These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Explosives detection by nuclear quadrupole resonance (NQR)  

NASA Astrophysics Data System (ADS)

Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

1994-10-01

2

Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes  

NASA Astrophysics Data System (ADS)

Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

2006-05-01

3

Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer  

SciTech Connect

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

Black, B.E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1993-07-01

4

Z .Solid State Nuclear Magnetic Resonance 11 1998 139156 SQUID detected NMR and NQR  

E-print Network

Z .Solid State Nuclear Magnetic Resonance 11 1998 139­156 SQUID detected NMR and NQR Matthew P dc Superconducting QUantum Interference Device SQUID is a sensitive detector of magnetic flux to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned

Augustine, Mathew P.

5

Application of nuclear quadrupole resonance to the study of clathrates. sup 35 Cl NQR and crystallography of clathrated CCl sub 4  

SciTech Connect

The {sup 35}Cl nuclear quadrupole resonance (NQR) spectra of CCl{sub 4} in more than 20 clathrates have been measured in the range 4-200 K. The crystal structures of CCl{sub 4}/Dianin's compound (1), CCl{sub 4}/Fe(AcAc){sub 3} (3), CCl{sub 4}/Ni(SCN){sub 2}(3-MePy){sub 4} (4), and CCl{sub 4}/Ni(exan){sub 2}(4,4{prime}-dm-2,2{prime}-bpy) (19) clathrates are also reported. Site symmetry and site multiplicity of the guest molecule in clathrates were determined by NQR spectroscopy and by x-ray crystallography. The degree of host-guest interaction was estimated from the NQR frequency shifts. The libration frequencies of the guest molecules in trigonal cavities were determined from NQR frequencies by Bayer-Kushida theory analysis.

Pang, Li; Lucken, E.A.C.; Bernardinelli, G. (Univ. de Geneve (Switzerland))

1990-11-21

6

Application of nuclear quadrupole resonance to the study of clathrates. sup 35 Cl NQR and crystallography of clathrated CCl sub 4  

Microsoft Academic Search

The ³⁵Cl nuclear quadrupole resonance (NQR) spectra of CClâ in more than 20 clathrates have been measured in the range 4-200 K. The crystal structures of CClâ\\/Dianin's compound (1), CClâ\\/Fe(AcAc)â (3), CClâ\\/Ni(SCN)â(3-MePy)â (4), and CClâ\\/Ni(exan)â(4,4â²-dm-2,2â²-bpy) (19) clathrates are also reported. Site symmetry and site multiplicity of the guest molecule in clathrates were determined by NQR spectroscopy and by x-ray crystallography.

Li Pang; E. A. C. Lucken; G. Bernardinelli

1990-01-01

7

Two-dimensional NQR using ultra-broadband electronics.  

PubMed

We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as (14)N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented. PMID:24495675

Mandal, S; Song, Y-Q

2014-03-01

8

14 N NQR spectrum of sildenafil citrate  

NASA Astrophysics Data System (ADS)

The 14N nuclear quadrupole resonance (NQR) spectrum of sildenafil citrate tablets has been recorded allowing the quadrupole coupling constants and asymmetry parameters of all six unique nitrogen atoms in its structure to be determined. A density function calculation gives results that are largely in agreement with the experimental values.

Stephenson, David; Singh, Nadia

2014-10-01

9

Nuclear magnetic resonance experiments with dc SQUID amplifiers  

SciTech Connect

The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

Heaney, M.B. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

1990-11-01

10

Exploiting temperature dependency in the detection of NQR signals  

Microsoft Academic Search

Nuclear quadrupole resonance (NQR) offers an unequivocal method of detecting and identifying land mines. Unfortunately, the practical use of NQR is restricted by the low signal-to-noise ratio (SNR), and the means to improve the SNR are vital to enable a rapid, reliable, and convenient system. In this paper, an approximate maximum-likelihood detector (AML) is developed, exploiting the temperature dependency of

Andreas Jakobsson; Magnus Mossberg; Michael D. Rowe; John A. S. Smith

2006-01-01

11

Nuclear quadrupole resonance studies of amorphous, orthorhombic, and rhombohedral arsenic  

Microsoft Academic Search

Pulsed nuclear quadrupole resonance (NQR) experiments have been performed on three forms of elemental arsenic: amorphous (a), rhombohedral (rh), and orthorhombic (or). The temperature dependence of the spin-lattice relaxation time (T1) provides evidence for the existence of disorder (tunneling) modes in a-As. It is found that the NQR line shape of a-As is highly asymmetric, and this asymmetry is attributed

G. E. Jellison Jr.; G. L. Petersen; P. C. Taylor

1980-01-01

12

Nuclear quadrupole resonance studies of amorphous, orthorhombic, and rhombohedral arsenic  

Microsoft Academic Search

Pulsed nuclear quadrupole resonance (NQR) experiments have been performed on three forms of elemental arsenic: amorphous (a), rhombohedral (rh), and orthorhombic (or). The temperature dependence of the spin-lattice relaxation time (Tâ) provides evidence for the existence of disorder (tunneling) modes in a-As. It is found that the NQR line shape of a-As is highly asymmetric, and this asymmetry is attributed

G. E. Jr. Jellison; G. L. Petersen; P. C. Taylor

1980-01-01

13

NQR Study of Dynamics in Incommensurate Phases  

NASA Astrophysics Data System (ADS)

Dynamic processes in solids exhibiting structurally incommensurate phases are briefly reviewed, and the application of NMR and NQR is discussed. The unique utility of these methods, - arising due to, on one hand, the microscopic resonant nature of the probe used and, on the other, the presence of periodic, though incommensurable, structure - , is brought out by presenting recent results in a prototype system (Rb2ZnCl4) in the presence of randomly quenched disorder. In particular, the interesting new methodology of measuring, by analysing NQR spin echo modulation, ultra-slow diffusion like collective motions of ensembles of atoms in the presence of pinning effects due to disorder is illustrated with new results.

Sastry, V. S. S.; Venu, K.; Maheswari, S. Uma; Subramanian, R. K.

2000-02-01

14

Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes  

E-print Network

We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.

E. A. Donley; J. L. Long; T. C. Liebisch; E. R. Hodby; T. A. Fisher; J. Kitching

2008-12-10

15

Rapid detection of arsenic minerals using portable broadband NQR  

NASA Astrophysics Data System (ADS)

The remote real-time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room-temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations.

Lehmann-Horn, J. A.; Miljak, D. G.; O'Dell, L. A.; Yong, R.; Bastow, T. J.

2014-10-01

16

NQR study of chalcogenide glasses Ge-As-Se.  

PubMed

A three-component Ge-As-Se system is studied by the nuclear quadrupole resonance (NQR) method on (75)As nuclei and by the nutation NQR spectroscopy. The NQR (75)As spectra of the glasses Ge(0.021) As(0.375) Se(0.604), Ge(0.043) As(0.348) Se(0.609) and Ge(0.068) As(0.318) Se(0.614) reveal broad lines with two peaks assigned to the main structural unit of As(2)Se(3). With increasing average coordination number ( ?r), the spectrum signals are shifted towards higher frequencies. At ?r > 2.54, the spectrum becomes complex, which is a consequence of formation of more complex molecular structures in the glasses of high content of germanium. At fixed frequencies the asymmetry parameter ? of the samples studied is determined. PMID:21452350

Glotova, Olga; Korneva, Irina; Sinyavsky, Nikolay; Ostafin, Michal; Nogaj, Boleslaw

2011-07-01

17

Weakly first-order behavior in ferromagnetic transition of UCoGe revealed by 59Co-NQR studies  

NASA Astrophysics Data System (ADS)

We have performed 59Co nuclear quadrupole resonance (NQR) measurements on ferromagnetic (FM) superconductor UCoGe, in which ferromagnetism occurs at TCurie ˜ 2.5 K. By measuring NQR spectrum at various temperatures, we investigated the development of local magnetic moment around TCurie, and suggest that FM transition possesses weakly first-order character. This first-order behavior is consistent with the theoretical prediction that the low temperature FM transition in itinerant magnets is generically of first-order.

Hattori, T.; Ishida, K.; Nakai, Y.; Ohta, T.; Deguchi, K.; Sato, N. K.; Satoh, I.

2010-12-01

18

Dielectric square resonator investigated with microwave experiments.  

PubMed

We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model. PMID:25493860

Bittner, S; Bogomolny, E; Dietz, B; Miski-Oglu, M; Richter, A

2014-11-01

19

Dielectric square resonator investigated with microwave experiments  

NASA Astrophysics Data System (ADS)

We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.

Bittner, S.; Bogomolny, E.; Dietz, B.; Miski-Oglu, M.; Richter, A.

2014-11-01

20

Copper valence, structural separation and lattice dynamics in tennantite (fahlore): NMR, NQR and SQUID studies  

NASA Astrophysics Data System (ADS)

Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T {1/-1} and nuclear spin-echo decay rate T {2/-1} in tennantite samples in the temperature range 4.2-210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2-300 K shows a Curie-Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions.

Gainov, R. R.; Dooglav, A. V.; Pen'kov, I. N.; Mukhamedshin, I. R.; Savinkov, A. V.; Mozgova, N. N.

2008-01-01

21

Application of 14N NQR to the study of piroxicam polymorphism.  

PubMed

A study was conducted to test the capability of the (14)N nuclear quadrupole resonance (NQR) method to discriminate qualitatively and quantitatively among different forms of piroxicam. Samples of commercial piroxicam form I and its monohydrate were obtained on the local market. Additionally, samples of form I and II were prepared by recrystallization in 1,2-dichloroethane and ethanol, respectively. DSC and FT-IR were employed as reference methods. A (14)N NQR spectrometer was used to measure samples of different forms and mixtures of piroxicam at 2587 and 3439 ?kHz. DSC and FT-IR clearly confirmed differences between the different piroxicam forms. Measurements of (14)N NQR signals of different forms of piroxicam at 2587 ?kHz detected only spectral peaks of form I. The dependence of (14)N NQR signal intensity on the concentration of form I in mixtures with the monohydrate showed a clear linear relationship at both measured frequencies, though the scattering of data was greater at 3439 ?kHz due to the lower S/N ratio. The (14)N NQR method has the potential to become an additional and important spectroscopic tool in the study of solid-state forms, not only of pure active pharmaceutical ingredients or excipients, but also of their mixtures. This ability lends the method to a possible successful utilization at different levels of pharmaceutical manufacturing and product quality control. PMID:20597116

Lavri?, Zoran; Pirnat, Janez; Lužnik, Janko; Seliger, Janez; Zagar, Veselko; Trontelj, Zvonko; Sr?i?, Stane

2010-12-01

22

A computational NQR study on the hydrogen-bonded lattice of cytosine-5-acetic acid.  

PubMed

A computational study at the level of density functional theory (DFT) employing 6-311++G** standard basis set was carried out to evaluate nuclear quadrupole resonance (NQR) spectroscopy parameters in cytosine-5-acetic acid (C5AA). Since the electric field gradient (EFG) tensors are very sensitive to the electrostatic environment at the sites of quadruple nuclei, the most possible interacting molecules with the target one were considered in a five-molecule model system of C5AA using X-ray coordinates transforming. The hydrogen atoms positions were optimized and two model systems of original and H-optimized C5AA were considered in NQR calculations. The calculated EFG tensors at the sites of (17)O, (14)N, and (2)H nuclei were converted to their experimentally measurable parameters, quadrupole coupling constants and asymmetry parameters. The evaluated NQR parameters reveal that the nuclei in original and H-optimized systems contribute to different hydrogen bonding (HB) interaction. The comparison of calculated parameters between optimized isolated gas-phase and crystalline monomer also shows the relationship between the structural deformation and NQR parameters in C5AA. The basis set superposition error (BSSE) calculations yielded no significant errors for employed basis set in the evaluation of NQR parameters. All the calculations were performed by Gaussian 98 package of program. PMID:17926341

Mirzaei, Mahmoud; Hadipour, Nasser L

2008-04-15

23

Undergraduate Electron-Spin-Resonance Experiment.  

ERIC Educational Resources Information Center

Describes the basic procedures for use of an electron-spin resonance spectrometer and potassium azide (KN3) in an experiment which extends from the phase of sample preparation (crystal growth, sample mounting, and orientation) through data taking to the stages of calculation and theoretical explanation. (Author/DS)

Willis, James S.

1980-01-01

24

Superconducting microwave resonators for physics experiments  

SciTech Connect

Superconducting resonators at K-Band frequencies have been developed for different applications in general physics. The authors have built niobium pillbox cavities for the One-Atom Maser experiment by which the interaction of Rydberg atoms with single microwave photons has been investigated. At 21.5 GHz and T=1.3K quality factors of up to 10/sup 11/ were obtained. Coating of the cavity with Nb/sub 3/Sn resulted in quality factors of 6x10/sup 8/ at T=4.2K and 6x10/sup 9/ at T=2K. The authors have also investigated a superconducting Fabry-Perot resonator consisting of two spherically curved niobium mirrors. The quality factor of 1.8x10/sup 7/ measured at 25 GHz and 4.2K was found to be two orders of magnitude higher than for a corresponding copper resonator. Fabry-Perot resonators can be applied for detecting small position changes of one mirror with respect to the other e.g. caused by gravitational forces. First experiments with copper Fabry-Perot mirrors suspended in a vacuum chamber provide a maximum sensitivity for a gravitational acceleration of one mirror of 4x10/sup -11/ m/s/sup 2/. These results are promising for a possible fifth force detector based on a superconducting Fabry-Perot resonator.

Klein, N.; Muller, G.; Piel, H.; Schurr, J.

1989-03-01

25

Superconducting microwave resonators for physics experiments  

Microsoft Academic Search

Superconducting resonators at K-band frequencies have been developed for different applications in general physics. Niobium pillbox cavities have been built for the one-atom maser experiment by which the interaction of Rydberg atoms with single microwave photons has been investigated. At 21.5 GHz and 1.3 K, quality factors of up to 10 to the 11th were obtained. Coating of the cavity

N. Klein; G. Mueller; H. Piel; J. Schurr

1989-01-01

26

A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.  

PubMed

A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

2014-10-01

27

A miniaturized NQR spectrometer for a multi-channel NQR-based detection device  

NASA Astrophysics Data System (ADS)

A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

2014-10-01

28

Simulations of pulsed nuclear magnetic resonance experiments  

SciTech Connect

In order to help elucidate various aspects of pulsed nuclear magnetic resonance (NMR) experiments in the liquid state, a consistent mathematical treatment based on density matrix formalism was developed and implemented in a computer program, RELAX. Relaxation effects stemming from dipolar, chemical shift anisotropy (CSA), and random field mechanisms are accounted for, including contributions from dipole-CSA cross-correlation. The program was utilized to study para-fluorophenyl spin systems in dynamical regimes characteristic of both small and large molecules. Theory demonstrates that dipole-CSA cross-correlation can have pronounced effects in these systems and suggests that analysis of these effects will be useful in the study of protein conformation and dynamics.

Smith, S.A.

1991-01-01

29

93Nb- and 27Al-NMR/NQR studies of the praseodymium based PrNb2Al20  

NASA Astrophysics Data System (ADS)

We report a study of 93Nb- and 27Al-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) in a praseodymium based compound PrNb2Al20. The observed NMR line at around 3 T and 30 K shows a superposition of typical powder patterns of one Nb signal and at least two Al signals. 93Nb-NMR line could be reproduced by using the previously reported NQR frequency ?Q ? 1.8MHz and asymmetry parameter ? ? 0 [Kubo T et al 2014 JPS Conf. Proc. 3 012031]. From 27Al-NMR/NQR, NQR parameters are obtained to be ?Q,A ? 1.53 MHz, and ?A ? 0.20 for the site A, and ?Q,B ? 2.28 MHz, and ?B ? 0.17 for the site B. By comparing this result with the previous 27Al-NMR study of PrT2Al20 (T = Ti, V) [Tokunaga Y et al 2013 Phys. Rev. B 88 085124], these two Al site are assigned to the two of three crystallographycally inequivalent Al sites.

Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

2015-03-01

30

Nuclear quadrupole resonance spectra of drawing-induced crystallization in As 2Se 3 fibers  

Microsoft Academic Search

Pulsed 75As nuclear quadrupole resonance (NQR) experiments performed on fibers of As2Se3 drawn at various rates (> 100 m\\/min) reveal structural changes from the bulk, well-annealed glass. In addition to the presence of As?As bonds in the nominally stoichiometric fibers, a distorted crystalline phase (< 10% by volume) occurs at the largest draw rates. Because they are highly distorted, these

P. Hari; P. C. Taylor; W. A. King; W. C. LaCourse

1997-01-01

31

Electron density distribution in cladribine (2-chloro-2?-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations  

NASA Astrophysics Data System (ADS)

2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

Latosi?ska, J. N.; Latosi?ska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

2009-07-01

32

Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.  

ERIC Educational Resources Information Center

Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)

Burnier, R. C.; Freiser, B. S.

1979-01-01

33

NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity  

NASA Astrophysics Data System (ADS)

The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.

Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.

2004-07-01

34

Miniature Magnet for Electron Spin Resonance Experiments  

ERIC Educational Resources Information Center

Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)

Rupp, L. W.; And Others

1976-01-01

35

Nuclear quadrupole resonance and x-ray investigation of the structure of Na2\\/3CoO2  

Microsoft Academic Search

We have synthesized various samples of the x=2\\/3 phase of sodium cobaltate NaxCoO2 and performed x-ray powder diffractions spectra to compare the diffraction with the structure proposed previously from NMR and nuclear quadrupole resonance (NQR) experiments [H. Alloul, I. R. Mukhamedshin, T. A. Platova, and A. V. Dooglav, EPL 85, 47006 (2009)]. Rietveld analyses of the data are found in

T. A. Platova; I. R. Mukhamedshin; H. Alloul; A. V. Dooglav; G. Collin

2009-01-01

36

Stability experiments on MEMS aluminum nitride RF resonators  

NASA Astrophysics Data System (ADS)

We report on long-term stability experiments on a novel MEMS radio frequency (RF) resonator fabricated in Aluminum Nitride technology. The AlN fabrication process allows for the realization of resonators, filters, and resonant sensors operating over the frequency range from 500 kHz to in excess of 10 GHz using CMOS compatible materials. The 100 MHz resonators used in these experiments were a ring design with 140-micron outer diameter and 100-micron inner diameter. Electrodes on the top and bottom of this AlN ring enable measurement of resonance. Wafer sections were stored in air and vacuum and tested daily. We observed a steady degradation in the resonant frequency (600 ppm over the 800 hours) for the devices stored in a vacuum. Small degradation was observed in the air experiment (50 ppm over 1200 hours). Failure analysis using secondary emission microscopy (SEM) revealed no differences between control devices and devices on test. However, subsequent investigation of blank wafer sections by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) found small levels of silicone surface contamination from vacuum chamber exposure. This contamination added enough mass to shift the resonant frequency. These experiments demonstrate the need for clean environments for future wafer-level testing and also packaging for these small-mass resonators.

Tanner, Danelle M.; Olsson, Roy H., III; Parson, Ted B.; Crouch, Shannon M.; Walraven, Jeremy A.; Ohlhausen, James A.

2010-02-01

37

35Cl-NQR and DFT study of electronic structure of amlodipine and felodipine vascular-selective drugs from the dihydropyridine Ca ++ antagonists group  

NASA Astrophysics Data System (ADS)

Amlodipine (AM) and felodipine (FL) have been studied in solid state by the nuclear quadrupole resonance (NQR) and density functional theory (DFT). The results have shown that NQR data do not permit a differentiation between R and S enantiomers, which is a consequence of the symmetry of the 4-aryl ring, whereas they permit a differentiation between free bases and salts. The HOMO-LUMO gap is smaller for AM than for FL, which suggests smaller energy of excitation for AM. The absolute hardness, chemical potential and electrophilicity of both AM enantiomers are lower than the corresponding values for FL enantiomers, suggesting that AM should be more reactive than FL in unimolecular reactions.

Latosi?ska, J. N.; Latosi?ska, M.; Kasprzak, J.

2008-09-01

38

Rabi resonance in spin systems: theory and experiment.  

PubMed

The response of a magnetic resonance spin system is predicted and experimentally verified for the particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental results demonstrate phenomena not previously observed in magnetic resonance systems, including a secondary resonance condition when the amplitude of the excitation equals the modulation frequency. This secondary resonance produces a relatively large steady state magnetisation with Fourier components at harmonics of the modulation frequency. Experiments are in excellent agreement with the theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework for future developments in NMR spectroscopy and imaging. PMID:24650726

Layton, Kelvin J; Tahayori, Bahman; Mareels, Iven M Y; Farrell, Peter M; Johnston, Leigh A

2014-05-01

39

Rabi resonance in spin systems: Theory and experiment  

NASA Astrophysics Data System (ADS)

The response of a magnetic resonance spin system is predicted and experimentally verified for the particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental results demonstrate phenomena not previously observed in magnetic resonance systems, including a secondary resonance condition when the amplitude of the excitation equals the modulation frequency. This secondary resonance produces a relatively large steady state magnetisation with Fourier components at harmonics of the modulation frequency. Experiments are in excellent agreement with the theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework for future developments in NMR spectroscopy and imaging.

Layton, Kelvin J.; Tahayori, Bahman; Mareels, Iven M. Y.; Farrell, Peter M.; Johnston, Leigh A.

2014-05-01

40

Zero-field NMR and NQR studies of magnetically ordered state in charge-ordered EuPtP  

NASA Astrophysics Data System (ADS)

EuPtP undergoes two valence transitions and has two kinds of valence states of Eu ions at low temperatures. In the charge-ordered state, this compound shows an antiferromagnetic order ascribed to magnetic divalent Eu ions. We investigated the antiferromagnetically ordered state of EuPtP by nuclear magnetic resonance (NMR) measurement and nuclear quadrupole resonance (NQR) measurement in a zero external magnetic field. The observed 153Eu NMR signals of a magnetic divalent state and Eu,153151 NQR signals of a nonmagnetic trivalent state clearly demonstrate that the spins order in the hexagonal basal plane and the internal magnetic field is not canceled out, even at the Eu3 + layers which are in the middle of magnetic Eu2 + layers. In addition, the observation of 31P and 195Pt NMR spectra allowed us to discuss a possible magnetic structure. We also evaluated the nuclear quadrupole frequencies for both Eu2 + and Eu3 + ion states.

Koyama, T.; Maruyama, T.; Ueda, K.; Mito, T.; Mitsuda, A.; Umeda, M.; Sugishima, M.; Wada, H.

2015-03-01

41

A study of hydrogen bond of imidazole and its 4-nitro derivative by ab initio and DFT calculated NQR parameters  

Microsoft Academic Search

Nuclear quadrupole resonance (NQR) parameters of 14N, 2H of N2H groups are calculated for imidazole and 4-nitroimidazole using HF and B3LYP methods. These computations are performed on the basis of X-ray and neutron diffraction structural data which are collected at 100, 103, 123 and 293 K temperatures. In order to take into account intermolecular hydrogen bonds and the van der

S. K. Amini; N. L. Hadipour; F. Elmi

2004-01-01

42

Giant resonances and intermediate energy heavy ions: Electromagnetic decay experiments  

SciTech Connect

We briefly explore how large cross sections for excitation of both isoscalar and isovector giant multipole resonances which can be obtained using intermediate energy heavy-ion reactions can be utilized in photon-decay coincidence experiments to provide new information on subjects ranging from basic nuclear structure properties to resonance damping and pre-compound decay. We also discuss experiments in which photon-decay techniques are used as a tag to isolate and identify very weakly excited modes, enabling us to explore such diverse subjects as hadronic excitation of the giant dipole resonance, the distribution of isovector quadrupole strength in {sup 208}Pb, and the excitation of two-phonon giant resonance strength. 25 refs., 12 figs.

Beene, J.R.; Bertrand, F.E.

1991-01-01

43

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

SciTech Connect

The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral however, changed very little.

Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

2007-02-06

44

Direct Access to Plasma Resonance in Ionospheric Radio Experiments  

Microsoft Academic Search

The concept of linear conversion of radio waves into electrostatic (ES) waves is adapted to ionospheric radio heating experiments. It is identified as access to the plasma resonance through the radio window. By means of existing heating facilities, large concentrations of electrostatic wave energy can be generated. The ES waves are confined to a restricted region in space, horizontally displaced

Einar Mjølhus; Tor FlÅ

1984-01-01

45

Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging  

ERIC Educational Resources Information Center

A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

Seedhouse, Steven J.; Hoffmann, Markus M.

2008-01-01

46

Narcotics and explosives detection by 14N pure nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

1994-03-01

47

Long-term operating experience for the ATLAS superconducting resonators  

SciTech Connect

Portions of the ATLAS accelerator have been operating now for over 21 years. The facility has accumulated several million resonator-hours of operation at this point and has demonstrated the long-term reliability of RF superconductivity. The overall operating performance of the ATLAS facility has established a level of beam quality, flexibility, and reliability not previously achieved with heavy-ion accelerator facilities. The actual operating experience and maintenance history of ATLAS are presented for ATLAS resonators and associated electronics systems. Solutions to problems that appeared in early operation as well as current problems needing further development are discussed.

Pardo, R.; Zinkann, G.

1999-12-21

48

Defective BN Nanotubes: A Density Functional Theory Study of B-11 and N-14 NQR Parameters  

NASA Astrophysics Data System (ADS)

A density functional theory (DFT) study is performed to investigate the influence of structural defects on the electronic structure properties of perfect boron nitride nanotubes (BNNTs). To this aim, as representative models, the single-walled (6,0) BNNT consisting of 36 boron, 36 nitrogen, and 12 hydrogen atoms and the single-walled (4,4) BNNT consisting of 36 boron, 36 nitrogen, and 16 hydrogen atoms are considered. The nuclear quadrupole resonance (NQR) parameters are calculated and compared in two perfect and defective models of the considered BNNTs. The results indicate that due to formation of non-hexagonal rings in the defective model because of removing a B-N bond, the NQR parameters at the sites of first neighbouring nuclei are significantly influenced by imposed perturbation, however, the sites of other nuclei, farther from perturbation, remain almost unchanged. The calculations are performed at the level of the BLYP method and 6-31G* standard basis set using the GAUSSIAN 98 package

Giahi, Masoud; Mirzaei, Mahmoud

2009-04-01

49

Closing supersymmetric resonance regions with direct detection experiments  

SciTech Connect

One of the few remaining ways that neutralinos could potentially evade constraints from direct detection experiments is if they annihilate through a resonance, as can occur if 2m{sub ?{sup 0}} falls within about ?10% of either m{sub A/H}, m{sub h}, or m{sub Z}. Assuming a future rate of progress among direct detection experiments that is similar to that obtained over the past decade, we project that within 7 years the light Higgs and Z pole regions will be entirely closed, while the remaining parameter space near the A/H resonance will require that 2m{sub ?{sup 0}} be matched to the central value (near m{sub A}) to within less than 4%. At this rate of progress, it will be a little over a decade before multi-ton direct detection experiments will be able to close the remaining, highly-tuned, regions of the A/H resonance parameter space.

Kelso, Chris [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

2014-06-24

50

Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations  

NASA Astrophysics Data System (ADS)

Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( ?Q) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

2006-11-01

51

Fabrication of low loss MOMS resonators for quantum optics experiments  

NASA Astrophysics Data System (ADS)

We present the fabrication and characterization of opto-mechanical micro-resonators developed to detect radiation-pressure coupling between light and a macroscopic body. The major achievements of this work are the development of complex high aspect ratio shapes by using the deep-RIE Bosch process and the integration of a high-reflectivity dielectric mirror. The micro-resonators were used as an end-mirror of a Fabry-Perot cavity, attaining an optical finesse of about 6 × 104, and at cryogenic temperature (about 10 K) we measured a mechanical quality factor up to 2 × 106 at about 90 kHz. These features make our devices particularly suitable for experiments on quantum-opto-mechanics.

Serra, E.; Bagolini, A.; Borrielli, A.; Boscardin, M.; Cataliotti, F. S.; Marin, F.; Marino, F.; Pontin, A.; Prodi, G. A.; Vannoni, M.; Bonaldi, M.

2013-08-01

52

Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity  

NASA Astrophysics Data System (ADS)

Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

2013-12-01

53

Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity  

SciTech Connect

Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup ?3}, respectively.

Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin [College of Astronautics, Northwestern Polytechnic University, Xi'an, Shaanxi 710072 (China)] [College of Astronautics, Northwestern Polytechnic University, Xi'an, Shaanxi 710072 (China); Komurasaki, Kimiya [Department of Aeronautics and Astronautics, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8656 (Japan)] [Department of Aeronautics and Astronautics, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8656 (Japan)

2013-12-15

54

An ultra-broadband low-frequency magnetic resonance system.  

PubMed

MR probes commonly employ resonant circuits for efficient RF transmission and low-noise reception. These circuits are narrow-band analog devices that are inflexible for broadband and multi-frequency operation at low Larmor frequencies. We have addressed this issue by developing an ultra-broadband MR probe that operates in the 0.1-3MHz frequency range without using conventional resonant circuits for either transmission or reception. This "non-resonant" approach significantly simplifies the probe circuit and allows robust operation without probe tuning while retaining efficient power transmission and low-noise reception. We also demonstrate the utility of the technique through a variety of NMR and NQR experiments in this frequency range. PMID:24632101

Mandal, S; Utsuzawa, S; Cory, D G; Hürlimann, M; Poitzsch, M; Song, Y-Q

2014-05-01

55

An ultra-broadband low-frequency magnetic resonance system  

NASA Astrophysics Data System (ADS)

MR probes commonly employ resonant circuits for efficient RF transmission and low-noise reception. These circuits are narrow-band analog devices that are inflexible for broadband and multi-frequency operation at low Larmor frequencies. We have addressed this issue by developing an ultra-broadband MR probe that operates in the 0.1-3 MHz frequency range without using conventional resonant circuits for either transmission or reception. This “non-resonant” approach significantly simplifies the probe circuit and allows robust operation without probe tuning while retaining efficient power transmission and low-noise reception. We also demonstrate the utility of the technique through a variety of NMR and NQR experiments in this frequency range.

Mandal, S.; Utsuzawa, S.; Cory, D. G.; Hürlimann, M.; Poitzsch, M.; Song, Y.-Q.

2014-05-01

56

Cyclotron resonance maser experiments in a bifilar helical waveguide Alon Aharony, Rami Drori, and Eli Jerby*  

E-print Network

Cyclotron resonance maser experiments in a bifilar helical waveguide Alon Aharony, Rami Drori 2000 Oscillator and amplifier cyclotron-resonance-maser CRM experiments in a spiral bifilar waveguide, 84.40.Ik, 84.40.Az I. INTRODUCTION Cyclotron resonance masers CRM's and related gyrode- vices

Jerby, Eli

57

Detecting body cavity bombs with nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

Collins, Michael London

58

I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics  

SciTech Connect

NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C{sub 5}H{sub 5}) and Sn({eta}{sup 1}-C{sub 5}H{sub 5}){sub 4}. This work was undertaken in the hope of gaining insight into the intramolecuhrr dynamics, specifically which fluxional processes exist in the solid state, by what mechanism rearrangements are occurring, and the activation energies by which these processes are governed.

Ziegeweid, M.A.

1995-11-29

59

Versatile resonance-tracking circuit for acoustic levitation experiments.  

PubMed

Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems. PMID:18699064

Baxter, K; Apfel, R E; Marston, P L

1978-02-01

60

Magnetic resonance imaging of the female pelvis: initial experience  

SciTech Connect

The potential of magnetic resonance imaging (MRI) was evaluated in 21 female subjects: seven volunteers, 12 patients scanned for reasons unrelated to the lower genitourinary tract, and two patients referred with gynecologic disease. The uterus at several stages was examined; the premenarcheal uterus (one patient), the uterus of reproductive age (12 patients), the postmenopausal uterus (two patients), and in an 8 week pregnancy (one patient). The myometrium and cyclic endometrium in the reproductive age separated by a low-intensity line (probably stratum basale), which allows recognition of changes in thickness of the cyclic endometrium during the menstrual cycle. The corpus uteri can be distinguished from the cervix by the transitional zone of the isthmus. The anatomic relation of the uterus to bladder and rectum is easily outlined. The vagina can be distinguished from the cervix, and the anatomic display of the closely apposed bladder, vagina, and rectum is clear on axial and coronal images. The ovary is identified; the signal intensity from the ovary depends on the acquisition parameter used. Uterine leiomyoma, endometriosis, and dermoid cyst were depicted, but further experience is needed to ascertain the specificity of the findings.

Hricak, H.; Alpers, C.; Crooks, L.E.; Sheldon, P.E.

1983-12-01

61

Opto-mechanical design of vacuum laser resonator for the OSQAR experiment  

NASA Astrophysics Data System (ADS)

This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.

Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Št?pán.; Šulc, Miroslav

2015-01-01

62

Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹?N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.  

PubMed

Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable ? form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline < theobromine < caffeine according to increasing electric field gradient (EFG) at the N(1) and N(7) sites, respectively, reflects the changes in biological activity profile of compounds from the methylxanthines series (different pharmacological effects). This difference is elucidated on the basis of the ability to form intra- and intermolecular interactions (hydrogen bonds and ?···? stacking interactions). The introduction of methyl groups to xanthine restricts the ability of nitrogen atoms to participate in strong hydrogen bonds; as a result, the dominating effect shifts from hydrogen bond (theobromine) to ?···? stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld surface-based approach. The analysis of local environment of the nitrogen nucleus permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given methylxanthine to A1-A(2A) receptor (target for caffeine in the brain). Although the interactions responsible for linking neighboring methylxanthines molecules in crystals and methylxanthines with targets in the human organism can differ significantly, the knowledge of the topology of interactions provides reliable preliminary information about the nature of this binding. PMID:25184363

Latosi?ska, Jolanta Natalia; Latosi?ska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

2014-09-22

63

Downregulation of Na(+)-NQR complex is essential for Vibrio alginolyticus in resistance to balofloxacin.  

PubMed

Increasingly isolated frequency of antibiotic-resistant V. alginolyticus strains in clinic and aquaculture has been reported, but the mechanisms of V. alginolyticus antibiotic resistance are largely absent. In the present study, native/SDS-PAGE based proteomics, which may provide information on protein-protein interaction, was utilized to investigate differential proteins of V. alginolyticus in resistance to balofloxacin. Ten proteins were altered, in which V12G01_04671, V12G01_00457, V12G01_15927, V12G01_15240, NqrA (spot 26), and NqrF (spot 30) were downregulated, while V12G01_22043, TolC, V12G01_15130, V12G01_19297 were upregulated. Importantly, the two components of Na(+)-NQR complex, NqrA and NqrF, were vertically lined and was further investigated. Western blotting assay indicated that downregulation of the two proteins contrasted sharply with upregulation of a control protein TolC, which was consistent with the result obtained from 2-DE gel analysis. Furthermore, overexpression of NqrA, NqrF and TolC resulted in decrease and elevation of bacterial survival ability in medium with balofloxacin, respectively. These results indicate that downregulation of Na(+)-NQR complex is essential for V. alginolyticus resistance to balofloxacin. This is the first report on the role of Na(+)-NQR complex in antibiotic resistance. This finding highlights the way to an understanding of antibiotic-resistant mechanisms in content of metabolic regulation. PMID:22465713

Li, Peipei; Liu, Xianjie; Li, Hui; Peng, Xuan-Xian

2012-05-17

64

Optical control of nuclear resonant absorption: theory and experiment  

E-print Network

Modification of nuclear resonant absorption by means of laser radiation is analyzed both theoretically and experimentally. Theoretical analysis is done on the basis of four-level model of atom. This model includes both electronic and nuclear...

Kolesov, Roman L.

2004-09-30

65

Evidence for low-temperature internal dynamics in Cu 12As 4S 13 according to copper NQR and nuclear relaxation  

NASA Astrophysics Data System (ADS)

63,65Cu nuclear quadrupole resonance (NQR) was applied to study the natural mineral Cu 12As 4S 13 (tennantite) in the temperature range 4.2-210 K. The obtained results point to the presence of field fluctuations caused by internal motions in tennantite. Consistently with the crystal structure, the experimental data can be described by an occurrence of a magnetic phase transition, which takes place near 65 K. The low-temperature phase is characterized by Cu(II) electron magnetic moments freezing in the form of a spin-glass-like constitution.

Gainov, R. R.; Dooglav, A. V.; Pen'kov, I. N.

2006-12-01

66

Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments  

NASA Technical Reports Server (NTRS)

The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

2004-01-01

67

Graph algorithms for NMR resonance assignment and cross-link experiment planning  

E-print Network

of using randomized graph to solve the NMR resonance assignment problem. Without his help, this work could develops such graph representations and algorithms for two novel applications: structure-based NMRGraph algorithms for NMR resonance assignment and cross-link experiment planning Dartmouth Computer

68

Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat  

NASA Technical Reports Server (NTRS)

La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

Borsa, F.; Rigamonti, A.

1991-01-01

69

Enhanced Doppler Effect in the Upper Hybrid Resonance Microwave Backscattering Experiment  

E-print Network

Enhanced Doppler Effect in the Upper Hybrid Resonance Microwave Backscattering Experiment A, Politekhnicheskaya 26, 194021 St.Petersburg, Russia Observations of enhanced Doppler frequency shift effect based on this effect is proposed. 1. INTRODUCTION Investigation of tokamak plasma poloidal rotation

Paris-Sud XI, Université de

70

31P- 19F rotational-echo, double-resonance nuclear magnetic resonance experiment on fluoridated hydroxyapatite  

Microsoft Academic Search

This work demonstrates 31P-19F rotational-echo, double-resonance nuclear magnetic resonance (REDOR NMR), a simple experiment used to measure 31P-19F dipolar couplings. 19F-observed 31P-19F REDOR NMR of fluorapatite revealed the 31P-19F connectivities. 31P-observed 31P-19F REDOR NMR determined the nearest 31P-19F distance in fluorapatite. The application on fluoride-treated hydroxyapatite, the principal inorganic constituent of dental enamel and dentine, showed the formation of fluorohydroxyapatite

Yong Pan

1995-01-01

71

31P-19F rotational-echo, double-resonance nuclear magnetic resonance experiment on fluoridated hydroxyapatite.  

PubMed

This work demonstrates 31P-19F rotational-echo, double-resonance nuclear magnetic resonance (REDOR NMR), a simple experiment used to measure 31P-19F dipolar couplings. 19F-observed 31P-19F REDOR NMR of fluorapatite revealed the 31P-19F connectivities. 31P-observed 31P-19F REDOR NMR determined the nearest 31P-19F distance in fluorapatite. The application on fluoride-treated hydroxyapatite, the principal inorganic constituent of dental enamel and dentine, showed the formation of fluorohydroxyapatite with a surface coverage of less than one unit-cell layer. PMID:9053117

Pan, Y

1995-12-01

72

Laboratory Experiments for Exploring the Surface Plasmon Resonance  

ERIC Educational Resources Information Center

The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…

Pluchery, Olivier; Vayron, Romain; Van, Kha-Man

2011-01-01

73

Idea Bank: A Resonance Tube Experiment Using "Boomwhackers"  

NSDL National Science Digital Library

Bring the "sound of music" to your science classroom--this activity uses the lengths and fundamental frequencies of a set of resonance tubes to verify the expression for the relationship between these two quantities and the value of the speed of sound. Students blow into one end of the boomwhackers and capture the sound onto a computer. Analysis of the resulting waveform provides an excellent introduction to the mathematical relationships between the musical intervals in a scale.

Michael LoPresto

2005-01-01

74

Coexistence of multiple charge-density waves and superconductivity in SrPt2As2 revealed by 75As-NMR /NQR and 195Pt-NMR  

NASA Astrophysics Data System (ADS)

The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.

Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing

2015-02-01

75

Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*  

PubMed Central

The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

2010-01-01

76

Pulsed Bromine-81 Nuclear Quadrupole Resonance Spectroscopy of Brominated Flame Retardants and Associated Polymer Blends.  

NASA Astrophysics Data System (ADS)

The dispersion of brominated flame retardants in polymers is monitored with bromine-81 NQR using a pulse NQR spectrometer. The NQR spectrometer consists of a homemade 10-300 MHz single-channel NMR console coupled to a broadly tunable probe. The probe is a loop-gap resonator usable from 220 to 300 MHz, and automatically tuned over any 5 MHz region with a stepping motor and an RF bidirectional coupler. Bromine-81 NQR spectra of several brominated aromatic flame retardants, as pure materials and in polymers, were recorded in the range of 227 to 256 MHz in zero applied magnetic field. Two factors affect the bromine-79/81 NQR transition frequencies in brominated aromatics: electron withdrawing substituents on the ring and intermolecular contacts with other bromine atoms in the crystal structure. An existing model for substituents is updated and a point charge model for the intermolecular contacts is developed. In this study, we exploit the bromine-81 NQR transition frequency dependence on intermolecular contacts to learn how a flame retardant is dispersed in a polymer matrix.

Mrse, Anthony A.; Lee, Youngil; Bryant, Pamela L.; Fronczek, Frank R.; Butler, Leslie G.; Simeral, Larry S.

1998-03-01

77

Satellites Probing the Alfvénic Resonator Cavity Experiment : SPARC-E  

NASA Astrophysics Data System (ADS)

We discuss a space sensor network that has the objective of understanding and quantitatively understanding the role of low frequency plasma waves in driving ion outflow from the ionosphere to the magnetosphere in the coupled magnetosphere-ionosphere (MI) system. Recently, attention has fallen on the Ionospheric Alfvén Resonator (IAR). The IAR is a cavity-resonator with natural frequencies ~0.1 - 5 Hz in the upper atmosphere, formed with a lower boundary at the conducting E-region and an upper boundary at the Alfvén speed maxima at around 1 earth radius. This cavity resonator is believed to play an important part in the development of perpendicular density and field aligned current (FAC) scales, resonant coupling with electromagnetic ion cyclotron waves that provide loss mechanisms for energetic particles in the radiation belt, and ion and energy outflow feedback mechanisms into the ionosphere. However, the simultaneous multi-point in-situ observations inside the IAR cavity that are needed to categorize observationally how the waves and density structures evolve have never been made. Validation of IAR models at low altitude would benefit from satellite measurements in the topside ionosphere. At assumed F-region altitudes of 200-400 km, optimal data will be obtained if the (unambiguous) spatial and temporal resolution of measurements is better than the expected phenomenon scales; this would require simultaneous in-situ measurements separated by spatial scales from as small as 100 m up to on the order of a few km, at up to ~1 s cadence. Remote imaging techniques integrate over the ionosphere within volumes that have scale sizes of several tens of km, and are thus unsuitable for determining the smaller spatial scales that are proposed in this study. Sensors on a single satellite taking point measurements suffer from an inherent inability to distinguish spatial and temporal effects, which is a strong requirement for unambiguously studying waves. An absolute minimum of four satellites in an out-of-plane constellation is required to unambiguously resolve space and time effects in the ambient region. The proposed SPARC-E mission consists of plasma sensors measuring electron temperature and density placed on eight satellites in similar orbits between 300 and 800 km. Inter-satellite separations increase over the lifetime of the mission from a few cm to tens of km. The mission concept is to deploy ten wirelessly-linked, very small satellites to take distributed, in-situ measurements of ionospheric plasma density and temperature in the IAR cavity. A high-latitude circular orbit (>60 degree inclination, ~350-800 km altitude) allows sensor satellites to enter and exit the IAR cavity region of interest and thus acquire both baseline and disturbed measurements. The constellation will not be maintained, but rather be launched together and allowed to disperse naturally due to orbital perturbations. Orbit control is not required or desired, as the natural perturbations will serve to alter the separation and lower the altitude over time without adding the complexity and overhead of a propulsion subsystem. We will describe details of the overall mission concept to include the payload, spacecraft bus, and mission operations.

Dearborn, M. E.; Balthazor, R. L.; McHarg, M. G.; Huffman, J. J.

2009-12-01

78

A resonance phenomenon observed in a swept frequency experiment on a mother-daughter ionospheric rocket  

NASA Technical Reports Server (NTRS)

The report presents observations obtained in a swept frequency experiment conducted in a mother-daughter rocket flight at auroral latitudes. The discussion is essentially restricted to the possible interpretation of the experimental signal structures noted at and in the vicinity of a resonance frequency where signal components apparently are generated by nonlinear mechanisms. Various resonance frequencies have been considered in attempts to identify this multichannel response frequency. It is concluded that of all the possibilities invoked, the best consistency is provided by identifying the frequency concerned with the cone resonance frequency demonstrated experimentally in the case of a laboratory plasma by Fisher and Gould (1971).

Folkestad, K.; Troim, J.

1974-01-01

79

Vibrate... Resonate... Quicken the Educational Experience into Intensest Life  

ERIC Educational Resources Information Center

In the quest for more effective education, how can direct personal engagement with actual aesthetic experiences--attendance of performances, participation in artistic workshops and activities, and viewing of actual artworks--play an important role? Art educators have a tremendous opportunity to guide students to engage mind, body, and soul--until…

Chin, Christina

2011-01-01

80

Safety Guidelines for Conducting Magnetic Resonance Imaging (MRI) Experiments Involving  

E-print Network

Risks 7 Risk Management 14 Emergencies 18 Contact With Body Fluids 20 Visitors 20 Summary of Safety-certified scanner operator. Since there is much more limited help or support available outside normal working hours, operators are expected to have a acquired considerable experience running the scanners during normal working

Squire, Larry R.

81

Solid-State NMR/NQR and First-Principles Study of Two Niobium Halide Cluster Compounds  

E-print Network

1 Solid-State NMR/NQR and First-Principles Study of Two Niobium Halide Cluster Compounds Berislav : 10.1016/j.ssnmr.2014.02.001 #12;2 Abstract Two hexanuclear niobium halide cluster compounds solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were

Boyer, Edmond

82

Resonant scattering experiments with radioactive nuclear beams - Recent results and future plans  

SciTech Connect

Resonant scattering with low-energy radioactive nuclear beams of E < 5 MeV/u have been studied at CRIB of CNS and at RIPS of RIKEN. As an extension to the present experimental technique, we will install an advanced polarized proton target for resonant scattering experiments. A Monte-Carlo simulation was performed to study the feasibility of future experiments with the polarized target. In the Monte-Carlo simulation, excitation functions and analyzing powers were calculated using a newly developed R-matrix calculation code. A project of a small-scale radioactive beam facility at Kyushu University is also briefly described.

Teranishi, T.; Sakaguchi, S. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 (Japan); Uesaka, T.; Kubono, S.; Wakabayashi, Y. [RIKEN Nishina Center, 2-1 Hirosawa Wako, Saitama 351-0198 (Japan); Yamaguchi, H.; Kurihara, Y.; Bihn, D. N.; Kahl, D.; Watanabe, S. [Center for Nuclear Study (CNS), University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Center for Nuclear Study (CNS), University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan and Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Center for Nuclear Study (CNS), University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan and Istituto Nazionale di Fisica Nucleare, Laboratori Nationali del Sud (INFN-LNS), via S.Sofia 62, Catania, 95125 (Italy); Khiem, L. H.; Cuong, P. V. [Institute of Physics, Vietnam Academy for Science and Technology, 10 Daotan, Badinh, Hanoi (Viet Nam); Goto, A. [RIKEN Nishina Center, 2-1 Hirosawa Wako, Saitama 351-0198, Japan and National Insitute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Chiba-shi, 263-8555 (Japan)

2013-04-19

83

Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements  

SciTech Connect

The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility ? and the T dependence of 1/T1T?, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

Furukawa, Yuji [Ames Laboratory; Roy, Beas [Ames Laboratory; Ran, Sheng [Ames Laboratory; Budko, Sergey L. [Ames Laboratory; Canfield, Paul C. [Ames Laboratory

2014-03-20

84

Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors  

SciTech Connect

Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

1998-06-01

85

Effect of Electric and Magnetic Fields on Spin Dynamics in the Resonant Electric Dipole Moment Experiment  

E-print Network

A buildup of the vertical polarization in the resonant electric dipole moment (EDM) experiment [Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)] is affected by a horizontal electric field in the particle rest frame oscillating at a resonant frequency. This field is defined by the Lorentz transformation of an oscillating longitudinal electric field and a uniform vertical magnetic one. The effect of a longitudinal electric field is significant, while the contribution from a magnetic field caused by forced coherent longitudinal oscillations of particles is dominant. The effect of electric field on the spin dynamics was not taken into account in previous calculations. This effect is considerable and leads to decreasing the EDM effect for the deuteron and increasing it for the proton. The formula for resonance strengths in the EDM experiment has been derived. The spin dynamics has been calculated.

Alexander J. Silenko

2007-10-02

86

Density functional calculations of 14N and 11B NQR parameters in the H-capped (6,0) and (4,4) single-walled BN nanotubes  

NASA Astrophysics Data System (ADS)

Density functional theory (DFT) calculations were performed to calculate nitrogen-14 and boron-11 nuclear quadrupole resonance (NQR) spectroscopy parameters in the representative considered models of zigzag and armchair boron nitride nanotubes (BNNTs) for the first time. The considered models consisting of 1 nm length of H-capped (6,0) and (4,4) single-walled BNNT were first allowed to fully relax and then the NQR calculations were performed on the geometrically optimized models. The evaluated nuclear quadrupole coupling constants and asymmetry parameters for the mentioned nuclei reveal that the considered models can be divided into four layers of nuclei with an equivalent electrostatic environment where those nuclei at the ends of tubes have a very strong electrostatic environment compared to the other nuclei along the length of tubes. Those nuclei at the center of the tube length also have an equivalent electrostatic environment. The calculations were performed based on the B3LYP DFT method and 6-311G** and 6-311++G** standard basis sets using the Gaussian 98 package of program.

Mirzaei, Mahmoud; Hadipour, Nasser L.

2008-02-01

87

Low-frequency nuclear quadrupole resonance with a dc SQUID  

SciTech Connect

Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

Chang, J.W.

1991-07-01

88

Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR  

SciTech Connect

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. The authors will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in their laboratory. In particular, they will deal with Knight shift and relaxation studies of copper and oxygen. They will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

Brinkmann, D.

1995-04-01

89

Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR  

NASA Technical Reports Server (NTRS)

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

Brinkmann, D.

1995-01-01

90

Resonance  

NSDL National Science Digital Library

All About Circuits is a website that â??provides a series of online textbooks covering electricity and electronics.â? Written by Tony R. Kuphaldt, the textbooks available here are wonderful resources for students, teachers, and anyone who is interested in learning more about electronics. This specific section, Resonance, is the sixth chapter in the Volume II textbook. Topics covered in this chapter include: electric pendulum, simple parallel resonance, simple series resonance, resonance in series-parallel circuits, and Q and bandwidth of a resonant circuit. Diagrams and detailed descriptions of concepts are included throughout the chapter to provide users with a comprehensive lesson. Visitors to the site are also encouraged to discuss concepts and topics using the All About Circuits discussion forums (registration with the site is required to post materials).

Kuphaldt, Tony R.

91

Enhanced Doppler Effect in the Upper Hybrid Resonance Microwave Backscattering Experiment  

E-print Network

Observations of enhanced Doppler frequency shift effect of the highly localized microwave backscattering in the upper hybrid resonance are reported. The experiment is performed at FT-2 tokamak, where a steerable focusing antenna set, allowing off equatorial plane plasma extraordinary wave probing from high magnetic field side, was installed. A separate line less than 1.5 MHz wide and shifted by up to 2 MHz is routinely observed in the backscattering spectrum under condition of accessible upper hybrid resonance. The enhanced frequency shift is explained by the growth of poloidal wave number of the probing wave in the resonance. The new scheme for local diagnostics of fluctuations poloidal rotation based on this effect is proposed.

Altukhov, A B; Gurchenko, A D; Gusakov, E Z; Lashkul, S I; ccsd-00003066, ccsd

2004-01-01

92

Genomic Plasticity of the rrn-nqrF Intergenic Segment in the Chlamydiaceae?  

PubMed Central

In Chlamydiaceae, the nucleotide sequence between the 5S rRNA gene and the gene for subunit F of the Na+-translocating NADH-quinone reductase (nqrF or dmpP) has varied lengths and gene contents. We analyzed this site in 45 Chlamydiaceae strains having diverse geographical and pathological origins and including members of all nine species. PMID:17158668

Liu, Zhi; Rank, Roger; Kaltenboeck, Bernhard; Magnino, Simone; Dean, Deborah; Burall, Laurel; Plaut, Roger D.; Read, Timothy D.; Myers, Garry; Bavoil, Patrik M.

2007-01-01

93

35Cl NQR spectra of certain chlorine-containing chromium compounds  

NASA Astrophysics Data System (ADS)

The coordination of chlorobenzene to Cr(CO)3 and ClC6H5Cr+ fragments is shown to result in a considerable rise in the NQR frequency of chlorine atoms. The field constant in (chlorobenzene)chromium tricarbonyl was found to grow markedly, relative to pure chlorobenzene.

Kuznetsov, S. I.; Bryukhova, E. V.; Semin, G. K.

2015-03-01

94

Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments  

E-print Network

When used in Electron-Spin Resonance (ESR) measurements, superconducting thin-film resonators must be precisely oriented relative to the external magnetic field in order to prevent the trapping of magnetic flux and the associated degradation of resonator performance. We present a compact design solution for this problem that allows in-situ control of the orientation of the resonator at cryogenic temperatures. Tests of the apparatus show that when proper alignment is achieved, there is almost no hysteresis in the field dependence of the resonant frequency.

Mowry, Andrew; Kuabsek, James; Friedman, Jonathan R

2015-01-01

95

Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments  

NASA Astrophysics Data System (ADS)

When used in electron-spin resonance measurements, superconducting thin-film resonators must be precisely oriented relative to the external magnetic field in order to prevent the trapping of magnetic flux and the associated degradation of resonator performance. We present a compact design solution for this problem that allows in-situ control of the orientation of the resonator at cryogenic temperatures. Tests of the apparatus show that when proper alignment is achieved, there is almost no hysteresis in the field dependence of the resonant frequency.

Mowry, Andrew; Chen, Yiming; Kubasek, James; Friedman, Jonathan R.

2015-01-01

96

Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments.  

PubMed

When used in electron-spin resonance measurements, superconducting thin-film resonators must be precisely oriented relative to the external magnetic field in order to prevent the trapping of magnetic flux and the associated degradation of resonator performance. We present a compact design solution for this problem that allows in-situ control of the orientation of the resonator at cryogenic temperatures. Tests of the apparatus show that when proper alignment is achieved, there is almost no hysteresis in the field dependence of the resonant frequency. PMID:25638103

Mowry, Andrew; Chen, Yiming; Kubasek, James; Friedman, Jonathan R

2015-01-01

97

Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat  

NASA Technical Reports Server (NTRS)

La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

Borsa, F.; Rigamonti, A.

1990-01-01

98

A Mechanical Analog of the Two-bounce Resonance of Solitary Waves: Modeling and Experiment  

E-print Network

We describe a simple mechanical system, a ball rolling along a specially-designed landscape, that mimics the dynamics of a well known phenomenon, the two-bounce resonance of solitary wave collisions, that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to verify one aspect of chaotic scattering, the so-called two-bounce resonance.

Roy H. Goodman; Aminur Rahman; Michael Bellanich; Catherine Morrision

2015-03-28

99

Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment  

SciTech Connect

By applying a two-dimensional double-quantum carbon-13 nuclear magnetic resonance experiment to a protein uniformly enriched to 26% carbon-13, networks of directly bonded carbon atoms were identified by virtue of their one-bond spin-spin couplings and were classified by amino acid type according to their particular single- and double-quantum chemical shift patterns. Spin systems of 75 of the 98 amino acid residues in a protein, oxidized Anabaena 7120 ferredoxin (molecular weight 11,000), were identified by this approach, which represents a key step in an improved methodology for assigning protein nuclear magnetic resonance spectra. Missing spin systems corresponded primarily to residues located adjacent to the paramagnetic iron-sulfur cluster. 25 references, 2 figures.

Oh, B.H.; Westler, W.M.; Darba, P.; Markley, J.L.

1988-05-13

100

Numerical experiment and analysis of the differential acoustic resonance spectroscopy for elastic property measurements  

NASA Astrophysics Data System (ADS)

Differential acoustic resonance spectroscopy (DARS) was recently developed to estimate the elastic parameters of rock samples with a resonant frequency perturbation caused by a test sample at kilohertz frequency. In the derivation of the DARS theory, the wave inside the cavity is assumed to be a harmonic acoustic plane wave, which may be a source of measurement errors. A simulation program may help researchers to understand the mechanism of this device and to find out whether the assumption in the theory derivation is correct. In this paper, we develop a simulation program based on the elastic wave equation in cylindrical coordinates, and model the DARS system. The modeled power spectrum agrees well with that obtained by the laboratory measurement. An analysis of the wave field snapshots and the pressure distribution curves shows that the standing wave inside the cavity along its long axis is asymmetrical. This study also investigates the relationships between the resonant frequencies and the density, the compressibility and the P-wave and S-wave velocities of the samples. By numerical experiments, this paper finds that only the compressibility can be estimated with the resonant frequency, when the sample is located at the velocity node. But when the sample is located at other positions, the P-wave and S-wave velocities can alter the shape of the vibration curve, though they have no impact on the resonant power spectrum. This implies that it may be possible to estimate the P-wave and S-wave velocities by using the full waveform of the vibration curve.

Dong, Chunhui; Wang, Shangxu; Zhao, Jianguo; Tang, Genyang

2013-10-01

101

Polarization-Operator Formalism Description of the Off-Resonance ROSEY Experiment  

NASA Astrophysics Data System (ADS)

Polarization-operator formalism was used to describe the behavior of spin- {1}/{2} homonuclear off-resonance spin-lock effects occurring in the ROESY experiment. The weak-collision case was assumed. Direct- and cross-relaxation rate constants representing Toff1?- and Toff2?-relaxation processes were evaluated. Off-resonance effects associated with the ROESY experiment were accommodated in the formalism by the inclusion of Toff1? relaxation. ROE contributions dominate the cross-relaxation rate when the tilt angle (?) of the effective field (relative to the static B0 field) in the rotating frame approaches 90°, whereas when ? becomes small, NOE contributions predominate. Consequently, a continuous change in the tilt angle of the effective field from 90° to 0° results in a smooth spectral change characteristic of a ROESY to NOESY transition and may be implemented experimentally by the O-ROESY pulse sequence [K. Kuwata and T. Schleich, J. Magn. Reson. A111, 43 (1994)]. Applications of the formalism include the analysis of off-resonance spin-lock effects arising in the O-ROESY experiment, namely, the dependence of cross-peak intensity on RF offset frequency, thereby enabling assessment of macromolecular motional parameters and internuclear separation distance from the cross-peak intensity dispersion behavior. Simplified expressions for the cross- and direct-relaxation rate constants in the rotating frame were derived from the exact formalism using the approximation ? e? c ? 1, which provided virtually identical numerical results to those of the exact formalism. For the case of interacting spin- {1}/{2} nuclei with similar chemical-shift values, the formalism demonstrates, in accordance with other studies, that particular tilt angles of the effective field may be selected to enable suppression of cross relaxation (? = 35.3°) for slowly reorienting macromolecules, or the constraining of the direct- to cross-relaxation-rate-constant ratio to 0.5 at all values of ? e? c (? = 54.7°). However, at relatively large values of the chemical-shift difference between the interacting spins, these rules do not rigorously apply. Analogous behavior was observed for simulations of the normalized cross-peak intensity vs off-resonance irradiation frequency.

Kuwata, K.; Schleich, T.

102

M dependence in the analysis of NH3-He microwave double resonance experiments  

NASA Technical Reports Server (NTRS)

New close-coupled calculations of laboratory-frame, m-dependent cross sections for rotational excitation in NH3-He collisions are used to examined the validity of using degeneracy averaged values in the analysis of four-level double resonance experiments. It is found that the proper use of m-dependent cross sections and absorption probabilities produces only minor changes in the calculated Delta I/I (the fractional change in the signal absorption intensity when pumping radiation is applied) and does not, therefore, resolve the discrepancies between theoretical and experimental values that were noted in previous studies.

Davis, S. L.; Green, S.

1983-01-01

103

Resonant X-ray Scattering Experiments on the Ordering of Electronic Degrees of Freedom  

NASA Astrophysics Data System (ADS)

Resonant X-ray scattering (RXS) has been developed as a powerful technique for observing orderings of electronic degrees of freedom: charge, spin, orbital, and multipoles. After a brief introduction of the RXS technique, we review some RXS experiments on the orderings in d and f electron systems with a strong correlation between electrons. The basic concept of RXS and the recent developments of the technique are described in this review paper. We also present future prospects of the studies using RXS for users.

Matsumura, Takeshi; Nakao, Hironori; Murakami, Youichi

2013-02-01

104

First results of an auxiliary electron cyclotron resonance heating experiment in the GDT magnetic mirror  

NASA Astrophysics Data System (ADS)

The axially symmetric magnetic mirror device gas-dynamic trap (GDT, Budker Institute, Novosibirsk) has recently demonstrated a tangible increase in plasma electron temperature. According to laser scattering, a value of 0.4 keV has been achieved (a twofold increase). In addition to standard machine operation, utilizing a 5 MW neutral beam injection, a newly installed electron cyclotron resonance heating (ECRH) system was employed (54.5 GHz, 0.4 MW). The reported progress in electron temperature, along with previous experiments, which demonstrated plasma confinement at beta as high as 60%, is a significant advancement towards an energy efficient fusion neutron source based on GDT physics.

Bagryansky, P. A.; Kovalenko, Yu. V.; Savkin, V. Ya.; Solomakhin, A. L.; Yakovlev, D. V.

2014-08-01

105

A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range  

NASA Astrophysics Data System (ADS)

Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50–100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300?MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ? 20?dB between 90–145?MHz and 74.5–99.5?MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20?dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

2014-12-01

106

35Cl NQR Spectra of several 2,2-bis- p-chlorophenyl chloroethane derivatives  

NASA Astrophysics Data System (ADS)

Measurement of NQR line frequency at 77 K have been performed for the following compounds: 1-chloro-2,2-bis-(p-chlorophenyl) ethylene (DDMU), 1,1-dichloro-2,2-bis-(p-chlorophenyl) ethylene (DDE), 1,1-dichloro-2,2-bis-(p-chlorophenyl) ethane (ODD), 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT). An attempt to assign spectrum lines to particular Cl nuclei in a molecule has been made. Molecular and crystallographic inequivalences occurring in these compounds have been considered. Comparison of the NQR and crystallographic data revealed the influence of phenyl rings conformation on electric charge distribution in the studied molecules.

Nogaj, B.; Pietrzak, J.; Wielopolska, E.; Schroeder, G.; Jarczewski, A.

107

Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity  

NASA Astrophysics Data System (ADS)

The sensitivities of a number of gradient and nongradient versions of triple-resonance experiments are compared by quantitating the signal-to-noise ratios in spectra recorded on Cellulomonas fimi cellulose binding domain (110 amino acids), Xenopus laevis calmodulin (148 amino acids), Mycococcus xanthus protein S (173 amino acids), and a 93-amino acid fragment of protein S. It is shown that it is possible to construct sensitivity-enhanced gradient experiments, with 15N selection achieved via pulsed field gradients, that are as sensitive as their sensitivity-enhanced nongradient counterparts and significantly more sensitive than other gradient approaches. These sequences are very closely related to the family of improved-sensitivity sequences proposed by Rance and co-workers (A. G. Palmer, J. Cavanagh, P. E. Wright, and M. Rance, J. Magn. Reson.93, 151, 1991). The use of gradients greatly improves the quality of water suppression and reduces both the number of artifacts and the phase-cycling requirements at no cost in sensitivity for the proteins considered in this study.

Muhandiram, D. R.; Kay, L. E.

108

Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments  

PubMed Central

Structural measurements in magic-angle-spinning (MAS) solid-state NMR rely heavily on 13C-13C distance measurements. Broadbanded recoupling methods are used to generate many cross-peaks, but have complex polarization transfer mechanisms that limit the precision of distance constraints and can suffer from weak intensities for distant peaks due to relaxation, the broad distribution of polarization, as well as dipolar truncation. Frequency-selective methods that feature narrow-banded recoupling can reduce these effects. Indeed, rotational resonance (R2) experiments have found application in many different biological systems, where they have afforded improved precision and accuracy. Unfortunately, a highly selective transfer mechanism also leads to few cross-peaks in the resulting spectra, which complicates the extraction of multiple constraints. R2-width (R2W) measurements that scan a range of MAS rates to probe the R2 matching conditions of one or more sites can improve precision, and also permit multiple simultaneous distance measurements. Unfortunately, multidimensional R2W can be very time-consuming. Here, we present an approach that facilitates the acquisition of 2D-like spectra based on a series of 1D R2W experiments, by taking advantage of the chemical shift information encoded in the MAS rates where matching occurs. This yields a more time-efficient experiment with many of the benefits of more conventional multidimensional R2W measurements. The obtained spectra reveal long-distance 13C-13C cross-peaks resulting from R2-mediated polarization transfer. This experiment also enables the efficient setup and targeted implementation of traditional R2 or R2W experiments. Analogous applications may extend to other variable-MAS and frequency-selective solid-state NMR experiments. PMID:23475055

Li, Jun; van der Wel, Patrick C. A.

2013-01-01

109

Optimization of capacitive acoustic resonant sensor using numerical simulation and design of experiment.  

PubMed

Optimization of the acoustic resonant sensor requires a clear understanding of how the output responses of the sensor are affected by the variation of different factors. During this work, output responses of a capacitive acoustic transducer, such as membrane displacement, quality factor, and capacitance variation, are considered to evaluate the sensor design. The six device parameters taken into consideration are membrane radius, backplate radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of factors on the output responses of the transducer are investigated using an integrated methodology that combines numerical simulation and design of experiments (DOE). A series of numerical experiments are conducted to obtain output responses for different combinations of device parameters using finite element methods (FEM). Response surface method is used to identify the significant factors and to develop the empirical models for the output responses. Finally, these results are utilized to calculate the optimum device parameters using multi-criteria optimization with desirability function. Thereafter, the validating experiments are designed and deployed using the numerical simulation to crosscheck the responses. PMID:25894937

Haque, Rubaiyet Iftekharul; Loussert, Christophe; Sergent, Michelle; Benaben, Patrick; Boddaert, Xavier

2015-01-01

110

A tetrode based fast pulsed microwave source for electron cyclotron resonance breakdown experiments  

SciTech Connect

To study electron cylotron resonance (ECR) breakdown and afterglow plasma in an experimental linear plasma system, a pulsed microwave source with rapid rise and fall of microwave power is desired. A pulsed microwave source with fast rise and fall capability for ECR breakdown experiments has been designed and tested for performance in the system. A tetrode, controlled by a modulator card, is used as a fast switch to initiate microwave power from a conventional magnetron operating at 2.45 GHz. The typical rise time of microwave power is {approx}3 {mu}s and a fall time of {approx}10 {mu}s. Using this scheme in a realistic pulsed microwave source at 800 W power, ECR breakdown of neutral gas is achieved and the plasma delay and fall time are observed from the plasma density measurements using a Langmuir probe. The design details of the fast rise pulsed microwave source are presented in this article with initial experimental results.

Yadav, Vipin K.; Sathyanarayana, K.; Purohit, D.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat - 382 428 (India)

2007-02-15

111

Absolute measurement of thermal noise in a resonant short-range force experiment  

NASA Astrophysics Data System (ADS)

Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10-21 J, is in agreement with the expected value of 1/2{{k}B}T.

Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

2014-10-01

112

The design, fabrication, and testing of beryllium capsules for resonant ultrasound experiments  

SciTech Connect

Inertial Confinement Fusion (ICF) ignition targets require smooth and well-characterized deuterium/tritium (DT) ice layers. Los Alamos is developing Resonant Ultrasound Spectroscopy (RUS) to measure the internal pressure in the targets at room temperature after filling with DT. RUS techniques also can detect and measure the amplitudes of low modal surface roughness perturbations of the target shell interior. The experiments required beryllium capsules with a nominal inside radius of 1 mm and a spherical outside radius of 3 mm. The capsules have various spherical harmonic contours up to mode 12 machined into their interior surfaces. The capsules are constructed from hemispheres using an epoxy adhesive and then filled to {approximately}270 atm with helium or deuterium gas. This paper describes the adhesive joint design, machining techniques, and interior geometry inspection techniques. It also describes the fixtures needed to assemble, fill, and pressure test the capsules.

Salazar, M.A.; Salzer, L.; Day, R. [Los Alamos National Lab., NM (United States)

1999-03-01

113

Absolute measurement of thermal noise in a resonant short-range force experiment  

E-print Network

Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite element model. The measured average kinetic energy is in agreement with the expected value of 1/2 kT.

H. Yan; E. A. Housworth; H. O. Meyer; G. Visser; E. Weisman; J. C. Long

2014-10-23

114

Robust optimal design of diffusion-weighted magnetic resonance experiments for skin microcirculation  

NASA Astrophysics Data System (ADS)

Skin microcirculation plays an important role in several diseases including chronic venous insufficiency and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be coupled with advances in data acquisition schemes. In this article, we first introduce a physical model for quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion model for skin leading to a q-space model of the DWMR complex signal, and then design the corresponding robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of our approach as compared to conventional DWMR protocols.

Choi, J.; Raguin, L. G.

2010-10-01

115

Variable-Pitch Rectangular Cross-section Radiofrequency Coils for the Nitrogen-14 Nuclear Quadrupole Resonance Investigation of Sealed Medicines Packets  

PubMed Central

The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis. PMID:23057555

2012-01-01

116

Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance  

PubMed Central

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

2014-01-01

117

Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.  

PubMed

The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ?nqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ?nqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ?nqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

2014-01-01

118

Mixed radiation field dosimetry utilizing Nuclear Quadrupole Resonance  

SciTech Connect

This project has proposed to develop a novel dosimetry system that is capable of directly evaluating the chemical/biological damage caused by neutrons, photons, or both in a single measurement. The dosimeter itself will consist of a small volume of biological equivalent material that is probed for radiation damage with Nuclear Quadrupole Resonance (NQR) techniques. NQR has previously been utilized as a sensitive probe of structural and chemical changes at the molecular level for a variety of organic compounds. The biological equivalent materials used in this study will not only have a density similar to tissue (tissue equivalent) but will have the same atomic components as tissue. This is a significant requirement if the important neutron interactions that occur in tissue are to occur in the dosimeter as well. The overall objective of this study is to investigate a methodology to perform accurate mixed-field (neutron and photon) dosimetry for biological systems.

Hintenlang, D.

1991-01-01

119

Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments  

NASA Astrophysics Data System (ADS)

In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

Lerche, E.; Van Eester, D.; Ongena, J.; Mayoral, M.-L.; Laxaback, M.; Rimini, F.; Argouarch, A.; Beaumont, P.; Blackman, T.; Bobkov, V.; Brennan, D.; Brett, A.; Calabro, G.; Cecconello, M.; Coffey, I.; Colas, L.; Coyne, A.; Crombe, K.; Czarnecka, A.; Dumont, R.; Durodie, F.; Felton, R.; Frigione, D.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Graham, M.; Hellesen, C.; Hellsten, T.; Huygen, S.; Jacquet, P.; Johnson, T.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lamalle, P.; Lennholm, M.; Loarte, A.; Maggiora, R.; Maslov, M.; Messiaen, A.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Sozzi, C.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Vrancken, M.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

2011-12-01

120

Magnetic Resonance Imaging in Multiple Sclerosis – Patients' Experiences, Information Interests and Responses to an Education Programme  

PubMed Central

Background Magnetic resonance imaging (MRI) is a key diagnostic and monitoring tool in multiple sclerosis (MS) management. However, many scientific uncertainties, especially concerning correlates to impairment and prognosis remain. Little is known about MS patients' experiences, knowledge, attitudes, and unmet information needs concerning MRI. Methods We performed qualitative interviews (n?=?5) and a survey (n?=?104) with MS patients regarding MRI patient information, and basic MRI knowledge. Based on these findings an interactive training program of 2 hours was developed and piloted in n?=?26 patients. Results Interview analyses showed that patients often feel lost in the MRI scanner and left alone with MRI results and images while 90% of patients in the survey expressed a high interest in MRI education. Knowledge on MRI issues was fair with some important knowledge gaps. Major information interests were relevance of lesions as well as the prognostic and diagnostic value of MRI results. The education program was highly appreciated and resulted in a substantial knowledge increase. Patients reported that, based on the program, they felt more competent to engage in encounters with their physicians. Conclusion This work strongly supports the further development of an evidence-based MRI education program for MS patients to enhance participation in health-care. PMID:25415501

Brand, Judith; Köpke, Sascha; Kasper, Jürgen; Rahn, Anne; Backhus, Imke; Poettgen, Jana; Stellmann, Jan-Patrick; Siemonsen, Susanne; Heesen, Christoph

2014-01-01

121

Experiments with biased side electrodes in electron cyclotron resonance ion sources  

E-print Network

The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses.One route towards a solution consists of attacking the losses in directions (i.e., radial directions) that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six side electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable,...

Drentje, A G; Uchida, T; Rácz, R; Biri, S

2015-01-01

122

Experiments with biased side electrodes in electron cyclotron resonance ion sources  

SciTech Connect

The output of highly charged ions from an electron cyclotron resonance ion source (ECRIS) consists of ionic losses from a highly confined plasma. Therefore, an increase of the output of the ions of interest always is a compromise between an increase in the confinement and an increase of the losses. One route towards a solution consists of attacking the losses in directions – i.e., radial directions – that do not contribute to the required output. This was demonstrated in an experiment (using the Kei ECRIS at NIRS, Japan) where radial losses were electrostatically reduced by positively biasing one set of six “side” electrodes surrounding the plasma in side-ward directions attached (insulated) to the cylindrical wall of the plasma chamber. Recently new studies were performed in two laboratories using two essentially different ion sources. At the BioNano ECRIS (Toyo University, Japan) various sets of electrodes were used; each of the electrodes could be biased individually. At the Atomki ECRIS (Hungary), one movable, off-axis side electrode was applied in technically two versions. The measurements show indeed a decrease of ionic losses but different effectivities as compared to the biased disk.

Drentje, A. G., E-mail: a.g.drentje@rug.nl; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)] [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi 350-8585 (Japan)] [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe-shi 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), H-2026 Debrecen, Bem ter 18/c (Hungary)] [Institute for Nuclear Research (Atomki), H-2026 Debrecen, Bem ter 18/c (Hungary)

2014-02-15

123

Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade  

SciTech Connect

A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

Falabella, S.

1988-05-11

124

Ru-NQR Study for Novel Phase Transition in CeRu2Al10  

NASA Astrophysics Data System (ADS)

We have performed Ru-NQR measurements on CeRu2Al10 exhibiting novel phase transition at an abnormally high temperature T0 = 27.3 K and on NdRu2Al10 with a magnetic transition temperature Tm = 2.4 K as a reference RKKY system. The splitting of the NQR line due to internal fields below T0 shows a mean-field-like monotonic increase, indicating no change in the magnetic structure below T0. The internal field strength is one order larger than those at Al sites in CeRu2Al10, and is comparable to that at the Ru site in NdRu2Al10 despite the sevenfold smaller magnitude of the 4f moment, being indicative of an enhanced conduction electron polarization at the Ru site. One of the causes of the high T0 might be the enhanced exchange coupling through the Ce–Ru–Ce path mediated by the enhanced conduction electron polarization. Being similar to that in the Al site, the nuclear spin–lattice relaxation rate 1/T1 shows a gap-like decrease below T0 without enhancement owing to a critical slowing down at T0, in contrast to the mean field 2nd-order transition.

Matsumura, Masahiro; Tomita, Naoya; Matsuoka, Junichirou; Kishimoto, Yasuki; Kato, Harukazu; Kitagawa, Kentaro; Nishioka, Takashi; Tanida, Hiroshi; Sera, Masafumi

2014-10-01

125

A mutation in Na(+)-NQR uncouples electron flow from Na(+) translocation in the presence of K(+).  

PubMed

The sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a bacterial respiratory enzyme that obtains energy from the redox reaction between NADH and ubiquinone and uses this energy to create an electrochemical Na(+) gradient across the cell membrane. A number of acidic residues in transmembrane helices have been shown to be important for Na(+) translocation. One of these, Asp-397 in the NqrB subunit, is a key residue for Na(+) uptake and binding. In this study, we show that when this residue is replaced with asparagine, the enzyme acquires a new sensitivity to K(+); in the mutant, K(+) both activates the redox reaction and uncouples it from the ion translocation reaction. In the wild-type enzyme, Na(+) (or Li(+)) accelerates turnover while K(+) alone does not activate. In the NqrB-D397N mutant, K(+) accelerates the same internal electron transfer step (2Fe-2S ? FMNC) that is accelerated by Na(+). This is the same step that is inhibited in mutants in which Na(+) uptake is blocked. NqrB-D397N is able to translocate Na(+) and Li(+), but when K(+) is introduced, no ion translocation is observed, regardless of whether Na(+) or Li(+) is present. Thus, this mutant, when it turns over in the presence of K(+), is the first, and currently the only, example of an uncoupled Na(+)-NQR. The fact the redox reaction and ion pumping become decoupled from each other only in the presence of K(+) provides a switch that promises to be a useful experimental tool. PMID:25486106

Shea, Michael E; Mezic, Katherine G; Juárez, Oscar; Barquera, Blanca

2015-01-20

126

Frequency Response of an Air Resonance Tube--Some Computer-Interfaced Experiments.  

ERIC Educational Resources Information Center

Describes a measurement system for recording the frequency response of acoustic systems. The computer interface detects the characteristic modes, their relative strengths, and resonant shapes over a broad range of frequencies. Includes experimental data for tubes and analyzes the data to determine the optimal functional form for the resonant…

Jolly, Pratibha; And Others

1993-01-01

127

Isomorphism and disorder in o-chlorohalobenzenes studied by NQR.  

PubMed

In this work we present experimental results that allow to characterize different solid modifications found in o-chlorohalobenzenes. Three disordered phases have been found in o-chlorobromobenzene. The stable phase at high temperature (phase I) is also obtained by quenching the sample at 77 K. Slow cooling allow to obtain the low temperature phase III which, on heating, transforms to phase II at 183 K and this, in turns, transforms to phase I at T~210 K. The disorder evidenced through the Nuclear Quadrupole Resonance spectra, is attributed to a random occupation of chlorine and bromine sites. In all phases there is evidence of molecular reorientations out of the benzene ring plane around the pseudo-symmetry axis between the atoms of Cl and Br. In o-chlorofluorobenzene two phases have been found depending on the cooling rate. One phase is disordered due to the random exchange of the occupation of Cl and F sites. In this case, there is also evidence of molecular reorientations out of the benzene ring plane, but in this case the reorientation is around the pseudo-symmetry axis that pass through the C-Cl bonds. Comparisons with the behavior of o-dichlorobenzene are also made. PMID:24440588

Pérez, Silvina C; Wolfenson, Alberto; Zuriaga, Mariano

2014-01-01

128

Search for exotic resonances in the decay $B^+ \\rightarrow J/\\psi \\; \\omega K^+$ in the LHCb experiment at CERN  

E-print Network

“The expression \\textit{exotic resonances} indicates those states whose characteristics don’t fit in the ordinary mesons nor baryons scheme.\\\\ In this thesis an analysis of the $J/\\psi \\; \\omega$ invariant mass in the decay $B^+ \\rightarrow (J/\\psi \\rightarrow \\mu^+ \\mu^-) \\; (\\omega \\rightarrow \\pi^+ \\pi^- \\pi^0) \\; K^+$ is performed in order to search for such resonances, in particular the X(3872), previously observed in this final state by the BaBar experiment in 2010 at the Stanford Linear Accelerator Center [10]. The nature of this particle is still under study: different theoretical models were proposed. Thus, further experimental measurements are needed in order to improve the understanding of its characteristics. The present analysis is performed on data collected by the LHCb experiment at the Large Hadron Collider at CERN during 2011 and 2012. It is structured as follows: $$ $$• the events are reconstructed and selected in order to reduce as much as possible the background contamination;$$ $$?...

Andreassi, Guido; Alves Junior, Antonio Augusto

129

Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis  

E-print Network

Planar microdisk optical resonators fabricated from Ge[subscript 23]Sb[subscript 7]S[subscript 70] chalcogenide glass on a silicon substrate are applied for cavity-enhanced spectroscopic measurement of chemical molecular ...

Kimerling, Lionel C.

130

93Nb Nuclear Quadrupole Resonance in Orthorhombic Phase of Niobium Pentabromide  

Microsoft Academic Search

The 93Nb NQR has been investigated in one phase of NbBr5 which was identified to be orthorhombic by the X-ray analysis. The resonance frequencies have been measured between 4.2 K and 423 K, its melting point. The coupling constant showed a positive temperature dependence up to melting point. The temperature dependence of the coupling constant is compared between NbBr5 and

Noriaki Okubo; Yoshihito Abe

1982-01-01

131

35Cl Nuclear Quadrupole Resonance and Thermally Activated Molecular Motion in the 2:1 Crystalline Complex of Antimony Trichloride with Benzene  

Microsoft Academic Search

Nuclear quadrupole resonance (NQR) spectra of chlorine and antimony in the 2SbCl3 · C6H6 complex and their temperature behavior between 77 K and the melting point were studied. The spectral lines of two nonequivalent SbCl3 moieties are compared with available X-ray diffraction data. An analysis of the temperature dependence of the resonant frequency and the spin–lattice relaxation time for 35Cl

V. A. Mokeeva

2002-01-01

132

Generation of electromagnetic oscillations at frequencies of the lower hybrid and bounce resonance in mirror magnetic traps: Laboratory and rocket experiments  

Microsoft Academic Search

The generation of electromagnetic oscillations in the vicinity of the lower hybrid resonance and at the frequency of bounce oscillations of fast electrons in the plasma resonator of the magnetospheric type, formed by an HF discharge in a mirror magnetic trap, has been detected and studied. The results of the field rocket experiments aimed at stimulating maser effects, including such

A. S. Belov; G. A. Markov; L. L. Popova; Yu. V. Chugunov

2009-01-01

133

Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements  

SciTech Connect

Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.

Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

1995-12-31

134

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

SciTech Connect

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

2013-09-15

135

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

NASA Astrophysics Data System (ADS)

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.

2013-09-01

136

H(C)Ag: a triple resonance NMR experiment for (109) Ag detection in labile silver-carbene complexes.  

PubMed

In silver complexes, indirect detection of (109) Ag resonances via (1) H,(109) Ag-HMQC frequently suffers from small or absent JHAg couplings or rapid ligand dissociation. In these cases, it would be favourable to employ H(X)Ag triple resonance spectroscopy that uses the large one-bond JXAg coupling (where the donor atom of the ligand X is the relay nucleus). We have applied an HMQC-based version of the H(C)Ag experiment to a labile silver-NHC complex (NHC?=?N-heterocyclic carbene) at natural (13) C isotopic abundance and variable temperature. In agreement with simulations, H(C)Ag detection became superior to (1) H,(109) Ag-HMQC detection above -20?°C. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25641122

Weske, Sebastian; Li, Yingjia; Wiegmann, Sara; John, Michael

2015-04-01

137

Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi.  

PubMed

Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

2015-01-01

138

Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi  

PubMed Central

Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

2015-01-01

139

Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.  

PubMed

Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined ?iso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and ?33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (?11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

Peri?, Berislav; Gautier, Régis; Pickard, Chris J; Bosio?i?, Marko; Grbi?, Mihael S; Požek, Miroslav

2014-01-01

140

Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment  

NASA Technical Reports Server (NTRS)

Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

Pickett, H. M.; Chiou, A. E. T.

1983-01-01

141

An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin  

ERIC Educational Resources Information Center

Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…

Rovnyak, David; Thompson, Laura E.

2005-01-01

142

Comparative analysis of edge- and broadside coupled split ring resonators for metamaterial design - theory and experiments  

Microsoft Academic Search

This paper develops a quasi-analytical and self-consistent model to compute the polarizabilities of split ring resonators (SRRs). An experimental setup is also proposed for measuring the magnetic polarizability of these structures. Experimental data are provided and compared with theoretical results computed following the proposed model. By using a local field approach, the model is applied to the obtaining of the

Ricardo Marqués; Francisco Mesa; Jesús Martel; Francisco Medina

2003-01-01

143

Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques  

SciTech Connect

Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

Yesinowski, J.P.; Buess, M.L.; Garroway, A.N. [Naval Research Lab., Washington, DC (United States); Ziegeweid, M.; Pines, A. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

1995-07-01

144

Nucleon Resonances Spin Structure - RSS: Experiment 01-006 at Jefferson Lab  

SciTech Connect

We have measured the spin structure of the nucleon in the region of the resonances (final state mass W <{approx} 2 GeV) at intermediate four-momentum transfer Q2 {approx} 1.3 (GeV/c)2. Double-spin inclusive asymmetries for longitudinally polarized 5.75 GeV electrons incident on longitudinal and transverse solid polarized targets were measured in Jefferson Lab's Hall C. Frozen ammonia and deuterated ammonia were used as the polarized materials. The neutron spin structure is extracted from the proton and deuteron asymmetries. We present new results for the proton measured asymmetries A parallel and A perpendicular and spin structure functions g1 and g2, and preliminary results for the deuteron asymmetries. These are the first measurements of the transverse proton and deuteron spin structure in the resonances. We also report on our measurement of the ratio of the proton electromagnetic form factors with our polarized target.

Rondon, Oscar A. [University of Virginia, Charlottesville, VA 22901 (United States)

2006-07-11

145

Nucleon Resonances Spin Structure - RSS: Experiment 01-006 at Jefferson Lab  

SciTech Connect

We have measured the spin structure of the nucleon in the region of the resonances (final state mass W <~ 2 GeV) at intermediate four-momentum transfer Q^2 ~ 1.3 (GeV/c)^2. Double-spin inclusive asymmetries for longitudinally polarized 5.75 GeV electrons incident on longitudinal and transverse solid polarized targets were measured in Jefferson Lab's Hall C. Frozen ammonia and deuterated ammonia were used as the polarized materials. The neutron spin structure is extracted from the proton and deuteron asymmetries. We present new results for the proton measured asymmetries A|| and A[perpendicular] and spin structure functions g_1 and g_2, and preliminary results for the deuteron asymmetries. These are the first measurements of the transverse proton and deuteron spin structure in the resonances. We also report on our measurement of the ratio of the proton electromagnetic form factors with our polarized target.

Rondon-Aramayo, Oscar

2006-07-01

146

Experience With The SMPTE Test Pattern In Quality Control Of Magnetic Resonance Images  

NASA Astrophysics Data System (ADS)

The SMPTE test pattern has proven to be an effective tool for calibrating and monitoring the image display devices of a magnetic resonance (MR) imaging system. Linearity and size adjustments of video displays are particulary important because of the proximity of magnetic fields. The 5% and 95% intensity levels of the test pattern are extremely useful for adjusting the grayscale of both video displays and multiformat hardcopy devices. An appropriate sequence of operations for adjusting and monitoring image display devices is recommended.

Bronskill, Michael J.

1984-08-01

147

Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.  

PubMed

Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter. PMID:25004503

Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

2013-07-01

148

Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments  

NASA Astrophysics Data System (ADS)

A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T1-T2 and diffusion-T2), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

2014-02-01

149

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments.  

PubMed

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner. PMID:24089869

Smith, Doran D; Alexson, Dimitri A; Garbini, Joseph L

2013-09-01

150

Continuous-wave, two-crystal, singly-resonant optical parametric oscillator: theory and experiment.  

PubMed

We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range. PMID:23609663

Samanta, G K; Aadhi, A; Ebrahim-Zadeh, M

2013-04-22

151

Analysis of nuclear-quadrupole-resonance spectrum of incommensurate phases: The case of bis(4-chlorophenyl) sulfone  

Microsoft Academic Search

In this work, previous experimental studies of the 35Cl nuclear-quadrupole-resonance (NQR) line shape in the incommensurate phase of bis(4-chlorophenyl) sulfone were extended. The broad spectra in the incommensurate phase (IC) were measured using the Fourier transform of the nuclear signal to avoid systematic errors committed in some studies of this compound. The results were interpreted within the framework of the

J. Schneider; C. Schürrer; A. Wolfenson; A. Brunetti

1998-01-01

152

Noise-resilient multi-frequency surface sensor for nuclear quadrupole resonance  

NASA Astrophysics Data System (ADS)

A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection. These modes have smooth distributions of the amplitudes of the corresponding radiofrequency magnetic fields everywhere along the sensor's surface. The phases of the fields, on the other hand, are cyclically shifted across the sensor's surface. Noise signals coming from distant sources, therefore, induce equal-magnitude cyclically phase-shifted currents in different parts of the sensor. When such cyclically phase-shifted currents arrive at the mode connection point, they destructively interfere with each other and are cancelled out. NQR signals of polycrystalline or disordered substances, however, are efficiently detected by these modes because they are insensitive to the phases of the excitation/detection. No blind spots exist along the sensor's surface. The sensor can be used for simultaneous detection of one or more substances in locations with environmental noise.

Peshkovsky, A. S.; Cattena, C. J.; Cerioni, L. M.; Osán, T. M.; Forguez, J. G.; Peresson, W. J.; Pusiol, D. J.

2008-10-01

153

Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS  

SciTech Connect

The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2008-02-15

154

Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model  

NASA Astrophysics Data System (ADS)

A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

Preetham, B. S.; Anderson, M.; Richards, C.

2014-02-01

155

Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments  

SciTech Connect

A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao, E-mail: ysong@slb.com [Schlumberger-Doll Research, 1 Hampshire Street, Cambridge, Massachusetts 02139 (United States)

2014-02-21

156

Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment  

ERIC Educational Resources Information Center

A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

Steinmetz, Wayne E.; Maher, M. Cyrus

2007-01-01

157

Nuclear-quadrupole double-resonance study of RbH2PO4 in the supercooled high-temperature monoclinic phase  

NASA Astrophysics Data System (ADS)

Rubidium nuclear-quadrupole-resonance (NQR) spectra have been measured in the high-temperature monoclinic phase of RbH2PO4 above Tp=86 °C and also in the supercooled high-temperature phase below Tp. At the transition into the high-temperature phase, the rubidium quadrupole-coupling constants drop by a factor of 5. The high-temperature phase is metastable below Tp. The kinetics of the transformation of the metastable phase into the stable tetragonal phase in a polycrystalline sample is determined at room temperature from the time dependence of the rubidium NQR spectra. A comparison of the present rubidium NQR data in the high-temperature monoclinic RbH2PO4 with the rubidium NQR data in monoclinic RbD2PO4 suggests that at low temperatures, supercooled monoclinic RbH2PO4 may be isostructural with the phase III of monoclinic RbD2PO4 whereas above Tp RbH2PO4 may be isostructural with phase II of RbD2PO4.

Seliger, J.; Žagar, V.; Blinc, R.

1993-06-01

158

Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. I. Experiments  

NASA Astrophysics Data System (ADS)

This is the first in a two-paper series that investigates the influence of intramolecular vibrational modes on nonlinear, time-domain, electronically resonant signals. Both Transient Grating (TG) and Three Pulse Photon Echo Peak Shift (3PEPS) signals were collected from several probe molecules: Nile Blue, N,N-bis-dimethylphenyl-2,4,6,8-perylenetetracarbonyl diamide, and Rhodamine 6G dissolved in different solvents: benzene, dimethylsulfoxide, and acetonitrile. The effects of excitation of different vibronic transitions on the electronically resonant signals were identified by comparing signals collected with laser pulses at different excitation wavelengths. In the 3PEPS profiles, we find that excitation on the blue edge of the absorption spectrum causes a decreased initial peak shift values and more rapid initial decays, whilst in the TG signals, the magnitude of the "coherent spike" is strongly wavelength dependent. Additional thermally activated vibronic effects were studied via temperature dependent 3PEPS profiles. Our results reveal the sensitivity of the nonlinear signals to the excitation wavelengths and to the distinct vibronic structure of the different chromophores studied. Pronounced modulations in both the 3PEPS and TG signals originating from coherently excited vibrational modes were directly observed. Additional oscillations were observed that are attributed to difference frequencies and higher harmonics of the fundamental modes. In paper II we demonstrate that detailed account of the vibronic nature of the chromophore is required to describe the wavelength dependent signals.

Larsen, Delmar S.; Ohta, Kaoru; Xu, Qing-Hua; Cyrier, Michelle; Fleming, Graham R.

2001-05-01

159

Power instability of singly resonant optical parametric oscillators: theory and experiment.  

PubMed

We present a theoretical model on the effects of mechanical perturbations on the output power instability of singly-resonant optical parametric oscillators (SR-OPOs). Numerical simulations are performed based on real experimental parameters associated with a SR-OPO designed in our laboratory, which uses periodically-poled LiNbO3 (PPLN) as the nonlinear crystal, where the results of the theoretical model are compared with the measurements. The out-coupled power instability is simulated for a wide range of input pump powers the SR-OPO oscillation threshold. From the results, maximum instability is found to occur at an input pump power of ~1.5 times above the OPO threshold. It is also shown theoretically that the idler instability is susceptible to variations in the cavity length caused by vibrations, with longer cavities capable of generating more stable output power. The validity of the theoretical model is verified experimentally by using a mechanical vibrator in order to vary the SR-OPO resonator length over one cavity mode spacing. It is found that at 1.62 times threshold, the out-coupled idler suffers maximum instability. The results of experimental measurements confirm good agreement with the theoretical model. An intracavity etalon is finally used to improve the idler output power by a factor of ~2.2 at an input pump power of 1.79 times oscillation threshold. PMID:23262694

Sabouri, Saeed Ghavami; Khorsandi, Alireza; Ebrahim-Zadeh, Majid

2012-12-01

160

Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment  

E-print Network

We report on a search for charged massive resonances decaying to top ($t$) and bottom ($b$) quarks in the full data set of proton-antiproton collisions at center-of-mass energy of $\\sqrt{s} = 1.96$ TeV collected by the CDF~II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 $fb^{-1}$. No significant excess above the standard model (SM) background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged particle production cross section times branching ratio to $t b$. Using a SM extension with a $W^{\\prime}$ and left-right-symmetric couplings as a benchmark model, we constrain the $W^{\\prime}$ mass and couplings in the 300 to 900 GeV/$c^2$ range. The limits presented here are the most stringent for a charged resonance with mass in the range 300 -- 600 GeV/$c^2$ decaying to top and bottom quarks.

CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; F. Anza'; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; L. Bianchi; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucà; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu; I. Yu; A. M. Zanetti; Y. Zeng; C. Zhou; S. Zucchelli

2015-04-07

161

Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment  

PubMed Central

Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324

Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.

2015-01-01

162

Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment  

NASA Astrophysics Data System (ADS)

Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking.

Rybin, Mikhail V.; Filonov, Dmitry S.; Belov, Pavel A.; Kivshar, Yuri S.; Limonov, Mikhail F.

2015-03-01

163

Switching from Visibility to Invisibility via Fano Resonances: Theory and Experiment.  

PubMed

Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering of a new generation of functional metadevices, as well as controlled scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for a uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of high-index dielectric nanoparticles and the physics of cloaking. PMID:25739324

Rybin, Mikhail V; Filonov, Dmitry S; Belov, Pavel A; Kivshar, Yuri S; Limonov, Mikhail F

2015-01-01

164

Generation of electromagnetic oscillations at frequencies of the lower hybrid and bounce resonance in mirror magnetic traps: Laboratory and rocket experiments  

Microsoft Academic Search

The generation of electromagnetic oscillations in the vicinity of the lower hybrid resonance and at the frequency of bounce\\u000a oscillations of fast electrons in the plasma resonator of the magnetospheric type, formed by an HF discharge in a mirror magnetic\\u000a trap, has been detected and studied. The results of the field rocket experiments aimed at stimulating maser effects, including\\u000a such

A. S. Belov; G. A. Markov; L. L. Popova; Yu. V. Chugunov

2009-01-01

165

On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D  

SciTech Connect

Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15[degree] to the radial. In this experiment, with pulse lengths [approx equal] 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of [approx equal] 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21[degree] off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths [approx equal] 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W. (General Atomics, San Diego, CA (United States)); Downs, E.A. (General Atomics, San Diego, CA (United States) Cornell Univ., Ithaca, NY (United States)); James, R.A. (General Atomics, San Diego, CA (United States) Lawrence Livermore National Lab., CA (United States)); Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gors

1993-02-01

166

Whistler mode resonance-cone transmissions at 100 kHz in the OEDIPUS-C experiment  

NASA Astrophysics Data System (ADS)

A radio transmitter was operated at one end of the tethered sounding rocket double payload OEDIPUS C, and a synchronized receiver at the other end. Both the transmitter and the receiver were connected to "double-V" dipoles. On the flight downleg after the tether had been cut, direct bistatic propagation experiments were carried out successfully with the transmitter-receiver pair. This paper addresses the transmission of 300-?s pulses at a carrier frequency of 100 kHz between the dipoles over distances of about 1200 m. The waves of interest propagate in the whistler mode close to its resonance cone, where the transmitter is situated in the cone apex. The radiated field under these conditions is computed as well as the resonance response of the receiving antenna, i.e., its effective length. In the whistler mode, the influence of the plasma is important and it results in qualitative changes in the structure of the radiated field and in the value of the receiving antenna effective length as compared to the free space case. Our main concern is the excitation and reception of a pulsed signal when time and space dispersion play important roles in both the delay and spreading of such a signal.

Chugunov, Y. V.; Fiala, V.; Hayosh, M.; James, H. G.

2012-12-01

167

Study of the resonances of periodic plane media immersed in water: theory and experiment.  

PubMed

The paper deals with the study of the resonances of 1D periodic media composed of N elementary cells formed with two perfectly bonded layers which exhibit a high acoustic impedance contrast. In the case of a periodic bilayer structure constituted of a fluid layer and an elastic plate, it was shown in previous theoretical works that additional modes appear compared to those of a single plate. These are called structure modes. At low frequency, the so-called vertical modes are found. Approximate expressions of their cut-off frequencies are given and their numerical values match with the exact ones. At high frequency, the Lamb type modes are degenerated and modes in the fluid layers are also observed. Preliminary experimental results have already proved the existence of such phenomena for one and two periods. In our work, an experimental validation has been performed in the case of N periods made with a glass isotropic elastic plate and a water fluid layer, where the number N ranges from two to five. A good agreement is shown compared to theoretical works. PMID:23259980

Khaled, Aissam; Maréchal, Pierre; Lenoir, Olivier; Ech-Cherif El-Kettani, Mounsif; Chenouni, Driss

2013-03-01

168

Nongated cardiac magnetic resonance imaging: preliminary experience at 0. 12 T  

SciTech Connect

Nongated cardiac magnetic resonance imaging (MRI) has been reported previously to be inadequate for obtaining diagnostic information. This study explored the role of pulse sequence in the degradation of the nongated cardiac image. Images of diagnostic quality were obtained by using single spin-echo sequences with a very short echo time (10-20 msec TE) on a 0.12-T development MR unit. Marked degradation of the image was noted with longer TEs. Short-TE technique was used to examine 34 patients with a variety of cardiac diseases. Eleven patients had ventricular aneurysms. Twenty patients had left ventricular hypertrophy that was concentric in 11. Six patients had extrinsic masses displacing the heart and distorting the chamber contour. One patient with ventricular septal defect (VSD) and corrected transposition was scanned. In addition to identifying the VSD and chamber hypertrophy, the malposition of the great vessels at the base of the heart was seen. Four postoperative patients were scanned; wire suture artifact did not preclude imaging. In conclusion, diagnostic information can be obtained from nongated cardiac images provided that the TE is very short (10-20 msec). Although quantitative functional data are not available from nongated images, qualitative and diagnostic information is possible and may suffice in certain circumstances.

Choyke, P.L.; Kressel, H.Y.; Reichek, N.; Axel, L.; Gefter, W.; Mamourian, A.C.; Thickman, D.

1984-12-01

169

Magnetic Resonance-Guided Percutaneous Cryoablation of Uterine Fibroids: Early Clinical Experiences  

SciTech Connect

Purpose. Uterine fibroids (leiomyomas) are the most common tumors of the uterus. The present study evaluated the feasibility and effectiveness of magnetic resonance (MR)-guided percutaneous cryoablation for uterine fibroids as a minimally invasive treatment alternative. Methods. From August 2001 to June 2002, MR-guided percutaneous cryoablation was performed on seven uterine fibroids in 6 patients who displayed clinical symptoms related to tumors. Using a horizontal-type open MR system, cryoablation probes were percutaneously placed in fibroids. Fibroids were ablated, and the site and size of ice balls were monitored on MR imaging. Postoperatively, patients completed a questionnaire to assess changes in presenting clinical symptoms, and MR images were obtained for all patients at follow-up. Changes in clinical symptoms and tumor volume were evaluated in each patient. Results. All treated patients showed reductions in tumor size. Mean volume reduction rate was 40.3% at 6 weeks postoperatively, and 79.4% at 9-12 months. All patients reported fever after treatment. Surgical drainage was required for abscess in the probe channel in one patient, and transient liver damage occurred in another. Subjective symptoms improved in all patients except one who had multiple tumors, and no patient complained of new symptoms after cryoablation during follow-up. Conclusion. MR-guided percutaneous cryoablation represents a feasible and effective treatment for uterine fibroids.

Sakuhara, Yusuke, E-mail: YRB03514@nifty.com; Shimizu, Tadashi; Kodama, Yoshihisa; Sawada, Akihiro [Hokkaido University School of Medicine, Department of Radiology (Japan); Endo, Hideho [Kitami Red Cross Hospital, Department of Radiology (Japan); Abo, Daisuke [Hokkaido University School of Medicine, Department of Radiology (Japan); Hasegawa, Tenshu [Asahikawa Red Cross Hospital, Department of Obstetrics and Gynecology (Japan); Miyasaka, Kazuo [Hokkaido University School of Medicine, Department of Radiology (Japan)

2006-08-15

170

Fear responses to mock magnetic resonance imaging among college students: toward a prototype experiment.  

PubMed

Two hundred randomly selected student participants (139 females, 61 males) responded initially to questionnaires that quantified variables such as state and trait anxiety, anxiety sensitivity, claustrophobia, and panic/agoraphobia. Later they were informed that a mock magnetic resonance imaging (MRI) procedure was upcoming, and were prompted to provide self-efficacy ratings vis-à-vis completing the procedure. Finally, the participants' behavioral reactions to a mock MRI procedure were characterized; their heart beats were recorded and ratings of fearfulness were acquired. One purpose of the research was simply to tally numbers of participants who responded fearfully in various ways: 7 failed the procedure behaviorally, 7 others completed the procedure but did so fearfully, 17 others completed the procedure but manifested excessive heart-rate responsivity. A second purpose of the research was to "predict" subjects' fear-response categorization psychometrically and/or with self-efficacy ratings: psychometric data related to claustrophobia predicted subjects' fear-response categorization as did self-efficacy ratings. According to these results mock MRI assessment among college students provides a promising context for research on claustrophobia. PMID:12727126

McGlynn, F Dudley; Karg, Rhonda; Lawyer, Steven R

2003-01-01

171

Dynamic magnetic resonance imaging used in evaluation of female pelvic prolapse: experience from nine cases.  

PubMed

Prolapse of pelvic organs in a female can be simple or complex. To make a definite diagnosis of pelvic prolapse preoperatively, dynamic magnetic resonance (MR) is an alternative to conventional fluoroscopic or sonographic examination, with the advantage of providing greater details, and thus helping the surgeon to have a good preoperative plan. Nine women suffering from pelvic prolapse with or without urinary stress incontinence underwent dynamic MR imaging examination (1.0T Magnex100/HP, Shimadzu, Kyoto, Japan) before surgery. All patients were examined in the supine position. A single-shot ultra-high speed scan (FE/8/3.02-20 degrees, 128, 100%-100% 1 NEX 1 slice 10 mm L1.0 second) was used to obtain midline sagittal images, with the patients at rest and during pelvic strain. MR images were then obtained every 4 seconds. Each examination was analyzed, based on specific measurements, to determine the presence and extent of prolapse of pelvic organs. The pubococcygeal, levator hiatus width and muscular pelvic floor relaxation lines, and the angle of the levator plate were identified. Based on these measurements, multicompartment involvement in the pelvic prolapse was confirmed in five patients (5/9). Four patients (4/9) had single compartment involvement. Seven patients underwent surgery. All patients reported significant improvement in their symptoms and signs after surgical intervention. Two patients had an almost complete recovery. MR demonstrated simple or complex organ descent in all pelvic compartments, and may become a standard preoperative examination for pelvic floor abnormalities. The MR images facilitated comprehensive planning by the surgeon; thus, they can increase the success rate and help to accurately predict the outcome of the surgical intervention. The surgeons also expressed high postsurgical satisfaction with the information provided by dynamic MR. PMID:17525015

Chi, Tony Wing-Cheong; Chen, Shin-Hong

2007-06-01

172

Pituitary Magnetic Resonance Imaging for Sellar and Parasellar Masses: Ten-Year Experience in 2598 Patients  

PubMed Central

Context: Sellar and parasellar masses present with overlapping clinical and radiological features ranging from asymptomatic incidental presentations and hormonal effects to compressive local mass effects. Pituitary masses are diagnosed with increased frequency with magnetic resonance imaging (MRI) advancements and availability, but indications and diagnostic outcomes of MRI screening for sellar lesions are not defined. Although pituitary adenomas are the most frequently encountered sellar mass lesions, other etiologies should be considered in the differential diagnosis of a sellar mass. Setting: The study was conducted at a tertiary pituitary center. Patients: This study was a retrospective review of 2598 subjects undergoing at least one pituitary MRI scan from 1999 to 2009. Main Outcome Measure: Prevalence and diagnosis of specific sellar and parasellar masses as screened by pituitary MRI. Results: The most common indications for pituitary imaging, excluding known mass follow-up, were for evaluation of hyperprolactinemia or hypogonadism. A normal pituitary gland was reported in 47% of subjects undergoing pituitary MRI. The most common pituitary adenomas initially identified by MRI included prolactinoma (40%), nonfunctioning adenoma (37%), and GH adenoma (13%). Nonadenomatous sellar masses accounted for 18% of visible lesions, of which the most common were Rathke's cleft cyst (19%), craniopharyngioma (15%), and meningioma (15%). Metastases accounted for 5% of nonpituitary lesions and breast cancer was the most common primary source. Conclusions: Half of all pituitary MRI scans performed in a large patient population yielded no visible lesion. Nonadenomatous pituitary lesions should be considered in the diagnosis of sellar masses observed on MRI, and a high clinical suspicion is required to exclude the presence of a nonfunctioning pituitary adenoma. PMID:21470998

Famini, Pouyan; Maya, Marcel M.

2011-01-01

173

Zeeman Effect of the Nuclear Quadrupole Resonance of 81Br in para-Bromophenol and 35Cl in paraChlorophenol  

Microsoft Academic Search

The Zeeman effect of the 81Br and 35Cl nuclear quadrupole resonance has been studied with high precision on single crystals of para-bromophenol and para-chlorophenol, respectively. The results substantially agree with previous x-ray and NQR studies of para-chlorophenol (x-ray studies are known only for this substance). In p-bromophenol, four physically inequivalent sites were found, instead of two, as reported by other

P. Bucci; P. Cecchi; A. Colligiani

1969-01-01

174

A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation  

NASA Astrophysics Data System (ADS)

We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 ?l), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved ?/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) ?-pulses of 20 ?s ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 ?s using a 2500 W amplifier. Selected applications of the resonator are presented.

Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

2012-01-01

175

Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions  

NASA Astrophysics Data System (ADS)

The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

2013-06-01

176

IR double resonance experiments with size selected clusters for identification of isomers  

NASA Astrophysics Data System (ADS)

Infrared photodissociation spectra of (CH3OH) n clusters ( n=2, 3 and 6) and the mixed dimer C2H4 · CH3COCH3 are presented. The clusters are generated in a supersonic jet expansion and size selected by scattering from a helium atomic beam combined with mass spectrometric detection. Continuous CO2-lasers are used to vibrationally excite the molecules in the cluster leading to rapid dissociation of the complex. Various dissociation peaks that are found in single-laser dissociation spectra can be assigned unambigously in a pump-probe experiment with two lasers to either different isomers (acetone-ethene dimer) or splitted lines of one isomer (methanol hexamer). For size distributions, the method is able to select contributions of single masses which is demonstrated for mixtures of methanol dimers and trimers.

Buck, U.; Hobein, M.

1993-12-01

177

Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience).  

PubMed

Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength. PMID:24671739

Victoria, Teresa; Jaramillo, Diego; Roberts, Timothy Paul Leslie; Zarnow, Deborah; Johnson, Ann Michelle; Delgado, Jorge; Rubesova, Erika; Vossough, Arastoo

2014-04-01

178

Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects  

SciTech Connect

Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.

Urban, Jeffry Todd

2004-12-21

179

Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects  

SciTech Connect

Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

Iselin, L.H.

1995-12-01

180

Superconducting state of filled-skutterudite RPt4Ge12 (R = La, Pr): 73Ge-NQR studies  

NASA Astrophysics Data System (ADS)

We report 73Ge-NQR studies on filled-skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 under zero external field. In PrPt4Ge12, the measurement of the nuclear spin-lattice relaxation rate 1/T1 has revealed a distinct coherence peak just below Tc followed by an exponential decrease well below Tc, evidencing that PrPt4Ge12 is an s-wave superconductor with the isotropic gap in a weak-coupling regime. In LaPt4Ge12, the 1/T1 exhibits the exponential decrease well below Tc, suggesting the isotropic s-wave superconductivity. Even though 73Ge-NQR-1/T1 in LaPt4Ge12 has been measured under zero field, its coherence peak was absent, which contrasts with the result in Pr-compound. This may point to a possible anisotropy in the Fermi surface and/or some damping effect of quasiparticles in association with electron-phonon interactions.

Kanetake, F.; Mukuda, H.; Kitaoka, Y.; Sugawara, H.; Magishi, K.; Itoh, K. M.; Haller, E. E.

2010-12-01

181

Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment  

SciTech Connect

Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (?/2? > 0) and tokamak (?/2? = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (?) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Aßmus, D. [Max Planck Institut für Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Wauters, T. [Association Euratom-Belgian State, LPP-ERM/KMS, 1000 Brussels (Belgium)

2014-02-12

182

Field experiment provides ground truth for surface nuclear magnetic resonance measurement  

USGS Publications Warehouse

The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging, T 2, to the relaxation parameter T 2 * measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T 2 data were transformed to pseudo-T 2 * data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T 2 * obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources. Copyright 2012 by the American Geophysical Union.

Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

2012-01-01

183

Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade  

SciTech Connect

The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

1983-11-18

184

Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.  

PubMed

Zinc-oxide-based thin-film bulk acoustic wave (BAW) resonators operating at 932 MHz are investigated with respect to variation of dimensions of a boundary frame spurious mode suppression structure. A plate wave dispersion-based semi-2-D model and a 2-D finite element method are used to predict the eigenmode spectrum of the resonators to explain the detailed behavior. The models show how the boundary frame method changes the eigenmodes and their coupling to the driving electrical field via the modification of the mechanical boundary condition and leads to emergence of a flat-amplitude piston mode and suppression of spurious modes. Narrow band suppression of a single mode with a nonoptimal boundary frame is observed. Reduction of the effective electromechanical coupling coefficient k2eff as a function of the boundary width is observed and predicted by both models. The simple semi-2-D plate model is shown to predict the device behavior very well, and the 2-D finite element method results are shown to coincide with them with some additional effects. Breaking the resonator behavior down to eigenmodes, which are not directly observable in measurements, by the models, yields insight into the physics of the device operation. PMID:19686989

Pensala, Tuomas; Ylilammi, Markku

2009-08-01

185

J-Substitution Algorithm in Magnetic Resonance Electrical Impedance Tomography (MREIT): Phantom Experiments for Static Resistivity Images  

Microsoft Academic Search

Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation

Hyan Soo Khang; Byung Il Lee; Suk Hoon Oh; Eung Je Woo; Soo Yeol Lee; Min Hyoung Cho; Ohin Kwon; Jeong-rock Yoon; Jin Keun Seo

2002-01-01

186

Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ?x ?0.02 ) studied by 59Co nuclear quadrupole resonance measurements  

NASA Astrophysics Data System (ADS)

In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

2015-02-01

187

Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab  

SciTech Connect

The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

2011-03-01

188

Initial Experience with Magnetic Resonance-Guided Vacuum-Assisted Biopsy in Korean Women with Breast Cancer  

PubMed Central

Purpose The aim of this study is to describe our initial experience with magnetic resonance (MR)-guided biopsy and to determine the malignancy rate of additional lesions identified by MR only in Korean women with breast cancer. Methods A retrospective review identified 22 consecutive patients with breast cancer who had undergone MR-guided vacuum-assisted biopsies (VAB) of MR-only identified lesions from May 2009 to October 2011.We evaluated the rate of compliance, the technical success for MR-guided VAB and the MR imaging findings of the target lesions. VAB histology was compared with surgical histology and follow-up imaging findings. Results The biopsy recommendations for MR-only identified lesions were accepted in 46.8% (22/47) of patients. One of 22 procedures failed due to the target's posterior location. Among 21 MR-guided VAB procedures, the target lesions were considered as a mass in 12 cases and a nonmass enhancement in nine cases. VAB histology revealed malignancies in 14% (3/21) of cases, high-risk lesions in 24% (5/21) and benign lesions in 62% (13/21). Eleven cases (52%, 11/21) had a positive surgical correlation, and one of them was upgraded from atypical ductal hyperplasia to invasive ductal carcinoma. In the remaining 10 lesions, follow-up breast ultrasound and mammography were available (range, 15-44 months; mean, 32.1 months) and did not show suspicious lesions. The final malignancy rate was 19% (4/21). Conclusion MR-guided VAB for MR-only identified lesions yielded a 19% malignancy rate in Korean women with breast cancer. MR-guided VAB helps surgeons avoid an unnecessary wide excision or additional excisional biopsy. PMID:25320626

Jung, Hye Na; Ko, Eun Young; Shin, Jung Hee

2014-01-01

189

Quantification of microdamage in slate tiles: Comparison of nonlinear acoustic resonance experiments with visual and x-ray diagnosis  

NASA Astrophysics Data System (ADS)

Single Mode Nonlinear Resonant Acoustic Spectroscopy (SIMONRAS) is applied to detect edgecracks in thin slate roofing tiles. The technique focuses on the acoustic nonlinear (i.e. amplitude dependent) response of a particular resonance mode of the material when driven at relatively small wave amplitudes. Undamaged materials are essentially linear in their resonant response. The same material, however, becomes highly nonlinear when cracked. The sensitivity of this method to discern damage due to edgecracking is compared to visual diagnosis of crack density and X-ray images of cracks.

Van Den Abeele, K.; Carmeliet, J.; Wevers, M.

2000-07-01

190

Whispering gallery modes at the rim of an axisymmetric optical resonator: analytical versus numerical description and comparison with experiment.  

PubMed

Optical whispering gallery modes (WGMs) of mm-sized axisymmetric resonators are well localized at the equator. Employing this distinctive feature, we obtain simple analytical relations for the frequencies and eigenfunctions of WGMs which include the major radius of the resonator and the curvature radius of the rim. Being compared with results of finite-element simulations, these relations show a high accuracy and practicability. High-precision free-spectral-range measurements with a millimeter-sized disc resonator made of MgF(2) allow us to identify the WGMs and confirm the applicability of our analytical description. PMID:24514644

Breunig, I; Sturman, B; Sedlmeir, F; Schwefel, H G L; Buse, K

2013-12-16

191

Resonance absorption in CO2 laser-plane targets interaction experiments C. Garban-Labaune, E. Fabre, F. David, J. Maignan and A. Michard  

E-print Network

L-463 Resonance absorption in CO2 laser-plane targets interaction experiments C. Garban-Labaune, E) Résumé. 2014 Nous avons étudié l'influence de la polarisation et de l'angle d'incidence sur l'absorption des flux de 5 x 1011- 5 1012 W/cm2. Les mesures d'absorption sont obtenues à partir de la mesure

Boyer, Edmond

192

Coulomb and carrier-activation dynamics of resonantly excited InAs\\/GaAs quantum dots in two-color pump-probe experiments  

Microsoft Academic Search

We study Coulomb and carrier dynamics in self-assembled InAs\\/GaAs quantum dots at room temperature by two-color tunable differential transmission experiments, with resonant excitation in the ground state. Coulomb renormalization of the first excited state in the presence of one electron-hole pair in the ground state manifests as a 6-meV redshift. Several time scales for carrier activation to the first excited

F. Quochi; M. Dinu; L. N. Pfeiffer; K. W. West; C. Kerbage; R. S. Windeler; B. J. Eggleton

2003-01-01

193

An ultrahigh-vacuum apparatus for resonant diffraction experiments using soft x rays (h{nu}=300-2000 eV)  

SciTech Connect

We have developed an ultrahigh-vacuum instrument for resonant diffraction experiments using polarized soft x rays in the energy range of h{nu}=300-2000 eV at beamline BL17SU of SPring-8. The diffractometer consists of modified differentially pumped rotary feedthroughs for {theta}-2{theta} stages, a sample manipulator with motor-controlled x-y-z-, tilt ({chi})-, and azimuth ({phi})-axes, and a liquid helium flow-type cryostat for temperature dependent measurements between 30 and 300 K. Test results indicate that the diffractometer exhibits high reproducibility (better than 0.001 deg.) for a Bragg reflection of {alpha}-quartz 100 at a photon energy of h{nu}=1950 eV. Typical off- and on-resonance Bragg reflections in the energy range of 530-1950 eV could be measured using the apparatus. The results show that x-ray diffraction experiments with energy-, azimuth-, and incident photon polarization-dependence can be reliably measured using soft x rays in the energy range of {approx}300-2000 eV. The facility can be used for resonant diffraction experiments across the L-edge of transition metals, M-edge of lanthanides, and up to the Si K-edge of materials.

Takeuchi, T.; Chainani, A.; Takata, Y.; Tanaka, Y.; Oura, M. [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148 (Japan); Tsubota, M. [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148 (Japan); Senba, Y.; Ohashi, H. [JASRI/SPring-8, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148 (Japan); Mochiku, T.; Hirata, K. [Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Shin, S. [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho Sayo-gun, Hyogo 679-5148 (Japan); ISSP, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa, Chiba 277-8581 (Japan)

2009-02-15

194

Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2  

SciTech Connect

High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

Millar, J.M.

1986-02-01

195

H/D isotope effect of 1H MAS NMR spectra and 79Br NQR frequencies of piperidinium p-bromobenzoate and pyrrolidinium p-bromobenzoate  

NASA Astrophysics Data System (ADS)

H/D isotope effects onto 79Br NQR frequencies of piperidinium p-bromobenzoate were studied by deuterium substitution of hydrogen atoms which form two kinds of N-H?O type hydrogen bonds, and the isotope shift of ca. 100 kHz were detected for a whole observed temperature range. In addition, 1H MAS NMR spectra measurements of piperidinium and pyrrolidinium p-bromobenzoate were carried out and little isotope changes of NMR line shape were detected. In order to reveal effects of molecular arrangements into the obtained isotope shift of NQR frequencies, single-crystal X-ray measurement of piperidinium p-bromobenzoate- d2 and density-functional-theory calculation were carried out. Our estimation showed the dihedral-angle change between piperidine and benzene ring contributes to isotope shift rather than those of N-H lengths by deuterium substitution.

Honda, Hisashi; Kyo, Shinshin; Akaho, Yousuke; Takamizawa, Satoshi; Terao, Hiromitsu

2010-04-01

196

Motion of Water Molecules and Hydrogen Bonds in Zinc Hexachlorostannate (IV) Hexahydrate as Studied by 1H NMR and 35Cl NQR  

NASA Astrophysics Data System (ADS)

The 1H NMR spin-lattice relaxation time T1, 35Cl NQR frequency ?Q, and 35Cl NQR spin-lattice relaxation time T1Q of [Zn(H2O)6] [SnCl6] (zinc hexachlorostannate(IV) hexahydrate) have been measured at temperatures between 77 and 350 K. The NQR spin echo signal with ?Q = 15.689 MHz at 77 K showed a positive temperature coefficient attributable to O-H-Cl type H-bonds in the crystal. ?Q at 77 K is strongly correlated with the electronegativity ?M of the metal M in the series of stannates [M(H2O)6] [SnCl6] (M = Mg, Ca, Mn, Co, Ni, Zn). A T1 minimum observed for the Zn salt is ascribed to 180° flips of water molecules with an activation energy of 20 kJ mol-1. The motion is influenced by repulsive forces among the water molecules within a cation rather than by attractive forces between the H-bonded H and CI atoms. T1Q proved to be mainly governed by lattice vibrations, weakly modulated by the fluctuating electric field gradient caused by the 180° flip motions.

Ishikawa, A.; Sasane, A.; Hirakawa, Y.; Mori, Y.

1996-06-01

197

Optically Enhanced Magnetic Resonance  

E-print Network

Optically Enhanced Magnetic Resonance Dieter Suter Universit¨at Dortmund, Germany 1 Introduction 1.1 Motivation The physical mechanism of nuclear magnetic resonance spectroscopy, the excitation of transitions. In most magnetic resonance experiments, these couplings are used to monitor the environment of the nuclei

Suter, Dieter

198

Fano resonances in prism-coupled multimode square micropillar resonators  

Microsoft Academic Search

We report Fano resonances in a multimode square glass micropillar resonator; the resonances were obtained by using angle-resolved prism coupling. Our experiments reveal characteristically asymmetric line shapes of high-Q resonances and of detuned low-Q resonances in multimode reflection spectra. The asymmetric resonance line shapes evolve for an approximately pi phase within a 0.5° range of reflection angles. We model our

Ho-Tong Lee; Linjie Zhou; Andrew W. Poon

2005-01-01

199

Optimized design and analysis of sparse-sampling functional magnetic resonance imaging experiments of speech and hearing  

E-print Network

of Brain & Cognitive Sciences, Massachusetts Institute of Technology 2 Research Laboratory of Electronics, Massachusetts Institute of Technology 3 Program in Speech and Hearing Biosciences and Technology, Harvard-MIT Division of Health Sciences and Technology Functional magnetic resonance imaging (fMRI) offers

Gabrieli, John

200

Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment  

ERIC Educational Resources Information Center

Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

2010-01-01

201

MC generator TAUOLA: Implementation of resonance chiral theory for two and three meson modes. Comparison with experiment  

SciTech Connect

We present a partial upgrade of the Monte Carlo event generator TAUOLA with the two and three hadron decay modes using the theoretical models based on Resonance Chiral Theory. These modes account for 88% of total hadronic width of the tau meson. First results of the model parameters have been obtained using BaBar data for 3{pi} mode.

Shekhovtsova, O.; Nugent, I. M.; Przedzinski, T.; Roig, P.; Was, Z. [IFIC, Universitat de Valencia-CSIC, Apt. Correus 22085, E-46071, Valencia (Spain); RWTH Aachen University, III. Physikalisches Institut B, Aachen (Germany); The Faculty of Physics, Astronomy and Applied Computer Science, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland and CERN PH-TH, CH-1211 Geneva 23 (Switzerland); Grup de Fisica Teorica, Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Institute of Nuclear Physics, PAN, Krakow, ul. Radzikowskiego 152, Poland and CERN PH-TH, CH-1211 Geneva 23 (Switzerland)

2012-10-23

202

Nuclear Quadrupole Resonance Studies of the Sorc Sequence and Nuclear Magnetic Resonance Studies of Polymers.  

NASA Astrophysics Data System (ADS)

The behavior of induction signals during steady -state pulse irradiation in ^{14} N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, Cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work Nitrocellulose isotopically highly enriched with ^{15}N was studied at four different temperatures between 27^ circ and 120^circ Celsius and the correlation times for polymer backbone motions were obtained. Nafion films containing, water (D_2 O and H_2^{17}O) and methanol (CH_3OD, CH _3^{17}OH), have been studied using Deuteron and Oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the ^2H NMR lineshapes. Activation energies extracted from ^2H spin-lattice relaxation data on the high temperature side of the T_1 minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotropy of the host polymer. Activation volumes corresponding to a specific dynamical process were obtained from measurements of spin-lattice relaxation vs. pressure. From the NMR measurements of Nafion films containing methanol, it was found that the molecular motion is much more rapid than the molecular motion of water in Nafion membranes.

Jayakody, Jayakody R. Pemadasa

1993-01-01

203

Dark resonance  

SciTech Connect

We construct explicit models of particle dark matter where the attractive force in the dark matter sector creates a narrow near-threshold resonance that qualitatively changes the energy dependence of the annihilation cross section. In these models, the resonant enhancement of the dark matter annihilation can easily source the excess of energetic leptons observed by the PAMELA experiment. The distinct feature of these models is that by construction the enhancement of the annihilation cross section shuts off when the dark matter velocity falls below the typical Milky Way values, thus automatically satisfying constraints on dark matter annihilation imposed by the CMB anisotropies and gamma ray constraints from satellite galaxies. However, the resonant enhancement of annihilation can be probed through the most recent FERMI-LAT constraints on the diffuse galactic gamma ray emission.

An, Haipeng; Pospelov, Maxim, E-mail: han@perimeterinstitute.ca, E-mail: mpospelov@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, ON, N2J 2W9 (Canada)

2012-11-01

204

Extending the direct laser modulation bandwidth by exploiting the photon-photon resonance: modeling, simulations and experiments  

NASA Astrophysics Data System (ADS)

The direct laser modulation bandwidth can be extended substantially by introducing a supplementary photon-photon resonance (PPR) at a higher frequency than the carrier-photon resonance (CPR). The paper presents a modified rate equation model that takes into account the PPR by treating the longitudinal confinement factor as a dynamic variable. The conditions required for obtaining a strong PPR and an enhancement of the small-signal modulation bandwidth are analyzed and experimental results confirming the model are presented. Since the small-signal modulation bandwidth may not be indicative of the large-signal modulation capability, particularly in case of a small-signal modulation response with substantial variations across the bandwidth, we have also analyzed the influence of the PPR-enhanced small-signal modulation response shape on the large-signal modulation capability as well as the methods that can be employed to flatten the small-signal modulation transfer function between the CPR and PPR.

Dumitrescu, M.; Laakso, A.; Viheriala, J.; Kamp, M.; Bardella, P.; Eisenstein, G.

2013-03-01

205

Chemical mass shifts in resonance ejection experiments in quadrupole ion traps and ESI-FT-orbitrap mass spectrometry  

Microsoft Academic Search

Chemical mass shifts are measured in quadrupole ion traps operated in the mass-selective instability scan with resonance ejection. Chemical mass shift is the result of compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures. Both dissociative and non-dissociative collisions can occur but the dissociative collisions make the predominant contribution to the chemical mass

Hongyan Li

2003-01-01

206

In-NQR study of heavy fermion superconductor Ce2PdIn8 under pressure  

NASA Astrophysics Data System (ADS)

115In nuclear quadrupole resonance measurements were performed in the normal state of the heavy fermion superconductor Ce2PdIn8 under hydrostatic pressure up to about 2.3 GPa. The observed behavior of the spin-lattice relaxation rate revealed a systematic suppression of antiferromagnetic critical fluctuations with increasing pressure.

Fukazawa, Hideto; Shimatani, Sho; Shigeta, Kazuhiko; Kohori, Yoh; Kaczorowski, Dariusz

2015-03-01

207

The problem of the Mössbauer isomer shift calibration for the 119 Sn resonance from rare-gas matrix isolation experiments  

Microsoft Academic Search

Data of new rare-gas matrix isolation experiments are presented and discussed in connection with the problem of the Mössbauer isomer shift calibration for119Sn. These experiments are: (i) A Mössbauer source experiment with119mSn in solid xenon yielding the isomer shift of Sn+ with the atomic configuration 4d105s25p; (ii) Mössbauer absorption studies of isolated Sn(II) halide molecules (SnX2, X-F, Cl, Br, I)

H. Micklitz

1977-01-01

208

Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks  

NASA Astrophysics Data System (ADS)

Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone 15N and 13C?/13C? chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone 15N(i) chemical shifts with that of 13C? (i - 1)/13C? (i - 1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate 15N chemical shifts and (ii) reduces the signal overlap in F2(15N)-F3(1H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.

Kumar, Dinesh

2013-12-01

209

Resonances and resonance widths  

SciTech Connect

Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

Collins, T.

1986-05-01

210

A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments  

NASA Astrophysics Data System (ADS)

A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.

2014-02-01

211

High-frequency ESR measurements and ESR/NMR double resonance experiments of lightly phosphorous-doped silicon  

NASA Astrophysics Data System (ADS)

We studied lightly doped Si:P with high-frequency (80-120 GHz) ESR and ESR/NMR double magnetic resonance techniques in the temperature range down to 1.4 K. We found dynamic nuclear polarization of 31P from steady-state ESR measurements with approximately 3.6 T. We derived the nuclear spin relaxation time, T1N, of 31P by analysing the time-evolution of ESR spectra utilizing the dynamic nuclear polarization effect. We derive temperature and magnetic field dependence of T1N and compare with experimental data. Furthermore, from our ESR measurements, we modulate the nuclear polarization of 31P by applying an RF field.

Fujii, Y.; Mitsudo, S.; Morimoto, K.; Mizusaki, T.; Gwak, M.; Lee, S. G.; Fukuda, A.; Matsubara, A.; Ueno, T.; Lee, S.

2014-12-01

212

Visualization of Periventricular Collaterals in Moyamoya Disease with Flow-sensitive Black-blood Magnetic Resonance Angiography: Preliminary Experience.  

PubMed

Fragile abnormal collaterals in moyamoya disease, known as "moyamoya vessels," have rarely been defined. While flow-sensitive black-blood magnetic resonance angiography (FSBB-MRA) is a promising technique for visualizing perforating arteries, as of this writing no other reports exist regarding its application to moyamoya disease. Six adults with moyamoya disease underwent FSBB-MRA. It depicted abnormal collaterals as extended lenticulostriate, thalamic perforating, or choroidal arteries, which were all connected to the medullary or insular artery in the periventricular area and supplied the cortex. This preliminary case series illustrates the potential for FSBB-MRA to reveal abnormal moyamoya vessels, which could be reasonably defined as periventricular collaterals. PMID:25739429

Funaki, Takeshi; Fushimi, Yasutaka; Takahashi, Jun C; Takagi, Yasushi; Araki, Yoshio; Yoshida, Kazumichi; Kikuchi, Takayuki; Miyamoto, Susumu

2015-03-15

213

Stochastic Resonance  

NASA Astrophysics Data System (ADS)

Preface; 1. Introduction and motivation; 2. Stochastic resonance: its definitions, history and debates; 3. Stochastic quantization; 4. Suprathreshold stochastic resonance: encoding; 5. Suprathreshold stochastic resonance: large N encoding; 6. Suprathreshold stochastic resonance: decoding; 7. Suprathreshold stochastic resonance: large N decoding; 8. Optimal stochastic quantization; 9. SSR, neural coding, and performance tradeoffs; 10. Stochastic resonance in the auditory system; 11. The future of stochastic resonance and suprathreshold stochastic resonance; Appendices; References; Index.

McDonnell, Mark D.; Stocks, Nigel G.; Pearce, Charles E. M.; Abbott, Derek

2012-10-01

214

A Statistical Model for Describing Spectral Diffusion Effects in Electron Spin Echo (ESE) and Electron Nuclear Double Resonance (ENDOR) Experiments  

Microsoft Academic Search

A statistical model for an EPR line broadened by dipolar electron-nuclear interaction is proposed. This makes it possible for the effect of spectral diffusion on the width and intensity of ENDOR signals to be determined from electron spin echo experiments. In this paper, various ENDOR mechanisms are discussed in addition to a calculation of the variation in both Boltzmann factor

M. Franke; W. Windsch

1976-01-01

215

Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: Theory and experiments  

E-print Network

Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic of this experiment has been the poor efficiency of the radio-frequency pulses used in converting multiple-modulated radio-frequency pulses, and which can yield substantial signal and even resolution enhancements over

Frydman, Lucio

216

Magnetic resonance imaging (MRI) scanning for research: the experiences of healthy volunteers and patients with remitted depressive illness  

Microsoft Academic Search

We report the findings from a study exploring the experiences of individuals undergoing MRI scanning for research. Semi-structured interviews took place before and after scanning with 17 participants; 12 were healthy volunteers and five were patients with a diagnosis of remitted depression. Themes of apprehension and curiosity prior to scanning were common in both groups. Patients were often confused about

Victoria Tischler; Emma Bronjewski; Katherine OConnor; Tim Calton

2009-01-01

217

Magnetization transfer modes in scalar-coupled spin systems investigated by selective two-dimensional nuclear magnetic resonance exchange experiments  

Microsoft Academic Search

Longitudinal nuclear magnetic relaxation in coupled two-spin systems is discussed in terms of magnetization transfermodes, a generalization of the magnetization modes commonly used in the discussion of one-dimensional NMR relaxation experiments. The symmetry properties of the transfer modes and their relationship to the elements of the usual Redfield relaxation matrix are discussed. Experimental strategies for measuring the amplitudes of the

Lorenzo di Bari; Jozef Kowalewski; Geoffrey Bodenhausen

1990-01-01

218

Adapting Data Processing To Compare Model and Experiment Accurately: A Discrete Element Model and Magnetic Resonance Measurements of a 3D Cylindrical Fluidized Bed  

PubMed Central

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. PMID:24478537

2013-01-01

219

Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment  

SciTech Connect

Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

Wang, Feng; Liu, J. Y. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Tritz, Kevin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)] [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2013-07-15

220

Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line  

NASA Technical Reports Server (NTRS)

The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.

Judge, D. L.

1978-01-01

221

Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments  

NASA Astrophysics Data System (ADS)

The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.

Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine

2015-02-01

222

Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder  

NASA Astrophysics Data System (ADS)

The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

2014-02-01

223

NQR investigation of pressure-induced charge transfer in oxygen-deficient YBa sub 2 Cu sub 3 O sub 7-. delta. (. delta. = 0. 38)  

SciTech Connect

Measurements of the pressure dependence of {sup 63}Cu nuclear quadrupole frequency in YBa{sub 2}Cu{sub 3}O{sub 6.62} from ambient pressure up to 1.5 GPa at 4k have been performed. {Tc} was found to increase with pressure: d{Tc}/dp {approximately} 5 K/GPa. All observed NQR lines are linear in pressure: dln{nu}{sub Q}/dp=z. We found positive z for the empty chain sites, consistent with ionic (Cu{sup 1+}) configuration in which the atom simply feels a squeezing lattice. Planar coppers close to the empty chains have positive z, while those that are close to full chains have z {approximately} 0. We present an analysis of the NQR result on the basis of the charge transfer model in which the mobile charges migrate from the chain to the plane sites. We deduced that a transfer of 0.021 holes to the O(2,3) sites would explain the result in YBa{sub 2}Cu{sub 3}O{sub 6.62}, whereas only 0.007 holes transfer in fully oxygenated YBa{sub 2}Cu{sub 3}O{sub 7}.

Reyes, A.P.; Ahrens, E.T.; Hammel, P.C.; Heffner, R.H. (Los Alamos National Lab., NM (United States)); Takigawa, M. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center)

1992-01-01

224

Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.  

PubMed

The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices. PMID:24593608

Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

2014-02-01

225

Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres  

PubMed Central

Background Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Methods Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Results Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1?±?0.5 ml/g/min and increased to 9.6?±?2.5 ml/g/min during dipyridamole stress (P?=?0.005). The myocardial perfusion reserve was 2.4 ±?0.54. The mean count ratio of stress to rest microspheres was 2.4 ±?0.51 using confocal microscopy and 2.6?±?0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P?=?0.84). Conclusion First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies. PMID:23870734

2013-01-01

226

Coulomb disorder effects on angle-resolved photoemission and nuclear quadrupole resonance spectra in cuprates  

NASA Astrophysics Data System (ADS)

The role of Coulomb disorder, either of extrinsic origin or introduced by dopant ions in undoped and lightly doped cuprates, is studied. We demonstrate that charged surface defects in an insulator lead to a Gaussian broadening of the angle-resolved photoemisson spectroscopy (ARPES) lines. The effect is due to the long-range nature of the Coulomb interaction. A tiny surface concentration of defects about a fraction of one percent is sufficient to explain the line broadening observed in Sr2CuO2Cl2 , La2CuO4 , and Ca2CuO2Cl2 . Due to the Coulomb screening, the ARPES spectra evolve dramatically with doping, changing their shape from a broad Gaussian form to narrow Lorentzian ones. To understand the screening mechanism and the line-shape evolution in detail, we perform Hartree-Fock simulations with random positions of surface defects and dopant ions. To check validity of the model we calculate the nuclear quadrupole resonance (NQR) line shapes as a function of doping and reproduce the experimentally observed NQR spectra. Our study also indicates opening of a substantial Coulomb gap at the chemical potential. For a surface CuO2 layer the value of the gap is on the order of 10 meV while in the bulk it is reduced to the value about a few meV.

Chen, Wei; Khaliullin, Giniyat; Sushkov, Oleg P.

2009-09-01

227

On the performance of Spin Diffusion NMR Techniques in Oriented Solids: Prospects for Resonance Assignments and Distance Measurements from Separated Local Field Experiments  

PubMed Central

NMR spin diffusion experiments have the potential to provide both resonance assignment and internuclear distances for protein structure determination in oriented solid-state NMR. In this paper, we compared the efficiencies of three common spin diffusion experiments: proton-driven spin diffusion (PDSD), cross-relaxation driven spin diffusion (CRDSD), and proton-mediated proton transfer (PMPT). As model systems for oriented proteins, we used single crystals of N-acetyl-L-15N-leucine (NAL) and N-acetyl-L-15N-valyl-L-15N-leucine (NAVL) to probe long- and short distances, respectively. We demonstrate that for short 15N/15N distances such as those found in NAVL (3.3 Å), the PDSD mechanism gives the most intense cross-peaks, while for longer distances (> 6.5 Å), the CRDSD and PMPT experiments are more efficient. The PDSD was highly inefficient for transferring magnetization across distances greater than 6.5 Å (NAL crystal sample), due to small 15N/15N dipolar couplings (< 4.5 Hz). Interestingly, the mismatched Hartmann-Hahn condition present in the PMPT experiment gave more intense cross-peaks for lower 1H and 15N spinlock field strengths (32 and 17 kHz, respectively) rather than higher values (55 and 50 kHz), suggesting a more complex magnetization transfer mechanism. Numerical simulations are in good agreement with the experimental findings, suggesting a combined PMPT and CRDSD effect. We conclude that in order to assign SLF spectra and measure short and long-range distances, the combined use of homonuclear correlation spectra, such as the ones surveyed in this work, are necessary. PMID:20936833

Traaseth, Nathaniel J.; Gopinath, T.; Veglia, Gianluigi

2010-01-01

228

NQR Investigation of Anion Dynamics in Rb2Zn(Cl1 - xBrx)4  

NASA Astrophysics Data System (ADS)

The structural stability of Rb2Zn(Cl1 - xBrx)4 (x = 1% and 3%) is investigated using the 35Cl quadrupole resonance frequency and spin lattice relaxation time (T1Q) in the paraelectric (PE) phase. The PE to incommensurate (IC) phase transition temperature T1, observed at 302 K in the pure compound, is lowered to 300 K for x = 1 % and to 293 K for x = 3%. These effects are smaller than in the earlier reported case of 3% Cs substitution in Rb2ZnCl4 , which reduces T1 by 25 K. While bigger cation substitution affects only the barrier for anion dynamics about directions perpendicular to the a-axis (direction of low temperature IC modulation wave), bigger anion substitution is found to affect the barrier for anion dynamics about the a-axis as well. The present study also indicates that the cusp like dip in T1Q observed while approaching T1 from above (characterizing the soft mode condensation associated with the structural phase transition) is essentially unaffected by anion impurity substitution, in contrast to the case where bigger cation substitution tends to smear the transitional effects. These results seem to suggest the dominant role played by cations in stabilizing the PE phase of these A2BX4 systems, in comparison to anions.

Subramanian, R. K.; Maheswari, S. Uma; Venu, K.; Sastry, V. S. S.

1996-06-01

229

Proposed experiment for the observation of the isovector spin monopole resonance via the exothermic charge-exchange reaction using the SHARAQ spectrometer  

NASA Astrophysics Data System (ADS)

We are developing the exothermic charge-exchange reaction induced by the ?-unstable beam, (^12N,^12C), as a new probe for the study of spin-isospin modes in nuclei. Good features of this reaction include the large mass difference of ^12N and ^12C, the spin-isospin selection of ?S = ?T = 1, and the surface-sensitivity due to the strong absorption. They are suited for the study of spin-isospin modes such as the isovector spin monopole resonance (IVSMR). We have proposed, at the RI Beam Factory (RIBF) at RIKEN, a measurement of the ^90Zr(^12N,^12C) reaction at 200 A , at 0 degrees to observe the IVSMR in ^90Nb. The ^12N beam is produced via the projectile fragmentation of the ^14N primary beam at 250 A , and separated in the BigRIPS, and transported through the dispersion-matched beam line to the reaction target of ^90Zr. The reaction product of ^12C is momentum analyzed by the newly constructed SHARAQ spectrometer. We performed commissioning experiments in March and May, 2009, to study the production of the ^12N secondary beam and the ion optical properties of the beam line and the SHARAQ spectrometer. We report the results from the commissioning experiments together with the present situation of this project.

Noji, Shumpei; Sakai, Hideyuki

2009-10-01

230

First-principles study of 75As NQR in arsenic-chalcogenide compounds  

Microsoft Academic Search

We present a theoretical study of the nuclear quadrupole interaction, nuQ, of 75As in crystalline and amorphous materials containing sulfur and selenium, and compare them with experiment. We studied a combination of hydrogen-terminated molecular clusters and periodic cells at various levels of quantum chemical theory. The results show clearly that the standard density functional theory (DFT) approximations, LDA and GGA,

Arthur H. Edwards; P. C. Taylor; Kristy A. Campbell; Andrew C. Pineda

2011-01-01

231

Magnetization transfer modes in scalar-coupled spin systems investigated by selective two-dimensional nuclear magnetic resonance exchange experiments  

NASA Astrophysics Data System (ADS)

Longitudinal nuclear magnetic relaxation in coupled two-spin systems is discussed in terms of magnetization transfer modes, a generalization of the magnetization modes commonly used in the discussion of one-dimensional NMR relaxation experiments. The symmetry properties of the transfer modes and their relationship to the elements of the usual Redfield relaxation matrix are discussed. Experimental strategies for measuring the amplitudes of the transfer modes are discussed and various selective two-dimensional exchange (``soft-NOESY'') methods are proposed. Experimental data are presented for Exifone, a small organic molecule, and the auto- and cross-correlation spectral densities, the magnitudes of the proton chemical shift anisotropies, and the strengths of the dipolar interaction are derived from the spectra.

Di Bari, Lorenzo; Kowalewski, Jozef; Bodenhausen, Geoffrey

1990-12-01

232

Comparison of particle-in-cell simulation with experiment for thetransport system of the superconducting electron cyclotron resonance ionsource VENUS  

SciTech Connect

The three-dimensional, particle-in-cell code WARP has been enhanced to allow end-to-end beam dynamics simulations of the VENUS beam transport system from the extraction region, through a mass-analyzing magnet, and up to a two-axis emittance scanner. This paper presents first results of comparisons between simulation and experimental data. A helium beam (He+, He2+) is chosen as an initial comparison beam due to its simple mass spectrum. Although a number of simplifications are made for the initial extracted beam, aberration characteristics appear in simulations that are also present in experimental phase space current density measurements. Further, measurements of phase space tilt indicate that simulations must have little or no space charge neutralization along the transport system to best agree with experiment. In addition, recent measurements of triangular beam structure immediately after the source are presented. This beam structure is related to the source magnetic confinement fields and will need to be taken into account as the initial beam approximations are lifted.

Todd, DamonS.; Leitner, Daniela; Leitner, Matthaeus; Lyneis,Claude M.; Qiang, Ji; Grote, Dave P.

2005-09-19

233

Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy  

E-print Network

Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance The signal intensity of electron spin resonance in magnetic resonance force microscopy MRFM experiments that magnetic resonance force microscopy MRFM is a new 3D imaging technique8,9 with the potential of achieving

Hammel, P. Chris

234

Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method  

NASA Technical Reports Server (NTRS)

Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

Hewitt, R. R.

1971-01-01

235

Application of nuclear quadrupole resonance in study of minerals  

Microsoft Academic Search

The NQR method has been used to study some structural and chemical properties of minerals that are difficult or impossible to determine by conventional methods. For example, an X-ray determination commonly integrates the data for all cells, whereas NQR can separate the nearly ideal from highly distorted ones. It can thus give a better picture of the ideal structure and

I. N. Penkov; I. A. Sofin

1967-01-01

236

Multinuclear NMR/NQR study of HgBa 2CuO 4+ xF y superconductors with different oxygen and fluorine content  

NASA Astrophysics Data System (ADS)

We have measured 63,65Cu NMR/NQR spectra, 199Hg and 19F NMR spectra and spin-lattice relaxation rate on a series of powder HgBa 2CuO 4+ xF y samples with different oxygen and fluorine content. Comparison of 63Cu and 199Hg relaxation data to numerical calculations for several types of the order parameter symmetry gives the best coincidence with the d-wave symmetry. 19F NMR line width and relaxation rate are strongly influenced by the magnetic flux-line motion. The 19F magnetization recovery curve is described by a stretched exponential function. The 19F spin-lattice relaxation strongly depends on the fluorine content evidencing that at higher doping level part of F atoms occupy the apical O2 position.

Gippius, A. A.; Antipov, E. V.; Klein, O.; Lüders, K.

2000-07-01

237

Labeling interacting configurations through an analysis of excitation dynamics in a resonant photoemission experiment: the case of rutile TiO2.  

PubMed

A detailed study of resonant photoemission at Ti L(2,3) edges of insulating rutile TiO(2-x) thin film is presented. Pure TiO(2) resonating structures, defect-related resonances, resonant Raman-Auger and normal LVV Auger emissions are tracked, including an unpredicted two-hole correlated satellite below the non-bonding part of the valence band. The analysis of excitation dynamics unambiguously addresses the origin of these features and, in particular, the extent of charge transfer effects on the Ti-O bonding in the valence band of rutile, disclosing further applications to the more general case of, formally, d(0) oxides. PMID:23328648

Drera, G; Sangaletti, L; Bondino, F; Malvestuto, M; Malavasi, L; Diaz-Fernandez, Y; Dash, S; Mozzati, M C; Galinetto, P

2013-02-20

238

A proof of principle experiment: Structural transitions in self-healing poly (ethylene co-methacrylic acid) ionomers using acoustic and ultrasonic time dependent resonant spectroscopy  

NASA Astrophysics Data System (ADS)

We demonstrate a method for assessing structural transitions in self-healing poly (ethylene co-methacrylic acid) ionomers as a function of time, by observing the evolution of their acoustic and ultrasonic resonant spectra and associated quality factors during the post-damage healing phase. Two samples composed of EMAA-0.6Na and EMAA-0.3Na were scanned from 1 kHz to 2 MHz before and after a damage event. After damage, time varying resonances were discovered using time dependent resonant spectroscopy (TDRS), and several of these resonances continued to evolve after visible changes in the samples ceased. These time dependent resonances enable characterization of energy dissipation, relaxation and structural ordering in self-healing ionomers. In addition, TDRS may provide a method for isolating material properties that affect the healing process, such as ion content and their associated structures as well as the effect of sample aging, which may lead to improved structural models.

Pestka, K. A.; Kalista, S. J.; Ricci, A.

2013-08-01

239

Cyclotron resonance and quasiparticles  

SciTech Connect

This introductory paper contains personal perspectives about the importance of cyclotron resonance in forming our modern view of solids. The papers following this one will discuss the discovery, refinements, and some of the latest developments. Although I will touch on some of these subjects, I leave the details to the other authors and in the main focus on the conceptual impact of the work. I propose that it was experiments based on cyclotron resonance which established the quasiparticle concept.

Cohen, Marvin L.

2005-01-15

240

Ohmic effects in quasioptical resonators  

SciTech Connect

Several properties of the Fabry-Perot-type open resonator used in the quasioptical gyrotron (QOG) and the quasioptical induced resonance electron cyclotron (IREC) maser are derived. The electric fields of the normal modes are given for the general case of the resonator axis tilted with respect to the direction perpendicular to the electron beam axis. The ohmic quality factor and the power dissipated in the mirrors are derived, as is the energy stored in the resonator. The time dependence of the mirror heating, relevant for pulsed experiments, is also derived. The formulae are applied to an example of current relevance, the quasioptical IREC maser resonator.

Hargreaves, T.A.; Fischer, R.P.; McCowan, R.B.; Fliflet, A.W. (Naval Research Lab., Washington, DC (United States))

1991-01-01

241

Optical resonator  

NASA Technical Reports Server (NTRS)

The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

2006-01-01

242

Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor.  

PubMed

The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810

Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel

2013-01-01

243

Resonance scraping  

SciTech Connect

Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

Collins, T.

1986-06-01

244

Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study  

SciTech Connect

We report {sup 209}Bi nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U{sub 3}Bi{sub 4}Ni{sub 3}. The {sup 209}Bi nuclear-spin-lattice relaxation rate (T{sub 1}{sup -1}) shows activated behavior and is well fit by a spin gap of 220 K. The {sup 209}Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

Baek, Seung H [Los Alamos National Laboratory

2009-01-01

245

Resonant microwave cavity for 8.512 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance  

E-print Network

with simultaneous nuclear magnetic resonance J. S. Colton1,a and L. R. Wienkes2 1 Department of Physics magnetic resonance ODMR experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency

Hart, Gus

246

Gravitoelectromagnetic resonances  

Microsoft Academic Search

The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between

Christos G. Tsagas

2011-01-01

247

Nuclear Magnetic Resonance in the Superconducting States of Two Heavy Fermion Superconductors, Cerium Dicopper - and URANIUM-BERYLLIUM(13)  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance (NMR) experiments have been carried out in two heavy fermion superconductors, CeCu(,2)Si(,2) and U(,1-x)Th(,x)Be(,13) (x = 0, 0.0331). The unusual normal-state and superconducting state behavior of CeCu(,2)SDi(,2) and UBe(,13) has recently been discovered. Both compounds exhibit enormous values of the normal-state low -temperature magnetic susceptibility (chi) and the linear specific heat coefficient (gamma). Standard analyses of (chi) and (gamma) result in a two order of magnitude enhancement of the conduction-electron mass, but the ratio (chi)/(gamma) retains a value appropriate to a free-electron gas. It is of interest to obtain as much microscopic information as possible. In one of our CeCu(,2)Si(,2) superconducting specimens, the observed temperature dependence of the spin-lattice relaxation rate 1/T(,1) (T) is consistent with a conventional quasiparticle excitation spectrum below the superconducting transition temperature T(,c). In the other superconducting CeCu(,2)Si(,2) sample, the nuclear spin-lattice relaxation rate decreases drastically just below T(,c) without the apparent enhancement observed in the first sample. This lack of enhancement in 1/T(,1) (T) suggests that the superconductivity in CeCu(,2)Si(,2) is not due to a conventional mechanism. Some unusual features in 1/T(,1) (T) between T(,c) and 1.2 K appear to signal a phase transition, possibly structural in nature. NQR measurements of the nonsuperconducting CeCu(,2)Si(,2) sample are consistent with extensive disorder in the Cu site occupation. The spin-lattice relaxation rate in UBe(,13) varies approximately as T('3) well below the transition temperature T(,c). This behavior is consistent with a class of anisotropic pairing models for which the superconducting gap vanishes along lines on the Fermi surface. Two phase transitions have been observed in the specific heat measurements of U(,0.9669)Th(,0.0331)Be(,13) at T(,c1) and T(,c2). For T(,c2) < T < T(,c1), 1/T(,1) varies less rapidly than T('3). For 0.1 K < T < T(,c2), 1/T(,1) varies at T('3), which suggests that the nature of the superconductivity of U(,0.9669)Th(,0.0331)Be(,13) in this temperature range is the same as that of UBe(,13).

Tien, Cheng

248

Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments  

NASA Astrophysics Data System (ADS)

This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

Enomoto, Ayano; Hirata, Hiroshi

2014-02-01

249

Optomechanical trampoline resonators.  

PubMed

We report on the development of optomechanical "trampoline" resonators composed of a tiny SiO(2)/Ta(2)O(5) dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 10(4) and mechanical quality factors as high as 9 × 10(5) in relatively massive (~100 ng) and low frequency (10-200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems. PMID:21996913

Kleckner, Dustin; Pepper, Brian; Jeffrey, Evan; Sonin, Petro; Thon, Susanna M; Bouwmeester, Dirk

2011-09-26

250

On the mechanism of electrochemical modulation of plasmonic resonances  

NASA Astrophysics Data System (ADS)

Recent electrochemical experiments on gold-based photonic metamaterials have shown a sizable reversible tuning and modulation of plasmonic resonances. Here, we study the mechanism of the electrochemical modulation by measuring the change of the resonance transmittance and resonance frequency during underpotential deposition of Pb, Cu, and electrosorption of OH. The electric resistance change of the resonators is identified as decisive for the resonance transmittance change, while the space-charge layer at the metal surface shifts the resonance frequency.

Shao, L.-H.; Ruther, M.; Linden, S.; Wegener, M.; Weissmüller, J.

2012-09-01

251

Magnetic Resonance  

Cancer.gov

Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

252

NQR investigation of pressure-induced charge transfer in oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} ({delta} = 0.38)  

SciTech Connect

Measurements of the pressure dependence of {sup 63}Cu nuclear quadrupole frequency in YBa{sub 2}Cu{sub 3}O{sub 6.62} from ambient pressure up to 1.5 GPa at 4k have been performed. {Tc} was found to increase with pressure: d{Tc}/dp {approximately} 5 K/GPa. All observed NQR lines are linear in pressure: dln{nu}{sub Q}/dp=z. We found positive z for the empty chain sites, consistent with ionic (Cu{sup 1+}) configuration in which the atom simply feels a squeezing lattice. Planar coppers close to the empty chains have positive z, while those that are close to full chains have z {approximately} 0. We present an analysis of the NQR result on the basis of the charge transfer model in which the mobile charges migrate from the chain to the plane sites. We deduced that a transfer of 0.021 holes to the O(2,3) sites would explain the result in YBa{sub 2}Cu{sub 3}O{sub 6.62}, whereas only 0.007 holes transfer in fully oxygenated YBa{sub 2}Cu{sub 3}O{sub 7}.

Reyes, A.P.; Ahrens, E.T.; Hammel, P.C.; Heffner, R.H. [Los Alamos National Lab., NM (United States); Takigawa, M. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

1992-03-01

253

Fano effect of metamaterial resonance in terahertz extraordinary transmission  

Microsoft Academic Search

We show that the terahertz resonant transmission through metal hole array can be tailored by filling the holes with metamaterials. Experiment and finite difference time domain simulations show this type of resonant transmission to be induced by locally resonant modes, instead of the usual lateral surface grating mode. As the metamaterial's local resonances can be manipulated by varying their geometric

Xiao Xiao; Jinbo Wu; Fumiaki Miyamaru; Mengying Zhang; Shunbo Li; Mitsuo W. Takeda; Weijia Wen; Ping Sheng

2011-01-01

254

An Electromagnetic Resonance Circuit for Liquid Level Detection  

ERIC Educational Resources Information Center

Electromagnetic resonators are often used to detect foreign materials. Here we present a simple experiment for the measurement of liquid level. The resonator, consisting of a coil and a capacitor, is brought to resonance by an external magnetic field source, and the corresponding resonance frequency is determined using Fourier analysis combined…

Hauge, B. L.; Helseth, L. E.

2012-01-01

255

Fundamental mode rectangular waveguide system for electron-cyclotron resonant heating (ECRH) for tandem mirror experiment-upgrade (TMX-U)  

SciTech Connect

We present a brief history of TMX-U's electron cyclotron resonant heating (ECRH) progress. We emphasize the 2-year performance of the system, which is composed of four 200-kW pulsed gyrotrons operated at 28 GHz. This system uses WR42 waveguide inside the vacuum vessel, and includes barrier windows, twists, elbows, and antennas, as well as custom-formed waveguides. Outside the TMX-U vessel are directional couplers, detectors, elbows, and waveguide bends in WR42 rectangular waveguide. An arc detector, mode filter, eight-arm mode converter, and water load in the 2.5-in. circular waveguide are attached directly to the gyrotron. Other specific areas discussed include the operational performance of the TMX-U pulsed gyrotrons, windows and component arcing, alignment, mode generation, and extreme temperature variations. Solutions for a number of these problems are described.

Rubert, R.R.; Felker, B.; Stallard, B.W.; Williams, C.W.

1983-12-01

256

Resonance conditions  

E-print Network

Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we discuss which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

P. Rebusco

2005-10-14

257

Resonance production  

NASA Astrophysics Data System (ADS)

Recent results on rgr(770)0, K(892)*0, f0(980), phgr(1020), Dgr(1232)++ and Lgr(1520) production in A+A and p+p collisions at SPS and RHIC energies are presented. These resonances are measured via their hadronic decay channels and used as a sensitive tool to examine the collision dynamics in the hadronic medium through their decay and regeneration. The modification of resonance mass, width and shape due to phase space and dynamical effects are discussed.

Fachini, Patricia

2004-08-01

258

Microscopic magnetic nature of water absorbed Na0.35CoO2 investigated by NMR, NQR and ?+SR  

NASA Astrophysics Data System (ADS)

In order to clarify the variation of the microscopic magnetic nature with the carrier density in NaxCoO2·yHO, we have measured positive muon-spin rotation/relaxation (?+SR) spectra for H2O as well as D2O absorbed samples. Based on the zero field (ZF-) ?+SR measurements, there was no clear difference between the two superconducting phases (SC-I and SC-II). Furthermore, the ZF-spectrum for the H2O absorbed sample exhibits a clear oscillation in the whole T range measured (1.4-100 K), suggesting the formation of “[H3O]+-like” H2?+O ions in the sample. Further, the absence of an oscillation in the D2O absorbed sample also evidences the presence of H2?+O. We also measured 59Co nuclear quadrupole resonance spectra of magnetic sample. The temperature dependence of spectra shows that there is no evidence of charge ordering and CDW ordering around magnetic transition temperature.

Ohta, Hiroto; Månsson, Martin; Ikedo, Yutaka; Sugiyama, Jun; Michioka, Chishiro; Yoshimura, Kazuyoshi; Brewer, Jess H.; Ansaldo, Eduardo J.; Stubbs, Scott L.; Chow, Kim H.; Lord, James S.

2010-12-01

259

Resonant ultrasonic attenuation in emulsions  

NASA Astrophysics Data System (ADS)

We report the achievement of scattering resonant emulsions devoted to the frequency-control of acoustic attenuation in the megahertz range. By means of robotics, we produced highly monodisperse, in both size and shape, fluorinated-oil droplet suspensions, providing experimental evidence of several Mie scattering resonances. Ultrasonic experiments performed in such complex media are compared, with an excellent quantitative agreement, to theoretical predictions derived within the framework of the independent scattering approximation.

Brunet, Thomas; Mascaro, Benoit; Poncelet, Olivier; Aristégui, Christophe; Raffy, Simon; Mondain-Monval, Olivier; Leng, Jacques

2013-08-01

260

Investigations of the radial propagation of blob-like structure in a non-confined electron cyclotron resonance heated plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak  

SciTech Connect

A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.

Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Nishino, N. [Department of Mechanical System Engineering, Graduate School of Engineering, Hiroshima University (Japan); Collaboration: QUEST Group

2011-09-15

261

Autostereogram resonators  

NASA Astrophysics Data System (ADS)

Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

2012-09-01

262

I. Parametric study of optically pumped far-infrared waveguide lasers. II. Theory and experiment of folded Fabry-Perot quasi-optical ring resonator diplexer  

SciTech Connect

Part I deals with the problems related to the physics and the design of one of the extremely useful coherent sources in the FIR region of the electromagnetic spectrum: the optically-pumped FIR waveguide laser. The effects of small waveguide diameter were studied here particularly because of their importance to the practical realization of a compact coherent FIR laser. Two known theoretical models were used to analyze the performance of CH/sub 3/OH 118 ..mu..m laser and CH/sub 3/F 496 ..mu..m laser; the results from these models were compared with the results of the experimental parametric study on CH/sub 3/OH 118 ..mu..m laser. Part II deals with a problem related to the physics and design of a diplexer for application in the FIR heterodyne radiometry, where signals from the local oscillator and the received signal have to be directed into a detector for frequency mixing and for further signal processing. The optimum design parameters for a folded Fabry-Perot quasi-optical ring resonator diplexer were derived, and its performance was investigated both theoretically and experimentally. The results were compared with those of the similar diplexers of non-optimum geometry. The advantages and limitations of the optimum diplexer design are analyzed.

Chiou, A.E.T.

1983-01-01

263

Optimization of a microwave resonator cavity to perform electron spin resonance measurements on quantum dots  

E-print Network

This thesis attempts to improve on an ongoing experiment of detecting electron spin resonance (ESR) on AlGaAs/GaAs lateral quantum dots. The experiment is performed in a 2.5 Tesla magnetic field at temperatures around ...

Burger, Anat

2006-01-01

264

Gramicidin A Backbone and Side Chain Dynamics Evaluated by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Experiments. I: Molecular Dynamics Simulations  

PubMed Central

Gramicidin A (gA) channels provide an ideal system to test molecular dynamics (MD) simulations of membrane proteins. The peptide backbone lines a cation-selective pore and, due to the small channel size, the average structure and extent of fluctuations of all atoms in the peptide will influence ion permeation. This raises the question of how well molecular mechanical force fields used in MD simulations and potential of mean force (PMF) calculations can predict structure and dynamics as well as ion permeation. To address this question, we undertook a comparative study of nuclear magnetic resonance (NMR) observables predicted by fully atomistic MD simulations on a gA dimer embedded in a sodium dodecyl sulfate (SDS) micelle with measurements of the gA dimer backbone and tryptophan side chain dynamics using solution state 15N-NMR on gA dimers in SDS micelles. This comparison enables us to examine the robustness of the MD simulations done using different force fields, as well as their ability to predict important features of the gA channel. We find that MD is able to predict NMR observables, including the generalized order parameters (S2), the 15N spin-lattice (T1), spin-spin (T2) relaxation times, and the 1H-15N nuclear Overhauser effect (NOE), with remarkable accuracy. To examine further how differences in the force fields can affect the channel conductance, we calculated the PMF for K+ and Na+ permeation through a gA channel in a dimyristoylphosphatidylcholine (DMPC) bilayer. In this case, we find that MD is less successful in quantitatively predicting the single-channel conductance. PMID:21574563

Ingólfsson, Helgi I.; Li, Yuhui; Vostrikov, Vitaly V.; Gu, Hong; Hinton, James F.; Koeppe, Roger E.; Roux, Benoît; Andersen, Olaf S.

2011-01-01

265

Humanitarian mine detection by acoustic resonance  

SciTech Connect

The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical field-deployable methods of mine detection.

Kercel, S.W.

1998-03-01

266

Silicon photonic resonator sensors and devices  

NASA Astrophysics Data System (ADS)

Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.

Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Schmidt, Shon A.; Ratner, Daniel M.; Jaeger, Nicolas A. F.

2012-02-01

267

Gravitoelectromagnetic resonances  

NASA Astrophysics Data System (ADS)

The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

Tsagas, Christos G.

2011-08-01

268

Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry.  

PubMed

Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Delta m(50%) > or = 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins. PMID:20116280

Kazazic, Sasa; Zhang, Hui-Min; Schaub, Tanner M; Emmett, Mark R; Hendrickson, Christopher L; Blakney, Gregory T; Marshall, Alan G

2010-04-01

269

Automated Data Reduction for Hydrogen/Deuterium Exchange Experiments, Enabled by High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry  

PubMed Central

Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/?m50% ? 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry- based analysis of H/D exchange of solution-phase proteins. PMID:20116280

Kazazic, Sasa; Zhang, Hui-Min; Schaub, Tanner M.; Emmett, Mark R.; Hendrickson, Christopher L.; Blakney, Gregory T.; Marshall, Alan G.

2010-01-01

270

Hidden Sector Photon Coupling of Resonant Cavities  

E-print Network

Many beyond the standard model theories introduce light paraphotons, a hypothetical spin-1 field that kinetically mixes with photons. Microwave cavity experiments have traditionally searched for paraphotons via transmission of power from an actively driven cavity to a passive receiver cavity, with the two cavities separated by a barrier that is impenetrable to photons. We extend this measurement technique to account for two-way coupling between the cavities and show that the presence of a paraphoton field can alter the resonant frequencies of the coupled cavity pair. We propose an experiment that exploits this effect and uses measurements of a cavities resonant frequency to constrain the paraphoton-photon mixing parameter, chi. We show that such an experiment can improve sensitivity to chi over existing experiments for paraphoton masses less than the resonant frequency of the cavity, and eliminate some of the most common systematics for resonant cavity experiments.

Stephen R. Parker; Gray Rybka; Michael E. Tobar

2013-04-25

271

Notes on Experiments.  

ERIC Educational Resources Information Center

Describes four physics experiments including "Investigation of Box Resonances Using a Micro"; "A Direct Reading Wattmeter, DC or AC"; "Exercises in the Application of Ohm's Law"; and "Hysteresis on Gas Discharges." Discusses procedures, instrumentation, and analysis in each example. (CW)

Physics Education, 1988

1988-01-01

272

If It's Resonance, What is Resonating?  

ERIC Educational Resources Information Center

The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

Kerber, Robert C.

2006-01-01

273

Comparison of particle-in-cell simulation with experiment for the transport system of the superconducting electron cyclotron resonance ion source VENUS  

SciTech Connect

The three-dimensional, particle-in-cell code WARP has been enhanced to allow end-to-end beam dynamics simulations of the VENUS beam transport system from the extraction region, through a mass-analyzing magnet, and up to a two-axis emittance scanner. This article presents the first results of comparisons between the simulation and experimental data. A helium beam (He{sup +} and He{sup 2+}) is chosen as an initial comparison beam due to its simple mass spectrum. Although a number of simplifications are made for the initial extracted beam, aberration characteristics appear in simulations that are also present in experimental phase-space current-density measurements. Further, measurements of phase-space tilt indicate that simulations must have little or no space-charge neutralization along the transport system to best agree with experiment. In addition, recent measurements of triangular beam structure immediately after the source are presented. This beam structure is related to the source magnetic confinement fields and will need to be taken into account as the initial beam approximations are lifted.

Todd, D.S.; Leitner, D.; Leitner, M.; Lyneis, C.M.; Qiang, J.; Grote, D.P. [LBNL, Berkeley, California 94720 (United States); LLNL, Livermore, California 94551 (United States)

2006-03-15

274

Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: Experiment and theory for the cesium D1 line  

NASA Astrophysics Data System (ADS)

We have measured magneto-optical signals obtained by exciting the D1 line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than 1 ? m , and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions with relaxation rates that were obtained directly from the thermal velocities of the atoms and the length scales involved. Furthermore, the interactions of the atoms with different regions of the laser beam were modeled separately to account for the varying laser beam intensity over the beam profile as well as saturation effects that become important near the center of the beam at the relatively high laser intensities used during the experiments in order to obtain measurable signals. The model described the experimentally measured signals for laser intensities for magnetic fields up to 55 G and laser intensities up to 1 W/cm2 with excellent agreement.

Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalnins, U.; Kalvans, L.; Rundans, R.; Sarkisyan, D.

2015-02-01

275

Parametric nonfeedback resonance in period doubling systems  

NASA Astrophysics Data System (ADS)

Slow periodic modulation of a control parameter in a period doubling system leads to an interaction between stable and unstable periodic orbits. This causes a resonance in the system response at the modulation frequency. The conditions for this resonance are studied through numerical simulations of quadratic map and laser equations. The results are confirmed by experiments in a CO2 laser with modulated losses.

Pisarchik, A. N.; Corbalán, R.

1999-02-01

276

Extraordinary acoustic transmission mediated by Helmholtz resonators  

SciTech Connect

We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

Koju, Vijay [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Rowe, Ebony [Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Robertson, William M., E-mail: William.Robertson@mtsu.edu [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States)

2014-07-15

277

Extraordinary acoustic transmission mediated by Helmholtz resonators  

NASA Astrophysics Data System (ADS)

We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

Koju, Vijay; Rowe, Ebony; Robertson, William M.

2014-07-01

278

The Electromagnetic Spectrum: Resonating Atmosphere  

NSDL National Science Digital Library

Using a paper and tape device, students experience how atoms and molecules of gas in Earth’s atmosphere absorb electromagnetic energy through resonance. This activity is part of Unit 2 in the Space Based Astronomy guide that contains background information, worksheets, assessments, extensions, and standards.

279

Measuring the acoustic response of Helmholtz resonators  

NASA Astrophysics Data System (ADS)

Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

2015-04-01

280

Empathy in schizophrenia: impaired resonance.  

PubMed

Resonance is the phenomenon of one person unconsciously mirroring the motor actions as basis of emotional expressions of another person. This shared representation serves as a basis for sharing physiological and emotional states of others and is an important component of empathy. Contagious laughing and contagious yawning are examples of resonance. In the interpersonal contact with individuals with schizophrenia we can often experience impaired empathic resonance. The aim of this study is to determine differences in empathic resonance-in terms of contagion by yawning and laughing-in individuals with schizophrenia and healthy controls in the context of psychopathology and social functioning. We presented video sequences of yawning, laughing or neutral faces to 43 schizophrenia outpatients and 45 sex- and age-matched healthy controls. Participants were video-taped during the stimulation and rated regarding contagion by yawning and laughing. In addition, we assessed self-rated empathic abilities (Interpersonal Reactivity Index), psychopathology (Positive and Negative Syndrome Scale in the schizophrenia group resp. Schizotypal Personality Questionnaire in the control group), social dysfunction (Social Dysfunction Index) and executive functions (Stroop, Fluency). Individuals with schizophrenia showed lower contagion rates for yawning and laughing. Self-rated empathic concern showed no group difference and did not correlate with contagion. Low rate of contagion by laughing correlated with the schizophrenia negative syndrome and with social dysfunction. We conclude that impaired resonance is a handicap for individuals with schizophrenia in social life. Blunted observable resonance does not necessarily reflect reduced subjective empathic concern. PMID:19377866

Haker, Helene; Rössler, Wulf

2009-09-01

281

Laser-Assisted Magnetic Resonance: Principles and Applications  

E-print Network

Laser-Assisted Magnetic Resonance: Principles and Applications D. Suter and J. Gutschank Universit radiation can be used in various magnetic resonance experiments. This chapter discusses a number of cases with the help of coherent optical radiation. 1 Introduction The interest in the field of magnetic resonance

Suter, Dieter

282

Regenerative feedback resonant circuit  

DOEpatents

A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

2014-09-02

283

Resonance in a head massager  

NASA Astrophysics Data System (ADS)

Mechanical structures such as pendula, bridges, or buildings always exhibit one (or more) natural oscillation frequency.1 If that structure is subjected to oscillatory forces of this same frequency, resonance occurs, with consequent increase of the structure oscillation amplitude. There is no shortage of simple experiments for demonstrating resonance in high school classes using a variety of materials, such as saw blades,2 guitars,3 pendulums,4 wine glasses,5 bottles,6 Ping-Pong balls,7 and pearl strings.8 We present here an experimental demonstration using only an inexpensive head (or scalp) massager, which can be purchased for less than a dollar.

Ribeiro, Jair Lúcio Prados

2015-04-01

284

Magnetic resonance angiography  

MedlinePLUS

MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular Magnetic Resonance Imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . ...

285

Output beam characteristics of a toric concave mirror laser resonator  

Microsoft Academic Search

The output beam characteristics of a toric concave mirror laser resonator are discussed. The experiments of the toric concave mirror laser resonator, the plane-concave stable resonator, and the parallel plane resonator with the same Fresnel number of 17.25 are done on HUST2000 high-power transverse flow CO2 laser. The output laser beam of 1820 W with a doughnutlike distribution, the output

Yingxiong Qin; Longsheng Xiao; Du Wang; Xiahui Tang

2009-01-01

286

Instrumental Analysis Experiments  

NSDL National Science Digital Library

This site features laboratory experiments for undergraduate instrumental analysis. Topics include data acquisition, control of instrumentation (gas chromatography, polarography, voltammetry, atomic absorption, robots), infrared spectroscopy, liquid chromatography, and nuclear magnetic resonance. Extensive use of LabView, Excel, and computers. Experiments are available for download in PDF format.

Walters, John P.

287

Notes on Experiments.  

ERIC Educational Resources Information Center

Describes: (1) two experiments using a laser (resonant cavity for light and pinhole camera effect with a hologram); (2) optical differaction patterns displayed by microcomputer; and (3) automating the Hall effect (with comments on apparatus needed and computer program used); and (4) an elegant experiment in mechanical equilibrium. (JN)

Physics Education, 1985

1985-01-01

288

Electroexcitation of nucleon resonances  

SciTech Connect

We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

Inna Aznauryan, Volker D. Burkert

2012-01-01

289

Stochastic resonance in visual sensitivity.  

PubMed

It is well known from psychophysical studies that stochastic resonance, in its simplest threshold paradigm, can be used as a tool to measure the detection sensitivity to fine details in noise contaminated stimuli. In the present manuscript, we report simulation studies conducted in the similar threshold paradigm of stochastic resonance. We have estimated the contrast sensitivity in detecting noisy sine-wave stimuli, with varying area and spatial frequency, as a function of noise strength. In all the cases, the measured sensitivity attained a peak at intermediate noise strength, which indicate the occurrence of stochastic resonance. The peak sensitivity exhibited a strong dependence on area and spatial frequency of the stimulus. We show that the peak contrast sensitivity varies with spatial frequency in a nonmonotonic fashion and the qualitative nature of the sensitivity variation is in good agreement with human contrast sensitivity function. We also demonstrate that the peak sensitivity first increases and then saturates with increasing area, and this result is in line with the results of psychophysical experiments. Additionally, we also show that critical area, denoting the saturation of contrast sensitivity, decreases with spatial frequency and the associated maximum contrast sensitivity varies with spatial frequency in a manner that is consistent with the results of psychophysical experiments. In all the studies, the sensitivities were elevated via a nonlinear filtering operation called stochastic resonance. Because of this nonlinear effect, it was not guaranteed that the sensitivities, estimated at each frequency, would be in agreement with the corresponding results of psychophysical experiments; on the contrary, close agreements were observed between our results and the findings of psychophysical investigations. These observations indicate the utility of stochastic resonance in human vision and suggest that this paradigm can be useful in psychophysical studies. PMID:25398687

Kundu, Ajanta; Sarkar, Sandip

2015-04-01

290

Resonant angular conversion in a Fabry-Perot resonator holding a dielectric cylinder.  

PubMed

Light transmission through a Fabry-Perot resonator (FPR) holding a dielectric cylinder rod is considered. For the cylinder parallel to mirrors of the FPR and the mirrors mimicked by the ? functions we present an exact analytical theory. It is shown that light transmits only for resonant incident angles, ?(m), similar to the empty FPR. However after transmission the light scatters into different resonant angles, ?(m'), performing resonant angular conversion. We compare the theory with experiment in the FPR, exploring multilayer films as the mirrors and glass cylinder with diameter coincided with the distance between the FPR mirrors. The measured values of angular light conversion agree qualitatively with the theoretical results. PMID:24562024

Bulgakov, E N; Sadreev, A F; Gerasimov, V P; Zyryanov, V Y

2014-02-01

291

Efficient second harmonic generation in a metamaterial with two resonant modes coupled through two varactor diodes  

NASA Astrophysics Data System (ADS)

We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes to effective SH radiation. In the experiment, we observe 19.6 dB enhancement in the SH radiation in comparison with the nonlinear metamaterial that resonates only for the fundamental waves.

Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao

2012-01-01

292

Electromagnetic decay of giant resonances  

Microsoft Academic Search

Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of ²°⁸Pb and ⁹°Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in ²°⁸Pb

J. R. Beene; F. E. Bertrand; M. L. Halbert; R. L. Auble; D. C. Hensley; D. J. Horen; R. L. Robinson; R. O. Sayer; T. P. Sjoreen

1985-01-01

293

Micro-optomechanical trampoline resonators  

NASA Astrophysics Data System (ADS)

Recently, micro-optomechanical devices have been proposed for implementation of experiments ranging from non-demolition measurements of phonon number to creation of macroscopic quantum superpositions. All have strenuous requirements on optical finesse, mechanical quality factor, and temperature. We present a set of devices composed of dielectric mirrors on Si3N4 trampoline resonators. We describe the fabrication process and present data on finesse and quality factor.

Pepper, Brian; Kleckner, Dustin; Sonin, Petro; Jeffrey, Evan; Bouwmeester, Dirk

2011-03-01

294

Composite arrays of superconducting microstrip line resonators  

NASA Astrophysics Data System (ADS)

A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

Mohebbi, H. R.; Benningshof, O. W. B.; Taminiau, I. A. J.; Miao, G. X.; Cory, D. G.

2014-03-01

295

Composite arrays of superconducting microstrip line resonators  

SciTech Connect

A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

Mohebbi, H. R., E-mail: hmohebbi@uwaterloo.ca; Miao, G. X. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Benningshof, O. W. B. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Taminiau, I. A. J. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Cory, D. G. [Institute for Quantum Computing, Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-03-07

296

Transmon qubits coupled to compact resonators  

NASA Astrophysics Data System (ADS)

Compact resonators comprising of a meander inductor and an interdigitated capacitor are desirable building blocks for a multi-qubit processor due to their small size. We present an experiment on a superconducting transmon qubit coupled capacitively to such a compact resonator. We have fabricated low-loss Nb based compact resonators with an area within 1 mm^2 on a sapphire substrate to operate between 5 and 8 GHz. The resonator geometry was optimized to achieve an intrinsic quality factor above 300,000 at single-photon microwave powers and temperatures below 100 mK. Transmon qubits were made using Al/AlOx/Al Josephson junctions shunted by an Al interdigitated capacitor with an identical width and gap as the resonator. We will present our experimental progress towards measuring relaxation times of these qubits.

Shankar, S.; Geerlings, K.; Edwards, E.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

2011-03-01

297

Integral data analysis for resonance parameters determination  

SciTech Connect

Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.

Larson, N.M.; Leal, L.C.; Derrien, H.

1997-09-01

298

Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors  

PubMed Central

Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed. PMID:22163431

Daghestani, Hikmat N.; Day, Billy W.

2010-01-01

299

Unstable resonators with excited converging wave  

SciTech Connect

This paper reports the properties of unstable resonators with an additional mirror inside or outside the resonator investigated, both experimentally and theoretically. The additional mirror excites the converging wave, and by this, output coupling is decreased without affecting beam quality. Experiments were performed with a pulsed Nd:YAG system. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically. Agreement between theory and experiments indicates that this kind of resonator provides high focusability and maximum extraction efficiency simultaneously, even with low-gain media. This enables one to apply unstable resonators to solid-state lasers with low small-signal gain, like alexandrite or CW-pumped Nd:YAG.

Hodgson, N. (Optisches Institut, Technische Universitat Berlin, Strasse des 17. Juni 135, 1000 Berlin 12 (DE)); Weber, H. (Festkoerper-Laser-Institut Berlin GmbH, Strasse des 17, Juni 135, 1000 Berlin (DE))

1990-04-01

300

Integral resonator gyroscope  

NASA Technical Reports Server (NTRS)

The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

2008-01-01

301

Cyclotron resonance heating systems for SST1  

Microsoft Academic Search

RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during

D. Bora; Sunil Kumar; Raj Singh; K. Sathyanarayana; S. V. Kulkarni; A. Mukherjee; B. K. Shukla; J. P. Singh; Y. S. S. Srinivas; P. Khilar; M. Kushwah; Rajnish Kumar; R. Sugandhi; P. Chattopadhyay; Singh Raghuraj; H. M. Jadav; B. Kadia; Manoj Singh; Rajan Babu; P. Jatin; G. Agrajit; P. Biswas; A. Bhardwaj; D. Rathi; G. Siju; K. Parmar; A. Varia; S. Dani; D. Pragnesh; C. Virani; Harsida Patel; P. Dharmesh; A. R. Makwana; P. Kirit; M. Harsha; J. Soni; V. Yadav; D. S. Bhattacharya; M. Shmelev; V. Belousov; V. Kurbatov; Yu. Belov; E. Tai

2006-01-01

302

Alpha resonant scattering for astrophysical reaction studies  

NASA Astrophysics Data System (ADS)

Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the ? resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7Be+? resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7Be(?,?) reaction, and proposed a new cluster band in 11C.

Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

2014-05-01

303

Coupled Harmonics in Nonlinear Coplanar Waveguide Resonators  

NASA Astrophysics Data System (ADS)

The coplanar waveguide resonator has become a ubiquitous design element in superconducting quantum information experiments. By necessity, many of these resonators are loaded with nonlinear elements and, as such, incorporate a mechanism for coupling power between harmonic modes of the system. In this talk, we will present a specific example in which a dc SQUID terminates a quarter wave resonator and how the mode coupling via this nonlinear element can both enhance and degrade the performance of this device as a parametric amplifier and frequency converter.

Aumentado, Jose; Lee, Minhyea; Spietz, Lafe

2010-03-01

304

Alpha resonant scattering for astrophysical reaction studies  

SciTech Connect

Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the ? resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+? resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(?,?) reaction, and proposed a new cluster band in {sup 11}C.

Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

2014-05-02

305

State-selective Rabi and Ramsey magnetic resonance line shapes G. Xu and D. J. Heinzen  

E-print Network

State-selective Rabi and Ramsey magnetic resonance line shapes G. Xu and D. J. Heinzen Department-selective Rabi and Ramsey magnetic-resonance experiments on ground-state 133 Cs(F 4) atoms. Novel line shapes-selective Rabi and Ramsey magnetic-resonance experiments on 133 Cs at- oms in their 62 S1/2 , F 4 ground

Heinzen, Daniel J.

306

Tailored Asymmetry for Enhanced Coupling to WGM Resonators  

NASA Technical Reports Server (NTRS)

Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

Mohageg, Makan; Maleki, Lute

2008-01-01

307

Crossing simple resonances  

SciTech Connect

A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

Collins, T.

1985-08-01

308

Nanomechanical resonance detector  

DOEpatents

An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

Grossman, Jeffrey C; Zettl, Alexander K

2013-10-29

309

MRI (Magnetic Resonance Imaging)  

MedlinePLUS

... Radiation-Emitting Products and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) Description Uses Risks/Benefits Information for ... Regulations & Performance Standards Industry Guidance Other Resources Description Magnetic resonance imaging (MRI) is a medical imaging procedure ...

310

N+CPT clock resonance  

SciTech Connect

In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

Crescimanno, M. [Department of Physics and Astronomy, Youngstown State University, Youngstown, Ohio 44555 (United States); Hohensee, M. [MS-59, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, Massachusetts 02138 (United States)

2008-12-15

311

Triply resonant sum frequency spectroscopy: combining advantages of resonance Raman and 2D-IR.  

PubMed

This article describes the new multidimensional spectroscopy technique triply resonant sum frequency spectroscopy, a four-wave mixing technique sharing advantages of both 2D-IR and resonance Raman experiments. In this technique, lasers with three independent frequencies interact coherently within a sample and generate an output frequency at their triple summation. The output intensity depends on coupled electronic and vibrational resonances in the sample. We use an organic dye as a model system to demonstrate fully resonant, fully coherent multidimensional spectroscopy using two independently tunable mid-infrared vibrational interactions and one visible electronic interaction. When the pulses are time ordered, the method has a single coherence pathway, eliminating interference between pathways. Fundamental vibrational transitions appear on one axis and overtones and combinations bands on the other, allowing anharmonicities of the modes to be determined easily and conveying molecular coupling information. The experiments demonstrate coupling between seven vibrational ring modes and an electronic state, the resolution of a Fermi resonance, detection of low concentrations, elimination of excitation pulse scattering and fluorescence, background suppression of solvent and co-solutes, and observation of coherence dephasing dynamics. The electronic resonance enhancements used in this methodology are similar to the enhancements responsible for resonance Raman spectroscopy and can be considered resonance 2D-IR spectroscopy. PMID:24160771

Boyle, Erin S; Neff-Mallon, Nathan A; Wright, John C

2013-11-27

312

Magnetic Resonance Spectroscopy (MRS)  

E-print Network

Magnetic Resonance Spectroscopy (MRS) and Its Application in Alzheimer's Disease PRAVAT K. MANDAL1, Pennsylvania ABSTRACT: Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure the chemical; PRESS; STEAM; 2D MRS; Alzheimer's disease I. INTRODUCTION Magnetic resonance spectroscopy (MRS) is a rap

Mandal, Pravat K.

313

Nuclear Magnetic Resonance  

NASA Astrophysics Data System (ADS)

Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

Andrew, E. R.

2009-06-01

314

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY  

E-print Network

CHAPTER 3 ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 1 Sergei A. Dikanov and 2 Antony R. Crofts 1 for the investigation of unpaired electron spins. Two terms are used in the literature: electron paramagnetic resonance (EPR) and electron spin resonance (ESR). We will use the first term in this chapter. During the sixty

Crofts, Antony R.

315

An Inexpensive Resonance Demonstration  

ERIC Educational Resources Information Center

The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

Dukes, Phillip

2005-01-01

316

Resonance transformer power conditioners  

Microsoft Academic Search

Designs for power conditioning systems based on the resonance transformer have been developed for applications requiring compact, lightweight power supplies ranging from average power levels of 10 kW to over 1 MW. The resonance transformer is a patented concept which depends on a set of resonant LC circuits to produce transformer-like voltage or current gain. Because this approach does not

R. M. Ness; S. G. E. Pronko; J. R. Cooper; E. Y. Chu

1990-01-01

317

[Magnetic resonance spectroscopy].  

PubMed

Life-time diagnosis of the initial pathological shifts in the organism remains an and still unsolved important problem of modern medicine. Magnetic resonance spectroscopy based on the nuclear magnetic resonance phenomenon is one of the methods which can help to solve this problem. Modern reports about the use of magnetic resonance spectroscopy in the diagnosis of various diseases are reviewed. PMID:11521591

Tsa?, I V; Kulikov, S A; Kozinets, G I

2001-06-01

318

Experimental demonstration of waveguide-coupled hexagonal micropillar resonators with round-corners in silicon nitride  

Microsoft Academic Search

We report laterally waveguide-coupled hexagonal micropillar resonators with designed round-corners in silicon nitride. Our experiments reveal highly efficient coupled nearly singlemode resonances in a large-sized micropillar with an optimized round-corner radius

Shengmei Zheng; Ning Ma; A. W. Poon

2005-01-01

319

Ovenized microelectromechanical system (MEMS) resonator  

DOEpatents

An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

2014-03-11

320

Resonant and non-resonant magnetic scattering  

SciTech Connect

The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

1991-01-01

321

Resonant and non-resonant magnetic scattering  

SciTech Connect

The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

1991-12-31

322

Optical Helmholtz resonators  

NASA Astrophysics Data System (ADS)

Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the ?/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

2014-08-01

323

Notes on Experiments.  

ERIC Educational Resources Information Center

An experiment on cooling by convection, holographic processes achieved using optical fibers and observation of magnetic domains are described. Also describes four demonstrations: mechanical resonance on air track, independence of horizontal/vertical motion, motion of sphere in fluid medium, and light scattering near the critical point. (JN)

Physics Education, 1983

1983-01-01

324

Experimenting with Woodwind Instruments  

ERIC Educational Resources Information Center

Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

LoPresto, Michael C.

2007-01-01

325

An NMR Kinetics Experiment.  

ERIC Educational Resources Information Center

Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

Kaufman, Don; And Others

1982-01-01

326

Miniature Sapphire Acoustic Resonator - MSAR  

NASA Technical Reports Server (NTRS)

A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to mechanical energy and back. Such an electrostatic tweeter type excitation of a mechanical resonator will be tested at 5 MHz. Finite element calculation will be applied to resonator design for the desired resonator frequency and optimum configuration. The experiment consists of the sapphire resonator sandwiched between parallel electrodes. A DC+AC voltage can be applied to generate a force to act on a sapphire resonator. With the frequency of the AC voltage tuned to the sapphire resonator frequency, a resonant condition occurs and the sapphire Q can be measured with a high-frequency impedance analyzer. To achieve high Q values, many experimental factors such as vacuum seal, gas damping effects, charge buildup on the sapphire surface, heat dissipation, sapphire anchoring, and the sapphire mounting configuration will need attention. The effects of these parameters will be calculated and folded into the resonator design. It is envisioned that the initial test configuration would allow for movable electrodes to check gap spacing dependency and verify the input impedance prediction. Quartz oscillators are key components in nearly all ground- and space-based communication, tracking, and radio science applications. They play a key role as local oscillators for atomic frequency standards and serve as flywheel oscillators or to improve phase noise in high performance frequency and timing distribution systems. With ultra-stable performance from one to three seconds, an Earth-orbit or moon-based MSAR can enhance available performance options for spacecraft due to elimination of atmospheric path degradation.

Wang, Rabi T.; Tjoelker, Robert L.

2011-01-01

327

Cyclotron Resonances in Electron Cloud Dynamics  

SciTech Connect

A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

2009-04-29

328

Polarization properties of self-induced transparency under Raman resonance  

NASA Astrophysics Data System (ADS)

Self-induced transparency under two-photon and Raman resonances is studied theoretically in the cases of small angular momentum of resonant transition and essentially different intensity of resonant waves. The last corresponds to the condition of experiment of Grabtchikov et al [Phys.Rev.Lett.81,5808 (1998)]. The problem with account to wave polarization was reduced to generalized Maxwell-Bloch equations which are exactly integrable by the inverse scattering transform method.

Basharov, Ashat M.

2001-11-01

329

Tuning of Fano resonances in terahertz metamaterials  

NASA Astrophysics Data System (ADS)

To overcome the large linewidth in the transmission spectra of metamaterials which have been applied in fields such as bio-sensing and light modulating in terahertz regime, a set of terahertz metamaterials which are composed of two different split ring resonators are designed and fabricated to explore the characteristics such as Fano resonances and quality factors by changing the geometry structure. The results illustrate that the Fano resonance is tuned both in the depth and in the width when the gap position of the metamaterial with asymmetric structure varies. Meanwhile, to obtain extremely sharp Fano resonances, the gap width is reduced, which greatly improves the quality factor of the Fano line shape in the transmission spectra, presenting a narrow linewidth of merely 11 GHz in the simulation and 23 GHz in the experiment.

Cao, Y. P.; Wang, Y. Y.; Geng, Z. X.; Liu, J.; Yang, Y. P.; Chen, H. D.

2015-02-01

330

Coexistence of Antiferromagnetism with Superconductivity in CePt2In7: Microscopic Phase Diagram Determined by In115 NMR and NQR  

NASA Astrophysics Data System (ADS)

Single crystals of the heavy-fermion antiferromagnet CePt2In7 with a Néel temperature (TN) of 5.2 K at ambient pressure have been investigated by zero-field In115-nuclear magnetic and quadrupole resonance measurements as a function of applied pressure. Within the antiferromagnetic state, the character of Ce's 4f electron appears to change from localized to itinerantlike at P*˜2.4 GPa, approximately the pressure where superconductivity first emerges. With increased pressure, the superconducting transition Tc reaches a maximum just at or slightly before antiferromagnetic order disappears, and not at the pressure Pc˜3.4 GPa, where the steeply decreasing Néel boundary extrapolates to zero temperature. For P >Pc, the spin relaxation rate drops sharply by more than 2 orders of magnitude at Tc, suggestive of a first-order transition.

Sakai, H.; Tokunaga, Y.; Kambe, S.; Ronning, F.; Bauer, E. D.; Thompson, J. D.

2014-05-01

331

Synchrotron-laser two-color experiments: Two-photon double-resonant excitation of Ar to autoionization states between the 2P3\\/2 and 2P1\\/2 ionic thresholds  

Microsoft Academic Search

Two-photon double-resonant excitation of Ar to its autoionizing states lying between the 2P3\\/2 and 2P1\\/2 ionic thresholds was carried out with the combination of a laser system and VUV synchrotron radiation from the storage ring at NSRRC. By tuning a narrow-width synchrotron radiation to a selected Rydberg state followed by excitation to the even-parity levels of autoionization states with a

Yin-Yu Lee; Tzan-Yi Dung; Yen-Fang Song; Jih-Young Yuh; Re-Ming Hsieh

2004-01-01

332

Three-Dimensional Imaging of Pulmonary Veins by a Novel Steady-State Free-Precession Magnetic Resonance Angiography Technique Without the Use of Intravenous Contrast Agent: Initial Experience  

Microsoft Academic Search

Purpose: To evaluate the feasibility of 3-dimensional (3D) steady-state free-precession (SSFP) magnetic resonance angiography (MRA) using non- selective radiofrequency excitation for imaging of pulmonary veins (PVs) without intravenous gadolinium chelate and to correlate the results with conventional contrast-enhanced MRA (CE-MRA). Material and Methods: Forty consecutive patients with history of atrial fibrillation underwent free-breathing respiratory navigator-gated electrocar- diogram-triggered SSFP MRA without

Mayil S. Krishnam; Anderanik Tomasian; Sachin Malik; Aparna Singhal; Alex Sassani; Gerhard Laub; J. Paul Finn; Stefan Ruehm

2009-01-01

333

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics  

E-print Network

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments that a particle with angular momentum I and magnetic moment µ = I placed in a uniform mag- netic field B0

Seager, Sara

334

Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles  

Microsoft Academic Search

The collaborative oscillation of conductive electrons in metal nanoparticles results in a surface plasmon resonance that makes them useful for various applications including biolabeling. We investigate the coupling between pairs of elliptical metal particles by simulations and experiments. The results demonstrate that the resonant wavelength peak of two interacting particles is red-shifted from that of a single particle because of

K.-H. Su; Q.-H. Wei; X. Zhang; J. J. Mock; D. R. Smith; S. Schultz

2003-01-01

335

ALIGNMENT OF METASTABLE HELIUM ATOMS BY UNPOLARIZED RESONANCE RADIATION  

Microsoft Academic Search

Experiments in which helium atoms in the ³S⁠metastable ; state were aligned by the action of unpolarized optical resonance radiation are ; reported. The alignment was detected by resonance methods; the observed line ; widths are of the order of a milligauss with a raw signal-to-noise ratio of ; approximates 1OO: 1. The simplest experimental arrangement is described and

P. A. Franken; F. D. Colegrove

1958-01-01

336

Seeing, Acting, Understanding: Motor Resonance in Language Comprehension  

ERIC Educational Resources Information Center

Observing actions and understanding sentences about actions activates corresponding motor processes in the observer-comprehender. In 5 experiments, the authors addressed 2 novel questions regarding language-based motor resonance. The 1st question asks whether visual motion that is associated with an action produces motor resonance in sentence…

Zwaan, Rolf A.; Taylor, Lawrence J.

2006-01-01

337

Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control  

Microsoft Academic Search

A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing operations, used to adjust the resonant frequency, by displacement feedback and for determining the velocity feedback required to produce a particular bandwidth. Experiments

Philip W. Loveday; Craig A. Rogers

1998-01-01

338

Abstract-In this study, imaging of electrical current density in conducting objects, which contain nuclear magnetic resonance  

E-print Network

nuclear magnetic resonance (NMR) active nuclei is planned using 0.15T Magnetic Resonance Imaging (MRI. Experiments performed on several phantoms and the results are presented. Keywords - Magnetic Resonance Imaging]. Nuclear magnetic resonance imaging techniques can be used to image the current density J . Joy et al. [6

Eyüboðlu, Murat

339

Resonances on hedgehog manifolds  

E-print Network

We discuss resonances for a nonrelativistic and spinless quantum particle confined to a two- or three-dimensional Riemannian manifold to which a finite number of semiinfinite leads is attached. Resolvent and scattering resonances are shown to coincide in this situation. Next we consider the resonances together with embedded eigenvalues and ask about the high-energy asymptotics of such a family. For the case when all the halflines are attached at a single point we prove that all resonances are in the momentum plane confined to a strip parallel to the real axis, in contrast to the analogous asymptotics in some metric quantum graphs; we illustrate it on several simple examples. On the other hand, the resonance behaviour can be influenced by a magnetic field. We provide an example of such a `hedgehog' manifold at which a suitable Aharonov-Bohm flux leads to absence of any true resonance, i.e. that corresponding to a pole outside the real axis.

Pavel Exner; Jiri Lipovsky

2013-02-21

340

Broadband ferromagnetic resonance spectrometer  

NASA Astrophysics Data System (ADS)

The continuous wave ferromagnetic resonance (FMR) spectrometer operating in multioctave (0.05-40 GHz) frequency range has been built to investigate the magnetic properties of thin ferromagnetic films in the temperature range of 4-420 K. The spectrometer has two probeheads: one is the X-band microwave reflection cavity used to perform express room temperature measurements and the other is an in-cryostat microstrip line probe to carry out FMR experiments covering the entire frequency range offered by the microwave source. Very uniform and stable magnetic field up to 2.4 T, temperature 4 K-420 K, and continuous frequency scan performed by an HP8722D vector network analyzer provide various modes of operation. Both probe heads are equipped with two-circle high precision goniometers to ensure accurate characterization of magnetic anisotropy and magnetostatic waves spectra recording. Use of the phase sensitive detection, utilized by magnetic field modulation at audio frequency and computer triggering of the network analyzer, enables broadband spectrometer sensitivity to be as high as 1.3×1011 spins/Oe.

Denysenkov, V. P.; Grishin, A. M.

2003-07-01

341

Large mode radius resonators  

NASA Technical Reports Server (NTRS)

Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

Harris, Michael R.

1987-01-01

342

Acoustic Levitator Maintains Resonance  

NASA Technical Reports Server (NTRS)

Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

Barmatz, M. B.; Gaspar, M. S.

1986-01-01

343

On open electromagnetic resonators: relation between interferometers and resonators  

SciTech Connect

The physical difference between the concepts 'Fabry-Perot interferometer' and 'open resonator' is discussed. It is shown that the use of the term 'Fabry-Perot resonator' for open laser resonators is incorrect both from the historical viewpoint and from the viewpoint of the physical meaning of the processes occurring in these resonators. (laser beams and resonators)

Manenkov, Aleksandr A; Bykov, Vladimir P; Kuleshov, N V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2010-05-26

344

Pitch sensation involves stochastic resonance  

PubMed Central

Pitch is a complex hearing phenomenon that results from elicited and self-generated cochlear vibrations. Read-off vibrational information is relayed higher up the auditory pathway, where it is then condensed into pitch sensation. How this can adequately be described in terms of physics has largely remained an open question. We have developed a peripheral hearing system (in hardware and software) that reproduces with great accuracy all salient pitch features known from biophysical and psychoacoustic experiments. At the level of the auditory nerve, the system exploits stochastic resonance to achieve this performance, which may explain the large amount of noise observed in the working auditory nerve. PMID:24045830

Martignoli, Stefan; Gomez, Florian; Stoop, Ruedi

2013-01-01

345

Resonant and antiresonant bouncing droplets  

NASA Astrophysics Data System (ADS)

When placed onto a vibrating liquid bath, a droplet may adopt a permanent bouncing behavior, depending on both the forcing frequency and the forcing amplitude. The relationship between the droplet deformations and the bouncing mechanism is studied experimentally and theoretically through an asymmetric and dissipative bouncing spring model. Antiresonance phenomena are evidenced. Experiments and theoretical predictions show that both resonance at specific frequencies and antiresonance at Rayleigh frequencies play crucial roles in the bouncing mechanism. In particular, we show that they could be exploited for bouncing droplet size selection.

Hubert, M.; Robert, D.; Caps, H.; Dorbolo, S.; Vandewalle, N.

2015-02-01

346

Giant resonance decay  

SciTech Connect

Decay studies of giant multipole resonances are discussed, emphasizing the role of Coulomb excitation with intermediate energy heavy ions, which can provide very large cross sections for both isoscalar and isovector resonances. We discuss measurement of the photon decay of one and two phonon giant resonances, reporting results where available. It is pointed out throughout the presentation that the use of E1 photons as a tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 30 refs., 16 figs., 1 tab.

Beene, J.R.; Bertrand, F.E.

1990-01-01

347

Electrodynamics of a ring-shaped spiral resonator  

NASA Astrophysics Data System (ADS)

We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.

2014-02-01

348

Electrodynamics of a ring-shaped spiral resonator  

SciTech Connect

We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f{sub 1}:f{sub 2}:f{sub 3}:f{sub 4}…?=?1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

Maleeva, N.; Karpov, A.; Averkin, A. [Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Fistul, M. V. [Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Theoretische Physik III, Ruhr-Universität Bochum, Bochum 44801 (Germany); Zhuravel, A. P. [B. Verkin Institute of Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov 61103 (Ukraine); Jung, P. [Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131 (Germany); Ustinov, A. V. [Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131 (Germany)

2014-02-14

349

Novel Detection Schemes of Nuclear Magnetic Resonance and Magnetic Resonance Imaging: Applications from Analytical Chemistry to Molecular Sensors  

Microsoft Academic Search

Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm

Elad Harel; Leif Schröder; Shoujun Xu

2008-01-01

350

Optical resonance and two-level atoms  

Microsoft Academic Search

Topics covered include: classical theory of resonance optics; the optical Bloch equations; two-level atoms in steady fields; pulse propagation; pulse propagation experiments; saturation phenomena; quantum electrodynamics and spontaneous emission; N-atom spontaneous emission and superradiant decay; and photon echoes. (GHT)

L. Allen; J. H. Eberly

1975-01-01

351

Surface plasmon resonance immunosensors: sensitivity considerations  

Microsoft Academic Search

Some aspects of improving surface plasmon resonance response in immunosensing applications are considered. Both from calculations and experiments, it was found that maximum sensitivity is obtained for a silver layer about 55 nm thick in direct contact with the species to be quantified. Application of an intermediate layer with high permittivity can be useful in suppressing background responses. Experimentally, a

R. P. H. Kooyman; H. Kolkman; J. Van Gent; J. Greve

1988-01-01

352

Electromagnetic decay of giant resonances  

SciTech Connect

Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of /sup 208/Pb and /sup 90/Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in /sup 208/Pb to approx.15 MeV. Similar data were also obtained on /sup 90/Zr. The total yield of ground-state E2 gamma radiation in /sup 208/Pb and the comparative absence of such radiation in /sup 90/Zr can only be understood if decay of compound (damped) states is considered. Other observations in /sup 208/Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3/sup -/ state at 2.6 MeV, a strong branch to a 3/sup -/ state at 4.97 MeV from the same region, and transitions to various 1/sup -/ states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance).

Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

1985-01-01

353

Single Molecule Electron Paramagnetic Resonance  

NASA Astrophysics Data System (ADS)

Electron paramagnetic resonance (EPR) is a powerful spectroscopic tool for studying the dynamics of biomolecular systems. EPR measurements on bulk samples using a commercial X-band spectrometer provide insight into atomic-scale structure and dynamics of ensembles of biomolecules. Separately, single molecule measurements of biomolecular systems allow researchers to capture heterogeneous behaviors that have revealed the molecular mechanisms behind many biological processes. We are merging these two powerful techniques to perform single molecule EPR. In this experiment, we selectively label double-stranded DNA molecules with nitrogen-vacancy (NV) center nanodiamonds and optically detect the magnetic resonance of the NV probe. Shifts and broadening of our EPR peaks indicate the changing position of the attached DNA relative to the applied magnetic field. Using this new technique, we have successfully measured the first EPR spectrum of a single biomolecule. By controlling the geometry of the diamond and the applied magnetic field, we will quantitatively determine the rotational and translational dynamics of single biomolecules. This research provides the foundation for an advanced single molecule magnetic resonance approach to studies of complex biomolecular systems.

Teeling-Smith, Richelle M.; Johnston-Halperin, Ezekiel; Poirier, Michael G.; Hammel, P. Chris

2013-03-01

354

After the Standard Model: New Resonances at the LHC  

E-print Network

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. In this article, the experiments' capability to observe new resonances in various channels is reviewed.

G. Brooijmans

2009-01-25

355

Air Column Resonance Spectra Using Basic Laboratory Equipment.  

ERIC Educational Resources Information Center

Several experiments are described using common laboratory apparatus and readily available materials to generate resonance spectra of air columns. The advantages of this apparatus and method of demonstration are visual impact and accuracy of results. (CS)

Jewett, J. W., Jr.

1980-01-01

356

Dynamic Phase Filtering with Integrated Optical Ring Resonators  

E-print Network

assumptions. A proof-of-concept experiment employing thermally tunable Silicon-Nitride integrated optical ring resonators is shown to generate non-linear frequency modulated chirp waveforms with peak instantaneous frequencies of 28 kHz. Besides laser radar...

Adams, Donald Benjamin

2011-10-21

357

Advanced and delayed images through an image resonator.  

PubMed

We performed optical image propagation experiments in an image resonator consisting of a Fabry-Perot resonator in reflection geometry. Two-dimensional images encoded on optical pulses of 32ns were stored, and either advanced, -6.0ns, or delayed, 10.9ns, using the dispersion relation relevant to the image resonator, in the under- or over- coupling condition, respectively. The overall images are propagated through the resonator clearly, while the diffraction effects were analyzed both in real-space and in k-space. PMID:20588386

Tomita, Makoto; Sultana, Parvin; Takami, Akira; Matsumoto, Takahiro

2010-06-01

358

Optically Detected Magnetic Resonance (ODMR) of photoexcited triplet states.  

PubMed

Optically Detected Magnetic Resonance (ODMR) is a double resonance technique which combines optical measurements (fluorescence, phosphorescence, absorption) with electron spin resonance spectroscopy. After the first triplet-state ODMR experiments in zero magnetic field reported in 1968 by Schmidt and van der Waals, the number of double resonance studies on excited triplet states grew rapidly. Photosynthesis has proven to be a fruitful field of application due to the intrinsic possibility of forming photo-induced pigment triplet states in many sites of the photosynthetic apparatus. The basic principles of this technique are described and examples of application in Photosynthesis are reported. PMID:19238576

Carbonera, Donatella

2009-01-01

359

Coherence assisted resonance with sub-lifetime-limited linewidth  

E-print Network

We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.

Lei, Feng; Jiang, Liang; Wen, Jianming; Xiao, Yanhong

2012-01-01

360

Coherence assisted resonance with sub-lifetime-limited linewidth  

E-print Network

We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.

Feng Lei; Pengxiong Li; Liang Jiang; Jianming Wen; Yanhong Xiao

2012-08-31

361

Internally excited acoustic resonator for photoacoustic trace detection  

NASA Astrophysics Data System (ADS)

The quantum-cascade laser can be used as an infrared source for a small portable photoacoustic trace gas detector. The device that we describe uses a quantum-cascade laser without collimating optics mounted inside an acoustic resonator. The laser is positioned in the center of a longitudinal resonator at a pressure antinode and emits radiation along the length of the resonator exciting an axially symmetric longitudinal acoustic mode of an open-ended cylindrical resonator. Experiments are reported with an 8-?m, quasi-cw-modulated, room-temperature laser used to detect N2O.

Danworaphong, Sorasak; Calasso, Irio G.; Beveridge, Andrew; Diebold, Gerald J.; Gmachl, Claire; Capasso, Federico; Sivco, Deborah L.; Cho, A. Y.

2003-09-01

362

Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics  

SciTech Connect

We theoretically study the properties of highly prolate-shaped dielectric microresonators. Such resonators sustain whispering-gallery modes that exhibit two spatially well-separated regions with enhanced field strength. The field per photon on the resonator surface is significantly higher than, e.g., for equatorial whispering-gallery modes in microsphere resonators with a comparable mode volume. At the same time, the frequency spacing of these modes is much more favorable, so that a tuning range of several free spectral ranges should be attainable. We discuss the possible application of such resonators for cavity quantum electrodynamics experiments with neutral atoms and reveal distinct advantages with respect to existing concepts.

Louyer, Y.; Meschede, D.; Rauschenbeutel, A. [Institut fuer Angewandte Physik, Universitaet Bonn, Wegelerstrasse 8, D-53115 Bonn (Germany)

2005-09-15

363

Localized ferromagnetic resonance force microscopy of permalloy-cobalt films  

SciTech Connect

We report the Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a combined permalloy-cobalt continuous film. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode at the edge of the film provides good quantitative agreement with the experimental data. Our experiments demonstrate the micron scale lateral resolution and allow to extract local magnetic properties in continuous ferromagnetic samples.

Nazaretski, Evgueni [Los Alamos National Laboratory; Movshovich, Roman [Los Alamos National Laboratory; Martin, Ivar [Los Alamos National Laboratory; Cha, Kitty V [Los Alamos National Laboratory; Akhadov, Elshan A [Los Alamos National Laboratory; Obukhov, Yu [OH STATE U; Pelekhov, D C [OH STATE U; Hammel, P C [OH STATE U

2008-01-01

364

Perturbed open resonators.  

PubMed

The resonant frequencies and diffraction losses of two-mirror open resonators which depart somewhat from an ideal configuration are evaluated by a perturbative technique. Detailed results are derived and discussed for flat mirrors of rectangular or circular aperture with a parabolic phase perturbation as well as flat-roof and conical systems with large apex angle. PMID:20094565

Barone, S R

1971-04-01

365

Helioseismology The Resonant Sun  

E-print Network

Helioseismology The Resonant Sun Professor Bill Chaplin, School of Physics & Astronomy University Eddington #12;The Unseen Interior ''At first sight it would seem that the deep interior of the sun and stars;Overview What are resonant oscillations of the Sun? How do we observe the oscillations? What can we learn

366

Magnetic resonance imaging: prologue  

SciTech Connect

Magnetic resonance imaging is becoming an increasingly important method of diagnostic imaging. This new method can compete with computed tomography for several applications, especially those involving the central nervous system. Magnetic resonance imaging is rapidly evolving, and several advances can be anticipated in the near future.

Jacobson, H.G.

1987-12-11

367

Ion Cyclotron Resonance Accelerator  

Microsoft Academic Search

The Ion Cyclotron Resonance Accelerator (ICRA) is based on the operating principles of cyclotrons and gyrotrons, and should provide beam suitable for the production of radioisotopes for positron emission tomography (PET) or neutrons at a fraction of the cost of present day cyclotrons and linacs. The concept extends cyclotron resonance acceleration to ions by using a superconducting solenoid and a

T. L. Grimm; C. T. Ramsell; R. C. York

1997-01-01

368

The Concept of Resonance  

ERIC Educational Resources Information Center

A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

Truhlar, Donald G.

2007-01-01

369

Resonant column test  

Microsoft Academic Search

The resonant column test is used to determine by vibration the shear modulus, shear damping, rod modulus (Young's modulus) and rod damping of cylindrical specimens of soil in the undisturbed and remolded conditions. The vibration apparatus, apparatus calibration, and calculations are described. The reduction of all resonant column test data is presented in a computer program.

V. P. Drnevich

1978-01-01

370

Nuclear magnetic resonance gyroscope  

Microsoft Academic Search

A nuclear magnetic resonance gyroscope which derives angular rotation from the phases of precessing nuclear moments utilizes a single-resonance cel situated in the center of a uniform dc magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and readout beam and associated electronics for signal processing

F. A. Karwacki; J. Griffin

1985-01-01

371

The resonator handbook  

NASA Technical Reports Server (NTRS)

The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

Cook, Jerry D.; Zhou, Shiliang

1993-01-01

372

Disappearing resonance tunneling in photoelectron emission  

NASA Astrophysics Data System (ADS)

We predict a phenomenon of disappearing resonance tunneling, found in the course of investigating photoionization microscopy of multielectronic atoms in the presence of a uniform external electric field. Li atoms are taken to illustrate that for multielectronic atoms, noticeable tunneling is slowly attenuated with increasing the lifetime of Stark resonance states and it finally becomes invisible. In order to decipher disappearing resonance tunneling, we propose a competition mechanism between transmission and transfer of electron waves. In this mechanism, it is crucial to relate the contribution of resonance tunneling to photoelectron emission of multielectronic atoms with the lifetime of Stark resonance states corresponding to the transmission broadening. The analysis shows that such a phenomenon should exist in any system of multielectronic atoms or molecules. The present findings should serve as a basis for explanation of disagreement between observations and theoretical calculations in Xe atoms. We expect that disappearing resonance tunneling predicted in this letter should be visible in experiment of photoionization microscopy for any multielectronic atom or molecule.

Zhao, L. B.

2015-01-01

373

Resonant snubber inverter  

DOEpatents

A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

1997-06-24

374

Resonant snubber inverter  

DOEpatents

A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

Lai, Jih-Sheng (Knoxville, TN); Young, Sr., Robert W. (Oak Ridge, TN); Chen, Daoshen (Knoxville, TN); Scudiere, Matthew B. (Oak Ridge, TN); Ott, Jr., George W. (Knoxville, TN); White, Clifford P. (Knoxville, TN); McKeever, John W. (Oak Ridge, TN)

1997-01-01

375

Narrowband resonant transmitter  

DOEpatents

A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

2004-06-29

376

Polaritonic Feshbach resonance  

NASA Astrophysics Data System (ADS)

A Feshbach resonance occurs when the energy of two interacting free particles comes into resonance with a molecular bound state. When approaching this resonance, marked changes in the interaction strength between the particles can arise. Feshbach resonances provide a powerful tool for controlling the interactions in ultracold atomic gases, which can be switched from repulsive to attractive, and have allowed a range of many-body quantum physics effects to be explored. Here we demonstrate a Feshbach resonance based on the polariton spinor interactions in a semiconductor microcavity. By tuning the energy of two polaritons with anti-parallel spins across the biexciton bound state energy, we show an enhancement of attractive interactions and a prompt change to repulsive interactions. A mean-field two-channel model quantitatively reproduces the experimental results. This observation paves the way for a new tool for tuning polariton interactions and to move forward into quantum correlated polariton physics.

Takemura, N.; Trebaol, S.; Wouters, M.; Portella-Oberli, M. T.; Deveaud, B.

2014-07-01

377

Optically enhanced magnetic resonance for the study of atom-surface interaction  

E-print Network

Optically enhanced magnetic resonance for the study of atom-surface interaction Stefan Grafstro¨ m resonance experiment. Optical pumping with polarization-modulated light in a trans- verse magnetic field are derived for the magnetic resonance signal, which show that the wall relaxation causes a clear modification

Suter, Dieter

378

Experimental demonstration of waveguide-coupled hexagonal micropillar resonators with round-corners in  

E-print Network

Experimental demonstration of waveguide-coupled hexagonal micropillar resonators with round-coupled hexagonal micropillar resonators with designed round-corners in silicon nitride. Our experiments reveal highly efficient coupled nearly singlemode resonances in a large-sized micropillar with an optimized

Poon, Andrew Wing On

379

Determination of residual stress in spherical balls by resonant ultrasound spectroscopy  

Microsoft Academic Search

In this study, resonant ultrasound spectroscopy (RUS) for determining residual stress in small size spherical balls was examined. Natural frequencies of spherical balls with residual stress were analysed by finite element method. Resonant frequencies of spherical balls were experimentally measured by a RUS system. Both natural frequencies in the analysis and the resonant frequencies measured in the experiment decreased as

Wakako Araki; Takahiro Kamikozawa; Tadaharu Adachi

2008-01-01

380

Electrically small isotropic three-dimensional magnetic resonators for metamaterial design  

Microsoft Academic Search

The problem of the design of artificial magnetic resonators for isotropic metamaterials is addressed. The internal symmetries that ensure an isotropic behavior of such resonators are analyzed and some specific designs based on the proper arrangement of modified split ring resonators are proposed. These proposals are validated by electromagnetic simulations and experiments. The reported results are likely to have applications

J. D. Baena; L. Jelinek; R. Marqués; J. Zehentner

2006-01-01

381

Impact load mitigation in sandwich beams using local resonators  

E-print Network

Dynamic response of sandwich beams with resonators embedded in the cores subjected to impact loads is studied. Using finite element models the effectiveness of various local resonator frequencies under a given impact load is compared to the behavior of an equivalent mass beam. It is shown that addition of appropriately chosen local resonators into the sandwich beam is an effective method of improving its flexural bending behavior under impact loads. The effect of a given local resonance frequency under different impact load durations is also studied. It is demonstrated that the choice of appropriate local resonance frequency depends on the impact duration. Further, by performing transverse impact experiments, the finite element models are verified and the advantage of using internal resonators under impact loading conditions is demonstrated.

Sharma, B

2015-01-01

382

Conductively coupled resonator scheme for dispersive transparency in metamaterials  

NASA Astrophysics Data System (ADS)

We present and demonstrate a new type of single resonator based planar metamaterial exhibiting electromagnetically induced transparency (EIT)-like transmission behavior. The novel design involves physically coupled split-ring resonator (SRR) and a dipolar ring as opposed to many inductively coupled resonators explored in the past. Both experiments and simulations reveal a dispersive transparency due to coupled resonances and the underlying mechanism. Further, the conductive and inductive coupling scenarios for this structure were compared where conductive coupling was found to coerce the direction of light induced currents and stronger in effect than inductive coupling. Resonance tuning is achieved by moving the bar coupling SRR and the ring. Hence, we show that conductive coupling has potential in tailoring coupled resonances of desired quality factor and fabricating metamaterials for enhanced sensing.

Turaga, Shuvan Prashant; Wu, Jianfeng; Banas, Agnieszka; Banas, Krzysztof; Bettiol, Andrew A.

2014-11-01

383

Resonant quantum transitions in trapped antihydrogen atoms.  

PubMed

The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves. PMID:22398451

Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

2012-03-22

384

Nuclear Quadrupole Resonance Zeeman Study of paraChlorophenol  

Microsoft Academic Search

The major field gradient directions for Cl in para-chlorophenol as determined by NQR and x-ray diffraction are compared quantitatively, and found to agree. The minor field gradient directions are examined qualitatively, and are consistent with those predicted on the basis of Cl&sngbnd;C partial double bonding. From a measurement of the field gradient asymmetry parameter &eegr;, the degree of chlorine—carbon double

G. E. Peterson; P. M. Bridenbaugh

1967-01-01

385

Resonant neutrino activation and neutrino oscillations  

SciTech Connect

Low Q value weak nuclear decays are considered which have two body final states (electron captures and bound state ..beta.. decays, BSD). This permits an analogy with the Moessbauer effect, where the emitted (anti)neutrinos will resonantly activate daughter nuclei in a suitable absorber. Candidates for such a process are examined and the relevant solid state host problems are discussed. The authors point out that resonant line widths as large as the narrowest observed in Moessbauer spectroscopy suffice to greatly extend the sensitivity of nu (disappearance) oscillation experiments.

Kells, W.P.

1983-01-01

386

Suppression of Helmholtz resonance using inside acoustic liner  

NASA Astrophysics Data System (ADS)

When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.

Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong

2014-08-01

387

Experimental realization of extraordinary acoustic transmission using Helmholtz resonators  

NASA Astrophysics Data System (ADS)

The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

2015-02-01

388

Microwave Oscillators Based on Nonlinear WGM Resonators  

NASA Technical Reports Server (NTRS)

Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular resonator mode. The other output of this splitter was combined with the delayed laser signal in another 50:50 fiber-optic splitter used as a combiner. The output.of the combiner was fed to a fast photodiode that demodulated light and generated microwave signal. In this optical configuration, the resonator was incorporated into one arm of a Mach-Zehnder interferometer, which was necessary for the following reasons: It was found that when the output of the resonator was sent directly to a fast photodiode, the output of the photodiode did not include a measurable microwave signal. However, when the resonator was placed in an arm of the interferometer and the delay in the other arm was set at the correct value, the microwave signal appeared. Such behavior is distinctly characteristic of phase-modulated light. The phase-modulation signal had a frequency of about 8 GHz, corresponding to the free spectral range of the resonator. The spectral width of this microwave signal was less than 200 Hz. The threshold pump power for generating the microwave signal was about 1 mW. It would be possible to reduce the threshold power by several orders of magnitude if resonators could be made from crystalline materials in dimensions comparable to those of micro-resonators heretofore made from fused silica.

Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

2006-01-01

389

LABCOM resonator Phase 3  

SciTech Connect

The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

Keres, L.J.

1990-11-01

390

Tunable multiwalled nanotube resonator  

DOEpatents

A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

Zettl, Alex K. (Kensington, CA); Jensen, Kenneth J. (Berkeley, CA); Girit, Caglar (Albany, CA); Mickelson, William E. (San Francisco, CA); Grossman, Jeffrey C. (Berkeley, CA)

2011-03-29

391

Tunable multiwalled nanotube resonator  

DOEpatents

A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

2013-11-05

392

Resonance searches with the $t\\overline{t}$ Invariant Mass Distribution measured with the D\\O\\, Experiment at $\\sqrt{s}=1.96\\,\\textrm{TeV}  

SciTech Connect

Understanding the universe, its birth and its future is one of the biggest motivations in physics. In order to understand the cosmos, the fundamental particles forming the universe, the components our matter is built of need to be known and understood. Over time physicists have built a theory which describes the physics of the known fundamental particles very well: the Standard Model (SM) of particle physics. The SM describes the particles, their interactions and phenomena with high precision. So far no proven deviations from the SM have been found, though recently evidence for possible physics beyond the SM has been observed. The SM is not describing the mass of the elementary particles however and even with the addition of the Higgs mechanism giving mass to the particles, we have no full theory for all four fundamental forces. We know the model needs to be extended or replaced by another one, as gravitation is not included in the SM. Having a theory which describes all fundamental particles found so far and all but one fundamental interaction is a great success. However, all this describes about 4% of the universe we live in. 23% is dark matter and 73% is dark energy. Dark matter is believed to interact only through gravity and maybe the weak force, which makes it hardly observable. Dark energy is even more elusive. Among other theories the cosmologic constant and scalar fields are discussed to describe it. One should also note that other models exist which for example modify the Newtonian law of gravity. The Higgs mechanism has become the most popular model for mass generation. Alternative theories like Super Symmetry (SUSY), large Extra Dimensions, Technicolor, String Theory, to name just a few, have spread to describe the necessary mass generation or new particles. As proof for new physics beyond the SM has not been found yet, one assumes that new physics will manifest itself at a larger energy scale and therefore a higher particle mass. Particles with high masses are therefore presumed to be a window to test the SM for deviations caused by new physics. The heaviest fundamental particle which is in our reach is the top quark. Its mass is almost as large as that of a complete tungsten atom. It is so heavy, that it decays faster than it can hadronize. It seems the perfect probe to study new physics at the moment. In this analysis the top quark is used as a probe to search for a new resonance, whose properties are similar to a SM Z boson but is much more massive. This analysis will study t{bar t} decays to search for an excess in the invariant mass distribution of the t{bar t} pairs. Resonant states are suggested for massive Z-like bosons in extended gauge theories, Kaluza Klein states of the gluon or Z, axigluons, topcolor, and other beyond the Standard Model theories. Independent of the exact model a resonant production mechanism should be visible in the t{bar t} invariant mass distribution. In this thesis a model-independent search for a narrow-width heavy resonance X decaying into t{bar t} is performed. In the SM, the top quark decays into a W boson and a b quark nearly 100% of the time, which has been proven experimentally, too. The t{bar t} event signature is fully determined by the W boson decay modes. In this analysis, only the lepton+jets final state, which results from the leptonic decay of one of the W bosons and the hadronic decay of the other, is considered. The event signature is an isolated electron or muon with high transverse momentum, large transverse energy imbalance due to the undetected neutrino, and at least three jets, two of which result from the hadronization of b quarks.

Schliephake, Thorsten Dirk; /Wuppertal U.

2010-06-01

393

Optical Feshbach Resonances: Field-Dressed Theory and Experimental Comparisons  

E-print Network

Optical Feshbach resonances (OFRs) have generated significant experimental interest in recent years. These resonances are promising for many-body physics experiments, yet the practical application of OFRs has been limited. The theory of OFRs has been based on an approximate model that fails in important detuning regimes, and the incomplete theoretical understanding of this effect has hindered OFR experiments. We present the most complete theoretical treatment of OFRs to date, demonstrating important characteristics that must be considered in OFR experiments and comparing OFRs to the well studied case of magnetic Feshbach resonances. We also present a comprehensive treatment of the approximate OFR model, including a study of the range of validity for this model. Finally, we derive experimentally useful expressions that can be applied to real experimental data to extract important information about the resonance structure of colliding atoms.

Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Ye, J; Julienne, P S

2015-01-01

394

Evaluations of Resonance Parameters and Resonance Integral of Tungsten  

NASA Astrophysics Data System (ADS)

I present evaluated values of resonance parameters and resonance integral for natural tungsten on the basis of experimental transmissions data obtained at the Pohang Neutron Facility (PNF), Republic of Korea. Resonance parameters were obtained by using the Bayesian code SAMMY. The output values of SAMMY were used to evaluate the resonance integral for the capture cross-section.

Moinul Haque Meaze, A. K. M.

2007-03-01

395

Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias  

Microsoft Academic Search

This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in demen tia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spec troscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential

Yuan-Yu Hsu; An-Tao Du; Norbert Schuff; Michael W. Weiner

2001-01-01

396

Silicon optomechanical crystal resonator at millikelvin temperatures  

NASA Astrophysics Data System (ADS)

Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6 GHz are performed at subkelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (Tf=10 mK), the localized mechanical resonance is found to couple at a rate of ?i/2?=400 Hz (Qm=9×106) to a thermal bath of temperature Tb?270 mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.

Meenehan, Seán M.; Cohen, Justin D.; Gröblacher, Simon; Hill, Jeff T.; Safavi-Naeini, Amir H.; Aspelmeyer, Markus; Painter, Oskar

2014-07-01

397

Resonant ultrasound spectroscopy  

SciTech Connect

This patent describes a resonant ultrasound spectroscopy method which provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped through the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

Migliori, A.

1991-11-05

398

Micro-machined resonator  

DOEpatents

A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

Godshall, Ned A. (Albuquerque, NM); Koehler, Dale R. (Albuquerque, NM); Liang, Alan Y. (Albuquerque, NM); Smith, Bradley K. (Albuquerque, NM)

1993-01-01

399

Micro-machined resonator  

DOEpatents

A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

1993-03-30

400

Resonances in Positronium Hydride  

NASA Technical Reports Server (NTRS)

We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

2001-01-01

401

Resonant ultrasound spectroscopy  

DOEpatents

A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

Migliori, Albert (Santa Fe, NM)

1991-01-01

402

Chemical resonant sensors  

NASA Astrophysics Data System (ADS)

Resonant sensors designed to have a mechanical resonance frequency are a subject of special practical interest. They are sensors with outputs based on a quasi-digital frequency signal which is a great advantage over conventional analog sensors. Micromachined mechanical resonant sensors can be used to replace conventional piezoresistors in precision sensor applications such as pressure sensors and accelerometers. For the detecting of chemical species, only a part of known resonant sensor principles can be used for practical aims. Ultrasonic sensors can be classified in this category. They include BAW-, SAW-, APM-, and FPW-sensors. The theoretical concepts for their behavior and the advantages and disadvantages in comparison with other chemical sensors are discussed. Experimental results with BAW-sensors for gas and under-liquid sensing are given. Finally, the actual situation in research and industrial application of this sensor class is reviewed.

Hauptmann, Peter R.

1993-03-01

403

Validating resonance properties using nuclear resonance fluorescence  

NASA Astrophysics Data System (ADS)

Measurement of a resonance's integrated cross section using nuclear resonance fluorescence can be a valuable tool for verifying the properties of the resonance because of the clear and unambiguous physical connection to the spin, lifetime, and ground state branching ratio of the level. We demonstrate this idea by measuring the integrated cross section of the 3.004-MeV level in 27Al to 4% using the monoenergetic ? -ray beam at the High Intensity ? -ray Source. That level was the subject of much debate experimentally in the 1960s, especially its spin, and even now only has a current tentative spin assignment of J =(9 /2 ) . The consistency check between this integrated cross section and the known properties of the level indicate that one (or more) of the literature properties is incorrect. Based on the range of extent of each property, a reassignment of spin to a tentative J =(7 /2 ) may be warranted, but this would need to be confirmed with other measurements. This result demonstrates the utility of NRF as a way to verify the properties of states in the literature before undertaking more extensive measurements.

Angell, C. T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Karwowski, H. J.; Silano, J.

2014-11-01

404

Infrared Dielectric Resonator Metamaterial  

E-print Network

We demonstrate, for the first time, an all-dielectric metamaterial resonator in the mid-wave infrared based on high-index tellurium cubic inclusions. Dielectric resonators are desirable compared to conventional metallo-dielectric metamaterials at optical frequencies as they are largely angular invariant, free of ohmic loss, and easily integrated into three-dimensional volumes. With these low-loss, isotropic elements, disruptive optical metamaterial designs, such as wide-angle lenses and cloaks, can be more easily realized.

Ginn, James C; Peters, David W; Wendt, Joel R; Stevens, Jeffrey O; Hines, Paul F; Basilio, Lorena I; Warne, Larry K; Ihlefeld, Jon F; Clem, Paul G; Sinclair, Michael B

2011-01-01

405

Injector with integrated resonator  

DOEpatents

The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

2014-07-29

406

Nuclear magnetic resonance gyroscope  

SciTech Connect

A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

Grover, B.C.

1984-02-07

407

Effect of Angular Velocity on Sensors Based on Morphology Dependent Resonances  

PubMed Central

We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle. PMID:24759108

Ali, Amir R.; Ioppolo, Tindaro

2014-01-01

408

Introduction: quantum resonances Classical and quantum mechanics  

E-print Network

: quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Introduction: quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated with homoclinic orbits Outline Introduction: quantum resonances Classical and quantum mechanics Microlocal

Ramond, Thierry

409

Resonant nonlinear ultrasound spectroscopy  

DOEpatents

Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

Johnson, Paul A. (Santa Fe, NM); TenCate, James A. (Los Alamos, NM); Guyer, Robert A. (Amherst, MA); Van Den Abeele, Koen E. A. (Sint-Niklaas, BE)

2001-01-01

410

Characteristics of fluid-induced resonances observed during microseismic monitoring  

NASA Astrophysics Data System (ADS)

Three groups of resonances are observed during a two-stage hydraulic experiment recorded by 12 three-component geophones. The injected fluid is composed of a slurry of mostly water and proppant plus some supercritical nitrogen. Resonance characteristics are estimated using an autoregressive model. Three resonance models are investigated: fluid-filled cracks, nonlaminar fluid flow, and repetitive events in terms of anticipated resonance frequencies, quality factors, and amplitudes. The observed resonances are very stable and positively correlated with either the slurry flow or the nitrogen injection rate, which is in contradiction with the repetitive events and fluid-filled crack models, respectively. Resonances obtained by numerical simulations of an unstable jet agree with the main characteristics of most observed resonances. Our observations suggest that variations in resonance frequencies are mainly driven by variations in fluid flow, whereas quality factors are more sensitive to the fluid composition through variations in nitrogen injection rate. This study also suggests that resonance frequencies and quality factors can provide complementary information for real-time monitoring of fluid injection into reservoirs, for hydraulic stimulations, geothermal operations, carbon capture, and storage or fluid movement during volcano eruptions.

Tary, Jean Baptiste; Baan, Mirko; Sutherland, Bruce; Eaton, David W.

2014-11-01

411

Hyperbolic Resonances of Metasurface Cavities  

E-print Network

We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

Keene, David

2015-01-01

412

Progress towards understanding baryon resonances  

SciTech Connect

The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.

Crede, Volker [FSU; Roberts, Winston [FSU

2013-07-01

413

Progress towards understanding baryon resonances.  

PubMed

The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1-2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches. PMID:23787948

Crede, V; Roberts, W

2013-07-01

414

Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams  

ERIC Educational Resources Information Center

A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

2006-01-01

415

Cyclotron Resonance of Electrons Trapped in a Microwave Cavity  

ERIC Educational Resources Information Center

Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

Elmore, W. C.

1975-01-01

416

Spread spectrum magnetic resonance imaging  

E-print Network

We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s2MRI, consists of pre-modulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with non-linear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s2MRI performs better than state-of-the-art variable density k-space under-sampling approaches

Puy, Gilles; Gruetter, Rolf; Thiran, Jean-Philippe; Van De Ville, Dimitri; Vandergheynst, Pierre; Wiaux, Yves; 10.1109/TMI.2011.2173698

2012-01-01

417

Magnetic resonance elastography of abdomen.  

PubMed

Many diseases cause substantial changes in the mechanical properties of tissue, and this provides motivation for developing methods to noninvasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate noninvasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

Venkatesh, Sudhakar Kundapur; Ehman, Richard L

2015-04-01

418

MACHINERY RESONANCE AND DRILLING  

SciTech Connect

New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

Leishear, R.; Fowley, M.

2010-01-23

419

Resonant ultrasound spectrometer  

DOEpatents

An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

Migliori, Albert (Santa Fe, NM); Visscher, William M. (Los Alamos, NM); Fisk, Zachary (Santa Fe, NM)

1990-01-01

420

Zeeman resonances for radical-pair reactions in weak static magnetic fields  

NASA Astrophysics Data System (ADS)

Recent reaction-yield-detected magnetic resonance experiments in weak static magnetic fields and the observation of resonance effects in animal orientation experiments provide the motivation for renewed studies of magnetic field effects on radical-pair reactions. Here, we investigate theoretically resonance patterns for weak static magnetic fields. We focus on the question: for which radical pairs can one expect Zeeman resonances to occur if the static field is weaker than typical hyperfine interactions? Using analytical approaches, we rationalize the occurrence of Zeeman resonances for simple radical pairs. Numerical solutions are presented for a wide range of radical pairs with up to seven hyperfine interactions employing the rotating-frame transformation. The results suggest that resonances occur close to either the Larmor frequency or half the Larmor frequency for a wide variety of radical pairs for spin Hamiltonians with a high degree of symmetry. For larger numbers of hyperfine interactions, Zeeman resonances decrease in size.

Wang, Kefei; Ritz, Thorsten

2006-05-01

421

Frequency shifts in gravitational resonance spectroscopy  

NASA Astrophysics Data System (ADS)

Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts—which we call the Stern-Gerlach shift, interference shift, and spectator-state shift—appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; Protasov, K. V.; Rebreyend, D.; Kupriyanova, E. A.; Voronin, A. Yu.

2015-02-01

422

Resonance of sputum spigot with air vibration.  

PubMed

A mathematical model calculation has been presented on the resonant frequency of the oscillating sputum spigot in a cylindrical pipe, with which we investigated similar phenomena in bronchial tubes. We confirmed the theoretical results by two types of experiments using pseudo-sputum (5 and 10% solutions of mucin) spigots instead of a human pulmonary one, and found the model was suitable for estimating the effects of clinical vibrational treatments expectorating sputum spigots plugged in small bronchi. The main points of the paper are summarized as follows. 1. The validity of the fluid model used was verified using reported experimental data of Litt and co-workers. After adjusting their data in a Casson plot, Casson fluidity was found to be the best parameter to represent viscosity of the sputum. 2. A theoretical investigation on the vibrational sputum spigots in narrow tubes was done using an analytical model calculation. From the resultant formula, which expresses the resonant frequency of the oscillation of the spigot with its physical values (the radius of the airway, the length of the spigot, the elasticity of the sputum, and the surface tension), many points became clear; for example, the resonant frequency of sputum spigot vibration in a narrow bronchial tube is too high to propagate there under the effective influence of surface tension. 3. Two experiments were performed with pseudo-sputum (5 and 10% solutions of mucin) instead of a human pulmonary one. After substituting the resonant frequencies of the pseudo-sputum spigot vibration in our tube experiment into the resultant formula derived from our analytical model calculation we estimated the elasticity values, which agreed with those from our plate experiment. The validity of our theory was strongly supported by this agreement. PMID:16788286

Tarao, Norio

2006-01-01

423

Frequency shifts in gravitational resonance spectroscopy  

E-print Network

Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

S. Baeßler; V. V. Nesvizhevsky; G. Pignol; K. V. Protasov; D. Rebreyend; E. A. Kupriyanova; A. Yu. Voronin

2015-01-13

424

Projective measurement in nuclear magnetic resonance  

E-print Network

It is demonstrated that nuclear magnetic resonance experiments using pseudopure spin states can give possible outcomes of projective quantum measurement and probabilities of such outcomes. The physical system is a cluster of six dipolar-coupled nuclear spins of benzene in a liquid-crystalline matrix. For this system with the maximum total spin S=3, the results of measuring $S_X$ are presented for the cases when the state of the system is one of the eigenstates of $S_Z$.

Jae-Seung Lee; A. K. Khitrin

2006-05-02

425

Localized Surface Plasmon Resonance Spectroscopy and Sensing  

Microsoft Academic Search

Localized surface plasmon resonance (LSPR) spectroscopy of metal- lic nanoparticles is a powerful technique for chemical and biologi- cal sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral lo- cation and

Katherine A. Willets; Richard P. Van Duyne

2007-01-01

426

Resonances as Probes of Heavy-Ion Collisions at ALICE  

E-print Network

Hadronic resonances serve as unique probes in the study of the hot and dense nuclear matter produced in heavy-ion collisions. Properties of the hadronic phase of the collision can be extracted from measurements of the suppression of resonance yields. A comparison of the transverse-momentum spectra of the phi(1020) meson and the proton (which have similar masses) can be used to study particle production mechanisms. Resonance measurements in pp collisions provide input for tuning QCD-inspired particle production models and serve as reference measurements for other collision systems. Measurements of resonances in p-Pb collisions allow nuclear effects in the absence of a hot and dense final state to be studied. The ALICE Collaboration has measured resonances in pp, p-Pb, and Pb-Pb collisions. These measurements will be discussed and compared to results from other experiments and to theoretical models.

Knospe, A G

2015-01-01

427

Optimization of Coplanar Waveguide Resonators for ESR Studies on Metals  

NASA Astrophysics Data System (ADS)

We present simulations and analytic calculations of the electromagnetic microwave fields of coplanar waveguide (CPW) resonators in the vicinity of highly conducting metallic samples. The CPW structures are designed with the aim of investigating electron spin resonance (ESR) in metallic heavy-fermion systems, in particular YbRh2Si2, close to the quantum critical point. Utilizing CPW resonators for ESR experiments allows for studies at mK temperatures and a wide range of freely selectable frequencies. It is therefore of great interest to evaluate the performance of resonant CPW structures with nearby metallic samples. Here we study the microwave fields at the sample surface as a function of sample distance from the waveguide structure and analyze the implications of the sample on the performance of the resonator. The simulation results reveal an optimum sample distance for which the microwave magnetic fields at the sample are maximized and thus best suited for ESR studies.

Clauss, Conrad; Dressel, Martin; Scheffler, Marc

2015-03-01

428

Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements  

NASA Astrophysics Data System (ADS)

Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.

Xie, Xueshu; Zubarev, Roman A.

2015-03-01

429

Coupled Fano resonators.  

PubMed

We theoretically investigate coupled Fano structures which combine the characteristics of both directly coupled Fabry-Perot cavities (DCFPC) and a side-coupled integrated spaced sequence of resonators (SCISSOR). Asymmetric and symmetric Fano resonances in a single and doubly-coupled Fano unit are analytically derived based on Fabry-Perot approach. It is found that doubly-coupled Fano units show a special asymmetric EIT-like lineshape. This structure shows an index changing sensitivity of 10(-6), about two orders higher than that of the single Fano resonator, which is promising for index sensor application. A unique frequency detuning method of EIT like lineshape is also found in the doubly-coupled Fano units. The multiple coupled Fano unit structure demonstrates potentials for applications of tunable optical filter and slow light, whereas for the latter it shows much higher group delay than that of SCISSORS and DCFPC with the same parameters. PMID:20940775

Tu, Xiaoguang; Mario, Landobasa Y; Mei, Ting

2010-08-30

430

Resonances and inverse scattering  

NASA Astrophysics Data System (ADS)

Inverse scattering problems for Sturm-Liouville differential equations find numerous applications in physics, in particular, quantum mechanics. While the theory of these problems has been developed over a number of decades, a more recent concern has been the use of resonances, important phenomena in physics, as data---the inverse resonance problem. In this dissertation, we address this problem in a variety of cases. First, we investigate the full-line Schrodinger equation where the data for the inverse problem include the eigenvalues and resonances. We prove that any two potentials that have enough data points sufficiently close together must also be close in a suitable sense. We then prove a discrete analogue for a full-line Jacobi equation. Finally, we prove a uniqueness theorem for a left-definite, half-line Sturm-Liouville equation. Along the way, we improve upon the current inverse spectral and scattering theorems for this equation.

Bledsoe, Matthew B.

431

Magnetostrictive resonance excitation  

DOEpatents

The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

Schwarz, Ricardo B. (Los Alamos, NM); Kuokkala, Veli-Tapani (Tampere, FI)

1992-01-01

432

Magnetic Resonance Online Texts  

NSDL National Science Digital Library

This well-organized and very thorough website was developed by the physicist Stanislav Sykora with the aim of providing free online texts, theses, and course materials on the subjects of magnetic resonance (MR), magnetic resonance imaging (MRI), nuclear-magnetic resonance (NMR) and other related topics. The amount of material on the site is impressive. At the top of the page are links to an "MR Blog", as well as to "MR Links" and the "Site Plan & SEARCH". The NMR/MRI Extras section on the right side of the page is particularly useful for visitors interested in all things about MR. Its links to "Events" provides an up-to-date list of symposia, conferences, and meetings, along with links to the events' sites. The "Societies" link offers at least 50 groups about MR, some of which are country-based, and others that are region- or application-based.

S�½kora, Stanislav

433

Quartz resonator processing system  

DOEpatents

Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

Peters, Roswell D. M. (Rustburg, VA)

1983-01-01

434

Method for resonant measurement  

DOEpatents

A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

Rhodes, George W. (5201 Rio Grande Blvd., N.W., Albuquerque, NM 87107); Migliori, Albert (Rte. 4, Box 258 Tano Rd., Sante Fe, NM 87501); Dixon, Raymond D. (396 Connie Ave., White Rock, NM 87544)

1996-01-01

435

Physics of Sports: Resonances  

NASA Astrophysics Data System (ADS)

When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

Browning, David

2000-04-01

436

Method for resonant measurement  

DOEpatents

A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

Rhodes, G.W.; Migliori, A.; Dixon, R.D.

1996-03-05

437

Field resonance propulsion concept  

NASA Technical Reports Server (NTRS)

A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

Holt, A. C.

1979-01-01

438

Pygmy resonances and nucleosynthesis  

E-print Network

A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

Nadia Tsoneva; Horst Lenske

2014-11-14

439

Active tuning of coupled resonance modes in terahertz metamaterials  

Microsoft Academic Search

We demonstrate active tuning of coupled inductive-capacitive resonance in a multi- layer metamaterial. Our experiment reveals that one resonance mode of a coupled pair can be selectively switched off by driving the metamaterial with infrared light. OCIS codes: (160.3918) Metamaterials; (160.4760) Optical properties; (300.6495) Terahertz spectroscopy Recent metamaterial (MM) research has produced many fascinating phenomena and devices like negative refractive

Dibakar Roy Chowdhury; Abul K. Azad; Matthew Reiten; Antoinette J. Taylor; John F. O'Hara

2011-01-01

440

The spectrum of charmonium in the Resonance-Spectrum Expansion  

E-print Network

We argue that the resonance-like structures Y(4260) (arXiv:hep-ex/0506081,arXiv:0707.2541), Y(4360), Y(4660) (arXiv:0707.3699) and Y(4635) (arXiv:0807.4458), which were recently reported to have been observed in experiment, are non-resonant manifestations of the Regge zeros that appear in the production amplitude of the Resonance-Spectrum Expansion. Charmonium c-cbar states are visible on the slopes of these enhancements.

Eef van Beveren; George Rupp

2008-11-11

441

Plasmonic surface lattice resonances on arrays of different lattice symmetry  

NASA Astrophysics Data System (ADS)

Arrays of metallic particles may exhibit optical collective excitations known as surface lattice resonances (SLRs). These SLRs occur near the diffraction edge of the array and can be sharper than the plasmon resonance associated with the isolated single particle response. We have fabricated and modeled arrays of silver nanoparticles of different geometries. We show that square, hexagonal, and honeycomb arrays show similar SLRs; no one geometry shows a clear advantage over the others in terms of resonance linewidth. We investigate the nature of the coupling between the particles by looking at rectangular arrays. Our results combine experiment and modeling based on a simple coupled-dipole model.

Humphrey, Alastair D.; Barnes, William L.

2014-08-01

442

Cyclotron resonance in a two-dimensional semimetal  

NASA Astrophysics Data System (ADS)

Cyclotron resonance in a two-dimensional semimetal has been studied theoretically, keeping in mind recent experiments reported in Z. D. Kvon, S. N. Pamilov, S. D. Ganichev, et al., in Proceedings of the 14th International Conference on Narrow Gap Semiconductors and Systems (Sendai, Japan, 2009). Since the size of the sample is finite, the exciting microwave inhomogeneous and there is a plasma shift of resonance frequency. There are two magnetoplasmon branches in a two-component system, which undergo pseudocrossing under the found criterion. Resonance frequencies and intensities of absorption peaks have been found. The latter are complicated functions of the electron and hole densities.

Vitlina, R. Z.; Magarill, L. I.; Chaplik, A. V.

2011-04-01

443

Compact pulley-type microring resonator with high quality factor  

NASA Astrophysics Data System (ADS)

A pulley-type microring resonator with ultra-small dimensions and ultra-high quality factor on a silicon-on-insulator wafer is fabricated and characterized. Simulation results show that the bending loss of the pulley-type microring resonator can be diminished by wrapping the curved waveguide around the microring, and that the energy loss from the output port can be decreased by tuning the width of the bus waveguide to achieve destructive interference. A quality factor of 1.73 × 105 is obtained in this experiment. The compact size of the pulley-type microring resonator with low bending loss is suitable for an integrated optical circuit.

Cai, Dong-Po; Lu, Jyun-Hong; Chen, Chii-Chang; Lee, Chien-Chieh; Lin, Chu-En; Yen, Ta-Jen

2014-11-01

444

Lorentz resonances and the structure of the Jovian ring  

NASA Technical Reports Server (NTRS)

Charged dust orbiting through spatially periodic planetary magnetic fields will experience time-variable electromagnetic forces. When the forcing frequencies are nearly commensurate with the particle's orbital frequency, the particle undergoes large out-of-plane and radial excursions. Specific 'Lorentz' resonances, corresponding to particular spatial periodicities in the magnetic field, occur on either side of synchronous orbit. Lorentz resonance locations and strengths for the Jovian and Saturnian rings are described. The boundaries of the halo of the Jovian ring, and perhaps other ring structures, are near resonances.

Burns, J. A.; Schaffer, L. E.; Showalter, M. R.; Greenberg, R. J.

1985-01-01

445

A Resonance Approach to Cochlear Mechanics  

PubMed Central

Background How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Approach Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. Conclusion and significance This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories. PMID:23144835

Bell, Andrew

2012-01-01

446

Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias  

PubMed Central

This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

2007-01-01

447

Misassigned neutron resonances of 142Nd and stellar neutron capture cross sections  

NASA Astrophysics Data System (ADS)

Time-of-flight spectra of the neutron capture events of 142Nd were measured using a spallation neutron source at the Japan Proton Accelerator Research Complex. The first six resonances of 142Nd reported in a previous work were not observed. The experimental results and cross-search of resonance energies in nuclear data libraries suggested that resonances of the impurity nuclide 141Pr have been mistakenly assigned as 142Nd in the previous experiment. To investigate the impact of the nonexistence of the resonances on the s -process nucleosynthesis model, the Maxwellian averaged neutron capture cross sections with and without the misassigned resonances were compared.

Katabuchi, Tatsuya; Matsuhashi, Taihei; Terada, Kazushi; Igashira, Masayuki; Mizumoto, Motoharu; Hirose, Kentaro; Kimura, Atsushi; Iwamoto, Nobuyuki; Hara, Kaoru Y.; Harada, Hideo; Hori, Jun-ichi; Kamiyama, Takashi; Kino, Koichi; Kitatani, Fumito; Kiyanagi, Yoshiaki; Nakamura, Shoji; Toh, Yosuke

2015-03-01

448

Spectral properties of a ring optical resonator with an arbitrary longitudinal inhomogeneity  

SciTech Connect

A ring optical resonator with an arbitrary but continuous change in the permittivity of the filling medium along the resonator axis is considered. It is shown that in the case of a small deviation of the permittivity from its average value, the double degeneracy of eigenfrequencies inherent in a homogeneous resonator is removed and the corresponding modes acquire the properties of standing waves. Simple universal expressions are derived to calculate eigenfrequencies and distribution coefficients in modes. Conditions are found under which splitting in the frequency spectrum of an inhomogeneous resonator is absent. The general results obtained in the paper can be used in numerical experiments. (resonators and mirrors)

Sudakov, V F [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

2009-05-31

449

Toward broadband electroacoustic resonators through optimized feedback control strategies  

NASA Astrophysics Data System (ADS)

This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effective control at least up to the Schroeder frequency. Previous experiments have shown that impedance matching can be achieved over a range of a few octaves using a simple proportional control law. But there is still a limit to the feedback gain, beyond which the feedback-controlled loudspeaker becomes non-dissipative. This paper evaluates the benefits of using PID control and phase compensation techniques to improve the overall performance of the electroacoustic resonator. More specifically, it is shown that some adverse effects due to high-order dynamics in the moving-coil transducer can be mitigated. The corresponding control settings are also identified with equivalent electroacoustic resonator parameters, allowing a straightforward design of the controller. Experimental results using PID control and phase compensation are finally compared in terms of sound absorption performances. As a conclusion the overall performances of electroacoustic resonators for damping the modal resonances inside a duct are presented, along with general discussions on practical implementation and the extension to actual room modes damping.

Boulandet, R.; Lissek, H.

2014-09-01

450

Appl. Magn. Reson. 28, 1XXX (2005) Magnetic Resonance  

E-print Network

Appl. Magn. Reson. 28, 1XXX (2005) Applied Magnetic Resonance © Springer-Verlag 2005 Printed-based functional magnetic resonance imaging (fMRI) techniques have proven to be extremely robust and sensitive firing spatially and temporally integrates on the spatial scale of an MRI voxel to produce a magnetic

Baker, Chris I.

451

High-Q bandpass resonators utilizing bandstop resonator pairs  

NASA Technical Reports Server (NTRS)

A high-Q bandpass resonators utilizing composite bandstop resonator pairs is reported. The bandstop resonator pairs are formed of composite series or parallel connected realizable transmission line elements. The elements are exclusively either quarter-wavelength lines or half-wavelength lines.

Okean, H. C. (inventor)

1973-01-01

452

Resonance Ionization, Mass Spectrometry.  

ERIC Educational Resources Information Center

Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

Young, J. P.; And Others

1989-01-01

453

Width of nonlinear resonance  

SciTech Connect

Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

Ohnuma, S.

1984-03-01

454

Magnetic resonance imaging  

SciTech Connect

The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

Stark, D.D.; Bradley, W.G. Jr.

1988-01-01

455

Magnetic Resonance Imaging  

NSDL National Science Digital Library

This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.

2014-09-18

456

Clinical magnetic resonance imaging  

SciTech Connect

This book presents clinical applications of magnetic resonance imaging with a strong clinical orientation. Covers technique, instrumentation, and contrast agents. Describes MRI of the neck, brain, heart, spine, TMJ and orbit, chest abdomen, pelvis, and the joints. Also includes a high field atlas of the central nervous system.

Brady, T.J.; Edelman, R.R.

1988-01-01

457

Nuclear magnetic resonance imaging  

SciTech Connect

A method of imaging a body by nuclear magnetic resonance wherein volume scanning of a region of the body is achieved by scanning a first planar slice of the region and at least one further slice of the region in the relaxation time for the scan of the first slice.

Young, I.R.

1984-07-03

458

Resonance tube igniter  

NASA Technical Reports Server (NTRS)

Reasonance induced in stoichiometric mixtures of gaseous hydrogen-oxygen produces temperatures /over 1100 deg F/ high enough to cause ignition. Resonance tube phenomenon occurs when high pressure gas is forced through sonic or supersonic nozzle into short cavity. Various applications for the phenomenon are discussed.

Conrad, E. W.; Pavli, A. J.; Phillips, B. R.

1970-01-01

459

Micromachined double resonator  

NASA Technical Reports Server (NTRS)

A micromachined resonator mountable to an external support structure has a proof mass coupled to a base structure by a first spring structure, the base structure having a plurality of electrodes, and a second spring structure coupling the base structure to the external support structure.

Gutierrez, Roman (Inventor); Tang, Tony K. (Inventor); Shcheglov, Kirill (Inventor)

2002-01-01

460

Laser beams and resonators  

Microsoft Academic Search

This paper is a review of the theory of laser beams and resonators. It is meant to be tutorial in nature and useful in scope. No attempt is made to be exhaustive in the treatment. Rather, emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.