Science.gov

Sample records for resonance raman study

  1. Resonance Raman Studies of Azulene and the Permanganate Ion.

    NASA Astrophysics Data System (ADS)

    Khodadoost, Baback

    This dissertation will present resonance Raman studies of the azulene molecule and the permanganate ion. Experimental measurements of the optical absorption spectra and the resonance Raman excitation profiles will be used along with the recently developed transform analysis. In the first part we have extended the frequency range of the previously measured resonance Raman profiles of azulene in solution. We have also measured, for the first time, profiles of two new Raman lines. Using transform techniques, we have calculated resonance Raman profile line shapes directly from our measured optical absorption spectra and the excited state vibrational frequencies. Our overall good profile line shape fits suggest that our model assumptions are basically correct for all the modes studied. Stokes loss analysis based on the good line shape fits indicates that possible deviations from these assumptions may be different for different modes. In the second part we have measured the visible absorption spectra of the permanganate ion with potassium perchlorate used as the host material as a function of pressure. These measurements indicate a blue shift of the absorption. The frequency of the breathing mode in the excited state increases with the pressure. From our absorption measurements we have also inferred a decrease in the Stokes loss parameter for this mode. We have also measured room temperature resonance Raman excitation profiles for the fundamental and the first two harmonics of the breathing mode, both at atmospheric and high pressures. Our Raman measurements indicate a linear increase in the ground state frequency of the breathing mode as a function of pressure. The use of the transform technique which relates absorption to resonance Raman profile line shape produces good agreements with our experimental data in all cases. As previously observed in the low pressure case we show that at high pressures it also is essential to use the excited state frequency in the

  2. Resonance and Variable Temperature Raman Studies of Chloroperoxidase and Methemoglobin.

    NASA Astrophysics Data System (ADS)

    Remba, Ronald David

    1980-12-01

    Raman spectra of the heme proteins chloroperoxidase and methemoglobin, chemically and temperature modified, are obtained for laser excitation near the Soret absorption band. Numerous biochemical and physical results are obtained. The following observations for chloroperoxidase have been made. The scattered intensity for resonance (406.7 nm) excitation is at least twenty times that for near resonance (457.9 nm) excitation. In resonance only totally symmetric modes are enhanced. The positions of marker band I ((TURN) 1370 cm(' -1)) for both the native and reduced enzymes are lower than expected for high-spin heme proteins indicating a strongly electron donating axial ligand. From shifts in spin-sensitive Raman peaks as the temperature is lowered, a high-spin to low-spin transition of the heme iron is inferred. Raman spectra of chloroperoxidase liganded with small ions indicate that there is a second anion binding site near the heme. Photo-dissociation of CO from reduced chloroperoxidase is observed. The position of marker band I in the CO complex indicates that electron density is transferred from the heme onto the CO. The resonance Raman spectra of chloroperoxidase and cytochrome P-450 are nearly identical and are very different from those of horseradish peroxidase and cytochrome c. These results, particularly for the reduced enzymes, indicate that the heme sites in chloroperoxidase and P -450 are essentially the same. Raman spectra of a number of methemoglobins complexed with various small ions are obtained as a function of temperature in the region of spin-sensitive marker band (II) ((TURN) 1500 cm('-1)) for laser excitation near the Soret absorption band. For certain ligands, H(,2)O, N(,3)('-), OCN('-), OH('-) and SCN('-), the iron spin state changes from high spin to low spin with decreasing temperature. The relative spin concentrations are monitored by measuring the Raman intensity ratio, I(,h)/I(,1), of the high-spin and low -spin versions of marker band (II

  3. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  4. Resonance Raman spectroscopic study of fused multiporphyrin linear arrays

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Hong; Jang, Sung Moon; Hwang, In-Wook; Kim, Dongho; Matsuzaki, Yoichi; Tanaka, Kazuyoshi; Tsuda, Akihiko; Nakamura, Takeshi; Osuka, Atsuhiro

    2003-09-01

    For prospective applications as molecular electric wires, triply linked fused porphyrin arrays have been prepared. As expected from their completely flat molecular structures, π-electron delocalization can be extended to the whole array manifested by a continuous redshift of the HOMO-LUMO transition band to infrared region up to a few μm as the number of porphyrin units in the array increases. To gain an insight into the relationship between the molecular structures and electronic properties, we have investigated resonance Raman spectra of fused porphyrin arrays depending on the number of porphyrin pigments in the array. We have carried out the normal mode analysis of fused porphyrin dimer based on the experimental results including Raman frequency shifts of two types of 13C-isotope substituted dimers, Raman enhancement pattern by changing excitation wavelength, and depolarization ratio measurements as well as normal-mode calculations at the B3LYP/6-31G level. In order to find the origins for the resonance Raman mode enhancement mechanism, we have predicted both the excited state geometry changes (A-term) and the vibronic coupling efficiencies (B-term) for the relevant electronic transitions based on the INDO/S-SCI method. A detailed normal mode analysis of the fused dimer allows us to extend successfully our exploration to longer fused porphyrin arrays. Overall, our investigations have provided a firm basis in understanding the molecular vibrations of fused porphyrin arrays in relation to their unique flat molecular structures and rich electronic transitions.

  5. Resonance Raman spectroscopic studies of enzymesubstrate intermediates at 5 K

    NASA Astrophysics Data System (ADS)

    Kim, Munsok; Carey, Paul R.

    1991-01-01

    A simple and versatile system for resonance Raman (RR) spectroscopic analysis of enzymesubstrate complexes at liquid helium temperatures is described. The system allows us to record high-quality RR spectra for dithioacyl papain intermediates (MeO-Phe-Gly- and MeO-Gly-Gly-Phe-Gly-C (dbnd S)S-papain) in ice matrices at 5 K. Based on established structure-spectra correlations, it is concluded that the active-site conformation of the intermediates about the φ', ψ' glycinic linkages and cysteine-25 side chain is B-G+-PH both in ice matrices at 5 K and in solution at room temperature.

  6. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  7. Theoretical study of the resonance Raman spectra for meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-hui; Wei, Wen-mei; Zhu, Li-li; Shi, Qiang

    2014-12-01

    Applying time-dependent density functional theory (TDDFT), we study the resonance Raman spectra for the Q and B bands of the meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H2TBPP) molecule including both Raman A term (Franck-Condon term) and Raman B term (Herzberg-Teller term) contributions. It is found that Raman B term can be one order of magnitude larger than Raman A term and dominates resonance Raman for the Q band resonance. In comparison with the recent experimental Raman spectra of H2TBPP with incident light frequency 532 nm, we predict the absence of 1580 cm-1 band in the resonance Raman spectra which agrees well with the experimental results, whereas the previous theoretical calculation using non-resonance strategy failed to do so.

  8. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study

    NASA Astrophysics Data System (ADS)

    Li, Wu-Hu; Li, Xiao-Yuan; Yu, Nai-Teng

    1999-10-01

    Surface-enhanced resonance hyper-Raman scattering (SERHRS) and surface-enhanced resonance Raman scattering (SERRS) of three dyes, rhodamine 6G, crystal violet and basic fuchsin, are studied comparatively on electrochemically roughened silver electrode and silver colloid, respectively. All three dyes show a better SERHRS efficiency on the silver colloid than on the silver electrode, a phenomenon just opposite to what we have recently observed for pyridine and pyrazine [Chem. Phys. Lett. 305 (1999) 303]. These results suggest that the efficiency of SEHRS depends not only on the active surfaces employed (colloidal metals versus roughened electrodes) but also on the types of the adsorbed molecules.

  9. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  10. Resonant Raman scattering in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.; Chubukov, Andrey V.

    1997-10-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B1g geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by Chubukov and Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final-state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ω(1)res~2Δ+3J and ω(2)res~2Δ+8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ω(1)res to a symmetric form around ω(2)res. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest-neighbor hopping term t', and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2 and YBa2Cu3O6.1 and Rübhausen et al. on PrBa2Cu3O7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.

  11. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status, as assessed by RRS, has been suggested as a promising biomarker for use in human studies. This manuscript describes...

  12. Schumann-Runge resonance Raman scattering of O sub 2 : A rotationally resolved excitation profile study

    SciTech Connect

    Zhang, Y.P.; Ziegler, L.D. )

    1989-09-07

    Rotationally resolved resonance Raman spectra and excitation profiles of O{sub 2} excited with narrow-band radiation tunable throughout the {nu}{prime} = 5 absorption band of the Schumann-Runge (SR) region (190-192 nm) are reported. The pressure dependence and scattering polarization unambiguously identify all the observed resonant emission intensity as Raman scattering (both resonant and off-resonant), not resonance fluorescence. This characterization is in contrast to the description of the resonant emission of the SR absorption bands offered in recent laser-excited studies. Excitation profile analysis determines rotationally specific lifetimes of the {nu}{prime} = 5 level. A homogeneous line width of 2.05 {plus minus} 0.10 cm{sup {minus}1} is determined for the rotational levels of this vibronic band. Within experimental uncertainty, this line width/lifetime is independent of the rotational angular momentum of the resonant predissociative rovibronic levels of the {nu}{prime} = 5 band. This value is in excellent agreement with the results of the most recent SR absorption contour analysis but is not in quantitative agreement with the most recent theoretical modeling of the rovibronic dynamics of the SR absorption bands.

  13. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    SciTech Connect

    Zheng, Junwei

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  14. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.

    PubMed

    Eyring, G; Mathies, R

    1979-01-01

    A dual beam pump/probe technique has been used with a 585-nm probe wavelength to obtain maximal resonance enhancement of the Raman lines of bathorhodopsin in a photostationary steady-state mixture at -160 degrees C. These studies show that bathorhodopsin has a protonated Schiff base vibration at 1657 cm(-1) which shifts upon deuteration to 1625 cm(-1). Within our experimental error (+/-2 cm(-1)) these frequencies are identical to those observed in rhodopsin and isorhodopsin. These effects show that the strength of the C=N bond and the degree of protonation of the Schiff base nitrogen are the same in bathorhodopsin, rhodopsin, and isorhodopsin. The implication of these results for the structure of the retinal chromophore in bathorhodopsin are discussed. The resonance Raman spectrum of pure bathorhodopsin has been generated by accurately subtracting the residual contributions of rhodopsin and isorhodopsin from spectra of the low temperature photostationary mixture. Bathorhodopsin is found to have lines at 853, 875, 920, 1006, 1166, 1210, 1278, 1323, 1536, and 1657 cm(-1). Also, by using an intensified vidicon detector, we have observed Raman scattering from bathorhodopsin at room temperature by generating a photostationary steady state with pulsed laser excitation. At room temperature the three characteristic lines of bathorhodopsin are found at 858, 873, and 920 cm(-1). The fact that the frequencies of these bathorhodopsin lines are nearly identical at both temperatures implies that the retinal conformation in bathorhodopsin formed at -160 degrees C is the same as that formed at room temperature. PMID:284349

  15. Intermediate and stable redox states of cytochrome c studied by low temperature resonance Raman spectroscopy.

    PubMed Central

    Cartling, B

    1983-01-01

    Stabilized intermediate redox states of cytochrome c are generated by radiolytic reduction of initially oxidized enzyme in glass matrices at liquid nitrogen temperature. In the intermediate states the heme group is reduced by hydrated electrons, whereas the protein conformation is restrained close to its oxidized form by the low-temperature glass matrix. The intermediate and stable redox states of cytochrome c at neutral and alkaline pH are studied by low-temperature resonance Raman spectroscopy using excitations in resonance with the B (Soret) and Q1 (beta) optical transitions. The assignments of the cytochrome c resonance Raman bands are discussed. The observed spectral characteristics of the intermediate states as well as of the alkaline transition in the oxidized state are interpreted in terms of oxidation-state marker modes, spin-state marker modes, heme iron--axial ligand stretching modes, totally symmetric in-plane porphyrin modes, nontotally symmetric in-plane modes, and out-of-plane modes. PMID:6311300

  16. Resonant Raman Scattering in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Morr, Dirk K.

    1996-03-01

    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-Tc materials. Recent experiments have shown a strong dependence of the Raman signal in B_1g geometry on the frequency of the incoming photon. We present a detailed numerical study of the diagram which was previously identified(A.V. Chubukov and D.M. Frenkel, Phys. Rev. B 52), 9760 (1995) as the most relevant in the resonant regime. We found two maxima of the two-magnon peak hight at transferred frequencies of ω ≈ 3J and ω ≈ 8J. These results agree with recent experiments by Blumberg(G. Blumberg et al.), preprint et al. on Sr_2CuO_2Cl_2. Furthermore, we study how the two-magnon profile depends on a quasiparticle damping and a hopping between next-nearest neighbors. We also study resonance scattering in other scattering geometries, in particular, A_1g scattering.

  17. A resonance raman scattering study of vibrational dephasing in the mixed crystal of pentacene in naphthalene

    NASA Astrophysics Data System (ADS)

    de Bree, Philippus; Wiersma, Douwe A.

    1982-04-01

    Resonance Raman scattering is used to investigate vibrational dephasing in the mixed crystal of pentacene in naphthalene. It is shown that, as for the pure electronic transition, uncorrelated resonant phonon scattering processes in the ground and vibrationally excited state induce vibrational dephasing in this system.

  18. Spatial correlation between chemical and topological defects in vitreous silica: UV-resonance Raman study

    SciTech Connect

    Saito, M. D’Amico, F.; Bencivenga, F.; Cucini, R.; Gessini, A.; Principi, E.; Masciovecchio, C.

    2014-06-28

    A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.

  19. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  20. Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng

    2012-06-01

    We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.

  1. On the Increasing Fragility of Human Teeth with Age: ADeep-Ultraviolet Resonance Raman Study

    SciTech Connect

    Ager III, J.W.; Nalla, R.K.; Balooch, G.; Kim, G.; Pugach, M.; Habelitz, S.; Marshall, G.W.; Kinney, J.H.; Ritchie, R.O.

    2006-07-14

    Ultraviolet resonance Raman spectroscopy (UVRRS) using 244nm excitation was used to investigate the impact of aging on humandentin. The intensity of a spectroscopic feature from the peptide bondsin the collagen increases with tissue age, similar to a finding reportedpreviously for human cortical bone.

  2. Resonance Raman spectroscopic studies of the interactions between trypsin and a competitive inhibitor.

    PubMed Central

    Dupaix, A; Bechet, J J; Yon, J; Merlin, J C; Delhaye, M; Hill, M

    1975-01-01

    Raman spectroscopy was used to study the interactions between bovine trypsin and a competitive inhibitor. For this purpose, a chromophoric substrate analogue, 4-amidino-4'-dimethylamine azobenzene, was synthesized. This compound competitively inhibits the enzyme with a 1:1 stoichiometry and an inhibition constant Ki of 2.3 muM at pH 6.08 and 15 degrees. Resonance Raman spectra in aqueous solution of free or enzyme-bound inhibitor were analyzed. The main spectral changes observed upon enzyme-inhibitor complex formation were changes in the relative intensities of four bands (1171, 1206, 1315, 1608 cm-1) while no large frequency shifts occurred. The binding of the inhibitor molecule to the enzyme did not induce a twisting of the phenyl groups around the N=N bond. Some modifications of the band widths are interpreted in terms of a restriction of rotational motions in the inhibitor molecule. The possible involvement of specific interactions between trypsin and the benzamidinium ion part of the inhibitor molecule is discussed. PMID:1060102

  3. Optical pathology study of human abdominal aorta tissues using confocal micro resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Wang, Wubao; Sordillo, Laura A.; Shi, Lingyan; Weisberg, Arel; Tomaselli, Vincent P.; Sordillo, Peter P.; Alfano, Robert R.

    2016-03-01

    Resonance Raman (RR) spectroscopic technique has a high potential for label-free and in-situ detection of biomedical lesions in vivo. This study evaluates the ability of RR spectroscopy method as an optical histopathology tool to detect the atherosclerotic plaque states of abdominal aorta in vitro. This part demonstrates the RR spectral molecular fingerprint features from different sites of the atherosclerotic abdominal aortic wall tissues. Total 57 sites of five pieces aortic samples in intimal and adventitial wall from an autopsy specimen were examined using confocal micro Raman system of WITec 300R with excitation wavelength of 532nm. The preliminary RR spectral biomarkers of molecular fingerprints indicated that typical calcified atherosclerotic plaque (RR peak at 964cm-1) tissue; fibrolipid plaque (RR peaks at 1007, 1161, 1517 and 2888cm-1) tissue, lipid pool with the fatty precipitation cholesterol) with collagen type I (RR peaks at 864, 1452, 1658, 2888 and 2948cm-1) in the soft tissue were observed and investigated.

  4. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    SciTech Connect

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  5. Resonance Raman spectroscopic and density functional theory study of p-nitroacetophenone (PNAP)

    NASA Astrophysics Data System (ADS)

    Pei, Kemei; Ma, Yufang; Zheng, Xuming; Li, Haiyang

    2007-03-01

    Resonance Raman spectra of p-nitroacetophenone(PNAP) have been obtained in resonance with the charge-transfer (CT) band using 252.7, 266 and 273.9 nm in methanol solvent. The spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion mainly along the C dbnd O stretching ν8(1691 cm -1) and the benzene ring stretch ν10(1593 cm -1). A preliminary resonance Raman intensity analysis was done and the results for PNAP were compared with nitrobenzene and aceptophenone. Our results indicate that -NO 2 is more photoactive than -COCH 3. The isomerization process of PNAP takes place somewhere after the wave packet leaves the Franck-Condon region.

  6. Resonant photo-thermal modification of vertical gallium arsenide nanowires studied using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Walia, Jaspreet; Boulanger, Jonathan; Dhindsa, Navneet; LaPierre, Ray; (Shirley Tang, Xiaowu; Saini, Simarjeet S.

    2016-06-01

    Gallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions. Here, resonant photo-thermal modification of vertical GaAs nanowires was studied using both Raman spectroscopy and electron microscopy techniques. Resonant waveguiding, and subsequent absorption of the excited optical mode reduces the irradiance vertical GaAs nanowires can support relative to horizontal ones, by three orders of magnitude before the onset of structural changes occur. A power density of only 20 W mm‑2 was sufficient to induce local heating in the nanowires, resulting in the formation of arsenic species. Upon further increasing the power, a hollow nanowire morphology was realized. These findings are pertinent to all optical applications and spectroscopic measurements involving vertically oriented GaAs nanowires. Understanding the optical absorption limitations, and the effects of exceeding these limitations will help improve the development of all III–V nanowire devices.

  7. Resonant Raman scattering in nanoscale pentacene films

    NASA Astrophysics Data System (ADS)

    He, Rui; Dujovne, Irene; Chen, Liwei; Miao, Qian; Hirjibehedin, Cyrus F.; Pinczuk, Aron; Nuckolls, Colin; Kloc, Christian; Ron, Arza

    2004-02-01

    Resonant Raman scattering intensities from nanoscale films of pentacene display large resonant enhancements that enable observation of vibrational modes in monolayer cluster films. The resonant enhancements occur when the outgoing photon energy overlaps the free exciton optical transitions observed in luminescence. The results point to the significant potential of resonant Raman methods in the characterization of nanoscale structures of organic molecular semiconductors.

  8. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R.

    2002-04-01

    We report G-band resonance Raman spectra of single-wall carbon nanotubes (SWNTs) at the single-nanotube level. By measuring 62 different isolated SWNTs resonant with the incident laser, and having diameters dt ranging between 0.95 nm and 2.62 nm, we have conclusively determined the dependence of the two most intense G-band features on the nanotube structure. The higher-frequency peak is not diameter dependent (ω+G=1591 cm-1), while the lower-frequency peak is given by ω-G=ω+G-C/d2t, with C being different for metallic and semiconducting SWNTs (CM>CS). The peak frequencies do not depend on nanotube chiral angle. The intensity ratio between the two most intense features is in the range 0.1resonance conditions, i.e., SWNTs for which the incident photons are in resonance with the ES44 interband transition and scattered photons are in resonance with ES33. Since the Eii values depend sensitively on both nanotube diameter and chirality, the (n,m) SWNTs that should exhibit such a special G-band spectra can be predicted by resonance Raman theory. The agreement between theoretical predictions and experimental observations about these special G-band phenomena gives additional support for the (n,m) assignment from resonance Raman spectroscopy.

  9. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    PubMed Central

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  10. UV resonance Raman study of model complexes of the Cu B site of cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Nagano, Yasutomo; Liu, Jin-Gang; Naruta, Yoshinori; Kitagawa, Teizo

    2005-02-01

    A newly designed model complex for the CuB site of cytochrome c oxidase (CcO), that is, Cu coordinated by two free imidazoles and an imidazole covalently linked to p-cresol [CuIIBIAIPBr]Br, (BIAIP =2-[4-[[Bis(1-methyl-1H-imidazol-2-ylmethyl)amino]methyl]-1H-imidazol-1-yl]-4-methylphenol), and related molecules have been investigated with absorption and ultraviolet resonance Raman (UVRR) spectroscopy employing the excitation wavelengths between 220 and 290 nm. Attention was focused on the electron delocalization through the cross-linkage between the phenol and imidazole rings, and the influences by the coordination of CuII to imidazole. In addition to the ν8a and ν8b modes of p-cresol, a number of Raman bands involving vibrations of the imidazole moiety have been intensity-enhanced despite Raman excitation in resonance with the π-π* transition of phenol, indicating appreciable mixing of the π systems of imidazole and phenol rings. Furthermore, two kinds of imidazoles seem to be differential; one is the imidazole linked to p-cresol which yielded Raman bands at 1249, 1191, and 1141 cm-1 for protonated CuII-BIAIP, and the other is one not linked to p-cresol, which yielded an intense band at 1488 cm-1 band. Raman enhancement of the latter mode seems to be caused by preresonance to the lowest π-π* transition of imidazole via the A-term mechanism. The Raman excitation profile (REP) of ν8a mode for the deprotonated phenol of the CuII-complex revealed a weak local maximum corresponding to the La band around 240 nm. Raman enhancement by the La band was relatively weaker for the CuII-complex than for the ZnII-complex and metal-free ligand, suggesting the more extensive mixing of π systems of p-cresol-imidazole through the cross-linkage for the Cu II-complex.

  11. Ultrafast protein dynamics of hemoglobin as studied by picosecond time-resolved resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhisa; Nagai, Masako

    2012-03-01

    Time-resolved resonance Raman spectroscopy on human adult hemoglobin (HbA) following ligand photolysis revealed that the frequency of the iron-histidine stretching [ν(Fe-His)] mode exhibited a 2-cm-1 downshift with a time constant of about 300 ps, suggesting a structural change in the heme pocket following the ligand photolysis. Low-frequency heme modes suggested that the primary metastable form of HbA has a more disordered orientation of propionates and a less strained environment than the deoxy form. The latter fact is consistent with the experimental observation that the ν(Fe-His) frequency of the metastable form is higher than the deoxy form. The present study shows that HbA adopts a metastable structure within the instrument response time and remains little changed in the subnanosecond to nanosecond time regime. Characteristics of the primary protein response of HbA based on the comparison of the results of HbA with those of the isolated chains and myoglobin are discussed.

  12. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores

    SciTech Connect

    Deng, H.; Manor, D.; Weng, G.; Rath, P.; Callender, R.H. ); Koutalos, Y.; Ebrey, T. ); Gebhard, R.; Lugtenburg, J. ); Tsuda, M. )

    1991-05-07

    Resonance Raman spectra of the hydrogen out-of-plane (HOOP) vibrational modes in the retinal chromophore of octopus bathorhodopsin with deuterium label(s) along the polyene chain have been obtained. In clear contrast with bovine bathorhodopsin's HOOP modes, there are only two major HOOP bands at 887 and 940 cm{sup {minus}1} for octopus bathorhodopsin. On the basis of their isotopic shifts upon deuterium labeling, the authors have assigned the band at 887 cm{sup {minus}1} to C{sub 10}H and C{sub 14}H HOOP modes, and the band at 940 cm{sup {minus}1} to C{sub 11}H{double bond}C{sub 12}H A{sub u}-like HOOP mode. They found also that the C{sub 10}H and C{sub 14}H HOOP wags are also similar to those in the model-compound studies. However, they have found that the interaction between the C{sub 7}H and C{sub 8}H HOOP internal coordinates of the chromophore in octopus bathorhodopsin is different from that of the chromophore in solution. The twisted nature of the chromophore, semiquantitatively discussed here, likely affects the {lambda}{sub max} of the chromophore and its enthalpy. The nature of the HOOP modes of octopus bathorhodopsin differs substantially from those found in bovine bathorhodopsin.

  13. UV resonance Raman and DFT studies of arginine side chains in peptides: insights into arginine hydration.

    PubMed

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A

    2013-06-20

    We examined the UV resonance Raman (UVRR) spectra of four models of the Arg side chain, guanidinium (Gdn), ethylguanidinium (EG), arginine (Arg), and Ac-Arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the Arg side chain. To elucidate the resonance Raman enhancement mechanism of the Arg side chain, we used density functional theory (DFT) to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the Gdn group C-N stretching vibrations, the C-N bond stretching vibration of the Gdn group-methylene linkage is also strongly resonance-enhanced in EG, Arg, and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm(-1) vibration of the Arg side chain depends on its hydration state and can be used to determine the hydration state of the Arg side chain in peptides and proteins. We examined the hydration of the Arg side chain in two polyAla peptides and found that in the α-helical conformation the Arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  14. UV Resonance Raman and DFT Studies of Arginine Side Chains in Peptides: Insights into Arginine Hydration

    PubMed Central

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A.

    2013-01-01

    We examined the UV resonance Raman (UVRR) spectra of four models of the arg side chain, guanidinium (gdn), ethylguanidinium (EG), arginine (arg) and Ac-arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the arg side chain. To elucidate the resonance Raman enhancement mechanism of the arg side chain, we used DFT to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the gdn group C-N stretching vibrations, the C-N bond stretching vibration of the gdn group-methylene linkage is also strongly resonance enhanced in EG, arg and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm−1 vibration of the arg side chain depends on its hydration state and can be used to determine the hydration state of the arg side chain in peptides and proteins. We examined the hydration of the arg side chain in two polyala peptides and found that in the α-helical conformation the arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  15. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  16. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  17. Resonance IR: a coherent multidimensional analogue of resonance Raman.

    PubMed

    Boyle, Erin S; Neff-Mallon, Nathan A; Handali, Jonathan D; Wright, John C

    2014-05-01

    This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes. PMID:24707979

  18. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.

    PubMed

    Yi, Adrian; Mamaeva, Natalia; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2016-04-26

    Optogenetics relies on the expression of specific microbial rhodopsins in the neuronal plasma membrane. Most notably, this includes channelrhodopsins, which when heterologously expressed in neurons function as light-gated cation channels. Recently, a new class of microbial rhodopsins, termed anion channel rhodopsins (ACRs), has been discovered. These proteins function as efficient light-activated channels strictly selective for anions. They exclude the flow of protons and other cations and cause hyperpolarization of the membrane potential in neurons by allowing the inward flow of chloride ions. In this study, confocal near-infrared resonance Raman spectroscopy (RRS) along with hydrogen/deuterium exchange, retinal analogue substitution, and site-directed mutagenesis were used to study the retinal structure as well as its interactions with the protein in the unphotolyzed state of an ACR from Guillardia theta (GtACR1). These measurements reveal that (i) the retinal chromophore exists as an all-trans configuration with a protonated Schiff base (PSB) very similar to that of bacteriorhodopsin (BR), (ii) the chromophore RRS spectrum is insensitive to changes in pH from 3 to 11, whereas above this pH the Schiff base (SB) is deprotonated, (iii) when Ser97, the homologue to Asp85 in BR, is replaced with a Glu, it remains in a neutral form (i.e., as a carboxylic acid) but is deprotonated at higher pH to form a blue-shifted species, (iv) Asp234, the homologue of the protonated retinylidene SB counterion Asp212 in BR, does not serve as the primary counteranion for the protonated SB, and (v) substitution of Glu68 with an Gln increases the pH at which SB deprotonation is observed. These results suggest that Glu68 and Asp234 located near the SB exist in a neutral state in unphotolyzed GtACR1 and indicate that other unidentified negative charges stabilize the protonated state of the GtACR1 SB. PMID:27039989

  19. Resonance Raman studies of substituent effects on the electronic structure of phenoxyl radicals

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1988-09-08

    The resonance Raman spectra of para-substituted phenoxyl radicals (XC/sub 6/H/sub 4/O/center dot/; X = CH/sub 3/, F, Cl, Br, OCH/sub 3/, OH) observed by time-resolved techniques in aqueous medium, exhibit a wide variation in spectral features intermediate between phenoxyl and /rho/-benzosemiquinone anion radicals. The ..nu../sub 7a/ (CO stretch) vibration, which is strongly enhanced on Raman excitation in resonance with the electronic transition in the approx. 400-nm region, appears in a narrow frequency range 1511-1518 cm/sup /minus/1/, indicating that the CO bond in the ground electronic state of these radicals is very similar to that of phenoxyl (..nu../sub 7a/ at 1505 cm/sup /minus/1/). The relative intensities of the ..nu../sub 8a/ bands (CC stretch), observed in the 1552-1613-cm/sup /minus/1/ region, change dramatically with the electronic properties of the substituent group. This vibration, which is not apparent in the Raman spectrum of phenoxyl excited at 400 nm, is observed with an intensity comparable to the of the ..nu../sub 7a/ vibration in the /rho/-bromo, /rho/-methoxy, and /rho/-hydroxy derivatives. The Raman intensities show that the electronic structures in the excited states of the /rho/-methoxy and /rho/-fluoro-, and p-chloro-substituted radicals are essentially phenoxyl like, while the structures in p-methoxy and p-hydroxy derivatives approach that of /rho/-benzosemiquinone anion radical as a result of strong interaction of the substituent's p..pi.. electrons with the phenoxyl ..pi.. system. The excited state of /rho/-bromophenoxyl radical represents an important intermediate case. The resonance enhancement of the ..nu../sub 9a/ CH bending vibration, observed at approx. 1160 cm/sup /minus/1/, parallels that of the ..nu../sub 8a/ phenyl mode and provides an important diagnostic for assignment of the latter vibration.

  20. Auger resonant Raman spectroscopy used to study the angular distributions of the Xe 4d{sub 5/2} {yields} 6p decay spectrum

    SciTech Connect

    Langer, B.; Berrah, N.; Farhat, A.

    1997-04-01

    Auger resonant Raman spectroscopy is a powerful tool for studying the resonant Auger decay processes with a resolution narrower than the natural lifetime width of the initial inner-shell hole state. This effect has been used to analyze branching ratios of resonantly excited atoms and molecules. In this paper, the authors present results of a study of angular distributions of the spectator decay lines of Xe following 4d{sub 5/2}{r_arrow}6p excitation using the Auger resonant Raman effect and highly resolved photons from the Advanced Light Source (ALS).

  1. Resonance Raman study of the oxygenation cycle of optically trapped single red blood cells in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Ramser, Kerstin; Logg, Katarina; Enger, Jonas; Goksor, Mattias; Kall, Mikael; Hanstorp, Dag

    2004-10-01

    The average environmental response of red blood cells (RBCs) is routinely measured in ensemble studies, but in such investigations valuable information on the single cell level is obscured. In order to elucidate this hidden information is is important to enable the selection of single cells with certain properties while subsequent dynamics triggered by environmental stimulation are recorded in real time. It is also desirable to manipulate and control the cells under phsyiological conditions. As shown here, this can be achieved by combining optical tweezers with a confocal Raman set-up equipped with a microfluidic system. A micro-Raman set-up is combined with an optical trap with separate optical paths, lasers and objectives, which enables the acquisition of resonance Raman profils of single RBCs. The microfluidic system, giving full control over the media surrounding the cell, consists of a pattern of channels and reservoirs produced by electron beam lithography and moulded in PDMS. Fresh Hepes buffer or buffer containing sodium dithionite are transported through the channels using electro-osmotic flow, while the direct Raman response of the single optically trapped RBC is registered in another reservoir in the middle of the channel. Thus, it is possible to monitor the oxygenation cycle in a single cell and to study photo-induced chemistry. This experimental set-up has high potential for monitoring the drug response or conformational changes caused by other environmental stimuli for many types of single functional cells since "in vivo" conditions can be created.

  2. Direct Observation of 4-Phenoxyphenylnitrenium Ion: A Transient Absorption and Transient Resonance Raman Study.

    PubMed

    Xue, Jiadan; Li, Yafang; Du, Lili; Du, Yong; Tang, Wenjian; Zheng, Xuming; Phillips, David Lee

    2015-11-19

    Femtosecond (fs) and nanosecond (ns) transient absorption (TA) and single pulse transient resonance Raman spectroscopic investigation of the intermediates after laser photolysis of 4-phenoxyphenyl azide in acetonitrile and mixed aqueous solution is reported. fs-TA results show that the singlet 4-phenoxyphenylnitrene was produced immediately after photolysis of the azide. Then, the singlet nitrene underwent intersystem crossing (ISC) and ring expansion to generate triplet nitrene and ketenimine in acetonitrile with t = 346 ps or protonation in mixed aqueous solution with t = 37 ps, respectively, a little slower than the counterparts of the methoxy one (108 and 5.4 ps for ISC and protonation processes, respectively). The transient Raman spectrum combined density functional theory (DFT) calculation predicting the structure and vibrational frequencies suggested that phenoxyphenylnitrenium ion has a comparable quinoidal character to that of methoxy- and ethoxy-phenylnitrenium ions. All of these results indicated that the phenoxy substitution has some impact on the reactivity of phenylnitrene but a slight influence on the structure of phenylnitrenium ion. PMID:26503835

  3. Absorption and resonance Raman study of the pyromellitic diahydride anion via density functional theory

    NASA Astrophysics Data System (ADS)

    Andruniow, T.; Pawlikowski, M.

    2000-05-01

    The electronic structure of the low-energy states of the pyromellitic diahydride (PMDA) anion is investigated in terms of the VWN (Vosco-Wilk-Nusair) the BP (Becke-Perdew) and the B3LYP density functional (DF) methods employed with 6-31G * basis sets. All the methods are shown to reproduce correctly the absorption and resonance Raman spectra in the region corresponding to the low-energy 1 2Au→1 2B3g transition. The discrepancies between the theory and experiment are attributed to a (weak) Dushinsky effect predominately due to a mixing of the ν3=1593 cm -1 and ν4=1342 cm -1 vibrations in the 1 2B3 g state of the PMDA radical.

  4. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  5. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral

    NASA Astrophysics Data System (ADS)

    Udayabhaskar Reddy, G.; Seshamaheswaramma, K.; Nakamura, Yoshinobu; Lakshmi Reddy, S.; Frost, Ray L.; Endo, Tamio

    2012-10-01

    Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

  6. Probing Nanoscale Pentacene Films by Resonant Raman Scattering

    NASA Astrophysics Data System (ADS)

    He, Rui; Dujovne, Irene; Chen, Liwei; Miao, Qian; Hirjibehedin, Cyrus F.; Pinczuk, Aron; Nuckolls, Colin; Kloc, Christian; Blanchet, Graciela B.

    2005-06-01

    Resonant enhancements of Raman scattering intensities offer the sensitivity required to study nanoscale pentacene films that reach into monolayer thickness. In the results reported here structural characterization of ultra-thin layers and of their fundamental optical properties are investigated by resonant Raman scattering from intra-molecular and inter-molecular vibrations. In this work Raman methods emerge as ideal tools for the study of physics and characterization of ultra-thin nanoscale films of molecular organic materials fabricated on diverse substrates of current and future devices.

  7. The study of near-resonance Raman scattering of AlInN/AlN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Liu, Yanli; Yang, Lianhong; Chen, Dunjun; Zhang, Li; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2015-07-01

    The visible and ultraviolet (UV) Raman scattering of an AlInN/AlN/GaN heterostructure were measured under z (x, _) z bar configuration at room temperature. Compared with the visible Raman spectrum, three new peaks at 609, 700, and 840 cm-1 occurred in the UV Raman spectrum and were verified to result from the resonance enhanced Raman effect. The near-resonance Raman scattering is stimulated by the electron transition process between the valence band and subband of triangular quantum well located at the interface of AlN/GaN because this transition process has a near equal energy with the 325 nm excitation light. According to the calculated dispersion relations of interface phonon modes in the AlInN/AlN/GaN heterostructure and the 2DEG-related resonance enhanced effect, these new Raman peaks were mainly attributed to the interface phonon modes and disorder-activated mode. The contributions from the bulk phonon modes of AlN and AlInN layers play a very minor role.

  8. Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Sun, Youmei; Zhai, Pengfei; Zeng, Jian; Zhang, Shengxia; Hu, Peipei; Yao, Huijun; Duan, Jinglai; Hou, Mingdong; Liu, Jie

    2016-08-01

    Molybdenum disulphide (MoS2) crystal samples were irradiated by swift heavy ions (209Bi and 56Fe). Hillock-like latent tracks were observed on the surface of irradiated MoS2 by atomic force microscopy. The modifications of properties of irradiated MoS2 were investigated by resonant Raman spectroscopy and ultraviolet-visible spectroscopy (UV-Vis). A new peak (E1u2, ∼385.7 cm-1) occurs near the in-plane E2g1 peak (∼383.7 cm-1) after irradiation. The two peaks shift towards lower frequency and broaden due to structural defects and stress with increasing fluence. When irradiated with high fluence, two other new peaks appear at ∼ 190 and ∼ 230 cm-1. The peak at ∼230 cm-1 is disorder-induced LA(M) mode. The presence of this mode indicates defects induced by irradiation. The feature at ∼460 cm-1 is composed of 2LA(M) (∼458 cm-1) and A2u (∼466 cm-1) mode. With increasing fluence, the integrated intensity ratio between 2LA(M) and A2u increases. The relative enhancement of 2LA(M) mode is in agreement with the appearance of LA(M) mode, which both demonstrate structural disorder in irradiated MoS2. The ∼423-cm-1 peak shifts toward lower frequency due to the decrease in exciton energy of MoS2, and this was demonstrated by the results of UV-Vis spectra. The decrease in exciton energy could be due to introduction of defect levels into band gap.

  9. Resonance Raman spectroscopy and density functional theory study of the photodissociation dynamics of acetophenone in cyclohexane solution

    NASA Astrophysics Data System (ADS)

    Ma, Yufang; Pei, Kemei; Zheng, Xuming; Li, Haiyang

    2007-11-01

    Resonance Raman spectra were acquired for acetophenone using 228.7, 239.5, and 245.9 nm excitations in cyclohexane solution. The spectra display overtones of the benzene ring C-C stretch (1578 cm -1) and the carbonyl C dbnd O stretch (1671 cm -1) modes and their combination bands with other five vibrational modes. A preliminary resonance Raman intensity analysis was done and these results for acetophenone were compared to the those previously reported for 2-hydroxyacetophenone. The differences between the vibrational reorganizational energies for acetophenone relative to those of 2-hydroxyacetophenone were briefly discussed.

  10. Optically confined polarized resonance Raman studies in identifying crystalline orientation of sub-diffraction limited AlGaN nanostructure

    SciTech Connect

    Sivadasan, A. K. Patsha, Avinash; Dhara, Sandip

    2015-04-27

    An optical characterization tool of Raman spectroscopy with extremely weak scattering cross section tool is not popular to analyze scattered signal from a single nanostructure in the sub-diffraction regime. In this regard, plasmonic assisted characterization tools are only relevant in spectroscopic studies of nanoscale object in the sub-diffraction limit. We have reported polarized resonance Raman spectroscopic (RRS) studies with strong electron-phonon coupling to understand the crystalline orientation of a single AlGaN nanowire of diameter ∼100 nm. AlGaN nanowire is grown by chemical vapor deposition technique using the catalyst assisted vapor-liquid-solid process. The results are compared with the high resolution transmission electron microscopic analysis. As a matter of fact, optical confinement effect due to the dielectric contrast of nanowire with respect to that of surrounding media assisted with electron-phonon coupling of RRS is useful for the spectroscopic analysis in the sub-diffraction limit of 325 nm (λ/2N.A.) using an excitation wavelength (λ) of 325 nm and near ultraviolet 40× far field objective with a numerical aperture (N.A.) value of 0.50.

  11. Novel Raman resonance in ladder spin systems

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander; Chubukov, Andrey

    2006-03-01

    We consider Raman intensity in spin S two-leg- spin-ladder, with the goal to understand recent experiments[1,2]. We argue that the Raman intensity has a pseudo-resonance peak whose width is very small at large S. The pseudo-resonance originates from the existence of a local minimum in the magnon excitation spectrum, and is located slightly below twice the magnon energy at the minimum. The physics behind the peak is surprisingly similar to that in the excitonic scenario for the neutron and Raman resonances in a d-wave superconductor. We also consider mid-infrared X-ray scattering in 2D systems and compare the results with recent measurements [3]. [1] A. Gozar et al, Phys. Rev. Lett. 87, 197202 (2001). [2] S. Sugai and M. Suzuki, Phys stat sol (b) 215, 653 (1999). [3] J. P. Hill, G Blumberg et al, [unpublished

  12. In situ electron spin resonance and Raman spectroscopic studies of the electrochemical process of conducting polypyrrole films

    SciTech Connect

    Zhong, C.J.; Tian, Z.Q.; Tian, Z.W. )

    1990-03-08

    The electrochemical redox properties of conducting polypyrrole (PPy) films coated on electrodes are investigated in aqueous solutions by use of the in situ techniques of electron spin resonance (ESR) and Raman spectroscopy. Comparisons between the experimental in situ ESR data and a theoretical kinetic prediction on the basis of the polaron-bipolaron model are presented.

  13. Dermal carotenoids as measured by resonance Raman spectroscopy as a biomarker of response to a fruit/vegetable intervention study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dermal carotenoid status may have utility as a biomarker for vegetable and fruit consumption. Resonance Raman spectroscopy (RRS) is a valid, non-invasive method to assess dermal carotenoids as a biomarker of usual vegetable and fruit intake, but has not been evaluated in response to a whole-diet in...

  14. Resonant Raman spectroscopy of twisted multilayer graphene.

    PubMed

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C; Tan, Ping-Heng

    2014-01-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures. PMID:25382099

  15. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  16. Fano resonance of Li-doped KTa1-xNbxO3 single crystals studied by Raman scattering.

    PubMed

    Rahaman, M M; Imai, T; Sakamoto, T; Tsukada, S; Kojima, S

    2016-01-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1-xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm(-1) (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry. PMID:27049847

  17. Fano resonance of Li-doped KTa1−xNbxO3 single crystals studied by Raman scattering

    PubMed Central

    Rahaman, M. M.; Imai, T.; Sakamoto, T.; Tsukada, S.; Kojima, S.

    2016-01-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1−xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm−1 (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry. PMID:27049847

  18. Fano resonance of Li-doped KTa1‑xNbxO3 single crystals studied by Raman scattering

    NASA Astrophysics Data System (ADS)

    Rahaman, M. M.; Imai, T.; Sakamoto, T.; Tsukada, S.; Kojima, S.

    2016-04-01

    The enhancement of functionality of perovskite ferroelectrics by local structure is one of current interests. By the Li-doping to KTa1‑xNbxO3 (KTN), the large piezoelectric and electro-optic effects were reported. In order to give new insights into the mechanism of doping, the microscopic origin of the Fano resonance induced by the local structure was investigated in 5%Li-doped KTN single crystals by Raman scattering. The coupling between the continuum states and the transverse optical phonon near 196 cm‑1 (Slater mode) caused a Fano resonance. In the vicinity of the cubic-tetragonal phase transition temperature, TC-T = 31 °C, the almost disappearance of the Fano resonance and the remarkable change of the central peak (CP) intensity were observed upon heating. The local symmetry of the polar nanoregions (PNRs), which was responsible for the symmetry breaking in the cubic phase, was determined to E(x, y) symmetry by the angular dependence of Raman scattering. The electric field induced the significant change in the intensity of both CP and Fano resonance. From these experimental results, it is concluded that the origin of the Fano resonance in Li-doped KTN crystals is the coupling between polarization fluctuations of PNRs and the Slater mode, both belong to the E(x, y) symmetry.

  19. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. PMID:27113352

  20. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine ( Pinus sylvestris) wood . Part I: Lipophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.

    2004-11-01

    The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  1. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T

    2004-11-01

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin. PMID:15477130

  2. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  3. Electronic resonances in broadband stimulated Raman spectroscopy

    PubMed Central

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process. PMID:26728791

  4. X-ray absorption study of octafluorodirhenate(III): EXAFS structures and resonance raman spectroscopy of octahalodirhenates

    SciTech Connect

    Conradson, S.D.; Sattelberger, A.P.; Woodruff, W.H.

    1988-02-17

    The structure, bonding, spectroscopy, and photophysics of transition-metal complexes containing quadruple metal-metal bonds are subjects of intense and general interest. For both historic and fundamental reasons, the octahalodirhenate(III) ions have become the paradigms of this field. Extensive spectroscopic and photophysical studies exist for the entire Re/sub 2/X/sub 8//sup 2 -/ series (X = F, Cl, Br, and I). However, while excellent structural data exist for X = Cl and Br, the structures of Re/sub 2/Fe/sub 8//sup 2 -/ and Re/sub 2/I/sub 8//sup 2 -/ have not been determined. These structures are essential for complete understanding of the bonding and physical and chemical behavior in these systems. Toward this end, the authors report structural features of Re/sub 2/F/sub 8//sup 2 -/ determined by extended X-ray absorption fine structure (EXAFS) spectroscopy. They also report X-ray absorption near-edge spectra (XANES); resonance Raman (RR) spectra have been determined previously by others and subsequently by the authors. They find that in Re/sub 2/F/sub 8//sup 2 -/ the Re-Re distance is 2.20 Angstrom and the Re-F distance is 1.95 A. Both of these distances are unexpected considering the corresponding stretching frequencies in the RR spectra.

  5. Effective time-independent studies on resonance Raman spectroscopy of trans-stilbene including the Duschinsky effect

    NASA Astrophysics Data System (ADS)

    Lin, Na; Barone, Vincenzo; Cappelli, Chiara; Zhao, Xian; Ruud, Kenneth; Santoro, Fabrizio

    2013-07-01

    We simulate the resonance Raman spectra of trans-stilbene using a recently developed time-independent method that allows computations of the full two-dimensional spectrum as a function of the incident and scattered frequencies, including both the Franck-Condon and the Herzberg-Teller contributions. The potential energy surfaces (PESs) of the ground and resonant states are described in the harmonic approximation using density functional theory PBE0/6-31+G(d,p) calculations in gas phase and in cyclohexane. The simulated spectra are in good agreement with the experimental data [J. Chem. Phys. 83, 5000 (1985)] measured at four different excitation wavelengths, and allow us to unambiguously assign the main experimental bands. We perform an extensive comparison of the performance of four different vertical or adiabatic models for the PES of the resonant state, dissecting the effects of nuclear displacements and Duschinsky mixings on the spectra.

  6. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Erdem, Emre E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  7. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response

    NASA Astrophysics Data System (ADS)

    Dmitriev, Pavel A.; Baranov, Denis G.; Milichko, Valentin A.; Makarov, Sergey V.; Mukhin, Ivan S.; Samusev, Anton K.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2016-05-01

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07965a

  8. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study.

    PubMed

    Grudzinski, Wojciech; Janik, Ewa; Bednarska, Joanna; Welc, Renata; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Gruszecki, Wieslaw I

    2016-05-19

    Resonance Raman analysis of the photosynthetic complex LHCII, immobilized in a polyacrylamide gel, reveals that one of the protein-bound xanthophylls, assigned as violaxanthin, undergoes light-induced molecular reconfiguration. The phototransformation is selectively observed in a trimeric structure of the complex and is associated with a pronounced twisting and a trans-cis molecular configuration change of the polyene chain of the carotenoid. Among several spectral effects accompanying the reconfiguration there are ones indicating a carotenoid triplet state. Possible physiological importance of the light-induced violaxanthin reconfiguration as a mechanism associated with making the pigment available for enzymatic deepoxidation in the xanthophyll cycle is discussed. PMID:27133785

  9. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  10. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    This work focused on understanding the effects of arbitrary transverse and longitudinal relaxation rates on the susceptibilities of coherently driven three-level systems. The approximation of a single relaxation rate often made in previous work is strongly invalidated by the variation in the spontaneous emission lifetime between various atomic level pairs in systems such as cesium. It is of great importance to the problem of nonlinear infrared generation to determine the dependence of both real and imaginary susceptibility on relaxation rates. The imaginary susceptibility on the pump transition determines the absorption of pump photons and the imaginary susceptibility on the laser transition determines the spectral dependence of the gain. This is of particular importance for pure Raman emission (i.e., absorption at linecenter of the gain transition) as it determines the tunability characteristics we are aiming to predict. The real susceptibility is important when cavities are used at the signal field as this will determine the loaded resonance of the Raman oscillator. Researchers show that in some cases which result from having different relaxation rates mode splitting may result, allowing more than one frequency to have the same Raman wavelength, possibly resulting in a temporal instability.

  11. Theoretical studies of resonance enhanced stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor. Progress report

    SciTech Connect

    Lawandy, N.M.

    1986-10-01

    This work focused on understanding the effects of arbitrary transverse and longitudinal relaxation rates on the susceptibilities of coherently driven three-level systems. The approximation of a single relaxation rate often made in previous work is strongly invalidated by the variation in the spontaneous emission lifetime between various atomic level pairs in systems such as cesium. It is of great importance to the problem of nonlinear infrared generation to determine the dependence of both real and imaginary susceptibility on relaxation rates. The imaginary susceptibility on the pump transition determines the absorption of pump photons and the imaginary susceptibility on the laser transition determines the spectral dependence of the gain. This is of particular importance for pure Raman emission (i.e., absorption at linecenter of the gain transition) as it determines the tunability characteristics we are aiming to predict. The real susceptibility is important when cavities are used at the signal field as this will determine the loaded resonance of the Raman oscillator. Researchers show that in some cases which result from having different relaxation rates mode splitting may result, allowing more than one frequency to have the same Raman wavelength, possibly resulting in a temporal instability.

  12. Theoretical studies of Resonance Enhance Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  13. Resonance Raman study of the solvent dynamics for ultrafast charge transfer transition in 4-nitro-4'-dimethylamino-azobenzene

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Umapathy, Siva

    2003-03-01

    Contribution of solvent reorganization energy is known to be significant for ultrafast charge transfer processes, when the solvent relaxation times are slower than the rate of charge transfer. In this paper, we show that from resonance Raman intensities of a charge transfer transition in combination with Heller's time-dependent wave packet approach and Brownian oscillator model, one can have a reasonable estimate for the different types of solvent (inertial as well as diffusive) and vibrational reorganization energies. Resonance Raman spectra have been recorded for 4-nitro-4'-dimethylamino-azobenzene (DA) that undergoes photoinduced charge transfer transition, in acetonitrile and benzonitrile. In the two solvents, the total solvent reorganization energy is partitioned into its inertial and diffusive components from the available information on their relaxation time scales. Thus, partitioning of the solvent reorganization energy reveals the importance of the extent of contribution of the two components to the charge transfer rates. The short time dynamics of DA in the two solvents is then examined from a priori knowledge of the ground state normal modes in order to convert the wave packet motion in dimensionless displacements to internal coordinates. The dynamics in DA infers that within 20 fs after photoexcitation from the ground to the charge transfer state, the excited state evolution occurs along N-O, N=N, C-N, and C-C stretching vibrations.

  14. Theoretical studies of resonance enhance stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor. Semiannual report

    SciTech Connect

    Lawandy, N.M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  15. Raman-assisted Rabi resonances in two-mode cavity QED

    SciTech Connect

    Gruenwald, P.; Singh, S. K.; Vogel, W.

    2011-06-15

    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.

  16. Resonance electronic Raman scattering in rare earth crystals

    SciTech Connect

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  17. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  18. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  19. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  20. Resonance Raman spectroscopy utilizing tunable deep ultraviolet excitation for materials characterization

    NASA Astrophysics Data System (ADS)

    Chadwick, Christopher Todd

    Resonance Raman spectroscopy offers some key benefits over other spectroscopy methods. In one facet, resonance Raman provides a level of specificity not present in non-resonant Raman scattering. In another facet, resonance Raman can provide increased scattering cross-sections that rival those associated with the intensities of species fluorescence. These features provide mechanisms for improved trace species detection in current Raman remote sensing applications; as well as signal level enhancement in tiny volume regimes, such as those typical in near-field optical microscopy. This dissertation presents three main thrusts that are not well documented in the previous resonance Raman studies. We demonstrate fine resolution (approx 0:1nm) resonance tuning of the excitation wavelength corresponding to sharp absorption bands in liquid benzene and liquid toluene. The Raman spectra for these materials show an appreciable increase in scattering intensity of fundamental vibrational modes and show significant enhancements in scattering intensities for overtone and combination vibrational modes not observed with non-resonant excitation. Resonantly excited fundamental modes are observed to be enhanced by 3 to 5 orders of magnitude over non-resonant excitation; and several resonantly excited overtone modes are observed for both liquid benzene and liquid toluene. We have observed, that for liquid benzene and liquid toluene, the maximum Raman scattering intensity is realized when the excitation wavelength corresponds to that of the vapor phase absorption maximum, not the liquid phase absorption maximum as expected. We present a simple model of the time-dependent energy accumulation in the scattering volume that suggests that the scattering medium is a highly disorganized fluid. The observed Raman scattering intensity originates from this metastable fluid observed during the liquid-vapor phase transition. Using different concentration solutions of liquid benzene in heptane, we

  1. A combination of dynamic light scattering and polarized resonance Raman scattering applied in the study of Arenicola Marina extracellular hemoglobin

    NASA Astrophysics Data System (ADS)

    Jernshøj, K. D.; Hassing, S.; Olsen, L. F.

    2013-08-01

    Arenicola Marina extracellular hemoglobin (Hbl Hb) is considered to be a promising candidate as a blood substitute. To entangle some of the properties of extracellular giant hexagonal bilayer hemoglobin (Hbl Hb) of Arenicola Marina, we combined polarized resonance Raman scattering (532 nm excitation) with dynamic light scattering (DLS) (632.8 nm). An analysis of the depolarization ratio of selected a2g skeletal modes of the heme in native Hbl Hb and porcine Hb, shows that the distortion of the heme group away from its ideal fourfold symmetry is much smaller for heme groups bound in the Hbl Hb than for heme groups bound in porcine Hb. Using DLS, the average hydrodynamic diameter (⟨dh⟩) of Hbl Hb was measured at pH = 5, 7, 8, 9, and 10. At pH = 5 to 7, the Hbl Hb was found in its native form with ⟨dh⟩ equal to 24.2 nm, while at pH = 8 and 9, a dissociation process starts to take place resulting in ⟨dh⟩ = 9 nm. At pH = 10, only large aggregates of fragmented Hbl Hb with ⟨dh⟩ larger than 1000 nm was detected, however, a comparison of the DLS results with the polarized resonance Raman scattering (RRS) revealed that the coupling between the fragments did not involve direct interaction between the heme groups, but also that the local heme environment seems to be comparable in the aggregates and in the native Hbl Hb. By comparing the unpolarized RRS results obtained for erythrocytes (RBC) with those for Hbl Hb, led us to the important conclusion that Hbl Hb is much easier photolyzed than porcine RBC.

  2. UV-resonance Raman spectroscopy of amino acids

    NASA Astrophysics Data System (ADS)

    Höhl, Martin; Meinhardt-Wollweber, Merve; Schmitt, Heike; Lenarz, Thomas; Morgner, Uwe

    2016-03-01

    Resonant enhancement of Raman signals is a useful method to increase sensitivity in samples with low concentration such as biological tissue. The investigation of resonance profiles shows the optimal excitation wavelength and yields valuable information about the molecules themselves. However careful characterization and calibration of all experimental parameters affecting quantum yield is required in order to achieve comparability of the single spectra recorded. We present an experimental technique for measuring the resonance profiles of different amino acids. The absorption lines of these molecules are located in the ultraviolet (UV) wavelength range. One limitation for broadband measurement of resonance profiles is the limited availability of Raman filters in certain regions of the UV for blocking the Rayleigh scattered light. Here, a wavelength range from 244.8 nm to 266.0 nm was chosen. The profiles reveal the optimal wavelength for recording the Raman spectra of amino acids in aqueous solutions in this range. This study provides the basis for measurements on more complex molecules such as proteins in the human perilymph. The composition of this liquid in the inner ear is essential for hearing and cannot be analyzed non-invasively so far. The long term aim is to implement this technique as a fiber based endoscope for non-invasive measurements during surgeries (e. g. cochlear implants) making it available as a diagnostic tool for physicians. This project is embedded in the interdisciplinary cluster of excellence "Hearing for all" (H4A).

  3. Quantum lattice fluctuations in a 1-dimensional charge-density-wave material: Luminescence and resonance Raman studies of an MX solid

    SciTech Connect

    Long, F.H.; Love, S.P.; Swanson, B.I.

    1993-01-01

    Luminescence spectra, both emission and excitation, and the excitation dependence of the resonance Raman (RR) spectra were measured for a 1-dimensional charge-density-wave solid, [Pt(L)[sub 2]Cl[sub 2

  4. Resonance Raman based skin carotenoid measurements in newborns and infants

    PubMed Central

    Ermakov, Igor V.; Ermakova, Maia R.; Bernstein, Paul S.; Chan, Gary M.; Gellermann, Werner

    2014-01-01

    We describe Resonance Raman based skin carotenoid measurements in newborns and infants. Skin- and serum carotenoid levels correlate with high statistical significance in healthy newborns and infants, and with reduced accuracy also in prematurely born infants, who in general feature very low carotenoid levels and thin transparent skin giving rise to large background absorption effects. Skin carotenoid levels can be easily compared among subjects and/or tracked in longitudinal studies with the highly molecule-specific Raman method. It therefore holds promise as a rapid, non-invasive, carotenoid antioxidant assessment method for newborns and infants in the field of pediatrics. Photograph of an infant’s skin carotenoid measurement via Resonance Raman spectroscopy. The instrument’s fiber-coupled light delivery and collection module is held against the foot, exposing the heel skin to weak 488 nm laser light for 20 seconds. From spectral analysis of the Raman scattered light intensities, which occur in the green wavelength region, the carotenoid levels in the heel skin are obtained in a rapid, non-invasive, and painless fashion. PMID:23193015

  5. Resonant Raman scattering background in XRF spectra of binary samples

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Leani, Juan José

    2015-02-01

    In x-ray fluorescence analysis, spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. In this work we present theoretical calculations of the resonant Raman scattering contributions to the background of x-ray fluorescence spectra of binary samples of current technological or biological interest. On one hand, a binary alloy of Fe with traces of Mn (Mn: 0.01%, Fe: 99.99%) was studied because of its importance in the stainless steels industries. On the second hand a pure sample of Ti with V traces (Ti: 99%, V: 1%) was analyzed due to the current relevance in medical applications. In order to perform the calculations the Shiraiwa and Fujino's model was used to calculate characteristic intensities and scattering interactions. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions and the incident and take-off beams. For the binary sample studied in this work and the considered experimental conditions, the calculations show that the resonant Raman scattering background is significant under the fluorescent peak, affects the symmetry of the peaks and, depending on the concentrations, overcomes the enhancements contributions (secondary fluorescence).

  6. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine ( Pinus sylvestris) wood . Part II. Hydrophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Vuorinen, T.

    2004-11-01

    Hydrophilic extracts of Scots pine ( Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm -1. Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm -1. The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm -1. The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm -1) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.

  7. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Vuorinen, T

    2004-11-01

    Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin. PMID:15477131

  8. Resonance Raman excitation profiles of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1981-01-01

    The resonance Raman spectrum of lycopene has been examined in acetone solvent and excitation profiles of the three fundamentals ν1, ν2, and ν3 have been determined. The excitation data and the visible spectrum have been analyzed using two-mode and three-mode vibrational models, with the two-mode model involving virtual states of ν1 and ν2 giving the best fit to the data. This mode mixing or Duskinsky effect was not observed for β-carotene. The single-mode and three-mode theories which have been used to explain the corresponding data for β-carotene are shown to be inconsistent with the experimental data of lycopene. Equations for calculating excitation profiles and visible spectra are given.

  9. Double resonance Raman modes in monolayer and few-layer MoTe2

    NASA Astrophysics Data System (ADS)

    Guo, Huaihong; Yang, Teng; Yamamoto, Mahito; Zhou, Lin; Ishikawa, Ryo; Ueno, Keiji; Tsukagoshi, Kazuhito; Zhang, Zhidong; Dresselhaus, Mildred S.; Saito, Riichiro

    2015-05-01

    We study the second-order Raman process of mono- and few-layer MoTe2, by combining ab initio density functional perturbation calculations with experimental Raman spectroscopy using 532, 633, and 785 nm excitation lasers. The calculated electronic band structure and the density of states show that the resonance Raman process occurs at the M point in the Brillouin zone, where a strong optical absorption occurs due to a logarithmic Van Hove singularity of the electronic density of states. The double resonance Raman process with intervalley electron-phonon coupling connects two of the three inequivalent M points in the Brillouin zone, giving rise to second-order Raman peaks due to the M -point phonons. The calculated vibrational frequencies of the second-order Raman spectra agree with the observed laser-energy-dependent Raman shifts in the experiment.

  10. Time-resolved resonance Raman study of intermediates generated after photodissociation of wild-type and mutant co-myoglobins

    NASA Astrophysics Data System (ADS)

    Nakashima, Satoru; Kitagawa, Teizo; Olson, John S.

    1998-03-01

    Time-resolved resonance Raman (TR 3) spectroscopy was applied to elucidate transient structures of myoglobin (Mb) involved in its ligand binding. Pump/probe Raman measurements of the Fe-CO stretching bands ( νFe-CO) were carried out for various delay times (Δ t=-20 ns-1 ms with a time resolution of 7 ns) after laser photolysis of native and mutant COMb complexes. His64(E7) and Leu29(B10) were replaced with an aliphatic and aromatic residues. The static νFe-CO frequencies of the mutants depended strongly on the environments around the bound CO and correlated more with the hydropathy indices of the replaced residues than with their sizes. The kinetics of bimolecular CO recombination correlate with the static νFe-CO frequencies; a lower frequency generally results in faster rebinding. Despite these differences, all the proteins exhibited the shift of a porphyrin band from 370 to 379 cm -1 upon binding of CO and also a transient Raman band at ˜497 cm -1, which occurred before recovery of the original νFe-CO band. The latter frequency was unaffected by isotopically labeling the ligand with 13C 18O. The 497 cm -1 band was absent in the spectrum at Δ t=0 ns for all of the myoglobins examined except for the His64→Leu (H64L) mutant which shows the band immediately after photolysis. The 370 and 497 cm -1 bands are associated with the C β-C c-C d in-plane bending of the propionic side chains and the out-of-plane γ12 containing pyrrole swiveling and propionic bending motions, respectively. The 497 cm -1 transient band appears to reflect a deoxyheme intermediate in which the hydrogen bonding lattice between Arg45(CD3), His64(E7), the heme-6-propionate, and an external distal pocket water molecule is temporarily disrupted. This disruption allows larger movements of the propionate side chain, explaining intensity enhancement of the 497 cm -1 band. Recovery of the hydrogen bonding lattice dampens the movements of the propionate C β-C c-C d bond system and finally fixes

  11. UV resonance Raman sensing of pharmaceutical drugs in hollow fibers

    NASA Astrophysics Data System (ADS)

    Yan, D.; Popp, J.; Frosch, T.

    2014-05-01

    We report about the experimental combination of UV resonance Raman sensing (UV-RRS) and fiber enhanced Raman sensing (FERS) on pharmaceuticals. The results show that the chemical sensitivity is highly improved and at the same time the sample volume is reduced compared to conventional measurements. A hundreds-fold improvement of the limit of detection (LOD) has been achieved with the combination of resonance Raman enhancement and fiber enhancement. The enhanced Raman signal has a reliable linear relationship with the concentration of the analyte, and therefore shows great potential for quantitative analysis of pharmaceuticals.

  12. Far-infrared and resonance Raman spectroscopy and isotopic substitution studies of halogen-bridged platinum chain solids

    SciTech Connect

    Love, S.P.; Worl, L.A.; Donohoe, R.J.; Huckett, S.C.; Johnson, S.R.; Swanson, B.I.

    1992-12-31

    Here we our most recent results on the vibrational spectroscopy of the MX chain solids [Pt(en){sub 2}][Pt(en){sub 2}X{sub 2}](ClO{sub 4}){sub 4}, (X=Cl, Br or I, and en = C{sub 2}H{sub 8}N{sub 2}), referred to as PtX. Isotopic substitutions are used to clarify the nature of various vibrational modes. For Raman spectroscopy, fundamental phonon frequencies are determined, when possible, by excitation far below the band edge using a Ti:Sapphire laser, thus avoiding defect production, while photo-induced defects are studied specifically after intentional production.

  13. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.

  14. Heme Reactivity is Uncoupled from Quaternary Structure in Gel-encapsulated Hemoglobin: A Resonance Raman Spectroscopic Study

    PubMed Central

    Jones, Eric M.; Balakrishnan, Gurusamy; Spiro, Thomas G.

    2012-01-01

    Encapsulation of hemoglobin (Hb) in silica gel preserves structure and function, but greatly slows protein motion, thereby providing access to intermediates along the allosteric pathway that are inaccessible in solution. Resonance Raman (RR) spectroscopy with visible and ultraviolet laser excitation provides probes of heme reactivity and of key tertiary and quaternary contacts. These probes were monitored in gels after deoxygenation of oxyHb and after CO binding to deoxyHb, which intiate conformational change in the R-T and T-R directions, respectively. The spectra establish that quaternary structure change in the gel takes a week or more, but that the evolution of heme reactivity, as monitored by the Fe-histidine stretching vibration, νFeHis, is completed within two days, and is therefore uncoupled from the quaternary structure. Within each quaternary structure, the evolving νFeHis frequencies span the full range of values between those previously associated with the high- and low-affinity end states, R and T. This result supports the tertiary two-state (TTS) model, in which the Hb subunits can adopt high- and low-affinity tertiary structures, r and t, within each quaternary state. The spectra also reveal different tertiary pathways, involving the breaking and re-formation of E and F inter-helical contacts in the R-T direction but not the T-R direction. In the latter, tertiary motions are restricted by the T quaternary contacts. PMID:22263778

  15. Resonance Raman Spectroscopy of Armchair Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Rice, William; Lu, Benjamin; Hauge, Robert; Magana, Donny; Doorn, Stephen; Nikolaev, Pasha; Arepalli, Sivaram; Kono, Junichiro

    2009-03-01

    We performed resonance Raman spectroscopy studies of metallic single-walled carbon nanotubes (SWNTs), including armchair SWNTs from (6,6) through (10,10). The measurements were carried out with excitation of 440-850 nm on aqueous ensemble samples of SWNTs enriched in metallic species. From this, we generated Raman excitation profiles (REPs) of the radial breathing mode and compare the REPs of armchairs and other metallic species. Additionally, we measured REPs of the G-band mode and observed how the Breit-Wigner-Fano line shape of the G^- peak evolves in peak position, width and intensity relative to the G^+ peak as different metallic nanotubes are excited. By combining these studies with absorption and photoluminescence excitation spectroscopy studies, we present a comprehensive examination of the optical signatures of metallic SWNTs.

  16. Radiolytic oxidation of 1,2,4-benzenetriol. An application of time-resolved resonance Raman spectroscopy to kinetic studies of reaction intermediates

    SciTech Connect

    Qin, L.; Tripathi, G.N.R.; Schuler, R.H.

    1987-03-26

    In acidic solution, 1,2,4-benzenetriol is rapidly oxidized by OH or N/sub 3/ to form a mixture of neutral 2,4- and 3,4-dihydroxyphenoxyl radicals. At higher pH these radicals deprotonate (pK/sub a/(1) = 4.75) to form the 2-hydroxy-p-benzosemiquinone radical anion which exhibits a prominent resonance Raman band at 1625 cm/sup -1/ attributable to the Wilson 8a ring stretching mode. In basic solutions this radical subsequently reacts with OH/sup -/ to form the radical dianion (pK/sub a/(2) = 8.85) in which the 8a band is shifted to an appreciably lower frequency (1587 cm/sup -1/). While the absorption spectra of these latter radicals are very similar and do not allow ready examination of their interconversion by absorption spectrophotometry, the difference between these 8a frequencies is sufficiently great that the Raman method can be used to examine the acid-base equilibrium between the two forms of the radical and to follow the deprotonation kinetics. It is shown that even at high pH the radical monoanion is initially formed on oxidation by N/sub 3/ and that deprotonation subsequently occurs by its reaction with base with a rate constant of (9.6 +/- 1.5) x 10/sup 9/ M/sup -1/ d/sup -1/. These studies illustrate very well the application of time-resolved resonance Raman spectroscopy as a complement to kinetic spectrophotometry in sorting out the details of secondary processes in pulse radiolysis studies.

  17. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  18. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    PubMed

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  19. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  20. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance raman and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Thomas, Susy; Kapoor, Sudhir; Mishra, Amaresh; Wategaonkar, Sanjay; Mukherjee, Tulsi

    2008-11-01

    Structural and vibrational properties of mono- and multichromophoric hemicyanine (HC) dyes in solution and adsorbed on silver-coated films have been investigated using optical absorption and resonance Raman scattering techniques, with interpretations aided by theoretical calculations. This is the first report on the Raman spectroscopic studies of multichromophoric HC derivatives. The structure of the monomer, N-propyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC3), and its charged and neutral silver complexes (HC3-Ag) in the ground electronic (S0) state were optimized using density functional calculations with the B3LYP method using the 6-31G* and LANL2DZ basis sets. The ground state structure of N-hexyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC6) and multichromophoric HC dyes were computed using the HF /6-31G* method. The negligible shift or broadening observed in the electronic absorption and resonance Raman spectra in solution with increasing size of the HC chromophore suggests that the excitations are localized within individual monomer units in bis and tetra chromophores. However, in the tris chromophore, considerable redshift and broadening were observed, indicating a significant electronic interaction between the nonbonded electrons of the N atom and the aromatic π-system that is supported by the calculated excitation energies using the time-dependent density functional theory method. The effect of HC dye concentration on the electronic absorption spectra of the silver-coated film showed significant broadening, which was attributed to the formation of H- and J-aggregates in addition to the formation of a metal-molecule complex. A considerable redshift along various vibrations observed in the surface-enhanced resonance Raman scattering (SERRS) spectra of the HC derivatives indicates that adsorption on the silver surface leads to a considerable interaction of the electron rich moiety of HC derivatives with the silver surface. The

  1. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  2. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  3. Sensitive algorithm for multiple-excitation-wavelength resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Wu, Hai-Shan; McCormick, William; Sluch, Mikhail; Martin, Robert; Ice, Robert; Lemoff, Brian E.

    2014-05-01

    Raman spectroscopy is a widely used spectroscopic technique with a number of applications. During the past few years, we explored the use of simultaneous multiple-excitation-wavelengths (MEW) in resonance Raman spectroscopy. This approach takes advantage of Raman band intensity variations across the Resonance Raman spectra obtained from two or more excitation wavelengths. Amplitude variations occur between corresponding Raman bands in Resonance Raman spectra due to complex interplay of resonant enhancement, self-absorption and laser penetration depth. We have developed a very sensitive algorithm to estimate concentration of an analyte from spectra obtained using the MEW technique. The algorithm uses correlations and least-square minimization approach to calculate an estimate for the concentration. For two or more excitation wavelengths, measured spectra were stacked in a two dimensional matrix. In a simple realization of the algorithm, we approximated peaks in the ideal library spectra as triangles. In this work, we present the performance of the algorithm with measurements obtained from a dual-excitation-wavelength Resonance Raman sensor. The novel sensor, developed at WVHTCF, detects explosives from a standoff distance. The algorithm was able to detect explosives with very high sensitivity even at signal-to-noise ratios as low as ~1.6. Receiver operating characteristics calculated using the algorithm showed a clear benefit in using the dual-excitation-wavelength technique over single-excitation-wavelength techniques. Variants of the algorithm that add more weight to amplitude variation information showed improved specificity to closely resembling spectra.

  4. Transform analysis of the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1992-10-01

    The resonance Raman excitation profiles (RREPs) of the ν 1, ν 2 and ν 3 vibrations of lycopene in acetone, ethyl alcohol, toluene and carbon disulphide solvents have been analyzed using the transform method for calculating resonance Raman excitation profiles. The tests show excellent agreement between the calculated and observed profiles for the ν 2 and ν 3 RREPs, but greater difference between experiment and theory occurs for the ν 1 RREP, especially in carbon disulphide solvent.

  5. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  6. Resonant impulsive-stimulated Raman scattering on malachite green

    SciTech Connect

    Chesnoy, J.; Mokhtari, A.

    1988-10-01

    We have studied in the femtosecond regime the transient dynamics of dichroism (anisotropic absorption), birefringence, and frequency shift induced by an intense femtosecond pump beam in the dye malachite green in solution. Vibrational quantum beats were observed superimposed on the saturated absorption and dispersion signals and quantitatively explained in terms of impulsive-stimulated Raman scattering close to an electronic resonance. The selectivity for observation of the vibrations in the two electronic states is described for the different experimental schemes. We discuss the access to vibrational and electronic dynamics in both ground and excited electronic states and compare the possibilities to those of previous techniques.

  7. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  8. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  9. Multiphonon resonant Raman scattering in MoS{sub 2}

    SciTech Connect

    Gołasa, K. Grzeszczyk, M.; Wysmołek, A.; Babiński, A.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Potemski, M.

    2014-03-03

    Optical emission spectrum of a resonantly (λ = 632.8 nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400 cm{sup −1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  10. Cold atom Raman spectrography using velocity-selective resonances.

    PubMed

    Fatemi, Fredrik K; Terraciano, Matthew L; Bashkansky, Mark; Dutton, Zachary

    2009-07-20

    We have studied velocity-selective resonances in the presence of a uniform magnetic field and shown how they can be used for rapid, single-shot assessment of the ground state magnetic sublevel spectrum in a cold atomic vapor. Cold atoms are released from a magneto-optical trap in the presence of a small bias magnetic field ( approximately 300 mG) and exposed to a laser field comprised of two phase-locked counterpropagating beams connecting the two ground state hyperfine manifolds. An image of the expanded cloud shows the velocity-selected resonances as distinct features, each corresponding to specific magnetic sublevel, in a direct, intuitive manner. We demonstrate the technique with both 87Rb and 85Rb, and show the utility of the technique by optically pumping into particular magnetic sublevels. The results are shown to agree with a theoretical model, and are compared to traditional Raman spectroscopy. PMID:19654701

  11. Time-resolved resonance Raman spectroscopy of radiation-chemical processes. [Pulsed irradiation

    SciTech Connect

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures.

  12. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique. PMID:16332107

  13. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.

    PubMed

    Ding, Yujie J

    2015-03-01

    Raman oscillation, frequency upconversion, and Raman amplification can be achieved in a second-order nonlinear medium at the phonon-polariton resonance. By beating two optical fields, a second-order nonlinear polarization is generated inside the medium. Such a polarization induces a spatially uniform nonpropagating electric field at the beat frequency, which in turn mixes with the input optical field at the lower frequency to generate or amplify the anti-Stokes optical field. Raman oscillation can be efficiently reached for the copropagating configuration. In comparison, efficient frequency upconversion and large amplifications are achievable for the counterpropagating configuration. These Raman processes can be used to effectively remove transverse-optical phonons before decaying to lower-frequency phonons, achieve laser cooling, and significantly enhance coherent anti-Stokes Raman scattering. The counterpropagating configuration offers advantages for amplifying extremely weak signals. PMID:25723418

  14. Raman albedo and deep-UV resonance Raman signatures of explosives

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to large Raman cross-section and background free signatures. In order to design an effective sensor, one must be able to estimate the signal level of the DUVRRS signature for solid-phase explosive residues. The conventional approach to signal estimation uses scattering cross-sections and molar absorptivity, measured on solutions of explosives dissolved in an optically-transparent solvent. Only recently have researchers started to measure solid-state cross-sections. For most solid-phase explosives and explosive mixtures, neither the DUV Raman scattering cross sections nor the optical absorption coefficient are known, and they are very difficult to separately measure. Therefore, for a typical solid explosive mixture, it is difficult to accurately estimate Raman signal strength using conventional approaches. To address this issue, we have developed a technique to measure the Raman scattering strength of optically-thick (opaque) materials, or "Raman Albedo", defined as the total power of Raman-scattered light per unit frequency per unit solid angle divided by the incident power of the excitation source. We have measured Raman Albedo signatures for a wide range of solid explosives at four different DUV excitation wavelengths. These results will be presented, and we will describe the use of Raman Albedo measurements in the design and current construction of a novel stand-off explosive sensor, based on dual-excitation-wavelength DUVRRS.

  15. Temperature dependence of resonance Raman spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Andreeva, A.; Apostolova, I.; Velitchkova, M.

    2011-04-01

    To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability ( n = 1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν1 band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the C dbnd C stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the C dbnd C stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν1 band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

  16. Proliferation detection using a remote resonance Raman chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.; Dougherty, D.R.

    1993-08-01

    The authors discussed the potential of the resonance Raman chemical sensor as a remote sensor that can be used for gases, liquids or solids. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations or excitation frequency. By taking advantage of resonance enhancement, the inelastic scattering cross-section can increase anywhere from 4 to 6 orders of magnitude which translates into increased sensing range or lower detection limits. It was also shown that differential cross-sections as small as 10{sup {minus}27} cm{sup 2}/sr do not preclude the use of this technique as being an important component in one`s remote-sensing arsenal. The results obtained in the early 1970s on various pollutants and the more recent work on atmospheric water cast a favorable light on the prospects for the successful development of a resonance Raman remote sensor. Currently, of the 20 CW agent-related {open_quotes}signature{close_quotes} chemicals that the authors have investigated, 18 show enhancements ranging from 3 to 6 orders of magnitude. The absolute magnitudes of the measured resonance enhanced Raman cross-sections for these 18 chemicals suggest that detection and identification of trace quantities of the {open_quotes}signature{close_quotes} chemicals, through a remote resonance Raman chemical sensor, could be achieved.

  17. Resonance Raman spectra of. cap alpha. -copper phthalocyanine

    SciTech Connect

    Bovill, A.J.; McConnell, A.A.; Nimmo, J.A.; Smith, W.E.

    1986-02-13

    Raman spectra of ..cap alpha..-copper phthalocyanine (..cap alpha..-CuPc) were recorded at room temperature and at 10 K with excitation wavelengths between 457 and 714 nm. Resonance enhancement was greatest for modes for which the largest displacements were on either the inner five-membered ring of the isoindole groups or the inner macrocycle and consequently assignment of the bands to modes of the entire molecule was possible by comparison with nickel octaethylporphyrin. Four out of five bands resonant in the Q band region and preresonant near the B band absorption region are totally symmetric modes. B band preresonance occurs more strongly with high-frequency modes. At low temperatures, multimode interactions are reduced and profiles were obtained which can be compared with solution profiles of porphyrins. Both Q/sub x/ and Q/sub y/ 0-0 scattering can be identified and a helper mode is evident. A term enhancement predominates, with B/sub 1g/ and B/sub 2g/ modes enhanced because of a Jahn-Teller distortion of the excited state. The resonance studies, together with electronic absorption spectra and published theoretical studies, confirm that the Q band in ..cap alpha..-CuPc is largely due to an allowed ..pi..-..pi..* transition associated mainly with the macrocycle and inner five-membered rings of the isoindole groups. 25 references, 5 figures, 2 tables.

  18. Vibrational studies of reactive intermediates of aromatic amines. IV. Radical cation time-resolved resonance Raman investigation of N, N-dimethylaniline and N, N-diethylaniline derivatives

    NASA Astrophysics Data System (ADS)

    Poizat, O.; Guichard, V.; Buntinx, G.

    1989-05-01

    The radical cation time-resolved resonance Raman spectra of various isotopic derivatives of N, N-dimethylaniline (DMA), N, N-diethylaniline (DEA), N, N-dimethyl-p-toluidine (4MDMA) and 3, 5, N, N-tetramethylaniline (3,5DMDMA) are reported in the 300-1800 cm-1 range. Excitation was in the weak radical cation absorption around 480 nm. Complete vibrational assignments are proposed. The band activity and the changes in frequency with respect to the neutral molecules are consistent with a quinoidal-type conformation of the framework close to planarity. Stabilization of this conformation is observed when the phenyl ring contains methyl substituents. The analysis of the Raman enhancements suggests that the quinoidal character of the radical structure is significantly lowered in the resonant excited state. An obvious analogy is found between the spectra of DMA+ ṡ and of the biphenyl radical cation, which clearly indicates that (i) a nearly common chromophore structure characterizes these two radical cations and (ii) the distortion of this chromophore structure in the resonant excited state is comparable in both compounds, i.e., the biphenyl+ ṡ* ←biphenyl+ ṡ and DMA+ ṡ* ←DMA+ ṡ transitions are of similar nature. These results are consistent with structural previsions from simple molecular orbital considerations and a comprehensive interpretation of the Raman spectra is given in terms of HOMO population.

  19. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Narayana Rao, D.; Ramakrishna, S. Anantha

    2016-06-01

    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminum layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than C60 on metamaterials with off-resonant absorption bands peaking at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance-matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.

  20. Exploitation of resonance Raman spectroscopy as a remote chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-08-01

    We have discussed recent experimental results using a resonance-Raman-based LIDAR system as a remote chemical sensor. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations. By taking advantage of resonance enhancement, which 6 orders-of-magnitude, can be as large as 4 to an increased sensing range for a given chemical concentration or lower detection limit for a given stand-off distance can be realized. The success discussed above can in part be traced back to the use of new state-of-the-art technologies which, only recently, have allowed the phenomenon of resonance-enhanced Raman spectroscopy to be fully exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in the UV/IS, it is expected that many will have pronounced resonance enhancements.

  1. Dual-excitation wavelength resonance Raman explosives detector

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.

  2. Structural resonances in the Raman spectrum of glass microsphere

    NASA Astrophysics Data System (ADS)

    Wang, Ji-You; Xu, Xiao xuan; Zhang, Cun zhou

    2000-10-01

    Structural resonances have been found in the Raman spectrum of an optically levitated TiBa glass microsphere. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. It was found that the diameter of the TiBa glass microsphere is 24.490micrometers , and the refractive index of TiBa glass is 1.895 at about 645nm.

  3. Resonant Raman and micro-Raman scattering from Si matrix with unburied beta-FeSi2 nanolayers.

    PubMed

    Marinova, M; Baleva, M; Zlateva, G

    2008-02-01

    Samples, representing Si matrix with nanolayers of the semiconducting beta-FeSi2 silicide are studied by Raman scattering. The unpolarized Raman spectra of the samples are measured in two different configurations. It is found that the characteristic beta-FeSi2 Raman modes are seen in the spectra, taken at incident angle of about 45 degrees , while only comparatively intensive broad feature is detected in a back-scattering geometry. The difference in the spectra is interpreted with the appearance of surface polariton modes of the optical phonons in the nanosized layers in near back-scattering geometry. The resonant Raman scattering is investigated at incident light angle of about 45 degrees and the energies of the interband transitions in the investigated energy range are determined. It is known that the resonant Raman scattering appears to be even more precise method for the determination of the interband transitions energies than the modulation spectroscopy. Thus we claim that the energies determined here are firstly determined with such a precision. PMID:18464405

  4. Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions.

    PubMed

    Macernis, Mindaugas; Galzerano, Denise; Sulskus, Juozas; Kish, Elizabeth; Kim, Young-Hun; Koo, Sangho; Valkunas, Leonas; Robert, Bruno

    2015-01-01

    We report here the resonance Raman spectra and the quantum chemical calculations of the Raman spectra for β-carotene and 13,13'-diphenyl-β-carotene. The first aim of this approach was to test the robustness of the method used for modeling β-carotene, and assess whether it could accurately predict the vibrational properties of derivatives in which conjugated substituents had been introduced. DFT calculations, using the B3LYP functional in combination with the 6-311G(d,p) basis set, were able to accurately predict the influence of two phenyl substituents connected to the β-carotene molecule, although these deeply perturb the vibrational modes. This experimentally validated modeling technique leads to a fine understanding of the origin of the carotenoid resonance Raman bands, which are widely used for assessing the properties of these molecules, and in particular in complex media, such as binding sites provided by biological macromolecules. PMID:25476500

  5. UV resonance Raman analysis of trishomocubane and diamondoid dimers

    SciTech Connect

    Meinke, Reinhard Thomsen, Christian; Maultzsch, Janina; Richter, Robert; Merli, Andrea; Fokin, Andrey A.; Koso, Tetyana V.; Schreiner, Peter R.; Rodionov, Vladimir N.

    2014-01-21

    We present resonance Raman measurements of crystalline trishomocubane and diamantane dimers containing a C=C double bond. Raman spectra were recorded with excitation energies between 2.33 eV and 5.42 eV. The strongest enhancement is observed for the C=C stretch vibration and a bending mode involving the two carbon atoms of the C=C bond, corresponding to the B{sub 2g} wagging mode of ethylene. This is associated with the localization of the π-HOMO and LUMO and the elongation of the C=C bond length and a pyramidalization of the two sp{sup 2}-hybridized carbon atoms at the optical excitation. The observed Raman resonance energies of the trishomocubane and diamantane dimers are significantly lower than the HOMO-LUMO gaps of the corresponding unmodified diamondoids.

  6. Raman Studies of Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes–anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  7. Raman spectroscopic studies of amorphous carbon and buckminsterfullerene

    SciTech Connect

    Sinha, K.

    1992-01-01

    Raman spectroscopic techniques have been applied to investigate a variety of carbon systems. Using resonance Raman spectroscopy as a probe for optical transitions in a system, a careful quantitative estimate of the Raman cross-section of graphite in the pre-resonance regime has been made. Raman and resonance Raman spectroscopy have been used to correlate the structural and electronic properties of amorphous carbon materials. The low optical gaps and e-2e spectroscopy measurements on evaporated carbon films suggests a structure close to graphite. Raman measurements, however, reveal a great amount of disorder in the material. This apparent contradiction has been resolved through the use of a phenomenological model for the electronic density of states for amorphous carbon systems. Raman spectroscopy has also been used to study the vibrational and the electronic properties of the recently discovered third allotrope of carbon, C[sub 60]. The vibrational modes of this molecule have been studied in great detail. The observed vibrational spectra confirms earlier work in this material. Furthermore, the mode frequencies have been found to be in reasonably good agreement with theoretical predictions. Resonance Raman studies of solid C[sub 60] and C[sub 60] dissolved in solvents has revealed, in the solid phase, the existence of optical transitions well below the symmetry allowed transitions for the isolated molecules. Loss of inversion symmetry in the solid state has been proposed to account for the resonance observed in the Raman excitation profile. Original Raman measurements on C[sub 60] revealed a strong peak at 1469 cm[sup [minus]1]. The peak was found to obey the correct selection rule for symmetric A[sub g] mode and was assigned to the [open quotes]pentagonal pinch[close quotes] mode of the molecule.

  8. Resonance Raman and far-infrared studies of isotopically disordered and mixed-halide halogen-bridged platinum chain solids

    SciTech Connect

    Love, S.P.; Worl, L.A.; Donohoe, R.J.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1992-12-31

    The MX chain solids [Pt(en){sub 2}][Pt(en){sub 2}X{sub 2}](CIO{sub 4}){sub 4}, (en = C{sub 2}H{sub 8}N{sub 2} and X=Cl, Br), referred to as ``PtX,`` are used to explore some of the surprising spectral consequences of disorder in 1-D systems, first for pure PtCl, where the disorder arises from randomly distributed Cl isotopes, then for the more drastic case of the mixed-halide materials PtCl{sub 1minusx}Br{sub x}. Lattice dynamics and Peierls-Hubbard modelling are used to analyze the observed spectral behavior. In both cases, the complex structure seen in the Raman and IR spectra is found to arise from strongly localized vibrational modes residing on chain segments, defined by sequences of Cl isotopes for PtCl, and by sequences of Cl and Br for PtCl{sub 1minusx}Br{sub x}. 4 figs, 8 refs.

  9. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.

    PubMed

    Zajac, Grzegorz; Kaczor, Agnieszka; Pallares Zazo, Ana; Mlynarski, Jacek; Dudek, Monika; Baranska, Malgorzata

    2016-05-01

    Raman optical activity (ROA) spectroscopy is hampered by low sensitivity, with limited possibilities for enhancing the signal. In the present study, we report a new mechanism whereby chirality is enhanced using the resonance resulting from supramolecular aggregation. We have named this mechanism aggregation-induced resonance Raman optical activity (AIRROA). As an example, we study J-aggregates of astaxanthin (AXT), which show strong absorption of circularly polarized light in the range of ROA excitation. The implications of aggregation-induced signal enhancement for chiroptical spectroscopy are discussed. PMID:27057926

  10. Investigation of the impact of fiber Bragg grating bandwidth on the efficiency of a Raman resonator

    NASA Astrophysics Data System (ADS)

    Henry, Leanne J.; Klopfer, Michael; Jain, Ravinder K.

    2015-03-01

    Significant spectral power leakage was found to occur around the high reflectivity fiber Bragg gratings (FBGs) defining a 1121 nm Raman resonator cavity comprised of PM 10/125 germanosilicate fiber. This cavity was part of a Raman system pumped with broad linewidth 1069 nm and seeded with narrow linewidth 1178 nm. The 1069 nm upon entering the resonator cavity was Raman converted to 1121 nm which then amplified the 1178 nm as it passed through the cavity. Spectral leakage of 1121 nm light from the resonator cavity resulted in sub-optimal amplification of 1178 nm which forced usage of longer resonator cavities having a decreased threshold for Stimulated Brillouin Scattering. Upon study of 1121 nm linewidth broadening as a function of resonator length for cavities employing 3 nm FBGs, differences in the percentage of 1121 nm power spectrally leaking past the output FBG as a function of the 1121 nm intracavity power propagating in the forward direction are not experimentally discernible for resonator cavities longer than 40 m. But, for cavity's shorter than 40 m, the percentage of 1121 nm power spectrally leaking past the output FBG decreased significantly for similar 1121 nm intracavity power levels. For all cavity lengths, a nearly linear relationship exists between percent 1121 nm power leakage and intracavity power levels. Also, cavities employing broader bandwidth FBGs experience less 1121 nm power leakage for similar 1121 nm intracavity power levels. Finally, modeling predictions of Raman system performance are greatly improved upon usage of experimentally derived effective FBG reflectivities.

  11. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  12. Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies

    SciTech Connect

    Peck, J.A.; Brown, G.E. Jr. ); Tait, C.D.; Swanson, B.I. )

    1991-03-01

    Gold(III) speciation in a one molar NaCl aqueous solution at ambient temperature and pressure was determined as a function of pH using ultraviolet/visible (UV/vis) absorption and Raman/resonance Raman (RR) spectroscopies. Gold concentrations in the solutions studies by UV/vis spectroscopy were {approximately}10{sup {minus}4} M whereas those studied by Raman spectroscopy were {approximately}10{sup {minus}2} M. Changes in the intensity and positions of ligand-to-metal charge transfer bands in the UV/vis spectra of the Au(III) chloride solutions with increasing pH are consistent with replacement of chloride by hydroxide ligands. Changes in the number, position, and intensity of Raman and RR spectra of the same solutions are also consistent with successive replacement of chloride by hydroxide ligands in the first coordination sphere of four-coordinated Au(III) with increasing pH. The Raman and UV/vis data are broadly consistent with earlier speciation predictions based on a variety of chemical measurements, but demonstrate that the mixed chloro-hydroxo complexes are more stable than predicted on the basis of theoretically estimated stability constants.

  13. Raman Scattering at Resonant or Near-Resonant Conditions: A Generalized Short-Time Approximation

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdelsalam; Sun, Yu-Ping; Miao, Quan; Ågren, Hans; Gel'mukhanov, Faris

    2012-02-01

    We investigate the dynamics of resonant Raman scattering in the course of the frequency detuning. The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resonance. This makes frequency detuning to act as a camera shutter with a regulated scattering duration and provides a practical tool of controlling the scattering time in ordinary stationary measurements. The theory is applied to resonant Raman spectra of a couple of few-mode model systems and to trans-1,3,5-hexatriene and guanine-cytosine (G-C) Watson-Crick base pairs (DNA) molecules. Besides some particular physical effects, the regime of fast scattering leads to a simplification of the spectrum as well as to the scattering theory itself. Strong overtones appear in the Raman spectra when the photon frequency is tuned in the resonant region, while in the mode of fast scattering, the overtones are gradually quenched when the photon frequency is tuned more than one vibrational quantum below the first absorption resonance. The detuning from the resonant region thus leads to a strong purification of the Raman spectrum from the contamination by higher overtones and soft modes and purifies the spectrum also in terms of avoidance of dissociation and interfering fluorescence decay of the resonant state. This makes frequency detuning a very useful practical tool in the analysis of the resonant Raman spectra of complex systems and considerably improves the prospects for using the Raman effect for detection of foreign substances at ultra-low concentrations.

  14. Raman resonance in iron-based superconductors: The magnetic scenario

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Cai, Jiashen; Chubukov, Andrey V.

    2016-02-01

    We perform theoretical analysis of polarization-sensitive Raman spectroscopy on NaFe1 -xCoxAs , EuFe 2 As2 , SrFe2As2 , and Ba (Fe1 -xCox )2As2 , focusing on two features seen in the B1 g symmetry channel (in one Fe unit cell notation): the strong temperature dependence of the static, uniform Raman response in the normal state and the existence of a collective mode in the superconducting state. We show that both features can be explained by the coupling of fermions to pairs of magnetic fluctuations via the Aslamazov-Larkin process. We first analyze magnetically mediated Raman intensity at the leading two-loop order and then include interactions between pairs of magnetic fluctuations. We show that the full Raman intensity in the B1 g channel can be viewed as the result of the coupling of light to Ising-nematic susceptibility via Aslamazov-Larkin process. We argue that the singular temperature dependence in the normal state is the combination of the temperature dependencies of the Aslamazov-Larkin vertex and of Ising-nematic susceptibility. We discuss two scenario for the resonance below Tc. One is the resonance due to development of a pole in the fully renormalized Ising-nematic susceptibility. Another is orbital excitonic scenario, in which spin fluctuations generate attractive interaction between low-energy fermions.

  15. Direct Observation of Thermal Equilibrium of Excited Triplet States of 9,10-Phenanthrenequinone. A Time-Resolved Resonance Raman Study.

    PubMed

    Kumar, Venkatraman Ravi; Rajkumar, Nagappan; Ariese, Freek; Umapathy, Siva

    2015-10-01

    The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR(3)) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (μs). Interestingly, TR(3) spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ, assigned to nπ* and ππ* of which the ππ* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (∼2 ns) between the T(2)(1(3)nπ*) and T(1)(1(3)ππ*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents [ J. Chem. Phys. 2015 , 142 , 24305 ] suggest that the lowest nπ* and ππ* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism. PMID:26381591

  16. Resonant electronic Raman scattering: A BCS-like system

    NASA Astrophysics Data System (ADS)

    Rodrigues, Leonarde N.; Arantes, A.; Schüller, C.; Bell, M. J. V.; Anjos, V.

    2016-05-01

    In this paper we investigate the resonant intersubband Raman scattering of two-dimensional electron systems in GaAs-AlGaAs single quantum wells. Self-consistent calculations of the polarized and depolarized Raman cross sections show that the appearance of excitations at the unrenormalized single-particle energy are related to three factors: the extreme resonance regime, the existence of degeneracy in intersubband excitations of the electron gas, and, finally, degeneracy in the interactions between pairs of excitations. It is demonstrated that the physics that governs the problem is similar to the one that gives rise to the formation of the superconducting state in the BCS theory of normal metals. Comparison between experiment and theory shows an excellent agreement.

  17. Resonance Raman study of solvent dynamics on the spectral broadening and intramolecular charge transfer of a hemicyanine dye in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cao, Xuan; McHale, Jeanne L.

    1998-08-01

    The spectroscopic properties of 4-[2-(4-dimethylaminophenyl)ethenyl]-1-methyl-pyridinium iodide (HR) in different solvents reveal the important effects of solvent dynamics on the spectral broadening and the intramolecular charge transfer of HR. In this article, Raman excitation profiles for 18 vibrational modes of HR are reported in aqueous solution at wavelengths that span the S0→S1 charge transfer transition. The absorption spectra, fluorescence spectra and resonance Raman profiles of HR are modeled using time-dependent wave packet theory and the Brownian oscillator solvent dephasing model. The solvent reorganization energy in the absorption process is much greater than that due to internal vibrational modes, and the solvent reorganization energy for the emission process is considerably smaller than that for the absorption process. The fluorescence spectrum is mainly broadened by the inhomogeneous Gaussian distribution of the electronic energy, perhaps due to internal rotations in the molecule. The results suggest similar polarity of the emission state and the ground state, and strong coupling between the torsional motion and solvent relaxation. The different dependence of the torsional potential on solvent polarity in the S0and S1 state is the cause of different absorption and fluorescence spectral width. In D2O, the absorption cross section of HR is slightly lower, and the absorption and fluorescence spectra are slightly narrower, than in H2O. The smaller absorption spectral linewidth and generally increased Raman cross sections in D2O are accounted for by smaller amplitude of solvent dephasing, perhaps due to the larger inertial moment and stronger hydrogen bonding in D2O compared to H2O. The magnitude and direction of the solvent isotope effect on Raman intensity varies with normal mode, suggesting that the solvent-induced dephasing is mode dependent. Vibrational modes which are strongly coupled to the electronic transition are most sensitive to the solvent

  18. Excited state proton transfer dynamics of thioacetamide in S2(ππ*) state: resonance Raman spectroscopic and quantum mechanical calculations study.

    PubMed

    Chen, Xiao; Zhao, Yanying; Zhang, Haibo; Xue, Jiadan; Zheng, Xuming

    2015-02-01

    The photophysics and photochemistry of thioacetamide (CH3CSNH2) after excitation to the S2 electronic state were investigated by using resonance Raman spectroscopy in conjunction with the complete active space self-consistent field (CASSCF) method and density functional theory (DFT) calculations. The A-band resonance Raman spectra in acetonitrile, methanol, and water were obtained at 299.1, 282.4, 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of thioacetamide in the S2 state. CASSCF calculations were done to determine the transition energies and structures of the lower-lying excited states, the conical intersection points CI(S2/S1) and CI(S1/S0), and intersystem crossing points. The structural dynamics of thioacetamide in the S2 state was revealed to be along eight Franck-Condon active vibrational modes ν15, ν11, ν14, ν10, ν8, ν12, ν18, and ν19, mostly in the CC/CS/CN stretches and the CNH8,9/CCH5,6,7/CCN/CCS in-plane bends as indicated by the corresponding normal mode descriptions. The S2 → S1 decay process via the S2/S1 conical intersection point as the major channel were excluded. The thione-thiol photoisomerization reaction mechanism of thioacetamide via the S2,FC → S'1,min excited state proton transfer (ESPT) reaction channel was proposed. PMID:25559740

  19. Peculiarities of the temperature dependence of electron spin resonance and Raman studies of Zn1-xNixO/NiO two-phase nanocomposites

    NASA Astrophysics Data System (ADS)

    Joshi, D. C.; Nayak, S.; Kumar, A.; Mohanta, A.; Pamu, D.; Thota, S.

    2016-02-01

    A meticulous investigation of electron-spin-resonance (ESR) and Raman spectroscopy of the two-phase nanocomposites of Zn1-xNixO/NiO is reported. The temperature variation of X-band ESR parameters viz., resonance field HR(T) and line-width ΔHPP(T) follows the power-law variation (δHR = (ΔHPP)n) of Nagata and Ishihara model, which was used to understand the orientation of statistical ensemble of particles with respect to a given direction of the anisotropy axis. This analysis yields the exponent "n" ≃ 2.13 and 2.85 for the composite system Zn1-xNixO/NiO and pure NiO suggesting the presence of partial and randomly oriented ellipsoidal nanocrystallites, respectively. The Raikher and Stepanov model has been employed to probe the role of amorphous Ni3+ clusters on the observed ESR spectra. Interestingly, after Ni substitution, a new zone boundary phonon mode was noticed at 129 cm-1 for all the samples, which is usually forbidden in the first-order Raman scattering for wurtzite ZnO. In addition to the 2M magnon mode, two extra modes appear at 558 and 900 cm-1 due to the increased volume fraction of NiO within the Zn1-xNixO matrix. A systematic correlation of the above results with a comparative analysis of their bulk counterpart has been presented.

  20. The effect of an anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1-ν12 of liquid pyridine

    NASA Astrophysics Data System (ADS)

    Li, Dong-Fei; Gao, Shu-Qin; Sun, Cheng-Lin; Li, Zuo-Wei

    2012-08-01

    The effects of an anti-hydrogen bond on the ν1-ν12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, and pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming a hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of the Fermi coupling coefficient W of the ring breathing mode ν1 and triangle mode ν12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the ν1-ν12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the ν1-ν12 FR of pyridine. According to the mechanism of the formation of an anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the ν1-ν12 FR of pyridine is given.

  1. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Li, Yuee

    2015-09-01

    Resonance enhancement of Raman spectroscopy (RS) has been used to significantly improve the sensitivity and selectivity of detection for specific components in complicated environments. Resonance RS gives more insight into the biochemical structure and reactivity. In this field, selecting a proper excitation wavelength to achieve optimal resonance enhancement is vital for the study of an individual chemical/biological ingredient with a particular absorption characteristic. Raman spectra of three azo derivatives with absorption spectra in the visible range are studied under the same experimental conditions at 488, 532, and 633 nm excitations. Universal laws in the visible range have been concluded by analyzing resonance Raman (RR) spectra of samples. The long wavelength edge of the absorption spectrum is a better choice for intense enhancement and the integrity of a Raman signal. The obtained results are valuable for applying RR for the selective detection of biochemical constituents whose electronic transitions take place at energies corresponding to the visible spectra, which is much friendlier to biologial samples compared to ultraviolet.

  2. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    SciTech Connect

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 {times} 10{sup 4}. Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl{sup 4} was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC`s in other environments.

  3. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  4. Resonance Raman Studies of the (His)(Cys)3 2Fe-2S Cluster of MitoNEET: Comparison to the (Cys)4 Mutant and Implications of the Effects of pH on the Labile Metal Center†

    PubMed Central

    Tirrell, Timothy F.; Paddock, Mark L.; Conlan, Andrea R.; Smoll, Eric J.; Nechushtai, Rachel; Jennings, Patricia A.; Kim, Judy E.

    2010-01-01

    MitoNEET is a 2Fe-2S outer mitochondrial membrane protein that was initially identified as a target for anti-diabetic drugs. It exhibits a novel protein fold, and in contrast to other 2Fe-2S proteins such as Rieske proteins and ferredoxins, the metal clusters in the mitoNEET homodimer are each coordinated by one histidine residue and three cysteine residues. The interaction of the ligating His87 residue with the 2Fe-2S moiety is especially significant because previous studies have shown that replacement with Cys in the H87C mutant stabilizes the cluster against release. Here, we report the resonance Raman spectra of this naturally occurring Fe2S2(His)(Cys)3 protein to assess local structural changes associated with cluster lability. Comparison of mitoNEET to its ferredoxin-like H87C mutant indicates that Raman peaks in the ~250–300 cm−1 region of mitoNEET are influenced by the Fe-His87 moiety. Systematic pH-dependent resonance Raman spectral changes were observed in this spectral region for native mitoNEET but not the H87C mutant. The ~250–300 cm−1 region of native mitoNEET is also sensitive to phosphate buffer. Thus, conditions that influence cluster release are shown here to concomitantly affect the resonance Raman spectrum in the region with Fe-His contribution. These results support the hypothesis that the Fe-N(His87) interaction is modulated within the physiological pH range, and this modulation may be critical to the function of mitoNEET. PMID:19388667

  5. ARTICLES: Stimulated Raman scattering in resonant nonequilibrium media

    NASA Astrophysics Data System (ADS)

    Khasanov, O. Kh

    1980-12-01

    An analysis is made of the propagation of a short coherent optical pulse in a three-level resonant medium with an essentially nonequidistant spectrum as a function of the degree of preexcitation of the medium. It is found that in addition to self-induced transparency and resonance scattering, stimulated Raman scattering (Stokes or anti-Stokes) should be observed under certain spatial phase-matching conditions. The area theorem is formulated for all radiation components. An analysis is made of the case of propagation of a resonant electromagnetic pulse of frequency ω in a system of three-level atoms having an equidistant spectrum. Under conditions of preexcitation of the medium at the frequency 2ω by longitudinal acoustic pulses, a scattered transverse acoustic wave at the frequency ω may be observed.

  6. Quantum lattice fluctuations in a 1-dimensional charge-density-wave material: Luminescence and resonance Raman studies of an MX solid

    SciTech Connect

    Long, F.H.; Love, S.P.; Swanson, B.I.

    1993-02-01

    Luminescence spectra, both emission and excitation, and the excitation dependence of the resonance Raman (RR) spectra were measured for a 1-dimensional charge-density-wave solid, [Pt(L){sub 2}Cl{sub 2}][Pt(L){sub 2}](ClO{sub 4}){sub 4} ; L=1, 2-diaminoethane. The luminescence experiments support the existence of tail states in the band gap region, which indicate the presence of disorder. In contrast, the RR measurements conclusively demonstrated that the effects of static structural disorder on the vibrational spectroscopy can be neglected. This apparently paradoxical result can be explained by considering the zero-point motion of the lattice. The experimental results are compared to recent theoretical models.

  7. Multidimensional resonance Raman spectroscopy by six-wave mixing in the deep UV.

    PubMed

    Molesky, Brian P; Giokas, Paul G; Guo, Zhenkun; Moran, Andrew M

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries. PMID:25240351

  8. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV

    SciTech Connect

    Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M.

    2014-09-21

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.

  9. Real-Time Measurements of the Redox States of c-Type Cytochromes in Electroactive Biofilms: A Confocal Resonance Raman Microscopy Study

    PubMed Central

    Virdis, Bernardino; Millo, Diego; Donose, Bogdan C.; Batstone, Damien J.

    2014-01-01

    Confocal Resonance Raman Microscopy (CRRM) was used to probe variations of redox state of c-type cytochromes embedded in living mixed-culture electroactive biofilms exposed to different electrode polarizations, under potentiostatic and potentiodynamic conditions. In the absence of the metabolic substrate acetate, the redox state of cytochromes followed the application of reducing and oxidizing electrode potentials. Real-time monitoring of the redox state of cytochromes during cyclic voltammetry (CV) in a potential window where cytochromes reduction occurs, evidenced a measurable time delay between the oxidation of redox cofactors probed by CV at the electrode interface, and oxidation of distal cytochromes probed by CRRM. This delay was used to tentatively estimate the diffusivity of electrons through the biofilm. In the presence of acetate, the resonance Raman spectra of young (10 days, j = 208±49 µA cm−2) and mature (57 days, j = 267±73 µA cm−2) biofilms show that cytochromes remained oxidized homogeneously even at layers as far as 70 µm from the electrode, implying the existence of slow metabolic kinetics that do not result in the formation of a redox gradient inside the biofilm during anode respiration. However, old biofilms (80 days, j = 190±37 µA cm−2) with thickness above 100 µm were characterized by reduced catalytic activity compared to the previous developing stages. The cytochromes in these biofilm were mainly in the reduced redox state, showing that only aged mixed-culture biofilms accumulate electrons during anode respiration. These results differ substantially from recent observations in pure Geobacter sulfurreducens electroactive biofilms, in which accumulation of reduced cytochromes is already observed in thinner biofilms, thus suggesting different bottlenecks in current production for mixed-culture and G. sulfurreducens biofilms. PMID:24587123

  10. Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering

    SciTech Connect

    Yoshida, Ken-ichi; Itoh, Tamitake; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Ozaki, Yukihiro

    2009-02-15

    We examined an electromagnetic (EM) theory of surface-enhanced resonance Raman scattering (SERRS) using single Ag nanoaggregates. The SERRS-EM theory is characterized by twofold EM enhancement induced by the coupling of plasmon resonance with both excitation and emission of Raman scattering plus fluorescence. The total emission cross-section spectra of enhanced Raman scattering and enhanced fluorescence were calculated using the following parameters: the spectrum of enhancement factor induced by plasmon resonance, resonance Raman scattering overlapped with fluorescence, and excitation wavelengths. The calculations well agreed with experimental total emission cross-section spectra, thus providing strong indications that the SERRS-EM theory is quantitatively correct.

  11. Long-Lived Raman Resonance Amid Incoherence Above T_c

    NASA Astrophysics Data System (ADS)

    Klein, Miles V.

    1998-03-01

    Electronic Raman scattering from high and low energy excitations was studied as a function of temperature, hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O8 ± δ superconductors. Short range antiferromagnetic correlations were found to persist when holes were doped into the insulating state, and excitations of the holes were found to be incoherent. Above the superconducting transition temperature Tc the system exhibits a sharp Raman resonance of B_1g symmetry and 75 meV energy with a pseudogap (PG) for electron-hole excitations below 75 meV.(G. Blumberg et al.), Science 278, 1427 (1997);

  12. Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri.

    PubMed

    Park, Kiyoung; Mera, Paola E; Escalante-Semerena, Jorge C; Brunold, Thomas C

    2016-09-01

    The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand. PMID:27383231

  13. Quantitative evaluation of proteins with bicinchoninic acid (BCA): resonance Raman and surface-enhanced resonance Raman scattering-based methods.

    PubMed

    Chen, Lei; Yu, Zhi; Lee, Youngju; Wang, Xu; Zhao, Bing; Jung, Young Mee

    2012-12-21

    A rapid and highly sensitive bicinchoninic acid (BCA) reagent-based protein quantitation tool was developed using competitive resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) methods. A chelation reaction between BCA and Cu(+), which is reduced by protein in an alkaline environment, is exploited to create a BCA-Cu(+) complex that has strong RR and SERRS activities. Using these methods, protein concentrations in solutions can be quantitatively measured at concentrations as low as 50 μg mL(-1) and 10 pg mL(-1). There are many advantages of using RR and SERRS-based assays. These assays exhibit a much wider linear concentration range and provide an additional one (RR method) to four (SERRS method) orders of magnitude increase in detection limits relative to UV-based methods. Protein-to-protein variation is determined using a reference to a standard curve at concentrations of BSA that exhibits excellent recoveries. These novel methods are extremely accurate in detecting total protein concentrations in solution. This improvement in protein detection sensitivity could yield advances in the biological sciences and medical diagnostic field and extend the applications of reagent-based protein assay techniques. PMID:23099478

  14. Theoretical studies of resonance enhanced stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelength in cesium vapor. Progress report, July-December 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.

  15. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  16. Resonance Raman Spectroscopy of Purple Membrane from Halobacterium Halobium.

    NASA Astrophysics Data System (ADS)

    Argade, Pramod Vasant

    Purple membrane from the halophilic bacteria, Halobacterium halobium, contains the protein, bacteriorhodopsin, which functions as a light transducing proton pump. Understanding the molecular mechanism underlying the functioning of bacteriorhodopsin is a key problem in membrane biophysics. After absorbing a photon, this protein cycles through a series of characteristic intermeidate states and pumps H('+) ions across the membrane. In this way, the energy of the absorbed photon is stored in the electrochemical potential gradient formed across the membrane. This energy is subsequently available for metabolism by the bacterium. Bacteriorhodopsin consists of a retinal chromophore (which is responsible for the purple color) bound to the protein, bacterioopsin, whose sequence is known and consists of 248 amino acid residues. There is evidence that conformational changes in the chromophore may contribute to the proton pumping action. Resonance Raman light scattering provides a selective tool to monitor the conformational changes in the chromophore during the proton pumping cycle. This dissertation consists of applying resonance Raman light scattering in conjunction with a variety of newly developed experimental techniques to gain information about the mode of action of bacteriorhodopsin. By selective isotopic labelling of (epsilon)-amino nitrogen of the lysine residues of the protein, the site of attachment of the chromophore with the protein was verified by in situ measurements. Also, a model proposing a secondary interaction of the chromophore with a lysine residue other than the binding site of the chromophore was tested using this method. Furthermore, by selective isotopic labelling of only a part of the protein the location of the lysine on the protein to which the chromophore is bound, was found by in situ measurements to be the fragment consisting of amino acid residues 72 through 248 of the protein. This is inconsistent with the previously reported binding site at

  17. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.

    PubMed

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Zhang, Xu; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2013-03-26

    The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards to the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode, and G-band resonance evolutions as well as high-curvature intertube interactions in isolated double- and triple-walled carbon nanotube systems. PMID:23311296

  18. Origin invariance in vibrational resonance Raman optical activity.

    PubMed

    Vidal, Luciano N; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-01

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them. PMID:25956084

  19. Origin invariance in vibrational resonance Raman optical activity

    NASA Astrophysics Data System (ADS)

    Vidal, Luciano N.; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-01

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  20. Origin invariance in vibrational resonance Raman optical activity

    SciTech Connect

    Vidal, Luciano N. Cappelli, Chiara; Egidi, Franco; Barone, Vincenzo

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  1. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor. Progress report, January-June 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  2. Correlation between vibrational frequencies and hydrogen bonding states of the guanine ring studied by UV resonance Raman spectroscopy of 2'-deoxy-3',5'-bis(triisopropylsilyl)guanosine dissolved in various solvents

    NASA Astrophysics Data System (ADS)

    Toyama, Akira; Hamuara, Mutsuo; Takeuchi, Hideo

    1996-06-01

    Ultraviolet resonance Raman spectra of 2'-deoxy-3',5'-bis(triisopropylsilyl)guanosine (TPS-dGuo) were recorded in non-hydrogen bonding, proton acceptor, and proton donor/acceptor solvents. Raman spectral changes observed on going from inert to proton acceptor solvents were ascribed to the hydrogen bonding at the proton donor sites of the guanine ring (N1H and C2NH 2), and the spectral changes associated with the solvent change from proton acceptor to donor/acceptor were ascribed to the hydrogen bonding at the proton acceptor sites (N3, C6O, and N7). A Raman band appearing at 1624 cm -1 in inert solvents is assigned mainly to the NH 2 scissors mode and its frequency changes to ≈ 1640 cm -1 in acceptor solvents, reflecting the hydrogen bonding at C2NH 2. Another band at 1581 cm -1, arising largely from the N1H bend, shows an upshift of ≈ 10 cm -1 upon hydrogen bonding at either N1H or acceptor sites. Hydrogen bonding at the acceptor sites also produces frequency shifts of other Raman bands (at 1710, 1565, 1528, 1481, and 1154 cm -1 in 1,2-dichloroethane solution). Among the Raman bands listed above, the 1710 cm -1 band due to the C6O stretch decreases in frequency, whereas the others increase. The downshift of the C6O stretching frequency is correlated with the strength of hydrogen bonding at C6O. The frequency of the 1481 cm -1 band increases with a decrease of the C6O stretching frequency, indicating that the 1481 cm -1 band is also a marker of hydrogen bonding at C6O. This finding is in sharp contrast to the previously proposed correlation with the hydrogen bonding at N7. The 1565 cm -1 band is assigned to a vibration mainly involving the N1C2N3 linkage, and its frequency increases with increasing strength of the hydrogen bond at N3. Three bands around 1315, 1180, and 1030 cm -1, which are known to be sensitive to the ribose ring puckering and glycosidic bond orientation, also show small frequency changes upon hydrogen

  3. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  4. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  5. Intracavity CH4 Raman laser using negative-branch unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhou, Dongjian; Guo, Jingwei; Zhou, Canhua; Liu, Jinbo; Liu, Dong; Jin, Yuqi

    2015-12-01

    An intracavity Q-switched Nd:YAG/CH4 Raman laser is realized based on the configuration of a negative-branch confocal unstable resonator. A numerical model of the bare resonator was introduced to simulate the fundamental transverse mode and calculate the loss of the fundamental resonator. With different magnifications of the fundamental resonator, the first Stokes output energy was presented as a function of the discharge voltage. The influence of the Stokes resonator on Raman conversion was analyzed. With a fundamental resonator magnification of 1.1, a maximum output energy of 58 mJ was obtained, and the corresponding photon conversion efficiency was 48%.

  6. η collective mode as A1 g Raman resonance in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.; Benhabib, S.; Gallais, Y.; Sacuto, A.

    2016-01-01

    We discuss the possible existence of a spin singlet excitation with charge ±2 (η mode) originating the A1 g Raman resonance in cuprate superconductors. This η mode relates the d -wave superconducting singlet pairing channel to a d -wave charge channel. We show that the η boson forms a particle-particle bound state below the 2 Δ threshold of the particle-hole continuum where Δ is the maximum d -wave gap. Within a generalized random phase approximation and Bethe-Salpeter approximation study, we find that this mode has energies similar to the resonance observed with inelastic neutron scattering below the superconducting (SC) coherent peak at 2 Δ in various SC cuprate compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2 Δ peak in the A1 g symmetry. Since the η mode sits in the S =0 channel, it may be observable via Raman, x-ray, or electron energy loss spectroscopy probes.

  7. Fluorescence and UV resonance Raman study of peptide-vesicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants.

    PubMed

    Gable, Jonathan E; Schlamadinger, Diana E; Cogen, Anna L; Gallo, Richard L; Kim, Judy E

    2009-12-01

    LL-37 is a broad-spectrum human antimicrobial peptide in the cathelicidin family. Potency assays in the form of minimal inhibitory concentration and vesicle leakage indicate that the single-tryptophan mutants, F6W and F17W, are as effective at killing bacteria and disrupting membranes as the native, tryptophan-free LL-37 peptide. Steady-state fluorescence and UV resonance Raman spectroscopy of F6W and F17W reveal molecular details of these tryptophan residues. The local environment polarity, hydrogen bond strength of the indole N-H moiety, and rotational freedom decrease for both F6W and F17W in the presence of carbonate ions relative to in pure distilled water; these results are consistent with burial of the hydrophobic region of alpha-helical LL-37 in oligomeric cores induced in the presence of carbonate ions. Differences in the spectroscopic properties of the carbonate-induced alpha-helical forms of F6W and F17W reflect the presence of a local lysine residue near F6W that makes the microenvironment of F6W more polar than that of F17W. In the presence of lipid vesicles, the mutants undergo additional loss of environment polarity, hydrogen bond strength, and rotational freedom. Quenching experiments utilizing brominated lipids reveal that the tryptophan residues in both mutants are essentially equidistant from the bilayer center and that bromines closer to the bilayer center, in the 9,10 positions, quench fluorescence more efficiently than those closer to the headgroups (6,7 positions). These results support carpeting or toroidal pore mechanisms of membrane disruption by LL-37 and demonstrate that the combination of tryptophan mutants and sensitive spectroscopic tools may provide important molecular clues about antimicrobial action. PMID:19894716

  8. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  9. Vibro-conformational study of F2S(O)NCN: FTIR, pre-resonance Raman effect, force field and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Alvarez, R. M. S.; Cutin, E. H.; Mack, H.-G.; Sala, O.; Della Védova, C. O.

    1994-12-01

    The FTIR spectrum for vapour and the Raman spectrum for the liquid of difluorosulphenilimine cyanide (F2S(O)NCN) are presented. CS symmetry is suggested for the main conformer in the liquid phase. Vibrational assignments are made for all but the torsional fundamental mode. The symmetry force constants were calculated using an approximate value for the torsion. The study was complemented by theoretical calculations at various levels of sophistication. According to the ab initio methods (HF/3-21G*, HF/6-31G*, MP2/6-31G*) two stable conformations of the compound exist in the gas phase. The main form possesses CS symmetry (δ(OSNC) = 180°, trans), whilst for the less stable rotamer C1 symmetry (δ(OSNC) = 4 to 26°, near-cis) is predicted.

  10. Third-order nonlinearities in molecular hydrogen - Two-photon resonance enhanced third-harmonic generation and Raman scattering

    NASA Technical Reports Server (NTRS)

    Pan, C.-L.; She, C.-Y.; Fairbank, W. M., Jr.; Billman, K. W.

    1977-01-01

    Effects of quantum mechanical interferences on third-order susceptibilities in molecules are studied. First principle calculations for molecular hydrogen are presented and shown to agree with results derived from experimental stimulated Raman gain and spontaneous Raman cross-section data. 10 percent third-harmonic conversion efficiency in H2 at 1 atm without phase matching should require a 150 MW per sq cm at 4.81 microns. As little as 5.9-MW power is sufficient when the beam is properly focused. Resonance Raman scattering (RRS) is proposed for experimentally investigating the interference effects, which tend to reduce the strength of third-order nonlinear susceptibilities.

  11. Exploring the potential of Raman and resonance Raman spectroscopy for quantitative analysis of duplex DNA

    NASA Astrophysics Data System (ADS)

    Schulze, H. G.; Bass, A.; Addison, C.; Hughesman, C.; So, A. P.; Haynes, C. A.; Blades, M. W.; Turner, R. F. B.

    2005-09-01

    Advances in DNA microarray fabrication technologies, expanding probe libraries, and new bioinformatics methods and resources have firmly established array-based techniques as mainstream bioanalytical tools and the application space is proliferating rapidly. However, the capability of these tools to yield truly quantitative information remains limited, primarily due to problems inherent to the use of fluorescence imaging for reading the hybridized arrays. The obvious advantages of fluorescence are the unrivaled sensitivity and simplicity of the instrumentation. There are disadvantages of this approach, however, such as difficulties in achieving optimal labeling of targets and reproducible signals (due to quenching, resonance energy transfer, photobleaching effects, etc.) that undermine precision. We are exploring alternative approaches, based mainly on Raman and resonance Raman spectroscopy, that in principle permit direct analysis of structural differences between hybridized and unhybridized probes, thereby eliminating the need for labeling the target analytes. We report here on the status of efforts to evaluate the potential of these methods based on a combination of measured data and simulated experiments involving short (12-mer) ssDNA oligomer probes with varying degrees of hybridized target DNA. Preliminary results suggest that it may be possible to determine the fraction of duplex probes within a single register on a DNA microarray from 100% down to 10% (or possibly less) with a precision of +/-2 5%. Details of the methods used, their implementation, and their potential advantages and limitations are presented, along with discussion of the utility of using 2DCOS methods to emphasize small spectral changes sensitive to interstrand H bonding, backbone flexibility, hypochromicity due to base-stacking in duplex structures and solvation effects.

  12. Franck-Condon processes in pentacene monolayers revealed in resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy G.; Blanchet, Graciela B.; Pinczuk, Aron

    2011-03-01

    Franck-Condon processes in pentacene monolayers are revealed in resonance Raman scattering from intramolecular vibrations. The Raman intensities from a totally symmetric vibrational mode display resonance enhancement double peaks when incident or scattered photon energies overlap the free exciton (FE) optical emission. The two resonances are of about equal strength. This remarkable symmetry in the resonance Raman profile suggests that Franck-Condon overlap integrals for the respective vibronic transitions have the same magnitude, which could be explained by the small displacement of potential energy curves along the configuration coordinate upon the FE excitation. The interference between scattering amplitudes in the Raman resonance reveals quantum coherence of the symmetry-split states (Davydov doublet) of the lowest intrinsic singlet exciton in pentacene monolayers.

  13. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna.

    PubMed

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A; Riehn, Robert; Hallen, H D

    2012-09-10

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes another factor of several thousands, limited by the laser line width. Thus, an overall gain of hundreds of million is achieved. PMID:23066168

  14. Calculation of intensity of a resonant Raman effect by organic molecules

    NASA Astrophysics Data System (ADS)

    Schelokov, R. V.; Yatsishen, V. V.

    2006-03-01

    There is a set of definition methods of the molecular substances composition and molecules performances, but the most sensing and in too time not influencing an explored sample is the method of resonant Raman effect (resonant Raman scattering, RRS). In the present work we viewed RRS on one of the most toxic substances - monomethyihydrazine. Result of the done work became an electronic absorption spectrum, an oscillatory spectrum and spectra of a resonant Raman scattering monomethylhydrazine without taking into account and taking into account of an interference of bands.

  15. High-sensitivity pesticide detection using particle-enhanced resonant Raman scattering

    NASA Astrophysics Data System (ADS)

    Ranjan, Bikas; Saito, Yuika; Verma, Prabhat

    2016-03-01

    The use of pesticides in agriculture has raised concerns, as even a small residual of pesticide on food can be harmful. It is therefore of great importance to develop a robust technique to detect tiny amounts of pesticides. Although Raman spectroscopy is frequently used for chemical identification, it is not suitable for extremely low molecular concentrations. We propose a technique called particle-enhanced resonant Raman spectroscopy to detect extremely low concentrations of pesticides, where gold nanoparticles of desired plasmonic resonance are synthesized to match the resonance in Raman scattering. We successfully demonstrated the detection of extremely low amounts of pesticides on oranges.

  16. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    SciTech Connect

    Pande, C.; Deng, H.; Rath, P.; Callender, R.H.; Schwemer, J.

    1987-11-17

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10/sup 0/C in both H/sub 2/O and D/sub 2/O. The C=N stretching mode at 1660 cm/sup -1/ in H/sub 2/O shifts to 1631 cm/sup -1/ upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100/sup 0/C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants (cytochrome(s) and/or accessory pigment) in the sample, the C=N stretch at 1664 cm/sup -1/ suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approx. 1660 cm/sup -1/ in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.

  17. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  18. Raman spectroscopy and polarization: Selected case studies

    NASA Astrophysics Data System (ADS)

    Ossikovski, Razvigor; Picardi, Gennaro; Ndong, Gérald; Chaigneau, Marc

    2012-10-01

    We show, through several selected case studies, the potential benefits that can be obtained by controlling the polarization states of the exciting and scattered radiations in a Raman scattering experiment. When coupled with polarization control, Raman spectroscopy is thus capable of providing extra information on the structural properties of the materials under investigation. The experimental examples presented in this work are taken from the area of both conventional, i.e., far-field, as well as from near-field Raman spectroscopy. They cover topics such as the stress tensor measurement in strained semiconductor structures, the vibration mode assignment in pentacene thin films and the Raman scattering tensor determination from near-field measurements on azobenzene monolayers. The basic theory necessary for modelling the far- and near-field polarized Raman responses is also given and the model efficiency is illustrated on the experimental data.

  19. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    NASA Astrophysics Data System (ADS)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  20. Time-resolved resonance Raman study of the. delta. delta. * excited state of Re sub 2 Cl sub 8 sup 2 minus and Re sub 2 Br sub 8 sup 2 minus

    SciTech Connect

    Schoonover, J.R.; Dallinger, R.F.; Killough, P.M.; Sattelberger, A.P.; Woodruff, W.H. )

    1991-03-06

    Time-resolved resonance Raman (TR{sup 3}) spectra have been obtained for Re{sub 2}X{sub 8}{sup 2{minus}} (X = Cl, Br) in the A{sub 2u} ({delta}{delta}*) electronically excited state, at ambient temperature in solution. The Tr{sup 3} spectra exhibit Raman peaks that are assigned to the three symmetric vibrations of the excited state: the Re-Re stretch, Re-X stretch, and the Re-Re-X deformation. In addition, a depolarized peak attributed to an asymmetric X-Re-X bend is observed. Comparison of the TR{sub 3} results to single-crystal vibronic spectra reported by others clearly shows the effects of crystal constraints and observation time scale upon the strucutre of the {delta}{delta}* excited state. The TR{sup 3} data, obtained in solution on the nanosecond time scale, indicate that the excited state relaxes to a staggared molecular structure (D{sub 4} or D{sub 4d} symmetry). The vibronic data, obtained on single crystals under cryogenic conditions, are consistent with an eclipsed (D{sub 4h}) structure, similar to that of the ground state. A comparative TR{sup 3} study of quadruply bonded complexes, including both octahalodirhenate ions and Mo{sub 2}(PMe{sub 3}){sub 4}Cl{sub 4} (which is precluded by steric factors from significant torsional distorition about the metal-metal bond), was essential in elucidating the excited-state structures.

  1. Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Gheeraert, E.; Deneuville, A.; Fontaine, F.; Abello, L.; Lucazeau, G.

    1995-12-01

    Heavily B-doped polycrystalline diamond films ([B]≳1019 cm-3) are studied by Raman spectroscopy and electron spin resonance. The formation of an impurity band is accompanied by a Fano-type interference for the one-phonon scattering. Bands at 1200 and 500 cm-1 are observed in Raman spectroscopy for concentrations above 1020 cm-3. They are related to maxima in the phonon density of states, and are ascribed to disordered regions or crystalline regions of very small size. The concentration of defects associated with the paramagnetic signal observed around g=2.0030 increases drastically above 1021 B cm-3. The Mott insulator-metal transition is accompanied by the presence of a new paramagnetic signal (g=2.0007 for 2×1020 B cm-3, g=1.9990 for 1021 B cm-3) ascribed to free holes in the impurity band.

  2. Simulations of resonant Raman response in bundles of semiconductor carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy; Piryatinski, Andrei; Doorn, Stephen; Haroz, Erik; Telg, Hagen; Duque, Juan; Crochet, Jared; Simpson, J. R.; Hight Walker, A. R.; LANL Collaboration; Fordham Collaboration; NIST Collaboration

    This work is motivated by an experimental study of resonant Raman spectroscopy under E22 excitation, which shows a new, sharp feature associated with bundling in (6,5) semiconductor carbon nanotubes. In order to provide an insight into the experimental data, we model Raman excitation spectra using our modified discrete dipole approximation (DDA) method. The calculations account for the exciton states polarized along and across the nanotube axis that are characterized by a small energy splitting. Strong polarization of the nanotubes forming the bundle results in the exciton state mixing whose spectroscopic signatures such as peaks positions, line widths, and depolarization ratio are calculated and compared to the experiment. Furthermore, the effects of the energy and structural disorder, as well as structural defects within the bundle are also examined and compared with the experimental data.

  3. Intercalation between antitumor anthracyclines and DNA as probed by resonance and surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smulevich, G.; Mantini, A. R.; Casu, M.; Marzocchi, M. P.

    1991-05-01

    The antiturnor anthracyclincs, idarubicin (IDA ), adrianiycin (ADM), epirubicin (EPI), carminomycin (CAR) and 1 1-deoxycarminornycin (DCM), whose siructural formula includes a substituted hydroxyanthraquirionc chrornophore and a sugar residue, form intercalation complexes with DNA. The stacking interaction between the chromophore and the base-pairs of DNA gives rise to noticeable ciTects on resonance Raman (RR) and surface-enhanced resonance Raman (SERRS) scattering as well as on the absorption (ABS), its second derivative (D2) and fluorescence emission (FEM) spectra.

  4. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  5. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems.

    PubMed

    Kitahama, Yasutaka; Ozaki, Yukihiro

    2016-08-15

    In this review article, we discuss surface-enhanced resonance Raman scattering (SERRS) studies of hemeproteins such as myoglobin, hemoglobin, and cytochrome on various metal substrates; for example, colloidal silver nanoparticles coated with and without self-assembled monolayers (SAM), a roughened silver electrode protected with and without SAM, a sharp silver tip, and colloidal gold nanoparticles coated with and without SAM. Moreover, we classify the studies in terms of an excitation wavelength; namely, excitation at the B- (Soret) band, Q- (α and β) band, and in the near infrared (NIR) range. In the SERRS studies with B band excitation, it has been shown that the hemeprotein on a silver surface takes a non-native form through detachment from the heme pocket in the protein. With Q band excitation, on the other hand, the change in SERRS has been explained by the orientation of the hemeprotein on the surface. Even by excitation in the NIR range, the peak positions are consistent with the assignment of the major vibrational modes of heme despite there being no resonance Raman effect. Thus, the SERRS of hemeproteins is influenced by a resonance Raman effect, LSPR, and interactions with the metal surface such as structural changes, orientation, and selective adsorption. Moreover, we discuss how SERRS has been applied to complicated biological systems such as living cells containing hemeprotein. For mitochondria, a change of the oxidation-state was observed by the electron transport chain in the cell and at different positions. As an example of a biomedical application of SERRS, the sensitive detection of malaria is presented. PMID:27381192

  6. Resonant Raman scattering from a charge-density-wave system (TTF-TCNQ)

    NASA Astrophysics Data System (ADS)

    Eldridge, J. E.; Lin, Y.; Mayadunne, T. C.; Montgomery, L. K.; Kaganov, S.; Miebach, T.

    1998-02-01

    We report the observation of strong new lines in the resonant Raman scattering from a powder sample of TTF-TCNQ, as the temperature is lowered and the fluctuating charge-density-wave (CDW) occurs. The intensity of these lines increases with decreasing temperature. The new lines are assigned to normally infrared-active B 3u out-of-plane intramolecular distortion modes of TCNQ, in agreement with the results of an X-ray study which found that the CDW on the TCNQ chain involved such an out-of-plane distortion of the TCNQ molecule. The new lines are much weaker in TSeF-TCNQ.

  7. Application of time-resolved resonance Raman spectroscopy to intramolecular electron transfer

    SciTech Connect

    Schoonover, J.R.; Strouse, G.F.; Chen, P.; Bates, D.; Meyer, T.J. )

    1993-06-09

    Time-resolved resonance Raman spectroscopy has been applied for the first time to the study of intramolecular electron transfer in a chromophore-quencher complex, based on a metal-to-ligand charge-transfer (MLCT) excited state. These measurements allow for (1) the identification of redox sites that are reached following excitation and (2) the inferring of structural information in short-lived intermediates. This technique is a more sensitive probe than transient absorption as shown by its application to the redox-separated complex shown below involving a pyridinium acceptor and a phenothiazine donor.

  8. Resonant Raman scattering and luminescence in CuInS{sub 2} crystals

    SciTech Connect

    Wakita, K.; Hirooka, H.; Yasuda, S.; Fujita, F.; Yamamoto, N.

    1998-01-01

    Resonant Raman scattering and luminescence have been examined for CuInS{sub 2} crystals grown by the traveling heater method (THM) and the iodine vapor transport method (IT). Resonant Raman spectra of CuInS{sub 2} have been observed, and the spectra show seven single-phonon peaks and one two-phonon peak. Among them, three single-phonon modes have been found in the low-Raman-shift region because of resonant enhancement of phonon modes. The enhancement of these phonon modes is caused by incoming resonance mediated by bound excitons on the THM crystal, while it is attributed to outgoing resonance due to intermediate states of free excitons on the IT crystal. {copyright} {ital 1998 American Institute of Physics.}

  9. Intensity Ratio of Resonant Raman Modes for (n , m) Enriched Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Piao, Yanmei; Simpson, Jeffrey; Streit, Jason; Ao, Geyou; Fagan, Jeffrey; Hight Walker, Angela

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of eleven, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate a significantly under-recognized complexity in the evaluation of Raman spectra for the assignment of (n , m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional values for chirality dependent G+ and G- Raman peak positions and intensities, supporting accuracy in literature values, and extending the available data to cover more of the small diameter regime by including the first (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling multiple species via a spectral fitting process, and enable fundamental characterization even in mixed chiral population samples.

  10. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  11. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells.

    PubMed

    Kuzmin, Andrey N; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  12. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    PubMed Central

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  13. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    NASA Astrophysics Data System (ADS)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  14. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    PubMed

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-01

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy. PMID:26029748

  15. Investigating the phase-dependent photochemical reaction dynamics of chlorine dioxide using resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hayes, Sophia C.; Wallace, Paul M.; Bolinger, Josh C.; Reid, Philip J.

    Recent progress in understanding the phase-dependent reactivity demonstrated by halooxides is outlined. Specifically, resonance Raman intensity analysis (RRIA) and time-resolved resonance Raman (TRRR) studies of chlorine dioxide (OClO) photochemistry in solution are presented. Using RRIA, it has been determined that the excited-state structural evolution that occurs along the asymmetric-stretch coordinate in the gas phase is restricted in solution. The absence of evolution along this coordinate results in the preservation of groundstate symmetry in the excited state. The role of symmetry in defining the reaction coordinate and the solvent-solute interactions responsible for modification of the excited-state potential energy surface are discussed. TRRR studies are presented which demonstrate that geminate recombination of the primary photoproducts resulting in the reformation of ground-state OClO is a central feature of OClO photochemistry in solution. These studies also demonstrate that a fraction of photoexcited OClO undergoes photoisomerization to form ClOO, with the ground-state thermal decomposition of this species resulting in Cl production on the subnanosecond timescale. Finally, time-resolved anti-Stokes experiments are presented which demonstrate that the OClO vibrational-relaxation dynamics are solvent dependent. The current picture of OClO photochemistry derived from these studies is discussed, and future directions for study are outlined.

  16. Raman spectroscopic studies on bacteria

    NASA Astrophysics Data System (ADS)

    Maquelin, Kees; Choo-Smith, Lin-P'ing; Endtz, Hubert P.; Bruining, Hajo A.; Puppels, Gerwin J.

    2000-11-01

    Routine clinical microbiological identification of pathogenic micro-organisms is largely based on nutritional and biochemical tests. Laboratory results can be presented to a clinician after 2 - 3 days for most clinically relevant micro- organisms. Most of this time is required to obtain pure cultures and enough biomass for the tests to be performed. In the case of severely ill patients, this unavoidable time delay associated with such identification procedures can be fatal. A novel identification method based on confocal Raman microspectroscopy will be presented. With this method it is possible to obtain Raman spectra directly from microbial microcolonies on the solid culture medium, which have developed after only 6 hours of culturing for most commonly encountered organisms. Not only does this technique enable rapid (same day) identifications, but also preserves the sample allowing it to be double-checked with traditional tests. This, combined with the speed and minimal sample handling indicate that confocal Raman microspectroscopy has much potential as a powerful new tool in clinical diagnostic microbiology.

  17. Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level.

    PubMed

    Kubryk, Patrick; Kölschbach, Janina S; Marozava, Sviatlana; Lueders, Tillmann; Meckenstock, Rainer U; Niessner, Reinhard; Ivleva, Natalia P

    2015-07-01

    Raman microspectroscopy is a prime tool to characterize the molecular and isotopic composition of microbial cells. However, low sensitivity and long acquisition times limit a broad applicability of the method in environmental analysis. In this study, we explore the potential, the applicability, and the limitations of stable isotope Raman microspectroscopy (SIRM), resonance SIRM, and SIRM in combination with surface-enhanced Raman scattering (SERS) for the characterization of single bacterial cells. The latter two techniques have the potential to significantly increase sensitivity and decrease measurement times in SIRM, but to date, there are no (SERS-SIRM) or only a limited number (resonance SIRM) of studies in environmental microbiology. The analyzed microorganisms were grown with substrates fully labeled with the stable isotopes (13)C or (2)H and compounds with natural abundance of atomic isotopes ((12)C 98.89% or (1)H 99.9844%, designated as (12)C or (1)H, respectively). Raman bands of bacterial cell compounds in stable isotope-labeled microorganisms exhibited a characteristic red-shift in the spectra. In particular, the sharp phenylalanine band was found to be an applicable marker band for SIRM analysis of the Deltaproteobacterium strain N47 growing anaerobically on (13)C-naphthalene. The study of G. metallireducens grown with (13)C- and (2)H-acetate showed that the information on the chromophore cytochrome c obtained by resonance SIRM at 532 nm excitation wavelength can be successfully complemented by whole-organism fingerprints of bacteria cells achieved by regular SIRM after photobleaching. Furthermore, we present here for the first time the reproducible SERS analysis of microbial cells labeled with stable isotopes. Escherichia coli strain DSM 1116 cultivated with (12)C- or (13)C-glucose was used as a model organism. Silver nanoparticles synthesized in situ were applied as SERS media. We observed a reproducible red-shift of an adenine-related marker band

  18. Raman Study of SWNT Under High Pressure

    NASA Astrophysics Data System (ADS)

    Venkateswaran, U.; Rao, A. M.; Richter, E.; Eklund, P. C.; Smalley, R. E.

    1998-03-01

    A gasketed Merrill-Bassett-type diamond anvil cell was used for high pressure Raman measurements at room temperature. A 4:1 methanol-ethanol mixture served as the pressure transmitting medium. The radial mode (denoted as R, occuring at 186 cm-1 at 1 bar) and tangential modes (designated T_1, T_2, and T_3, located, respectively, at 1550, 1567, and 1593 cm-1 at 1 bar) were recorded for several representative pressures. With increasing pressure, both the R and T modes shift to higher frequencies with gradual weakening of intensity and broadening of linewidth. The radial mode disappears around ~ 2 GPa whereas the tangential modes, albeit weak in intensity, persist until 5.2 GPa. The decrease in Raman intensity under pressure can be attributed to a loss of resonance, since the strong Raman signals observed at ambient pressure have been interpreted as due a resonance with the electronic bands [1]. The R and T mode frequencies are fit to quadratic function of pressure i.e., ω=ω(0)+aP+bP^2 where `a' represents the linear pressure shift of the mode frequency which is proportional to the mode Gruneisen parameter. The linear pressure coefficient for the R mode is found to be nearly twice that of the high frequency T mode. A. M. Rao et al., Science 275, 187, 1997

  19. Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Sete, Eyob A.; Liu, W. M.

    2015-12-01

    We study the classically driven two-level system with its center-of-mass motion vibrating in a harmonic trap and coupled to the photons in a two-mode cavity. The first mode is resonant to the driving field and an electronic transition. The second mode is off-resonant, forming a vibrational-assisted Raman transition. Using an exact numerical method, we investigate the quantum dynamics of the light emitted by the atom and the cavity modes. We analyze and compare the corresponding atomic and intracavity photon spectra for a range of the driving laser field and the cavity coupling strengths. The results provide better understanding of the effects of the laser field and atom-cavity coupling strengths on quantum interference effects and photon blockade, particularly the Mollow's triplet and the Autler-Townes splitting in the good and bad cavity limits.

  20. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  1. Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1982-03-01

    The resonance Raman spectra have been obtained on radiolytically and chemically prepared halogen derivatives (chloro-, bromo-, 2.5 dichloro-, tetra chloro-, and tetra bromo-) of p-benzosemiquinone radical anion. Excitation is in the moderately intense absorption band at 430--460 nm. All Raman spectra show a strongly resonance enhanced and polarized line corresponding to a vibrational frequency of 1590--1620 cm/sup -1/ which is assigned to the Wilson phenyl mode 8a (CC stretch). A number of weaker lines are also observed and their assignment discussed. The electronic transitions in resonance are identified as /sup 2/B/sub 3g/--/sup 2/B/sub 1u/ (in D/sub 2h/ point group) in view of the resonance Raman band intensities. This supports the assignment by Harada based on ASMO CI calculations which has recently been in dispute.

  2. Zeaxanthin ([3R,3'R]-beta, beta-carotene-3-3'diol) as a resonance Raman and visible absorption probe of membrane structure.

    PubMed Central

    Mendelsohn, R; Van Holten, R W

    1979-01-01

    When zeaxanthin ([3R,3R']-beta, beta-carotene-3,3'diol) is inserted into phospholipid dispersions and the latter heated through their gel-liquid crystal phase transitions, large changes are noted in the resonance Raman and absorption spectra of the carotenoid molecule. By analogy with the data of Carey and co-workers (J. Raman Spectrosc. 6:282) who studied the aggregation of zeaxanthin in acetone-water solutions, it is suggested that the carotenoid aggregates in the phospholipid gel state while forming a monomer in liquid crystal phases. The alterations in both the visible absorption and resonance Raman data have been used to monitor phospholipid phase behavior in dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine, (DSPC) one-component systems and binary mixtures. The phase diagram obtained for the binary system, as constructed from visible absorption and resonance Raman data, is compared with that of Shimshick and McConnell (Biochemistry. 12:2351) obtained from electron spin resonance (ESR) studies. Although the agreement between absorption and ESR data is generally satisfactory, onset temperatures for phase separation at low DSPC mole fractions deduced from resonance Raman measurements are several degrees lower than those from the other methods. Nevertheless, the use of zeaxanthin as a resonance Raman and visible absorption probe behavior will be useful in some situations where ordinary Raman spectroscopic data cannot be obtained easily. The advantage of the resonance Raman approach is illustrated in a study of the phase behavior of a phospholipid extract of a cel- mutant of Neurospora crassa. A phase separation region is observed with onset and completion temperatures of -19 and -6 degrees C, respectively. PMID:162448

  3. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    SciTech Connect

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  4. Carotenoid Analysis of Halophilic Archaea by Resonance Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marshall, Craig P.; Leuko, Stefan; Coyle, Candace M.; Walter, Malcolm R.; Burns, Brendan P.; Neilan, Brett A.

    2007-08-01

    Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm-1. The bands at 1505 cm-1 and 1152 cm-1 are due to in-phase C=C (ν1 ) and C-C stretching ( ν2 ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH3 groups attached to the polyene chain coupled with C-C bonds occur in the 1000 cm-1 region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600-1500 cm-1), the CCH in-plane rocks (1400-1250 cm-1), the C-C stretches (1250-1100 cm-1), and the hydrogen out-of-plane wags (1000-700 cm-1). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are

  5. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.

    PubMed

    Chu, Yizhuo; Wang, Dongxing; Zhu, Wenqi; Crozier, Kenneth B

    2011-08-01

    The strong coupling between localized surface plasmons and surface plasmon polaritons in a double resonance surface enhanced Raman scattering (SERS) substrate is described by a classical coupled oscillator model. The effects of the particle density, the particle size and the SiO2 spacer thickness on the coupling strength are experimentally investigated. We demonstrate that by tuning the geometrical parameters of the double resonance substrate, we can readily control the resonance frequencies and tailor the SERS enhancement spectrum. PMID:21934853

  6. Time-resolved resonance Raman observation of tetrafluoro-p-benzosemiquinone anion radical. [Pulse radiolysis

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1983-08-04

    Time-resolved resonance Raman spectroscopy has been used to examine tetrafluoro-p-benzosemiquinone radical anion produced in the pulse radiolytic oxidation of tetrafluorohydroquinone in aqueous solution. This radical is much more reactive than p-benzosemiquinone and is observed to decay on the millisecond time scale in both Raman and pulse radiolytic experiments. For the Raman experiments excitation was on the red edge of the moderately strong absorption band of this radical at 430 nm. Two resonance-enhanced Raman bands are exhibited at 1556 and 1677 cm/sup -1/ and are assigned to the in-phase CO and symmetrical CC stretch vibrations. These frequencies are considerably higher than the corresponding values of 1435 and 1620 cm/sup -1/ observed in this radical's protonated counterpart. The relatively large increase in the CO stretch frequency, in particular, indicates that fluorination induces a substantial increase in the quinoid character of this radical. 3 figures, 1 table.

  7. Remote detection of trace effluents using Resonance Raman spectroscopy: Field results and evaluation

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-10-01

    Resonance Raman spectroscopy (RRS) possesses many characteristics that are important for detecting, identifying and monitoring chemical effluents. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy h{nu} promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. Under resonance enhancement, the Raman scattering cross-sections have been observed to increase up to 6 orders of magnitude above the normal scattering cross-sections, thereby providing the practical basis for a remote chemical sensor. Some of the other advantages that a Raman sensor possesses are: (1) very high selectivity (chemical specific fingerprints), (2) independence of the spectral fingerprint on the excitation wavelength (ability to monitor in the solar blind region), (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid or solutions), (5) no absolute calibration is necessary because all Raman signals observed from a given species can be compared with the Raman signal for N{sub 2}, whose concentration is known very accurately, and (6) insensitivity of the Raman signature to environmental conditions (no quenching, or interference from water vapor). In this presentation, the technology of resonance Raman spectroscopy as applied to the detection of narcotics production activities will be presented along with some recent experimental results.

  8. Raman microspectroscopic study of oral buccal mucosa

    NASA Astrophysics Data System (ADS)

    Behl, Isha; Mamgain, Hitesh; Deshmukh, Atul; Kukreja, Lekha; Hole, Arti R.; Krishna, C. Murali

    2014-03-01

    Oral cancer is the most common cancer among Indian males, with 5-year- survival-rates of less than 50%. Efficacy of Raman spectroscopic methods in non-invasive and objective diagnosis of oral cancers and confounding factors has already been demonstrated. The present Raman microspectroscopic study was undertaken for in-depth and site-specific analysis of normal and tumor tissues. 10 normal and 10 tumors unstained sections from 20 tissues were accrued. Raman data of 160 x 60 μm and 140 x 140 μm in normal and tumor sections, respectively, were acquired using WITec alpha 300R equipped with 532 nm laser, 50X objective and 600 gr/mm grating. Spectral data were corrected for CCDresponse, background. First-derivitized and vector-normalized data were then subjected to K-mean cluster analysis to generate Raman maps and correlated with their respective histopathology. In normal sections, stratification among epithelial layers i.e. basal, intermediate, superficial was observed. Tumor, stromal and inflammatory regions were identified in case of tumor section. Extracted spectra of the pathologically annotated regions were subjected to Principal component analysis. Findings suggest that all three layers of normal epithelium can be differentiated against tumor cells. In epithelium, basal and superficial layers can be separated while intermediate layer show misclassifications. In tumors, discrimination of inflammatory regions from tumor cells and tumor-stroma regions were observed. Finding of the study indicate Raman mapping can lead to molecular level insights of normal and pathological states.

  9. Identifying or measuring selected substances or toxins in a subject using resonant raman signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2005-01-01

    Methods and systems of the present invention identify the presence of and/or the concentration of a selected analyte in a subject by: (a) illuminating a selected region of the eye of a subject with an optical excitation beam, wherein the excitation beam wavelength is selected to generate a resonant Raman spectrum of the selected analyte with a signal strength that is at least 100 times greater than Raman spectrums generated by non-resonant wavelengths and/or relative to signals of normal constituents present in the selected region of the eye; (b) detecting a resonant Raman spectrum corresponding to the selected illuminated region of the eye; and (c) identifying the presence, absence and/or the concentration of the selected analyte in the subject based on said detecting step. The apparatus may also be configured to be able to obtain biometric data of the eye to identify (confirm the identity of) the subject.

  10. Resonance effects in the Raman scattering of monolayer and few-layer MoSe2

    NASA Astrophysics Data System (ADS)

    Soubelet, P.; Bruchhausen, A. E.; Fainstein, A.; Nogajewski, K.; Faugeras, C.

    2016-04-01

    Using resonant Raman scattering spectroscopy with 25 different laser lines, we describe the Raman scattering spectra of monolayer and multilayer 2H-molybdenum diselenide (MoSe2) as well as the different resonances affecting the most pronounced features. For high-energy phonons, both A - and E -symmetry type phonons present resonances with A and B excitons of MoSe2 together with a marked increase of intensity when exciting at higher energy, close to the C -exciton energy. We observe symmetry-dependent exciton-phonon coupling affecting mainly the low-energy rigid layer phonon modes. The shear mode for multilayer displays a pronounced resonance with the C exciton while the breathing mode has an intensity that grows with the excitation laser energy, indicating a resonance with electronic excitations at energies higher than that of the C exciton.

  11. State-by-state investigation of destructive interference in resonance Raman spectra of neutral tyrosine and the tyrosinate anion with the simplified sum-over-states approach.

    PubMed

    Cabalo, Jerry B; Saikin, Semion K; Emmons, Erik D; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2014-10-16

    UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results. PMID:25233377

  12. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  13. Implantation effects on resonant Raman scattering in CdTe and Cd 0.23Hg 0.77Te

    NASA Astrophysics Data System (ADS)

    Ramsteiner, M.; Lusson, A.; Wagner, J.; Koidl, P.; Bruder, M.

    1990-04-01

    We have studied In + implanted CdTe and Cd 0.23Hg 0.77Te by resonant Raman scattering. The laser excitation was in resonance with the EO + Δ O band gap in CdTe or the E1 gap in Cd 0.23Hg 0.77Te. Under these conditions dipole forbidden but defect ind scattering by one longitudinal optical (LO) phonon as well as Fröhlich-induced two-LO phonon scattering is observed. In both cases scattering is found to be strongly affected by ion implantation. In + was implanted at an ion energy of 350 keV with doses ranging from 10 11 to 5×10 14 ions/cm 2. The intensity ratio of the one-LO phonon lines is found to be a quantitative measure of the implantation damage in CdTe and Cd 0.23Hg 0.77Te even for doses as low as 10 11 ions/cm 2. It is shown that the observed effects of implantation damage on resonant Raman scattering by LO phonons are due to a broadening and an energy shift of the corresponding resonances in the Raman scattering efficiency.

  14. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    SciTech Connect

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-04-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10{sup 4} to 10{sup 6} and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  15. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    SciTech Connect

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10[sup 4] to 10[sup 6] and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference.

  16. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  17. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  18. Synthesis of twisted bilayer graphene and studies of its low energy Raman modes

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; He, Rui; Delaney, Conor; Keiser, Courtney; Jauregui, Luis A.; Shand, Paul M.; Chancey, C. C.; Wang, Yanan; Bao, Jiming; Chen, Yong P.

    2014-03-01

    We have synthesized bilayer graphene on copper foils with different twist angles and stacking orders using chemical vapor deposition. Raman spectroscopy has been used to study twisted bilayer graphene (tBLG) transferred on Si/SiO2 substrate, focusing on low frequency Raman modes below 200 cm-1. The modes are found in a small range of twist angle at which the G Raman peak is under resonance conditions with corresponding laser energy. The ~ 94 cm-1 mode (ZO'L) and ~ 160 cm-1 (ZO'H) modes (measured with a 532 nm laser) are assigned to the fundamental layer breathing vibration (ZO' mode) associated with different phonon wavenumbers, indicating different phonon scattering processes. We identify that the ZO'L mode shares the same resonance enhancement mechanism as G Raman mode arising from van Hove singularities (vHs) in the band structure of tBLG. The ZO'H mode was previously observed, related to the superlattice induced wavevector. The dependence of ZO'L mode frequency and line width on the twist angle can be understood by the double-resonance Raman scattering. We also observe another lower energy Raman mode at ~ 52 cm-1, whose origin is yet to be understood. We have also measured the doping dependence of Raman modes in tBLG. Our results probe the interlayer coupling and phonon dispersions in tBLG.

  19. Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle.

    PubMed

    Matysik, J; Hildebrandt, P; Schlamann, W; Braslavsky, S E; Schaffner, K

    1995-08-22

    The parent states of the 124-kDa phytochrome (phy A from Avena sativa) and intermediates of its photocycle were studied by low-temperature Fourier-transform resonance Raman spectroscopy. Spectra of the primary photoproducts I700 and lumi-F and of the thermal intermediate meta-F have been obtained for the first time. The spectra of the stable photochromic forms of photochrome, Pr and Pfr, presented in this work are significantly better in signal-to-noise ratio and resolution than previously published spectra, demonstrating the distinct advantages of our experimental approach. The high spectral quality allows for the identification of subtle details of the vibrational band pattern so that the resonance Raman spectra, which have been measured from samples in H2O and D2O, constitute a solid basis for the structural analysis of the various forms of phytochrome. Notwithstanding the current uncertainty in the vibrational assignment of many resonance Raman bands, the spectral changes of the tetrapyrrole chromophore can plausibly be interpreted in terms of conformational changes at two different methine bridges, i.e., torsions around two single bonds and the E/Z isomerization of a double bond. Within the framework of this interpretation, which is based on a vibrational analysis of biliverdin dimethyl ester (Smith, K. Matysik, J., Hlldebrandt, P., & Mark, F. (1993) J. Phys. Chem. 97, 11887-11900), a consistent model is proposed to describe the molecular events in the chromophore during the photocycle. The involvement of a proton transfer in the primary photoprocess of Pr can safely be ruled out. However, previous conclusions concerning the chromophore protonation in the individual states appear premature at the present state of the vibrational assignment. In particular, the attribution of a broad band at 1100 cm-1 to the N-H out-of-plane bending of the protonated pyrrolenin nitrogen (Hildebrandt, P., Hoffmann, A., Lindemann, P., Heibel, G., Braslavsky, S. E., Schaffner, K

  20. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.

    PubMed

    Ricci, Marilena; Platania, Elena; Lofrumento, Cristiana; Castellucci, Emilio M; Becucci, Maurizio

    2016-07-14

    The properties of o-Safranin (SO) dye in the first electronic excited state were studied with combined experimental and theoretical methods. The electronic absorption spectra of SO molecules are measured in water solution and in the presence of silver nanoparticles. The normal Raman (NRS) and resonance Raman (RR) spectra of solid SO and the surface enhanced Raman (SERS) and surface enhanced resonance Raman (SE[R]RS) spectra of SO adsorbed on silver nanoparticles are measured at different excitation energies. The enhancement factors for selected vibrational bands of the RR, SERS, and SE[R]RS spectra of SO have been obtained with respect to the NRS spectra of the solid after a careful evaluation of the experimental conditions. The data furnished useful information on the excited electronic states and the interactions of SO with silver nanoparticles. The experimental results are discussed on the basis of DFT and TD-DFT calculations (B3LYP/6-311+G(d,p)) on the isolated SO molecule. PMID:27139691

  1. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhenkun; Molesky, Brian P.; Cheshire, Thomas P.; Moran, Andrew M.

    2015-09-01

    Traditional second-order kinetic theories fail to describe sub-picosecond photochemical reactions when solvation and vibrational dephasing undermine the assumption of equilibrium initial conditions. Four-wave mixing spectroscopies may reveal insights into such non-equilibrium processes but are limited by the single "population time" available in these types of experiments. Here, we use two-dimensional resonance Raman (2DRR) spectroscopy to expose correlations between coherent nuclear motions of the reactant and product in the photodissociation reaction of triiodide. It is shown that the transition of a nuclear wavepacket from the reactant (triiodide) to product (diiodide) states gives rise to a unique pattern of 2DRR resonances. Peaks associated with this coherent reaction mechanism are readily assigned, because they are isolated in particular quadrants of the 2DRR spectrum. A theoretical model in which the chemical reaction is treated as a vibronic coherence transfer transition from triiodide to diiodide reproduces the patterns of 2DRR resonances detected in experiments. These signal components reveal correlation between the nonequilibrium geometry of triiodide and the vibrational coherence frequency of diiodide. The 2DRR signatures of coherent reaction mechanisms established in this work may generalize to studies of ultrafast energy and charge transfer processes.

  2. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy

    SciTech Connect

    Guo, Zhenkun; Molesky, Brian P.; Cheshire, Thomas P.; Moran, Andrew M.

    2015-09-28

    Traditional second-order kinetic theories fail to describe sub-picosecond photochemical reactions when solvation and vibrational dephasing undermine the assumption of equilibrium initial conditions. Four-wave mixing spectroscopies may reveal insights into such non-equilibrium processes but are limited by the single “population time” available in these types of experiments. Here, we use two-dimensional resonance Raman (2DRR) spectroscopy to expose correlations between coherent nuclear motions of the reactant and product in the photodissociation reaction of triiodide. It is shown that the transition of a nuclear wavepacket from the reactant (triiodide) to product (diiodide) states gives rise to a unique pattern of 2DRR resonances. Peaks associated with this coherent reaction mechanism are readily assigned, because they are isolated in particular quadrants of the 2DRR spectrum. A theoretical model in which the chemical reaction is treated as a vibronic coherence transfer transition from triiodide to diiodide reproduces the patterns of 2DRR resonances detected in experiments. These signal components reveal correlation between the nonequilibrium geometry of triiodide and the vibrational coherence frequency of diiodide. The 2DRR signatures of coherent reaction mechanisms established in this work may generalize to studies of ultrafast energy and charge transfer processes.

  3. Electronic Resonance Enhancement in Raman and CARS Spectroscopy: Surface Enhanced Scattering of Highly Fluorescent Molecules

    NASA Astrophysics Data System (ADS)

    Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Surface enhanced Raman spectroscopy (SERS) is an extremely useful tool in increasing sensitivity of Raman spectroscopy; this technique significantly increases the signal from vibrational resonances which can overcome background fluoresces. Silver nanoparticles coated substrates and the silver nanoparticles in solution were used on a variety of fluorescent molecules in order to overcome sample complexities and measure the vibrational spectra. The possible enhancement of SERS using a coherent Raman (CARS) method was investigated, but enhancement factors due to Surface Enhanced CARS have yet to be verified. The instrument used was developed in the University of West Florida Physics Department utilized the second harmonic of a Nd:YAG laser to provide the excitation wavelength at 532 nm and is capable of both transmission and reflection Raman measurements. Special thanks to the UWF Office of Undergraduate Research.

  4. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    PubMed

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking. PMID:27519071

  5. Comparative study of the two-phonon Raman bands of silicene and graphene

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Lambin, Philippe

    2016-06-01

    We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy.

  6. Resonance Raman intensity analysis of ClNO(2) dissolved in methanol.

    PubMed

    Trimithioti, Marilena; Hayes, Sophia C

    2013-01-17

    Halogens such as chlorine are converted from halides, including ClNO(2), to reactive radicals by UV solar radiation. These radicals can affect ozone production and destruction in the stratosphere. Recently, it became clear that halogen radicals can also play a significant role in the chemistry of the troposphere. The photochemistry of ClNO(2) has been the subject of several studies in the gas and solid state that demonstrated a clear phase-dependent reactivity. Here, we report our initial studies of nitryl chloride in solution. Resonance Raman (RR) spectra of ClNO(2) dissolved in methanol after excitation within the 1(1)A(1)-2(1)A(1) absorption band (D band) in the region 200-240 nm are presented. RR intensity along the NO symmetric stretch coordinate (v(1)) at 1291 cm(-1) is observed at all excitation wavelengths, whereas limited intensity corresponding to the transition of the N-Cl symmetric stretch (v(3)) was only observed at 199.8 nm, whereas no intensity corresponding to the O-N-O symmetric bend (v(2)) was observed. Depolarization ratios and absolute resonance Raman cross sections for v(1) were obtained at several excitation wavelengths spanning the D band. Depolarization ratios were found to deviate significantly from 1/3, consistent with more than a single dipole-allowed electronic transition contributing to the scattering. RR intensity analysis (RRIA) reveals that two closely spaced excited electronic states contribute to the scattering, which are dissociative along the Cl-N coordinate. In this study the role the solvent environment plays in ClNO(2) state energetics and excited structural evolution along fundamental coordinates is discussed. PMID:23237473

  7. Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide

    SciTech Connect

    Guo Junjie; Zhang Ling; Fujita, Takeshi; Chen Mingwei; Goto, Takashi

    2010-02-01

    We report polarized and resonant Raman scattering of single-crystal boron carbide (B{sub 4}C) at high pressures. Significant intensity enhancements of 270 and 1086 cm{sup -1} Raman bands of B{sub 4}C have been observed at quasihydrostatic pressures higher than approx20 GPa. The pressure-induced intensity change of the 1086 cm{sup -1} band is mainly due to the resonance between excitation energy and electronic transition, whereas the intensity change of 270 cm{sup -1} band is caused by the depolarization effect. Importantly, the first-order phase transition has not been found at high quasihydrostatic pressures and all the Raman intensity changes along with the corresponding high-pressure lattice distortion can be recovered during unloading.

  8. Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy.

    PubMed

    Maiwald, Martin; Schmidt, Heinar; Sumpf, Bernd; Güther, Reiner; Erbert, Götz; Kronfeldt, Heinz-Detlef; Tränkle, Günther

    2009-11-01

    A microsystem light source emitting at 488 nm was tested and applied as a light source for shifted excitation resonance Raman difference spectroscopy (SERRDS). A nonlinear frequency conversion using a distributed feedback (DFB) diode laser emission at 976 nm and a periodically poled lithium niobate (PPLN) waveguide crystal was realized on a micro-optical bench with a footprint of 25 mm x 5 mm. Joint temperature management via the microbench is used for wavelength tuning. Two emission lines at 487.61 nm and 487.91 nm are used for the SERRDS experiments. The Raman spectra of the test sample polystyrene demonstrate that a laser bandpass filter did not need to be implemented. Resonance Raman spectra of Tartrazine (FD&C Yellow 5, E 102) in distilled water are presented to demonstrate the suitability of this light source for SERRDS in, e.g., food safety control. PMID:19891837

  9. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  10. Raman spectroscopy of magneto-phonon resonances in graphene and graphite

    NASA Astrophysics Data System (ADS)

    Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron

    2012-08-01

    The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.

  11. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quenched resonance Raman spectroscopy

    PubMed Central

    Matsumura, Hirotoshi; Moënne-Loccoz, Pierre

    2014-01-01

    Summary The combination of rapid-freeze-quenching (RFQ) technique and resonance Raman (RR) spectroscopy represents a unique tool to investigate the nature of short-lived intermediates formed during the enzymatic reaction of metalloproteins. Commercially available equipment allows trapping of intermediates within the millisecond to second timescale for low-temperature RR analysis and direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses previous RFQ-RR studies carried-out in our laboratory, and presents as a practical example protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) which requires anaerobic conditions. We also describe important controls and practical procedure for the analysis of these samples by low-temperature RR spectroscopy. PMID:24639256

  12. Nematic Resonance in the Raman Response of Iron-Based Superconductors.

    PubMed

    Gallais, Yann; Paul, Indranil; Chauvière, Ludivine; Schmalian, Jörg

    2016-01-01

    In a fully gapped superconductor the electronic Raman response has a pair-breaking peak at twice the superconducting gap Δ, if the Bogoliubov excitations are uncorrelated. Motivated by the iron based superconductors, we study how this peak is modified if the superconducting phase hosts a nematic-structural quantum critical point. We show that, upon approaching this point by tuning, e.g., doping, the growth of nematic correlations between the quasiparticles transforms the pair-breaking peak into a nematic resonance. The mode energy is below 2Δ, and stays finite at the quantum critical point, where its spectral weight is sharply enhanced. The latter is consistent with recent experiments on electron-doped iron based superconductors and provides direct evidence of nematic correlations in their superconducting phases. PMID:26799039

  13. Simulation of the resonance Raman spectra for 5-halogenated (F, Cl, and Br) uracils.

    PubMed

    Sun, Shuai; Brown, Alex

    2015-04-30

    The resonance Raman spectra of the 5-halogenated (F, Cl, and Br) uracils are simulated via the Herzberg-Teller (HT) short-time dynamics formalism. The gradient of the S1 excited state is computed at the CAMB3LYP/aug-cc-pVTZ level of theory in the conductor-like polarizable continuum model for water (C-PCM, H2O), based on the equilibrium geometry determined using PBE0/aug-cc-pVTZ in H2O (C-PCM). The simulated resonance Raman spectra show good agreement with the experimental spectra in terms of both peak positions and intensities. The differences between the resonance Raman spectra of the three 5-halogenated uracils, caused by the effect of halogen substitution, are examined in terms of ground-state normal-mode eigenvectors and excited-state Cartesian gradients, according to the HT formalism. The differences in the normal-mode eigenvectors and excited-state Cartesian gradients between 5-fluorouracil and 5-chlorouracil are used to interpret the dissimilarity between their resonance Raman spectra. Meanwhile, the similarity between the spectra of 5-chlorouracil and 5-bromouracil is explained by the correspondence between their normal modes and excited-state gradients. PMID:25856119

  14. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  15. Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Ye, Fan; Wang, Zenghui; Yang, Rui; Hu, Jin; Mao, Zhiqiang; Wei, Jiang; Feng, Philip X.-L.

    2016-04-01

    Single crystal tungsten ditelluride (WTe2) has recently been discovered to exhibit non-saturating extreme magnetoresistance in bulk; it has also emerged as a new layered material from which atomic layer crystals can be extracted. While atomically thin WTe2 is attractive for its unique properties, little research has been conducted on single- and few-layer WTe2. Here we report the isolation of single- and few-layer WTe2, as well as the fabrication and characterization of the first WTe2 suspended nanostructures. We have observed new Raman signatures of single- and few-layer WTe2 that have been theoretically predicted but have not been reported to date, in both on-substrate and suspended WTe2 flakes. We have further probed the nanomechanical properties of suspended WTe2 structures by measuring their flexural resonances, and obtain a Young's modulus of EY ~ 80 GPa for the suspended WTe2 flakes. This study paves the way for future investigations and utilizations of the multiple new Raman fingerprints of single- and few-layer WTe2, and for explorations of mechanical control of WTe2 atomic layers.

  16. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities

    PubMed Central

    Li, Mengqiu; Canniffe, Daniel P; Jackson, Philip J; Davison, Paul A; FitzGerald, Simon; Dickman, Mark J; Burgess, J Grant; Hunter, C Neil; Huang, Wei E

    2012-01-01

    Photosynthetic microorganisms play crucial roles in aquatic ecosystems and are the major primary producers in global marine ecosystems. The discovery of new bacteria and microalgae that play key roles in CO2 fixation is hampered by the lack of methods to identify hitherto-unculturable microorganisms. To overcome this problem we studied single microbial cells using stable-isotope probing (SIP) together with resonance Raman (RR) microspectroscopy of carotenoids, the light-absorbing pigments present in most photosynthetic microorganisms. We show that fixation of 13CO2 into carotenoids produces a red shift in single-cell RR (SCRR) spectra and that this SCRR–SIP technique is sufficiently sensitive to detect as little as 10% of 13C incorporation. Mass spectrometry (MS) analysis of labelled cellular proteins verifies that the red shift in carotenoid SCRR spectra acts as a reporter of the 13C content of single cells. Millisecond Raman imaging of cells in mixed cultures and natural seawater samples was used to identify cells actively fixing CO2, demonstrating that the SCRR–SIP is a noninvasive method for the rapid and quantitative detection of CO2 fixation at the single cell level in a microbial community. The SCRR–SIP technique may provide a direct method for screening environmental samples, and could help to reveal the ecophysiology of hitherto-unculturable microorganisms, linking microbial species to their ecological function in the natural environment. PMID:22113377

  17. Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances.

    PubMed

    Lee, Jaesung; Ye, Fan; Wang, Zenghui; Yang, Rui; Hu, Jin; Mao, Zhiqiang; Wei, Jiang; Feng, Philip X-L

    2016-04-14

    Single crystal tungsten ditelluride (WTe2) has recently been discovered to exhibit non-saturating extreme magnetoresistance in bulk; it has also emerged as a new layered material from which atomic layer crystals can be extracted. While atomically thin WTe2 is attractive for its unique properties, little research has been conducted on single- and few-layer WTe2. Here we report the isolation of single- and few-layer WTe2, as well as the fabrication and characterization of the first WTe2 suspended nanostructures. We have observed new Raman signatures of single- and few-layer WTe2 that have been theoretically predicted but have not been reported to date, in both on-substrate and suspended WTe2 flakes. We have further probed the nanomechanical properties of suspended WTe2 structures by measuring their flexural resonances, and obtain a Young's modulus of EY ≈ 80 GPa for the suspended WTe2 flakes. This study paves the way for future investigations and utilizations of the multiple new Raman fingerprints of single- and few-layer WTe2, and for explorations of mechanical control of WTe2 atomic layers. PMID:27030574

  18. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  19. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  20. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  1. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy.

    PubMed Central

    Jordan, T.; Eads, J. C.; Spiro, T. G.

    1995-01-01

    Ferricytochrome c can be converted to the partially folded A-state at pH 2.2 in the presence of 1.5 M NaCl. The structure of the A-state has been studied in comparison with the native and unfolded states, using resonance Raman spectroscopy with visible and ultraviolet excitation wavelengths. Spectra obtained with 200 nm excitation show a decrease in amide II intensity consistent with loss of structure for the 50s and 70s helices. The 230-nm spectra contain information on vibrational modes of the single Trp 59 side chain and the four tyrosine side chains (Tyr 48, 67, 74, and 97). The Trp 59 modes indicate that the side chain remains in a hydrophobic environment but loses its tertiary hydrogen bond and is rotationally disordered. The tyrosine modes Y8b and Y9a show disruption of tertiary hydrogen bonding for the Tyr 48, 67, and 74 side chains. The high-wavenumber region of the 406.7-nm resonance Raman spectrum reveals a mixed spin heme iron atom, which arises from axial coordination to His 18 and a water molecule. The low-frequency spectral region reports on heme distortions and indicates a reduced degree of interaction between the heme and the polypeptide chain. A structural model for the A-state is proposed in which a folded protein subdomain, consisting of the heme and the N-terminal, C-terminal, and 60s helices, is stabilized through nonbonding interactions between helices and with the heme. PMID:7613469

  2. Airborne Raman Lidar and its Applications for Atmospheric Process Studies

    NASA Astrophysics Data System (ADS)

    Wang, Zhien; Wechsler, Perry J.; Mahon, Nick; Wu, Decheng; Liu, Bo; Burkhart, Matthew; Glover, Brent; Kuestner, William; Welch, Wayne; Thomson, Andrew

    2016-06-01

    Although ground-base Raman lidars are widely used for atmospheric observations, the capabilities of airborne Raman lidar is not fully explored. Here we presented two recently developed airborne Raman lidar systems for the studies of atmospheric boundary layer process, aerosols, and clouds. The systems are briefly introduced. Observation examples are presented to illustrate the unique observational capabilities of airborne Raman lidar and their applications for atmospheric process studies.

  3. Heme Orientation of Cavity Mutant Hemoglobins (His F8 → Gly) in Either α or β Subunits: Circular Dichroism, (1) H NMR, and Resonance Raman Studies.

    PubMed

    Nagai, Masako; Nagai, Yukifumi; Aki, Yayoi; Sakurai, Hiroshi; Mizusawa, Naoki; Ogura, Takashi; Kitagawa, Teizo; Yamamoto, Yasuhiko; Nagatomo, Shigenori

    2016-08-01

    Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260-nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260-nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260-nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by (1) H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe-His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual (1) H NMR technique. Chirality 28:585-592, 2016. © 2016 Wiley Periodicals, Inc. PMID:27427792

  4. Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.

    PubMed

    Kim, Hyung Min; Kim, Hyunmin; Yang, Ilseung; Jin, Seung Min; Suh, Yung Doug

    2014-03-21

    We present time-gated femtosecond stimulated Raman spectroscopy (fSRS) under the pre-resonance Raman conditions of diethylthiatricarbocyanine (DTTC) iodide. A 'pseudo emission-free' condition is achieved by delivering the probe beam ahead of the pump beam. Regeneratively amplified pulse trains are employed to create an angle-geometry (non-collimated) mixing between the pump and probe beams, leading to highly sensitive measurement of the stimulated Raman gain. Time-integrated spectroscopy allows for a more quantitative distinction between the contributions of stimulated Raman scattering and stimulated emission. We successfully obtain a highly sensitive (signal-to-noise ratio >100) stimulated Raman spectrum under the optimized conditions, which compares favourably to results obtained using two-dimensional correlation spectroscopy (2DCOS). Given the optical pre-resonance of ∼0.1 eV, the background signals mostly originate from the stimulated emission of excited electrons and are significantly reduced by partial overlapping of the pump and probe beams; a genuine fSRS spectral profile is obtained for a temporal delay of ∼0.2 ps between the two beams. PMID:24496293

  5. Intensity Ratio of Resonant Raman Modes for (n,m) Enriched Semiconducting Carbon Nanotubes.

    PubMed

    Piao, Yanmei; Simpson, Jeffrey R; Streit, Jason K; Ao, Geyou; Zheng, Ming; Fagan, Jeffrey A; Hight Walker, Angela R

    2016-05-24

    Relative intensities of resonant Raman spectral features, specifically the radial breathing mode (RBM) and G modes, of 11, chirality-enriched, single-wall carbon nanotube (SWCNT) species were established under second-order optical transition excitation. The results demonstrate an under-recognized complexity in the evaluation of Raman spectra for the assignment of (n,m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of the RBM to G modes and can result in misleading interpretations. Furthermore, we report five additional (n,m) values for the chirality-dependent G(+) and G(-) Raman peak positions and intensity ratios; thereby extending the available data to cover more of the smaller diameter regime by including the (5,4) second-order, resonance Raman spectra. Together, the Raman spectral library is demonstrated to be sufficient for decoupling G peaks from multiple species via a spectral fitting process, and enables fundamental characterization even in mixed chiral population samples. PMID:27128733

  6. Effect of atomic diffusion on the Raman-Ramsey coherent population trapping resonances

    NASA Astrophysics Data System (ADS)

    Kuchina, Elena; Mikhailov, Eugeniy E.; Novikova, Irina

    2016-04-01

    We experimentally investigated the characteristics of two-photon transmission resonances in Rb vapor cells with different amount of buffer gas under the conditions of steady-state coherent population trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT interrogation scheme. We particularly focused on the influence of the Rb atoms diffusing in and out of the laser beam. We showed that this effect modifies the shape of both CPT and Raman-Ramsey resonances, as well as their projected performance for CPT clock applications. In particular we found that at moderate buffer gas pressures RR-CPT did not improved the projected atomic clock stability compare to the regular steady-state CPT resonance.

  7. Surface-enhanced Raman spectroscopic and surface plasmon resonance in situ study of self-assembly of 4-mercaptobenzoic acid on gold surface

    NASA Astrophysics Data System (ADS)

    Thi, Minh Do; Volka, Karel

    2010-07-01

    A feasibility study has been undertaken to assess the suitability of a commercially available SERS substrate for monitoring of self-assembling deposition process. Monolayer self-assembly of 4-mercaptobenzoic acid on SERS active substrate Klarite™ from absolute and acidified ethanol was studied and compared with deposition on SPR substrate from absolute ethanol. Changes in integral intensity of the phenyl bands at 1587 and 1076 cm -1 and ethanol band at 1451 cm -1 allow to follow structural changes in the monolayer. Stability of the monolayer assembled from acidified ethanol in contrast to the pure ethanol was demonstrated.

  8. Quantitative resonance Raman spectroscopy of N-acetylpyrrolidine in aqueous solution

    SciTech Connect

    Harhay, G.P.; Hudson, B.S. )

    1993-08-05

    The resonance Raman spectra of aqueous solutions of N-acetylpyrrolidine are determined at seven excitation frequencies from 40 660 to 53 130 cm[sup [minus]1] spanning the first strong absorption band which is broad and diffuse The resonance Raman spectra are dominated by the single amide II[prime]-like vibration at 1485 cm[sup [minus]1] and its overtones of up to five quanta. Absolute resonance Raman cross sections are determined for these fundamental and overtone transitions at each excitation wavelength by reference to an internal standard of sodium perchlorate. A quantitative analysis of these data and the broad absorption spectrum is made on the basis of a model for the electronic excitation that includes the effects of inhomogeneous broadening. The observation of only a single enhanced vibrational normal mode, with the assumption that there is no Duschinsky rotation upon electronic excitation, makes this a particularly simple case for detailed analysis. A reasonably good fit to the experimental data is obtained using standard assumptions of Lorentzian inhomogeneous broadening and A-term (Condom) Raman scattering. In this fitting procedure, the integrated absorption spectrum determines the transition dipole length. 43 refs., 4 figs., 2 tabs.

  9. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  10. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of {sup 85}Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10{sup {minus}10} or less of {sup 85}Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace {sup 85}Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s{sub 5} metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p{sub 6} energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s{sub 4} level with the bulk of the {sup 85}Kr population being preserved. Finally, the remaining metastable population is probed to determine {sup 85}Kr concentration. The experimental requirements for each of these steps are outlined below.