when we studied D2 and found the resonance curves were spread more widely for D2 than H2 even though the magnetic interactions should have been much smaller. We found we could explain this by assuming that the deuteron had an electric quadrupole moment and J. Schwinger pointed out that this would require the existence of a previously unsuspected electric tensor force between the neutron and the proton. With this, the resonance method was giving new fundamental information about nuclear forces. In 1944, Rabi and I pointed out that it should be possible by the Dirac theory and our past resonance experiments to calculate exactly the hyperfine interaction between the electron and the proton in the hydrogen atom and we had two graduate students, Nafe and Nelson do the experiment and they found a disagreement which led J. Schwinger to develop the first successful relativistic quantum field theory and QED. In 1964, Purcell, Bloch and others detected magnetic resonance transitions by the effect of the transition on the oscillator, called NMR, making possible measurements on liquids, solids and gases and giving information on chemical shifts and thermal relaxation times T1 and T2. I developed a magnetic resonance method for setting a limit to the EDM of a neutron in a beam and with others for neutrons stored in a suitably coated bottle. Magnetic resonance measurements provide high stability atomic clocks. Both the second and the meter are now defined in terms of atomic clocks. Lauterbuhr, Mansfield, Damadian and others developed the important methods of using inhomogeneous magnetic fields to localize the magnetic resonance in a tissue sample producing beautiful and valuable magnetic resonance images, MRI's, and fMRI's.

Ramsey, Norman F.

418

Ultrasonic wave transport in a system of disordered resonant scatterers: Propagating resonant modes and hybridization gaps  

NASA Astrophysics Data System (ADS)

We present the results of ultrasonic pulse propagation experiments on suspensions of plastic spherical scatterers immersed in water. This system was selected to study the effects of scattering resonances on wave transport. By separating the coherent ballistic component from the multiply scattered wave field, both the dispersion relations and the diffusive propagation of ultrasound were investigated. We show that the dispersion relation is marked by a series of hybridization gaps due to the coupling between the propagating modes of surrounding fluid and the scattering resonances. Effects of dissipation on the formation of the gaps were investigated. We find evidence in our ultrasonic data for the existence of a (slowly propagating) second longitudinal mode, also seen in Brillouin scattering experiments, that arises from the coupling between the resonant scatterers. These results are interpreted with an effective medium model based on the spectral function approach, which gives an excellent description of the dispersion relations in this system. Measurements of the multiply scattered ultrasound allow both the diffusion coefficient and the absorption time to be measured as a function of frequency. The relationship between the diffusion coefficient and the ballistic data is discussed, while the measurement of the absorption time from the decay of the multiply scattered coda enables the absorption and scattering lengths to be separated. These ultrasonic measurements and their interpretation based on the spectral function approach give a very complete picture of wave transport in this strongly scattering resonant system.

Cowan, M. L.; Page, J. H.; Sheng, Ping

2011-09-01

419

Field test results of a nuclear quadrupole resonance land mine detection system  

Microsoft Academic Search

We report on field test results conducted during 1999 in Bosnia and at the Army Mine Training School, Fort Leonard Wood, MO, on a ne prototype landmine detection system. In all test, non-metallic, anti-personnel (AP) and anti-tank (AT) landmines were detected via the NQR explosive signature with a probability of detection of 100 percent. The initial false alarm rate for

Andrew D. Hibbs; Geoffrey A. Barrall; Simon Beevor; Lowell J. Burnett; K. Derby; A. J. Drew; Dave Gregory; C. S. Hawkins; S. Huo; A. Karunaratne; Daniel K. Lathrop; Young K. Lee; Robert Matthews; Steve Milberger; B. Oehmen; T. Petrov; David C. Skvoretz; S. A. Vierkoetter; David O. Walsh; Chin Wu

2000-01-01

420

Nonlinear wave-particle resonant interaction in the radiation belts: Landau resonance vs. fundamental cyclotron resonance  

NASA Astrophysics Data System (ADS)

We present selected THEMIS observations of highly-oblique and large amplitude chorus waves at medium latitudes. The major part of observed waves propagates at nearly-electrostatic mode with normal angles close to resonance cone. We use test particle simulations and analytical theory to estimate efficiency of nonlinear particle acceleration by these waves via Landau and fundamental cyclotron resonances. We show that trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gain is larger for the trapping due to Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles in comparison with the fundamental resonance.

Krasnoselskikh, V.; Artemyev, A.; Agapitov, O. V.; Mourenas, D.

2013-12-01

421

Proton Resonance Spectroscopy in MAGNESIUM-24  

NASA Astrophysics Data System (ADS)

Excitation functions for proton elastic scattering and proton induced reactions on ('23)Na were measured with the KN Van de Graaff accelerator and associated high resolution system at Triangle Universities Nuclear Laboratory. Differential cross sections for the ('23)Na(p,p(,0)), (p,p(,1)),(p,(alpha)(,0)), and (p,(alpha)(,1)) reactions were obtained for the energy range E(,p) = 1.08 to 4.15 MeV with an overall experimental energy resolution of (TURN)400 eV. Resonance spins, parities, partial widths, and channel spin and orbital angular momentum mixing ratios were extracted with a multi-level, multi-channel R-matrix based computer program. Resonance parameters were determined for 72 levels between 12.72 and 15.05 MeV in the compound system ('24)Mg. An additional nineteen resonances were identified between 15.05 and 16.67 MeV in ('24)Mg; the resonance parameters for these states are incomplete. Two isobaric analog states were identified and two others tentatively located. Coulomb energies and proton spectroscopic factors were determined and compared with ('23)Na(d,p) spectroscopic factors. The s-wave proton strength function ratio of S(,J=2) / S(,J=1) was approximately one. This ratio can be used to set limits on the effective spin-spin interaction between projectile and target. The reduced width sum rule for proton and alpha decay is discussed and comparisons made with the present data. Results from this study indicate that additional measurements and analysis are required in several areas. Spectroscopic information on states in ('24)Na should be extended to allow additional identification of analog states. Improved methods are needed to evaluate and interpret alpha spectroscopic factors. Additional experiments to measure alpha angular distributions will be required to provide resonance parameters for states above E(,p) = 3 MeV.

Vanhoy, Jeffrey Rahn

422

Seismic Resonant Emission  

NASA Astrophysics Data System (ADS)

There are several classes of underground objects which can produce resonant emission after being hit by incident seismic waves. Those objects include tunnels, pipes, buried containers, ground-filled excavations, unexploded ordinances, fluid-filled fractures, mine shafts, and the like. Being high contrast scatterers, these objects are capable of generating strong scattered waves where primary PP, PS, SS waves carry away most of the energy which was brought by incident waves. For both high- and low- velocity objects the primary scattered waves have the same order of magnitude as incident waves. The main difference between these groups of objects is in later arrivals of multiple scattered waves. While high-velocity objects effectively radiate most of the energy soon after impact, the low-velocity objects trap some fraction of incident wave energy in the form of circumferential waves which propagate rotating along the interface between the object and the embedding medium. Circumferential waves include surface Rayleigh-type waves (propagating mostly in the embedding medium), Stoneley waves (propagating mostly in the fluid, if present), and Frantz waves (body waves trapped in the object because of its curvature). Strong impedance contrast ensures small radiation loss for circumferential waves and they slowly decay in amplitude while rotating inside/around the object. Some circumferential waves exist in the high-velocity objects but their amplitudes decay very fast because of strong radiation in outer medium. Most of the secondary (multiply reflected from an object's boundaries or multiply circled around the object) resonant-scattered energy radiates in the embedding medium as shear waves. The possibility of neglecting P- waves in late scattering arrivals simplifies imaging as is demonstrated for the field and modeled data of the example. Resonant emission phenomenon provides an effective tool for active monitoring for a number of applications such as tunnel detection, hydrofrac development, mining operations etc.

Korneev, V. A.

2007-12-01

423

Resonance Ionization spectroscopy  

SciTech Connect

The paper presents a retrospective view on the appearance and early development of Resonance Ionization Spectroscopy (RIS) and briefly reviews its basic principles and unique characteristics. Most of the paper concentrates on RIS applications that are most active at present time including on-line facilities with particle accelerators, counting noble gas atoms, ultrasensitive and highly selective techniques, analytical systems which use RIS in combination with thermal atomization (TARIS), laser atomization (LARIS), ion sputtering (SIRIS) and collisional ionization (LEI). {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Bekov, G.I. [Atom Sciences, Inc., 114 Ridgeway Center, Oak Ridge, Tennessee, 37830 (United States)]|[Institute of Spectroscopy Russian Academy of Sciences, Troitsk, Moscow Region 142092 (Russian Federation)

1995-04-01

424

Doubly resonant ultrachirped pulses  

E-print Network

Ultrachirped pulses for which the frequency chirp is of the order of the transition frequency of a two-level atom are examined. When the chirp is large enough, the resonance may be crossed twice, for positive and negative quadrature frequencies. In this scenario the analytic signal and quadrature decompositions of the field into amplitude and phase factors turn out to be quite different. The corresponding interaction pictures are strictly equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating wave approximation is dramatically enhanced using the analytic signal representation.

S. Ibáñez; A. Peralta Conde; D. Guéry-Odelin; J. G. Muga

2011-05-26

425

Antiferroelectric spin wave resonance  

NASA Astrophysics Data System (ADS)

Antiferroelectric spin wave resonance (AFESWR) and electric spin moment, mathematically predicted by Dirac, were identified for the first time. It has also been found, in addition to well-known SSH-model, that topological quasiparticles, called ?-quasiparticles, can be formed in C sbnd C ?-bonds of organic polymers. Topological ?-polaron lattice is proposed to be responsible for the observed AFESWR both in starting polyvinylidene fluoride (PVDF) films and in carbynoid films, which are the products of PVDF-dehydrohalogenation. Dynamical systems of ?-polarons and ?-solitons, identified in the samples studied, are substantionally nonlinear and can be registered in stochastic regime by usual IR absorption measurements.

Yearchuck, D.; Yerchak, Y.; Alexandrov, A.

2009-01-01

426

Resonance energies of vinylcarbenes.  

PubMed

The stabilization energy provided by resonance in singlet and triplet vinylcarbenes is evaluated using density functional and G3 theory, without symmetry restriction. Structural and charge change upon rotation are reviewed with singlet vinylcarbene exhibiting a larger barrier (1s-TS-1s-E), 5.49 (7.10) kcal/mol, than triplet (1t-TS-1t-E), 4.06 (4.54) kcal/mol. The changes in charge upon rotation for singlet vinylcarbene are consistent with a simple resonance picture for the ground state, whereas there is insignificant charge change for the triplet. Difficulties of the rotational analysis are avoided by evaluating the inductive stabilization difference between ethyl and vinyl in isodesmic equation 1. This inductive difference was determined by comparing the energy change for hydrogen loss for polyene series 2 (n double bonds) with polyene series 3 (n double bonds), which are combined in isodesmic equation 4. The effect of the ultimate vinyl group in equation 2 is restricted to inductive interaction by holding its pi-system so it is orthogonal to the remaining pi-system. Extrapolation of plots of the inductive difference (Delta inductive) revealed for equation 4 versus a through-bond inductive attenuation of 1.75(-2n) to n = 0 provides a Delta inductive for singlet vinylcarbene of -4.52 kcal/mol (R = 0.995) at B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) + ZPE at B3LYP/6-31G(d) and -4.16 (R = 0.993) at the G3(MP2)//B3LYP level. Correcting for Delta inductive in eq 1, the resonance energy of singlet vinylcarbene is 9.2 (8.9) kcal/mol. An analogous analysis of triplet vinylcarbene suggests that inductive effects are 0-1 kcal/mol, which leads to a resonance energy of 11-14 kcal/mol. PMID:19055381

Freeman, Peter K

2009-01-16

427

Nuclear Magnetic Resonance Gyroscope  

NASA Astrophysics Data System (ADS)

The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented.

Larsen, Michael

2011-06-01

428

Hole-Coupled Resonators Tunable Infrared Free Electron Lasers  

SciTech Connect

We review the study of hole-coupled resonators for broadly tunable free electron laser (FEL) applications. The mode profiles inside and outside the cavity, the diffraction losses at the mirror edges and intracavity apertures, the amount of useful power coupled through the holes, and the FEL gain are calculated for several dominant azimuthal and radial modes. The FEL interaction is taken into account by constructing a propagator similar to the Fresnel integral for free space propagation. It is found that non-confocal resonators can provide efficient hole coupling over a broad wavelength range, as long as the mode beating caused by a degeneracy in the round trip loss can be avoided. The degeneracy between the azimuthally symmetric class of modes is removed by FEL interaction, and the azimuthally asymmetric modes can be suppressed by means of intracavity apertures. Therefore, in a nonconfocal configuration, a hole-coupled resonator can be designed that is tunable over a broad range of wavelength by employing an adjustable intracavity aperture. On the other hand, confocal resonators are not suitable for hole coupling; Although mode beating does not occur in a confocal resonator, the hole coupling is difficult because the modes tend to avoid the hole. We provide a simple physical understanding of the difference in the performance of the confocal and non-confocal resonators. We also calculate and analyze the mode content of an empty resonator under continuous external mode injection. Such calculation is useful in interpreting experiments testing the hole coupling performance using CW lasers.

Xie, M.; Kim, K.-J.

1993-02-01

429

The Experience of Experience  

ERIC Educational Resources Information Center

This article describes the process of implementing a museum experience into the course content of a literacy methods course. A museum workshop was designed to help graduate students better understand the concept of literacy as a language-based learning process that builds on and extends each child's understanding of the world. Framed by relevant…

Freidus, Helen

2007-01-01

430

Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube.  

PubMed

THz metamaterials are employed to examine changes in the meta-resonances when two anisotropic organic materials, liquid crystal and carbon nanotubes, are placed on top of metamaterials. In both anisotropic double split-ring resonators and isotropic four-fold symmetric split-ring resonators, anisotropic interactions between the electric field and organic materials are enhanced in the vicinity of meta-resonances. In liquid crystal, meta-resonance frequency shift is observed with the magneto-optical coupling giving rise to the largest anisotropic shift. In carbon nanotube, meta-resonance absorptions, parallel and perpendicular to nanotube direction, experience different amount of broadening of Lorentzian oscillator of meta-resonance. Investigation reported here opens the application of metamaterials as a sensor for anisotropic materials. PMID:22772240

Woo, J H; Choi, E; Kang, Boyoung; Kim, E S; Kim, J; Lee, Y U; Hong, Tae Y; Kim, Jae H; Lee, Ilha; Lee, Young Hee; Wu, J W

2012-07-01

431

Optical resonator and laser applications  

NASA Technical Reports Server (NTRS)

The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

2006-01-01

432

Chaos-assisted, broadband trapping of light in optical resonators  

E-print Network

Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab-initio simulations and experiments in photonic crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase with the equipartition of energy among all degrees of freedom of the chaotic resonator, i.e. the cavity modes, which is evident from the convergence of their lifetime towards a single value. A compelling illustration of the theory is provided by demonstrating enhanced absorption in deformed polystyrene microspheres.

Liu, C; Molinari, D; Khan, Y; Ooi, B S; Krauss, T F; Fratalocchi, A

2012-01-01

433

Electromagnetically Induced Transparency and Tunable Fano Resonances in Hybrid Optomechanics  

E-print Network

We explain the phenomena of electromagnetically induced transparency (EIT) of a weak probe field and tunable Fano resonances in hybrid optomechanics. The system of study comprises of a two-level atom coupled to a single mode field of an opto-mechanical resonator with moving mirror. We show that single EIT window exists in the presence of optomechanical coupling or Jaynes-Cummings coupling, whereas two distinct double EIT windows occur when both the couplings are simultaneously present. Furthermore, based on our analytical and numerical work, we demonstrate the existence of tunable Fano resonances in the system. The controlling parameters of the system which switch single EIT window to double EIT windows, and needed to tune the Fano resonances can be realized in the present-day laboratory experiments.

Muhammad Javed Akram; Fazal Ghafoor; Farhan Saif

2014-05-22

434

Precision angle resolved autoionization resonances in Ar and Ne  

NASA Astrophysics Data System (ADS)

We have used angle-resolved photoelectron spectroscopy and improved R-matrix calculations to study the Ar 3s23p6?3s3p6np (n=4-16) and Ne 2s22p6?2s2p6np (n=3-5) autoionization resonances, and the Ne 2s22p6?2p43s3p doubly excited resonance. The photoelectron angular distribution parameters ? have been parameterized according to the prescription of Kabachnik and Sazhina (1) and have been compared with our R-matrix calculations and those of Taylor (2). We have also analyzed the cross section shape for the resonances, which agree well with previous experiments done for the lower resonances.

Berrah, N.; Langer, B.; Gorczyca, T. W.; Wehlitz, R.; Farhat, A.; Bozek, J. D.

1997-02-01

435

Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE  

SciTech Connect

A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{sup {pi}} = 1{sup -} and 2{sup -}.

Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C. [North Carolina State University, Raleigh, NC 27695 (United States); TUNL, Durham, NC 27708 (United States); Agvaanluvsan, U. [Stanford University, Palo Alto, CA 94305 (United States); Becvar, F.; Krticka, M. [Charles University in Prague, CZ-180 00 Prague 8 (Czech Republic); Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

2011-06-01

436

Resonance Clustering in Globally Coupled Electrochemical Oscillators with External Forcing  

E-print Network

Experiments are carried out with a globally coupled, externally forced population of limit-cycle electrochemical oscillators with an approximately unimodal distribution of heterogeneities. Global coupling induces mutually entrained (at frequency $\\omega_{1}$) states; periodic forcing produces forced-entrained ($\\omega_{\\mathrm{F}}$) states. As a result of the interaction of mutual and forced entrainment, resonant cluster states occur with equal spacing of frequencies that have discretized frequencies following a resonance rule $\\omega_{n}\\cong n\\omega_{1}-(n-1)\\omega_{\\mathrm{F}}$. Resonance clustering requires an optimal, intermediate global coupling strength; at weak coupling the clusters have smaller sizes and do not strictly follow the resonance rule, while at strong coupling the population behaves similar to a single, giant oscillator.

Istvan Z. Kiss; Yumei Zhai; John L. Hudson

2008-03-08

437

Splitting of the Pygmy Dipole Resonance  

NASA Astrophysics Data System (ADS)

We report on experiments using the (?, ?' ?) method to investigate the structure of the Pygmy Dipole Resonance (PDR) in the nuclei 94Mo, 124Sn, 138Ba and 140Ce. The experiments were performed with the Big-Bite Spectrometer (BBS) at the KVI at an incident energy of E? = 136 MeV. The method allows a clean separation of the PDR from other excitations in the same energy region by selecting the ground-state ?-decay channel. In addition, the high resolution of the ?-ray spectroscopy using high-purity Germanium detectors allows a state-to-state analysis even in the case of the rather high level density of the investigated nuclei. The comparison to (?,?') experiments on the same nuclei reveals a splitting of the PDR into two groups of states with different underlying structure.

Savran, D.; Endres, J.; Harakeh, M. N.; Pietralla, N.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; van den Berg, A. M.; Zilges, A.

2011-09-01

438

Resonance capture and Saturn's rings  

SciTech Connect

We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab.

Patterson, C.W.

1986-05-01

439

GAUSSIAN BEAM LASER RESONATOR PROGRAM  

NASA Technical Reports Server (NTRS)

In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

Cross, P. L.

1994-01-01

440

Optimized Design of Microcoil Resonators  

Microsoft Academic Search

Various methods to overcome the difficulties in the fabrication of high-quality (Q) optical nanofiber microcoil resonators are investigated. Modifications of the resonator geometry by wrapping the nanofiber over nonuniform rods and\\/or by varying the pitch alter the resonator Q-factor significantly. These effects are quantified, and geometries, which allow for enhanced tolerance to fabrication uncertainties, are identified. These simulations apply equally

Fei Xu; Peter Horak; Gilberto Brambilla

2007-01-01

441

Macroscopic resonances in planar geometry  

Microsoft Academic Search

Resonating response is a characteristic feature of free-particle system contained between two vibrating planar surfaces. Resonance frequencies and widths are determined by a mean period of motion of particles reflected from the walls. Resonances due to quasiperiodic macroscopic motion appear when the interaction among quasi-particles by means of perturbations of the common self-consistent field is included. They have finite widths

V. M. Strutinskii; S. M. Vydrug-Vlasenko; A. G. Magner

1987-01-01

442

Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins*  

PubMed Central

Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) contains two flavin residues as redox-active prosthetic groups attached by a phosphoester bond to threonine residues in subunits NqrB and NqrC. We demonstrate here that flavinylation of truncated Vibrio harveyi NqrC at Thr-229 in Escherichia coli cells requires the presence of a co-expressed Vibrio apbE gene. The apbE genes cluster with genes for Na+-NQR and other FMN-binding flavoproteins in bacterial genomes and encode proteins with previously unknown function. Experiments with isolated NqrC and ApbE proteins confirmed that ApbE is the only protein factor required for NqrC flavinylation and also indicated that the reaction is Mg2+-dependent and proceeds with FAD but not FMN. Inactivation of the apbE gene in Klebsiella pneumoniae, wherein the nqr operon and apbE are well separated in the chromosome, resulted in a complete loss of the quinone reductase activity of Na+-NQR, consistent with its dependence on covalently bound flavin. Our data thus identify ApbE as a novel modifying enzyme, flavin transferase. PMID:23558683

Bertsova, Yulia V.; Fadeeva, Maria S.; Kostyrko, Vitaly A.; Serebryakova, Marina V.; Baykov, Alexander A.; Bogachev, Alexander V.

2013-01-01

443

Ion cyclotron resonance cell  

DOEpatents

An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

Weller, R.R.

1995-02-14

444

nuclear magnetic resonance gyroscope  

SciTech Connect

A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

Karwacki, F. A.; Griffin, J.

1985-04-02

445

Ion cyclotron resonance cell  

DOEpatents

An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

Weller, Robert R. (Aiken, SC)

1995-01-01

446

FAST TRACK COMMUNICATION: Confinement resonances in the photoionization of endohedral atoms: myth or reality?  

NASA Astrophysics Data System (ADS)

We demonstrate that the structure of confinement resonances in the photoionization cross section of an endohedral atom is very sensitive to the mean displacement langarang of the atom from the cage centre. The resonances are strongly suppressed if 2langarang exceeds the photoelectron half-wavelength. We explain the results of recent experiments which contradict the earlier theoretical predictions on the existence of confinement resonances in particular endohedral systems.

Korol, A. V.; Solov'yov, A. V.

2010-10-01

447

Influence of resonance tube geometry shape on performance of thermoacoustic engine.  

PubMed

Based on the linear thermoacoustics, a symmetrical standing-wave thermoacoustic engine is simulated with a cylindrical tube and a tapered one as the resonance tube, respectively. The experiments with both cylindrical and tapered tubes are carried out. The suppression of nonlinear effects due to tapered tube as the resonance tube is discussed. Both simulation and experimental results show that the performance of the tapered tube is better than cylindrical one as the resonance tube. PMID:17056084

Bao, Rui; Chen, Guobang; Tang, Ke; Jia, Zhengzhong; Cao, Weihua

2006-12-22

448

Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy  

E-print Network

Transfer for Pharmacophore Mapping MRI Magnetic Resonance Imaging MRS Magnetic Resonance Spectroscopy MW Microwave viii NMR Nuclear Magnetic Resonance NOE Nuclear Overhauser Effect pCBA p-chlorobenzaldehyde ppm Parts per million PTD 4... (II-10)) using one assumed value for T1. ............ 38 III-1 Reaction of DPBD with PTD in acetonitrile. The signal intensities of H1 and H1? were monitored in the NMR experiments. .......................... 48 III-2 Stacked plots...

Zeng, Haifeng

2012-07-16

449

Individual and Collective Behavior of Small Vibrating Motors Interacting Through a Resonant Plate  

E-print Network

We report on experiments of many small motors -- cell phone vibrators -- glued to and interacting through a resonant plate. We find that individual motors interacting with the plate demonstrate hysteresis in their steady-state frequency due to interactions with plate resonances. For multiple motors running simultaneously, the degree of synchronization between motors increases when the motors' frequencies are near a resonance of the plate, and the frequency at which the motors synchronize shows a history dependence.

David Mertens; Richard Weaver

2010-05-03

450

Resonant soliton-impurity interactions  

NASA Astrophysics Data System (ADS)

We describe a new type of soliton-impurity interaction and demonstrate that the soliton can be totally reflected by an attractive impurity if its initial velocity lies in certain resonance ``windows.'' This effect has an analogy with the resonance phenomena in kink-antikink collisions [Campbell, Schonfeld, and Wingate, Physica (Amsterdam) 9D, 1 (1983)], and it can be explained by a resonant energy exchange between the soliton and the impurity mode. Taking the sine-Gordon and ?4 models as examples, we find a number of resonance windows by numerical simulations and develop a collective-coordinate approach to describe the effect analytically.

Kivshar, Yuri S.; Fei, Zhang; Vázquez, Luis

1991-09-01

451

New approach to resonance crossing.  

PubMed

Time-varying nonlinear oscillatory systems produce phenomena of resonance crossing and trapping of particles in resonance islands. Traditionally, such processes have been analyzed in terms of adiabatic conditions. Considering, as an example, a simplified one-dimensional model describing the "electron-cloud pinch" during a bunch passage in a particle accelerator, here we present an approach to resonance trapping which does not require any adiabatic condition. Instead we introduce the concept of the attraction point and investigate invariance and scaling properties of motion close to the attraction point, considering a single resonance crossing. PMID:23368210

Franchetti, G; Zimmermann, F

2012-12-01

452

Fano resonances in magnetic metamaterials  

SciTech Connect

We study the scattering of magnetoinductive plane waves by internal (external) capacitive (inductive) defects coupled to a one-dimensional split-ring resonator array. We examine a number of simple defect configurations where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling to second neighbors is necessary for the occurrence of Fano resonance. For external inductive defects, Fano resonances are commonplace, and they can be tuned by changing the relative orientation or distance between the defect and the SSR array.