Science.gov

Sample records for resonance transition 795-nm

  1. Hydrocarbon-free resonance transition 795-nm rubidium laser

    SciTech Connect

    Wu, S Q; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-01-09

    An optical resonance transition rubidium laser (5{sup 2}P{sub 1/2} {yields} 5{sup 2}S{sub 1/2}) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a 'clean' helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

  2. Resonance transition 795-nm Rubidium laser using 3He buffer gas

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2007-08-02

    We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems.

  3. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm.

    PubMed

    Han, Yashuai; Wen, Xin; He, Jun; Yang, Baodong; Wang, Yanhua; Wang, Junmin

    2016-02-01

    We report on efficient generation of second harmonic laser and single-mode vacuum squeezed light of 795 nm with periodically poled KTiOPO4 (PPKTP) crystals. We achieved 111 mW of ultra-violet (UV) light at 397.5 nm from 191 mW of fundamental light with a PPKTP crystal in a doubling cavity, corresponding to a conversion efficiency of 58.1%. Using the UV light to pump an optical parametric oscillator with a PPKTP crystal, we realized -5.6 dB of a maximum squeezing. We analyzed the pump power dependence of the squeezing level and concluded that the UV light induced losses limit the improvement of the squeezing level. The generated squeezed light has huge potential application in quantum memory and ultra-precise measurement. PMID:26906810

  4. Preparation of 5.6dB vacuum squeezing on 795nm rubidium D1 line via an OPO (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Junmin; Han, Yashuai; Wen, Xin; Yang, Baodong; Wang, Yanhua; He, Jun

    2016-04-01

    We report on experimental preparation of the second-harmonic-wave laser and the single-mode squeezed vacuum state of 795 nm (rubidium atom D1 line) with periodically-poled KTiOPO4 (PPKTP) bulk crystals. By using a four-mirror bow-tie type ring doubling cavity we achieved ~111 mW of continuous-wave single-frequency ultra-violet (UV) laser radiation at 397.5 nm with ~191 mW of 795 nm fundamental-wave laser input. The corresponding doubling efficiency is 58.1%. To our knowledge, this is the highest doubling efficiency at 795 nm so far. Employing the 397.5 nm UV laser as a pump source of an optical parametric oscillator (OPO) with a PPKTP crystal, we achieved 5.6 dB of 795 nm single-mode squeezed vacuum output at analyzing frequency of 2 MHz. To our knowledge, this is the highest squeezing level of 795 nm single-mode squeezed vacuum so far. We analyzed the pump power dependence of the squeezing level, and concluded that UV laser induced losses of PPKTP crystal are main limiting factors for further improving the squeezing level. The generated 795 nm vacuum squeezing has huge potential applications in quantum memory and ultra-precision measurement with rubidium atoms.

  5. Characterizing double-resonance optical-pumping spectra of cesium 6P3/2 - 8S1/2 excited-state transition and its application

    NASA Astrophysics Data System (ADS)

    Yang, Baodong; Liang, Qiangbing; Zhang, Tiancai; Wang, Junmin

    2010-11-01

    The spectra of cesium 6P3/2 - 8S1/2 excited-state transition have been obtained using double resonance optical-pumping (DROP) technique in a room-temperature vapor cell, and have shown a much better signal-to-noise ratio (SNR) compared with that using the traditional optical-optical double resonance (OODR) method. Furthermore, the line-width of DROP spectra is obviously narrowed by electromagnetically-induced transparency (EIT) effect in cesium 6S1/2 F=4 - 6P3/2 F'=5 - 8S1/2 F''=4 transitions. Finally, such DROP spectrum of 6P3/2 F'=5 - 8S1/2 F''=4 transition with a high SNR and a narrow line-width is applied into frequency stabilization of a 795 nm external-cavity diode laser, and the residual frequency fluctuation is ~ 600 kHz within 500 s.

  6. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime.

    PubMed

    Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin

    2014-12-29

    We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics. PMID:25607194

  7. Electromagnetic Transition Form Factors of Nucleon Resonances

    SciTech Connect

    Burkert, Volker D.

    2008-10-13

    Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data resolve a long-standing puzzle of the nature of the Roper resonance, and confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q{sup 2} n{pi}{sup +} production confirm the slow fall off of the S{sub 11}(1535) transition form factor with Q{sup 2}, and better constrain the branching ratios {beta}{sub N{pi}} = 0.50 and {beta}{sub N{eta}} = 0.45. For the first time, the longitudinal transition amplitude to the S{sub 11}(1535) was extracted from the n{pi}{sup +} data. Also, new results on the transition amplitudes for the D{sub 13}(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q{sup 2}.

  8. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-22

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves. PMID:22398451

  9. Dynamics and Transit Variations of Resonant Exoplanets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)‑2/3, where m and M * are the planetary and stellar masses. For m = 10‑4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  10. Quantum phase transition of light in the resonator array

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Wang; Gao, Ming; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu; Quantum Computation Group of NUDT Team

    2015-03-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  11. Resonant Transition Radiation and Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Modin, E. V.

    2008-02-01

    This paper presents general relations for the intensity of the resonant transition radiation (RTR) and their detailed analysis. This analysis shows that the spectrum amplitude of the x-mode at some frequencies for high-energy electrons can grow with the magnetic field increase in some interval from zero value; it can even dominate over that for the o-mode. With further magnetic field increase, the intensity of the RTR x-mode decreases in comparison with the intensity of the o-mode and this decrease is higher for higher velocities of energetic electrons. The polarization of the RTR depends on the velocity of energetic electrons, too. For velocities lower than some velocity limit v< v i the RTR emission is unpolarized in a broad interval of magnetic field intensities in the radio source. For reasonable values of indices of the power-law distribution functions of energetic electrons, the RTR is broadband in frequencies ( df/ f≈0.2-0.4). Furthermore, we show various dependencies of the RTR and its spectral characteristics. Assuming the same radio flux of the transition radiation and the gyro-synchrotron one at the Razin frequency, we estimate the limit magnetic field in the radio source of the transition radiation. Then, we analyze possible sources of small-scale inhomogeneities (thermal density fluctuations, Langmuir and ion-sound waves), which are necessary for the transition radiation. Although the small-scale inhomogeneities connected with the Langmuir waves lead to the plasma radiation, which is essentially stronger than RTR, the inhomogeneities of the ion-sound waves are suitable for the RTR without any other radiation. We present the relations describing the RTR for anisotropic distribution functions of fast electrons. We consider the distribution functions of fast electrons in the form of the Legendre polynomials which depend on the pitch-angle. We analyze the influence of the degree of the anisotropy (an increase of the number of terms in the Legendre

  12. Resonance transition radiation X-ray laser

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Piestrup, Melvin A.

    1991-01-01

    A free electron laser is proposed using a periodic dielectric and helical magnetic field. Periodic synchronism between the electrons and the optical wave is obtained at the period of the dielectric and not at the period of the helical magnetic field. The synchronism condition and the gain of the new device are derived. The effects on the gain from dephasing and beam expansion due to elastic scattering of the electrons in the periodic medium are included in the gain calculation. Examples of the resonance transition radiation laser and klystron are given. Operation at photon energies between 2.5 and 3.5 keV with net gain up to 12 percent is feasible using high electron-beam energies of 3 and 5 GeV. Moderate (300-MeV) beam energy allows operation between 80 to 110 eV with up to 57 percent net gain using a klystron design. In both cases, rapid foil heating may limit operation to a single electron-beam pulse.

  13. Improved Tracking of an Atomic-Clock Resonance Transition

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  14. Modulation of Attosecond Beating by Resonant Two-Photon Transition

    NASA Astrophysics Data System (ADS)

    Jiménez Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2015-09-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the π jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  15. Persistent quantum resonance transition in spin Hall transport

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Chin; Lee, Hsin-Han; Chang, Ching-Ray

    2016-01-01

    We propose an H-shaped two-dimensional topological insulator (2DTI) as a persistent quantum resonance device. The helical edge states of 2DTI are robust against a nonmagnetic field. However, the helical edge states interfere with bound states created by a nonmagnetic impurity. Transmissions between leads shows two kinds of quantum resonance in this device, the Breit-Wigner resonance and a Fano-like resonance. These resonances can be realized in the device through modulating the on-site impurity potential. Resonances in 2DTI are persistent because the helical state has no backscattering that is protected by time-reversal-symmetry conservation. The finite-size effect in 2DTI leads to the phase transition between the Fano and the Breit-Wigner resonances through modulating the thickness of the 2DTI leads.

  16. Resonant Auger for the detection of quadrupolar transitions

    SciTech Connect

    Danger, J.; Le Fevre, P.; Chandesris, D.; Magnan, H.; Jupille, J.; Bourgeois, S.; Eickhoff, T.; Drube, W.

    2003-01-24

    Quadrupolar transitions can play an important role in X-ray absorption spectroscopy, especially when it is used for magnetic measurements, like in X-ray Magnetic Circular Dichroism or Resonant Magnetic Scattering. We show here that resonantly excited Ti KL2,3L2,3 Auger spectra of TiO2 (110) carry a clear signature of quadrupolar transitions from the 1s to localized eg and t2g d-like states. The quadrupolar nature of the observed additional spectator lines are clearly demonstrated by their angular dependence, and their intensity is used to locate and quantify the quadrupolar transitions in the absorption spectrum.

  17. Comparison of three EIT-type resonances formed in Rb nanocell

    NASA Astrophysics Data System (ADS)

    Sargsyan, Armen; Sarkisyan, David; Margalit, Leah; Wilson-Gordon, Arlene D.

    2016-09-01

    The electromagnetically induced transparency (EIT) phenomenon is studied using a nanometric thin (L = 795 nm) Rb vapour layer. EIT-type resonances that are formed in three different energy-level systems are reported. It is demonstrated that the EIT resonance which is formed in a Λ-system where the ground levels are separated by the hyperfine splitting (EITH-resonance) has the smallest linewidth (~10 MHz). The EIT resonance which is realized in a Λ-system formed by the Zeeman sublevels of the Fg = 2 → Fe = 1 transition (EITZ-resonance) has a larger linewidth (~14 MHz). The EITV-resonance which is formed in the V-system has the largest linewidth (~40 MHz). The uniqueness of the EIT phenomena reported here is that they can be formed in different types of Λ-systems even for L < 1 μm. The splitting of the EITZ-resonance into two components in a transverse magnetic field is reported. The theoretical model well describes the experiment.

  18. Optical feshbach resonance using the intercombination transition.

    PubMed

    Enomoto, K; Kasa, K; Kitagawa, M; Takahashi, Y

    2008-11-14

    We report control of the scattering wave function by an optical Feshbach resonance effect using ytterbium atoms. The narrow intercombination line (1S0-3P1) is used for efficient control as proposed by Ciuryło et al. [Phys. Rev. A 71, 030701(R) (2005)10.1103/PhysRevA.71.030701]. The manipulation of the scattering wave function is monitored with the change of a photoassociation rate caused by another laser. The optical Feshbach resonance is especially efficient for isotopes with large negative scattering lengths such as 172Yb, and we have confirmed that the scattering phase shift divided by the wave number, which gives the scattering length in the zero energy limit, is changed by about 30 nm. PMID:19113335

  19. Modeling Developmental Transitions in Adaptive Resonance Theory

    ERIC Educational Resources Information Center

    Raijmakers, Maartje E. J.; Molenaar, Peter C. M.

    2004-01-01

    Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…

  20. Trapped resonant fermions above the superfluid transition temperature

    SciTech Connect

    Cheng, C.-H.; Yip, S.-K.

    2007-01-01

    We investigate trapped resonant fermions with unequal populations within the local density approximation above the superfluid transition temperature. By tuning the attractive interaction between fermions via Feshbach resonance, the system evolves from weakly interacting fermi gas to strongly interacting fermi gas, and finally becomes a Bose-Fermi mixture. The density profiles of fermions are examined and compared with experiments. We also point out the simple relationships between the local density, the axial density, and the gas pressure within the local density approximation.

  1. A resonant chain of four transiting, sub-Neptune planets

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard

    2016-05-01

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  2. A resonant chain of four transiting, sub-Neptune planets.

    PubMed

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223. PMID:27225123

  3. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  4. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  5. General magnetic transition dipole moments for electron paramagnetic resonance.

    PubMed

    Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan

    2015-01-01

    We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities. PMID:25615456

  6. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  7. Classical to quantum transition of a driven nonlinear nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Katz, Itamar; Lifshitz, Ron; Retzker, Alex; Straub, Raphael

    2008-12-01

    Much experimental effort is invested these days in fabricating nanoelectromechanical systems (NEMS) that are sufficiently small, cold and clean, so as to approach quantum mechanical behavior as their typical quantum energy scale \\hbar\\Omega becomes comparable with that of the ambient thermal energy kBT. Such systems will hopefully enable one to observe the quantum behavior of human-made objects, and test some of the basic principles of quantum mechanics. Here, we expand and elaborate on our recent suggestion (Katz et al 2007 Phys. Rev. Lett. 99 040404) to exploit the nonlinear nature of a nanoresonator in order to observe its transition into the quantum regime. We study this transition for an isolated resonator, as well as one that is coupled to a heat bath at either zero or finite temperature. We argue that by exploiting nonlinearities, quantum dynamics can be probed using technology that is almost within reach. Numerical solutions of the equations of motion display the first quantum corrections to classical dynamics that appear as the classical-to-quantum transition occurs. This provides practical signatures to look for in future experiments with NEMS resonators.

  8. Observation of optical bistability due to resonator configuration transition

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Osada, H.

    1985-05-01

    In this Letter, a new kind of active optical bistability is discussed. The basic principle underlying the operation of the optically bistable laser is based on stable-unstable cavity configuration transitions of an active optical resonator. Generally speaking, a laser system showing both pump- and laser-induced lensing (focusing or defocusing) effects may display such a hysteresis loop in its input-output characteristics. This bistability is experimentally demonstrated using a flashlamp-pumped, Nd-doped gadolinium gallium garnet rod placed in a plane-parallel optical cavity.

  9. Resonant Landau-Zener transitions in a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-06-01

    Spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that—apart from the well-known conductance dip located at the magnetic field equal to the helical-field amplitude Bh—the additional conductance dips (with zero conductance) appear at a magnetic field different from Bh. This effect occurring in the non-adiabatic regime is explained as resulting from the resonant Landau-Zener transitions between the spin-split subbands.

  10. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  11. Electron impact excitation of resonance transitions in atomic potassium

    SciTech Connect

    Tayal, S.S.; Msezane, A.Z.

    1993-05-01

    Cross sections for electron impact excitation of the 4 s{sup 2}S - 4p {sup 2}P{sup o} and 4s {sup 2}S - 5p {sup 2}P{sup o} transitions in atomic potassium are calculated in the low-energy region from 1.5 to 30 eV using the R-matrix method. We included eight target states (4s {sup 2}S, 4p {sup 2}P{sup o}, 5s {sup 2}S, 3d {sup 2}D, 5p {sup 2}P{sup o}, 4d {sup 2}D, 6S {sup 2}S, and 4f {sup 2}F{sup o}) in the close-coupling expansion. These states are represented by extensive configuration- interaction wavefunctions constructed from the orthogonal one-electron orbitals: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, and 6s. The calculated results are compared with the available experiments and other calculations. The present calculation shows a resonance structure in the cross section for the excitation of the resonance 4s {sup 2}S - 4p {sup 2}P{sup o} transition around 2.5 eV.

  12. PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE

    SciTech Connect

    Cordes, J. M.

    2013-09-20

    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

  13. Quantum phase transition of light in a one-dimensional photon-hopping-controllable resonator array

    SciTech Connect

    Wu Chunwang; Gao Ming; Deng Zhijiao; Dai Hongyi; Chen Pingxing; Li Chengzu

    2011-10-15

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon-hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast readout of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to upcoming experiments involving a small number of coupled resonators.

  14. On transition from Alfvén resonance to forced magnetic reconnection

    SciTech Connect

    Luan, Q.; Wang, X.

    2014-07-15

    We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity η is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ∼O((η/k){sup 1/3})

  15. Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Gabbay, Alon; Reno, John; Wendt, Joel R.; Gin, Aaron; Wanke, Michael C.; Sinclair, Michael B.; Shaner, Eric; Brener, Igal

    2011-05-01

    We report on the coupling and interaction between the fundamental resonances of planar metamaterials (split ring resonators) and intersubband transitions in GaAs/AlGaAs quantum wells structures in the mid-infrared. An incident field polarized parallel to the sample surface is converted by the metamaterial resonators into a field with a finite component polarized normal to the surface and interacts strongly with the large dipole moment associated with quantum well intersubband transitions.

  16. EIT resonance features in strong magnetic fields in rubidium atomic columns with length varying by 4 orders

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Sargsyan, A.; Sarkisyan, D.; Wojciechowski, A.; Stabrawa, A.; Gawlik, W.

    2016-06-01

    Electromagnetically induced transparency (EIT) resonances are investigated with the 85Rb D 1 line (795 nm) in strong magnetic fields (up to 2 kG) with three different types of spectroscopic vapor cells: the nano-cell with a thickness along the direction of laser light L ≈ 795 nm, the micro-cell with L = 30 μm with the addition of a neon buffer gas, and the centimeter-long glass cell. These cells allowed us to observe systematic changes of the EIT spectra when the increasing magnetic field systematically decoupled the total atomic electron and nuclear angular moments (the Paschen-Back/Back-Goudsmit effects). The observations agree well with a theoretical model. The advantages and disadvantages of a particular type of cell are discussed along with the possible practical applications.

  17. Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise.

    PubMed

    Jia, Yanbing; Gu, Huaguang

    2015-12-01

    The effect of phase noise on the coherence dynamics of a neuronal network composed of FitzHugh-Nagumo (FHN) neurons is investigated. Phase noise can induce dissimilar coherence resonance (CR) effects for different coupling strength regimes. When the coupling strength is small, phase noise can induce double CRs. One corresponds to the average frequency of phase noise, and the other corresponds to the intrinsic firing frequency of the FHN neuron. When the coupling strength is large enough, phase noise can only induce single CR, and the CR corresponds to the intrinsic firing frequency of the FHN neuron. The results show a transition from double CRs to single CR with the increase in the coupling strength. The transition can be well interpreted based on the dynamics of a single neuron stimulated by both phase noise and the coupling current. When the coupling strength is small, the coupling current is weak, and phase noise mainly determines the dynamics of the neuron. Moreover, the phase-noise-induced double CRs in the neuronal network are similar to the phase-noise-induced double CRs in an isolated FHN neuron. When the coupling strength is large enough, the coupling current is strong and plays a key role in the occurrence of the single CR in the network. The results provide a novel phenomenon and may have important implications in understanding the dynamics of neuronal networks. PMID:26723163

  18. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.

    PubMed

    Wang, Hui; Tam, Felicia; Grady, Nathaniel K; Halas, Naomi J

    2005-10-01

    The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal. Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasmon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures. PMID:16853342

  19. Electron Spin Resonance of Tetrahedral Transition Metal Oxyanions (MO4n-) in Solids.

    ERIC Educational Resources Information Center

    Greenblatt, M.

    1980-01-01

    Outlines general principles in observing sharp electron spin resonance (ESR) lines in the solid state by incorporating the transition metal ion of interest into an isostructural diamagnetic host material in small concentration. Examples of some recent studies are described. (CS)

  20. Design of terahertz beam splitter based on surface plasmon resonance transition

    NASA Astrophysics Data System (ADS)

    Xiang, Liu; Dong-Xiao, Yang

    2016-04-01

    According to the resonance transition between propagating surface plasmon and localized surface plasmon, we demonstrate a design of beam splitter that can split terahertz wave beams in a relatively broad frequency range. The transmission properties of the beam splitter are analyzed utilizing the finite element method. The resonance transition between two kinds of plasmons can be explained by a model of coherent electron cloud displacement.

  1. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  2. Primary gamma transitions in 173,174Yb in neutron capture at isolated resonances

    NASA Astrophysics Data System (ADS)

    Telezhnikov, S. A.; Granja, C.; Hiep, H. T.; Honzátko, J.; Králík, M.; Montero-Cabrera, M.-E.; Pospíšil, S.

    2005-12-01

    Gamma transitions in 174Yb were investigated in radiative neutron capture at 23 isolated and additional 7 partially resolved summed resonances of 173Yb. The time-of-flight technique was used on an enriched target at the IBR-30 reactor at JINR Dubna. A total of 77 primary gamma transitions are reported populating levels in 174Yb up to 2.8 MeV in the spin-parity range 1,2,3,4. Spin and parity assignments of neutron resonances and of populated levels are proposed. In addition to these results, seven primary gamma transitions in 173Yb were also observed from neutron capture at three isolated resonances of 172Yb.

  3. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. PMID:26295168

  4. Resonant magnetoresistance in the vicinity of a phase transition

    SciTech Connect

    Atsarkin, V. A. Demidov, V. V.

    2013-01-15

    The change in the electrical conductivity of manganite films upon microwave pumping in the magnetic resonance conditions is investigated. The temperature dependence of the effect correlates with the temperature variation of colossal magnetoresistance (CMR), passing through a maximum at the Curie point. The results are interpreted using a model that assumes a decrease in the absolute value vertical bar M vertical bar of the magnetic moment of the sample under the action of magnetoresonant saturation, which leads to an increase in resistance in accordance with the CMR mechanism. Theoretical analysis based on the Landau-Lifshitz-Bloch equation confirms the correctness of this model and ensures good agreement with experiment.

  5. Resonances due to the Landau-Zener transition

    SciTech Connect

    Tazawa, T. ); Abe, Y. )

    1990-01-01

    We have derived a new useful analytic formula for the {ital T} matrix in the quantum-mechanical perturbation approach within the two-state problem with finite-range coupling which is appropriate for the discussion of the Landau-Zener transition. The resonancelike behaviors were predicted by classical or semiclassical approach in which constant coupling between two adiabatic states was assumed. In the quantum-mechanical approach, inclusion of the effect of reasonable finite-range coupling would not destroy the pattern of the resonancelike structures so much, while the magnitude of the calculated cross section is merely about 10% of that calculated by the semiclassical approach.

  6. Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Mancini, E.; Pressacco, F.; Haertinger, M.; Fullerton, E. E.; Suzuki, T.; Woltersdorf, G.; Back, C. H.

    2013-06-01

    We report the results of ferromagnetic (FMR) resonance measurements on epitaxial FeRh/MgO(0 0 1) samples across the phase transition from the antiferromagnetic (AF) state of FeRh to its ferromagnetic (F) state. From temperature-dependent measurements of position, width and amplitude of the FMR line the phase transition is studied in detail. Our measurements indicate that the AF to F phase transition of FeRh is first order in nature. In addition, the angular and frequency-dependent FMR measurements are used to determine the anisotropy constants and the Gilbert damping parameter of the epitaxial FeRh films.

  7. Kepler-223: A Resonant Chain of Four Transiting, Sub-Neptune Planets

    NASA Astrophysics Data System (ADS)

    Mills, Sean; Fabrycky, Daniel C.; Migaszewski, Cezary; Ford, Eric B.; Petigura, Erik; Isaacson, Howard T.

    2016-05-01

    Surveys have revealed an abundance of multi-planet systems containing super-Earths and Neptunes in few-day to few-month orbits. Orbital periods of pairs of planets in the same system occasionally lie near, but generally not exactly on, ratios of small integers (resonances), allowing for the detection of the planets perturbing each other. There is debate whether in situ assembly or significant inward migration is the dominant mechanism of their formation. Simulations suggest migration creates tightly-packed, resonant systems, often in chains of resonance. Of the hundreds of multi-planet systems of sub-Neptunes, there is weak statistical enhancement near resonances, but no individual system has been identified that requires migration. Here we describe dynamical modeling of the system Kepler-223, which has a series of resonances among its four planets. We observe transit timing variations (TTVs), model them as resonant angle librations, and compute long-term stability, combining these analyses to constrain dynamical parameters and planetary masses. The detailed architecture of Kepler-223 is too finely tuned for formation by scattering, whereas numerical simulations demonstrate its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by many mechanisms contributing to the observed period distribution. Planetesimal interactions in particular are thought to be responsible for establishing thecurrent orbits of the four giant planets in our own Solar System by disrupting a theoretical initial resonant chain like that actually observed in Kepler-223.

  8. Resonance structure and mode transition of quarter-wave ULF pulsations around the dawn terminator

    NASA Astrophysics Data System (ADS)

    Obana, Yuki; Waters, Colin L.; Sciffer, Murray D.; Menk, Frederick W.; Lysak, Robert L.; Shiokawa, Kazuo; Hurst, Anthony W.; Petersen, Tanja

    2015-06-01

    Quarter-wave modes are standing shear Alfvén waves supported along geomagnetic field lines in space. They are predicted to be generated when the ionosphere has very different conductance between the north compared with the south ionosphere. Our previous observation reported that the resonant frequency is sometimes very low around the dawn terminator and suggested these were due to quarter-wave modes. In this paper, we examine the resonance structure that provides further evidence of the presence of quarter-wave modes. Data from three magnetometers in New Zealand were analyzed. Four events are discussed which show extraordinarily low eigenfrequencies, wide resonance widths, and strong damping when the ionosphere above New Zealand was in darkness while the conjugate northern hemisphere ionosphere was sunlit. Later in the morning, the eigenfrequencies and resonance widths changed to normal daytime values. The wide resonance width and the strong damping of the quarter-wave modes arise from strong energy dissipation in the dark side ionosphere. One event exhibited field line resonance structure continuously through a transition from very low frequency to the normal daytime values. The frequency change began when the dawn terminator passed over New Zealand and finished 1 h later when the ratio of the interhemispheric ionospheric conductances decreased and reached ~5. These observations are strong evidence of the presence of quarter-wave modes and mode conversion from quarter- to half-wave resonances. These experimental results were compared with the ULF wave fields obtained from a 2.5-dimensional simulation model.

  9. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model

    SciTech Connect

    N. Suzuki, T. Sato, T.-S. H. Lee

    2010-10-01

    We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.

  10. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  11. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance

    SciTech Connect

    Rini, Matteo; Cavalleri, Andrea; Schoenlein, Robert

    2005-01-01

    We study the ultrafast insulator-to-metal transition in nanoparticles of VO2 , obtained by ion implantation and self-assembly in silica. The nonmagnetic, strongly correlated compound VO2 undergoes a reversible phase transition, which can be photoinduced on an ultrafast time scale. In the nanoparticles, prompt formation of the metallic state results in the appearance of surface-plasmon resonance. We achieve large, ultrafast enhancement of optical absorption in the near-infrared spectral region that encompasses the wavelength range for optical-fiber communications. One can further tailor the response of the nanoparticles by controlling their shape.

  12. Temporal buildup of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    NASA Astrophysics Data System (ADS)

    Valente, P.; Failache, H.; Lezama, A.

    2003-01-01

    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expressions for the transient absorption spectra are given for simple model systems and a model for the calculation of the time-dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time-dependent line shape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb D2 line in an atomic beam experiment.

  13. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  14. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Pérez Moyet, Richard; Stace, Joseph; Amin, Ahmed; Finkel, Peter; Rossetti, George A.

    2015-10-01

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]C-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  15. Spin-orbit interaction in bent carbon nanotubes: resonant spin transitions

    NASA Astrophysics Data System (ADS)

    Osika, E. N.; Szafran, B.

    2015-11-01

    We develop an effective tight-binding Hamiltonian for spin-orbit (SO) interaction in bent carbon nanotubes (CNT) for the electrons forming the π bonds between the nearest neighbor atoms. We account for the bend of the CNT and the intrinsic spin-orbit interaction which introduce mixing of π and σ bonds between the p z orbitals along the CNT. The effect contributes to the main origin of the SO coupling—the folding of the graphene plane into the nanotube. We discuss the bend-related contribution of the SO coupling for resonant single-electron spin and charge transitions in a double quantum dot. We report that although the effect of the bend-related SO coupling is weak for the energy spectra, it produces a pronounced increase of the spin transition rates driven by an external electric field. We find that spin-flipping transitions driven by alternate electric fields have usually larger rates when accompanied by charge shift from one dot to the other. Spin-flipping transition rates are non-monotonic functions of the driving amplitude since they are masked by stronger spin-conserving charge transitions. We demonstrate that the fractional resonances—counterparts of multiphoton transitions for atoms in strong laser fields—occurring in electrically controlled nanodevices already at moderate ac amplitudes—can be used to maintain the spin-flip transitions.

  16. Which orbital and charge ordering in transition metal oxides can resonant X-ray diffraction detect?

    NASA Astrophysics Data System (ADS)

    Di Matteo, Sergio

    2009-11-01

    The present article is a brief critical review about the possibility of detecting charge and/or orbital order in transition-metal oxides by means of resonant x-ray diffraction. Many recent models of transition-metal oxides are based on charge and/or orbitally ordered ground-states and it has been claimed in the past that resonant x-ray diffraction is able to confirm or reject them. However, in spite of the many merits of this technique, such claims are ambiguous, because the interpretative frameworks used to analyze such results in transition-metal oxides, where structural distortions are always associated to the claimed charged/orbitally ordered transition, strongly influence (not to say suggest) the answer. In order to clarify this point, I discuss the two different definitions of orbital and charge orderings which are often used in the literature without a clear distinction. My conclusion is that the answer to the question of the title depends on which definition is adopted.

  17. Delay-induced state transition and resonance in periodically driven tumor model with immune surveillance

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Han, Qinglin; Zeng, Chunhua; Wang, Hua; Fu, Yunchang; Zhang, Chun

    2014-06-01

    The phenomenon of stochastic resonance (SR) in a tumor growth model under the presence of immune surveillance is investigated. Time delay and cross-correlation between multiplicative and additive noises are considered in the system. The signal-to-noise ratio (SNR) is calculated when periodic signal is introduced multiplicatively. Our results show that: (i) the time delay can accelerate the transition from the state of stable tumor to that of extinction, however the correlation between two noises can accelerate the transition from the state of extinction to that of stable tumor; (ii) the time delay and correlation between two noises can lead to a transition between SR and double SR in the curve of SNR as a function of additive noise intensity, however for the curve of SNR as a function of multiplicative noise intensity, the time delay can cause the SR phenomenon to disappear, and the cross-correlation between two noises can lead to a transition from SR to stochastic reverse-resonance. Finally, we compare the SR phenomenon for the multiplicative periodic signal with that for additive periodic signal in the tumor growth model with immune surveillance.

  18. Percolation transition in the kinematics of nonlinear resonance broadening in Charney-Hasegawa-Mima model of Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harris, Jamie; Connaughton, Colm; Bustamante, Miguel D.

    2013-08-01

    We study the kinematics of nonlinear resonance broadening of interacting Rossby waves as modelled by the Charney-Hasegawa-Mima equation on a biperiodic domain. We focus on the set of wave modes which can interact quasi-resonantly at a particular level of resonance broadening and aim to characterize how the structure of this set changes as the level of resonance broadening is varied. The commonly held view that resonance broadening can be thought of as a thickening of the resonant manifold is misleading. We show that in fact the set of modes corresponding to a single quasi-resonant triad has a non-trivial structure and that its area in fact diverges for a finite degree of broadening. We also study the connectivity of the network of modes which is generated when quasi-resonant triads share common modes. This network has been argued to form the backbone for energy transfer in Rossby wave turbulence. We show that this network undergoes a percolation transition when the level of resonance broadening exceeds a critical value. Below this critical value, the largest connected component of the quasi-resonant network contains a negligible fraction of the total number of modes in the system whereas above this critical value a finite fraction of the total number of modes in the system are contained in the largest connected component. We argue that this percolation transition should correspond to the transition to turbulence in the system.

  19. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.

    PubMed

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L(1) and the other around L(2), with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L(1) and L(2) as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena. (c) 2000 American Institute of Physics. PMID:12779398

  20. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Jiménez-Galán, Álvaro; Martín, Fernando; Argenti, Luca

    2016-02-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate ab initio calculations or be extracted from a few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N =2 threshold for the RABITT (reconstruction of attosecond beating by interference of two-photon transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association with a weak IR probe, obtaining results in quantitative agreement with those from accurate ab initio simulations. In particular, we show that (i) the use of finite pulses results in a homogeneous redshift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity to intermediate autoionizing states; (ii) the phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or 2 π overall variation.

  1. Ramsey effects in coherent resonances at closed transition Fg = 2 → Fe = 3 of 87Rb

    NASA Astrophysics Data System (ADS)

    Grujić, Z. D.; Lekić, M. M.; Radonjić, M.; Arsenović, D.; Jelenković, B. M.

    2012-12-01

    Experimental and theoretical investigations show the strong effect of the pump beam, spatially separated from the probe beam, on the probe's electromagnetically induced absorption (EIA) and nonlinear magneto-optical rotation (NMOR). Linearly polarized pump and probe laser beams are locked to the Fg = 2 → Fe = 3 transition of the 87Rb D2 line and pass a vacuum Rb gas cell coaxially. We show that the observed narrowing of EIA and NMOR resonances is due to the Ramsey effect. Linewidths of the resonances decrease when the size of the dark region between pump and probe lasers increases. Variation of the angle between pump and probe linear polarizations strongly influences the phases of atomic coherences generated by the pump beam and consequently the line-shapes of the probe EIA and NMOR resonances. Complete change of the resonance sign is possible if the phases of the ground state coherences, Δmg = 2, are altered by π. The central EIA fringe becomes less pronounced if the probe intensity increases, due to the larger probe contribution to atomic evolution. Ramsey-like interference is a manifestation of the evolution of ground state Zeeman coherences, required for EIA, in the dark region in the presence of a small magnetic field.

  2. Long-wavelength approximation in on- and off-resonance transitions

    SciTech Connect

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2005-02-01

    In view of the possibilities of laser spectroscopy with very short pulses and relatively high frequencies, we examine aspects of the theory of atom-field interactions that are related to violation of the condition of the long-wavelength approximation (LWA) according to which kr<<1, where r is 'of the order of atomic dimensions' and k is the magnitude of the wave vector. On- and off-resonance transitions are considered, with kr being larger than unity due to the large extent of the two wave functions involved in the coupling matrix element. The implementation of the analysis uses bound-free transition matrix elements with the n=50 and 80 hydrogenic functions as initial states and values of k up to 27 eV, which is sufficient to produce kr>1, thereby rendering the LWA inoperative. In spite of this, it is shown that, for on-resonance transitions, the results from the use of the well-known multipole operators resulting from the LWA [e.g., the electric dipole approximation (EDA)] agree with those from the exact expressions derived here from the application of the multipolar Hamiltonian. This numerical agreement is proven analytically. As a test of the kind of convergence of the multipole series expansion for small values of k and large r, it is shown that the lowest-order ratio of electric dipole to quadrupole matrix elements decreases rapidly within 1.0 atomic unit above threshold. Finally, it is shown that off-resonance couplings lead to differences between the full-interaction operator and the EDA which cannot be neglected. In the extreme case of intrashell couplings for the n=50 shell, calculation shows that the 50p state is coupled to angular momentum states up to l=21, compared to the electric dipole coupling of {delta}l={+-}1.

  3. Transition from Coulomb Blockade to Resonant Transmission in a MoS2 Nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Yanjing; Mason, Nadya

    2014-03-01

    We have measured a side-gated nanoribbon of MoS2 at low temperature, and observed the transition from Coulomb blockade to resonant transmission when the Fermi level is tuned with a gate. We show that near the crossover between these regimes, the entire nanoribbon acts as a single quantum dot. Our findings may shed light on quasi-ballistic transport in the material. We also discuss the quantum dot formation in terms of a substrate-induced disorder potential, and consider other possible origins of disorder.

  4. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    SciTech Connect

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-15

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  5. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M.; Fehrenbacher, Markus

    2014-08-04

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263 K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  6. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    SciTech Connect

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-05-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  7. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  8. Transit Timing Variations for Planets near Eccentricity-type Mean Motion Resonances

    NASA Astrophysics Data System (ADS)

    Deck, Katherine M.; Agol, Eric

    2016-04-01

    We derive the transit timing variations (TTVs) of two planets near a second-order mean motion resonance (MMR) on nearly circular orbits. We show that the TTVs of each planet are given by sinusoids with a frequency of {{jn}}2-(j-2){n}1, where j≥slant 3 is an integer characterizing the resonance and n2 and n1 are the mean motions of the outer and inner planets, respectively. The amplitude of the TTV depends on the mass of the perturbing planet, relative to the mass of the star, and on both the eccentricities and longitudes of pericenter of each planet. The TTVs of the two planets are approximated anti-correlated, with phases of ϕ and ≈ φ +π , where the phase ϕ also depends on the eccentricities and longitudes of pericenter. Therefore, the TTVs caused by proximity to a second-order MMR do not in general uniquely determine both planet masses, eccentricities, and pericenters. This is completely analogous to the case of TTVs induced by two planets near a first-order MMR. We explore how other TTV signals, such as the short-period synodic TTV or a first-order resonant TTV, in combination with the second-order resonant TTV, can break degeneracies. Finally, we derive approximate formulae for the TTVs of planets near any order eccentricity-type MMR; this shows that the same basic sinusoidal TTV structure holds for all eccentricity-type resonances. Our general formula reduces to previously derived results near first-order MMRs.

  9. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  10. Coherent population trapping resonances in the presence of the frequency-phase noises of an exciting field

    SciTech Connect

    Sokolov, A V; Matveev, A N; Samokotin, A Yu; Akimov, A V; Sorokin, Vadim N; Kolachevsky, Nikolai N

    2009-05-31

    The influence of noises of the frequency and phase difference of an exciting bichromatic field on the parameters of coherent population trapping resonances is studied experimentally. When the phase difference fluctuates within a limited interval near its average value with a short correlation time, the resonance contrast decreases proportionally to exp({phi}{sup 2}{sub rms}), where {phi}{sup 2}{sub rms} is the phase dispersion (in rad{sup 2}). In this case, the spectral width of the resonance remains constant. In another limiting case, when the phase noise has a long correlation time, the resonance contour broadens, the area under the contour being invariable. Experiments were performed with the Zeeman sublevels of the ground state of {sup 87}Rb by exciting rubidium vapour in a glass cell at the resonance wavelength of 795 nm. (interaction of laser radiation with matter)

  11. TRANSIT TIMING VARIATION OF NEAR-RESONANCE PLANETARY PAIRS: CONFIRMATION OF 12 MULTIPLE-PLANET SYSTEMS

    SciTech Connect

    Xie, Ji-Wei E-mail: jwxie@astro.utoronto.ca

    2013-10-01

    We extract transit timing variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order mean motion resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well-known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tightly constrained using these TTVs. The planetary pair in KOI 880 seems to have particularly high mass and density ratios, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains (e.g., KOI 500)

  12. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-06-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2.

  13. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

    PubMed Central

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  14. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor.

    PubMed

    Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye

    2016-01-01

    In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974

  15. Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Schlieder, Joshua E.; Crossfield, Ian J. M.; Howard, Andrew W.; Deck, Katherine M.; Ciardi, David R.; Sinukoff, Evan; Allers, Katelyn N.; Best, William M. J.; Liu, Michael C.; Beichman, Charles A.; Isaacson, Howard; Hansen, Brad M. S.; Lépine, Sébastien

    2015-10-01

    Discoveries from the prime Kepler mission demonstrated that small planets (<3 {R}\\oplus ) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65+/- 6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA’s K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, {R}P/{R}\\star = 2.60+/- 0.14% and 3.15+/- 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 ± 0.43 {R}\\oplus and 1.92 ± 0.53 {R}\\oplus , respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and a period ratio {P}c/{P}b = 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system’s formation history. Transit timing variations due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.

  16. The Orbital Architecture of 55 Cnc: An Orbital Resonance, Jupiter Analog, and Transiting Super-Earth

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.; Payne, M.; Ford, E.; Wright, J.

    2011-09-01

    55 Cnc is the only naked eye star with a known transiting planet (Winn et al. 2011) and one of a few systems with five known planets characterized via Doppler methods. The planets span a wide range of masses and orbital periods. We investigate the orbital architecture, focusing on two of the giant planets near 3:1 mean-motion resonance and the potential impact on the dynamical effects on the other planets. To quantify the uncertainty in the orbital parameters of the 55 Cnc system requires exploring a high-dimensional ( 35) parameter space and using self-consistent N-body integrations, both of which are computationally demanding. To surmount these challenges, we apply a differential evolution Markov chain Monte Carlo algorithm to characterize the orbital properties and masses. We present these results and discuss the implications on the dynamical evolution of the 55 Cnc system.

  17. Ionisation and fragmentation of polycyclic aromatic hydrocarbons by femtosecond laser pulses at wavelengths resonant with cation transitions

    NASA Astrophysics Data System (ADS)

    Robson, L.; Ledingham, K. W. D.; Tasker, A. D.; McKenna, P.; McCanny, T.; Kosmidis, C.; Jaroszynski, D. A.; Jones, D. R.; Issac, R. C.; Jamieson, S.

    2002-07-01

    When femtosecond laser pulses irradiate hydrocarbon molecules, then many fragmentation channels evident in nanosecond irradiation are bypassed, providing a strong analytically useful parent ion. However a number of molecules show only a very small or indeed no parent ions and recent papers suggest that those that do not produce parent peaks have cation transitions in resonance with the femtosecond laser wavelength. This Letter shows that this resonance effect is not universal and some aromatic molecules not only show strong parent peaks but also doubly and triply ionised entities when their cation absorption spectrum is strongly resonant at either the 800 or 400 nm or indeed both.

  18. Transition state resonances by complex scaling: A three-dimensional study of ClHCl

    NASA Astrophysics Data System (ADS)

    Leforestier, Claude; Yamashita, Koichi; Moiseyev, Nimrod

    1995-11-01

    Four lowest-lying transition state resonance energies and lifetimes in the three-dimensional ClH+Cl←ClHCl→Cl+HCl reaction are reported in this paper. This is the first application of the complex coordinate method to a three-dimensional, triatomic molecule with a double dissociation continuum, which has been handled by means of the hyperspherical coordinates. Two numerical strategies have been considered in order to make the calculations feasible. The first one consists in minimizing the dimension of the Hamiltonian matrix by prediagonalization of the basis set. This has been achieved in terms of the successive adiabatic reduction method of Bac̆ić and Light [J. Chem. Phys. 85, 4594 (1986)], holding the hyperradius fixed. The second strategy is to compute a reduced set of eigenvalues corresponding to the resonances by using the complex Lanczos algorithm. The number of Lanczos recursions required to achieve convergence is dramatically reduced by applying the iterative scheme to the complex scaled resolvant operator (E0-H¯)-1, rather than to the complex scaled Hamiltonian. Inversion of a large complex symmetric matrix is avoided by using an LU decomposition of the complex scaled Hamiltonian matrix (E0-H¯). The proposed numerical approach appears to be very efficient and powerful for the study of large systems.

  19. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R.

    2015-09-01

    Atomically thin two-dimensional crystals have revolutionized materials science. In particular, monolayer transition metal dichalcogenides promise novel optoelectronic applications, owing to their direct energy gaps in the optical range. Their electronic and optical properties are dominated by Coulomb-bound electron-hole pairs called excitons, whose unusual internal structure, symmetry, many-body effects and dynamics have been vividly discussed. Here we report the first direct experimental access to all 1s A excitons, regardless of momentum--inside and outside the radiative cone--in single-layer WSe2. Phase-locked mid-infrared pulses reveal the internal orbital 1s-2p resonance, which is highly sensitive to the shape of the excitonic envelope functions and provides accurate transition energies, oscillator strengths, densities and linewidths. Remarkably, the observed decay dynamics indicates an ultrafast radiative annihilation of small-momentum excitons within 150 fs, whereas Auger recombination prevails for optically dark states. The results provide a comprehensive view of excitons and introduce a new degree of freedom for quantum control, optoelectronics and valleytronics of dichalcogenide monolayers.

  20. Argand-diagram representation of transition amplitudes for resonant reactive scattering: e+HCl and e+H2

    NASA Astrophysics Data System (ADS)

    Lutrus, C. K.; Suck Salk, S. H.

    1989-01-01

    Resonances for rearrangement collisions (reactive scattering) involving the two dissociative attachment processes, e+HCl-->H+Cl- and e+H2-->H+H-, are examined. It is shown from the Argand-diagram representation of transition amplitudes that strong resonance is present in the former but not in the latter. That is, the strong resonance is evidenced by the clear exhibition of a phase change by π in a counterclockwise direction in the Argand diagram as the collision energy increases. Such a manifest phase change is absent in the dissociative attachment process of e+H2-->H+H-. This is attributed to the presence of equally strong, direct, and resonant scattering processes, and to the strong influence of mutually destructive interference.

  1. Magnetization dynamics in transition metal ferromagnets studied by magneto-tunneling and ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Ingvarsson, Snorri Thorgeir

    2001-08-01

    Magnetization dynamics of micron-scale magnets are presently not well understood. Gaining a deeper understanding of the magnetic dynamics in that size range is of paramount importance for improving the performance and reliability of magnetoelectronic devices. We have studied magnetization dynamics in transition metal ferromagnets using two different techniques. One utilizes the connection between tunneling resistance and magnetization configuration in magnetic tunnel junctions (MTJs). Measuring electronic noise in the MTJs allows us to study magnetization fluctuations in the magnetic electrodes. The other method is a ferromagnetic resonance (FMR) experiment specially designed for magnetic thin films. With the noise measurement method, we observed low frequency noise due to quasi-equilibrium thermal magnetization fluctuations in micron-scale MTJs. We have established a connection between the dc-susceptibility and magnetic noise in our samples, based on the fluctuation-dissipation theorem and the Krainers-Kronig relations. We discuss the effects of magnetic fluctuations on the sensitivity of MTJ magnetic field sensors. Through FMR-measurements on thin Ni81Fe19 films we have discovered a strong surface effect on the magnetization damping; damping increases significantly as the films become thinner. The effect is greatly enhanced when there is a material with both strong spin-orbit coupling and strong "s-d scattering", such as Platinum (Pt), on the surface of the Ni81Fe19 films. This increases the electron-magnon scattering at the interface, facilitating magnetization relaxation, or damping. We have also studied the effect of doping Ni80Fe20 with various transition metal elements. In some cases this dramatically increases the magnetic damping, most notably with Osmium (0s) as a dopant. The damping can be varied continuously over a wide range by adjusting the Os concentration. This result, in combination with the surface effect, should prove extremely important in

  2. KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE

    SciTech Connect

    Nesvorný, David; Terrell, Dirk; Kipping, David; Hartman, Joel; Bakos, Gáspár Á.; Buchhave, Lars A.

    2013-11-01

    The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled ≅12 hr TTV amplitude. Here we report a thorough analysis of KOI-142.01's transits. We discover periodic transit duration variations (TDVs) of KOI-142.01 that are nearly in phase with the observed TTVs. We show that KOI-142.01's TTVs and TDVs uniquely detect a non-transiting companion with a mass ≅0.63 that of Jupiter (KOI-142c). KOI-142.01's mass inferred from the transit variations is consistent with the measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio P{sub c} /P{sub b} = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here in detail, can be used to test various formation theories that have been proposed to explain the near-resonant pairs of exoplanets.

  3. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  4. Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio

    2016-08-01

    We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.

  5. Nuclear magnetic resonance at up to 10.1 GPa pressure detects an electronic topological transition in aluminum metal.

    PubMed

    Meissner, Thomas; Goh, Swee K; Haase, Jürgen; Richter, Manuel; Koepernik, Klaus; Eschrig, Helmut

    2014-01-01

    High-sensitivity (27)Al nuclear magnetic resonance (NMR) measurements of aluminum metal under hydrostatic pressure of up to 10.1 GPa reveal an unexpected negative curvature in the pressure dependence of the electronic density of states measured through shift and relaxation, which violates free electron behavior. A careful analysis of the Fermiology of aluminum shows that pressure induces an electronic topological transition (Lifshitz transition) that is responsible for the measured change in the density of states. The experiments also reveal a sudden increase in the NMR linewidth above 4.2 GPa from quadrupole interaction, which is not in agreement with the metal's cubic symmetry. PMID:24292279

  6. Feshbach resonances and transition rates for cold homonuclear collisions between {sup 39}K and {sup 41}K atoms

    SciTech Connect

    Lysebo, M.; Veseth, L.

    2010-03-15

    We report results from close-coupling calculations for homonuclear ultracold collisions between potassium atoms, using the most up-to-date Born-Oppenheimer potential curves. The present study includes both of the bosonic isotopes {sup 39}K and {sup 41}K. The s-wave scattering lengths as functions of the magnetic field strength for collisions between atoms in identical and different hyperfine states are obtained. Several Feshbach resonances are located and characterized for both isotopes. Comparison with experiments, where such data are available, show excellent agreement. We also study weakly bound molecular states of the K{sub 2} molecule in close relation to the calculated Feshbach resonances. Another objective of the present work is to study inelastic collisions in which the hyperfine states of the colliding atoms are changed. From this type of calculation we obtain transition rates as functions of the magnetic field strength. Finally, we discuss how such transition rates might be of importance for experimental work.

  7. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  8. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Theoretical Investigation of Coherent Enhancement for Resonant Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-An; Wang, Zu-Geng; Sun, Zhen-Rong

    2008-06-01

    We theoretically investigate the coherent enhancement of resonant two-photon transitions (TPT) in a three-level atomic system. The TPT can be coherently enhanced by modulating spectral amplitude due to eliminating the destructive interference, though partial laser energy losses. Maximal enhancement of TPT can be achieved by modulating spectral phase due to establishing completely constructive interference. Our research provides a theoretical basis for experimental investigation and appears to have potential application on coherent control in the complicated quantum system.

  9. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGESBeta

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  10. Using a Microwave Resonant Cavity to Study Hydrogen Bonding at Phase Transition in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Roberts, Jim; Dahiya, Jai; Ghosh, S.

    2012-10-01

    The resonant microwave cavity is a very sensitive device for detecting small changes in material properties as they are perturbed by temperature, electric and magnetic fields. In this laboratory all states of mater have studied with the resonant cavity, including the plasma state. In this paper we report on an experiment with water as it changes from liquid (disordered) to water ice (ordered) phase. In that hydrogen bonds are involved in this process, we are able to observe their behavior through the dielectric response of H2O as it is cycled from solid to liquid. The transition through the densest state of water near 4^oC indicates that the structure of the water molecules in the ice phase at 0^o C is less compact than that experienced at the most dense temperature of water. If we associate this density with the interaction of the hydrogen bonds, it can be postulated that the distribution of the structure in snowflakes is a consequence of random processes in sharing the hydrogen bonds as the system cycles from the ``disordered'' state to the more ordered state. In this work phase transition from liquid to solid and solid to liquid was studied for H2O and D2O. It was assumed that the bonding of the two molecules behave the same during the transition from ordered to disordered states and in the reverse transition for disordered to ordered states. The apparatus employed in this investigation is discussed briefly.

  11. Using a Microwave Resonant Cavity to Study Hydrogen Bonding at Phase Transition in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Roberts, James; Dahiya, Jai

    2010-10-01

    The resonant microwave cavity is a very sensitive device for detecting small changes in material properties as they are perturbed by temperature, electric and magnetic fields. In this laboratory all states of mater have studied with the resonant cavity, including the plasma state. In this paper we report on an experiment with water as it changes from liquid (disordered) to water ice (ordered) phase. In that hydrogen bonds are involved n this process, we are able to observe behavior in the dielectric response of H2O as it is cycled from solid to liquid. The transition through the densest state of water near 4^oC indicates that the order of the water molecules in the ice phase is less than that experienced at the most dense temperature of water. If we associate this density with the interaction of the hydrogen bonds, it can be postulated that the distribution of the structure in snowflakes is a consequence of random processes in sharing the hydrogen bonds as the system cycles from the disordered state to the more ordered state. Phase transition from liquid to solid and solid to liquid was studied for H2O and D2O. It is expected that the bonding of the two molecules will behave the same during the transition from ordered to disordered states and in the reverse transition. The apparatus used in this investigation will be discussed.

  12. The theory of electro-magnetic radiation of electron transiting through the resonance-tunnel structure

    SciTech Connect

    Tkach, M.; Seti, Ju.; Voitsekhivska, O.; Fartushynsky, R.

    2009-12-14

    The quasi-stationary electron states are studied in the three-barrier resonance-tunnel structure which is the basic element of coherent quantum cascade lasers. In the models of rectangular and delta-barrier potentials there is established theory of evolution and collapse of double resonance complexes in a symmetric resonance-tunnel structure. The induced conductivity of nano-system is calculated within the both models. It is shown that the negative induced conductivity of three-barrier resonance-tunnel structure in delta-barrier model is dozens times smaller than more realistic magnitudes obtained within the rectangular potentials model.

  13. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  14. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  15. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    SciTech Connect

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  16. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G.

    2013-12-01

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  17. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  18. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  19. Ultrafast Control of a Surface Plasmon Resonance via the Insulator to Metal Transition in V02 Nanoparticles

    SciTech Connect

    Rini, Matteo; Cavalleri, Andrea; Lopez, R.; Boatner, Lynn A; Haglund, Jr, Richard F; Haynes, Tony E; Feldman, Leonard C.

    2005-01-01

    We report on the study of the ultrafast insulator-to-metal transition in nanoparticles of strongly correlated VO2. The particles are grown by ion-implantation and self-assembly in a Silica matrix and can be switched between the insulating and metallic phase within less than 100 fs. The prompt formation of the metallic state results in the appearance of a surface-plasmon resonance that is absent in the bulk and can be further tailored by controlling the particle shape.

  20. π π →π γ* amplitude and the resonant ρ →π γ* transition from lattice QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Shultz, Christian J.; Thomas, Christopher E.; Wilson, David J.; Hadron Spectrum Collaboration

    2016-06-01

    We present a determination of the P -wave π π →π γ⋆ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-Lüscher formalism. We determine the amplitude for a range of discrete values of the π π energy and virtuality of the photon and observe the expected dynamical enhancement due to the ρ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the ρ pole extract the ρ →π γ⋆ transition form factor. This calculation, at mπ≈400 MeV , is the first to determine the form factor of an unstable hadron within a first principles approach to QCD.

  1. Study of ferroelectric phase transition in Pb5Ge3O11 by paramagnetic resonance of Gd3+ centres

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Rumyantsev, E. L.; Artyomov, M. Yu.; Potapov, A. P.

    2016-06-01

    The temperature dependence of the fine structure of trigonal paramagnetic Gd3+ centres in Pb5Ge3O11 was investigated in a wide temperature range in the vicinity of structural phase transition. The temperature dependence of the squared order parameter has been constructed based on the obtained data. It was shown that for the adequate description of its behaviour, the sixth-power term in polarization must be taken into account in the expansion of the thermodynamic potential. The orientational dependence of anomalous broadening of electron paramagnetic resonance signals in the vicinity of ferroelectric phase transition was studied. By comparison of the observed behaviour with the angular dependences of the line width that are characteristic of various broadening mechanisms, it was inferred that it can be attributed to defect induced statistical dispersion of fine structure triclinic parameters.

  2. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-01

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei. PMID:25166661

  3. Size modulated transition in the fluid-structure interaction losses in nano mechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vishwakarma, S. D.; Pandey, A. K.; Parpia, J. M.; Verbridge, S. S.; Craighead, H. G.; Pratap, R.

    2016-05-01

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  4. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  5. Atomic filter based on stimulated Raman transition at the rubidium D1 line.

    PubMed

    Zhao, Xiuchao; Sun, Xianping; Zhu, Maohua; Wang, Xiaofei; Ye, Chaohui; Zhou, Xin

    2015-07-13

    We report on a 795 nm atomic filter consisting of a stimulated Raman gain amplifier together with normal Faraday anomalous dispersion optical filtering (FADOF) at the rubidium D1 line. The filter is operated with a single transmission peak. The gain of the filter's transmission light signal is enhanced up to 85-fold compared to case operating without a stimulated Raman transition. Based on atomic coherence, the filter's minimum transmission bandwidth is less than 22 MHz. In each filtering channel, the signal light's frequency can be tuned by changing the detuning of the coupling light. Such a filter with stimulated Raman gain is more efficient in extracting weak signals in the presence of a strong light background compared with the normal FADOF. This expands the range of potential applications in optical communications and lidar technology. This filtering method can also be extended to the lines of other atoms. PMID:26191858

  6. Resonance Raman study of the solvent dynamics for ultrafast charge transfer transition in 4-nitro-4'-dimethylamino-azobenzene

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Umapathy, Siva

    2003-03-01

    Contribution of solvent reorganization energy is known to be significant for ultrafast charge transfer processes, when the solvent relaxation times are slower than the rate of charge transfer. In this paper, we show that from resonance Raman intensities of a charge transfer transition in combination with Heller's time-dependent wave packet approach and Brownian oscillator model, one can have a reasonable estimate for the different types of solvent (inertial as well as diffusive) and vibrational reorganization energies. Resonance Raman spectra have been recorded for 4-nitro-4'-dimethylamino-azobenzene (DA) that undergoes photoinduced charge transfer transition, in acetonitrile and benzonitrile. In the two solvents, the total solvent reorganization energy is partitioned into its inertial and diffusive components from the available information on their relaxation time scales. Thus, partitioning of the solvent reorganization energy reveals the importance of the extent of contribution of the two components to the charge transfer rates. The short time dynamics of DA in the two solvents is then examined from a priori knowledge of the ground state normal modes in order to convert the wave packet motion in dimensionless displacements to internal coordinates. The dynamics in DA infers that within 20 fs after photoexcitation from the ground to the charge transfer state, the excited state evolution occurs along N-O, N=N, C-N, and C-C stretching vibrations.

  7. Resonant Soft X-ray Scattering studies of charge orders in high-temperature cuperates with Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Fang, Yizhi; Abbamonte, Peter; Rodolakis, Fanny; McChesney, Jessica; Tatsuno, Hideyuki; Joe, Young Il; Fowler, Joe; Morgan, Kelsey; Doriese, William; Swetz, Daniel; Ullom, Joel

    Resonant Soft X-ray studies of high Tc cuperates have implied a complex yet unresolved relationship between charge orders, anitferromagnetism and superconductivity. Unfortunately, at resonance the inelastic florescence background makes it hard to distinguish weak charge orders. To eliminate this issue, we have developed an energy-resolving detector comprised of 240-pixels superconducting Transition-Edge Sensor microcalorimeters. These superconducting sensors obtain exquisite resolution by exploiting the superconducting-to-normal transition to transduce photon energy to temperature and by operating at cryogenic temperatures (~ 100 mK) where thermal noise is minimal. Initial commissioning was accomplished at Advanced Photon Source Sector 29 in August 2015 and have demonstrated 1.0 eV resolution below 1 keV with efficiency (solid angle × quantum efficiency) ~ 50 times than that of grating spectrometers. An experiment to study charge orders in LBCO, LESCO and YBCO as a function of doping will take place in November 2015. This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER46285.

  8. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  9. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy.

    PubMed

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V; Balke, Nina

    2015-02-24

    Nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical and electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. With many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies. PMID:25559112

  10. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    SciTech Connect

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical and electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.

  11. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    DOE PAGESBeta

    Li, Qian; Jesse, Stephen; Tselev, Alexander; Collins, Liam; Yu, Pu; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less

  12. A model for the Delta(1600) resonance and gamma N -> Delta(1600) transition

    SciTech Connect

    G. Ramalho, K. Tsushima

    2010-10-01

    A covariant spectator constituent quark model is applied to study the gamma N -> Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N -> Delta(1232) transition. To estimate the pion cloud contributions in the gamma N -> Delta(1600) transition, we include the relevant intermediate states, pi-N, pi-Delta, pi-N(1440) and pi-Delta(1600). Dependence on the four-momentum transfer squared, Q2, is predicted for the magnetic dipole transition form factor, GM*(Q2), as well as the helicity amplitudes, A_1/2(Q2) and A_3/2(Q2). The results at Q2=0 are compared with the existing data.

  13. Model for the {Delta}(1600) resonance and {gamma}N{yields}{Delta}(1600) transition

    SciTech Connect

    Ramalho, G.; Tsushima, K.

    2010-10-01

    A covariant spectator constituent quark model is applied to study the {gamma}N{yields}{Delta}(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the {Delta}(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming {Delta}(1600) as the first radial excitation of {Delta}(1232), the pion cloud contributions are estimated based on an analogy with the {gamma}N{yields}{Delta}(1232) transition. To estimate the pion cloud contributions in the {gamma}N{yields}{Delta}(1600) transition, we include the relevant intermediate states, {pi}N, {pi}{Delta}, {pi}N(1440) and {pi}{Delta}(1600). Dependence on the four-momentum transfer squared, Q{sup 2}, is predicted for the magnetic dipole transition form factor, G{sub M}*(Q{sup 2}), as well as the helicity amplitudes, A{sub 1/2}(Q{sup 2}) and A{sub 3/2}(Q{sup 2}). The results at Q{sup 2}=0 are compared with the existing data.

  14. Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance.

    PubMed

    Sjolander, Tobias F; Tayler, Michael C D; King, Jonathan P; Budker, Dmitry; Pines, Alexander

    2016-06-30

    We use low-amplitude, ultralow frequency pulses to drive nuclear spin transitions in zero and ultralow magnetic fields. In analogy to high-field NMR, a range of sophisticated experiments becomes available as these allow narrow-band excitation. As a first demonstration, pulses with excitation bandwidths 0.5-5 Hz are used for population redistribution, selective excitation, and coherence filtration. These methods are helpful when interpreting zero- and ultralow-field NMR spectra that contain a large number of transitions. PMID:27243376

  15. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  16. a Measurement of the Optical Oscillator Strengths of Noble Gas Resonance Transitions in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, Robert Coenraad Gerard

    We report the results of an accurate measurement of optical oscillator strengths of the prominent resonance lines of He, Ne, Ar and Kr in the vacuum ultraviolet. To measure the oscillator strength of a resonance line we make use of the absorption of the resonance radiation as it passes through the gas to a detector. The transmission of this radiation through a layer of gas of finite thickness is measured as a function of the number density of the gas. The transmission function is fitted to this data to obtain the absorption oscillator strength. The accuracy of the present measurements ranges from 2.5% to 4% and is reflected in the uncertainties presented below. The results are for He I (58.4 nm) 0.2683 +/- 0.0075 (2.8%), He I (53.7 nm) 0.0717 +/- 0.0024 (3.4%), Ne I (74.4 nm) 0.01017 +/- 0.00030 (2.9%), Ne I (73.6 nm) 0.1369 +/- 0.0035 (2.6%), Ar I (106.7 nm) 0.0616 +/- 0.0021 (3.4%), Ar I (104.8 nm) 0.2297 +/- 0.0093 (4.0%), Kr I (123.6 nm) 0.1751 +/- 0.0049 (2.8%) and Kr I (116.5 nm) 0.1496 +/- 0.0038 (2.5%).

  17. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Resonant-Triad Interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented using the generalized scaling of Lee. It is shown that resonant-triads can interact nonlinearly within the common critical layer when their (fundamental) Strouhal numbers are different by a factor whose magnitude is of the order of the growth rate multiplied by the wavenumber of the instability wave. Since the growth rates of the instability modes become larger and the critical layers become thicker as the instability waves propagate downstream, the frequency-detuned resonant-triads that grow independently of each other in the upstream region can interact nonlinearly in the later downstream stage. In the final stage of the non-equilibrium critical-layer evolution, a wide range of instability waves with the scaled frequencies differing by almost an Order of (l) can nonlinearly interact. Low-frequency modes are also generated by the nonlinear interaction between oblique waves in the critical layer. The system of partial differential critical-layer equations along with the jump equations are presented here. The amplitude equations with their numerical solutions are given in Part 2. The nonlinearly generated low-frequency components are also investigated in Part 2.

  18. Non inverted gain lineshapes of the cesium resonance transition at 894 nm

    NASA Astrophysics Data System (ADS)

    Cataliotti, F. S.; Fort, C.; Prevedelli, M.; Hänsch, T. W.; Inguscio, M.

    1997-01-01

    We report on electromagnetically induced transparency (EIT) in a V-type system in cesium. We investigated the induced EIT as a function of the pump-laser power for different hyperfine components on the D1-D2 lines. Adding repumping light on the D1 transition we observed 2% single pass gain.

  19. Phase transitions in neutron star equation of state induced by the delta resonances matter

    NASA Astrophysics Data System (ADS)

    T, Oliveira J. C.; Rodrigues, H.; Duarte, S. B.

    2016-04-01

    In the present work we determine the equation of state and the population of baryons and leptons, and also we discuss the implication of changes in the baryon-meson coupling constants to the formation of delta matter in the stellar medium. And also in this work the phase transition is explored with respect to the domain of the delta-mesons coupling constants.

  20. Search for resonant absorption of solar axions emitted in M1 transition in 57Fe nuclei

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.; Egorov, A. I.; Mitropol'Sky, I. A.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2009-08-01

    A search for resonant absorption of 14.4 keV solar axions by a 57Fe target was performed. The Si(Li) detector placed inside the low-background setup was used to detect the γ-quanta appearing in the deexcitation of the 14.4 keV nuclear level: A+57Fe→57Fe*→57Fe+ γ. The new upper limit for the hadronic axion mass has been obtained of m A ≤159 eV (95% c.l.) ( S=0.5, z=0.56).

  1. Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Qi

    2016-06-01

    In this paper, we numerically study how time delay induces multiple coherence resonance (MCR) and synchronization transitions (ST) in adaptive Hodgkin-Huxley neuronal networks with spike-timing dependent plasticity (STDP). It is found that MCR induced by time delay STDP can be either enhanced or suppressed as the adjusting rate Ap of STDP changes, and ST by time delay varies with the increase of Ap, and there is optimal Ap by which the ST becomes strongest. It is also found that there are optimal network randomness and network size by which ST by time delay becomes strongest, and when Ap increases, the optimal network randomness and optimal network size increase and related ST is enhanced. These results show that STDP can either enhance or suppress MCR and optimal STDP can enhance ST induced by time delay in the adaptive neuronal networks. These findings provide a new insight into STDP's role for the information processing and transmission in neural systems.

  2. Probing temperature-driven spin reorientation transition of GdFeCo film by Kerr loops and ferromagnetic resonance

    SciTech Connect

    He, Wei Liu, Hao-Liang; Cai, Jian-Wang; Cheng, Zhao-Hua; Wu, Hong-Ye

    2015-01-26

    The magnetic anisotropy is of both scientific and technological interest for magneto-optical material GdFeCo film. We characterize the magnetic anisotropy of a 20 nm GdFeCo film from 265 K to 320 K via Kerr loops and ferromagnetic resonance. With increasing temperature, both of the first-order uniaxial magnetic anisotropy and shape anisotropy increase. However, the competition between them causes a temperature-driven spin reorientation transition (SRT) and the effective perpendicular magnetic anisotropy decrease from 2.22 × 10{sup 4 }ergs/cm{sup 3} (288 K) to −1.56 × 10{sup 4 }ergs/cm{sup 3} (317 K). The positive second-order uniaxial magnetic anisotropy determines an easy-cone state as the mediated state during SRT.

  3. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  4. Transition from resonances to surface waves in {pi}{sup +}-p elastic scattering

    SciTech Connect

    De Micheli, Enrico Viano, Giovanni Alberto

    2008-08-15

    In this article, we study resonances and surface waves in {pi}{sup +}-p scattering. We focus on the sequence whose spin-parity values are given by J{sup p}=3/2 {sup +},7/2 {sup +},(11)/2 {sup +},(15)/2 {sup +},(19)/2 {sup +}. A widely-held belief takes for granted that this sequence can be connected by a moving pole in the complex angular momentum (CAM)-plane, which gives rise to a linear trajectory of the form J={alpha}{sub 0}+{alpha}{sup '}m{sup 2},{alpha}{sup '}{approx}1/(GeV){sup 2}, which is the standard expression of the Regge pole trajectory. But the phenomenology shows that only the first few resonances lie on a trajectory of this type. For higher J{sup p} this rule is violated and is substituted by the relation J{approx}kR, where k is the pion-nucleon c.m.s. momentum, and R{approx}1 fm. In this article we prove: (a) Starting from a non-relativistic model of the proton, regarded as composed by three quarks confined by harmonic potentials, we prove that the first three members of this {pi}{sup +}-p resonance sequence can be associated with a vibrational spectrum of the proton generated by an algebra sp(3,R). Accordingly, these first three members of the sequence can be described by Regge poles and lie on a standard linear trajectory. (b) At higher energies the amplitudes are dominated by diffractive scattering, and the creeping waves play a dominant role. They can be described by a second class of poles, which can be called Sommerfeld's poles, and lie on a line nearly parallel to the imaginary axis of the CAM-plane. (c) The Sommerfeld's pole which is closest to the real axis of the CAM-plane is dominant at large angles, and describes in a proper way the backward diffractive peak in both the following cases: at fixed k, as a function of the scattering angle, and at fixed scattering angle {theta}={pi}, as a function of k. (d) The evolution of this pole, as a function of k, is given in first approximation by J{approx_equal}kR.

  5. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    NASA Technical Reports Server (NTRS)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  6. Intricate phase diagram of a prevalent visual circuit reveals universal dynamics, phase transitions, and resonances.

    PubMed

    Caudill, Matthew S; Brandt, Sebastian F; Nussinov, Zohar; Wessel, Ralf

    2009-11-01

    Neural feedback-triads consisting of two feedback loops with a nonreciprocal lateral connection from one loop to the other are ubiquitous in the brain. We show analytically that the dynamics of this network topology are determined by algebraic combinations of its five synaptic weights. Exploration of network activity over the parameter space demonstrates the importance of the nonreciprocal lateral connection and reveals intricate behavior involving continuous transitions between qualitatively different activity states. In addition, we show that the response to periodic inputs is narrowly tuned around a center frequency determined by the effective synaptic parameters. PMID:20365022

  7. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry.

    PubMed

    Papon, Aurélie; Montes, Hélène; Hanafi, Mohamed; Lequeux, François; Guy, Laurent; Saalwächter, Kay

    2012-02-10

    The slowing-down of the dynamics of a polymer chain near a surface has been observed for many years now. Here we show that the behavior of model nanocomposites can be quantitatively described with a gradient of glass-transition temperature. We describe with a single parameter-the range of this gradient-the temperature and solvent effect on the spin relaxation dynamics. Moreover, this parameter allows a quantitative description of the nanocomposite calorimetric response from the one of the bulk polymer. PMID:22401088

  8. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    PubMed

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking. PMID:27519071

  9. High field nuclear magnetic resonance in transition metal substituted BaFe{sub 2}As{sub 2}

    SciTech Connect

    Garitezi, T. M. Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Pagliuso, P. G.; Urbano, R. R.; Reyes, A. P.; Kuhns, P. L.

    2014-05-07

    We report high field {sup 75}As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe{sub 2}As{sub 2} single crystals displaying same structural/magnetic transition T{sub 0}≃128  K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency ν{sub Q}≃2.57(1)  MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe{sub 2}As{sub 2} compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe–As tetrahedra, must be the most probable tuning parameter to determine T{sub 0} in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T{sub 0} suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe{sub 2}As{sub 2} [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  10. Polarization correlations for electron-impact excitation of the resonant transitions of Ne and Ar at low incident energies

    NASA Astrophysics Data System (ADS)

    Hargreaves, L. R.; Campbell, C.; Khakoo, M. A.; McConkey, J. W.; Zatsarinny, O.; Bartschat, K.; Stauffer, A. D.; McEachran, R. P.

    2013-02-01

    The electron-polarized-photon coincidence method is used to determine linear and circular polarization correlations in vacuum ultraviolet (VUV) for the differential electron-impact excitation of neon and argon resonance transitions at impact energies of 25 and 30 eV at small scattering angles up to 40°. The circular polarization correlation is found to be positive in the case of Ne at 25 eV and supports the prediction of the present B-spline R-matrix theory concerning the violation of a long-established propensity rule regarding angular momentum transfer in electron-impact excitation of S→P transitions. Comparisons with the results from the present relativistic distorted-wave approximation and an earlier semirelativistic distorted-wave Born model are also made. For the case of Ar, at 25 and 30 eV, the circular polarization measurements remain in agreement with theory, but provide limited evidence as to whether or not the circular polarization at small scattering angles is also positive. For the linear polarizations, much better agreement with theory is obtained than in earlier measurements carried out by S. H. Zheng and K. Becker [Z. Phys. DZDACE20178-768310.1007/BF01436735 23, 137 (1992); J. Phys. BJPAMA40022-370010.1088/0953-4075/26/3/022 26, 517 (1993)].

  11. Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma

    NASA Astrophysics Data System (ADS)

    Thakur, Vishal; Kant, Niti

    2016-08-01

    The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.

  12. Time-domain separation of optical properties from structural transitions in resonantly bonded materials.

    PubMed

    Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes. PMID:26213898

  13. Time-domain separation of optical properties from structural transitions in resonantly bonded materials

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Miller, Timothy A.; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E.; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

  14. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  15. Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules*

    NASA Astrophysics Data System (ADS)

    Hoshino, Masamitsu; Ishijima, Yohei; Kato, Hidetoshi; Mogi, Daisuke; Takahashi, Yoshinao; Fukae, Katsuya; Limão-Vieira, Paulo; Tanaka, Hiroshi; Shimamura, Isao

    2016-05-01

    Inelastic and superelastic electron-impact vibrational excitation functions of hot carbonyl sulphide COS (and hot CO2) are measured for electron energies from 0.5 to 3.0 eV (1.5 to 6.0 eV) and at a scattering angle of 90°. Based on the vibrational populations and the principle of detailed balance, these excitation functions are decomposed into contributions from state-to-state vibrational transitions involving up to the second bending overtone (030) in the electronically ground state. Both the 2 Π resonance for COS around 1.2 eV and the 2 Π u resonance for CO2 around 3.8 eV are shifted to lower energies as the initial vibrational state is excited in the bending mode. The width of the resonance hump for COS changes only little as the molecule bends, whereas that of the overall boomerang resonance for CO2 becomes narrower. The angular distribution of the electrons resonantly scattered by hot COS and hot CO2 is also measured. The different shapes depending on the vibrational transitions and gas temperatures are discussed in terms of the symmetry of the vibrational wave functions.

  16. Investigation of high-contrast velocity selective optical pumping resonance at the cycling transition of Cs using fluorescence technique

    NASA Astrophysics Data System (ADS)

    Dey, Saswati; Ray, Biswajit; Ghosh, Pradip Narayan; Cartaleva, Stefka; Slavov, Dimitar

    2015-12-01

    A high contrast (∼48%) Velocity Selective Optical Pumping (VSOP) resonance at the closed transition Fg=4→Fe=5 of Cs-D2 line is obtained in the fluorescence signal under co-propagating pump-probe configuration. We use a 5.2 μm cell operating at reduced temperature (∼55 °C) and the intensity of the pump-laser is kept lower than that of the probe-laser. The observed sharp narrow structure is suitable for side-arms frequency-locking of the cooling- (i.e. probe-) laser in a cold atom experiment, with possibility for "-Γ" to "-4Γ" red-detuning and "+Γ" to "+10Γ" blue-detuning using the standard properties of the commercially available electronics. We have developed a theoretical model corresponding to the thin cell, incorporating the atomic time-of-flight dependent optical pumping decay rate to describe the dimensional anisotropy of the thin cell. The model shows good qualitative agreement with the observation and simulates as well the cases of cells with smaller thickness. It also describes correctly the temperature dependence of the line broadening and shows the potential for further optimization and red-shift detuning above "-4Γ". It may be of interest for further development of miniaturized modules, like the recently developed portable small magneto-optical traps.

  17. Efficient three-step, two-color ionization of plutonium using a resonance enhanced 2-photon transition into an autoionizing state

    NASA Astrophysics Data System (ADS)

    Kunz, P.; Huber, G.; Passler, G.; Trautmann, N.

    2004-05-01

    Resonance ionization mass spectrometry (RIMS) has proven to be a powerful method for isotope selective ultra-trace analysis of long-lived radioisotopes. For plutonium detection limits of 106 to 107 atoms have been achieved for various types of samples. So far a three-step, three-color laser excitation scheme was applied for efficient ionization. In this work, a two-photon transition from an excited state into a high-lying autoionizing state, will be presented, yielding a similar overall efficiency as the three-step, three-color ionization scheme. In this way, only two tunable lasers are needed, while the advantages of a three-step, three-color excitation (high selectivity, good efficiency and low non-resonant background) are preserved. The two-photon transition has been characterized with respect to saturation behavior and line width. The three-step, two-color ionization is a possibility for an improved RIMS procedure.

  18. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  19. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  20. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  1. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  2. State transition analysis of spontaneous branch migration of the Holliday junction by photon-based single-molecule fluorescence resonance energy transfer.

    PubMed

    Okamoto, Kenji; Sako, Yasushi

    2016-02-01

    Branch migration of Holliday junction (HJ) DNA in solution is a spontaneous conformational change between multiple discrete states. We applied single-molecule fluorescence resonance energy transfer (smFRET) measurement to three-state branch migration. The photon-based variational Bayes-hidden Markov model (VB-HMM) method was applied to fluorescence signals to reproduce the state transition trajectories and evaluate the transition parameters, such as transition rate. The upper limit of time resolution suggested in simulation was nearly achieved for the state dynamics with relatively small FRET changes, and the distinctions in the populations of different states were successfully retrieved. We also discuss the suitability of the HJ as a standard sample for smFRET dynamics measurements and data analysis. PMID:26687325

  3. Observation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium using optical-optical double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2015-10-01

    Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.

  4. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  5. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  6. Monitoring the kinetics of the pH-driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance.

    PubMed

    Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; McGinn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E P; Pentelute, B L; Collier, R John; Fisher, Mark T

    2013-09-17

    Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å β barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions. PMID:23964683

  7. Formation of a Single Attosecond Pulse via Interaction of Resonant Radiation with a Strongly Perturbed Atomic Transition

    NASA Astrophysics Data System (ADS)

    Antonov, V. A.; Radeonychev, Y. V.; Kocharovskaya, Olga

    2013-05-01

    We propose a technique to form a single few-cycle attosecond pulse from vacuum ultraviolet or extreme ultraviolet radiation via resonant interaction with hydrogenlike atoms, irradiated by a high-intensity far-off-resonant laser field. The laser field strongly perturbs excited atomic energy levels via the Stark effect and ionizes atoms from the excited states. We show that an isolated attosecond pulse can be formed using either a short incident femtosecond pulse of the resonant radiation or a steep front edge of the laser field. We propose an experimental realization of a single subfemtosecond pulse formation at 121.6 nm in atomic hydrogen and a single sub-100 as pulse formation at 13.5 nm in Li2+ plasma.

  8. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  9. High-temperature nuclear magnetic resonance study of phase transition kinetics in LiNaSO{sub 4}

    SciTech Connect

    Shakhovoy, R. A. E-mail: r.a.shakhovoy@gmail.com; Sarou-Kanian, V.; Rakhmatullin, A.; Véron, E.; Bessada, C.

    2015-12-28

    A new high-temperature NMR technique for measurements of the phase transition kinetics in solids has been developed. The technique allows measuring the time evolution of the volume of the appearing phase at controlled cooling rates. Developed method was applied to study the phase transition kinetics in the superionic conductor LiNaSO{sub 4}. It was revealed that the phase transition in LiNaSO{sub 4} is governed by the diffusion-controlled growth of nuclei (“germs”). An effect of the crystallite rearrangement in the LiNaSO{sub 4} powder after cooling through the phase transition was also revealed. This effect was studied by means of high-temperature XRD and NMR.

  10. Magnetic resonance and spin-reorientation transitions in the Nd0.75Ho0.25Fe3(BO3)4 multiferroic

    NASA Astrophysics Data System (ADS)

    Kobets, M. I.; Dergachev, K. G.; Gnatchenko, S. L.; Khatsko, E. N.; Bezmaternykh, L. N.; Gudim, I. A.

    2015-01-01

    A presentation of experimental study results obtained by antiferromagnetic resonance (AFMR) of the high-frequency properties of the multiferroic Nd0.75Ho0.25Fe3(BO3)4 in a broad range of temperatures and frequencies. We studied the effect of substituting the Nd3+ ions with Ho3+, on the resonance properties of the Nd0.75Ho0.25Fe3(BO3)4 solid solution. In addition, we investigated the particularities of magnetic-field induced spin-reorientation phase transitions for H||c and H||a directions, in which the anisotropy of the magnetic system is measured from "easy-axis" anisotropy to "easy-plane." The AFMR modes of a Fe3+ subsystem are revealed. New information about the most important characteristics of AFM is obtained, including: frequency-field dependence of the AFMR spectrum, gaps in the spin-wave spectrum, effective magnetic anisotropy values, and fields of spin-reorientation transitions. It is shown that "easy-plane" anisotropy prevails in this magnet, with a weak anisotropy in the basal plane. For the first time there are observed features in the AFMR spectra that could be tied to the presence of a spatially modulated spin structure (incommensurate phase) in AFM Nd0.75Ho0.25Fe3(BO3)4.

  11. Elastic relaxations associated with the Pm3m-R3c transition in LaA103 III: superattenuation of acoustic resonances

    SciTech Connect

    Darling, Timothy W; Carpenter, M A; Buckley, A; Taylor, P A; Mcknight, R E A

    2009-01-01

    Resonant Ultrasound Spectroscopy has been used to characterize elastic softening and a variety of new acoustic dissipation processes associated with the Pm{bar 3}m {leftrightarrow} R{bar 3}c transition in single crystal and ceramic samples of LaAlO{sub 3}. Softening of the cubic structure ahead of the transition point is not accompanied by an increase in dissipation but follows different temperature dependences for the bulk modulus, 1/3(C{sub 11} + 2C{sub 12}), and the shear components 1/2(C{sub 11}-C{sub 12}) and C{sub 44} as if the tilting instability contains two slightly different critical temperatures. The transition itself is marked by the complete disappearance of resonance peaks (superattenuation), which then reappear below {approx}700 K in spectra from single crystals. Comparison with low frequency, high stress data from the literature indicate that the dissipation is not due to macroscopic displacement of needle twins. An alternative mechanism, local bowing of twin walls under low dynamic stress, is proposed. Pinning of the walls with respect to this displacement process occurs below {approx}350 K. Anelasticity maps, analogous to plastic deformation mechanism maps, are proposed to display dispersion relations and temperature/frequency/stress fields for different twin wall related dissipation mechanisms. An additional dissipation process, with an activation energy of 43 {+-} 6 kJ.mole{sup -1}, occurs in the vicinity of 250 K. The mechanism for this is not known, but it is associated with C{sub 44} and therefore appears to be related in some way to the cubic {leftrightarrow} rhombohedral transition at {approx}817 K. Slight softening in the temperature interval {approx}220 {yields} 70 K of resonance peaks determined by shear elastic constants hints at an incipient E{sub g} ferroelastic instability in LaAlO{sub 3}. The softening interval ends with a further dissipation peak at {approx} 60 K, the origin of which is discussed in terms of freezing of atomic

  12. Phase transition in triglycine sulfate crystals by 1H and 13C nuclear magnetic resonance in the rotating frame

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-09-01

    The ferroelectric phase transition in triglycine sulfate ((NH2CH2COOH)3·H2SO4, TGS)) crystals, occurring at TC of 322 K, was studied using 1H and 13C CP/MAS NMR. From the spin-lattice relaxation time in the rotating frame, T1ρ, of 1H and 13C, we found that the slopes of the T1ρ versus temperature curve changed near TC. In addition, the change of intensities for the protons and carbons NMR signals in the ferroelectric and the paraelectric phases led to the noticeable changes in the environments of proton and carbon in the carboxyl groups. The carboxyl ordering was the dominant factor driving the phase transition. Our study of the 1H and 13C spectra showed that the ferroelectric phase transition of TGS is of the order-disorder type due to ordering of the carboxyl groups.

  13. Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation.

    PubMed Central

    Stokka, Anne J; Flatmark, Torgeir

    2003-01-01

    The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of L-phenylalanine (L-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3 min at 25 degrees C) with an end point of approx. 75 RU (resonance units)/(pmol subunit/mm(2)). By contrast, the contribution of binding the substrate (165 Da) to its catalytic core enzyme [DeltaN(1-102)/DeltaC(428-452)-hPAH] was only approx. 2 RU/(pmol subunit/mm(2)). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S](0.5)-value of 98+/-7 microM (h =1.0) and 158+/-11 microM, respectively, i.e. for the tetramer it is slightly lower than the value (145+/-5 microM) obtained for the co-operative binding (h =1.6+/-0.4) of L-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon L-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1-117) plus catalytic domain (residues 118-411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-L-alanine revealed an SPR response comparable with

  14. High Resolution Far Infrared Study of Antiferromagnetic Resonance Transitions in α-Fe2O3 (hematite)

    NASA Astrophysics Data System (ADS)

    Chou, Shin Grace; Plusquellic, David F.; Stutzman, Paul E.; Wang, Shuangzhen; Garboczi, Edward J.; Egelhoff, William F.

    2012-02-01

    In this study, we report high resolution optical measurements of the temperature dependence of the antiferromagnetic (AFM) transition in α-Fe2O3 (hematite) between (0.5 and 10) cm-1. The absorption peak position, over a large temperature range, is found to be in agreement with a modified spin-wave model at both the high and low temperature phases, where the temperature is above and below the Morin transition temperature, respectively. The high spectral resolution optical measurements as demonstrated in this study allow unprecedented zero-field spectral analysis of the zone center AFM magnon in a previously challenging spectral region, giving insights into the role of temperature and strain on the exchange and anisotropy interactions in the system. The results also suggest that the frequency-resolved measurement platform could be extended for room-temperature non-destructive examination and imaging applications for antiferromagnetic materials and devices.

  15. New experiment on search for the resonance absorption of solar axion emitted in the M1 transition of 83Kr nuclei

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. N.; Derbin, A. V.; Drachnev, I. S.; Kazalov, V. V.; Kobychev, V. V.; Kuz'minov, V. V.; Muratova, V. N.; Panasenko, S. I.; Ratkevich, S. S.; Semenov, D. A.; Tekueva, D. A.; Unzhakov, E. V.; Yakimenko, S. P.

    2015-05-01

    Axions with an energy of 9.4 keV emitted in the M1 transition of 83Kr nuclei in the Sun have been sought in the resonance absorption reaction A + 83Kr → 83Kr* → 83Kr + γ, e (9.4 keV). A proportional gas chamber filled with krypton and placed in a low-background setup at the underground laboratory of the Baksan neutrino observatory was used to detect γ-ray photons and electrons appearing after the decay of a nuclear level. As a result, a new constraint has been determined on the isoscalar and isovector coupling constants of the axion with nucleons: | g {/AN 3}- g {/AN 0}| ≤ 1.29 × 10-6. This constraint results in the following new bound on the mass of the axion in the hadronic axion model: m A ≤ 100 eV (95% C.L.).

  16. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using (75)As-nuclear quadrupole resonance.

    PubMed

    Kotegawa, Hisashi; Nakahara, Shingo; Akamatsu, Rui; Tou, Hideki; Sugawara, Hitoshi; Harima, Hisatomo

    2015-03-20

    Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P(c) between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T(1) reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T(1) in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor. PMID:25839303

  17. Dynamics of ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. II. Proton nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Yukawa, Hideyuki; Nishi, Toshio

    1989-06-01

    Here we study the ferroelectric phase transition of a random copolymer of vinylidene fluoride (VF2) and trifluoroethylene (F3E), VF2/F3E(52/48), by 1H-pulsed nuclear magnetic resonance (NMR). Spin-spin relaxation time T2, spin-lattice relaxation time T1, and T1 in the rotating frame T1 ρ show the anomaly reflecting the phase transition. We demonstrate that the motional state in the crystalline and amorphous region is not so different. From the direct fitting of the Kubo-Tomita relation to a free induction decay, we have succeeded in obtaining the correlation time of the fluctuating local field and the second moment of the rigid lattice separately. The critical slowing down of the order-parameter fluctuation is observed through the temperature dependence of the correlation time. The anomaly of T1 near the Curie point has been found to be weak. This weak divergence of T-11 is consistent with our results on acoustic measurements. The weak anomaly can be ascribed to (1) the long-range nature of the bare interaction between dipoles which may come from the connectivity of a polymer chain (a cooperative conformational change over at least three bonds) or the dipolar long-range interaction, (2) the randomness due to random copolymerization, and/or (3) the dimensionality of the order parameter.

  18. Kr-collision shift of the Rb D1 transition: The isoclinic point and precision optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Wells, N. P.; Driskell, T. U.; Camparo, J. C.

    2014-05-01

    Measuring the energy dependence of optical-transition collision shifts has proven extremely difficult, in part because of Doppler broadening and the manifold of overlapping hyperfine components that must be disentangled in the spectra. Here, we demonstrate an approach to these measurements based on spectroscopic isoclinic points. To illustrate the approach's efficacy, we investigated the Kr collision shift of the Rb D1 transition at 795 nm. For the expected Rb-Kr van der Waals interaction, the collision shift should scale like (T/To)κ, where To is a reference temperature and κtheo = 0.31. Exemplifying the difficulty of κ determinations, previous alkali-metal-noble-gas experimental measurements of κ have varied widely, sometimes in striking disagreement with theory (i.e., factor of 2 larger). In the present work, we not only demonstrate a measurement precision better than 10-10/°C, but with our technique we validate the theoretical scaling constant, finding κexpt = 0.36 ± 0.06.

  19. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.

    PubMed

    Valavanidis, A; Fiotakis, K; Bakeas, E; Vlahogianni, T

    2005-01-01

    A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct

  20. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    NASA Astrophysics Data System (ADS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  1. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    SciTech Connect

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-14

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10{sup 4} ≤ Q ≤ 2 × 10{sup 4} and the square root of spectral density of current noise referred to the SQUID input √S{sub I} = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S{sub 21} enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P{sub MR} make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S{sub I} is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P{sub MR}) or the quantization noise due to the resolution of 300-K electronics (for large values of P{sub MR}). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the

  2. Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects.

    PubMed

    O'Brien, Maria; McEvoy, Niall; Hanlon, Damien; Hallam, Toby; Coleman, Jonathan N; Duesberg, Georg S

    2016-01-01

    Layered inorganic materials, such as the transition metal dichalcogenides (TMDs), have attracted much attention due to their exceptional electronic and optical properties. Reliable synthesis and characterization of these materials must be developed if these properties are to be exploited. Herein, we present low-frequency Raman analysis of MoS2, MoSe2, WSe2 and WS2 grown by chemical vapour deposition (CVD). Raman spectra are acquired over large areas allowing changes in the position and intensity of the shear and layer-breathing modes to be visualized in maps. This allows detailed characterization of mono- and few-layered TMDs which is complementary to well-established (high-frequency) Raman and photoluminescence spectroscopy. This study presents a major stepping stone in fundamental understanding of layered materials as mapping the low-frequency modes allows the quality, symmetry, stacking configuration and layer number of 2D materials to be probed over large areas. In addition, we report on anomalous resonance effects in the low-frequency region of the WS2 Raman spectrum. PMID:26766208

  3. Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects

    NASA Astrophysics Data System (ADS)

    O'Brien, Maria; McEvoy, Niall; Hanlon, Damien; Hallam, Toby; Coleman, Jonathan N.; Duesberg, Georg S.

    2016-01-01

    Layered inorganic materials, such as the transition metal dichalcogenides (TMDs), have attracted much attention due to their exceptional electronic and optical properties. Reliable synthesis and characterization of these materials must be developed if these properties are to be exploited. Herein, we present low-frequency Raman analysis of MoS2, MoSe2, WSe2 and WS2 grown by chemical vapour deposition (CVD). Raman spectra are acquired over large areas allowing changes in the position and intensity of the shear and layer-breathing modes to be visualized in maps. This allows detailed characterization of mono- and few-layered TMDs which is complementary to well-established (high-frequency) Raman and photoluminescence spectroscopy. This study presents a major stepping stone in fundamental understanding of layered materials as mapping the low-frequency modes allows the quality, symmetry, stacking configuration and layer number of 2D materials to be probed over large areas. In addition, we report on anomalous resonance effects in the low-frequency region of the WS2 Raman spectrum.

  4. Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects

    PubMed Central

    O’Brien, Maria; McEvoy, Niall; Hanlon, Damien; Hallam, Toby; Coleman, Jonathan N.; Duesberg, Georg S.

    2016-01-01

    Layered inorganic materials, such as the transition metal dichalcogenides (TMDs), have attracted much attention due to their exceptional electronic and optical properties. Reliable synthesis and characterization of these materials must be developed if these properties are to be exploited. Herein, we present low-frequency Raman analysis of MoS2, MoSe2, WSe2 and WS2 grown by chemical vapour deposition (CVD). Raman spectra are acquired over large areas allowing changes in the position and intensity of the shear and layer-breathing modes to be visualized in maps. This allows detailed characterization of mono- and few-layered TMDs which is complementary to well-established (high-frequency) Raman and photoluminescence spectroscopy. This study presents a major stepping stone in fundamental understanding of layered materials as mapping the low-frequency modes allows the quality, symmetry, stacking configuration and layer number of 2D materials to be probed over large areas. In addition, we report on anomalous resonance effects in the low-frequency region of the WS2 Raman spectrum. PMID:26766208

  5. Resonant excitation channels in the 3d10-3d94s and 3d10-3d94p transitions of nickel-like Mo14+ and Zr12+

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Goldstein, W. H.; May, M.; Finkenthal, M.; Terry, J. L.

    1996-05-01

    At energies below the threshold for direct electron impact excitation, resonant excitations can make a significant contribution to the total excitation rate of a given energy level. In this paper, the rates of resonant excitation into the levels of the 3d94s and 3d94p configurations of Mo14+ have been calculated using a fully relativistic, multiconfiguration atomic structure code and detailed accounting of energy levels. By including the effects of resonant excitations in collisional-radiative models for the spectrum of Ni I-like Mo14+ and (by isoelectronic scaling) Zr12+, the ratio of the emissivity of the 3d10-4d94s E2 transitions to the emissivity of the 3d10-3d94p E1 transitions is greatly enhanced, and sensitivity to electron temperature in the ratio is introduced. This ratio is density sensitive for ne>=1013 cm-3, and therefore, given knowledge of either local temperature or density conditions, the E2-E1 ratio can serve as a diagnostic for local conditions in magnetically confined fusion plasmas. The current work demonstrates the need to include resonant excitations in collisional-radiative models of the soft x-ray emission of nickel-like ions. Good agreement is found between measurements of E1 and E2 line brightness ratios made in a tokamak plasma, and the predictions of collisional-radiative models in the present work.

  6. Identification by UV resonance Raman spectroscopy of an imino tautomer of 5-hydroxy-2′-deoxycytidine, a powerful base analog transition mutagen with a much higher unfavored tautomer frequency than that of the natural residue 2′-deoxycytidine

    PubMed Central

    Suen, Wu; Spiro, Thomas G.; Sowers, Lawrence C.; Fresco, Jacques R.

    1999-01-01

    UV resonance Raman spectroscopy was used to detect and estimate the frequency of the unfavored imino tautomer of the transition mutagen 5-hydroxy-2′-deoxycytidine (HO5dCyt) in its anionic form. In DNA, this 2′-deoxycytidine analog arises from the oxidation of 2′-deoxycytidine and induces C → T transitions with 102 greater frequency than such spontaneous transitions. An imino tautomer marker carbonyl band (≈1650 cm−1) is enhanced at ≈65°C against an otherwise stable spectrum of bands associated with the favored amino tautomer. This band is similarly present in the UV resonance Raman spectra of the imino cytidine analogs N3-methylcytidine at high pH and N4-methoxy-2′-deoxycytidine at pH 7 and displays features attributable to the imino form of C residues and their derivatives. The fact that the imino tautomer of HO5dCyt occurs at a frequency consistent with its high mutagenic enhancement lends strong support to the hypothesis that unfavored base tautomers play important roles in the mispair intermediates of replication leading to substitution mutations. PMID:10200291

  7. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  8. Doubly resonant Raman electron paramagnetic transitions of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}).

    SciTech Connect

    Lu, X.; Venugopalan, S.; Kim, H.; Grimsditch, M.; Rodriguez, S.; Ramdas, A. K.; Materials Science Division; Purdue Univ.; State Univ. of New York at Binghamton; Sogang Univ.

    2009-06-01

    We report the Raman electron paramagnetic resonance (EPR) of Cr{sup 3+} in ruby (Al{sub 2}O{sub 3}:Cr{sup 3+}) in the {sup 4}A{sub 2} (ground) and E{sup -} (excited) states of its well-known R{sub 1} emission line. Using tunable dye laser excitation within the range of the Zeeman components of R{sub 1}, we observe highly selective doubly resonant enhancements of the Raman EPR lines. The double resonances confirm the assignments of the Raman EPR lines, and they underscore the simultaneous occurrence of both 'in resonance' and 'out resonance' as visualized in the Kramers-Heisenberg quantum-mechanical picture of inelastic light scattering. The g factors of the {sup 4}A{sub 2} and E{sup -} states are consistent with the observed magnetic field dependence of the Raman EPR shifts. Through the interplay of Raman effect and the sharp Zeeman components of R{sub 1}, the results provide clear insights into the underlying microscopic mechanism of these resonant Raman EPR spectra of ruby.

  9. A new model for broadband waveguide to microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1986-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  10. Resonant Raman scattering in nanoscale pentacene films

    NASA Astrophysics Data System (ADS)

    He, Rui; Dujovne, Irene; Chen, Liwei; Miao, Qian; Hirjibehedin, Cyrus F.; Pinczuk, Aron; Nuckolls, Colin; Kloc, Christian; Ron, Arza

    2004-02-01

    Resonant Raman scattering intensities from nanoscale films of pentacene display large resonant enhancements that enable observation of vibrational modes in monolayer cluster films. The resonant enhancements occur when the outgoing photon energy overlaps the free exciton optical transitions observed in luminescence. The results point to the significant potential of resonant Raman methods in the characterization of nanoscale structures of organic molecular semiconductors.

  11. The Nucleon Resonance Program at Jlab

    SciTech Connect

    Ralf W. Gothe

    2006-02-01

    The status of the program to study baryon resonances at Jefferson Lab will be exemplified by the latest results on resonance parameters and transition form factors in single and double-pion production as well as kaon-hyperon decays.

  12. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    SciTech Connect

    Das, Tanmoy; Balatsky, Alexander V.; Zhang, Chenglin; Li, Haifeng; Su, Yiki; Nethertom, Tucker; Redding, Caleb; Carr, Scott; Schneidewind, Astrid; Faulhaber, Enrico; Li, Shiliang; Yao, Daoxin; Bruckel, Thomas; Dai, Pengchen; Sobolev, Oleg

    2012-06-05

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  13. Studies of Fe/sup 2 +/. -->. Fe/sup 3 +/ transitions during the process of rock weathering by nuclear gamma-resonance spectroscopy

    SciTech Connect

    Vasil'ev, S.P.; Babanin, V.F.; Solov'ev, A.A.

    1986-11-01

    This paper presents a method for the mineral and weathering assessment of rocks and carbonaceous matter based in gamma spectroscopy and transitions between iron ions. The method is applied to rocks collected near the Teberda preserve. Four latitudinal bands of rocks parallel to the Greater Caucasus Ridge are identified in this territory. Isomer shift and hyperfine parameters of the Moessbauer spectra are given.

  14. Time-resolved resonant soft x-ray diffraction with free-electron lasers: Femtosecond dynamics across the Verwey transition in magnetite

    SciTech Connect

    Pontius, N.; Kachel, T.; Schuessler-Langeheine, C.; Schlotter, W. F.; Beye, M.; Sorgenfrei, F.; Wurth, W.; Chang, C. F.; Foehlisch, A.; Berglund, M.; Metcalf, P.

    2011-05-02

    Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e.g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium.

  15. High-resolution {sup 13}C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    SciTech Connect

    Bouhrara, M.; Saih, Y.; Waagberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-09-01

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  16. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    PubMed

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  17. Excitation cross sections for the ns 2S yields np 2P resonance transitions in Mg(+) (n = 3) and Zn(+) (n = 4) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Mitroy, J.; Tayal, S. S.; Henry, Ronald J. W.; Man, K.-F.; Mawhorter, R. J.; Williams, I. D.

    1993-01-01

    Electron-excitation cross sections are reported for the 3s 2S yields 3p 2P(h, k) resonance transition in Mg(+) at energies from threshold (4.43 eV) to approximately 9 times threshold (40.0 eV). The electron-energy-loss merged-beams technique used in these measurements is described in detail. In addition, the method of separating contributions of the elastically scattered (Coulomb) and the inelastically scattered electrons in the present Mg(+) case and previously reported Zn(+) results is described. Comparisons in the experimental energy range are made for Mg(+) with the two five-state close-coupling theoretical calculations carried out herein, and with other published close-coupling, distorted-wave, and semiempirical calculations. The present Mg(+) cross sections and Zn(+) cross sections from earlier measurements are tabulated.

  18. A 1 + 1' resonance-enhanced multiphoton ionization scheme for rotationally state-selective detection of formaldehyde via the à (1)A2 ← X[combining tilde] (1)A1 transition.

    PubMed

    Park, G Barratt; Krüger, Bastian C; Meyer, Sven; Wodtke, Alec M; Schäfer, Tim

    2016-08-10

    The formaldehyde molecule is an important model system for understanding dynamical processes in small polyatomic molecules. However, prior to this work, there have been no reports of a resonance-enhanced multiphoton ionization (REMPI) detection scheme for formaldehyde suitable for rovibrationally state-selective detection in molecular beam scattering experiments. Previously reported tunable REMPI schemes are either non-rotationally resolved, involve multiple resonant steps, or involve many-photon ionization steps. In the current work, we present a new 1 + 1' REMPI scheme for formaldehyde. The first photon is tunable and provides rotational resolution via the vibronically allowed à (1)A2 ← X[combining tilde] (1)A1 transition. Molecules are then directly ionized from the à state by one photon of 157 nm. The results indicate that the ionization cross section from the 4(1) vibrational level of the à state is independent of the rotational level used as intermediate, to within experimental uncertainty. The 1 + 1' REMPI intensities are therefore directly proportional to the à ← X[combining tilde] absorption intensities and can be used for quantitative measurement of X[combining tilde]-state population distributions. PMID:27461406

  19. Intense, Narrow Atomic-Clock Resonances

    NASA Astrophysics Data System (ADS)

    Jau, Y.-Y.; Post, A. B.; Kuzma, N. N.; Braun, A. M.; Romalis, M. V.; Happer, W.

    2004-03-01

    We present experimental and theoretical results showing that magnetic resonance transitions from the “end” sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these “end resonances,” collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

  20. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  1. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  2. A new model for broadband waveguide-to-microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1988-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  3. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900-1550 nm region.

    PubMed

    Takaya, Tomohisa; Iwata, Koichi

    2016-07-21

    Charge transfer and charge delocalisation processes play key roles in the functions of large biomolecular systems and organic/inorganic devices. Many of the short-lived transients involved in these processes can be sensitively detected by monitoring their low-energy electronic transitions in the near-IR region. Ultrafast time-resolved near-IR Raman spectroscopy is a promising tool for investigating the structural dynamics of the short-lived transients as well as their electronic dynamics. In this study, we have developed a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer using the Raman pump pulse at 1190 nm and a broadband probe pulse covering the 900-1550 nm region. Spectral and temporal instrument responses of the spectrometer are estimated to be 5 cm(-1) and 120 fs, respectively. Time-resolved near-IR stimulated Raman spectra of poly(3-dodecylthiophene) (P3DDT) are recorded in toluene solution for investigating its structural changes following the photoexcitation. The spectra strongly indicate conformational changes of P3DDT in excited states associated with the elongation of its effective conjugation length. The results on P3DDT fully demonstrate the effectiveness of the newly developed femtosecond time-resolved near-IR stimulated Raman spectrometer. PMID:27327140

  4. Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 - x Nd x Sr0.3Mn1.1O3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Revenko, Yu. F.; Kisel, N. G.; Kamenev, V. I.; Sil'cheva, A. G.; Ledenev, N. A.; Burkhovetskii, V. V.; Levchenko, G. G.

    2014-05-01

    The structure, lattice imperfection, and properties of ceramic samples La0.6 - x Nd x Sr0.3Mn1.1O3-δ ( x = 0-0.4) have been investigated using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), magnetoresistive and microscopic methods. It has been shown that there is a satisfactory agreement between the concentration decrease in the lattice parameters a of the rhombohedral ( x = 0, 0.1, 0.2) and cubic ( x = 0.3, 0.4) perovskite structures and the average ionic radii for the lattice containing anion vacancies, cation vacancies, and nanostructured clusters with Mn2+ ions in A-positions. With an increase in the neodymium concentration x, the vacancy-type imperfection increases, the cluster-type imperfection decreases, the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C decrease, and the content of the ferromagnetic phase decreases. The anomalous hysteresis is associated with the appearance of unidirectional exchange anisotropy induced in a clustered perovskite structure consisting of a ferromagnetic matrix and a planar antiferromagnetic cluster coherently coupled with it. An analysis of the asymmetrically broadened 55Mn NMR spectra has revealed a high-frequency electronic double exchange (Mn3+-O2--Mn4+) ↔ (Mn4+-O2--Mn3+) and an inhomogeneity of the magnetic and charge states of manganese due to the heterogeneous environment of the manganese ions by other ions and defects. The observed changes in the resonant frequency and width of the resonance curve are caused by changes in the ratio Mn3+/Mn4+ and magnetic inhomogeneity. An increase in the neodymium concentration x leads to a decrease in the ferromagnetic phase content determined from the dependences 4π Nχac( T) and the 55Mn NMR curves. The phase diagram characterizes an interrelation between the composition, the imperfection of the structure, and the transport, magnetic, and magnetoresistive properties of lanthanum neodymium manganite

  5. Measurements of the f-Values of the Resonance Transitions of Ni II at 1317.217 and 1370.132 Å

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.; Tripp, Todd M.

    2006-01-01

    We have retrieved high-resolution UV spectra of 69 hot stars from the HST archive and determined the strengths of the interstellar Ni II absorption features at 1317.217 Å arising from the ground 3d92D5/2 electronic state to the 3d8(1G)4p2Fo5/2 excited level. We then compared them to absorptions to either the 3d8(3F)4p2Do5/2 or 3d8(3P)4p2Po3/2 upper levels occurring at, respectively, λ=1741.553 Å (covered in the spectra of 21 of the stars) and 1370.132 Å (seen for the remaining 48 stars). All spectra were recorded by the either the E140M, E140H, or E230H gratings of the Space Telescope Imaging Spectrograph. By comparing the strengths of the two lines in each spectrum and evaluating a weighted average of all such comparisons, we have found that the f-value of the 1317 Å line is 1.34+/-0.019 times the one at 1741 Å, and 0.971+/-0.014 times the one at 1370 Å. We adopt as a comparison standard an experimentally determined f-value for the 1741 Å line (known to 10% accuracy), so that f(1317 )=0.0571+/-0.006. It follows from this f-value and our measured line-strength ratios that f(1370 )=0.0588+/-0.006. As an exercise to validate our methodology, we compared the 1317 Å transition to another Ni II line at 1454.842 Å to the 3d8(1D)4p2Do5/2 level and arrived at an f-value for the latter that is consistent with a previously measured experimental value to within the expected error. Based on observations from the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  6. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  7. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  8. Dynamical Transition in polypeptides

    NASA Astrophysics Data System (ADS)

    He, Yunfen; Markelz, Andrea

    2008-03-01

    Two of the possible causes for the so called dynamical transition (the rapid increase in flexibility for biomolecules at ˜ 200 K) are: thermally activated side chain diffusive motions with hydration dependent activation energies; or a glass transition in the biological water directly adjacent to the biomolecule. If the transition is strictly due to side chain activation, it should not depend on protein structure. Previously we demonstrated that the dynamical transition remains after tertiary structure was removed using THz time domain dielectric spectroscopy (0.2 -2.0 THz, 0.5-5ps). Here measurements on polyalanine as a function of chain length show that the dynamical transition does not occur for peptide length shorter than 5. However, the transition is observed for 5 mer and higher. Structural and simulation studies indicate that the 5 mer transiently occupies structured forms [1,2]. These results suggest that A) the dynamical transition is not due to thermally activated side chain motion and B) secondary structure is necessary for the dynamical transition. Secondary structure possibly induces sufficient ordering in the adjacent water to result in a fragile to strong glass transition resulting in increased protein flexibility [3]. [1] KAH Wildman et al. Solid State Nucl. Magn. Reson. 24 (2003) 94-109. [2] Yuguang Mu,et al. Proteins 58, (2005) 45-52. [3] S.H. Chen et al. PNAS (2006) 9012--9016.

  9. High Temperature Superconducting RF Resonators for Resonator Stabilized Oscillators

    NASA Astrophysics Data System (ADS)

    Goettee, Jeffrey David

    Electromagnetic resonators made of superconducting materials show unusually sharp resonances because resistive losses are minimized. The availability of high quality thin films of YB_2CU_3 O_{7-delta} (YBCO) with superconducting transitions at 92K has aroused interest in thin film resonators at microwave frequencies for use in filters and oscillators in communication and radar systems. I have investigated the design and radio frequency (rf) properties of superconducting resonators in microstrip geometries (in which the resonant element and a single ground plane are on opposite faces of the LaAlO_3 substrates). This monolithic approach minimizes vibration sensitivity, but exposes the resonators to interactions with the packaging structure. I used niobium (Nb) superconducting 2 GHz resonators at 4.2K to investigate the geometry dependence of the quality factor Q and the high frequency phase noise S_ {y}(f). Q's in excess of 250,000 and S_{y}(1 Hz) = -227 were achieved. Desirable geometries were then fabricated in YBCO thin films produced by coevaporation or sputtering. They typically showed Q's that are a factor of four lower than the comparable Nb resonator, but retained their usefulness to substantially higher temperatures ( ~60K). One of these YBCO resonators was successfully operated to stabilize an oscillator operating at 2 GHz with overall single-sideband phase noise }(1 Hz) = -30 dBc/Hz comparable to the best available competing technologies.

  10. Causal connection of non-specific low back pain and disc degeneration in children with transitional vertebra and/or Spina bifida occulta: role of magnetic resonance--prospective study.

    PubMed

    Milicić, Gordana; Krolo, Ivan; Anticević, Darko; Roić, Goran; Zadravec, Dijana; Bojić, Davor; Fattorini, Matija Zutelija; Bumci, Igor

    2012-06-01

    The problem of low back pain (LBP) in children is very common and many specialists are dealing with it in everyday practice. The cause for low back pain often is not found and classified under the diagnosis of non specific low back pain. The objective of this prospective study is to determine wether children with non specific low back pain and existence of anomalies in LS spine (transitional vertebra- TV and/or Spina bifida occulta SBO) also have the degeneration of the intervertebral disc (DD) L4-L5 and/or L5-S1. This prospective study included 69 patients from 8 to 16 years of age (X 12.81) of whom 40 were male (57.97%), and 29 female (42.03%). They all were examinated in University of Zagreb, "Sestre milosrdnice" University Hospital Center, Zagreb Children's Hospital, Department of Orthopaedic, Zagreb, Croatia. The reason of their visit was non specific low back pain. Pain was measured by visual analog scale (VAS) and mean score was three, duration of pain was between two and four weeks. Also, pain was sporadic, during daytime and not connected with level of physical activity. They all have undergone an algorithm of radiological examinations. Standard AP and LL radiographs (RTG) were made, as well as magnetic resonance (MR) of LS spine and sacrum in sagittal and transversal plane in T1 and T2 weighted sequence. The anomalies of L5 and S1 were found in 65 patients: transitional vertebra classified according to Castellvi et al. and SBO. In MRI in T2 weighted sequence DD was found in 61 patients which was classified modified from Pearce. Data analysis and comparison showed that 56patients with TV and/or SBO have changes on vertebral dynamic segment L5-S1 (VDS) and that means DD. In 13 patients only DD or spinal anomaly (TV and/or SBO) were found. Correlation between anomalies and DD in those patients was established by McNemar analysis and has shown significant difference (p=0.581) in favour of the patients with anomaly and DD. This has established that all of 56

  11. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  12. Resonance IR: a coherent multidimensional analogue of resonance Raman.

    PubMed

    Boyle, Erin S; Neff-Mallon, Nathan A; Handali, Jonathan D; Wright, John C

    2014-05-01

    This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes. PMID:24707979

  13. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  14. Ultraviolet resonance Raman studies of hemoglobin quaternary structure using a tyrosine-α42 mutant: changes in the α1β2 subunit interface upon the T → R transition

    NASA Astrophysics Data System (ADS)

    Nagai, M.; Imai, K.; Kaminaka, S.; Mizutani, Y.; Kitagawa, T.

    1996-06-01

    Quaternary structure changes between T (tense) and R (relaxed) states of human hemoglobin A (Hb A) and its α42Tyr mutant, obtained through site-directed mutagenesis, were investigated by ultraviolet resonance Raman (UVRR) spectroscopy using 235-nm excitation. Raman excitation at 235 nm enabled us to detect bands of tryptophan (Trp) and tyrosine (Tyr) residues. The UVRR spectral contribution of α42Tyr, which is located in the "switch" region of the α1β2 interface and forms an H-bond with the carboxylate side chain of β99Asp only in the T state, was deduced for each of the deoxy-and CO-forms by subtracting the spectra of Hb αY42H from those of Hb A under a certain assumption. This suggested that α42Tyr is responsible for the frequency shifts of Y8a (1619 cm -1) and Y9a (1179 cm -1) of the Tyr RR bands of Hb A, but that other Tyr residues are involved in intensity changes. The ligand-induced intensity changes of Trp UVRR bands were similar for Hb A and Hb αY42H, indicating that the conformation changes of Trp residues of Hb A and Hb αY42H upon quaternary structure change are alike. In order to get an insight into implications of these changes of the Tyr UVRR bands of Hb A between the R and T states, UVRR spectra of tyrosine and p-cresol in various solvents were examined with 235-nm excitation. The UVRR spectrum of Tyr residues in Hb A was similar to that of tyrosine in an aqueous solution, but distinct from that of tyrosine crystalline powder. The ν8 a band of p-cresol was upshifted and intensified in H-bond-forming solvents, irrespective of the H-bond donor or acceptor, compared with that in a non-H-bonding solvent. Accordingly, the present results are compatible with the statement that the frequency shifts of Y8a and Y9a of Hb A upon the T → R transition are caused by the H-bond formation of α42Tyr in the T state.

  15. Negative refraction using Raman transitions and chirality

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  16. Negative refraction using Raman transitions and chirality

    NASA Astrophysics Data System (ADS)

    Sikes, D. E.; Yavuz, D. D.

    2011-11-01

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  17. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  18. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  19. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  20. Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms

    SciTech Connect

    Moon, Han Seb; Noh, Heung-Ryoul

    2011-09-15

    The polarization dependence of double-resonance optical pumping (DROP) in the ladder-type electromagnetically induced transparency (EIT) of the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms is studied. The transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=2,3,4) transition were observed as caused by EIT, DROP, and saturation effects in the various polarization combinations between the probe and coupling lasers. The features of the double-structure transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=4) cycling transition were attributed to the difference in saturation effect according to the transition routes between the Zeeman sublevels and the EIT according to the two-photon transition probability.

  1. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  2. Transition Probability and the ESR Experiment

    ERIC Educational Resources Information Center

    McBrierty, Vincent J.

    1974-01-01

    Discusses the use of a modified electron spin resonance apparatus to demonstrate some features of the expression for the transition probability per second between two energy levels. Applications to the third year laboratory program are suggested. (CC)

  3. Measuring the acoustic response of Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Monteiro, Martín; Marti, Arturo C.; Vogt, Patrik; Kasper, Lutz; Quarthal, Dominik

    2015-04-01

    Many experiments have been proposed to investigate acoustic phenomena in college and early undergraduate levels, in particular the speed of sound,1-9 by means of different methods, such as time of flight, transit time, or resonance in tubes. In this paper we propose to measure the acoustic response curves of a glass beaker filled with different gases, used as an acoustic resonator. We show that these curves expose many interesting peaks and features, one of which matches the resonance peak predicted for a Helmholtz resonator fairly well, and gives a decent estimate for the speed of sound in some cases. The measures are obtained thanks to the capabilities of smartphones.

  4. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  5. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  6. A mechanical memory with a dc modulation of nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Noh, Hyunho; Shim, Seung-Bo; Jung, Minkyung; Khim, Zheong G.; Kim, Jinhee

    2010-07-01

    We present a mechanical memory device based on dynamic motion of a nanoelectromechanical (NEM) resonator. The NEM resonator exhibits clear nonlinear resonance characteristics which can be controlled by the dc bias voltage. For memory operations, the NEM resonator is driven to the nonlinear resonance region, and binary values are assigned to the two allowed states on the bifurcation branch. The transition between memory states is achieved by modulating the nonlinear resonance characteristics with dc bias voltage. Our device works at room temperature and modest vacuum conditions with a maximum operation frequency of about 5 kHz.

  7. New Bottomonium Spectroscopy And Transitions

    SciTech Connect

    West, Chris; /SLAC

    2011-12-01

    Recent results in bottomonium spectroscopy are reviewed. Topics include the observation of {Upsilon}(nS) {yields} {eta}{Upsilon}(1S) transitions, energy scans above the {Upsilon}(4S) resonance by the BABAR and Belle experiments, and the recent observation of the {eta}{sub b} by the BABAR experiment.

  8. Uncovering the matter-neutrino resonance

    NASA Astrophysics Data System (ADS)

    Väänänen, D.; McLaughlin, G. C.

    2016-05-01

    Matter-neutrino resonances (MNRs) can drastically modify neutrino flavor evolution in astrophysical environments and may significantly impact nucleosynthesis. Here we further investigate the underlying physics of MNR-type flavor transitions. We provide generalized resonance conditions and make analytical predictions for the behavior of the system. We discuss the adiabatic evolution of these transitions considering both symmetric and standard MNR scenarios. Symmetric MNR transitions differ from standard MNR transitions in that both neutrinos and antineutrinos can completely transform to other flavors simultaneously. We provide an example of the simplest system in which such transitions can occur with a neutrino and an antineutrino having a single energy and emission angle. We further apply linearized stability analysis to predict the location of self-induced nutation-type (or bipolar) oscillations due to ν ν interactions in the regions where MNR is ineffective. In all cases, we compare our analytical predictions to numerical calculations.

  9. Resonance absorption of compressible magnetohydrodynamic waves at thin 'surfaces'

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.; Yang, G.

    1988-01-01

    The behavior of plasma and fields in the transition layer supporting MHD surface waves is analyzed, assuming that the total pressure fluctuations, delta-P(tot), can be taken to be nearly constant across this thin transition layer, with a value nearly the same as would be obtained if the MHD wave were supported by a truly discontinuous surface. Regarding therefore delta-P(tot) as known, the plasma and field equations in the transition layer were cast into a form in which delta-P(tot) appeared as a driving term. Among the two resonances that appear (the cusp resonance and the Alfven resonance) special attention is given to the Alfven resonance, which affects the velocity and magnetic field components normal to the background magnetic field. The effects of three types of viscosity on the Alfven resonance are considered, and it is shown that energy is pumped out of the surface wave into thin layers surrounding the resonant field lines.

  10. Two-photon transitions to excited states in atomic hydrogen

    SciTech Connect

    Quattropani, A.; Bassani, F.; Carillo, S.

    1982-06-01

    Resonant two-photon transition rates from the ground state of atomic hydrogen to ns excited states have been computed as a function of photon frequencies in the length and velocity gauges in order to test the accuracy of the calculation and to discuss the rate of convergence over the intermediate states. The dramatic structure of the transition rates produced by intermediate-state resonances is exhibited. A two-photon transparency is found in correspondence to each resonance.

  11. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    SciTech Connect

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  12. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  13. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  14. Resonant tandem pumping of Tm-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Rines, Glen A.; Setzler, Scott D.

    2014-06-01

    We have demonstrated efficient lasing of a Tm-doped fiber when pumped with another Tm-doped fiber. In these experiments, we use a 1908 nm Tm-doped fiber laser as a pump source for another Tm-doped fiber laser, operating at a slightly longer wavelength (~2000 nm). Pumping in the 1900 nm region allows for very high optical efficiencies, low heat generation, and significant power scaling potential due to the use of fiber laser pumping. The trade-off is that the ground-state pump absorption at 1908 nm is ~37 times lower than at 795nm. However, the absorption cross-section is still sufficiently high enough to achieve effective pump absorption without exceedingly long fiber lengths. This may also be advantageous for distributing the thermal load in higher power applications.

  15. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  16. Cyclotron resonance in graphene

    NASA Astrophysics Data System (ADS)

    Henriksen, Erik Alfred

    We present a study of cyclotron resonance in graphene. Graphene is a novel two-dimensional system consisting of a single sheet of atoms arranged in a honeycomb lattice, and exhibits a unique, linear low-energy dispersion. Bilayer graphene, two sheets stacked together, is an equally interesting system displaying a second unique, but hyperbolic, dispersion. In this work, we study the quantized Landau levels of these systems in strong magnetic fields, via Fourier-transform infrared spectroscopy. We have fabricated large area single layer and bilayer graphene devices on infrared-transparent Si/SiO2 substrates, using standard electron beam lithography and thin-film liftoff techniques. At cryogenic temperatures and high magnetic fields, we measure the infrared transmission through these devices as a function of the back gate voltage, which changes the Fermi level and hence the carrier density. We analyze the normalized transmission traces, assigning the observed minima to the cyclotron resonance wherein carriers are excited between Landau levels. In single layer graphene, we study Landau level transitions near the charge neutral Dirac point, and find a set of particle-hole symmetric transitions, both within the conduction and valence band, and between the bands. These experiments confirm the unusual B- and n -dependencies of the LL energies, where B is the magnetic field and n the LL index. The CR selection rule is determined to be Delta n = |nfinal| -- |n initial| = +/-1. The ratio of the observed interband and intraband transitions exceeds the expected value by 5%, and this excess is interpreted as an additional contribution to the transition energy from many-particle effects. We explore several higher LL transitions for both electron and hole doping of single layer graphene. The data are consistent with a renormalization of the carrier band velocity near the Dirac point, and suggest that impurity scattering strengthens at low energies. We also study the CR at the

  17. Extremely short pulses via resonantly induced transparency

    NASA Astrophysics Data System (ADS)

    Radeonychev, Y. V.; Polovinkin, V. A.; Kocharovskaya, O.

    2011-07-01

    We study a novel method to produce extremely short pulses of radiation in a resonant medium via induced transparency by means of adiabatic periodic modulation of atomic transition frequencies by far-off-resonant laser field, which causes linear Stark splitting of atomic energy levels resulting in partial transparency of an optically deep medium and drastic spectral modification of an incident resonant radiation. We find the regimes where the output spectrum corresponds to extremely short pulses and discuss several possible experimental realizations of generation of attosecond pulses in Li2+ ions and femtosecond pulses in atomic hydrogen with commercially available facilities.

  18. Quantum manifestations of classical nonlinear resonances

    NASA Astrophysics Data System (ADS)

    Wisniacki, Diego A.; Schlagheck, Peter

    2015-12-01

    When an integrable classical system is perturbed, nonlinear resonances are born, grow, and eventually disappear due to chaos. In this paper the quantum manifestations of such a transition are studied in the standard map. We show that nonlinear resonances act as a perturbation that break eigenphase degeneracies for unperturbed states with quantum numbers that differ in a multiple of the order of the resonance. We show that the eigenphase splittings are well described by a semiclassical expression based on an integrable approximation of the Hamiltonian in the vicinity of the resonance. The morphology in phase space of these states is also studied. We show that the nonlinear resonance imprints a systematic influence in their localization properties

  19. Quantum manifestations of classical nonlinear resonances.

    PubMed

    Wisniacki, Diego A; Schlagheck, Peter

    2015-12-01

    When an integrable classical system is perturbed, nonlinear resonances are born, grow, and eventually disappear due to chaos. In this paper the quantum manifestations of such a transition are studied in the standard map. We show that nonlinear resonances act as a perturbation that break eigenphase degeneracies for unperturbed states with quantum numbers that differ in a multiple of the order of the resonance. We show that the eigenphase splittings are well described by a semiclassical expression based on an integrable approximation of the Hamiltonian in the vicinity of the resonance. The morphology in phase space of these states is also studied. We show that the nonlinear resonance imprints a systematic influence in their localization properties. PMID:26764790

  20. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). PMID:25828243

  1. Nucleon Transition Form Factors and New Perspectives

    SciTech Connect

    Gothe, R W

    2007-10-01

    The status of the electro-excitation program to study baryon resonances at Jefferson Lab will be exemplified by the most recent results on resonance parameters and transition form factors in single and double-pion production. These results demonstrate that the separation of resonance and background contributions and therefore the extraction of the electro-coupling amplitudes of resonances become easier and cleaner at higher four-momentum transfers (Q2). Furthermore, the double-pion in comparison to the single-pion channel shows a higher sensitivity to higher excited resonances and a distinctly different Q2 dependence of the background amplitudes. The combined analysis of the single- and double-pion data reduces model dependent uncertainties significantly, which allows us to extract the resonant electrocoupling amplitudes with an unprecedented quality.

  2. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  3. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  4. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  5. Extreme harmonic generation in electrically driven spin resonance.

    PubMed

    Stehlik, J; Schroer, M D; Maialle, M Z; Degani, M H; Petta, J R

    2014-06-01

    We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum. PMID:24949787

  6. Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-ray scattering.

    PubMed

    Smadici, S; Lee, J C T; Wang, S; Abbamonte, P; Logvenov, G; Gozar, A; Cavellin, C Deville; Bozovic, I

    2009-03-13

    We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La2CuO4 (LCO) and overdoped La2-xSrxCuO4 (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with T_{c}=38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces. PMID:19392148

  7. Superconducting Transition at 38 K in Insulating-Overdoped La2CuO4 - La1.64Sr0.36CuO4 Superlattices: Evidence for Interface Electronic Redistribution from Resonant Soft X-ray Scattering

    SciTech Connect

    Smadici, S.; Lee, J; Wang, S; Abbamonte, P; Logvenov, G; Gozar, A; Deville Cavellin, C; Bozovic, I

    2009-01-01

    We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La2CuO4 (LCO) and overdoped La2-xSrxCuO4 (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with Tc=38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces.

  8. Superconducting Transition at 38 K in Insulating-Overdoped La2CuO4-La1:64Sr0:36CuO4 Superlattices: Evidence for Interface Electronic Redistribution from Resonant Soft X-Ray Scattering

    SciTech Connect

    Smadici, S.; Bozovic, I.; Lee, J. C. T.; Wang, S.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Deville Cavellin, C.

    2009-03-12

    We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La{sub 2}CuO{sub 4} (LCO) and overdoped La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with T{sub c} = 38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces.

  9. Trion formation dynamics in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, Akshay; Moody, Galan; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; Berghäuser, Gunnar; Schaibley, John; Seifert, Edward J.; Pleskot, Dennis; Gabor, Nathaniel M.; Yan, Jiaqiang; Mandrus, David G.; Richter, Marten; Malic, Ermin; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    We report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoS e2 ), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ˜ 50 % . This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  10. Trion formation dynamics in monolayer transition metal dichalcogenides

    DOE PAGESBeta

    Singh, Akashay; Moody, Galan; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Xu, Xiaodong; Li, Xiaoqun; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; et al

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  11. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  12. Electroweak-scale resonant leptogenesis

    SciTech Connect

    Pilaftsis, Apostolos; Underwood, Thomas E.J.

    2005-12-01

    We study minimal scenarios of resonant leptogenesis near the electroweak phase transition. These models offer a number of testable phenomenological signatures for low-energy experiments and future high-energy colliders. Our study extends previous analyses of the relevant network of Boltzmann equations, consistently taking into account effects from out of equilibrium sphalerons and single lepton flavors. We show that the effects from single lepton flavors become very important in variants of resonant leptogenesis, where the observed baryon asymmetry in the Universe is created by lepton-to-baryon conversion of an individual lepton number, for example, that of the {tau}-lepton. The predictions of such resonant {tau}-leptogenesis models for the final baryon asymmetry are almost independent of the initial lepton-number and heavy neutrino abundances. These models accommodate the current neutrino data and have a number of testable phenomenological implications. They contain electroweak-scale heavy Majorana neutrinos with appreciable couplings to electrons and muons, which can be probed at future e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -} high-energy colliders. In particular, resonant {tau}-leptogenesis models predict sizable 0{nu}{beta}{beta} decay, as well as e- and {mu}-number-violating processes, such as {mu}{yields}e{gamma} and {mu}{yields}e conversion in nuclei, with rates that are within reach of the experiments proposed by the MEG and MECO collaborations.

  13. Elastodynamics and resonances in elliptical geometry

    NASA Astrophysics Data System (ADS)

    Ancey, S.; Bazzali, E.; Gabrielli, P.; Mercier, M.

    2013-11-01

    The resonant modes of two-dimensional elastic elliptical objects are studied from a modal formalism by emphasizing the role of the symmetries of the objects. More precisely, as the symmetry is broken in the transition from the circular disc to the elliptical one, the splitting up of resonances and level crossings are observed. From the mathematical point of view, this observation can be explained by the broken invariance of the continuous symmetry group { {O}(2)} associated with the circular disc. The elliptical disc is however invariant under the finite group { {C}}_{2v} and the resonances are classified and associated with a given irreducible representation of this group. The main difficulty arises in the application of the group theory in elastodynamics where the vectorial formalism is used to express the physical quantities (elastic displacement and stress) involved in the boundary conditions. However, this method significantly simplifies the numerical treatment of the problem which is uncoupled over the four irreducible representations of { {C} }_{2v}. This provides a full classification of the resonances. They are tagged and tracked as the eccentricity of the elliptical disc increases. Then, the splitting up of resonances, which occurs in the transition from the circular disc to the elliptic one, is emphasized. The computation of displacement normal modes also highlights the mode splittings. A physical interpretation of resonances in terms of geometrical paths is provided.

  14. Response to 'Comment on 'Resonant dissociative electron transfer of the presolvated electron to CCl{sub 4} in liquid: Direct observation and lifetime of the CCl{sub 4}*{sup -} transition state' [J. Chem. Phys. 129, 027101 (2008)]'

    SciTech Connect

    Wang, C.-R.; Drew, K.; Luo, T.; Lu, M.-J.; Lu, Q.-B.

    2008-07-14

    In our recent paper [J. Chem. Phys.128, 041102 (2008)], we reported a femtosecond time-resolved laser spectroscopic study of the electron transfer reaction of CCl{sub 4} in liquid ethanol. Our results provide direct evidence of the resonant dissociative electron transfer (RDET) of the presolvated electron to CCl{sub 4}, and indicate that RDET can be an efficient process in an aqueous environment. In a recent Comment, the author argues that the relevance of diethanolamine (DEA) induced destruction of chlorofluorocarbons (CFCs) in the polar stratosphere as a possible pathway for chemical ozone destruction should not be a motivation for further studies of DEA on CFC molecules, as no correlation is observed between polar chemical ozone loss and cosmic ray activity. Here, we show that this claim is misleading: it is made by using inconclusive and ambiguous data while ignoring pronounced and well-documented data.

  15. Metric transition

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes NASA's metric transition in terms of seven major program elements. Six are technical areas involving research, technology development, and operations; they are managed by specific Program Offices at NASA Headquarters. The final program element, Institutional Management, covers both NASA-wide functional management under control of NASA Headquarters and metric capability development at the individual NASA Field Installations. This area addresses issues common to all NASA program elements, including: Federal, state, and local coordination; standards; private industry initiatives; public-awareness initiatives; and employee training. The concluding section identifies current barriers and impediments to metric transition; NASA has no specific recommendations for consideration by the Congress.

  16. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  17. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators

    NASA Astrophysics Data System (ADS)

    Sharma, B.; Sun, C. T.

    2016-03-01

    We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.

  18. Resonant absorption and not-so-resonant absorption in short, intense laser irradiated plasma

    SciTech Connect

    Ge, Z. Y.; Zhuo, H. B.; Ma, Y. Y.; Yang, X. H.; Yu, T. P.; Zou, D. B.; Yin, Y.; Shao, F. Q.; Yu, W.; Luan, S. X.; Zhou, C. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088 ; Peng, X. J.

    2013-07-15

    An analytical model for laser-plasma interaction during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. Both the resonant absorption and not-so-resonant absorption are self-consistently included. Different from the previous theoretical works, the physics of resonant absorption is found to be valid in more general conditions as the steepening of the electron density profile is considered. Even for a relativistic intensity laser, resonant absorption can still exist under certain plasma scale length. For shorter plasma scale length or higher laser intensity, the not-so-resonant absorption tends to be dominant, since the electron density is steepened to a critical level by the ponderomotive force. The laser energy absorption rates for both mechanisms are discussed in detail, and the difference and transition between these two mechanisms are presented.

  19. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  20. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  1. Flyby Design Using Heteroclinic and Homoclinic Connections of Unstable Resonant Orbits

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    Tour designs using flybys have traditionally been studied using two-body patched conic methods. Previous work has shown that trajectories designed using these techniques and with optimization methods follow the invariant manifolds of unstable resonant orbits as they transition between resonances. This work is continued here by computing heteroclinic and homoclinic trajectories associated with these unstable resonant orbits. These trajectories are used with multiple resonances to design flybys that transition between these resonances in the circular restricted three-body problem without the need for two-body approximations.

  2. Raman-assisted Rabi resonances in two-mode cavity QED

    SciTech Connect

    Gruenwald, P.; Singh, S. K.; Vogel, W.

    2011-06-15

    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.

  3. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  4. [Humanitarian transition].

    PubMed

    Mattei, Jean-François; Troit, Virginie

    2016-02-01

    In two centuries, modern humanitarian action has experienced several fractures often linked to crises. Although its professionalism and intervention force remain indisputable, it faces, since the 2000s, a new context that limits its ability to act and confronts it with new dilemmas, even though it must deal with needs for aid of unprecedented scale. These difficulties reveal a humanitarian transition period that was not anticipated. This transition period reflects the change from a dominant paradigm of North-South solidarity of Western origin to a much more complex model. This article provides a summary of the current mutations that are dominated by the States' assertion of sovereignty. Among the possible solutions, it argues for an ethical approach and a better integration of the research carried out in the Global South, prerequisites for building a true partnership and placing the victims at the heart of the operations which involve them. PMID:26936180

  5. Eliminating Transitions

    ERIC Educational Resources Information Center

    Gallick, Barb; Lee, Lisa

    2010-01-01

    Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…

  6. Multiple-resonance phenomenon in neutrinoless double-electron capture

    SciTech Connect

    Eliseev, S.; Goncharov, M.; Blaum, K.; Block, M.; Herfurth, F.; Minaya Ramirez, E.; Droese, C.; Schweikhard, L.; Novikov, Yu. N.; Shabaev, V. M.; Tupitsyn, I. I.; Zubova, N. A.; Zuber, K.

    2011-07-15

    A superposition of multiple resonance states in neutrinoless double-electron capture in {sup 156}Dy has been discovered. Penning-trap mass spectrometry has been used for atomic-mass-difference measurements and careful calculations of electron wave functions and double-hole binding energies have been performed to determine the resonance-enhancement factors. Transitions to four nuclear excited states in the daughter nuclide {sup 156}Gd have been identified as resonantly enhanced, including one with a full resonant enhancement, within the uncertainty of 100 eV. This phenomenon is unique in that it can be used to probe the mechanisms of neutrinoless processes.

  7. Recoilless Nuclear Resonance Absorption of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Mössbauer, Rudolf L.

    It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.

  8. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  9. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  10. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  11. Resonant cavity modes in gallium oxide microwires

    NASA Astrophysics Data System (ADS)

    López, Iñaki; Nogales, Emilio; Méndez, Bianchi; Piqueras, Javier

    2012-06-01

    Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the 4T2-4A2 transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.

  12. Feshbach resonances of harmonically trapped atoms

    SciTech Connect

    Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2011-03-15

    Employing a short-range two-channel description, we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a parametrization of the energy-dependent scattering length that differs from the one previously employed. We validate the model by comparison to full numerical calculations for {sup 6}Li-{sup 87}Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.

  13. Stochastic Modeling of Laminar-Turbulent Transition

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Choudhari, Meelan

    2002-01-01

    Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.

  14. An Inexpensive Resonance Demonstration

    ERIC Educational Resources Information Center

    Dukes, Phillip

    2005-01-01

    The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

  15. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  16. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  17. Dynamo Transition

    SciTech Connect

    Verma, M. K.; Yadav, R.; Chandra, M.; Paul, S.; Wahi, P.

    2010-11-23

    In this article we review the experimental and numerical results related to the dynamo transitions. Recent experiments of Von Karman Sodium (VKS) exhibit various dynamo states including constant, time-periodic, and chaotic magnetic fields. Similarly pseudospectral simulations of dynamo show constant, time-periodic, quasiperiodic, and chaotic magnetic field configurations. One of the windows for the magnetic Prandtl number of unity shows period doubling route to chaos. Quasiperiodic route to chaos has been reported for the Prandtl number of 0.5. The dynamo simulations also reveal coexisting multiple attractors that were obtained for different initial conditions.

  18. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    PubMed Central

    Chen, Lin; Wei, YuMing; Zang, XiaoFei; Zhu, YiMing; Zhuang, SongLin

    2016-01-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices. PMID:26903382

  19. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  20. High-order harmonic generation and Fano resonances

    NASA Astrophysics Data System (ADS)

    Strelkov, V. V.; Khokhlova, M. A.; Shubin, N. Yu

    2014-05-01

    We present a high-order harmonic generation theory which generalizes the strong-field approximation to the resonant case when the harmonic frequency is close to that of the transition from the ground state to an autoionizing state of the generating system. We show that the line shape of the resonant harmonic is a product of the Fano-like factor and the harmonic line which would be emitted in the absence of the resonance. The theory predicts rapid variation of the harmonic phase in the vicinity of the resonance. The calculated resonant harmonic phase is in reasonable agreement with recent measurements. Predicting the phase locking of a group of resonantly enhanced harmonics, our theory allows us to study the perspectives of producing an attosecond pulse train using such harmonics.

  1. Invited Paper Optical Resonators For Associative Memory

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-06-01

    One can construct a memory having associative characteristics using optical resonators with an internal gain medium. The device operates on the principle that an optical resonator employing a holographic grating can have user prescribed eigenmodes. Information that is to be recalled is contained in the hologram. Each information entity (e.g. an image of a cat) defines an eigenmode of the resonator. The stored information is accessed by injecting partial information (e.g. an image of the cat's ear) into the resonator. The appropriate eigenmode is selected through a competitive process in a gain medium placed inside the resonator. With a net gain greater than one, the gain amplifies the field belonging to the eigenmode that most resembles the injected field; the other eigenmodes are suppressed via the competition for the gain. One can expect this device to display several intriguing features such as recall transitions and creativity. I will discuss some of the general properties of this class of devices and present the results from a series of experiments with a simple holographic resonator employing photorefractive gain.

  2. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  3. Diagonal-transition quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Detz, Hermann; MacFarland, Don; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Baumgartner, Oskar; Kosina, Hans

    2014-09-01

    We demonstrate the concept of diagonal transitions for quantum cascade detectors (QCD). Different to standard, vertical QCDs, here the active transition takes place between two energy levels in adjacent wells. Such a scheme has versatile advantages. Diagonal transitions generally yield a higher extraction efficiency and a higher resistance than vertical transitions. This leads to an improved overall performance, although the absorption strength of the active transition is smaller. Since the extraction is not based on resonant tunneling, the design is more robust, with respect to deviations from the nominal structure. In a first approach, a peak responsivity of 16.9 mA/W could be achieved, which is an improvement to the highest shown responsivity of a QCD for a wavelength of 8 μm at room-temperature by almost an order of magnitude.

  4. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  5. Resonance splitting in gyrotropic ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred

    2010-10-15

    We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator. PMID:20967092

  6. White-Light Whispering Gallery Mode Optical Resonator System and Method

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  7. Parametric resonance and cosmological gravitational waves

    SciTech Connect

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-03-15

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  8. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  9. Electromagnetic excitation of the Delta(1232) resonance

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  10. Resonance absorption of magnetohydrodynamic surface waves Physical discussion

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1987-01-01

    It is shown how the phenomenon of MHD surface wave resonance absorption can be described in simple terms, both physically and mathematically, by applying the 'thin flux tube equations' to the finite-thickness transition layer which supports the surface wave. The thin flux tubes support incompressible slow-mode waves that are driven by fluctuations in the total pressure which exist due to the presence of the surface wave. It is shown that the equations for the slow-mode waves can be reduced to a simple equation, equivalent to a driven harmonic oscillator. Certain field lines within the transition layer are equivalent to a harmonic oscillator driven at resonance, and neighboring field lines are effectively driven at resonance as long as a given condition is satisfied. Thus, a layer which secularly extracts energy from the surface wave develops. The analysis indicates that nonlinear effects may destroy the resonance which is crucial to the whole effect.

  11. Excitonic surface lattice resonances

    NASA Astrophysics Data System (ADS)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  12. Resonance behavior of internal conversion coefficients at low γ-ray energy

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Kibédi, T.; Nikulin, V. K.

    2010-02-01

    A resonance-like structure of internal conversion coefficients (ICCs) at low γ-ray energy (≲100 keV) is studied. Our calculations revealed new, previously unknown resonance minima in the energy dependence of ICCs for the ns shells at E2-E5 transitions. The resonances are the most defined for ICCs in light and medium elements with Z≲ 50. It is shown that ICCs may have up to four resonances for outer shells while it has been assumed so far that only one resonance exists. Well-pronounced resonances in ICCs at E1 transition were discovered for the ns shells with n⩾2 as well as for the np shells with n⩾3 and the nd shells with n⩾4 of all elements up to superheavy ones. Simple expressions for approximate values of the E1 resonance energy were obtained which are of importance for determination of the resonance energy range where the interpolation of ICCs taken from tables or databases may give significant errors. The occurrence of resonances in ICCs is explained by vanishing conversion matrix elements under changes of sign. The peculiarities of the behavior of the matrix elements and electron wave functions at the resonance energy are considered. Available experimental ICCs for electric transitions with energies near the expected position of resonances satisfactory agree with our calculations.

  13. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  14. Ramsey resonance of coherent population trapping in slow rubidium beam

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2016-03-01

    We calculate the coherent population trapping (CPT) resonance in slow beam of rubidium 87 atoms caused by of their interaction with bichromatic electromagnetic field in two separated spatial domains. In the case of monovelocity beam we study the properties of the CPT resonance depending on type of working transitions, velocity of the atomic beam, intensity and polarization of electromagnetic fields, and space separation in Ramsey scheme.

  15. Dynamics of a resonantly driven two-spin system

    SciTech Connect

    Volkov, Yu. S. Sinitsyn, D. O.

    2007-12-15

    Dynamics of a coupled two-spin system in a static magnetic field are investigated. An analysis is presented of resonance transitions driven by a circularly polarized radio-frequency (RF) field orthogonal to the static field. When the RF field amplitude is modulated at a certain frequency depending on the field strength, the system exhibits parametric resonance behavior. The periodicity of transitions breaks down, and the Shannon entropy of the recurrence probability density for the system's states increases by more than an order of magnitude.

  16. Fabrication and Characterization of Superconducting Resonators.

    PubMed

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop; Wollack, Edward J

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  17. High temperature resonant ultrasound spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Li, Guangyan; Lamberton, Gary; Gladden, Josh

    2008-03-01

    Resonant ultrasound spectroscopy (RUS) is a technique to obtain the full elastic tensor of single crystal materials by measuring the mechanical resonances of a polished sample. Any direct resonance measurement at high temperatures is limited by the fact that most ultrasound transducers have an upper operational limit of 200-300C. High temperature RUS measurements are made possible by separating the sample, placed in a tube furnace, and the transducers with buffer rods made of low acoustic attenuation materials with good thermal stability such as ceramic alumina or fused quartz. Tests on stainless steel demonstrated that the system has the ability of acquiring resonance signals at temperatures up to 800C. Experimental issues such as additional resonance peaks introduced by the buffer rods and sample loading will be addressed. The apparatus has been used to study high temperature elastic properties of p-zintl thermoelectrics, single crystal quartz, a novel piezoelectric material kepertite, and the glass transition around 400C in bulk metallic glass compounds. Good results from these studies and high temperature test runs of aluminum and stainless steel demonstrate the potential for RUS measurements at elevated temperatures.

  18. Coupled Resonance Laser Frequency Stabilization

    NASA Astrophysics Data System (ADS)

    Burd, Shaun; Uys, Hermann; MAQClab Team

    2013-05-01

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to the same photodiode signal derived from the UV laser only. For trapping and cooling Yb+ ions, a frequency stabilized laser is required at 369.9 nm to drive the S1/2-P1/2 cooling cycle. Since that cycle is not closed, a repump beam is needed at 935.18 nm to drive the D3/2-D[ 3 / 2 ] transition, which rapidly decays back to the S1/2 state. Our 369 nm laser is locked using Doppler free polarization spectroscopy of Yb+ ions, generated in a hollow cathode discharge lamp. Without pumping, the metastable D3/2 level is only sparsely populated, making direct absorption of 935 nm light difficult to detect. A resonant 369 nm pump laser can populate the D3/2 state, and fast repumping to the S1/2 ground state by on resonant 935 nm light, can be detected via the change in absorption of the 369 nm laser. This is accomplished using lock-in detection on the same photodiode signal to which the 369 nm laser is locked. In this way, simultaneous locking of two frequencies in very different spectral regimes is accomplished, while exploiting only the photodiode signal from one of the lasers. A rate equation model gives good qualitative agreement with experimental observation. This work was partially funded by the South African National Research Foundation.

  19. Optical Fiber Excitation of Fano Resonances in a Silicon Microsphere

    NASA Astrophysics Data System (ADS)

    Sabahattin Gökay, Ulaş; Zakwan, Muhammad; Demir, Abdullah; Serpengüzel, Ali

    2016-01-01

    In this article, Fano lineshape whispering gallery modes were observed in the light scattering spectrum of a silicon microsphere in near-infrared telecommunication wavelengths. A simple model is presented to explain the transition from Lorentzian lineshape to the Fano lineshape resonances with the coupled-mode theory of multiple whispering gallery modes. Polar mode spacing of 0.23 nm is observed in the spectra, which correlates well with the calculated value. The quality factor of the Lorentzian and Fano resonances are on the order of 105. By using an appropriate interface design for the microsphere coupling geometries, Fano lineshape optical resonances herald novel device applications for silicon volumetric lightwave circuits.

  20. The resonator handbook

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Zhou, Shiliang

    1993-01-01

    The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

  1. Resonances in heavy systems

    SciTech Connect

    Betts, R.R.

    1983-01-01

    The experimental situation for the study of resonances in heavy-ion collisions is reviewed, with emphasis on the heaviest systems. New data are presented which show some of the systematics of this phenomenon. The narrow resonance structures are established as a feature of the nuclear structure of the composite system rather than a purely entrance channel effect.

  2. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  3. Unstable optical resonators.

    PubMed

    Kahn, W K

    1966-03-01

    A technique, firmly based on a development from ray optics, is presented for calculating the loss due to the finite sizes of curved mirrors when these form an unstable optical resonator. If paraxial rays launched within such a resonator are confined near the resonator axis, the resonator is termed stable; otherwise it is termed unstable, and is known to have high losses. Siegman has recently presented a geometrical method, brilliantly constructed ad hoc, for calculating these losses in unstable resonators, and indicated where these might be advantageous in laser application. The ray optical theory presented here, which employs the concept of ray modes in an equivalent beam waveguide, is shown to yield results equivalent to those of Siegman for all cases considered by him. However, being derived from conventional ray optics, the validity of the formulas is independently established, and these formulas are immediately applicable to re-entrant resonators and resonators containing inhomogeneous media. The fractional loss per resonator pass is equal to 1-|lambda(2)|, where |lambda(2)| < this 1 is an eigenvalue of the transfer matrix T, representing the corresponding ray transformation. PMID:20048863

  4. Developments in Planet Detection using Transit Timing Variations

    SciTech Connect

    Steffen, Jason H.; Agol, Eric; /Washington U., Seattle, Astron. Dept.

    2006-12-01

    In a transiting planetary system, the presence of a second planet will cause the time interval between transits to vary. These transit timing variations (TTV) are particularly large near mean-motion resonances and can be used to infer the orbital elements of planets with masses that are too small to detect by any other means. The author presents the results of a study of simulated data where they show the potential that this planet detection technique has to detect and characterize secondary planets in transiting systems. These results have important ramifications for planetary transit searches since each transiting system presents an opportunity for additional discoveries through a TTV analysis. They present such an analysis for 13 transits of the HD 209458 system that were observed with the Hubble Space Telescope. This analysis indicates that a putative companion in a low-order, mean-motion resonance can be no larger than the mass of the Earth and constitutes, to date, the most sensitive probe for extrasolar planets that orbit main sequence stars. The presence or absence of small planets in low-order, mean-motion resonances has implications for theories of the formation and evolution of planetary systems. Since TTV is most sensitive in these regimes, it should prove a valuable tool not only for the detection of additional planets in transiting systems, but also as a way to determine the dominant mechanisms of planet formation and the evolution of planetary systems.

  5. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  6. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  7. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  8. Transitions: A Personal Perspective.

    ERIC Educational Resources Information Center

    Wood, Ann Stace

    1995-01-01

    Distinguishes between unchosen transitions (children maturing and leaving, parents aging, companies downsizing) and chosen ones (moving, divorce, marriage, career changes). Describes the steps one goes through: uneasiness, renewed energy, complaining, exploration, partial transition, and the completed transition. (JOW)

  9. Prediction and identification of multiple-photon resonant ionization processes

    SciTech Connect

    Smith, D.H.; McKown, H.S.; Young, J.P.; Shaw, R.W.; Donohue, D.L.

    1988-08-01

    Many single-color, multiple-photon transitions leading to ionization are observed for lanthanide and actinide elements in experiments using resonance ionization mass spectrometry (RIMS). It is desirable both to identify the energy levels involved in observed transitions and to be able to predict in advance their location. A computer code, ETRANS, has been written to perform these functions. Examples of both types of operation are given.

  10. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  11. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  12. Noise-induced transitions and resonant effects in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich erwiesen. Außerordentlich interessant aus dieser Sicht sind auch Reizleitungsprozesse: Reize werden nur weitergleitet, wenn die strukturlosen Signale der Neuronen mit ausreichend starker Intensität erfolgen, also ein Schwellwert überschritten ist. Der Physiker Dr. Alexei Zaikin von der Universität Potsdam beschäftigt sich mit sogenannten rauschinduzierten Phänomenen aus theorischer Sicht. Sein Forschungsgebiet sind Prozesse, bei denen Rauschen mehrfach das Systemverhalten beeinflusst: ist es ausreichend gross, d.h. größer als ein kritischer Wert, wird eine reguläre Struktur gebildet, die durch das immernoch vorhandene Rauschen mit der Struktur des Nachbarsystems synchronisiert. Um ein solches System mit kritischem Wert zu erhalten, bedarf es einer weiteren Rauschquelle. Herr Zaikin analysierte noch weitere Beispiele solcher doppelt stochastischen Effekte. Die Ausarbeitung derartiger theoretischer Grundlagen ist wichtig, da diese Prozesse in der Neurophysik, in technischen Kommunikationssystemen und in den Lebenswissenschaften eine Rolle spielen.

  13. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  14. PyTransit: Transit light curve modeling

    NASA Astrophysics Data System (ADS)

    Parviainen, Hannu

    2015-05-01

    PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

  15. LABCOM resonator Phase 3

    SciTech Connect

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  16. Modelling resonant planetary systems

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V.

    2012-09-01

    Many discovered multi-planet systems are in meanmotion resonances. The aim of this work is to study dynamical processes leading to the formation of resonant configurations on the basis of a unified model described earlier [1]. The model includes gravitational interactions of planets and migration of planets due to the presence of a gas disc. For the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser with planets moving in the 2:1 resonance, it is shown that the capture in this resonance occurs at very wide ranges of parameters of both type I and type II migration. Conditions of migration leading to the formation of the resonant systems HD 45364 и HD 200964 (3:2 and 4:3, respectively) are obtained. Formation scenarios are studied for the systems HD 102272, HD 108874, HD 181433, HD 202206 with planets in high order resonances. We discuss also how gravitational interactions of planets and planetesimal discs lead to the breakup of resonant configurations and the formation of systems similar to the 47 UMa system.

  17. Collision-induced radio-frequency transitions in CH 3I

    NASA Astrophysics Data System (ADS)

    Tamassia, F.; Danieli, R.; Scappini, F.

    1999-02-01

    The highly sensitive method of radio-frequency-infrared double resonance inside a CO 2 laser is applied to study collision-induced transitions in CH 3I in a four-level double resonance scheme. Pure nuclear quadrupole resonances are observed as the result of collision population transfer between different rotational levels. The intensity ratios of the collision-induced dips to the corresponding three-level double resonance signals are measured for a number of transitions in the ground and excited vibrational states. Collision selection rules in the pure gas and in mixtures with polar and non-polar gases are discussed.

  18. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  19. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K.; Jensen, Kenneth J.; Girit, Caglar; Mickelson, William E.; Grossman, Jeffrey C.

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  20. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  1. A resonance raman scattering study of vibrational dephasing in the mixed crystal of pentacene in naphthalene

    NASA Astrophysics Data System (ADS)

    de Bree, Philippus; Wiersma, Douwe A.

    1982-04-01

    Resonance Raman scattering is used to investigate vibrational dephasing in the mixed crystal of pentacene in naphthalene. It is shown that, as for the pure electronic transition, uncorrelated resonant phonon scattering processes in the ground and vibrationally excited state induce vibrational dephasing in this system.

  2. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  3. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  4. Resonances in QCD

    NASA Astrophysics Data System (ADS)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  5. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

  6. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  7. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  8. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  9. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  10. Injector with integrated resonator

    SciTech Connect

    Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

    2014-07-29

    The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

  11. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  12. Resonant dielectric metamaterials

    SciTech Connect

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  13. A microwave resonator integrated on a polymer microfluidic chip

    NASA Astrophysics Data System (ADS)

    Kiss, S. Z.; Rostas, A. M.; Heidinger, L.; Spengler, N.; Meissner, M. V.; MacKinnon, N.; Schleicher, E.; Weber, S.; Korvink, J. G.

    2016-09-01

    We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10 mm by 10 mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7 ·1011spins ·Hz - 1 / 2G-1 for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator.

  14. A microwave resonator integrated on a polymer microfluidic chip.

    PubMed

    Kiss, S Z; Rostas, A M; Heidinger, L; Spengler, N; Meissner, M V; MacKinnon, N; Schleicher, E; Weber, S; Korvink, J G

    2016-09-01

    We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10mm by 10mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7·10(11)spins·Hz(-1/2)G(-1) for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator. PMID:27497077

  15. Isoscalar dipole transition as a probe for asymmetric clustering

    NASA Astrophysics Data System (ADS)

    Chiba, Y.; Kimura, M.; Taniguchi, Y.

    2016-03-01

    Background: The sharp 1- resonances with enhanced isoscalar dipole transition strengths are observed in many light nuclei at relatively small excitation energies, but their nature has been unclear. Purpose: We show those resonances can be attributed to the cluster states with asymmetric configurations such as α +16O . We explain why asymmetric cluster states are strongly excited by the isoscalar dipole transition. We also provide a theoretical prediction of the isoscalar dipole transitions in 20Ne and 44Ti. Method: The transition matrix is analytically derived to clarify the excitation mechanism. The nuclear model calculations by Brink-Bloch wave function and antisymmetrized molecular dynamics are also performed to provide a theoretical prediction for 20Ne and 44Ti. Results: It is shown that the transition matrix is as large as the Weisskopf estimate even though the ground state is an ideal shell-model state. Furthermore, it is considerably amplified if the ground state has cluster correlation. The nuclear model calculations predict large transition matrix to the α +16O and α +40Ca cluster states comparable with or larger than the Weisskopf estimate. Conclusions: We conclude that the asymmetric cluster states are strongly excited by the isoscalar dipole transition. Combined with the isoscalar monopole transition that populates the 0+ cluster states, the isoscalar transitions are promising probes for asymmetric clusters.

  16. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  17. Plasmofluidic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-03-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage.

  18. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  19. Coulomb and nuclear excitations of narrow resonances in 17Ne

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  20. Full counting statistics of quantum dot resonance fluorescence.

    PubMed

    Matthiesen, Clemens; Stanley, Megan J; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  1. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  2. Application of resonance Raman LIDAR for chemical species identification

    SciTech Connect

    Chen, C.L.; Heglund, D.L.; Ray, M.D.; Harder, D.; Dobert, R.; Leung, K.P.; Wu, M.; Sedlacek, A.

    1997-07-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it`s performance envelope. When the excitation frequency approaches an allowed electronic transition of the molecule, an enormous enhancement of the inelastic scattering cross-section can occur, often up to 2 to 4 orders-of-magnitude, and is referred to as resonance Raman (RR), since the excitation frequency is in resonance with an allowed electronic transition. Exploitation of this enhancement along with new techniques such as pattern recognition algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation technique designed to suppress broadband fluorescence, referred to as Frequency modulated Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology, for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

  3. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  4. Resonance vector soliton of the Rayleigh wave.

    PubMed

    Adamashvili, G T

    2016-02-01

    A theory of acoustic vector solitons of self-induced transparency of the Rayleigh wave is constructed. A thin resonance transition layer on an elastic surface is considered using a model of a two-dimensional gas of impurity paramagnetic atoms or quantum dots. Explicit analytical expressions for the profile and parameters of the Rayleigh vector soliton with two different oscillation frequencies is obtained, as well as simulations of this nonlinear surface acoustic wave with realistic parameters, which can be used in acoustic experiments. It is shown that the properties of a surface vector soliton of the Rayleigh wave depend on the parameters of the resonance layer, the elastic medium, and the transverse structure of the surface acoustic wave. PMID:26986400

  5. Resonant optical rectification in bacteriorhodopsin

    PubMed Central

    Groma, Géza I.; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W.; Váró, György; Joffre, Manuel; Vos, Marten H.; Martin, Jean-Louis

    2004-01-01

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans→cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility χ(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  6. Resonant optical rectification in bacteriorhodopsin.

    PubMed

    Groma, Géza I; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W; Váró, György; Joffre, Manuel; Vos, Marten H; Martin, Jean-Louis

    2004-05-25

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  7. Tunable Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Montagu, Jean I.

    1987-01-01

    The most attractive features of resonant scanners are high reliability and eternal life as well as extremely low wobble and jitter. Power consumption is also low, electronic drive is simple, and the device is capable of handling large beams. All of these features are delivered at a low cost in a small package. The resonant scanner's use in numerous high precision applications, however, has been limited because of the difficulty in controlling its phase and resonant frequency. This paper introduces the concept of tunable/controllable resonant scanners, discusses their features, and offers a number of tuning techniques. It describes two angular scanner designs and presents data on tunable range and life tests. It also reviews applications for these new tunable resonant scanners that preserve the desirable features of earlier models while removing the old problems with synchronization or time base flexibility. The three major types of raster scanning applications where the tunable resonant scanner may be of benefit are: 1. In systems with multiple time bases such as multiple scanner networks or with scanners keyed to a common clock (the line frequency or data source) or a machine with multiple resonant scanners. A typical application is image and text transmission, also a printer with a large data base where a buffer is uneconomical. 2. In systems sharing data processing or laser equipment for reasons of cost or capacity, typically multiple work station manufacturing processes or graphic processes. 3. In systems with extremely precise time bases where the frequency stability of conventional scanners cannot be relied upon.

  8. Isospin decomposition of γ N →N* transitions within a dynamical coupled-channels model

    NASA Astrophysics Data System (ADS)

    Kamano, H.; Nakamura, S. X.; Lee, T.-S. H.; Sato, T.

    2016-07-01

    By extending the dynamical coupled-channels analysis performed in our previous work [Phys. Rev. C 88, 035209 (2013)], 10.1103/PhysRevC.88.035209 to include the available data of photoproduction of π mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γ n →N* , at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γ p →N* transition amplitudes. Our results allow an isospin decomposition of the γ N →N* transition amplitudes for the isospin I =1/2 N* resonances, which is necessary for testing hadron structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.

  9. Precession of a rapidly rotating cylinder flow: traverse through resonance

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  10. Nonlinear phenomena and multiphonon transitions in the exciton region of a spectrum

    NASA Astrophysics Data System (ADS)

    Lisitsa, M. P.; Taratuta, R. A.; Yaremko, A. M.

    1990-08-01

    Using the Keldysh diagram method, the nonlinear susceptibility for a Frenkel exciton with account for the multiquantum transitions is obtained. Propagation of the strong resonance electromagnetic wave through the crystal and the optical bistability phenomenon are considered.

  11. Strong-Field Resonant Dynamics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Kruchinin, Stanislav Yu.; Ciappina, Marcelo; Stockman, Mark I.; Yakovlev, Vladislav S.

    2016-05-01

    We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies.

  12. Strong-Field Resonant Dynamics in Semiconductors.

    PubMed

    Wismer, Michael S; Kruchinin, Stanislav Yu; Ciappina, Marcelo; Stockman, Mark I; Yakovlev, Vladislav S

    2016-05-13

    We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse. The predicted effects are experimentally observable using photoemission and terahertz spectroscopies. PMID:27232043

  13. Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2009-05-01

    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance.

  14. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  15. From chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    SciTech Connect

    Arriola, E. R.; Salcedo, L. L.; Megias, E.

    2013-03-25

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  16. Application of Glass Transition in Food Processing.

    PubMed

    Balasubramanian, S; Devi, Apramita; Singh, K K; Bosco, S J D; Mohite, Ashish M

    2016-04-25

    The phenomenon of glass transition has been employed to food products to study their stability. It can be applied as an integrated approach along with water activity and physical and chemical changes in food in processing and storage to determine the food stability. Also associated with the changes during agglomeration crystallization, caking, sticking, collapse, oxidation reactions, nonenzymatic browning, and microbial stability of food system. Various techniques such as Differential Scanning Calorimetry, Nuclear Magnetic Resonance, etc. have been developed to determine the glass transition temperature (Tg) of food system. Also, various theories have been applied to explain the concept of Tg and its relation to changes in food system. This review summarizes the understanding of concept of glass transition, its measurement, and application in food technology. PMID:25118113

  17. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  18. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  19. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Recently, Ho and his colleagues have calculated the positions and widths of a series of resonances in the Ps+H scattering system, using the complex -rotation method and have compared them with estimates that I made many years ago using a quite different technique. I assumed that the resonance mechanism was the existence in the rearrangement channel [e+ + H-] of an infinite series of perturbed Coulomb bound states. Although these must be broadened and shifted by coupling with the open scattering channel, I expected them to lie very close to the actual resonance positions. To verify this, I did a model calculation for S-waves, including the coupling, and found that the first two resonances were not shifted very far from their unperturbed position. The new, detailed calculation agrees with this result, but when the P-wave was examined it was found, surprisingly, that the lowest resonance indeed moved up in energy by a large amount. With the help of Joseph DiRienzi of the College of Notre Dame of Maryland I am now extending the old calculation to P- and D-waves, in an attempt to understand this unexpected energy shift. Results will be presented at the Workshop.

  20. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  1. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  2. Exploitation of resonance Raman spectroscopy as a remote chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-08-01

    We have discussed recent experimental results using a resonance-Raman-based LIDAR system as a remote chemical sensor. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations. By taking advantage of resonance enhancement, which 6 orders-of-magnitude, can be as large as 4 to an increased sensing range for a given chemical concentration or lower detection limit for a given stand-off distance can be realized. The success discussed above can in part be traced back to the use of new state-of-the-art technologies which, only recently, have allowed the phenomenon of resonance-enhanced Raman spectroscopy to be fully exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in the UV/IS, it is expected that many will have pronounced resonance enhancements.

  3. Structure of magnetic resonance in 87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.; Zibrov, S. A.; Zibrov, A. A.; Yudin, V. I.; Taichenachev, A. V.; Yakovlev, V. P.; Tsygankov, E. A.; Zibrov, A. S.; Vassiliev, V. V.; Velichansky, V. L.

    2016-05-01

    Magnetic resonance at the F g = 1 rightleftarrows F e = 1 transition of the D 1 line in 87Rb has been studied with pumping and detection by linearly polarized radiation and detection at the double frequency of the radiofrequency field. The intervals of allowed values of the static and alternating magnetic fields in which magnetic resonance has a single maximum have been found. The structure appearing beyond these intervals has been explained. It has been shown that the quadratic Zeeman shift is responsible for the three-peak structure of resonance; the radiofrequency shift results in the appearance of additional extrema in resonance, which can be used to determine the relaxation constant Γ2. The possibility of application in magnetometry has been discussed.

  4. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  5. Critical and resonance phenomena in neural networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Lopes, M. A.; Lee, K.-E.; Mendes, J. F. F.

    2013-01-01

    Brain rhythms contribute to every aspect of brain function. Here, we study critical and resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach and simulations of a cortical circuit model of neural networks with stochastic neurons in the presence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical point determined by the noise level, network structure, the balance between excitatory and inhibitory neurons, and other parameters. We find that the relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are dramatically increased when approaching the critical point of the transition.

  6. Photodetachment Spectroscopy of La-: Resonances and Thresholds

    NASA Astrophysics Data System (ADS)

    Walter, C. W.; Gibson, N. D.; Crocker, C.; Dungan, K. A.; Matola, B. R.

    2015-05-01

    The negative ion of lanthanum, La-, has the richest bound state spectrum ever observed for an atomic negative ion, and it has been proposed as perhaps the best candidate for laser cooling of a negative ion. In the present experiments, photodetachment thresholds and transitions between bound states of La- are investigated using tunable infrared spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam-laser-beam apparatus over the photon energy range 290-900 meV. The spectrum reveals at least 14 sharp resonance peaks due to transitions to either bound states of the negative ion or quasibound states in the continuum. Multiple photodetachment thresholds are also observed, providing information on the binding energies for some states of La-. This material is based on work supported by the National Science Foundation under Grant No. 1068308 and 1404109.

  7. Three-colour CARS spectroscopy of the OH radical at triple resonance

    NASA Astrophysics Data System (ADS)

    Attal-Tretout, B.; Berlemont, P.; Taran, J. P.

    A coherent anti-Stokes Raman-scattering (CARS) study of the OH radical is conducted using resonance enhancement from the A 2Sigma(+) - X 2Pi transition. A review of previous work on resonance-enhanced CARS is first given. The OH radical has specific one-photon spectral properties that lead to original CARS features; main and satellite CARS processes are thus defined at resonance. The use of resonance-enhanced CARS for the detection of OH is discussed. Optimum detectivity is obtained at triple resonance. Triple resonance can be nearly achieved using only two lasers on satellite CARS lines, but the best results are obtained on the main CARS lines using three lasers. This is verified experimentally in a discharge and in a one-atmosphere flat flame. Extra resonances from the excited electronic-state vibration are clearly seen. The results indicate that detection of OH in flames at high pressures should be easily feasible.

  8. Coupled optical resonance laser locking

    NASA Astrophysics Data System (ADS)

    Burd, S. C.; du Toit, P. J. W.; Uys, H.

    2014-10-01

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to the same spectroscopic sample, by monitoring only the absorption of the UV laser. For trapping and cooling Yb$^{+}$ ions, a frequency stabilized laser is required at 369.95nm to drive the $^{2}S_{1/2}$ $ \\rightarrow $ $ ^{2}P_{1/2}$ cooling transition. Since the cycle is not closed, a 935.18nm laser is needed to drive the $^{2}D_{3/2}$ $\\rightarrow$ $^{3}D_{[3/2]1/2}$ transition which is followed by rapid decay to the $^{2}S_{1/2}$ state. Our 369nm laser is locked to Yb$^{+}$ ions generated in a hollow cathode discharge lamp using saturated absorption spectroscopy. Without pumping, the metastable $^{2}D_{3/2}$ level is only sparsely populated and direct absorption of 935nm light is difficult to detect. A resonant 369nm laser is able to significantly populate the $^{2}D_{3/2}$ state due to the coupling between the levels. Fast re-pumping to the $^{2}S_{1/2}$ state, by 935nm light, can be detected by observing the change in absorption of the 369nm laser using lock-in detection of the photodiode signal. In this way simultaneous locking of two optical frequencies in very different spectral regimes is accomplished. A rate equation model gives good qualitative agreement with the experimental results. This technique offers improved laser frequency stabilization compared to lasers locked individually to the sample and should be readily applicable to similar ion systems.

  9. Polarization and hyperfine transitions of metastable ^{129}Xe in discharge cells

    NASA Astrophysics Data System (ADS)

    Xia, T.; Morgan, S. W.; Jau, Y.-Y.; Happer, W.

    2010-03-01

    The polarization and relaxation rates of metastable Xe129 atoms are measured with magnetic resonance spectroscopy, at both microwave frequencies, where ΔF=1 transitions are induced between the sublevels, and at radiofrequencies, corresponding to ΔF=0 transitions. The nuclear spin polarization of the resonant velocity group is measured to be 22±2%. The relaxation of metastable xenon atoms is dominated by depolarizing collisions with ground-state atoms, with lesser contributions from metastability exchange collisions.

  10. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  11. Three-pion resonances

    NASA Astrophysics Data System (ADS)

    Garcilazo, H.; Mathelitsch, L.

    1994-03-01

    We investigate the continuum three-pion problem within a relativistic three-body model that takes into account the ππ S and P waves. The dynamical input of the two-body subsystem is given by separable potentials, which yield a good fit to the ππ scattering data and resonance parameters up to a two-body invariant mass of 900MeV. We introduce a parameter ν expressing the ambiguity in the reduction of a fully relativistic theory to a three-dimensional one. The masses and widths of the ω, a 1(1260), and π(1300) mesons, which decay predominantly into three pions, are reasonably well described by our model. The h 1(1170) meson, however, which also decays into three pions, cannot be explained as a three-pion resonance. Some πρ Argand diagrams are shown in those channels where resonances exist.

  12. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  13. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  14. Physics of Sports: Resonances

    NASA Astrophysics Data System (ADS)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  15. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  16. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  17. Pygmy resonances and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Tsoneva, Nadia; Lenske, Horst

    2015-05-01

    A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

  18. Method for resonant measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert; Dixon, Raymond D.

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  19. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  20. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  1. Resonant optical gun.

    PubMed

    Maslov, A V; Bakunov, M I

    2014-05-01

    We propose a concept of a structure-a resonant optical gun-to realize an efficient propulsion of dielectric microparticles by light forces. The structure is based on a waveguide in which a reversal of the electromagnetic momentum flow of the incident mode is realized by exciting a whispering gallery resonance in the microparticle. The propelling force can reach the value up to the theoretical maximum of twice the momentum flow of the initial wave. The force density oscillates along the particle periphery and has very large amplitude. PMID:24784113

  2. Conceptualizing Transitions to Adulthood

    ERIC Educational Resources Information Center

    Wyn, Johanna

    2014-01-01

    This chapter provides an overview of theories of the transition to young adulthood. It sets out the argument for conceptual renewal and discusses some implications of new patterns of transition for adult education.

  3. The Managerial Transition.

    ERIC Educational Resources Information Center

    Kneeland, Steven J.

    1980-01-01

    Having identified the problem of managerial transition in a previous article (CE 510 277), the author outlines a strategy for change which includes performance appraisal, definition of the management structure, and counselling for the individual in transition. (SK)

  4. Glass transition(s) of ionomers

    SciTech Connect

    Weiss, R.A.

    1994-09-01

    Ionomers are predominantly nonpolar polymers that contain a small amount of bonded salt groups. Microphase separation of ion-rich microdomains occurs as a consequence of the thermodynamic incompatibility of the salt groups and the polymer matrix and associative interactions between salt groups. Associations of the salt groups usually increase the glass transition of the continuous matrix phase, presumably as a consequence of the inhibition of chain mobility that accompanies physical crosslinking. The central question raised in this paper is whether the dispersed ion-rich microphase exhibits a glass transition. Although no glass transition for the microphase is detected by calorimetry, a dynamic mechanical relaxation is commonly observed above the T{sub g} of the matrix phase. This transition has some of the attributes of a glass transition, but it is not clear what is the actual relaxation process that is measured. This paper discusses the effect of the ionic groups on the matrix glass transition, the origin of the high-temperature dynamic mechanical transition, and the effects of the addition of plasticizers on the T{sub g} of the matrix and the higher temperature mechanical relaxation.

  5. High Quality Factor Mechanical Resonators Based on WSe2 Monolayers.

    PubMed

    Morell, Nicolas; Reserbat-Plantey, Antoine; Tsioutsios, Ioannis; Schädler, Kevin G; Dubin, François; Koppens, Frank H L; Bachtold, Adrian

    2016-08-10

    Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 10(4) at liquid nitrogen temperature and 4.7 × 10(4) at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction. PMID:27459399

  6. Transition in Turbines

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.

  7. Transitivity of Preferences

    ERIC Educational Resources Information Center

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2011-01-01

    Transitivity of preferences is a fundamental principle shared by most major contemporary rational, prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group, or society that prefers choice option "x" to "y" and "y" to "z" must prefer "x" to "z". Any claim of empirical violations of transitivity by…

  8. Transition: Terms and Concepts.

    ERIC Educational Resources Information Center

    O'Leary, Ed

    This paper provides explanations and case examples of some terms and concepts related to transition of students with disabilities under 1997 amendments to the Individuals with Disabilities Education Act. Explanations and examples focus on the concepts of "statement of transition service needs" and "statement of needed transition services". The…

  9. Resonant coherent excitation of the lithiumlike uranium ion: A scheme for heavy-ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Takano, Y.; Ikeda, T.; Kanai, Y.; Suda, S.; Azuma, T.; Bräuning, H.; Bräuning-Demian, A.; Dauvergne, D.; Stöhlker, Th.; Yamazaki, Y.

    2013-06-01

    We report our observation of the resonant fluorescence from highly charged uranium ions. Using the resonant coherent excitation (RCE) technique, the 2s-2p3/2 transition in 191.68 MeV/u Li-like U89+ ions was excited at 4.5 keV with a resonance width of 4.4 eV. The result demonstrated that the RCE can be applied to resonant fluorescence spectroscopy of high-Z ions up to uranium with high efficiency and resolution.

  10. Dynamic creation of a light-induced terahertz guided-wave resonator.

    PubMed

    Gingras, Lauren; Blanchard, François; Georgin, Marcel; Cooke, David G

    2016-02-01

    We demonstrate a dynamic light-induced resonator for terahertz (THz) frequency light created on ultrashort time scales inside a planar waveguide. The resonator is created by patterned femtosecond photoexcitation of a one-dimensional array of photoconductive regions inside a silicon-filled parallel plate waveguide. The metal-dielectric photonic crystal is created on a 2 ps time scale, ten times faster than the 20 ps transit time of the THz light through the array. The resonance reveals itself through narrowband THz transmission enhancement with accompanying phase modulation producing an induced group delay of up to 10.8 ps near resonance. PMID:26906824

  11. Reaction dynamics of F+HD-->HF+D at low energies: Resonant tunneling mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Dong, Feng; Liu, Kopin

    2002-05-01

    The complete state-resolved differential cross section σ(v',j',θ;Ec), investigated in a crossed-beam scattering study, is presented for the title reaction at six initial collision energies (Ec) which are below or near the barrier energy. At low energies, all reactive flux is gated through a trapped resonance state via a tunneling process. Hence, it serves as a benchmark system for better understanding the reactive resonance phenomenon. In addition to highlighting various resonance fingerprints of experimental observable, the concept of resonant tunneling reaction mechanism is elucidated. Particular emphasis is placed on its distinction from the more conventional transition-state reaction mechanism.

  12. Micromachined double resonator

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman (Inventor); Tang, Tony K. (Inventor); Shcheglov, Kirill (Inventor)

    2002-01-01

    A micromachined resonator mountable to an external support structure has a proof mass coupled to a base structure by a first spring structure, the base structure having a plurality of electrodes, and a second spring structure coupling the base structure to the external support structure.

  13. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  14. Proton resonance spectroscopy

    SciTech Connect

    Shriner, J.F. Jr.

    1991-11-01

    This report discusses the following topics: Complete Level Scheme for {sup 30}P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + {sup 27}Al; The Parity Dependence of Level Densities in {sup 49}V; and A Computer Program for the Calculation of Angular Momentum Coupling.

  15. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  16. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  17. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  18. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  19. Magnetoelectric resonance engine

    SciTech Connect

    Moscrip, W.M.

    1992-09-15

    This patent describes a magnetoelectric resonance thermal machine. It comprises a reciprocating, multiple-piston, Alpha-type Stirling-cycle mechanical assembly; an electronic quadrature phase-lock circuit; an ancillary external energy and mass transfer subsystem; and a master microcomputer control system.

  20. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. PMID:27378060

  1. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  2. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.

    1959-08-01

    A cavity excitation circuit is described for rapidly building up and maintaining high-level oscillations in a resonant cavity. The circuit overcomes oscillation buildup slowing effects such as ion locking in the cavity by providing for the selective application of an amplified accelerating drive signal to the main cavity exciting oscillator during oscillation buildup and a direct drive signal to the oscillator thereafter.

  3. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.; Kiesling, J.D.

    1963-06-11

    A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

  4. Screening Resonances In Plasmas

    SciTech Connect

    Winkler, P.

    1998-12-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion.

  5. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  6. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  7. Improved ultraviolet resonance lamp

    NASA Technical Reports Server (NTRS)

    Bass, A. M.

    1970-01-01

    Removal of the seal area from the path of the lamp discharge eliminates the gradual deterioration of lithium fluoride window surfaces from condensation of products formed by interaction of a resonant rare-gas discharge with window sealing materials. The discharge is confined to the inner tube.

  8. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  9. Neutral Pion Electroproduction in the Delta Resonance Region

    SciTech Connect

    Villano, Anthony

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Delta(1232) resonance via exclusive pseudoscalar meson production of À0 particles. Differential cross sections are extracted for exclusive À0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Delta(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Delta region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G M is extracted along with the scalar to magnetic dipole ratio C2/M1.

  10. Periodic-orbit formula for quantum reactions through transition states

    SciTech Connect

    Schubert, Roman; Goussev, Arseni; Wiggins, Stephen; Waalkens, Holger

    2010-07-15

    Transition state theory forms the basis of computing reaction rates in chemical and other systems. Recently, it has been shown how transition state theory can rigorously be realized in phase space by using an explicit algorithm. The quantization has been demonstrated to lead to an efficient procedure to compute cumulative reaction probabilities and the associated Gamov-Siegert resonances. In this paper, these results are used to express the cumulative reaction probability as an absolutely convergent sum over periodic orbits contained in the transition state.

  11. Splitting of the Pygmy Dipole Resonance

    NASA Astrophysics Data System (ADS)

    Endres, J.; Butler, P.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Krücken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Savran, D.; Scheck, M.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2011-10-01

    In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ,γ') photon scattering method is used. In complementary (α,α'γ) coincidence experiments at Eα = 136 MeV a similar γ-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ,γ') method a structural splitting of the PDR is observed in the N = 82 nuclei 138Ba and 140Ce and in the Z = 50 nucleus 124Sn. The low energy part is excited in (γ,γ') as well as in (α,α'γ) while the high energy part is observed in (γ,γ') only. The experimental results together with theoretical QPM and RQTBA calculations on 124Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of Jπ = 1- states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).

  12. Splitting of the Pygmy Dipole Resonance

    SciTech Connect

    Endres, J.; Zilges, A.; Butler, P.; Herzberg, R.-D.; Scheck, M.; Harakeh, M. N.; Harissopulos, S.; Lagoyannis, A.; Kruecken, R.; Ring, P.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Sonnabend, K.; Popescu, L.; Savran, D.; Stoica, V. I.; Woertche, H. J.

    2011-10-28

    In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution ({gamma},{gamma}') photon scattering method is used. In complementary ({alpha},{alpha}'{gamma}) coincidence experiments at E{sub {alpha}} = 136 MeV a similar {gamma}-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the ({gamma},{gamma}') method a structural splitting of the PDR is observed in the N = 82 nuclei {sup 138}Ba and {sup 140}Ce and in the Z = 50 nucleus {sup 124}Sn. The low energy part is excited in ({gamma},{gamma}') as well as in ({alpha},{alpha}'{gamma}) while the high energy part is observed in ({gamma},{gamma}') only. The experimental results together with theoretical QPM and RQTBA calculations on {sup 124}Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of J{sup {pi}} = 1{sup -} states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).

  13. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGESBeta

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  14. Double resonant wideband Purcell effect in wire metamaterials

    NASA Astrophysics Data System (ADS)

    Mirmoosa, M. S.; Kosulnikov, S. Yu; Simovski, C. R.

    2016-09-01

    In this paper, we theoretically show that a broadband resonant enhancement of emission may occur for infrared sources located in a polaritonic wire medium. The reason for this enhancement is the overlapping of two topological transitions of the wave dispersion in the medium. The first topological transition has been revealed as an effect inherent to polaritonic wire media at a certain frequency in the mid-infrared range. This work uncovers another topological transition for such wire media which holds at a higher frequency but still in the mid infrared. We show that the first transition frequency can be shifted towards the second one by variation of the design parameters. This shift enables a broadband resonant Purcell factor. We compare the results obtained for two orientations of a subwavelength electric dipole embedded into the wire medium—that along the optical axis and that perpendicular to it—and report on the resonant isotropic radiation enhancement. Also, we reveal the enhancement of radiation to the free space from a finite sample of the wire medium.

  15. Sinusoidal Regge Oscillations from Short Lived Resonances

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.; Felfli, Z.; Msezane, A. Z.

    2007-06-01

    It is well known that a resonance with a large angular life can produce sharp Breit-Wigner peaks in the energy dependence of integral cross sections [1,2]. Here we show that a short-lived resonance whose angular life is of order of one full rotation may produce a different kind of contribution to the integral cross section. This contribution has a sinousoidal form and its frequency is determined by the rotational constant of the complex. As one of the examples, we analyze the Regge oscillations observed in numerical simulations of the F+H2(v=0,j=0,φ=0) ->FH(v'=2,j'=0,φ'=0) + H reaction. In particular, we show that these oscillations are produced by two overlapping resonances located near the transition state and the van der Waals well, respectively [3]. [1] J. H. Macek, et al., Phys. Rev. Lett., 93, 183202, (2004). [2] Z. Felfli et al., J. Phys. B 39, L353 (2006) [3] D. Sokolovski, D. De Fazio, S. Cavalli and V. Aquilanti, J. Chem. Phys. (2007) (submitted).

  16. Liquid crystal filled surface plasmon resonance thermometer.

    PubMed

    Lu, Mengdi; Zhang, Xinpu; Liang, Yuzhang; Li, Lixia; Masson, Jean-Francois; Peng, Wei

    2016-05-16

    A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement. PMID:27409911

  17. Resonant tunnelling in a quantum oxide superlattice

    DOE PAGESBeta

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typicallymore » observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less

  18. Resonant tunnelling in a quantum oxide superlattice

    SciTech Connect

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.

  19. Birth of a resonant attosecond wavepacket

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.

    2016-05-01

    Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).

  20. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  1. Non-resonant triple alpha reaction rate at low temperature

    SciTech Connect

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K.; Carter, J.; Donaldson, L.; Sideras-Haddad, E.; Furuno, T.; Kawabata, T.; Kamimura, M.; Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C.

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  2. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  3. Energy saver prototype accelerating resonator

    SciTech Connect

    Kerns, Q.; May, M.; Miller, H.W.; Reid, J.; Turkot, F.; Webber, R.; Wildman, D.

    1981-06-01

    A fixed frequency rf accelerating resonator has been built and tested for the Fermilab Energy Saver. The design parameters and prototype resonator test results are given. The resonator features a high permeability nickel alloy resistor which damps unwanted modes and corona rolls designed with the aid of the computer code SUPERFISH. In bench measurements, the prototype resonator has achieved peak accelerating voltages of 500 kV for a 1% duty cycle and cw operation at 360 kV. 4 refs.

  4. Microwave Resonators Containing Diamond Disks

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Maleki, Lutfollah; Wang, Rabi T.

    1996-01-01

    Synthetic diamond dielectric bodies proposed for use in cylindrical resonators helping to stabilize frequencies of some microwave oscillators. Acting in conjunction with metal resonator cavities in which mounted, such dielectric bodies support "whispering-gallery" waveguide modes characterized by desired frequencies of resonance and by electro-magnetic-field configurations limiting dissipation of power on metal surfaces outside dielectric bodies. Performances at room temperature might exceed those of liquid-nitrogen-cooled sapphire-based resonators.

  5. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit

    NASA Astrophysics Data System (ADS)

    Suri, B.; Keane, Z. K.; Bishop, Lev S.; Novikov, S.; Wellstood, F. C.; Palmer, B. S.

    2015-12-01

    We measure photon occupancy in a thin-film superconducting lumped element resonator coupled to a transmon qubit at 20 mK and find a nonlinear dependence on the applied microwave power. The transmon-resonator system was operated in the strong dispersive regime, where the ac Stark shift (2 χ ) due to a single microwave photon present in the resonator was larger than the linewidth (Γ ) of the qubit transition. When the resonator was coherently driven at 5.474 325 GHz, the transition spectrum of the transmon at 4.982 GHz revealed well-resolved peaks, each corresponding to an individual photon number-state of the resonator. From the relative peak heights we obtain the occupancy of the photon states and the average photon occupancy n ¯ of the resonator. We observe a nonlinear variation of n ¯ with the applied drive power Prf for n ¯<5 and compare our results to numerical simulations of the system-bath master equation in the steady state, as well as to a semiclassical model for the resonator that includes the Jaynes-Cummings interaction between the transmon and the resonator. We find good quantitative agreement using both models and analysis reveals that the nonlinear behavior is principally due to shifts in the resonant frequency caused by a qubit-induced Jaynes-Cummings nonlinearity.

  6. Resonances and surface waves in bounded plasmas

    SciTech Connect

    Bowers, K.J.; Qui, D.W.; Smith, H.B.; Birdsall, C.K.

    1999-07-01

    Surface waves provide a promising means of creating large, area plasmas. These waves can uniformly distribute the excitation energy and while presenting a small resistance and zero reactance to the driving source. Experimentally and in the simulations, the electron temperature is low (like 1--3 eV) as is the plasma potential (like 10 Te). The use of surface waves experimentally, and now industrially, to sustain large area plasma sources with device size is comparable to free space wavelength have motivated the authors to refine the theories of [1] and [2] to be fully electromagnetic. The wave dispersion predicted by the electromagnetic theory differs from the predictions of the prior theories and the results illuminate limitations of the electrostatic model. The use of surface waves have also motivated them to explore the mechanisms by which surface waves heat the plasma. In the 1d electrostatic simulations high velocity electron bunches are formed in the sheaths and are alternatively accelerated from each sheath into the bulk plasma each RF cycle. They speculate similar mechanisms provide the ionization in surface wave discharges. They also see in these simulations the plasma makes an abrupt transition from capacitively coupled to resistively coupled and the series resonance locks onto the drive frequency; these abrupt transitions resemble mode-jumping seen experimentally in large area sources. Furthermore, the density profile of the plasma tracks the drive frequency while in the resonant mode giving a new mechanism by which the plasma parameters can be controlled. They are currently investigating the effect of the driving electrode shape has on these resonances and conducting 2d simulations of a large area surface wave source to explore the ignition of surface wave devices and how the plasma fills in the device.

  7. The transition regions of Capella

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Judge, Philip; Brown, Alexander; Andrulis, Catherine; Ayers, Thomas R.

    1995-01-01

    We have used the Goddard High Resolution Spectrometer (GHRS) to observe the spectoscopic binary system Capella (G8 III + G1 III). Exposures with the G140L, G140M, G160M, G200M, and echelle gratings provide emission line profiles with unprecedented signal-to-noise and spectral resolving power (lambda/Delta-lambda) up to 92,000. Multi-Gaussin fits to the line profiles show that the hotter star contributes 60%-70% of the total flux in the chromospheric O I and Mg II resonance lines, but about 90% of the flux in the Si III, Si IV, and C IV lines formed in the transition region at T less than or = 10(exp 5) K. We find clear evidence that the emission lines from the hotter star are systemtically redshifted relative to the photosphere with Doppler shifts of 5 +/- 1 km/s for the +9 +/- 3 km/s in the chromospheric Mg II and O I lines, respectively, increasing to +24 +/- 5 km/s for the transition region Si IV 1393.8A line. The multi-Gaussian fits to permitted transition region lines of SI III, Si IV, C IV, and N V indicate the presence of three components: moderately broad lines formed in the transition region of the hotter star (component H), narrow lines formed in the transition region of the cooler star (component C), and very broad lines that we think are formed in microflares on the hotter star (component B). The He II 1640.4 A feature has an broad profile, which indicates that it is formed by collisional excitation primarily from the hotter star, and a weak narrow component that we interpret as due to radiative recombination on the cooler star. We observed spin-forbidden emission lines of C III), O III), Si III), O IV), O V), and S IV) that are sensitive to electron density. Fainter members of the O IV) multiplet and all of the S IV) lines have never before been seen in any star than the Sun. We determine electron densities in the transition regions of the Capella stars using lines ratios of O IV) lines and emission measure analysis. The emission measures are self

  8. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  9. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  10. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  11. Stochastic resonance in a generalized Von Foerster population growth model

    SciTech Connect

    Lumi, N.; Mankin, R.

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  12. Resonant Ultrasound Studies of Mo3Sb7

    NASA Astrophysics Data System (ADS)

    Vanbebber, Lindsay; Yan, Jiaqiang; Mandrus, David; Sales, Brian; Keppens, Veerle

    2013-03-01

    The elastic behavior of a series of Mo3-xMxSb7-yXy (M= Cr, Ru, X= Te) single crystals is examined with resonant ultrasound spectroscopy (RUS) as a function of temperature (300 K - 5 K). The elastic response of the parent compound Mo3Sb7 reveals a transition at around 53K, evidenced by a dramatic softening in the shear modulus c=(c11-c12)/2. This softening is associated with a cubic-to-tetragonal structural transition as well as a spin gap formation. The transition temperature is lowered by a few degrees upon doping with Cr. Doping with Ru and Te is known to suppress the structural transition, but the softening in the shear modulus suggests that a structural instability remains present in these compounds. This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  13. Stochastic resonance in a generalized Von Foerster population growth model

    NASA Astrophysics Data System (ADS)

    Lumi, N.; Mankin, R.

    2014-11-01

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  14. On the resonances and polarizabilities of split ring resonators

    NASA Astrophysics Data System (ADS)

    García-García, J.; Martín, F.; Baena, J. D.; Marqués, R.; Jelinek, L.

    2005-08-01

    In this paper, the behavior at resonance of split ring resonators (SRRs) and other related topologies, such as the nonbianisotropic SRR and the broadside-coupled SRR, are studied. It is shown that these structures exhibit a fundamental resonant mode (the quasistatic resonance) and other higher-order modes which are related to dynamic processes. The excitation of these modes by means of a properly polarized time varying magnetic and/or electric fields is discussed on the basis of resonator symmetries. To verify the electromagnetic properties of these resonators, simulations based on resonance excitation by nonuniform and uniform external fields have been performed. Inspection of the currents at resonances, inferred from particle symmetries and full-wave electromagnetic simulations, allows us to predict the first-order dipolar moments induced at the different resonators and to develop a classification of the resonances based on this concept. The experimental data, obtained in SRR-loaded waveguides, are in agreement with the theory and point out the rich phenomenology associated with these planar resonant structures.

  15. Resonance characteristics of waveguide-coupled polyimide microring resonator

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Phil; Park, Jong-Jin; Ryoo, Hyun-Ho; Gol Lee, Seung; Beom Hoan, O.; Lee, El-Hang

    2003-01-01

    We report for the first time on the resonance characteristics of a polyimide-based micro-ring resonator model. The resonator consists of a microring coupled to a pair of waveguides. Using the finite-difference time-domain method, we were able to obtain resonance peaks, from which the resonance wavelength could be identified. For a resonator with a microring of 10 μm diameter, known as the minimum for a lossless microring, we found the free spectral range of 46.65 nm, and quality factor of 588. These are excellent values strongly supporting the outstanding utility and quality of the microring resonators for wavelength-division multiplexing filter applications.

  16. Thermodynamic properties of the lipid bilayer transition. Pseudocritical phenomena.

    PubMed Central

    Mitaku, S; Jippo, T; Kataoka, R

    1983-01-01

    Ultrasonic relaxation of multilamellar liposomes formed from dipalmitoylphosphatidylcholine was measured near the gel-to-liquid crystal transition by a differential ultrasonic resonator. The relaxation time and strength increased remarkably near the transition temperature, indicating a pseudocritical phenomenon. A quantitative analysis of the relaxation in terms of thermodynamic relationships between specific heat, thermal-expansion coefficient, and compressibility showed that more than 90% of the total endothermic heat of the transition arises from the latent heat. The temperature dependence of the ultrasonic relaxation parameters was also analyzed by the Landau theory; we obtain a small but finite difference, 0.6 degree C, between the pseudocritical temperature and the transition temperature. These results provide a quantitative description of both the first-order and second-order characters of the gel-to-liquid crystal transition. PMID:6688030

  17. Single molecule fluorescence experiments determine protein folding transition path times

    PubMed Central

    Chung, Hoi Sung; McHale, Kevin; Louis, John M.; Eaton, William A.

    2013-01-01

    The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs by crossing the free-energy barrier between two states. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Förster-resonance-energy-transfer experiments. While the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by less than a factor of 5, showing that a fast-and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result. PMID:22363011

  18. Spectrum of a Resonator Coupled to a Driven Superconducting Qubit in the Strong Dispersive Regime of Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Chong, Yonuk; Hong, Hyun-Gue; Ha, Dong-Gwang

    The resonator spectrum in the strong dispersive coupling regime of circuit-QED has been a useful nondestructive indicator of a stationary qubit state. Here we present experimental observation of the further modification of the resonator spectrum as the qubit undergoes the dynamic transition by a resonant driving field. The quartet resonance associated with the polarized qubit is observed for the resonant driving at one-photon as well as the multi-photon transition in a 3D transmon qubit. The evolution of the resonance as a function of the driving power and the detuning of the driving field is well understood by a simple model which is based on the analytic diagonalization of Hamiltonian and described in terms of dressed states, Lamb shift, and AC Stark shift.

  19. Isolated post resonator mesogyroscope

    NASA Technical Reports Server (NTRS)

    Challoner, Dorian; Peay, Chris; Wellman, Joanne; Shcheglov, Kirill; Hayworth, Ken; Wiberg, Dean; Yee, Karl; Sipppola, Clayton

    2004-01-01

    A new symmetric vibratory gyroscope principle has been devised in which a central post proof mass is counter-rocked against an outer sensing plate such that the motion is isolated from the gyroscope case. Prototype gyroscopes have been designed and fabricated with micromachined silicon at mesoscale (20-cm resonator width), vs. microscale (e.g., 2-mm resonator width) to achieve higher sensitivity and machined precision. This novel mesogyro design arose out of an ongoing technical cooperation between JPL and Boeing begun in 1997 to advance the design of micro-inertial sensors for low-cost space applications. This paper describes the theory of operation of the mesogyro and relationships with other vibratory gyroscopes, the mechanical design, closed loop electronics design, bulk silicon fabrication and packaged gyroscope assembly and test methods. The initial packaged prototype test results are reported for what is believed to be the first silicon mesogyroscope.

  20. Resonant SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Lee, Hyun Min

    2016-07-01

    We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1)D. After the U(1)D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3 → 2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  1. [Magnetic resonance, an introduction].

    PubMed

    Cabrera Rueda, D J; Fernández Herrerías, G

    2000-09-01

    What would you explain to a patient if he/she had to undergo a magnetic resonance imagery session? Do you know if a person wearing a pacemaker can undergo an MRI? These and many other questions are answered in the following article since magnetic resonance imagery is a very useful diagnostic medium; however, it is one which not everyone has been able to get to know and use. The authors shed light on this diagnostic technique for nurses starting with its physical foundations; since knowing these aids professionals to correctly plan our treatments and improves the attention provided to patients who undergo this test. The authors also list the specific components in this device, the possible biological effects, the detractions and some basic recommendations. PMID:11111673

  2. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  3. Photorefractivity in WGM resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Ilchenko, Vladimir; Maleki, Lute

    2006-01-01

    We report on observation of photorefractive effects in whispering gallery mode resonators made of as-grown and magnesium doped lithium niobate and lithium tantalate in the near as well as far infrared. The effects manifested themselves as dynamic modification of the spectra as well as quality factors of the resonators coupled to the laser radiation. We have observed a significant (exceeding 10-4) change of the ordinary index of refraction of all the materials exposed with 780 nm light. Photorefractive effects have also been detected at 1550 nm. Our experiments support the conclusion that the photorefractivity does not have a distinct red boundary. We show that the maximum saturated refractive index change in the infrared is of the same order of magnitude as in the visible light.

  4. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  5. Damping of nanomechanical resonators.

    PubMed

    Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

    2010-07-01

    We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

  6. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J.; Wendt, Joel R.

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  7. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  8. Resonant diphoton phenomenology simplified

    NASA Astrophysics Data System (ADS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-06-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results.

  9. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  10. Resonant non-gaussianity

    SciTech Connect

    Flauger, Raphael; Pajer, Enrico E-mail: ep295@cornell.edu

    2011-01-01

    We provide a derivation from first principles of the primordial bispectrum of scalar perturbations produced during inflation driven by a canonically normalized scalar field whose potential exhibits small sinusoidal modulations. A potential of this type has been derived in a class of string theory models of inflation based on axion monodromy. We use this model as a concrete example, but we present our derivations and results for a general slow-roll potential with superimposed modulations. We show analytically that a resonance between the oscillations of the background and the oscillations of the fluctuations is responsible for the production of an observably large non-Gaussian signal. We provide an explicit expression for the shape of this resonant non-Gaussianity. We show that there is essentially no overlap between this shape and the local, equilateral, and orthogonal shapes, and we stress that resonant non-Gaussianity is not captured by the simplest version of the effective field theory of inflation. We hope our analytic expression will be useful to further observationally constrain this class of models.

  11. Undulator induced resonances

    SciTech Connect

    Harris, J.; Morton, P.; Spencer, J.; Winick, H.

    1983-08-01

    Undulators appear to be nearly ideal radiation sources for use in storage rings because of their high brightness and small perturbation on stored beam characteristics. We consider the effects of higher-order magnetic field errors and show how they increase beam size and may lead to unstable growth of betatron oscillations. We have observed such effects in SPEAR at betatron tunes satisfying the equations: 3nu/sub x/ + nu/sub y/ = 21 and nu/sub x/ + 3nu/sub y/ = 21. The widths of these resonances were measured to be GAMMA = 0.008 +- 0.004. They are clearly visible on the synchrotron light monitors with a very dynamic and characteristic beam blow-up pattern (reminiscent of a Miller beer label). A model is developed which predicts the locations of resonances, their widths and the projected shapes observed on the light monitors. By inducing such high-order coupling resonances one could study such things as the beam distribution in electron rings or possibly turbulent motion in proton rings.

  12. RESONATOR PARTICLE SEPARATOR

    DOEpatents

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  13. Feshbach resonances in ultracold gases

    SciTech Connect

    Chin Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite

    2010-04-15

    Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

  14. Hyperbolic resonances of metasurface cavities.

    PubMed

    Keene, D; Durach, M

    2015-07-13

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications. PMID:26191916

  15. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  16. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  17. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  18. Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime

    NASA Astrophysics Data System (ADS)

    Berkovic, G.; Meshulam, G.; Kotler, Z.

    2000-03-01

    The frequency dependent hyperpolarizability of typical donor-acceptor organic nonlinear optical molecules is commonly represented by a nonresonant two-level model, first presented by Oudar and Chemla. We discuss how this model can be extended into the resonant regime, including cases where the molecular transition is described by an inhomogeneously broadened peak. A resonant measurement of hyperpolarizability by electric field induced second harmonic generation (EFISH) is demonstrated, as well as the more conventional off-resonance EFISH. The theoretical model correctly predicts both the amplitude and phase of the resonant hyperpolarizability measured by EFISH. We also show that both on-resonance and off-resonance EFISH yield the same hyperpolarizability extrapolated to the zero frequency limit.

  19. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    SciTech Connect

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  20. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  1. Moons over Jupiter: transits and shadow transits

    NASA Astrophysics Data System (ADS)

    Rogers, J. H.; et al.

    2003-06-01

    There is no more beautiful illustration of orbital motions than the movements of Jupiter's satellites. Every six years, their movements are most strikingly displayed, when the jovian system is presented edge-on to Earth. This means that there is a higher frequency of multiple transits over the face of the planet, as all the moons transit across the equatorial zone, whereas in other years Ganymede and Callisto transit near the poles or not at all. Also, for a few months, the satellites pass in front of each other, displaying mutual eclipses and occultations. In 2002/2003 we have been able to observe a fine series of these multiple and mutual events. On the cover, and on these pages, are some of the highest-resolution images received.

  2. End-resonance clock and all-photonic clock

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Happer, William; Gong, Fei; Braun, Alan; Kwakernaak, Martin

    2008-02-01

    The end-resonance clock uses strong hyperfine end transition to stabilize the frequency of the local oscillator. Comparing to the conventional 0-0 atomic clock, end resonance has very small spin-exchange broadening effect. The spin-exchange rate is proportional to the number density of the alkali-metal atoms. By using the end resonance, we are able to use very high dense vapor to obtain a much better signal to noise ratio. On the other hand, the end resonance suffers from the first-order magnetic field dependence. This problem, however, can be solved by simultaneously using a Zeeman end resonance to stabilize the magnetic field. Here, we report the most recent result of the end-resonance clock. In addition, we report a whole new technique, push-pull laser-atomic oscillator, which can be thought as all-photonic clock. This new clock requires no local oscillator. It acts like a photonic version of maser, which spontaneously generates modulated laser light and modulated voltage signals. The modulation serves as the clock signal, which is automatically locked to the ground-state hyperfine frequency of alkali-metal atoms.

  3. Incommensurate spin resonance in URu2Si2

    SciTech Connect

    Balatsky, A V; Chantis, A; Dahal, Hari; Zhu, J X; Parker, David

    2008-01-01

    We propose to search for the spin resonance in URu{sub 2}Si{sub 2} at {omega}{sub res} = 4-6meV at the incommensurate wavector Q* = (1 {+-} 0.4, 0, 0). We expect that this spin resonance will set in at temperatures below HO transition and the intensity of this peak will scale as {approx} {Delta}{sub HO} {approx} (T{sub HO} - T). The resonance peak is know to occur in the states with superconducting gap and results in the gapping of the electronic spectrum add ref on SrruO and cel 15. In the case of HO the gap {Delta}{sub HO} results in the partially gapped electron spectrum. That appears to be a sufficient condition, as shown by Wiebe et al to produce a gap in spin excitation spectrum. In addition, we predict a peak in the spin excitation spectrum, as spectral weight redistribution produces the resonance feature. To the best of our knowledge, if the predicted resonance peak indeed occurs, it would be the first case where the spin resonance occurs at an incommensurate vector Q*.

  4. Deterministic Many-Resonator W Entanglement of Nearly Arbitrary Microwave States via Attractive Bose-Hubbard Simulation

    NASA Astrophysics Data System (ADS)

    Gangat, A. A.; McCulloch, I. P.; Milburn, G. J.

    2013-07-01

    Multipartite entanglement of large numbers of physically distinct linear resonators is of both fundamental and applied interest, but there have been no feasible proposals to date for achieving it. At the same time, the Bose-Hubbard model with attractive interactions (ABH) is theoretically known to have a phase transition from the superfluid phase to a highly entangled nonlocal superposition, but observation of this phase transition has remained out of experimental reach. In this theoretical work, we jointly address these two problems by (1) proposing an experimentally accessible quantum simulation of the ABH phase transition in an array of tunably coupled superconducting circuit microwave resonators and (2) incorporating the simulation into a highly scalable protocol that takes as input any microwave-resonator state with negligible occupation of number states |0⟩ and |1⟩ and nonlocally superposes it across the whole array of resonators. The large-scale multipartite entanglement produced by the protocol is of the W type, which is well known for its robustness. The protocol utilizes the ABH phase transition to generate the multipartite entanglement of all of the resonators in parallel, and is therefore deterministic and permits an increase in resonator number without any increase in protocol complexity; the number of resonators is limited instead by system characteristics such as resonator-frequency disorder and inter-resonator coupling strength. Only one local and two global controls are required for the protocol. We numerically demonstrate the protocol with realistic system parameters and estimate that current experimental capabilities can realize the protocol with high fidelity for greater than 40 resonators. Because superconducting-circuit microwave resonators are capable of interfacing with other devices and platforms such as mechanical resonators and (potentially) optical fields, this proposal provides a route toward large-scale W-type entanglement in those

  5. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

    PubMed

    Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M

    2012-07-20

    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate. PMID:22861892

  6. The Physics of Superconducting Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  7. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  8. Photoinduced phase transitions.

    PubMed

    Bennemann, K H

    2011-02-23

    Optically induced ultrafast electronic excitations with sufficiently long lifetimes may cause strong effects on phase transitions like structural and nonmetal→metal ones and on supercooling, supersaturation, etc. Examples are the transitions diamond→graphite, graphite→graphene, non-metal→metal, solid→liquid and vapor→liquid, solid. Photoinduced formation of graphene and water condensation of saturated or supersaturated vapor due to increased bonding amongst water molecules are of particular interest. These nonequilibrium transitions are an ultrafast response, on a few hundred fs time scale, to the fast low to large energy electronic excitations. The energy of the photons is converted into electronic energy via electronic excitations changing the cohesive energy. This changes the chemical potential controlling the phase transition. In view of the advances in laser optics photon induced transitions are expected to become an active area in nonequilibrium physics and phase transition dynamics. Conservation laws like energy or angular momentum conservation control the time during which the transitions occur. Since the photon induced effects result from weakening or strengthening of the bonding between the atoms or molecules transitions like solid/liquid, etc can be shifted in both directions. Photoinduced transitions will be discussed from a unified point of view. PMID:21411879

  9. The chromospheric and transition layer emission of stars with different metal abundances

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  10. Exciton Resonances in Novel Silicon Carbide Polymers

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  11. Spin-Orbit Coupled Fermi Gases across a Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-Qiang; Zhai, Hui

    2011-11-01

    In this Letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using the mean-field theory and the exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for negative scattering length as, due to increased density of state at Fermi surface. Strong spin-orbit coupling can also significantly enhance the superfluid transition temperature Tc to a sizable fraction of Fermi temperature when as≲0, while it suppresses Tc slightly for positive as. The interaction energy and pair size at resonance are also discussed.

  12. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  13. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  14. Nonlinear wave-particle resonant interaction in the radiation belts: Landau resonance vs. fundamental cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Artemyev, A.; Agapitov, O. V.; Mourenas, D.

    2013-12-01

    We present selected THEMIS observations of highly-oblique and large amplitude chorus waves at medium latitudes. The major part of observed waves propagates at nearly-electrostatic mode with normal angles close to resonance cone. We use test particle simulations and analytical theory to estimate efficiency of nonlinear particle acceleration by these waves via Landau and fundamental cyclotron resonances. We show that trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gain is larger for the trapping due to Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles in comparison with the fundamental resonance.

  15. Transition to Old Age (Transition to Retirement).

    ERIC Educational Resources Information Center

    Bergman, Simon

    Several conceptualizations and definitions of retirement have been proposed. One of them--the three-stage transition process--can be illustrated from studies in Israel: (1) leaving the old role; (2) going through the act of formal separation; and (3) adjusting to the new situation and role. Today's higher rate of survival into later years means…

  16. Correlations between Doppler and pressure broadening for the resonance interaction

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Stacey, D. N.

    1975-01-01

    The correlation between Doppler and collisional broadening has been considered in detail for radiation in which the lower level of the transition is broadened by the resonance interaction. It is found that rather than a single Voigt profile, the profile of the radiation is essentially a sum of Voigt profiles. Although the widths of these profiles vary by some 40%, the over-all line shape is very close to the single Voigt shape obtained when correlation effects are neglected.

  17. Generalized Franck-Condon principle for resonant photoemission

    NASA Astrophysics Data System (ADS)

    Sałek, Paweł; Gel'mukhanov, Faris; Ågren, Hans; Björneholm, Olle; Svensson, Svante

    1999-10-01

    A generalized Franck-Condon (GFC) principle for resonant x-ray Raman scattering and for resonant photoemission in particular is derived and numerically investigated. The GFC amplitudes differ from ordinary FC amplitudes by the presence of photon and photoelectron phase factors which describe the coupling-or interference-of the x-ray photons or Auger electrons with the nuclear motion. With the GFC amplitudes, a Kramers-Heisenberg relation is obtained for vibronic transitions that corrects the so-called lifetime-vibrational interference formula. For resonant photoemission in the soft-x-ray region involving typical bound potential surfaces, the generalization gives a contribution to the FC factors that can amount to 20%. For core excitation above the dissociation threshold, the GFC principle relates to Doppler effects on the ejected photoelectron both for the so-called ``molecular'' and ``atomic'' bands. The role of the GFC principle in direct photoionization is briefly discussed.

  18. A complex T-matrix derivation of a resonance amplitude

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1985-01-01

    Time-dependent perturbation-theory techniques are used to derive a compact expression, valid to arbitrary order and displaying time dependence explicitly, for a quantum-mechanical transition amplitude applicable to the description of resonances. A solution representing a complex-energy generalization of the usual real-energy (nonresonant) amplitude is obtained and generalized to all orders by introducing a complex-energy T matrix. Applications to physical problems such as the extension of the Fermi golden rules to resonances (Norbury and Deutchman, 1984); pion production in relativistic nucleus-nucleus collisions (Norbury et al., 1985); and the determination of resonant cross sections for nuclear, atomic, or molecular processes involving the formation and decay of intermediate discrete or continuum states are indicated.

  19. Electromagnetic Meson Production in the Nucleon Resonance Region

    SciTech Connect

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  20. Resonance at the Rabi frequency in a superconducting flux qubit

    SciTech Connect

    Greenberg, Ya. S.; Il'ichev, E.; Oelsner, G.; Shevchenko, S. N.

    2014-10-15

    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.

  1. Controlling condensate collapse and expansion with an optical Feshbach resonance.

    PubMed

    Yan, Mi; DeSalvo, B J; Ramachandhran, B; Pu, H; Killian, T C

    2013-03-22

    We demonstrate control of the collapse and expansion of an (88)Sr Bose-Einstein condensate using an optical Feshbach resonance near the (1)S(0)-(3)P(1) intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to ± 10a(bg), where the background scattering length of (88)Sr is a(bg) = -2a(0) (1a(0) = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the optical Feshbach resonance laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation. PMID:25166803

  2. Resonant diffraction of synchrotron radiation in rubidium dihydrophosphate crystals

    SciTech Connect

    Mukhamedzhanov, E. Kh.; Kovalchuk, M. V.; Borisov, M. M.; Ovchinnikova, E. N.; Troshkov, E. V.; Dmitrienko, V. E.

    2010-03-15

    Purely resonant Bragg reflections 006, 55bar 0, and 666 in a rubidium dihydrophosphate (RbH{sub 2}PO{sub 4}) crystal at the K edge of rubidium have been experimentally and theoretically investigated. These reflections remain forbidden when the resonant dipole-dipole (E1E1) contribution to the resonant atomic factor is taken into account; they may be due to the dipole-quadrupole (E1E2) transitions as well as to the anisotropy atomic factor, which is caused by thermal atomic displacements (thermally induced contribution) and/or local jumps of hydrogen atoms. A numerical simulation showed that, at room temperature (experimental conditions), the thermally induced contribution to the 'forbidden' reflections is dominant.

  3. Transitions in Spousal Caregiving.

    ERIC Educational Resources Information Center

    Burton, Lynda C.; Zdaniuk, Bozena; Schulz, Richard; Jackson, Sharon; Hirsch, Calvin

    2003-01-01

    Describes transitions over 5 years among community-dwelling elderly spouses into and within caregiving roles and associated health outcomes. The trajectory of health outcomes associated with caregiving was generally downward. Those who transitioned to heavy caregiving had more symptoms of depression, and poorer self-reported health and health…

  4. Good Transitions = Great Starts!

    ERIC Educational Resources Information Center

    Our Children: The National PTA Magazine, 2012

    2012-01-01

    The smooth transition of outgoing and incoming board members and officers is of vital importance and can determine the PTA's success for years to come. The transition process is the responsibility of both incoming and outgoing officers and board members. It gives closure to those leaving their positions and allows those coming in to be properly…

  5. Children and Transition Time.

    ERIC Educational Resources Information Center

    Baker, Betty Ruth

    Daily transitions in early childhood centers and classrooms include periods when children are completing one activity, preparing to begin a new activity, and moving from place to place in a room or building. Transition activities involve teaching techniques that prepare learners to listen, relax, sit down, move between locations or activities, and…

  6. Matter in transition

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU( N) require Weierstrass models that cannot be realized from the standard SU( N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  7. Transitioning between Clerkship Directors

    ERIC Educational Resources Information Center

    Soltys, Stephen M.; Pary, Robert J.; Robinson, Stephen W.; Markwell, Stephen J.

    2011-01-01

    Objective: The authors report on succession-planning for mid-level academic positions. Method: The authors describe the process of succession-planning between clerkship directors and the smooth transition resulting in one case. Results: Gradually transitioning allowed a new faculty person to assume the clerkship-director position with minimal…

  8. Researching Student Transitions

    ERIC Educational Resources Information Center

    Voorhees, Richard A.; Smith, Gregory P.; Luan, Jing

    2006-01-01

    This article sketches a research agenda for the further study of community college student transitions. Specific techniques are depicted as are potential data sources that can be used to pursue that agenda. The role of student tracking systems in transition research is discussed as well as the applicability of national surveys to the study of…

  9. Transitions and Linkages.

    ERIC Educational Resources Information Center

    Ilfeld, Ellen M., Ed.; Hanssen, Elizabeth, Ed.

    1997-01-01

    If children are to benefit from a healthy, supportive early childhood experience, it is important to strengthen transitions between early childhood experiences in educational and care settings and the more formal educational system. This issue of Coordinator's Notebook focuses on strengthening linkages and transitions between home, preschool, and…

  10. Resonance frequency analysis.

    PubMed

    Gupta, Rajiv K; Padmanabhan, Thallam V

    2011-01-01

    Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA) is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized, prospective

  11. Seismic Resonant Emission

    NASA Astrophysics Data System (ADS)

    Korneev, V. A.

    2007-12-01

    There are several classes of underground objects which can produce resonant emission after being hit by incident seismic waves. Those objects include tunnels, pipes, buried containers, ground-filled excavations, unexploded ordinances, fluid-filled fractures, mine shafts, and the like. Being high contrast scatterers, these objects are capable of generating strong scattered waves where primary PP, PS, SS waves carry away most of the energy which was brought by incident waves. For both high- and low- velocity objects the primary scattered waves have the same order of magnitude as incident waves. The main difference between these groups of objects is in later arrivals of multiple scattered waves. While high-velocity objects effectively radiate most of the energy soon after impact, the low-velocity objects trap some fraction of incident wave energy in the form of circumferential waves which propagate rotating along the interface between the object and the embedding medium. Circumferential waves include surface Rayleigh-type waves (propagating mostly in the embedding medium), Stoneley waves (propagating mostly in the fluid, if present), and Frantz waves (body waves trapped in the object because of its curvature). Strong impedance contrast ensures small radiation loss for circumferential waves and they slowly decay in amplitude while rotating inside/around the object. Some circumferential waves exist in the high-velocity objects but their amplitudes decay very fast because of strong radiation in outer medium. Most of the secondary (multiply reflected from an object's boundaries or multiply circled around the object) resonant-scattered energy radiates in the embedding medium as shear waves. The possibility of neglecting P- waves in late scattering arrivals simplifies imaging as is demonstrated for the field and modeled data of the example. Resonant emission phenomenon provides an effective tool for active monitoring for a number of applications such as tunnel detection

  12. Theoretical analysis of surface-plasmon-polariton resonators in free space and close to an interface

    NASA Astrophysics Data System (ADS)

    Jung, Jesper; Søndergaard, Thomas

    2008-04-01

    Surface-plasmon-polariton (SPP) resonators consisting of metal strips in free space, and gap plasmon polariton resonators consisting of a metal strip close to either a block of metal or a metal surface, are studied as optical resonators. The analysis is performed using the Green's function surface integral equation method. For strips in free space, we show how the scattering resonances can be understood, by thinking of the strips as optical resonators for short-range SPPs. The two gap resonator configurations, strip-block and strip-surface, have different structure terminations as the width of the strip and the block are identical whereas the surface is infinite. In the strip-surface configuration, the scattering resonances are broader and red-shifted, compared to the strip-block configuration. This is explained as a consequence of the effective length of the resonator being larger in the strip-surface configuration. By varying the gap size, we study the transition from a SPP resonator to a gap plasmon polariton resonator. In the strip-surface configuration, light can be scattered into both out-of-plane propagating waves and into SPPs that propagate along the surface. For small gaps of a few tens of nanometers, a large enhancement in the scattering cross section is seen due to strong scattering into SPPs.

  13. Nuclear magnetic resonance spectroscopy

    SciTech Connect

    Harris, R.K.

    1986-01-01

    NMR is remarkable in the number of innovations that have appeared and become established within the past five years. This thoroughly up-to-date account of the field explains fundamentals and applications of the NMR phenomenon from the viewpoint of a physical chemist. Beginning with descriptions of basic concepts involved in continuous wave operation, the book goes on to cover spectral analysis, relaxation phenomena, the effects of pulses, the Fourier transform model, double resonance and the effects of chemical exchange and quadrupolar interactions. The book also includes the new techniques for work on solids and for complicated pulse sequences, plus abundant figures and illustrative spectra.

  14. Ellipsometric surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Liang; Lee, Shu-Sheng; Lee, Chih-Kung

    2009-03-01

    We develop a new multifunctional optical biochip system that integrates an ellipsometer with a surface plasmon resonance (SPR) feature. This newly developed biochip biosensor, which we call ESPR for an ellipsometric SPR, provides us with a system to retrieve detailed information such as the optical properties of immobilized biomolecular monolayers, surface concentration variations of biomedical reactions, and kinetic affinity between biomolecules required for further biotech analysis. Our ESPR can also serve as both a research and development tool and a manufacturing tool for various biomedical applications.

  15. Nanotube resonator devices

    SciTech Connect

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  16. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  17. Resonance test system

    DOEpatents

    Musial, Walter; White, Darris

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  18. Cranial magnetic resonance imaging

    SciTech Connect

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes.

  19. ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS

    SciTech Connect

    Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Ragozzine, Darin; Holman, Matthew J.; Carter, Joshua A.; Fabrycky, Daniel C.; Fortney, Jonathan J.; Steffen, Jason H.; Ford, Eric B.; Shporer, Avi; Rowe, Jason F.; Quintana, Elisa V.; Caldwell, Douglas A.; Ciardi, David; Gautier, Thomas N. III; and others

    2011-11-01

    About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.

  20. 4f wavefunction collapse and giant resonances in molecules

    NASA Astrophysics Data System (ADS)

    Robin, M. B.

    1985-08-01

    The effective potential for an f orbital in an atom reflects both the attractive Coulomb and repulsive centrifugal forces, resulting in a double-well potential. Transitions from nd orbitals to f¯ orbitals bound in the inner well of the effective potential are unique in their frequency, intensity and response to external perturbations, and are known as "giant resonances". In molecules, the role of the repulsive centrifugal force is played instead by orthogonality to bonding valence orbitals, in which case the inner-well wavefunctions then become antibonding valence MOs. In general, the expected molecular giant resonances resulting from transitions between d-like MOs and antibonding valence MOs of f symmetry are not seen because of strong valence/Rydberg mixing. However, in certain molecules having high symmetries and the proper electronic configurations, this upper-state mixing is symmetry forbidden, and so molecular giant resonances can appear. These d → f¯ molecular giant resonances are identified for the first time in the vacuum-ultraviolet spectra of cyclopropane, cyclohexane, neopentane and uranium hexafluoride.

  1. Fabrication of a microtoroidal resonator with picometer precise resonant wavelength.

    PubMed

    Liu, Xiao-Fei; Lei, Fuchuan; Gao, Ming; Yang, Xu; Qin, Guo-Qing; Long, Gui-Lu

    2016-08-01

    Fabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO2 laser pulses, to the traditional fabrication process. It can tailor resonant wavelength to a red or blue direction by choosing a proper laser power. Also, this shift can be controlled by the exposure time. Meanwhile, quality factor remains nearly unchanged during this tailoring process. Our method can greatly reduce the difficulties of experiments where precise resonances are required. PMID:27472629

  2. Pressure dependent resonant frequency of micromechanical drumhead resonators

    SciTech Connect

    Southworth, D. R.; Craighead, H. G.; Parpia, J. M.

    2009-05-25

    We examine the relationship between squeeze film effects and resonance frequency in drum-type resonators. We find that the resonance frequency increases linearly with pressure as a result of the additional restoring force contribution from compression of gas within the drum cavity. We demonstrate trapping of the gas by squeeze film effects and geometry. The pressure sensitivity is shown to scale inversely with cavity height and sound radiation is found to be the predominant loss mechanism near and above atmospheric pressure. Drum resonators exhibit linearity and sensitivity suitable to barometry from below 10 Torr up to several atmospheres.

  3. Two-channel model of photoassociation in the vicinity of a Feshbach resonance

    SciTech Connect

    Schneider, Philipp-Immanuel; Saenz, Alejandro

    2009-12-15

    We derive the two-channel (TC) description of the photoassociation (PA) process in the presence of a magnetic Feshbach resonance and compare to full coupled multichannel calculations for the scattering of {sup 6}Li-{sup 87}Rb. Starting from a similar approach as that of Pellegrini et al. [Phys. Rev. Lett. 101, 053201 (2008)] we arrive at a simpler expression which fully describes the PA process by two parameters: the maximal transition rate and the point of vanishing transition rate. The TC approximation reproduces excellently the PA transition rates of the full multichannel calculation and reveals, e.g., that the enhancement of the rate at a resonance is directly connected to the position of vanishing rate. For the description of two independent resonances it was found that only three parameters completely characterize the PA process.

  4. TRANSIT MONITORING IN THE SOUTH (TraMoS) PROJECT: DISCARDING TRANSIT TIMING VARIATIONS IN WASP-5b

    SciTech Connect

    Hoyer, S.; Rojo, P.; Lopez-Morales, M. E-mail: pato@das.uchile.cl

    2012-03-20

    We report nine new transit epochs of the extrasolar planet WASP-5b, observed in the Bessell I band with the Southern Astrophysical Research Telescope at the Cerro Pachon Observatory and with the SMARTS 1 m Telescope at the Cerro Tololo Inter-American Observatory, between 2008 August and 2009 October. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variation (TTV) analysis of its orbit. We find no evidence of TTV rms variations larger than 1 minute over a 3 year time span. This result discards the presence of planets more massive than about 5 M{sub Circled-Plus }, 1 M{sub Circled-Plus }, and 2 M{sub Circled-Plus} around the 1:2, 5:3, and 2:1 orbital resonances, respectively. These new detection limits exceed by {approx}5-30 times the limits imposed by current radial velocity observations in the mean motion resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to hot Jupiters.

  5. Transit Monitoring in the South (TraMoS) Project: Discarding Transit Timing Variations in WASP-5b

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; Rojo, P.; López-Morales, M.

    2012-03-01

    We report nine new transit epochs of the extrasolar planet WASP-5b, observed in the Bessell I band with the Southern Astrophysical Research Telescope at the Cerro Pachon Observatory and with the SMARTS 1 m Telescope at the Cerro Tololo Inter-American Observatory, between 2008 August and 2009 October. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variation (TTV) analysis of its orbit. We find no evidence of TTV rms variations larger than 1 minute over a 3 year time span. This result discards the presence of planets more massive than about 5 M ⊕, 1 M ⊕, and 2 M ⊕ around the 1:2, 5:3, and 2:1 orbital resonances, respectively. These new detection limits exceed by ~5-30 times the limits imposed by current radial velocity observations in the mean motion resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to hot Jupiters.

  6. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  7. Geometry-invariant resonant cavities

    NASA Astrophysics Data System (ADS)

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-03-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  8. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  9. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  10. Micromachined magnetoflexoelastic resonator based magnetometer

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Gokhan; Tadigadapa, Srinivas

    2015-11-01

    In this paper, we demonstrate the performance of a magnetoflexoelastic magnetometer consisting of a micromachined ultra-thin (7.5 μm) quartz bulk acoustic resonator on which 500 nm thick magnetostrictive Metglas® (Fe85B5Si10) film is deposited. The resonance frequency of the unimorph resonator structure is sensitively affected by the magnetostrictively induced flexoelastic effect in quartz and is exploited to detect low frequency (<100 Hz) and nanoTesla magnetic fields. The resonance frequency shift is measured by tracking the at-resonance admittance of the resonator as a function of the applied magnetic field. The frequency shifts are linearly correlated to the magnetic field strength. A minimum detectable magnetic flux density of ˜79 nT has been measured for 10 Hz modulated magnetic field input signals which corresponds to a frequency sensitivity of 0.883 Hz/μT.

  11. Fermi resonance in optical microcavities

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  12. A Posteriori Transit Probabilities

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Gaudi, B. Scott

    2013-08-01

    Given the radial velocity (RV) detection of an unseen companion, it is often of interest to estimate the probability that the companion also transits the primary star. Typically, one assumes a uniform distribution for the cosine of the inclination angle i of the companion's orbit. This yields the familiar estimate for the prior transit probability of ~Rlowast/a, given the primary radius Rlowast and orbital semimajor axis a, and assuming small companions and a circular orbit. However, the posterior transit probability depends not only on the prior probability distribution of i but also on the prior probability distribution of the companion mass Mc, given a measurement of the product of the two (the minimum mass Mc sin i) from an RV signal. In general, the posterior can be larger or smaller than the prior transit probability. We derive analytic expressions for the posterior transit probability assuming a power-law form for the distribution of true masses, dΓ/dMcvpropMcα, for integer values -3 <= α <= 3. We show that for low transit probabilities, these probabilities reduce to a constant multiplicative factor fα of the corresponding prior transit probability, where fα in general depends on α and an assumed upper limit on the true mass. The prior and posterior probabilities are equal for α = -1. The posterior transit probability is ~1.5 times larger than the prior for α = -3 and is ~4/π times larger for α = -2, but is less than the prior for α>=0, and can be arbitrarily small for α > 1. We also calculate the posterior transit probability in different mass regimes for two physically-motivated mass distributions of companions around Sun-like stars. We find that for Jupiter-mass planets, the posterior transit probability is roughly equal to the prior probability, whereas the posterior is likely higher for Super-Earths and Neptunes (10 M⊕ - 30 M⊕) and Super-Jupiters (3 MJup - 10 MJup), owing to the predicted steep rise in the mass function toward smaller

  13. Landau-Zener-Stueckelberg theory for multiphoton intrashell transitions in Rydberg atoms: Bloch-Siegert shifts and widths

    SciTech Connect

    Foerre, Morten

    2004-07-01

    We derive closed analytic expressions for intrashell transitions in Rydberg atoms exposed to linearly polarized or circularly polarized periodic electromagnetic fields. The resonance energies and transition probabilities are calculated using multichannel Landau-Zener-Stueckelberg theory. The theory provides formulas for the resonance widths and positions for arbitrary field strength and frequency. The formulas are in excellent agreement with numerical solution of the evolution equations.

  14. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  15. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  16. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  17. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  18. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  19. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  20. A mirrorless spinwave resonator

    NASA Astrophysics Data System (ADS)

    Pinel, Olivier; Everett, Jesse L.; Hosseini, Mahdi; Campbell, Geoff T.; Buchler, Ben C.; Lam, Ping Koy

    2015-12-01

    Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20 cm long Rb gas cell, yet it facilitates an effective FSR of 83 kHz, which would require a round-trip path of 3.6 km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters.