Sample records for resonans-imaging mri-styret fokuseret

  1. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining detailed ...

  2. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  3. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  4. [Imaging of pleural diseases: evaluation of imaging methods based on chest radiography].

    PubMed

    Poyraz, Necdet; Kalkan, Havva; Ödev, Kemal; Ceran, Sami

    2017-03-01

    The most commonly employed radiologic method in diagnosis of pleural diseases is conventional chest radiograph. The commonest chest- X-Ray findings are the presence of pleural effusion and thickening. Small pleural effusions are not readily identified on posteroanterior chest radiograph. However, lateral decubitus chest radiograph and chest ultrasonography may show small pleural effusions. These are more efficient methods than posteroanterior chest radiograph in the erect position for demonstrating small amounts of free pleural effusions. Chest ultrasonograph may be able to help in distinguishing the pleural pathologies from parenchymal lesions. On chest radiograph pleural effusions or pleural thickening may obscure the visibility of the underlying disease or parenchymal abnormality. Thus, computed tomography (CT) may provide additional information of determining the extent and severity of pleural disease and may help to differentiate malign pleural lesions from the benign ones. Moreover, CT may provide the differentiation of parenchmal abnormalities from pleural pathologies. CT (coronal and sagittal reformatted images) that also show invasion of chest wall, mediastinum and diaphragm, as well as enlarged hilar or mediastinal lymph nodes. Standart non-invasive imaging techniques may be supplemented with magnetic resonans imaging (MRI).

  5. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  6. Cellular Imaging With MRI.

    PubMed

    Makela, Ashley V; Murrell, Donna H; Parkins, Katie M; Kara, Jenna; Gaudet, Jeffrey M; Foster, Paula J

    2016-10-01

    Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.

  7. Medical image segmentation using 3D MRI data

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.

    2017-05-01

    Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.

  8. Optimizing MRI for imaging peripheral arthritis.

    PubMed

    Hodgson, Richard J; O'Connor, Philip J; Ridgway, John P

    2012-11-01

    MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Optical/MRI Multimodality Molecular Imaging

    NASA Astrophysics Data System (ADS)

    Ma, Lixin; Smith, Charles; Yu, Ping

    2007-03-01

    Multimodality molecular imaging that combines anatomical and functional information has shown promise in development of tumor-targeted pharmaceuticals for cancer detection or therapy. We present a new multimodality imaging technique that combines fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) for in vivo molecular imaging of preclinical tumor models. Unlike other optical/MRI systems, the new molecular imaging system uses parallel phase acquisition based on heterodyne principle. The system has a higher accuracy of phase measurements, reduced noise bandwidth, and an efficient modulation of the fluorescence diffuse density waves. Fluorescent Bombesin probes were developed for targeting breast cancer cells and prostate cancer cells. Tissue phantom and small animal experiments were performed for calibration of the imaging system and validation of the targeting probes.

  10. Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma.

    PubMed

    Wang, Xiao-Li; Li, Kai; Su, Zhong-Zhen; Huang, Ze-Ping; Wang, Ping; Zheng, Rong-Qin

    2015-05-07

    To investigate the feasibility and clinical value of magnetic resonance imaging (MRI)-MRI image fusion in assessing the ablative margin (AM) for hepatocellular carcinoma (HCC). A newly developed ultrasound workstation for MRI-MRI image fusion was used to evaluate the AM of 62 tumors in 52 HCC patients after radiofrequency ablation (RFA). The lesions were divided into two groups: group A, in which the tumor was completely ablated and 5 mm AM was achieved (n = 32); and group B, in which the tumor was completely ablated but 5 mm AM was not achieved (n = 29). To detect local tumor progression (LTP), all patients were followed every two months by contrast-enhanced ultrasound, contrast-enhanced MRI or computed tomography (CT) in the first year after RFA. Then, the follow-up interval was prolonged to every three months after the first year. Of the 62 tumors, MRI-MRI image fusion was successful in 61 (98.4%); the remaining case had significant deformation of the liver and massive ascites after RFA. The time required for creating image fusion and AM evaluation was 15.5 ± 5.5 min (range: 8-22 min) and 9.6 ± 3.2 min (range: 6-14 min), respectively. The follow-up period ranged from 1-23 mo (14.2 ± 5.4 mo). In group A, no LTP was detected in 32 lesions, whereas in group B, LTP was detected in 4 of 29 tumors, which occurred at 2, 7, 9, and 15 mo after RFA. The frequency of LTP in group B (13.8%; 4/29) was significantly higher than that in group A (0/32, P = 0.046). All of the LTPs occurred in the area in which the 5 mm AM was not achieved. The MRI-MRI image fusion using an ultrasound workstation is feasible and useful for evaluating the AM after RFA for HCC.

  11. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  12. Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma

    PubMed Central

    Wang, Xiao-Li; Li, Kai; Su, Zhong-Zhen; Huang, Ze-Ping; Wang, Ping; Zheng, Rong-Qin

    2015-01-01

    AIM: To investigate the feasibility and clinical value of magnetic resonance imaging (MRI)-MRI image fusion in assessing the ablative margin (AM) for hepatocellular carcinoma (HCC). METHODS: A newly developed ultrasound workstation for MRI-MRI image fusion was used to evaluate the AM of 62 tumors in 52 HCC patients after radiofrequency ablation (RFA). The lesions were divided into two groups: group A, in which the tumor was completely ablated and 5 mm AM was achieved (n = 32); and group B, in which the tumor was completely ablated but 5 mm AM was not achieved (n = 29). To detect local tumor progression (LTP), all patients were followed every two months by contrast-enhanced ultrasound, contrast-enhanced MRI or computed tomography (CT) in the first year after RFA. Then, the follow-up interval was prolonged to every three months after the first year. RESULTS: Of the 62 tumors, MRI-MRI image fusion was successful in 61 (98.4%); the remaining case had significant deformation of the liver and massive ascites after RFA. The time required for creating image fusion and AM evaluation was 15.5 ± 5.5 min (range: 8-22 min) and 9.6 ± 3.2 min (range: 6-14 min), respectively. The follow-up period ranged from 1-23 mo (14.2 ± 5.4 mo). In group A, no LTP was detected in 32 lesions, whereas in group B, LTP was detected in 4 of 29 tumors, which occurred at 2, 7, 9, and 15 mo after RFA. The frequency of LTP in group B (13.8%; 4/29) was significantly higher than that in group A (0/32, P = 0.046). All of the LTPs occurred in the area in which the 5 mm AM was not achieved. CONCLUSION: The MRI-MRI image fusion using an ultrasound workstation is feasible and useful for evaluating the AM after RFA for HCC. PMID:25954109

  13. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T usingmore » a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  14. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  15. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus Videos and Cool Tools

    ... are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation and ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  17. Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging.

    PubMed

    Preiswerk, Frank; Toews, Matthew; Cheng, Cheng-Chieh; Chiou, Jr-Yuan George; Mei, Chang-Sheng; Schaefer, Lena F; Hoge, W Scott; Schwartz, Benjamin M; Panych, Lawrence P; Madore, Bruno

    2017-09-01

    To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med 78:897-908, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Functional Magnetic Resonance Imaging (MRI) and MRI Tractography in Progressive Supranuclear Palsy-Like Syndrome

    PubMed Central

    Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.

    2015-01-01

    ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334

  19. [MRI methods for pulmonary ventilation and perfusion imaging].

    PubMed

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  20. MRI scout images can detect the acute intracerebral hemorrhage on CT.

    PubMed

    Hayashi, Toshiyuki; Aoki, Junya; Suzuki, Kentaro; Sakamoto, Yuki; Suda, Satoshi; Okubo, Seiji; Mishina, Masahiro; Kimura, Kazumi

    2018-04-15

    Magnetic resonance imaging (MRI) has recently emerged as a first-line tool for investigating acute stroke. However, MRI requires long scan times, which could be detrimental for severe stroke patients with a large intracerebral hemorrhage (ICH). MRI scout images, which are taken prior to a study to determine the range of subsequent images, can be used to rapidly screen the whole brain. We examined whether MRI scout imaging can detect ICHs observed by computed tomography (CT). Between September 2014 and March 2016, consecutive acute ICH patients who underwent both MRI scout and CT imaging in the acute setting were studied. ICHs on MRI scout images were defined as space-occupying lesions. Two neurologists independently assessed the scout images. We investigated whether ICHs on CT scans can be detected on MRI scout images and the characteristics of ICHs not detected by MRI scout images. One hundred and forty-eight ICH patients (median age, 68 [interquartile range, 59-77] years; 99 [67%] males; median National Institutes of Health Stroke Scale score, 11 [4-17]) were enrolled. Among these, 138 (93%) patients were diagnosed as having ICH by MRI scout imaging (positive group), and 10 (7%) patients were not (negative group). The bleeding volume was 9.3 [4.5-22.4] ml in the positive group and 1.0 [0.4-2.0] ml in the negative group (p < .001). The cut-off value of bleeding volume calculated from the receiver operating characteristic curve was 2.0 ml. Regarding ICH lesions, 4 (44%) of the 9 pontine hemorrhages were detected on MRI scout images, whereas 134 (96%) of the 139 other hemorrhages were diagnosed (p < .001). We diagnosed >90% of ICHs using MRI scout images. Low levels of ICH and pontine hemorrhaging might be difficult to detect using MRI scout imaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  2. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  3. Imaging features of colovesical fistulae on MRI.

    PubMed

    Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C

    2012-10-01

    MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.

  4. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  5. Image formation in diffusion MRI: A review of recent technical developments

    PubMed Central

    Miller, Karla L.

    2017-01-01

    Diffusion magnetic resonance imaging (MRI) is a standard imaging tool in clinical neurology, and is becoming increasingly important for neuroscience studies due to its ability to depict complex neuroanatomy (eg, white matter connectivity). Single‐shot echo‐planar imaging is currently the predominant formation method for diffusion MRI, but suffers from blurring, distortion, and low spatial resolution. A number of methods have been proposed to address these limitations and improve diffusion MRI acquisition. Here, the recent technical developments for image formation in diffusion MRI are reviewed. We discuss three areas of advance in diffusion MRI: improving image fidelity, accelerating acquisition, and increasing the signal‐to‐noise ratio. Level of Evidence: 5 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:646–662 PMID:28194821

  6. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  7. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  8. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  9. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  10. Designing Image Operators for MRI-PET Image Fusion of the Brain

    NASA Astrophysics Data System (ADS)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  11. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    PubMed

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR

  12. Guidelines for imaging retinoblastoma: imaging principles and MRI standardization.

    PubMed

    de Graaf, Pim; Göricke, Sophia; Rodjan, Firazia; Galluzzi, Paolo; Maeder, Philippe; Castelijns, Jonas A; Brisse, Hervé J

    2012-01-01

    Retinoblastoma is the most common intraocular tumor in children. The diagnosis is usually established by the ophthalmologist on the basis of fundoscopy and US. Together with US, high-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e. for diagnostic confirmation, detection of local tumor extent, detection of associated developmental malformation of the brain and detection of associated intracranial primitive neuroectodermal tumor (trilateral retinoblastoma). Minimum requirements for pretreatment diagnostic evaluation of retinoblastoma or mimicking lesions are presented, based on consensus among members of the European Retinoblastoma Imaging Collaboration (ERIC). The most appropriate techniques for imaging in a child with leukocoria are reviewed. CT is no longer recommended. Implementation of a standardized MRI protocol for retinoblastoma in clinical practice may benefit children worldwide, especially those with hereditary retinoblastoma, since a decreased use of CT reduces the exposure to ionizing radiation.

  13. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  14. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    PubMed

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  15. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  16. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  17. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  18. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  19. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  20. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  1. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.

    PubMed

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-07

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  2. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  3. Multi-modal image registration: matching MRI with histology

    NASA Astrophysics Data System (ADS)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  4. Amyloid imaging using fluorine-19 magnetic resonance imaging ((19)F-MRI).

    PubMed

    Tooyama, Ikuo; Yanagisawa, Daijiro; Taguchi, Hiroyasu; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Ibrahim, Nor Faeizah; Inubushi, Toshiro; Morikawa, Shigehiro

    2016-09-01

    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. CT, MRI and PET imaging in peritoneal malignancy

    PubMed Central

    Sahdev, Anju; Reznek, Rodney H.

    2011-01-01

    Abstract Imaging plays a vital role in the evaluation of patients with suspected or proven peritoneal malignancy. Nevertheless, despite significant advances in imaging technology and protocols, assessment of peritoneal pathology remains challenging. The combination of complex peritoneal anatomy, an extensive surface area that may host tumour deposits and the considerable overlap of imaging appearances of various peritoneal diseases often makes interpretation difficult. Contrast-enhanced multidetector computed tomography (MDCT) remains the most versatile tool in the imaging of peritoneal malignancy. However, conventional and emerging magnetic resonance imaging (MRI) and positron emission tomography (PET)/CT techniques offer significant advantages over MDCT in detection and surveillance. This article reviews established and new techniques in CT, MRI and PET imaging in both primary and secondary peritoneal malignancies and provides an overview of peritoneal anatomy, function and modes of disease dissemination with illustration of common sites and imaging features of peritoneal malignancy. PMID:21865109

  6. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  7. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm

  8. An MRI system for imaging neonates in the NICU: initial feasibility study.

    PubMed

    Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L

    2012-11-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.

  9. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  10. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  11. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wen, N; Gordon, J

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less

  12. Reconstruction of 7T-Like Images From 3T MRI

    PubMed Central

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu

    2016-01-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  13. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.

    PubMed

    Kogan, Feliks; Fan, Audrey P; Gold, Garry E

    2016-12-01

    Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.

  14. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  15. Pharmaceutical applications of magnetic resonance imaging (MRI).

    PubMed

    Richardson, J Craig; Bowtell, Richard W; Mäder, Karsten; Melia, Colin D

    2005-06-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that provides internal images of materials and living organisms on a microscopic and macroscopic scale. It is non-invasive and non-destructive, and one of very few techniques that can observe internal events inside undisturbed specimens in situ. It is versatile, as a wide range of NMR modalities can be accessed, and 2D and 3D imaging can be undertaken. Despite widespread use and major advances in clinical MRI, it has seen limited application in the pharmaceutical sciences. In vitro studies have focussed on drug release mechanisms in polymeric delivery systems, but isolated studies of bioadhesion, tablet properties, and extrusion and mixing processes illustrate the wider potential. Perhaps the greatest potential however, lies in investigations of pharmaceuticals in vivo, where pilot human and animal studies have demonstrated we can obtain unique insights into the behaviour of gastrointestinal, topical, colloidal, and targeted drug delivery systems.

  16. Brain tumor segmentation using holistically nested neural networks in MRI images.

    PubMed

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  17. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  18. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  19. Simultaneous CT-MRI Reconstruction for Constrained Imaging Geometries using Structural Coupling and Compressive Sensing

    PubMed Central

    Xi, Yan; Zhao, Jun; Bennett, James R.; Stacy, Mitchel R.; Sinusas, Albert J.; Wang, Ge

    2016-01-01

    Objective A unified reconstruction framework is presented for simultaneous CT-MRI reconstruction. Significance Combined CT-MRI imaging has the potential for improved results in existing preclinical and clinical applications, as well as opening novel research directions for future applications. Methods In an ideal CT-MRI scanner, CT and MRI acquisitions would occur simultaneously, and hence would be inherently registered in space and time. Alternatively, separately acquired CT and MRI scans can be fused to simulate an instantaneous acquisition. In this study, structural coupling and compressive sensing techniques are combined to unify CT and MRI reconstructions. A bidirectional image estimation method was proposed to connect images from different modalities. Hence, CT and MRI data serve as prior knowledge to each other for better CT and MRI image reconstruction than what could be achieved with separate reconstruction. Results Our integrated reconstruction methodology is demonstrated with numerical phantom and real-dataset based experiments, and has yielded promising results. PMID:26672028

  20. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less

  1. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  2. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    PubMed

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Opening the black box: imaging nanoparticle transport with MRI

    NASA Astrophysics Data System (ADS)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  4. Fetal cerebral imaging - ultrasound vs. MRI: an update.

    PubMed

    Blondiaux, Eléonore; Garel, Catherine

    2013-11-01

    The purpose of this article is to analyze the advantages and limitations of prenatal ultrasonography (US) and magnetic resonance imaging (MRI) in the evaluation of the fetal brain. These imaging modalities should not be seen as competitive but rather as complementary. There are wide variations in the world regarding screening policies, technology, skills, and legislation about termination of pregnancy, and these variations markedly impact on the way of using prenatal imaging. According to the contribution expected from each technique and to local working conditions, one should choose the most appropriate imaging modality on a case-by-case basis. The advantages and limitations of US and MRI in the setting of fetal brain imaging are displayed. Different anatomical regions (midline, ventricles, subependymal area, cerebral parenchyma, pericerebral space, posterior fossa) and pathological conditions are analyzed and illustrated in order to compare the respective contribution of each technique. An accurate prenatal diagnosis of cerebral abnormalities is of utmost importance for prenatal counseling.

  5. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  6. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    PubMed

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  7. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  8. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    PubMed Central

    Benameur, S.; Mignotte, M.; Meunier, J.; Soucy, J. -P.

    2009-01-01

    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter. PMID:19812704

  9. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low

  10. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced

  11. Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering

    NASA Astrophysics Data System (ADS)

    Samsonov, Alexei A.; Johnson, Chris R.

    2004-05-01

    MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.

  12. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  13. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI

    PubMed Central

    Liu, Peiying; Welch, Babu G.; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2016-01-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O2 and CO2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3 min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03 %/mmHg and 0.0056±0.0006 %/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06 %/mmHg vs. 0.21±0.05 %/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO2 and O2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and

  14. [Magnetic resonance imaging in facial injuries and digital fusion CT/MRI].

    PubMed

    Kozakiewicz, Marcin; Olszycki, Marek; Arkuszewski, Piotr; Stefańczyk, Ludomir

    2006-01-01

    Magnetic resonance images [MRI] and their digital fusion with computed tomography [CT] data, observed in patients affected with facial injuries, are presented in this study. The MR imaging of 12 posttraumatic patients was performed in the same plains as their previous CT scans. Evaluation focused on quality of the facial soft tissues depicting, which was unsatisfactory in CT. Using the own "Dental Studio" programme the digital fusion of the both modalities was performed. Pathologic dislocations and injures of facial soft tissues are visualized better in MRI than in CT examination. Especially MRI properly reveals disturbances in intraorbital soft structures. MRI-based assessment is valuable in patients affected with facial soft tissues injuries, especially in case of orbita/sinuses hernia. Fusion CT/MRI scans allows to evaluate simultaneously bone structure and soft tissues of the same region.

  15. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  16. Automatic delineation of brain regions on MRI and PET images from the pig.

    PubMed

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Understanding Patient Preference in Female Pelvic Imaging: Transvaginal Ultrasound and MRI.

    PubMed

    Sakala, Michelle D; Carlos, Ruth C; Mendiratta-Lala, Mishal; Quint, Elisabeth H; Maturen, Katherine E

    2018-04-01

    Women with pelvic pain or abnormal uterine bleeding may undergo diagnostic imaging. This study evaluates patient experience in transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI) and explores correlations between preference and symptom severity. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant prospective study. Fifty premenopausal women with pelvic symptoms evaluated by recent TVUS and MRI and without history of gynecologic cancer or hysterectomy were included. A phone questionnaire used validated survey instruments including Uterine Fibroid Symptoms Quality of Life index, Testing Morbidities Index, and Wait Trade Off for TVUS and MRI examinations. Using Wait Trade Off, patients preferred TVUS over MRI (3.58 vs 2.80 weeks, 95% confidence interval [CI] -1.63, 0.12; P = .08). Summary test utility of Testing Morbidities Index for MRI was worse than for TVUS (81.64 vs 87.42, 95%CI 0.41, 11.15; P = .03). Patients reported greater embarrassment during TVUS than during MRI (P <.0001), but greater fear and anxiety both before (P <.0001) and during (P <.001) MRI, and greater mental (P = .02) and physical (P = .02) problems after MRI versus TVUS. Subscale correlations showed physically inactive women rated TVUS more negatively (R = -0.32, P = .03), whereas women with more severe symptoms of loss of control of health (R = -0.28, P = .04) and sexual dysfunction (R = -0.30, P = .03) rated MRI more negatively. Women with pelvic symptoms had a slight but significant preference for TVUS over MRI. Identifying specific distressing aspects of each test and patient factors contributing to negative perceptions can direct improvement in both test environment and patient preparation. Improved patient experience may increase imaging value. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future.

    PubMed

    Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2017-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.

  19. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future

    PubMed Central

    Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2018-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420

  20. Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images

    PubMed Central

    Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.

    2009-01-01

    Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415

  1. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  2. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-11-27

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  3. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    PubMed

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  4. [From Brownian motion to mind imaging: diffusion MRI].

    PubMed

    Le Bihan, Denis

    2006-11-01

    The success of diffusion MRI, which was introduced in the mid 1980s is deeply rooted in the powerful concept that during their random, diffusion-driven movements water molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. The observation of these movements thus provides valuable information on the structure and the geometric organization of tissues. The most successful application of diffusion MRI has been in brain ischemia, following the discovery that water diffusion drops at a very early stage of the ischemic event. Diffusion MRI provides some patients with the opportunity to receive suitable treatment at a very acute stage when brain tissue might still be salvageable. On the other hand, diffusion is modulated by the spatial orientation of large bundles of myelinated axons running in parallel through in brain white matter. This feature can be exploited to map out the orientation in space of the white matter tracks and to visualize the connections between different parts of the brain on an individual basis. Furthermore, recent data suggest that diffusion MRI may also be used to visualize rapid dynamic tissue changes, such as neuronal swelling, associated with cortical activation, offering a new and direct approach to brain functional imaging.

  5. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  6. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI.

    PubMed

    Liu, Peiying; Welch, Babu G; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2017-02-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O 2 and CO 2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03%/mmHg and 0.0056±0.0006%/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06%/mmHg vs. 0.21±0.05%/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO 2 and O 2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and

  7. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  8. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  9. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  10. Imaging in rectal cancer with emphasis on local staging with MRI

    PubMed Central

    Arya, Supreeta; Das, Deepak; Engineer, Reena; Saklani, Avanish

    2015-01-01

    Imaging in rectal cancer has a vital role in staging disease, and in selecting and optimizing treatment planning. High-resolution MRI (HR-MRI) is the recommended method of first choice for local staging of rectal cancer for both primary staging and for restaging after preoperative chemoradiation (CT-RT). HR-MRI helps decide between upfront surgery and preoperative CT-RT. It provides high accuracy for prediction of circumferential resection margin at surgery, T category, and nodal status in that order. MRI also helps assess resectability after preoperative CT-RT and decide between sphincter saving or more radical surgery. Accurate technique is crucial for obtaining high-resolution images in the appropriate planes for correct staging. The phased array external coil has replaced the endorectal coil that is no longer recommended. Non-fat suppressed 2D T2-weighted (T2W) sequences in orthogonal planes to the tumor are sufficient for primary staging. Contrast-enhanced MRI is considered inappropriate for both primary staging and restaging. Diffusion-weighted sequence may be of value in restaging. Multidetector CT cannot replace MRI in local staging, but has an important role for evaluating distant metastases. Positron emission tomography-computed tomography (PET/CT) has a limited role in the initial staging of rectal cancer and is reserved for cases with resectable metastatic disease before contemplating surgery. This article briefly reviews the comprehensive role of imaging in rectal cancer, describes the role of MRI in local staging in detail, discusses the optimal MRI technique, and provides a synoptic report for both primary staging and restaging after CT-RT in routine practice. PMID:25969638

  11. Image-guided laparoscopic surgery in an open MRI operating theater.

    PubMed

    Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto

    2013-06-01

    The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.

  12. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  13. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F

  14. Added Value of Including Entire Brain on Body Imaging With FDG PET/MRI.

    PubMed

    Franceschi, Ana M; Matthews, Robert; Bangiyev, Lev; Relan, Nand; Chaudhry, Ammar; Franceschi, Dinko

    2018-05-24

    FDG PET/MRI examination of the body is routinely performed from the skull base to the mid thigh. Many types of brain abnormalities potentially could be detected on PET/MRI if the head was included. The objective of this study was therefore to identify and characterize brain findings incidentally detected on PET/MRI of the body with the head included. We retrospectively identified 269 patients with FDG PET/MRI whole-body scans that included the head. PET/MR images of the brain were reviewed by a nuclear medicine physician and neuroradiologist, first individually and then concurrently. Both PET and MRI findings were identified, including abnormal FDG uptake, standardized uptake value, lesion size, and MRI signal characteristics. For each patient, relevant medical history and prior imaging were reviewed. Of the 269 subjects, 173 were women and 96 were men (mean age, 57.4 years). Only the initial PET/MR image of each patient was reviewed. A total of 37 of the 269 patients (13.8%) had abnormal brain findings noted on the PET/MRI whole-body scan. Sixteen patients (5.9%) had vascular disease, nine patients (3.3%) had posttherapy changes, and two (0.7%) had benign cystic lesions in the brain. Twelve patients (4.5%) had serious nonvascular brain abnormalities, including cerebral metastasis in five patients and pituitary adenomas in two patients. Only nine subjects (3.3%) had a new neurologic or cognitive symptom suggestive of a brain abnormality. Routine body imaging with FDG PET/MRI of the area from the skull base to the mid thigh may miss important brain abnormalities when the head is not included. The additional brain abnormalities identified on whole-body imaging may provide added clinical value to the management of oncology patients.

  15. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  16. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  17. Comparison of Echo and MRI in the Imaging Evaluation of Intracardiac Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, G., E-mail: gulatigurpreet@rediffmail.com; Sharma, S.; Kothari, S.S.

    We compared the efficacy of echocardiography (ECHO) and magnetic resonance imaging (MRI) for evaluating intracardiac masses. Over an 8-yr period, 28 patients, 21 males, 7 females, 16 days-60 years of age (mean 25 years) with a suspected intracardiac mass on ECHO (transthoracic in all; transesophageal in 9) underwent an MRI examination. Five patients had a contrast-enhanced MRI. ECHO and MRI were compared with respect to their technical adequacy, ability to detect and suggest the likely etiology of the mass, and provide additional information (masses not seen with the other technique, inflow or outflow obstruction, and intramural component of an intracavitarymore » mass). With MRI, the image morphology (including signal intensity changes on the various sequences) and extracardiac manifestations were also evaluated. The diagnosis was confirmed by histopathology in 18, surgical inspection in 4, by follow- up imaging on conservative management in 5, and by typical extracardiac manifestations of the disease in 1 patient.Fifteen (54%) patients had tumors (benign 12, malignant 3), 5 had a thrombus or hematoma, and 4 each had infective or vascular lesions. Thirty-four masses (13 in ventricle, 11 septal, 7 atrial, 2 on valve and 1 in pulmonary artery) were seen on MRI, 28 of which were detected by ECHO. Transthoracic ECHO (TTE) and MRI were technically optimal in 82% and 100% of cases, respectively. Nine patients needed an additional transesophageal ECHO (TEE). Overall, MRI showed a mass in all patients, whereas ECHO missed it in 2 cases. In cases with a mass on both modalities, MRI detected 4 additional masses not seen on ECHO. MRI suggested the etiology in 21 (75%) cases, while the same was possible with ECHO (TTE and TEE) in 8 (29%) cases. Intramural component, extension into the inflow or outflow, outflow tract obstruction, and associated pericardial or extracardiac masses were better depicted on MRI. We conclude that MRI is advantageous over a combination of TTE and

  18. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  19. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  20. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright

  1. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  2. Can glenoid wear be accurately assessed using x-ray imaging? Evaluating agreement of x-ray and magnetic resonance imaging (MRI) Walch classification.

    PubMed

    Kopka, Michaela; Fourman, Mitchell; Soni, Ashish; Cordle, Andrew C; Lin, Albert

    2017-09-01

    The Walch classification is the most recognized means of assessing glenoid wear in preoperative planning for shoulder arthroplasty. This classification relies on advanced imaging, which is more expensive and less practical than plain radiographs. The purpose of this study was to determine whether the Walch classification could be accurately applied to x-ray images compared with magnetic resonance imaging (MRI) as the gold standard. We hypothesized that x-ray images cannot adequately replace advanced imaging in the evaluation of glenoid wear. Preoperative axillary x-ray images and MRI scans of 50 patients assessed for shoulder arthroplasty were independently reviewed by 5 raters. Glenoid wear was individually classified according to the Walch classification using each imaging modality. The raters then collectively reviewed the MRI scans and assigned a consensus classification to serve as the gold standard. The κ coefficient was used to determine interobserver agreement for x-ray images and independent MRI reads, as well as the agreement between x-ray images and consensus MRI. The inter-rater agreement for x-ray images and MRIs was "moderate" (κ = 0.42 and κ = 0.47, respectively) for the 5-category Walch classification (A1, A2, B1, B2, C) and "moderate" (κ = 0.54 and κ = 0.59, respectively) for the 3-category Walch classification (A, B, C). The agreement between x-ray images and consensus MRI was much lower: "fair-to-moderate" (κ = 0.21-0.51) for the 5-category and "moderate" (κ = 0.36-0.60) for the 3-category Walch classification. The inter-rater agreement between x-ray images and consensus MRI is "fair-to-moderate." This is lower than the previously reported reliability of the Walch classification using computed tomography scans. Accordingly, x-ray images are inferior to advanced imaging when assessing glenoid wear. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights

  3. Open-source image registration for MRI-TRUS fusion-guided prostate interventions.

    PubMed

    Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare

    2015-06-01

    We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

  4. [The Diagnostic Value of Pre-Biopsy Magnetic Resonance Imaging (MRI) for Detecting Prostate Cancer].

    PubMed

    Mori, Kohei; Miyoshi, Yasuhide; Yoneyama, Shuko; Ishida, Hiroaki; Hattori, Yusuke; Teranishi, Jun-ichi; Kondo, Keiichi; Noguchi, Kazumi

    2016-01-01

    We examined the value of pre-biopsy magnetic resonance imaging (MRI) for detecting prostate cancer. We analyzed 267 men with prostate-specific antigen (PSA) levels of 3-10 ng/ml who underwent systematic prostate needle biopsy. From April 2009 to March 2011, a total of 98 male patients underwent 16-core prostatic biopsies without pre-biopsy magnetic resonance imaging (MRI) (nonenforcement group). From April 2011 to March 2013, 169 men underwent pre-biopsy MRI [T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI)] (enforcement group). When MRI findings indicated cancer in the latter group, in addition to the systematic 16-core biopsy one or two targeted biopsies were performed. Patients without suspicious MRI findings underwent only systematic 16-core biopsy. Cancer detection rates in the nonenforcement and enforcement groups were 42.9% (48/92) and 46. 2% (78/169), respectively. The difference did not reach significance (p=0.612). Although the cancer detection rates were 39.4% (41/104) in the MRI-negative group and 56. 9% (37/65) in the MRI-positive group (p=0.039), the sensitivity and specificity for cancer detection by MRI were relatively low: 47.4% and 69.2%, respectively. By receiver-operating curve analysis, the area under the curve for cancer detection by MRI was only 0.583. There were two study limitations. First, the patient sample size was small. Second, it is unclear whether an adequate sample of the suspicious lesion was obtained by biopsy. We thus demonstrated that it might be improper to base a diagnosis solely on pre-biopsy MRI (T2WI and DWI) findings in men with serum PSA levels of 3-10 ng/ml.

  5. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  6. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  7. Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes.

    PubMed

    Sutton, Elizabeth J; Huang, Erich P; Drukker, Karen; Burnside, Elizabeth S; Li, Hui; Net, Jose M; Rao, Arvind; Whitman, Gary J; Zuley, Margarita; Ganott, Marie; Bonaccio, Ermelinda; Giger, Maryellen L; Morris, Elizabeth A

    2017-01-01

    In this study, we sought to investigate if computer-extracted magnetic resonance imaging (MRI) phenotypes of breast cancer could replicate human-extracted size and Breast Imaging-Reporting and Data System (BI-RADS) imaging phenotypes using MRI data from The Cancer Genome Atlas (TCGA) project of the National Cancer Institute. Our retrospective interpretation study involved analysis of Health Insurance Portability and Accountability Act-compliant breast MRI data from The Cancer Imaging Archive, an open-source database from the TCGA project. This study was exempt from institutional review board approval at Memorial Sloan Kettering Cancer Center and the need for informed consent was waived. Ninety-one pre-operative breast MRIs with verified invasive breast cancers were analysed. Three fellowship-trained breast radiologists evaluated the index cancer in each case according to size and the BI-RADS lexicon for shape, margin, and enhancement (human-extracted image phenotypes [HEIP]). Human inter-observer agreement was analysed by the intra-class correlation coefficient (ICC) for size and Krippendorff's α for other measurements. Quantitative MRI radiomics of computerised three-dimensional segmentations of each cancer generated computer-extracted image phenotypes (CEIP). Spearman's rank correlation coefficients were used to compare HEIP and CEIP. Inter-observer agreement for HEIP varied, with the highest agreement seen for size (ICC 0.679) and shape (ICC 0.527). The computer-extracted maximum linear size replicated the human measurement with p  < 10 -12 . CEIP of shape, specifically sphericity and irregularity, replicated HEIP with both p values < 0.001. CEIP did not demonstrate agreement with HEIP of tumour margin or internal enhancement. Quantitative radiomics of breast cancer may replicate human-extracted tumour size and BI-RADS imaging phenotypes, thus enabling precision medicine.

  8. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    PubMed

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences

  9. Quantification of atherosclerosis with MRI and image processing in spontaneously hyperlipidemic rabbits.

    PubMed

    Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O

    2004-01-01

    The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

  10. Tracing and quantification of pharmaceuticals using MR imaging and spectroscopy at clinical MRI system

    NASA Astrophysics Data System (ADS)

    Jeong, Eun-Kee; Liu, Xin; Shi, Xianfeng; Yu, Y. Bruce; Lu, Zeng-Rong

    2012-10-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic moment (94 % of proton) and 100 % abundance.

  11. Echo Planar Imaging before and after fMRI: A personal history

    PubMed Central

    Cohen, Mark S.; Schmitt, Franz

    2012-01-01

    Echo-planar imaging (EPI) plays a crucial role in functional MRI. Focusing especially on the period from 1988 to 1992, the authors offer personal recollections, on the development of practical means of deploying EPI, the people that participated, and its impact on MRI in general. PMID:22266173

  12. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  13. Magnetic resonance imaging (MRI): A review of genetic damage investigations.

    PubMed

    Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver

    2015-01-01

    Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.

    PubMed

    Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter

    2016-12-01

    Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

  15. Accelerated Fractional Ventilation Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Xin, Yi; Ishii, Masaru; Rizi, Rahim R.

    2013-01-01

    PURPOSE To investigate the utility of accelerated imaging to enhance multi-breath fractional ventilation (r) measurement accuracy using HP gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2-induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally it may improve r estimation accuracy by reducing RF destruction of HP gas. METHODS Image acceleration was achieved by using an 8-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and images were reconstructed for various matrix sizes (48–128) using GRAPPA. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0–2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39–51% error reduction). In vivo r values were not significantly different between the two methods: 0.27±0.09, 0.35±0.06, 0.40±0.04 (standard) versus 0.23±0.05, 0.34±0.03, 0.37±0.02 (accelerated); for anterior, medial and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P < 0.001): 0.021±0.007 (standard) versus 0.019±0.005 (accelerated) [cm−1]. CONCLUSION Quadruple phased array coil simulations resulted in an optimal acceleration factor of ~2× independent of imaging resolution. Results advocate undersampled image acceleration to improve accuracy of fractional ventilation measurement with HP gas MRI. PMID:23400938

  16. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    PubMed Central

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  17. Imaging transplanted stem cells in real time using an MRI dual-contrast method.

    PubMed

    Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-09-02

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.

  18. Evaluation of image quality of MRI data for brain tumor surgery

    NASA Astrophysics Data System (ADS)

    Heckel, Frank; Arlt, Felix; Geisler, Benjamin; Zidowitz, Stephan; Neumuth, Thomas

    2016-03-01

    3D medical images are important components of modern medicine. Their usefulness for the physician depends on their quality, though. Only high-quality images allow accurate and reproducible diagnosis and appropriate support during treatment. We have analyzed 202 MRI images for brain tumor surgery in a retrospective study. Both an experienced neurosurgeon and an experienced neuroradiologist rated each available image with respect to its role in the clinical workflow, its suitability for this specific role, various image quality characteristics, and imaging artifacts. Our results show that MRI data acquired for brain tumor surgery does not always fulfill the required quality standards and that there is a significant disagreement between the surgeon and the radiologist, with the surgeon being more critical. Noise, resolution, as well as the coverage of anatomical structures were the most important criteria for the surgeon, while the radiologist was mainly disturbed by motion artifacts.

  19. Optimal sampling with prior information of the image geometry in microfluidic MRI.

    PubMed

    Han, S H; Cho, H; Paulsen, J L

    2015-03-01

    Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Single-Step Assembly of Multi-Modal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging

    PubMed Central

    Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.

    2015-01-01

    MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  1. PROPELLER technique to improve image quality of MRI of the shoulder.

    PubMed

    Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A

    2011-12-01

    The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.

  2. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  3. Midbrain and spinal cord magnetic resonance imaging (MRI) changes in poliomyelitis.

    PubMed

    Choudhary, Anita; Sharma, Suvasini; Sankhyan, Naveen; Gulati, Sheffali; Kalra, Veena; Banerjee, Bidisha; Kumar, Atin

    2010-04-01

    Poliomyelitis, though eradicated from most parts of the world, continues to occur in India. There is paucity of data on the magnetic resonance imaging (MRI) changes in poliomyelitis. We report a 3(1/2)-year-old boy who presented with subacute onset flaccid paralysis and altered sensorium. Stool culture was positive for wild polio virus type 3. Magnetic resonance imaging revealed signal changes in bilateral substantia nigra and anterior horns of the spinal cord. These MRI changes may be of potential diagnostic significance in a child with poliomyelitis.

  4. Complimentary aspects of diffusion imaging and fMRI: II. Elucidating contributions to the fMRI signal with diffusion sensitization.

    PubMed

    Mulkern, Robert V; Haker, Steven J; Maier, Stephan E

    2007-07-01

    Tissue water molecules reside in different biophysical compartments. For example, water molecules in the vasculature reside for variable periods of time within arteries, arterioles, capillaries, venuoles and veins, and may be within blood cells or blood plasma. Water molecules outside of the vasculature, in the extravascular space, reside, for a time, either within cells or within the interstitial space between cells. Within these different compartments, different types of microscopic motion that water molecules may experience have been identified and discussed. These range from Brownian diffusion to more coherent flow over the time scales relevant to functional magnetic resonance imaging (fMRI) experiments, on the order of several 10s of milliseconds. How these different types of motion are reflected in magnetic resonance imaging (MRI) methods developed for "diffusion" imaging studies has been an ongoing and active area of research. Here we briefly review the ideas that have developed regarding these motions within the context of modern "diffusion" imaging techniques and, in particular, how they have been accessed in attempts to further our understanding of the various contributions to the fMRI signal changes sought in studies of human brain activation.

  5. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  6. Magnetic resonance imaging (MRI) of abnormal uterine masses.

    PubMed

    al-Ahwani, S; Assem, M; Belal, A; Abdel-Hamid, H

    1991-01-01

    Sixteen women with clinically diagnosed uterine masses were studied by magnetic resonance imaging (MRI). Pelvic study was carried out in the coronal, sagittal and axial planes. Uterine leiomyomas were detected in 12 cases, while the remaining cases were one each of uterine sarcoma, invasive molar pregnancy, cervical malignancy with pyometra and haematometra with congenital cervical stenosis. The uterine origin of the masses could be clearly detected in all patients, as well as the nature of the masses, the presence of degenerative or malignant changes and the nature of the intrauterine fluid. MRI characteristic findings of the studied masses are presented and discussed.

  7. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in

  8. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  9. Magnetic Resonance Medical Imaging (MRI)-from the inside

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at <0.2T. I moved to Johns Hopkins University to apply MRI methods to localized MRS and study cardiac metabolism, and then to GE to build a whole-body MRS machine. The largest uniform magnet possible-then, a 1.5T superconducting system-was required. Body MRI was first thought impossible above 0.35T due to RF penetration, detector coil and signal-to-noise ratio (SNR) issues. When GE finally did take on MRI, their plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  10. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  11. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  12. Multiparametric Magnetic Resonance Imaging (MRI) and MRI-Transrectal Ultrasound Fusion Biopsy for Index Tumor Detection: Correlation with Radical Prostatectomy Specimen.

    PubMed

    Radtke, Jan P; Schwab, Constantin; Wolf, Maya B; Freitag, Martin T; Alt, Celine D; Kesch, Claudia; Popeneciu, Ionel V; Huettenbrink, Clemens; Gasch, Claudia; Klein, Tilman; Bonekamp, David; Duensing, Stefan; Roth, Wilfried; Schueler, Svenja; Stock, Christian; Schlemmer, Heinz-Peter; Roethke, Matthias; Hohenfellner, Markus; Hadaschik, Boris A

    2016-11-01

    Multiparametric magnetic resonance imaging (mpMRI) and MRI fusion targeted biopsy (FTB) detect significant prostate cancer (sPCa) more accurately than conventional biopsies alone. To evaluate the detection accuracy of mpMRI and FTB on radical prostatectomy (RP) specimen. From a cohort of 755 men who underwent transperineal MRI and transrectal ultrasound fusion biopsy under general anesthesia between 2012 and 2014, we retrospectively analyzed 120 consecutive patients who had subsequent RP. All received saturation biopsy (SB) in addition to FTB of lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥2. The index lesion was defined as the lesion with extraprostatic extension, the highest Gleason score (GS), or the largest tumor volume (TV) if GS were the same, in order of priority. GS 3+3 and TV ≥1.3ml or GS ≥3+4 and TV ≥0.55ml were considered sPCa. We assessed the detection accuracy by mpMRI and different biopsy approaches and analyzed lesion agreement between mpMRI and RP specimen. Overall, 120 index and 71 nonindex lesions were detected. Overall, 107 (89%) index and 51 (72%) nonindex lesions harbored sPCa. MpMRI detected 110 of 120 (92%) index lesions, FTB (two cores per lesion) alone diagnosed 96 of 120 (80%) index lesions, and SB alone diagnosed 110 of 120 (92%) index lesions. Combined SB and FTB detected 115 of 120 (96%) index foci. FTB performed significantly less accurately compared with mpMRI (p=0.02) and the combination for index lesion detection (p=0.002). Combined FTB and SB detected 97% of all sPCa lesions and was superior to mpMRI (85%), FTB (79%), and SB (88%) alone (p<0.001 each). Spearman's rank correlation coefficient for index lesion agreement between mpMRI and RP was 0.87 (p<0.001). Limitations included the retrospective design, multiple operators, and nonblinding of radiologists. MpMRI identified 92% of index lesions compared with RP histopathology. The combination of FTB and SB was superior to both approaches alone

  13. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  14. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  15. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    PubMed

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  16. Creating a strategic management plan for magnetic resonance imaging (MRI) provision.

    PubMed

    Szczepura, A; Clark, M

    2000-09-01

    We were commissioned by the West Midlands NHS Regional Specialized Services Group (RSSG) to formulate a strategic plan for the management of Magnetic Resonance Imaging (MRI) within the West Midlands, UK. We needed to establish whether an increase in MRI provision was required, and if so to develop criteria to shape both the nature and location of MRI provision. We found that the UK had relatively low MRI provision per capita by international standards, and that the West Midlands region of the UK had less than the UK average level of MRI provision per capita. Within the region there was a 'mixed economy' of MRI provision involving fixed site scanners owned by the NHS and private companies, and private sector mobile MRI provision. There was little evidence of inappropriate MRI use, but considerable evidence of under-provision. Most MRI scanners in the region were heavily utilized, and average waiting times for MRI frequently exceeded guidelines (of a maximum 13-week wait for non-urgent MRI scans). Projections from NHS Trusts, MRI suppliers, and experts in the MRI field, led us to the conclusion that demand for MRI was likely to grow by between 12.5 and 18.5% per annum. This implies that 8-14 additional MRI scanners might be required within the West Midlands over the next 5 years, to meet existing, and rising demand for MRI. We therefore developed criteria (outlined in the paper) to enhance the productive and allocative efficiency of the deployment of MRI provision, whilst improving the configuration of MRI with reference to geographical equality of access to MRI.

  17. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing.

    PubMed

    Sharma, Rakesh

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  18. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh

    2010-07-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  19. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  20. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural

  1. Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging.

    PubMed

    Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high

  2. Fetal MRI versus postnatal imaging in the MR-compatible incubator.

    PubMed

    Bekiesinska-Figatowska, Monika; Romaniuk-Doroszewska, Anna; Duczkowska, Agnieszka; Duczkowski, Marek; Iwanowska, Beata; Szkudlińska-Pawlak, Sylwia

    2016-09-01

    One of the aims of fetal magnetic resonance imaging (MRI) is to avoid postnatal scanning. However, clinicians sometimes wish to have postnatal confirmation of prenatal findings. This study's purpose was to check whether there was indeed the added value of neonatal MRI performed in the MR-compatible incubator (INC) after fetal examination. Material consists of 25 neonates (14 girls) who underwent prenatal and postnatal MRI in a 1.5 T scanner, the latter in INC. Mean time of prenatal MRI was 30th gestational week, of postnatal MRI-16th day of life. In 14 cases (56 %) postnatal findings were the same as prenatal ones. In 11 (44 %) postnatal MRI showed some different/new/more precise results, in two the differences were attributed to other factors than the advantage of postnatal MRI over prenatal one. Altogether then postnatal results were partly discordant with prenatal ones in 9/25 cases (36 %). In most cases there was no added value of postnatal MRI as compared to prenatal one. This value lied in small details that could not have been noticed on prenatal MRI or required contrast medium administration to be noticed. On the other hand, MR examination performed with use of the dedicated neonatal coils in the MR-compatible incubator is a safe and reliable method of visualization of these small details with better spatial resolution thus helping to establish final diagnosis, treatment plan and prognosis.

  3. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium.

    PubMed

    DeMartini, Wendy B; Ichikawa, Laura; Yankaskas, Bonnie C; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D; Lehman, Constance D

    2010-11-01

    MRI is increasingly used for the detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. The aim of this study was to evaluate equipment and acquisition techniques used by community facilities across the United States, including compliance with minimum standards by the ACRIN® 6667 Trial and the European Society of Breast Imaging. Breast Cancer Surveillance Consortium facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness, and the timing of the initial postcontrast sequence. Results were tallied and percentages of facilities meeting ACRIN® and European Society of Breast Imaging standards were calculated. From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5-T field strength was 94% and of a dedicated breast coil was 100%. Eighty-three percent of acquisitions used bilateral postcontrast techniques, and 78% used slice thickness≤3 mm. The timing of initial postcontrast sequences ranged from 58 seconds to 8 minutes 30 seconds, with 63% meeting recommendations for completion within 4 minutes. Nearly all surveyed facilities met ACRIN and European Society of Breast Imaging standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for the timing of initial postcontrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high-quality breast MRI. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging

    NASA Astrophysics Data System (ADS)

    Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic

    2014-09-01

    Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.

  5. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT.

    PubMed

    Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi

    2013-07-01

    This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.

  6. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    PubMed

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.

  7. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP.

    PubMed

    Queiroz, Marcelo A; Barbosa, Felipe de Galiza; Buchpiguel, Carlos Alberto; Cerri, Giovanni Guido

    2018-01-01

    The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.

  8. Single element ultrasonic imaging of limb geometry: an in-vivo study with comparison to MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Fincke, Jonathan R.; Anthony, Brian W.

    2016-04-01

    Despite advancements in medical imaging, current prosthetic fitting methods remain subjective, operator dependent, and non-repeatable. The standard plaster casting method relies on prosthetist experience and tactile feel of the limb to design the prosthetic socket. Often times, many fitting iterations are required to achieve an acceptable fit. Use of improper socket fittings can lead to painful pathologies including neuromas, inflammation, soft tissue calcification, and pressure sores, often forcing the wearer to into a wheelchair and reducing mobility and quality of life. Computer software along with MRI/CT imaging has already been explored to aid the socket design process. In this paper, we explore the use of ultrasound instead of MRI/CT to accurately obtain the underlying limb geometry to assist the prosthetic socket design process. Using a single element ultrasound system, multiple subjects' proximal limbs were imaged using 1, 2.25, and 5 MHz single element transducers. Each ultrasound transducer was calibrated to ensure acoustic exposure within the limits defined by the FDA. To validate image quality, each patient was also imaged in an MRI. Fiducial markers visible in both MRI and ultrasound were used to compare the same limb cross-sectional image for each patient. After applying a migration algorithm, B-mode ultrasound cross-sections showed sufficiently high image resolution to characterize the skin and bone boundaries along with the underlying tissue structures.

  9. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    PubMed

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images

    PubMed Central

    Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina

    2017-01-01

    Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions. PMID:28630885

  11. Normalization of T2W-MRI prostate images using Rician a priori

    NASA Astrophysics Data System (ADS)

    Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Vilanova, Joan C.; Walker, Paul M.; Freixenet, Jordi; Meyer-Baese, Anke; Mériaudeau, Fabrice; Martí, Robert

    2016-03-01

    Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.

  12. Iterative image reconstruction that includes a total variation regularization for radial MRI.

    PubMed

    Kojima, Shinya; Shinohara, Hiroyuki; Hashimoto, Takeyuki; Hirata, Masami; Ueno, Eiko

    2015-07-01

    This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp-Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.

  13. Magnetic Resonance Imaging (MRI) for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis Objective The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) 1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts

  14. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  15. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  16. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply

  17. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Kamrava, M; Yang, Y

    Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI wasmore » acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less

  18. Evaluation of aortic regurgitation by using PC MRI: A comparison of the accuracies at different image plane locations

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Gull; Kim, Kyung-Soo; Kim, Soon-Bae; Chung, Woon-Kwan; Cho, Jae-Hwan; Park, Yong-Soon

    2012-12-01

    The goal of this study is to determine which imaging location on phase contrast magnetic resonance imaging (PC MRI) best correlates with echocardiography to enable the severity of aortic regurgitation to be accurately evaluated by using PC MRI. The subjects were 34 patients with aortic regurgitation confirmed by echocardiography and cardiac MRI. Two velocity distribution images were obtained by positioning image planes above and below the aortic valve in the PC MRI. Using the acquired images, regurgitation fractions were calculated by calculating the average forward and reverse blood flows. The severity of aortic regurgitation was then evaluated and compared with the severity as determined by using echocardiography. When image planes were positioned above the aortic valve, the regurgitation fraction obtained by using PC MRI was 44.5 ± 18.7%, and when planes were positioned below the valve, the regurgitation fraction was 34.8 ± 15.9%. Regarding agreement with echocardiographic findings, concurrence was shown to be 50% when image planes sections were positioned above the valve and 85.3% when they were positioned below the valve. The present study shows that if image planes are positioned below the valve rather than above the valve, provides as accurate evaluation of the severity of aortic regurgitation.

  19. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  20. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils.

    PubMed

    Cooley, Clarissa Zimmerman; Stockmann, Jason P; Armstrong, Brandon D; Sarracanie, Mathieu; Lev, Michael H; Rosen, Matthew S; Wald, Lawrence L

    2015-02-01

    As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. We construct and validate a truly portable (<100 kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating spatial encoding magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed two-dimensional (2D) image. Multiple receive channels are used to disambiguate the nonbijective encoding field. The system is validated with experimental images of 2D test phantoms. Similar to other nonlinear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. © 2014 Wiley Periodicals, Inc.

  1. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  2. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a

  3. Use of dynamic images in radiology education: Movies of CT and MRI in the anatomy classroom.

    PubMed

    Jang, Hye Won; Oh, Chang-Seok; Choe, Yeon Hyeon; Jang, Dong Su

    2018-04-19

    Radiology education is a key component in many preclinical anatomy courses. However, the reported effectiveness of radiology education within such anatomy classrooms has varied. This study was conducted to determine if a novel educational method using dynamic images of movies of computed tomography (CT) and magnetic resonance imaging (MRI) was effective in radiology education during a preclinical anatomy course, aided by clay modeling, specific hand gestures (digit anatomy), and reports from dissection findings uploaded to the anatomy course website (digital reports). Feedback surveys using a five-point Likert scale were administered to better clarify students' opinions regarding their understanding of CT and MRI of anatomical structures, as well as to determine if such preclinical radiology education was helpful in their clinical studies. After completion of the anatomy course taught with dynamic images of CT and MRI, most students demonstrated an adequate understanding of basic CT and MR images. Additionally, students in later clinical years generally believed that their study of radiologic images during the preclinical anatomy course was helpful for their clinical studies and clerkship rotations. Moreover, student scores on imaging anatomy examinations demonstrated meaningful improvements in performance after using dynamic images from movies of CT and MRI. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  4. [Imaging of the elbow joint with focus MRI. Part 2: muscles, nerves and synovial membranes].

    PubMed

    Rehm, J; Zeifang, F; Weber, M-A

    2014-03-01

    This review article discusses the magnetic resonance imaging (MRI) features and pathological changes of muscles, nerves and the synovial lining of the elbow joint. Typical imaging findings are illustrated and discussed. In addition, the cross-sectional anatomy and anatomical variants, such as accessory muscles and plicae are discussed. Injuries of the muscles surrounding the elbow joint, as well as chronic irritation are particularly common in athletes. Morphological changes in MRI, for example tennis or golfer's elbow are typical and often groundbreaking. By adapting the examination sequences, imaging planes and slices, complete and incomplete tendon ruptures can be reliably diagnosed. Although the clinical and electrophysiological examinations form the basis for the diagnosis of peripheral neuropathies, MRI provides useful additional information about the precise localization due to its high resolution and good soft tissue contrast and helps to rule out differential diagnoses. Synovial diseases, such as inflammatory arthritis, proliferative diseases and also impinging plicae must be considered in the MRI diagnostics of the elbow joint.

  5. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate.

    PubMed

    Liu, Yilin; Yin, Fang-Fang; Chang, Zheng; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Qin, Yujiao; Cai, Jing

    2014-10-01

    The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface

  6. Imaging laminar structures in the gray matter with diffusion MRI.

    PubMed

    Assaf, Yaniv

    2018-01-05

    The cortical layers define the architecture of the gray matter and its neuroanatomical regions and are essential for brain function. Abnormalities in cortical layer development, growth patterns, organization, or size can affect brain physiology and cognition. Unfortunately, while large population studies are underway that will greatly increase our knowledge about these processes, current non-invasive techniques for characterizing the cortical layers remain inadequate. For decades, high-resolution T1 and T2 Weighted Magnetic Resonance Imaging (MRI) have been the method-of-choice for gray matter and layer characterization. In the past few years, however, diffusion MRI has shown increasing promise for its unique insights into the fine structure of the cortex. Several different methods, including surface analysis, connectivity exploration, and sub-voxel component modeling, are now capable of exploring the diffusion characteristics of the cortex. In this review, we will discuss current advances in the application of diffusion imaging for cortical characterization and its unique features, with a particular emphasis on its spatial resolution, arguably its greatest limitation. In addition, we will explore the relationship between the diffusion MRI signal and the cellular components of the cortex, as visualized by histology. While the obstacles facing the widespread application of cortical diffusion imaging remain daunting, the information it can reveal may prove invaluable. Within the next few years, we predict a surge in the application of this technique and a concomitant expansion of our knowledge of cortical layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei Baowei; Wang Hesheng; Muzic, Raymond F. Jr.

    2006-03-15

    We are investigating imaging techniques to study the tumor response to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional information. High-resolution magnetic resonance imaging (MRI) can provide anatomical and morphological changes. Image registration can combine MRI and PET images for improved tumor monitoring. In this study, we acquired high-resolution MRI and microPET {sup 18}F-fluorodeoxyglucose (FDG) images from C3H mice with RIF-1 tumors that were treated with Pc 4-based PDT. We developed two registration methods for this application. For registration of the whole mouse body, we used an automatic three-dimensional, normalized mutual information algorithm. For tumor registration,more » we developed a finite element model (FEM)-based deformable registration scheme. To assess the quality of whole body registration, we performed slice-by-slice review of both image volumes; manually segmented feature organs, such as the left and right kidneys and the bladder, in each slice; and computed the distance between corresponding centroids. Over 40 volume registration experiments were performed with MRI and microPET images. The distance between corresponding centroids of organs was 1.5{+-}0.4 mm which is about 2 pixels of microPET images. The mean volume overlap ratios for tumors were 94.7% and 86.3% for the deformable and rigid registration methods, respectively. Registration of high-resolution MRI and microPET images combines anatomical and functional information of the tumors and provides a useful tool for evaluating photodynamic therapy.« less

  8. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    NASA Astrophysics Data System (ADS)

    Muzamil, Akhmad; Haries Firmansyah, Achmad

    2017-05-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.

  9. Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.

    PubMed

    Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L

    2014-03-01

    Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.

  10. Voltage-based Device Tracking in a 1.5 Tesla MRI during Imaging: Initial validation in swine models

    PubMed Central

    Schmidt, Ehud J; Tse, Zion TH; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L

    2013-01-01

    Purpose Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological (EP) cardiac-arrhythmia therapy. During EP procedures, electro-anatomic-mapping (EAM) workstations provide guidance by integrating VDT location and intra-cardiac-ECG information with X-ray, CT, Ultrasound, and MR images. MR assists navigation, mapping and radio-frequency-ablation. Multi-modality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound EP suite, increasing the likelihood of patient-motion and image mis-registration. An MRI-compatible VDT system may increase efficiency, since there is currently no single method to track devices both inside and outside the MRI scanner. Methods An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radio-frequency-unblanking-pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT EAM-mapping interventions were performed, navigating inside and thereafter outside the MRI. Results Three-catheter VDT interventions were performed at >12 frames-per-second both inside and outside the MRI scanner with <3mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition-time (TR) >32 msec sequences with <0.5mm errors, and <5% MRI SNR loss. At shorter TRs, only intra-cardiac-ECG was reliable. RF Heating was <1.5C°. Conclusion An MRI-compatible VDT system is feasible. PMID:23580479

  11. The evaluation of correction algorithms of intensity nonuniformity in breast MRI images: a phantom study

    NASA Astrophysics Data System (ADS)

    Borys, Damian; Serafin, Wojciech; Gorczewski, Kamil; Kijonka, Marek; Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    The aim of this work was to test the most popular and essential algorithms of the intensity nonuniformity correction of the breast MRI imaging. In this type of MRI imaging, especially in the proximity of the coil, the signal is strong but also can produce some inhomogeneities. Evaluated methods of signal correction were: N3, N3FCM, N4, Nonparametric, and SPM. For testing purposes, a uniform phantom object was used to obtain test images using breast imaging MRI coil. To quantify the results, two measures were used: integral uniformity and standard deviation. For each algorithm minimum, average and maximum values of both evaluation factors have been calculated using the binary mask created for the phantom. In the result, two methods obtained the lowest values in these measures: N3FCM and N4, however, for the second method visually phantom was the most uniform after correction.

  12. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Son, J; Arun, B

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol

  13. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    PubMed

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  14. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method.

    PubMed

    Chen, Xinyuan; Dai, Jianrong

    2018-05-01

    Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation.

    PubMed

    Oetjen, Janina; Aichler, Michaela; Trede, Dennis; Strehlow, Jan; Berger, Judith; Heldmann, Stefan; Becker, Michael; Gottschalk, Michael; Kobarg, Jan Hendrik; Wirtz, Stefan; Schiffler, Stefan; Thiele, Herbert; Walch, Axel; Maass, Peter; Alexandrov, Theodore

    2013-09-02

    MALDI imaging mass spectrometry (MALDI-imaging) has emerged as a spatially-resolved label-free bioanalytical technique for direct analysis of biological samples and was recently introduced for analysis of 3D tissue specimens. We present a new experimental and computational pipeline for molecular analysis of tissue specimens which integrates 3D MALDI-imaging, magnetic resonance imaging (MRI), and histological staining and microscopy, and evaluate the pipeline by applying it to analysis of a mouse kidney. To ensure sample integrity and reproducible sectioning, we utilized the PAXgene fixation and paraffin embedding and proved its compatibility with MRI. Altogether, 122 serial sections of the kidney were analyzed using MALDI-imaging, resulting in a 3D dataset of 200GB comprised of 2million spectra. We show that elastic image registration better compensates for local distortions of tissue sections. The computational analysis of 3D MALDI-imaging data was performed using our spatial segmentation pipeline which determines regions of distinct molecular composition and finds m/z-values co-localized with these regions. For facilitated interpretation of 3D distribution of ions, we evaluated isosurfaces providing simplified visualization. We present the data in a multimodal fashion combining 3D MALDI-imaging with the MRI volume rendering and with light microscopic images of histologically stained sections. Our novel experimental and computational pipeline for 3D MALDI-imaging can be applied to address clinical questions such as proteomic analysis of the tumor morphologic heterogeneity. Examining the protein distribution as well as the drug distribution throughout an entire tumor using our pipeline will facilitate understanding of the molecular mechanisms of carcinogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.

  17. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  18. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    PubMed

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  19. SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petronek, M; Purysko, A; Balik, S

    Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure bymore » a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.« less

  20. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.

    PubMed

    Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G

    2017-11-01

    The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.

  1. MRI-related magnetic field exposures and risk of commuting accidents - A cross-sectional survey among Dutch imaging technicians.

    PubMed

    Huss, Anke; Schaap, Kristel; Kromhout, Hans

    2017-07-01

    Imaging technicians working with magnetic resonance imaging (MRI) may experience acute effects such as vertigo or dizziness when being exposed. A previous study also reported an increased risk of accidents in MRI exposed staff. We aimed at evaluating commuting accident risk in Dutch imaging technicians. Of invited imaging technicians, 490 (29%) filled in a questionnaire pertaining to (near) accidents when driving or riding a bike, health, lifestyle and work practices. We used logistic regression to evaluate the association between exposure to MRI-related electromagnetic fields and risk of commuting (near) accidents in the year prior to the survey, adjusted for a range of potential confounders. Our cross-sectional study indicated an increased risk of (near) accidents if imaging technicians had worked with MRI in the year prior to the survey (odds ratio OR 2.13, 95%CI 1.23-3.69). Risks were higher in persons who worked with MRI more often (OR 2.32, 95%CI 1.25-4.31) compared to persons who worked sometimes with MRI (OR 1.91, 95%CI 0.98-3.72), and higher in those who had likely experienced higher peak exposures to static and time-varying magnetic fields (OR 2.18, 95%CI 1.06-4.48). The effect was seen on commuting accidents that had occurred on the commute from home to work as well as accidents from work to home or elsewhere. Imaging technicians working with MRI scanners may be at an increased risk of commuting (near) accidents. This result needs confirmation and potential risks for other groups (volunteers, patients) should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. An MRI-Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease.

    PubMed

    Raman, Mekala R; Schwarz, Christopher G; Murray, Melissa E; Lowe, Val J; Dickson, Dennis W; Jack, Clifford R; Kantarci, Kejal

    2016-05-01

    Pathologic diagnosis is the gold standard in evaluating imaging measures developed as biomarkers for pathologically defined disorders. A brain MRI atlas representing autopsy-sampled tissue can be used to directly compare imaging and pathology findings. Our objective was to develop a brain MRI atlas representing the cortical regions that are routinely sampled at autopsy for the diagnosis of Alzheimer's disease (AD). Subjects (n = 22; ages at death = 70-95) with a range of pathologies and antemortem 3T MRI were included. Histology slides from 8 cortical regions sampled from the left hemisphere at autopsy guided the localization of the atlas regions of interest (ROIs) on each subject's antemortem 3D T1 -weighted MRI. These ROIs were then registered to a common template and combined to form one ROI representing the volume of tissue that was sampled by the pathologists. A subset of the subjects (n = 4; ages at death = 79-95) had amyloid PET imaging. Density of β-amyloid immunostain was quantified from the autopsy-sampled regions in the 4 subjects using a custom-designed ImageScope algorithm. Median uptake values were calculated in each ROI on the amyloid-PET images. We found an association between β-amyloid plaque density in 8 ROIs of the 4 subjects (total ROI n = 32) and median PiB SUVR (r(2) = .64; P < .0001). In an atlas developed for imaging and pathologic correlation studies, we demonstrated that antemortem amyloid burden measured in the atlas ROIs on amyloid PET is strongly correlated with β-amyloid density measured on histology. This atlas can be used in imaging and pathologic correlation studies. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  3. Virtual Humans for Implantable Device Safety Assessment in MRI: Mitigating Magnetic Resonance Imaging Hazards for Implanted Medical Devices.

    PubMed

    Brown, James E; Qiang, Rui; Stadnik, Paul J; Stotts, Larry J; Von Arx, Jeffrey A

    2017-01-01

    Magnetic resonance imaging (MRI) is the preferred modality for soft tissue imaging because of its nonionizing radiation and lack of contrast agent. Due to interactions between the MR system and active implantable medical devices (AIMDs), patients with implants such as pacemakers are generally denied access to MRI, which presents a detriment to that population. It has been estimated that 50-75% of patients with a cardiac device were denied access to MRI scanning and, moreover, that 17% of pacemaker patients need an MRI within 12 months of implantation [1]. In recent years, AIMD manufacturers, such as Biotronik, have assessed the conditional safety of devices in MRI.

  4. Free-breathing 3D Cardiac MRI Using Iterative Image-Based Respiratory Motion Correction

    PubMed Central

    Moghari, Mehdi H.; Roujol, Sébastien; Chan, Raymond H.; Hong, Susie N.; Bello, Natalie; Henningsson, Markus; Ngo, Long H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Manning, Warren J.; Nezafat, Reza

    2012-01-01

    Respiratory motion compensation using diaphragmatic navigator (NAV) gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Due to the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm3 resolution were acquired from 11 healthy subjects (7 females, 25±9 years); one using a NAV with a 5 mm gating window acquired in 12.0±2.0 minutes and one with a 15 mm gating window acquired in 7.1±1.0 minutes. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 mm and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (p-value>0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549

  5. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  6. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  7. Functional magnetic resonance imaging (fMRI)-aided therapeutics of Chinese speech area-related lesions: screening of fMRI-stimulating mode and its clinical applications.

    PubMed

    Wu, Nan; Xie, Bing; Wu, Guo-Cai; Lan, Chuan; Wang, Jian; Feng, Hua

    2010-01-01

    Language area-related lesion is a serious issue in neurosurgery. Removing the lesion in the language area and at the same time preserving language functions is a great challenge. In this study, we aimed to screen functional magnetic resonance imaging (fMRI) based task types suitable for activation of Broca and Wernicke areas in Chinese population, characterize lesion properties of functional area of Chinese language in brain, and assess the potential of fMRI-guided neuronavigation in clinical applications. Blood oxygen level-dependent fMRI has been used to localize language area prior to operation. We carried out extensive fMRI analyses and conducted operation on patients with lesions in speech area. fMRI tests revealed that the reciting task in Chinese can steadily activate the Broca area, and paragraph comprehension task in Chinese can effectively activate the Wernicke area. Cortical stimulation of patients when being awake during operation validated the sensitivity and accuracy of fMRI. The safe distance between language activation area and removal of the lesion in language area was determined to be about 10 mm. Further investigation suggested that navigation of fMRI combined with diffuse tensor imaging can decrease the incidence of postoperative dysfunction and increase the success rate for complete removal of lesion. Taken together, these findings may be helpful to clinical therapy for language area-related lesions.

  8. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  9. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas

  11. Magnetic resonance imaging (MRI) of the renal sinus.

    PubMed

    Krishna, Satheesh; Schieda, Nicola; Flood, Trevor A; Shanbhogue, Alampady Krishna; Ramanathan, Subramaniyan; Siegelman, Evan

    2018-04-09

    This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus

  12. Relationship Between Prebiopsy Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-ultrasound Fusion-targeted Prostate Biopsy Outcomes.

    PubMed

    Meng, Xiaosong; Rosenkrantz, Andrew B; Mendhiratta, Neil; Fenstermaker, Michael; Huang, Richard; Wysock, James S; Bjurlin, Marc A; Marshall, Susan; Deng, Fang-Ming; Zhou, Ming; Melamed, Jonathan; Huang, William C; Lepor, Herbert; Taneja, Samir S

    2016-03-01

    Increasing evidence supports the use of magnetic resonance imaging (MRI)-ultrasound fusion-targeted prostate biopsy (MRF-TB) to improve the detection of clinically significant prostate cancer (PCa) while limiting detection of indolent disease compared to systematic 12-core biopsy (SB). To compare MRF-TB and SB results and investigate the relationship between biopsy outcomes and prebiopsy MRI. Retrospective analysis of a prospectively acquired cohort of men presenting for prostate biopsy over a 26-mo period. A total of 601 of 803 consecutively eligible men were included. All men were offered prebiopsy MRI and assigned a maximum MRI suspicion score (mSS). Men with an MRI abnormality underwent combined MRF-TB and SB. Detection rates for all PCa and high-grade PCa (Gleason score [GS] ≥7) were compared using the McNemar test. MRF-TB detected fewer GS 6 PCas (75 vs 121; p<0.001) and more GS ≥7 PCas (158 vs 117; p<0.001) than SB. Higher mSS was associated with higher detection of GS ≥7 PCa (p<0.001) but was not correlated with detection of GS 6 PCa. Prediction of GS ≥7 disease by mSS varied according to biopsy history. Compared to SB, MRF-TB identified more GS ≥7 PCas in men with no prior biopsy (88 vs 72; p=0.012), in men with a prior negative biopsy (28 vs 16; p=0.010), and in men with a prior cancer diagnosis (42 vs 29; p=0.043). MRF-TB detected fewer GS 6 PCas in men with no prior biopsy (32 vs 60; p<0.001) and men with prior cancer (30 vs 46; p=0.034). Limitations include the retrospective design and the potential for selection bias given a referral population. MRF-TB detects more high-grade PCas than SB while limiting detection of GS 6 PCa in men presenting for prostate biopsy. These findings suggest that prebiopsy multiparametric MRI and MRF-TB should be considered for all men undergoing prostate biopsy. In addition, mSS in conjunction with biopsy indications may ultimately help in identifying men at low risk of high-grade cancer for whom prostate biopsy

  13. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images

    NASA Astrophysics Data System (ADS)

    Verhagen, Rens; Schuurman, P. Richard; van den Munckhof, Pepijn; Fiorella Contarino, M.; de Bie, Rob M. A.; Bour, Lo J.

    2016-12-01

    Objective. The correspondence between the anatomical STN and the STN observed in T2-weighted MRI images used for deep brain stimulation (DBS) targeting remains unclear. Using a new method, we compared the STN borders seen on MRI images with those estimated by intraoperative microelectrode recordings (MER). Approach. We developed a method to automatically generate a detailed estimation of STN shape and the location of its borders, based on multiple-channel MER measurements. In 33 STNs of 19 Parkinson patients, we quantitatively compared the dorsal and lateral borders of this MER-based STN model with the STN borders visualized by 1.5 T (n = 14), 3.0 T (n = 10) and 7.0 T (n = 9) T2-weighted MRI. Main results. The dorsal border was identified more dorsally on coronal T2 MRI than by the MER-based STN model, with a significant difference in the 3.0 T (range 0.97-1.19 mm) and 7.0 T (range 1.23-1.25 mm) groups. The lateral border was significantly more medial on 1.5 T (mean: 1.97 mm) and 3.0 T (mean: 2.49 mm) MRI than in the MER-based STN; a difference that was not found in the 7.0 T group. Significance. The STN extends further in the dorsal direction on coronal T2 MRI images than is measured by MER. Increasing MRI field strength to 3.0 T or 7.0 T yields similar discrepancies between MER and MRI at the dorsal STN border. In contrast, increasing MRI field strength to 7.0 T may be useful for identification of the lateral STN border and thereby improve DBS targeting.

  14. Comparison between target magnetic resonance imaging (MRI) in-gantry and cognitively directed transperineal or transrectal-guided prostate biopsies for Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 MRI lesions.

    PubMed

    Yaxley, Anna J; Yaxley, John W; Thangasamy, Isaac A; Ballard, Emma; Pokorny, Morgan R

    2017-11-01

    To compare the detection rates of prostate cancer (PCa) in men with Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 abnormalities on 3-Tesla multiparametric (mp) magnetic resonance imaging (MRI) using in-bore MRI-guided biopsy compared with cognitively directed transperineal (cTP) biopsy and transrectal ultrasonography (cTRUS) biopsy. This was a retrospective single-centre study of consecutive men attending the private practice clinic of an experienced urologist performing MRI-guided biopsy and an experienced urologist performing cTP and cTRUS biopsy techniques for PI-RADS 3-5 lesions identified on 3-Tesla mpMRI. There were 595 target mpMRI lesions from 482 men with PI-RADS 3-5 regions of interest during 483 episodes of biopsy. The abnormal mpMRI target lesion was biopsied using the MRI-guided method for 298 biopsies, the cTP method for 248 biopsies and the cTRUS method for 49 biopsies. There were no significant differences in PCa detection among the three biopsy methods in PI-RADS 3 (48.9%, 40.0% and 44.4%, respectively), PI-RADS 4 (73.2%, 81.0% and 85.0%, respectively) or PI-RADS 5 (95.2, 92.0% and 95.0%, respectively) lesions, and there was no significant difference in detection of significant PCa among the biopsy methods in PI-RADS 3 (42.2%, 30.0% and 33.3%, respectively), PI-RADS 4 (66.8%, 66.0% and 80.0%, respectively) or PI-RADS 5 (90.5%, 89.8% and 90.0%, respectively) lesions. There were also no differences in PCa or significant PCa detection based on lesion location or size among the methods. We found no significant difference in the ability to detect PCa or significant PCa using targeted MRI-guided, cTP or cTRUS biopsy methods. Identification of an abnormal area on mpMRI appears to be more important in increasing the detection of PCa than the technique used to biopsy an MRI abnormality. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  15. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients.

    PubMed

    Winter, René M; Leibfarth, Sara; Schmidt, Holger; Zwirner, Kerstin; Mönnich, David; Welz, Stefan; Schwenzer, Nina F; la Fougère, Christian; Nikolaou, Konstantin; Gatidis, Sergios; Zips, Daniel; Thorwarth, Daniela

    2018-05-07

    Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18 F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial.

    PubMed

    Keto, Jessica L; Kirstein, Laurie; Sanchez, Diana P; Fulop, Tamara; McPartland, Laura; Cohen, Ilona; Boolbol, Susan K

    2012-01-01

    Mammography remains the standard imaging technique for the diagnosis of ductal carcinoma-in-situ (DCIS). Functional breast imaging, including breast magnetic resonance imaging (MRI), has known limitations in evaluating DCIS. To date, there are limited data on the utility of breast-specific gamma imaging (BSGI) in DCIS. We sought to prospectively compare the sensitivity of BSGI to MRI in newly diagnosed DCIS patients. Patients with newly diagnosed DCIS from June 1, 2009, through May 31, 2010, underwent a protocol with both breast MRI and BSGI. Each imaging study was read by a separate dedicated breast radiologist. Patients were excluded if excisional biopsy was performed for diagnosis, if their MRI was performed at an outside facility, or if final pathology revealed invasive carcinoma. There were 18 patients enrolled onto the study that had both MRI and BSGI for newly diagnosed DCIS. The sensitivity for MRI was 94% and for BSGI was 89% (P > 0.5, NS). There was one index tumor not seen on either MRI or BSGI, and one index tumor seen on MRI but not visualized on BSGI. Although BSGI has previously been shown to be as sensitive as MRI for detecting known invasive breast carcinoma, this study shows that BSGI is equally as sensitive as MRI at detecting newly diagnosed DCIS. As a result of the limited number of patients enrolled onto the study, larger prospective studies need to be performed to determine the true sensitivity and specificity of BSGI.

  17. Imaging the accumulation and suppression of tau pathology using multiparametric MRI

    PubMed Central

    Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.

    2016-01-01

    Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415

  18. Local/non-local regularized image segmentation using graph-cuts: application to dynamic and multispectral MRI.

    PubMed

    Hanson, Erik A; Lundervold, Arvid

    2013-11-01

    Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.

  19. Diagnostic accuracy of a five-point Likert scoring system for magnetic resonance imaging (MRI) evaluated according to results of MRI/ultrasonography image-fusion targeted biopsy of the prostate.

    PubMed

    Shin, Toshitaka; Smyth, Thomas B; Ukimura, Osamu; Ahmadi, Nariman; de Castro Abreu, Andre Luis; Ohe, Chisato; Oishi, Masakatsu; Mimata, Hiromitsu; Gill, Inderbir S

    2018-01-01

    To evaluate the accuracy of a magnetic resonance imaging (MRI)-based Likert scoring system in the detection of clinically significant prostate cancer (CSPC), using MRI/ultrasonography (US) image-fusion targeted biopsy (FTB) as a reference standard. We retrospectively reviewed 1218 MRI-detected lesions in 629 patients who underwent subsequent MRI/US FTB between October 2012 and August 2015. 3-Tesla MRI was independently reported by one of eight radiologists with varying levels of experience and scored on a five-point Likert scale. All lesions with Likert scores 1-5 were prospectively defined as targets for MRI/US FTB. CSPC was defined as Gleason score ≥7. The median patient age was 64 years, PSA level 6.97 ng/mL and estimated prostate volume 52.2 mL. Of 1218 lesions, 48% (n = 581) were rated as Likert 1-2, 35% (n = 428) were Likert 3 and 17% (n = 209) were Likert 4-5. For Likert scores 1-5, the overall cancer detection rates were 12%, 13%, 22%, 50% and 59%, respectively, and the CSPC detection rates were 4%, 4%, 12%, 33% and 48%, respectively. Grading using the five-point scale showed strong positive correlation with overall cancer detection rate (r = 0.949, P = 0.05) and CSPC detection rate (r = 0.944, P = 0.05). By comparison, in Likert 4-5 lesions, significant differences were noted in overall cancer detection rate (63% vs 35%; P = 0.001) and CSPC detection rate (47% vs 29%; P = 0.027) for the more experienced vs the less experienced radiologists. The detection rates of overall cancer and CSPC strongly correlated with the five-point grading of the Likert scale. Among radiologists with different levels of experience, there were significant differences in these cancer detection rates. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  20. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  2. WE-DE-206-00: MRI Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  3. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  4. A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI

    PubMed Central

    Goerner, Frank L.; Duong, Timothy; Stafford, R. Jason; Clarke, Geoffrey D.

    2013-01-01

    Purpose: To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Results: Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity

  5. Review of MRI technique and imaging findings in athletic pubalgia and the "sports hernia".

    PubMed

    Mullens, Frank E; Zoga, Adam C; Morrison, William B; Meyers, William C

    2012-12-01

    The clinical syndrome of athletic pubalgia has prematurely ended many promising athletic careers, has made many active, fitness conscious adults more sedentary, and has served as a diagnostic and therapeutic conundrum for innumerable trainers and physicians worldwide for decades. This diagnosis actually arises from one or more lesions within a spectrum of musculoskeletal and visceral injuries. In recent years, MRI has helped define many of these syndromes, and has proven to be both sensitive and specific for numerous potential causes of athletic pubalgia. This text will provide a comprehensive, up to date review of expected and sometimes unexpected MRI findings in the setting of athletic pubalgia, and will delineate an imaging algorithm and MRI protocol to help guide radiologists and other clinicians dealing with refractory, activity related groin pain in an otherwise young, healthy patient. There is still more to be learned about prevention and treatment plans for athletic pubalgia lesions, but accurate diagnosis should be much less nebulous and difficult with the use of MRI as a primary imaging modality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    PubMed

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  7. Automated Registration of Sequential Breath-Hold Dynamic Contrast-Enhanced MRI Images: a Comparison of 3 Techniques

    PubMed Central

    Rajaraman, Sivaramakrishnan; Rodriguez, Jeffery J.; Graff, Christian; Altbach, Maria I.; Dragovich, Tomislav; Sirlin, Claude B.; Korn, Ronald L.; Raghunand, Natarajan

    2011-01-01

    Dynamic Contrast-Enhanced MRI (DCE-MRI) is increasingly in use as an investigational biomarker of response in cancer clinical studies. Proper registration of images acquired at different time-points is essential for deriving diagnostic information from quantitative pharmacokinetic analysis of these data. Motion artifacts in the presence of time-varying intensity due to contrast-enhancement make this registration problem challenging. DCE-MRI of chest and abdominal lesions is typically performed during sequential breath-holds, which introduces misregistration due to inconsistent diaphragm positions, and also places constraints on temporal resolution vis-à-vis free-breathing. In this work, we have employed a computer-generated DCE-MRI phantom to compare the performance of two published methods, Progressive Principal Component Registration and Pharmacokinetic Model-Driven Registration, with Sequential Elastic Registration (SER) to register adjacent time-sample images using a published general-purpose elastic registration algorithm. In all 3 methods, a 3-D rigid-body registration scheme with a mutual information similarity measure was used as a pre-processing step. The DCE-MRI phantom images were mathematically deformed to simulate misregistration which was corrected using the 3 schemes. All 3 schemes were comparably successful in registering large regions of interest (ROIs) such as muscle, liver, and spleen. SER was superior in retaining tumor volume and shape, and in registering smaller but important ROIs such as tumor core and tumor rim. The performance of SER on clinical DCE-MRI datasets is also presented. PMID:21531108

  8. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging.

    PubMed

    Lu, Jian; Ma, Shuli; Sun, Jiayu; Xia, Chunchao; Liu, Chen; Wang, Zhiyong; Zhao, Xuna; Gao, Fabao; Gong, Qiyong; Song, Bin; Shuai, Xintao; Ai, Hua; Gu, Zhongwei

    2009-05-01

    Iron oxide nanoparticles are effective contrast agents for enhancement of magnetic resonance imaging at tissue, cellular or even molecular levels. In this study, manganese doped superparamagnetic iron oxide (Mn-SPIO) nanoparticles were used to form ultrasensitive MRI contrast agents for liver imaging. Hydrophobic Mn-SPIO nanoparticles are synthesized in organic phase and then transferred into water with the help of block copolymer mPEG-b-PCL. These Mn-SPIO nanoparticles are self-assembled into small clusters (mean diameter approximately 80nm) inside micelles as revealed by transmission electron microscopy. Mn-SPIO nanoparticles inside micelles decrease PCL crystallization temperatures, as verified from differential scanning calorimetry and Fourier transform infrared spectroscopy. The Mn-SPIO based nanocomposites are superparamagnetic at room temperature. At the magnetic field of 1.5T, Mn-SPIO nanoparticle clustering micelles have a T(2) relaxivity of 270 (Mn+Fe)mM(-1)s(-1), which is much higher than single Mn-SPIO nanoparticle containing lipid-PEG micelles. This clustered nanocomposite has brought significant liver contrast with signal intensity changes of -80% at 5min after intravenous administration. The time window for enhanced-MRI can last about 36h with obvious contrast on liver images. This sensitive MRI contrast agent may find applications in identification of small liver lesions, evaluation of the degree of liver cirrhosis, and differential diagnosis of other liver diseases.

  9. Acceptance test of a commercially available software for automatic image registration of computed tomography (CT), magnetic resonance imaging (MRI) and 99mTc-methoxyisobutylisonitrile (MIBI) single-photon emission computed tomography (SPECT) brain images.

    PubMed

    Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco

    2008-09-01

    This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.

  10. Technical aspects of cardiac PET/MRI.

    PubMed

    Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika

    2018-06-01

    PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.

  11. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  12. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    PubMed

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  13. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration

    PubMed Central

    Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.

    2017-01-01

    Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486

  14. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.

    PubMed

    Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W

    2017-01-01

    To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.

  15. An investigation of industrial molding compounds for use in 3D ultrasound, MRI, and CT imaging phantoms.

    PubMed

    Yunker, Bryan E; Cordes, Dietmar; Scherzinger, Ann L; Dodd, Gerald D; Shandas, Robin; Feng, Yusheng; Hunter, Kendall S

    2013-05-01

    This study investigated the ultrasound, MRI, and CT imaging characteristics of several industrial casting and molding compounds as a precursor to the future development of durable and anatomically correct flow phantoms. A set of usability and performance criteria was established for a proposed phantom design capable of supporting liquid flow during imaging. A literature search was conducted to identify the materials and methods previously used in phantom fabrication. A database of human tissue and casting material properties was compiled to facilitate the selection of appropriate materials for testing. Several industrial casting materials were selected, procured, and used to fabricate test samples that were imaged with ultrasound, MRI, and CT. Five silicones and one polyurethane were selected for testing. Samples of all materials were successfully fabricated. All imaging modalities were able to discriminate between the materials tested. Ultrasound testing showed that three of the silicones could be imaged to a depth of at least 2.5 cm (1 in.). The RP-6400 polyurethane exhibited excellent contrast and edge detail for MRI phantoms and appears to be an excellent water reference for CT applications. The 10T and 27T silicones appear to be usable water references for MRI imaging. Based on study data and the stated selection criteria, the P-4 silicone provided sufficient material contrast to water and edge detail for use across all imaging modalities with the benefits of availability, low cost, dimensional stability, nontoxic, nonflammable, durable, cleanable, and optical clarity. The physical and imaging differences of the materials documented in this study may be useful for other applications.

  16. A Multireader Exploratory Evaluation of Individual Pulse Sequence Cancer Detection on Prostate Multiparametric Magnetic Resonance Imaging (MRI).

    PubMed

    Gaur, Sonia; Harmon, Stephanie; Gupta, Rajan T; Margolis, Daniel J; Lay, Nathan; Mehralivand, Sherif; Merino, Maria J; Wood, Bradford J; Pinto, Peter A; Shih, Joanna H; Choyke, Peter L; Turkbey, Baris

    2018-04-25

    To determine independent contribution of each prostate multiparametric magnetic resonance imaging (mpMRI) sequence to cancer detection when read in isolation. Prostate mpMRI at 3-Tesla with endorectal coil from 45 patients (n = 30 prostatectomy cases, n = 15 controls with negative magnetic resonance imaging [MRI] or biopsy) were retrospectively interpreted. Sequences (T2-weighted [T2W] MRI, diffusion-weighted imaging [DWI], and dynamic contrast-enhanced [DCE] MRI; N = 135) were separately distributed to three radiologists at different institutions. Readers evaluated each sequence blinded to other mpMRI sequences. Findings were correlated to whole-mount pathology. Cancer detection sensitivity, positive predictive value for whole prostate (WP), transition zone, and peripheral zone were evaluated per sequence by reader, with reader concordance measured by index of specific agreement. Cancer detection rates (CDRs) were calculated for combinations of independently read sequences. 44 patients were evaluable (cases median prostate-specific antigen 6.83 [ range 1.95-51.13] ng/mL, age 62 [45-71] years; controls prostate-specific antigen 6.85 [2.4-10.87] ng/mL, age 65.5 [47-71] years). Readers had highest sensitivity on DWI (59%) vs T2W MRI (48%) and DCE (23%) in WP. DWI-only positivity (DWI+/T2W-/DCE-) achieved highest CDR in WP (38%), compared to T2W-only (CDR 24%) and DCE-only (CDR 8%). DWI+/T2W+/DCE- achieved CDR 80%, an added benefit of 56.4% from T2W-only and of 42% from DWI-only (P < .0001). All three sequences interpreted independently positive gave highest CDR of 90%. Reader agreement was moderate (index of specific agreement: T2W = 54%, DWI = 58%, DCE = 33%). When prostate mpMRI sequences are interpreted independently by multiple observers, DWI achieves highest sensitivity and CDR in transition zone and peripheral zone. T2W and DCE MRI both add value to detection; mpMRI achieves highest detection sensitivity when all three mpMRI

  17. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  18. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.

    PubMed

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-01

    The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of

  19. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  20. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  1. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Griffioen, Arjan W; Nicolay, Klaas

    2006-02-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanoparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed. 2006 John Wiley & Sons, Ltd.

  2. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.

  3. Association of quantitative magnetic resonance imaging parameters with histological findings from MRI/ultrasound fusion prostate biopsy.

    PubMed

    Dianat, Seyed Saeid; Carter, H Ballentine; Schaeffer, Edward M; Hamper, Ulrik M; Epstein, Jonathan I; Macura, Katarzyna J

    2015-10-01

    Purpose of this pilot study was to correlate quantitative parameters derived from the multiparametric magnetic resonance imaging (MP-MRI) of the prostate with results from MRI guided transrectal ultrasound (MRI/TRUS) fusion prostate biopsy in men with suspected prostate cancer. Thirty-nine consecutive patients who had 3.0T MP-MRI and subsequent MRI/TRUS fusion prostate biopsy were included and 73 MRI-identified targets were sampled by 177 cores. The pre-biopsy MP-MRI consisted of T2-weighted, diffusion weighted (DWI), and dynamic contrast enhanced (DCE) images. The association of quantitative MRI measurements with biopsy histopathology findings was assessed by Mann-Whitney U- test and Kruskal-Wallis test. Of 73 targets, biopsy showed benign prostate tissue in 46 (63%), cancer in 23 (31.5%), and atypia/high grade prostatic intraepithelial neoplasia in four (5.5%) targets. The median volume of cancer-positive targets was 1.3 cm3. The cancer-positive targets were located in the peripheral zone (56.5%), transition zone (39.1%), and seminal vesicle (4.3%). Nine of 23 (39.1%) cancer-positive targets were higher grade cancer (Gleason grade > 6). Higher grade targets and cancer-positive targets compared to benign lesions exhibited lower mean apparent diffusion coefficient (ADC) value (952.7 < 1167.9 < 1278.9), and lower minimal extracellular volume fraction (ECF) (0.13 < 0.185 < 0.213), respectively. The difference in parameters was more pronounced between higher grade cancer and benign lesions. Our findings from a pilot study indicate that quantitative MRI parameters can predict malignant histology on MRI/TRUS fusion prostate biopsy, which is a valuable technique to ensure adequate sampling of MRI-visible suspicious lesions under TRUS guidance and may impact patient management. The DWI-based quantitative measurement exhibits a stronger association with biopsy findings than the other MRI parameters.

  4. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    PubMed

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.

    PubMed

    Lee, E J; Kim, K K; Lee, E K; Lee, J E

    2016-12-01

    To describe characteristic magnetic resonance imaging (MRI) abnormalities in hyperglycaemia-induced seizures, and evaluate the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging. Possible underlying mechanisms of this condition are also discussed. Eleven patients with hyperglycaemia-induced seizures and MRI abnormalities were retrospectively studied. Clinical manifestations, laboratory findings, MRI findings, and clinical outcomes were analysed. All patients, except one, presented with focal seizures, simple or complex partial seizures, or negative motor seizures. All patients had long-standing uncontrolled diabetes mellitus. The MRI abnormalities observed acutely were focal subcortical hypointensities on T2-weighted imaging and FLAIR imaging in all patients with overlying cortical gyral T2 hyperintensities in five. Focal overlying cortical or leptomeningeal enhancement on contrast-enhanced T1-weighted imaging or contrast-enhanced FLAIR imaging was observed in all patients. Contrast-enhanced FLAIR imaging was superior to contrast-enhanced T1-weighted imaging for detecting characteristic cortical or leptomeningeal enhancement. Diffusion-weighted imaging showed mildly restricted diffusion in four of five patients with cortical gyral T2 hyperintensity. In nine patients, the lesions were localised in the parietal or parieto-occipital lobes. The other two patients showed localised precentral gyral lesions. After treatment, the neurological symptoms, including the seizures, improved in all patients. On clinical recovery, the subcortical T2 hypointensity, gyral or leptomeningeal enhancement, and overlying cortical T2 hyperintensities resolved. Recognition of these radiological abnormalities in patients with hyperglycaemia-induced seizures is important in restricting unwarranted investigations and initiating early therapy. These patients generally have a good prognosis. Copyright © 2016 The Royal College of Radiologists. Published by

  6. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    PubMed

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  7. Nonlinear PET parametric image reconstruction with MRI information using kernel method

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2017-03-01

    Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.

  8. Digital photography and 3D MRI-based multimodal imaging for individualized planning of resective neocortical epilepsy surgery.

    PubMed

    Wellmer, Jörg; von Oertzen, Joachim; Schaller, Carlo; Urbach, Horst; König, Roy; Widman, Guido; Van Roost, Dirk; Elger, Christian E

    2002-12-01

    Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.

  9. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI.

    PubMed

    Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André

    2018-06-06

     To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation.  74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis).  Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %).  Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy.   · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et

  10. Clinical image: MRI during migraine with aura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, A.C.

    1996-03-01

    Migraine refers to severe headaches that are usually unilateral, throbbing, and associated with nausea, vomiting, photophobia, and phonophobia. Migraine with aura (formerly called {open_quotes}classic migraine{close_quotes}) consists of the headache preceded or accompanied by neurological dysfunction. This dysfunction (aura) usually involves visual and sensory symptoms. The patient described herein experienced migraine with aura. MRI during and after the attack showed a reversible abnormality of the right posterior cerebral artery, with no parenchymal lesions. This appears to be the first report of abnormal MR vascular imaging during migraine with aura. 10 refs., 2 figs.

  11. The potential of multiparametric MRI of the breast

    PubMed Central

    Pinker, Katja; Helbich, Thomas H

    2017-01-01

    MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423

  12. Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.

    PubMed

    Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer

    2016-07-01

    Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.

  13. Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.

    PubMed

    Hart, Corey B; Rose, William J

    2013-11-01

    Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.

  14. Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality.

    PubMed

    Boucousis, Shannon M; Beers, Craig A; Cunningham, Cameron J B; Gaxiola-Valdez, Ismael; Pittman, Daniel J; Goodyear, Bradley G; Federico, Paolo

    2012-11-15

    Integrating intracranial EEG (iEEG) with functional MRI (iEEG-fMRI) may help elucidate mechanisms underlying the generation of seizures. However, the introduction of iEEG electrodes in the MR environment has inherent risk and data quality implications that require consideration prior to clinical use. Previous studies of subdural and depth electrodes have confirmed low risk under specific circumstances at 1.5T and 3T. However, no studies have assessed risk and image quality related to the feasibility of a full iEEG-fMRI protocol. To this end, commercially available platinum subdural grid/strip electrodes (4×5 grid or 1×8 strip) and 4 or 6-contact depth electrodes were secured to the surface of a custom-made phantom mimicking the conductivity of the human brain. Electrode displacement, temperature increase of electrodes and surrounding phantom material, and voltage fluctuations in electrode contacts were measured in a GE Discovery MR750 3T MR scanner during a variety of imaging sequences, typical of an iEEG-fMRI protocol. An electrode grid was also used to quantify the spatial extent of susceptibility artifact. The spatial extent of susceptibility artifact in the presence of an electrode was also assessed for typical imaging parameters that maximize BOLD sensitivity at 3T (TR=1500 ms; TE=30 ms; slice thickness=4mm; matrix=64×64; field-of-view=24 cm). Under standard conditions, all electrodes exhibited no measurable displacement and no clinically significant temperature increase (<1°C) during scans employed in a typical iEEG-fMRI experiment, including 60 min of continuous fMRI. However, high SAR sequences, such as fast spin-echo (FSE), produced significant heating in almost all scenarios (>2.0°C) that in some cases exceeded 10°C. Induced voltages in the frequency range that could elicit neuronal stimulation (<10 kHz) were well below the threshold of 100 mV. fMRI signal intensity was significantly reduced within 20mm of the electrodes for the imaging parameters

  15. A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation

    DOE PAGES

    Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.

    2013-01-01

    Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less

  16. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI.

    PubMed

    Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas

    2012-11-01

    Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.

  17. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  18. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  19. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3T.

    PubMed

    Mabray, M C; Uzelac, A; Talbott, J F; Lin, S C; Gean, A D

    2015-05-01

    To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  2. An investigation of industrial molding compounds for use in 3D ultrasound, MRI, and CT imaging phantoms

    PubMed Central

    Yunker, Bryan E.; Cordes, Dietmar; Scherzinger, Ann L.; Dodd, Gerald D.; Shandas, Robin; Feng, Yusheng; Hunter, Kendall S.

    2013-01-01

    Purpose: This study investigated the ultrasound, MRI, and CT imaging characteristics of several industrial casting and molding compounds as a precursor to the future development of durable and anatomically correct flow phantoms. Methods: A set of usability and performance criteria was established for a proposed phantom design capable of supporting liquid flow during imaging. A literature search was conducted to identify the materials and methods previously used in phantom fabrication. A database of human tissue and casting material properties was compiled to facilitate the selection of appropriate materials for testing. Several industrial casting materials were selected, procured, and used to fabricate test samples that were imaged with ultrasound, MRI, and CT. Results: Five silicones and one polyurethane were selected for testing. Samples of all materials were successfully fabricated. All imaging modalities were able to discriminate between the materials tested. Ultrasound testing showed that three of the silicones could be imaged to a depth of at least 2.5 cm (1 in.). The RP-6400 polyurethane exhibited excellent contrast and edge detail for MRI phantoms and appears to be an excellent water reference for CT applications. The 10T and 27T silicones appear to be usable water references for MRI imaging. Conclusions: Based on study data and the stated selection criteria, the P-4 silicone provided sufficient material contrast to water and edge detail for use across all imaging modalities with the benefits of availability, low cost, dimensional stability, nontoxic, nonflammable, durable, cleanable, and optical clarity. The physical and imaging differences of the materials documented in this study may be useful for other applications. PMID:23635298

  3. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    PubMed

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  4. A Method to Convert MRI Images of Temperature Change Into Images of Absolute Temperature in Solid Tumors

    PubMed Central

    Davis, Ryan M.; Viglianti, Benjamin L.; Yarmolenko, Pavel; Park, Ji-Young; Stauffer, Paul; Needham, David; Dewhirst, Mark W.

    2013-01-01

    Purpose During hyperthermia (HT), the therapeutic response of tumors varies substantially within the target temperature range (39–43°C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low-temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumors with high spatial and temporal resolution using MRI. Methods Liposomes were loaded with 300mM MnSO4. The phase transition temperature (Tm) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterized with inductively-coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher 344 rats receiving hyperthermia after Mn-LTSL injection. Results The Tm of Mn-LTSL in rat blood was 42.9 ± 0.2 °C (DSC). For Mn-LTSL samples (0.06mM – 0.5mM Mn2+ in saline) heated monotonically from 30°C to 50°C, a peak in the rate of MRI signal enhancement occurred at 43.1 ± 0.3 °C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumors (N=3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9 – 1.8°C. Conclusion The release of Mn2+ from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature. PMID:23957326

  5. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?

    PubMed

    Hyun, Su Jeong; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kim, Min Jung

    2016-11-01

    To evaluate the diagnostic performance of breast magnetic resonance imaging (MRI) in preoperative evaluation of axillary lymph node metastasis (ALNM) in breast cancer patients and to assess whether breast MRI can be used to exclude advanced nodal disease. A total of 425 patients were included in this study and breast MRI findings were retrospectively reviewed. The diagnostic performance of breast MRI for diagnosis of ALNM was evaluated in all patients, patients with neoadjuvant chemotherapy (NAC), and those without NAC (no-NAC). We evaluated whether negative MRI findings (cN0) can exclude advanced nodal disease (pN2-pN3) using the negative predictive value (NPV) in each group. The sensitivity and NPV of breast MRI in evaluation of ALNM was 51.3 % (60/117) and 83.3 % (284/341), respectively. For cN0 cases on MRI, pN2-pN3 manifested in 1.8 % (6/341) of the overall patients, 0.4 % (1/257) of the no-NAC group, and 6 % (5/84) of the NAC group. The NPV of negative MRI findings for exclusion of pN2-pN3 was higher for the no-NAC group than for the NAC group (99.6 % vs. 94.0 %, p = 0.039). Negative MRI findings (cN0) can exclude the presence of advanced nodal disease with an NPV of 99.6 % in the no-NAC group. • Breast MRI can be used to exclude advanced nodal disease (pN2-3). • Negative MRI allows breast cancer patients to avoid unnecessary axillary surgery (98.2 %). • Negative MRI findings exclude 99.6 % of pN2-pN3 in the no-NAC group. • Negative MRI findings exclude 96.0 % of pN2-pN3 in the NAC group.

  6. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    PubMed

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Imaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology?

    PubMed Central

    2014-01-01

    This review provides perspectives on the utility of magnetic resonance imaging (MRI) as a neuroimaging approach in the development of novel treatments for Alzheimer’s disease. These considerations were generated in a roundtable at a recent Wellcome Trust meeting that included experts from academia and industry. It was agreed that MRI, either structural or functional, could be used as a diagnostic, for assessing worsening of disease status, for monitoring vascular pathology, and for stratifying clinical trial populations. It was agreed also that MRI implementation is in its infancy, requiring more evidence of association with the disease states, test-retest data, better standardization across multiple clinical sites, and application in multimodal approaches which include other imaging technologies, such as positron emission tomography, electroencephalography, and magnetoencephalography. PMID:25484927

  8. Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates.

    PubMed

    Lascano, Agustina M; Perneger, Thomas; Vulliemoz, Serge; Spinelli, Laurent; Garibotto, Valentina; Korff, Christian M; Vargas, Maria I; Michel, Christoph M; Seeck, Margitta

    2016-01-01

    Preoperative workup aims at localizing the epileptogenic focus to achieve postoperative seizure-freedom. We studied the predictive value of non-invasive techniques, i.e. structural magnetic resonance imaging [MRI], high-density electric source imaging [HD-ESI] and metabolic imaging (positron emission tomography [PET]; single-photon emission computed tomography [SPECT]), in surgically treated patients. A prospective study of 190 epileptic operated patients, with >12 months follow-up and analyzed with state-of-the-art algorithms. 58 patients underwent all techniques. We computed sensitivity, specificity, predictive value and diagnostic odds ratio (OR) in relation to postoperative outcome. Of 190 patients, 148 (77.9%) were seizure-free at follow-up. Resection of the epileptogenic focus was associated with favorable postsurgical outcome (p<0.05). Among 58 patients who underwent all tests, only MRI and HD-ESI were favorable outcome predictors (MRI: OR 10.9, p=0.004; HD-ESI: OR 13.1, p=0.004). Patients with concordant structural MRI and HD-ESI results had 92.3% (24/26) probability of favorable outcome. When both results were negative, probability was 0% (0/5); and when they disagreed, it was 63.0% (17/27). Combination of MRI and HD-ESI offered the highest predictive value for postoperative seizure-freedom. This finding highlights the added value of HD-ESI in the presurgical workup, in particular in combination with an informative MRI. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. CT and MRI imaging of the brain in MELAS syndrome.

    PubMed

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-07-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.

  10. Surveillance imaging in children with malignant CNS tumors: low yield of spine MRI.

    PubMed

    Perreault, Sébastien; Lober, Robert M; Carret, Anne-Sophie; Zhang, Guohua; Hershon, Linda; Décarie, Jean-Claude; Vogel, Hannes; Yeom, Kristen W; Fisher, Paul G; Partap, Sonia

    2014-02-01

    Magnetic resonance imaging (MRI) is routinely obtained in patients with central nervous system (CNS) tumors, but few studies have been conducted to evaluate this practice. We assessed the benefits of surveillance MRI and more specifically spine MRI in a contemporary cohort. We evaluated MRI results of children diagnosed with CNS tumors from January 2000 to December 2011. Children with at least one surveillance MRI following the diagnosis of medulloblastoma (MB), atypical teratoid rhabdoid tumor (ATRT), pineoblastoma (PB), supratentorial primitive neuroectodermal tumor, supratentorial high-grade glioma (World Health Organization grade III-IV), CNS germ cell tumors or ependymoma were included. A total of 2,707 brain and 1,280 spine MRI scans were obtained in 258 patients. 97% of all relapses occurred in the brain and 3% were isolated to the spine. Relapse was identified in 226 (8%) brain and 48 (4%) spine MRI scans. The overall rate of detecting isolated spinal relapse was 9/1,000 and 7/1,000 for MB patients. MRI performed for PB showed the highest rate for detecting isolated spinal recurrence with 49/1,000. No initial isolated spinal relapse was identified in patients with glioma, supratentorial primitive neuroectodermal tumor and ATRT. Isolated spinal recurrences are infrequent in children with malignant CNS tumors and the yield of spine MRI is very low. Tailoring surveillance spine MRI to patients with higher spinal relapse risk such as PB, MB with metastatic disease and within 3 years of diagnosis could improve allocation of resources without compromising patient care.

  11. Image fusion of contrast enhanced ultrasound (CEUS) with computed tomography (CT) or magnetic resonance imaging (MRI) using volume navigation for detection, characterization and planning of therapeutic interventions of liver tumors.

    PubMed

    Rennert, J; Georgieva, M; Schreyer, A G; Jung, W; Ross, C; Stroszczynski, C; Jung, E M

    2011-01-01

    To evaluate, whether image fusion of contrast enhanced ultrasound (CEUS) with CT or MRI affects the diagnosis and characterization of liver lesions or the therapeutic strategy of surgical or interventional procedures compared to the preliminary diagnosis. In a retrospective study the image fusion scans of CEUS with contrast enhanced CT or MRI of 100 patients (71 male, mean age 59 years, 0.3-85 years) with benign or malignant liver lesions were evaluated. Fundamental B-scan, color Doppler imaging and CEUS were performed in all patients by an experienced examiner using a multifrequency convex transducer (1-5 MHz, LOGIQ 9/GE) and volume navigation (Vnav). After a bolus injections of up to 2.4 ml SonoVue® (BRACCO, Italy) digital raw data was stored as cine-loops up to 5 min. In 74 patients, CEUS was fused with a pre-existing ceCT, in 26 patients a ceMRI was used. In all 100 patients (100%) the image quality in all modalities (ceCT, ceMRI and CEUS) was excellent or with only minor diagnostic limitations. Regarding the number of lesions revealed in image fusion of CEUS/ceCT/ceMRI and the preceding diagnostic method, concordant results were found in 84 patients. In 12 patients, additional lesions were found using fusion imaging causing subsequently a change of the therapeutical strategy. In 15 out of 21 patients with either concordant or discordant results regarding the number of lesions, image fusion allowed a definite diagnosis due to a continuous documentation of the microcirculation of the tumor and its contrast enhancement. A significant coherency (p < 0.05) among image fusion with either ceCT or ceMRI and CEUS and a subsequent change of therapeutic strategy was found. Image fusion with volume navigation (VNav) of CEUS with ceCT or ceMRI frequently allows a definite localization and diagnosis of hepatic lesions in patients with primary hepatic carcinoma or metastatic diseases. This might cause a change of the therapeutic strategy in many patients with hepatic

  12. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T; Yue, N; Jabbour, S

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components thatmore » were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy

  13. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.

  14. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  15. Diagnostic Accuracy of an MRI Protocol of the Knee Accelerated Through Parallel Imaging in Correlation to Arthroscopy.

    PubMed

    Schnaiter, Johannes Walter; Roemer, Frank; McKenna-Kuettner, Axel; Patzak, Hans-Joachim; May, Matthias Stefan; Janka, Rolf; Uder, Michael; Wuest, Wolfgang

    2018-03-01

     Parallel imaging allows for a considerable shortening of examination times. Limited data is available about the diagnostic accuracy of an accelerated knee MRI protocol based on parallel imaging evaluating all knee joint compartments in a large patient population compared to arthroscopy.  162 consecutive patients with a knee MRI (1.5 T, Siemens Aera) and arthroscopy were included. The total MRI scan time was less than 9 minutes. Meniscus and cartilage injuries, cruciate ligament lesions, loose joint bodies and medial patellar plicae were evaluated. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV), as well as diagnostic accuracy were determined.  For the medial meniscus, the values were: SE 97 %, SP 88 %, PPV 94 %, and NPV 94 %. For the lateral meniscus the values were: SE 77 %, SP 99 %, PPV 98 %, and NPV 89 %. For cartilage injuries the values were: SE 72 %, SP 80 %, PPV 86 %, and NPV 61 %. For the anterior cruciate ligament the values were: SE 90 %, SP 94 %, PPV 77 %, and NPV 98 %, while all values were 100 % for the posterior cruciate ligament. For loose bodies the values were: SE 48 %, SP 96 %, PPV 62 %, and NPV 93 %, and for the medial patellar plicae the values were: SE 57 %, SP 88 %, PPV 18 %, and NPV 98 %.  A knee MRI examination with parallel imaging and a scan time of less than 9 minutes delivers reliable results with high diagnostic accuracy.   · An accelerated knee MRI protocol with parallel imaging allows for high diagnostic accuracy.. · Especially meniscal and cruciate ligament injuries are well depicted.. · Cartilage injuries seem to be overestimated.. · Schnaiter JW, Roemer F, McKenna-Kuettner A et al. Diagnostic Accuracy of an MRI Protocol of the Knee Accelerated Through Parallel Imaging in Correlation to Arthroscopy. Fortschr Röntgenstr 2018; 190: 265 - 272. © Georg Thieme Verlag KG Stuttgart · New York.

  16. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  17. Significance of diffusion weighted imaging (DWI) as an improving factor in contrast enhanced magnetic resonance imaging (MRI) enterography in evaluation of patients with Crohn's disease.

    PubMed

    Imširović, Bilal; Zerem, Enver; Efendić, Alma; Mekić Abazović, Alma; Zerem, Omar; Djedović, Muhamed

    2018-08-01

    Aim To determine capabilities and potential of contrast enhanced magnetic resonance imaging (MRI) enterography in order to establish the diagnosis and to evaluate severity and activity of intestinal inflammation. Methods Fifty-five patients with suspicion for presence of Crohn's disease were evaluated. All patients underwent contrast enhanced MRI enterography and diffusion weighted imaging (DWI), and subsequently endoscopic examination or surgical treatment. Four parameters were analysed: thickening of the bowel wall, and presence of abscess, fistula and lymphadenopathy. Results Comparing results of DWI and contrast enhanced MRI enterography a significant difference between results given through diffusion and histopathological test was found, e.g. a significant difference between results obtained through diffusion and MRI enterography was found. MRI enterography sensitiveness for bowel wall thickening was 97.7% and specificity 70%, whilst DWI sensitivity for bowel wall thickening was 84% and specificity 100%. The diagnostics of abscess and fistula showed no significant difference between DWI and MRI, while in lymphadenopathy significant difference between contrast enhanced MRI enterography and DWI was found. Conclusion Contrast enhanced MRI enterography in combination with DWI allows for excellent evaluation of disease activity, but also problems or complications following it. The examination can be repeated, controlled, and it can contribute to monitoring of patients with this disease. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  18. Magnetic Resonance Imaging (MRI) and Digital Subtraction Angiography Investigation of Childhood Moyamoya Disease.

    PubMed

    Song, Peiji; Qin, Jing; Lun, Han; Qiao, Penggang; Xie, Anming; Li, Gongjie

    2017-11-01

    Because digital subtraction angiography (DSA) is not an ideal angiographic examination for moyamoya disease in the pediatric population, magnetic resonance angiography (MRA) provides a noninvasive contrast-free angiographic examination; whereas magnetic resonance imaging (MRI) provides superior spatial resolution and soft-tissue contrast for lesion assessment. Ninety patients with moyamoya disease were examined by MRI and DSA to assess the distribution of lesions and their diagnostic agreement between modalities. MRI examination revealed 439 lesions. Punctate lesions were the most abundant, followed by patchy lesions. These lesions generally covered a smaller area than the abnormal-vascular corresponding brain parenchyma. Steno-occlusive changes at bilateral anterior, medial, and posterior cerebral arteries were identified by MRA and DSA. MRI showed moderate agreement in identifying lesions after steno-occlusive changes in anterior and medial cerebral arteries, and good agreement in posterior cerebral arteries; 6% to 11% of cases were misdiagnosed by MRA.

  19. Biparametric MRI of the prostate.

    PubMed

    Scialpi, Michele; D'Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-12-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists.

  20. Biparametric MRI of the prostate

    PubMed Central

    Scialpi, Michele; D’Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-01-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists. PMID:29201499

  1. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images

    PubMed Central

    Peters, James F.; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain. PMID:28203153

  2. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.

    PubMed

    Peters, James F; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

  3. Primary Central Nervous System Lymphoma of Optic Chiasma: Endoscopic Endonasal Treatment.

    PubMed

    Ozdemir, Evin Singar; Yildirim, Ali Erdem; Can, Aslihan Yavas

    2018-01-01

    Isolated primary central nervous system lymphoma arising from anterior visual pathway is very rare. A 76-year-old immunocompetent previously healthy man presented bilateral decreased visual acuity in 1 month. Pituitary magnetic resonans imaging (MRI) showed a lobulated mass with homogeneous enhancement after gadolinium administration that arising from optic chiasm suggested that inflammatory disease or an optic glioma. The patient underwent an extended endoscopic endonasal transsphenoidal surgery. Postoperative course and outcomes were wonderful. Histopathological diagnosis was diffuse large B-cell lymphoma. The patient underwent investigations for systemic lymphomatous involvement, did not detect any evidence of systemic disease. In this case, we claimed that differential diagnoses of anterior visual pathway lesions are difficult because of similarity of lesions on clinical and radiological examinations. Biopsy is essential for these lesions. As a biopsy technique, endoscopic endonasal transsphenoidal approach is safer and more effective than open procedures.

  4. Could MRI Be Used To Image Kidney Fibrosis? A Review of Recent Advances and Remaining Barriers.

    PubMed

    Leung, General; Kirpalani, Anish; Szeto, Stephen G; Deeb, Maya; Foltz, Warren; Simmons, Craig A; Yuen, Darren A

    2017-06-07

    A key contributor to the progression of nearly all forms of CKD is fibrosis, a largely irreversible process that drives further kidney injury. Despite its importance, clinicians currently have no means of noninvasively assessing renal scar, and thus have historically relied on percutaneous renal biopsy to assess fibrotic burden. Although helpful in the initial diagnostic assessment, renal biopsy remains an imperfect test for fibrosis measurement, limited not only by its invasiveness, but also, because of the small amounts of tissue analyzed, its susceptibility to sampling bias. These concerns have limited not only the prognostic utility of biopsy analysis and its ability to guide therapeutic decisions, but also the clinical translation of experimental antifibrotic agents. Recent advances in imaging technology have raised the exciting possibility of magnetic resonance imaging (MRI)-based renal scar analysis, by capitalizing on the differing physical features of fibrotic and nonfibrotic tissue. In this review, we describe two key fibrosis-induced pathologic changes (capillary loss and kidney stiffening) that can be imaged by MRI techniques, and the potential for these new MRI-based technologies to noninvasively image renal scar. Copyright © 2017 by the American Society of Nephrology.

  5. Could MRI Be Used To Image Kidney Fibrosis? A Review of Recent Advances and Remaining Barriers

    PubMed Central

    Leung, General; Kirpalani, Anish; Szeto, Stephen G.; Deeb, Maya; Foltz, Warren; Simmons, Craig A.

    2017-01-01

    A key contributor to the progression of nearly all forms of CKD is fibrosis, a largely irreversible process that drives further kidney injury. Despite its importance, clinicians currently have no means of noninvasively assessing renal scar, and thus have historically relied on percutaneous renal biopsy to assess fibrotic burden. Although helpful in the initial diagnostic assessment, renal biopsy remains an imperfect test for fibrosis measurement, limited not only by its invasiveness, but also, because of the small amounts of tissue analyzed, its susceptibility to sampling bias. These concerns have limited not only the prognostic utility of biopsy analysis and its ability to guide therapeutic decisions, but also the clinical translation of experimental antifibrotic agents. Recent advances in imaging technology have raised the exciting possibility of magnetic resonance imaging (MRI)–based renal scar analysis, by capitalizing on the differing physical features of fibrotic and nonfibrotic tissue. In this review, we describe two key fibrosis-induced pathologic changes (capillary loss and kidney stiffening) that can be imaged by MRI techniques, and the potential for these new MRI-based technologies to noninvasively image renal scar. PMID:28298435

  6. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  7. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  8. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  9. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation

    PubMed Central

    Shearrer, Grace E.; House, Benjamin T.; Gallas, Michelle C.; Luci, Jeffrey J.; Davis, Jaimie N.

    2016-01-01

    Introduction This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). Methods The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Results Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Conclusion Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity. PMID:26901881

  10. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation.

    PubMed

    Shearrer, Grace E; House, Benjamin T; Gallas, Michelle C; Luci, Jeffrey J; Davis, Jaimie N

    2016-01-01

    This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity.

  11. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence

  12. CT and MRI imaging of the brain in MELAS syndrome

    PubMed Central

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-01-01

    Summary Background: MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. Case Report: In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. Conclusions: The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques. PMID:24115962

  13. Spiral Imaging in fMRI

    PubMed Central

    Glover, Gary H.

    2011-01-01

    T2*-weighted Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) requires efficient acquisition methods in order to fully sample the brain in a several second time period. The most widely used approach is Echo Planar Imaging (EPI), which utilizes a Cartesian trajectory to cover k-space. This trajectory is subject to ghosts from off-resonance and gradient imperfections and is intrinsically sensitive to cardiac-induced pulsatile motion from substantial first- and higher order moments of the gradient waveform near the k-space origin. In addition, only the readout direction gradient contributes significant energy to the trajectory. By contrast, the Spiral method samples k-space with an Archimedean or similar trajectory that begins at the k-space center and spirals to the edge (Spiral-out), or its reverse, ending at the origin (Spiral-in). Spiral methods have reduced sensitivity to motion, shorter readout times, improved signal recovery in most frontal and parietal brain regions, and exhibit blurring artifacts instead of ghosts or geometric distortion. Methods combining Spiral-in and Spiral-out trajectories have further advantages in terms of diminished susceptibility-induced signal dropout and increased BOLD signal. In measurements of temporal signal to noise ratio measured in 8 subjects, Spiral-in/out exhibited significant increases over EPI in voxel volumes recovered in frontal and whole brain regions (18% and 10%, respectively). PMID:22036995

  14. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion.

    PubMed

    Venderink, Wulphert; Govers, Tim M; de Rooij, Maarten; Fütterer, Jurgen J; Sedelaar, J P Michiel

    2017-05-01

    Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. A decision tree and Markov model were developed to compare cost-effectiveness. Literature review and expert opinion were used as input. A strategy was deemed cost-effective if the costs of gaining one quality-adjusted life year (incremental cost-effectiveness ratio) did not exceed the willingness-to-pay threshold of €80,000 (≈$85,000 in January 2017). A base case analysis was performed to compare systematic transrectal ultrasound- and image fusion-guided biopsies. Because of a lack of appropriate literature regarding the accuracy of direct in-bore MRI-guided biopsy, a threshold analysis was performed. The incremental cost-effectiveness ratio for fusion-guided biopsy compared with systematic transrectal ultrasound-guided biopsy was €1386 ($1470) per quality-adjusted life year gained, which was below the willingness-to-pay threshold and thus assumed cost-effective. If MRI findings are normal in a patient with clinically significant prostate cancer, the sensitivity of direct in-bore MRI-guided biopsy has to be at least 88.8%. If that is the case, the incremental cost-effectiveness ratio is €80,000 per quality-adjusted life year gained and thus cost-effective. Fusion-guided biopsy seems to be cost-effective compared with systematic transrectal ultrasound-guided biopsy. Future research is needed to determine whether direct in-bore MRI-guided biopsy is the best pathway; in this study a threshold was calculated at which it would be cost-effective.

  16. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed Central

    Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D’Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-01-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa. PMID:28725592

  17. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed

    Scialpi, Michele; Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D'Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-06-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa.

  18. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  19. [Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].

    PubMed

    Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T

    2003-10-01

    Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.

  20. Magnetic resonance imaging (MRI) evaluation of developmental delay in pediatric patients.

    PubMed

    Ali, Althaf S; Syed, Naziya P; Murthy, G S N; Nori, Madhavi; Abkari, Anand; Pooja, B K; Venkateswarlu, J

    2015-01-01

    Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child's ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with

  1. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  2. Imaging mouse lung allograft rejection with (1)H MRI.

    PubMed

    Guo, Jinbang; Huang, Howard J; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P; Gelman, Andrew E; Woods, Jason C

    2015-05-01

    To demonstrate that longitudinal, noninvasive monitoring via MRI can characterize acute cellular rejection in mouse orthotopic lung allografts. Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig versus anti-CD4/anti-CD8 treated groups. A two-dimensional multislice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at postoperative days 3, 7, and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 posttransplantation (0.046→0.789; P < 0.05), despite large intermouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003; P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. © 2014 Wiley Periodicals, Inc.

  3. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MRI of articular cartilage at microscopic resolution

    PubMed Central

    Xia, Y.

    2013-01-01

    This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRIMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T1ρ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative. PMID:23610697

  5. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while

  6. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  7. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  8. MRI-powered biomedical devices.

    PubMed

    Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-16

    Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.

  9. The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study.

    PubMed

    Kleindorfer, Dawn; Khoury, Jane; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Flaherty, Matthew L; Adeoye, Opeolu; Ferioli, Simona; Khatri, Pooja; Kissela, Brett M

    2015-09-25

    There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430-436. The two definitions used were: "clinical case definition" which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the "best clinical judgment of the physician definition", which considers all relevant information, including neuroimaging findings. The 95% confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. There were 2403 ischemic stroke events in 2269 patients; 1556 (64%) had MRI performed. Of the events, 2049 (83%) were cases by both definitions, 185 (7.7%) met the clinical case definition but were non-cases in the physician's opinion and 169 (7.0%) were non-cases by clinical definition but were cases in the physician's opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging

  10. Which imaging modality is most effective for identifying pseudotumours in metal-on-metal hip resurfacings requiring revision: ultrasound or MARS-MRI or both?

    PubMed

    Matharu, G S; Mansour, R; Dada, O; Ostlere, S; Pandit, H G; Murray, D W

    2016-01-01

    The aims of this study were to compare the diagnostic test characteristics of ultrasound alone, metal artefact reduction sequence MRI (MARS-MRI) alone, and ultrasound combined with MARS-MRI for identifying intra-operative pseudotumours in metal-on-metal hip resurfacing (MoMHR) patients undergoing revision surgery. This retrospective diagnostic accuracy study involved 39 patients (40 MoMHRs). The time between imaging modalities was a mean of 14.6 days (0 to 90), with imaging performed at a mean of 5.3 months (0.06 to 12) before revision. The prevalence of intra-operative pseudotumours was 82.5% (n = 33). Agreement with the intra-operative findings was 82.5% (n = 33) for ultrasound alone, 87.5% (n = 35) for MARS-MRI alone, and 92.5% (n = 37) for ultrasound and MARS-MRI combined. The diagnostic characteristics for ultrasound alone and MARS-MRI alone reached similar sensitivities (90.9% vs 93.9%) and positive predictive values (PPVs; 88.2% vs 91.2%), but higher specificities (57.1% vs 42.9%) and negative predictive values (NPVs; 66.7% vs 50.0%) were achieved with MARS-MRI. Ultrasound and MARS-MRI combined produced 100% sensitivity and 100% NPV, whilst maintaining both specificity (57.1%) and PPV (91.7%). For the identification of a pseudotumour, which was confirmed at revision surgery, agreement was substantial for ultrasound and MARS-MRI combined (κ = 0.69), moderate for MARS-MRI alone (κ = 0.54), and fair for ultrasound alone (κ = 0.36). These findings suggest that ultrasound and/or MARS-MRI have a role when assessing patients with a MoMHR, with the choice dependent on local financial constraints and the availability of ultrasound expertise. However in patients with a MoMHR who require revision, combined imaging was most effective. Combined imaging with ultrasound and MARS-MRI always identified intra-operative pseudotumours if present. Furthermore, if neither imaging modality showed a pseudotumour, one was not found intra-operatively. ©2016 The British Editorial

  11. PCA based clustering for brain tumor segmentation of T1w MRI images.

    PubMed

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    PubMed Central

    Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila

    2016-01-01

    Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical

  13. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    NASA Astrophysics Data System (ADS)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  14. Leiomyosarcoma of the broad ligament: a case report with CT and MRI images.

    PubMed

    Makihara, N; Maeda, T; Ebina, Y; Kitajima, K; Kawakami, F; Hara, S; Yamada, H

    2014-01-01

    Primary leiomyosarcoma of the broad ligament is a very rare and highly malignant gynecological tumor. The authors report a 61-year-old postmenopausal woman with signs and symptoms of malignant ovarian tumor. Preoperative magnetic resonance imaging (MRI) was interpreted as being suspicious for malignant tumors, such as an ovarian cancer or a leiomyosarcoma of the broad ligament, so laparotomy was performed. Macroscopically, the tumor was revealed with a 18 x 13.7 x 9.5 cm degenerated, multiple cystic part and solid whitish part arising from broad ligament which on histopathology proved to be leiomyosarcoma. To the best of the authors' knowledge, primary leiomyosarcoma of the broad ligament has been documented in 21 reports or so, and no imaging findings are available. Here the authors present the MRI findings of primary leiomyosarcoma of the broad ligament.

  15. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams

  16. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  17. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients--a pilot study.

    PubMed

    Szameitat, André J; Shen, Shan; Sterr, Annette

    2009-07-31

    An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects.

  18. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  19. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications

  20. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sherif, O; Xhaferllari, I; Gaede, S

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. Amore » compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post

  1. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    PubMed Central

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  2. Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI

    PubMed Central

    Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe

    2016-01-01

    Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056

  3. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma.

    PubMed

    Pfluger, Thomas; Schmied, Christoph; Porn, Ute; Leinsinger, Gerda; Vollmar, Christian; Dresel, Stefan; Schmid, Irene; Hahn, Klaus

    2003-10-01

    The objectives of this study were to compare MRI and iodine-123 ((123)I) metaiodobenzylguanidine (MIBG) scintigraphy in the detection of neuroblastoma lesions in pediatric patients and to assess the additional value of combined imaging. Fifty MRI and 50 (123)I MIBG examinations (mean interval, 6.4 days) were analyzed retrospectively with regard to suspected or proven neuroblastoma lesions (n = 193) in 28 patients. MRI and MIBG scans were reviewed by two independent observers each. Separate and combined analyses of MRI and MIBG scintigraphy were compared with clinical and histologic findings. With regard to the diagnosis of neuroblastoma lesion, MIBG scintigraphy, MRI, and combined analysis showed a sensitivity of 69%, 86%, and 99% and a specificity of 85%, 77%, and 95%, respectively. On MRI, 15 false-positive findings were recorded: posttherapeutic reactive changes (n = 10), benign adrenal tumors (n = 3), and enlarged lymph nodes (n = 2). On MIBG scintigraphy, 10 false-positive findings occurred: ganglioneuromas (n = 2), benign liver tumors (n = 2), and physiologic uptake (n = 6). Thirteen neuroblastoma metastases and two residual masses under treatment with chemotherapy were judged to be false-negative findings on MRI. Two primary or residual neuroblastomas and one orbital metastasis were misinterpreted as Wilms' tumor, reactive changes after surgery, and rhabdomyosarcoma on MRI. Thirty-two bone metastases, six other neuroblastoma metastases, and one adrenal neuroblastoma showed no MIBG uptake. On combined imaging, one false-negative (bone metastasis) and three false-positive (two ganglioneuromas and one pheochromocytoma) findings remained. In the assessment of neuroblastoma lesions in pediatric patients, MRI showed a higher sensitivity and MIBG scintigraphy a higher specificity. However, integrated imaging showed an increase in both sensitivity and specificity.

  4. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  5. MRI in patients with inflammatory bowel disease

    PubMed Central

    Gee, Michael S.; Harisinghani, Mukesh G.

    2011-01-01

    Inflammatory bowel disease (IBD) affects approximately 1.4 million people in North America and, because of its typical early age of onset and episodic disease course, IBD patients often undergo numerous imaging studies over the course of their lifetimes. CT has become the standard imaging modality for assessment of IBD patients because of its widespread availability, rapid image acquisition, and ability to evaluate intraluminal and extraluminal disease. However, repetitive CT imaging has been associated with a significant ionizing radiation risk to patients, making MRI an appealing alternative IBD imaging modality. Pelvic MRI is currently the imaging gold standard for detecting perianal disease, while recent studies indicate that MRI bowel-directed techniques (enteroclysis, enterography, colonography) can accurately evaluate bowel inflammation in IBD. With recent technical innovations leading to faster and higher resolution body MRI, the role of MRI in IBD evaluation is likely to continue to expand. Future applications include surveillance imaging, detection of mural fibrosis, and early assessment of therapy response. PMID:21512607

  6. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  7. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain

    NASA Astrophysics Data System (ADS)

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric

    2018-01-01

    An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.

  8. Impact of magnetic resonance imaging on ventricular tachyarrhythmia sensing: Results of the Evera MRI Study.

    PubMed

    Gold, Michael R; Sommer, Torsten; Schwitter, Juerg; Kanal, Emanuel; Bernabei, Matthew A; Love, Charles J; Surber, Ralf; Ramza, Brian; Cerkvenik, Jeffrey; Merkely, Béla

    2016-08-01

    Studies have shown that magnetic resonance imaging (MRI) conditional pacemakers experience no significant effect from MRI on device function, sensing, or pacing. More recently, similar safety outcomes were demonstrated with MRI conditional defibrillators (implantable cardioverter-defibrillator [ICD]), but the impact on ventricular arrhythmias has not been assessed. The purpose of this study was to assess the effect of MRI on ICD sensing and treatment of ventricular tachyarrhythmias. The Evera MRI Study was a worldwide trial of 156 patients implanted with an ICD designed to be MRI conditional. Device-detected spontaneous and induced ventricular tachycardia/ventricular fibrillation (VT/VF) episodes occurring before and after whole body MRI were evaluated by a blinded episode review committee. Detection delay was computed as the sum of RR intervals of undersensed beats. A ≥5-second delay in detection due to undersensing was prospectively defined as clinically significant. Post-MRI, there were 22 polymorphic VT/VF episodes in 21 patients, with 16 of these patients having 17 VT/VF episodes pre-MRI. Therapy was successful for all episodes, with no failures to treat or terminate arrhythmias. The mean detection delay due to undersensing pre- and post-MRI was 0.60 ± 0.59 and 0.33 ± 0.63 seconds, respectively (P = .17). The maximum detection delay was 2.19 seconds pre-MRI and 2.87 seconds post-MRI. Of the 17 pre-MRI episodes, 14 (82%) had some detection delay as compared with 11 of 22 (50%) post-MRI episodes (P = .03); no detection delay was clinically significant. Detection and treatment of VT/VF was excellent, with no detection delays or significant impact of MRI observed. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    PubMed

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  10. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H Al; Erickson, B; Paulson, E

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and wasmore » applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves

  11. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI.

    PubMed

    Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T

    2009-01-01

    This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.

  12. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint.

    PubMed

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-02-08

    BACKGROUND Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. MATERIAL AND METHODS Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. RESULTS Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. CONCLUSIONS MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction.

  13. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint

    PubMed Central

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-01-01

    Background Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. Material/Methods Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. Results Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. Conclusions MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction. PMID:28176754

  14. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction

  15. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method

  16. Au Nanocage Functionalized with Ultra-small Fe3O4 Nanoparticles for Targeting T1-T2Dual MRI and CT Imaging of Tumor

    NASA Astrophysics Data System (ADS)

    Wang, Guannan; Gao, Wei; Zhang, Xuanjun; Mei, Xifan

    2016-06-01

    Diagnostic approaches based on multimodal imaging of clinical noninvasive imaging (eg. MRI/CT scanner) are highly developed in recent years for accurate selection of the therapeutic regimens in critical diseases. Therefore, it is highly demanded in the development of appropriate all-in-one multimodal contrast agents (MCAs) for the MRI/CT multimodal imaging. Here a novel ideal MCAs (F-AuNC@Fe3O4) were engineered by assemble Au nanocages (Au NC) and ultra-small iron oxide nanoparticles (Fe3O4) for simultaneous T1-T2dual MRI and CT contrast imaging. In this system, the Au nanocages offer facile thiol modification and strong X-ray attenuation property for CT imaging. The ultra-small Fe3O4 nanoparticles, as excellent contrast agent, is able to provide great enhanced signal of T1- and T2-weighted MRI (r1 = 6.263 mM-1 s-1, r2 = 28.117 mM-1 s-1) due to their ultra-refined size. After functionalization, the present MCAs nanoparticles exhibited small average size, low aggregation and excellent biocompatible. In vitro and In vivo studies revealed that the MCAs show long-term circulation time, renal clearance properties and outstanding capability of selective accumulation in tumor tissues for simultaneous CT imaging and T1- and T2-weighted MRI. Taken together, these results show that as-prepared MCAs are excellent candidates as MRI/CT multimodal imaging contrast agents.

  17. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Zhao, T; Green, O

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC)more » for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.« less

  18. EXCI-CEST: Exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging.

    PubMed

    Longo, Dario Livio; Moustaghfir, Fatima Zzahra; Zerbo, Alexandre; Consolino, Lorena; Anemone, Annasofia; Bracesco, Martina; Aime, Silvio

    2017-06-15

    Chemical Exchange Saturation Transfer (CEST) approach is a novel tool within magnetic resonance imaging (MRI) that allows visualization of molecules possessing exchangeable protons with water. Many molecules, employed as excipients for the formulation of finished drug products, are endowed with hydroxyl, amine or amide protons, thus can be exploitable as MRI-CEST contrast agents. Their high safety profiles allow them to be injected at very high doses. Here we investigated the MRI-CEST properties of several excipients (ascorbic acid, sucrose, N-acetyl-d-glucosamine, meglumine and 2-pyrrolidone) and tested them as tumor-detecting agents in two different murine tumor models (breast and melanoma cancers). All the investigated molecules showed remarkable CEST contrast upon i.v. administration in the range 1-3ppm according to the type of mobile proton groups. A marked increase of CEST contrast was observed in tumor regions up to 30min post injection. The combination of marked tumor contrast enhancement and lack of toxicity make these molecules potential candidates for the diagnosis of tumors within the MRI-CEST approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Local experience in cervical cancer imaging: Comparison in tumour assessment between TRUS and MRI.

    PubMed

    Ordeanu, Claudia; Pop, Diana Cristina; Badea, Radu; Csutak, Csaba; Todor, Nicolae; Ordeanu, Calin; Kerekes, Reka; Coza, Ovidiu; Nagy, Viorica; Achimas-Cadariu, Patriciu; Irimie, Alexandru

    2015-01-01

    The aim of study was to analyze the accuracy of TRUS (transrectal ultrasound) vs. MRI (magnetic resonance imaging) and clinical gynecological examination estimation in the evaluation of tumor dimensions. The patients inclusion criterion included primarily pathologically squamous cell carcinoma, but excluded were patients who had not undergone BT (brachytherapy) and treated with palliative intent. We offer two types of treatment for locally advanced cervical cancer: (a) radiochemotherapy followed by surgery and (b) exclusive radiochemotherapy. Imaging tests follow the presence of tumor and tumor size (width and thickness). Each examination was performed by a different physician who had no knowledge of the others' findings. All patients underwent MRI prior to EBRT (external beam radiation therapy) while 18 of them also at the time of the first brachytherapy application. For the analysis we used the r-Pearson correlation coefficient. In 2013, 26 patients with cervical cancer were included. A total of 44 gynecological examinations were performed, 44 MRIs and 18 TRUSs. For the comparisons prior to EBRT the correlation coefficient between TRUS vs. MRI was r = 0.79 for AP and r = 0.83 for LL, for GYN vs. MRI was r = 0.6 for AP and r = 0.75 for LL. Prior to BT for GYN vs. MRI, r values were 0.60 and 0.63 for AP and LL, respectively; for GYN vs. TRUS, r values were 0.56 and 0.78 for AP and LL, respectively. A high correlation between the three examinations was obtained. As such, TRUS can be considered a suitable method in the evaluation of tumor dimensions.

  20. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  1. The imaging features of the meniscal roots on isotropic 3D MRI in young asymptomatic volunteers.

    PubMed

    Wang, Ping; Zhang, Cheng-Zhou; Zhang, Di; Liu, Quan-Yuan; Zhong, Xiao-Fei; Yin, Zhi-Jie; Wang, Bin

    2018-05-01

    This study aimed to describe clearly the normal imaging features of the meniscal roots on the magnetic resonance imaging (MRI) with a 3-dimensional (3D) proton density-weighted (PDW) sequence at 3T. A total of 60 knees of 31 young asymptomatic volunteers were examined using a 3D MRI. The insertion patterns, constitution patterns, and MR signals of the meniscal roots were recorded. The anterior root of the medial meniscus (ARMM), the anterior root of the lateral meniscus (ARLM), and the posterior root of the medial meniscus (PRMM) had 1 insertion site, whereas the posterior root of the lateral meniscus (PRLM) can be divided into major and minor insertion sites. The ARLM and the PRMM usually consisted of multiple fiber bundles (≥3), whereas the ARMM and the PRLM often consisted of a single fiber bundle. The ARMM and the PRLM usually appeared as hypointense, whereas the ARLM and the PRMM typically exhibited mixed signals. The meniscal roots can be complex and diverse, and certain characteristics of them were observed on 3D MRI. Understanding the normal imaging features of the meniscal roots is extremely beneficial for further diagnosis of root tears.

  2. Magnetic Resonance Imaging (MRI) Evaluation of Developmental Delay in Pediatric Patients

    PubMed Central

    Syed, Naziya P.; Murthy, G.S.N.; Nori, Madhavi; Abkari, Anand; Pooja, B.K.; Venkateswarlu, J.

    2015-01-01

    Introduction: Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child’s ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. Aims and Objectives: To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. Materials and Methods: It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Results: Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was

  3. Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study

    PubMed Central

    Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.

    2011-01-01

    Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946

  4. Error-related processing following severe traumatic brain injury: an event-related functional magnetic resonance imaging (fMRI) study.

    PubMed

    Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M

    2011-10-01

    Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Clinical Utility of Magnetic Resonance Imaging (MRI) and Ultrasonography (US) for Diagnosis of Polycystic Ovary Syndrome (PCOS) in Adolescent Girls

    PubMed Central

    Kenigsberg, Lisa E; Agarwal, Chhavi; Sin, Sanghun; Shifteh, Keivan; Isasi, Carmen R; Crespi, Rebecca; Ivanova, Janeta; Coupey, Susan M; Heptulla, Rubina A; Arens, Raanan

    2015-01-01

    Objectives Evaluate ovarian morphology using 3-dimensional MRI in adolescent girls with and without PCOS. Compare the utility of MRI versus ultrasonography (US) for diagnosis of PCOS Design Cross-sectional Setting Urban academic tertiary-care children’s hospital Patients Thirty-nine adolescent girls with untreated PCOS and 22 age/BMI-matched controls. Intervention MRI and/or transvaginal/transabdominal US Main Outcome Measure Ovarian volume (OV); follicle number per section (FNPS); correlation between OV on MRI and US; proportion of subjects with features of polycystic ovaries on MRI and US. Results MRI demonstrated larger OV and higher FNPS in subjects with PCOS compared to controls. Within the PCOS group, median OV was 11.9 (7.7) cm3 by MRI, compared with 8.8 (7.8) cm3 by US. Correlation coefficient between OV by MRI and US was 0.701. Due to poor resolution, FNPS could not be determined by US or compared with MRI. ROC curve analysis for MRI demonstrated that increasing volume cut-offs for polycystic ovaries from 10cm3 to 14cm3, increased specificity from 77% to 95%. For FNPS on MRI, specificity increased from 82% to 98% by increasing cut-offs from ≥12 to ≥17. Using Rotterdam cut-offs, 91% of subjects with PCOS met polycystic ovary criteria on MRI, while only 52% met criteria by US. Conclusions US measures smaller OV than MRI, cannot accurately detect follicle number, and is a poor imaging modality for characterizing polycystic ovaries in adolescents with suspected PCOS. For adolescents in whom diagnosis of PCOS remains uncertain after clinical and laboratory evaluation, MRI should be considered as a diagnostic imaging modality. PMID:26354095

  6. MRI-only treatment planning: benefits and challenges

    NASA Astrophysics Data System (ADS)

    Owrangi, Amir M.; Greer, Peter B.; Glide-Hurst, Carri K.

    2018-03-01

    Over the past decade, the application of magnetic resonance imaging (MRI) has increased, and there is growing evidence to suggest that improvements in the accuracy of target delineation in MRI-guided radiation therapy may improve clinical outcomes in a variety of cancer types. However, some considerations should be recognized including patient motion during image acquisition and geometric accuracy of images. Moreover, MR-compatible immobilization devices need to be used when acquiring images in the treatment position while minimizing patient motion during the scan time. Finally, synthetic CT images (i.e. electron density maps) and digitally reconstructed radiograph images should be generated from MRI images for dose calculation and image guidance prior to treatment. A short review of the concepts and techniques that have been developed for implementation of MRI-only workflows in radiation therapy is provided in this document.

  7. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    PubMed

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  8. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI

    PubMed Central

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-01-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization. PMID:26388148

  9. Evaluating Kurtosis-based Diffusion MRI Tissue Models for White Matter with Fiber Ball Imaging

    PubMed Central

    Jensen, Jens H.; McKinnon, Emilie T.; Glenn, G. Russell; Helpern, Joseph A.

    2018-01-01

    In order to quantify well-defined microstructural properties of brain tissue from diffusion MRI (dMRI) data, tissue models are typically employed that relate biological features, such as cell morphology and cell membrane permeability, to the diffusion dynamics. A variety of such models have been proposed for white matter, and their validation is a topic of active interest. In this paper, three different tissue models are tested by comparing their predictions for a specific microstructural parameter to the value measured independently with a recently proposed dMRI method known as fiber ball imaging (FBI). The three tissue models are all constructed with the diffusion and kurtosis tensors, and they are hence compatible with diffusional kurtosis imaging (DKI). Nevertheless, the models differ significantly in their details and predictions. For voxels with fractional anisotropies (FA) exceeding 0.5, all three are reasonably consistent with FBI. However, for lower FA values, one of these, called the white matter tract integrity (WMTI) model, is found to be in much better accord with FBI than the other two, suggesting that the WMTI model has a broader range of applicability. PMID:28085211

  10. MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI.

    PubMed

    Alizai, Hamza; Chang, Gregory; Regatte, Ravinder R

    2015-09-01

    In vivo MRI has revolutionized the diagnosis and treatment of musculoskeletal disorders over the past 3 decades. Traditionally performed at 1.5 T, MRI at higher field strengths offers several advantages over lower field strengths including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. However, the physics of imaging at higher field strengths also presents technical challenges. These include B0 and B1+ field inhomogeneity, design and construction of dedicated radiofrequency (RF) coils for use at high field, increased chemical shift and susceptibility artifacts, increased RF energy deposition (specific absorption rate), increased metal artifacts, and changes in relaxation times compared with the lower field scanners. These challenges were overcome in optimizing high-field (HF) (3 T) MRI over a decade ago. HF MRI systems have since gained universal acceptance for clinical musculoskeletal imaging and have also been widely utilized for the study of musculoskeletal anatomy and physiology. Recently there has been an increasing interest in exploring musculoskeletal applications of ultrahigh field (UHF) (7 T) systems. However, technical challenges similar to those encountered when moving from 1.5 T to 3 T have to be overcome to optimize 7 T musculoskeletal imaging. In this narrative review, we discuss the many potential opportunities and technical challenges presented by the HF and UHF MRI systems. We highlight recent developments in in vivo imaging of musculoskeletal tissues that benefit most from HF imaging including cartilage, skeletal muscle, and bone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R 2 =0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions: findings on MRI and computed tomography imaging.

    PubMed

    Liu, Kefu; Xie, Ping; Peng, Weijun; Zhou, Zhengrong

    2014-08-01

    To retrospectively analyze MRI and computed tomographic (CT) findings from renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions (Xp11-RCC). Institutional review board permission was obtained to review patient medical records, and the requirement for informed consent was waved . The clinical and MRI/CT features of five cases with Xp11-RCC that were confirmed by pathology were analyzed retrospectively. The image characteristics included the lesion location and size, contribution of cystic and solid components, intratumoral necrosis or hemorrhage, invasion of perinephric tissue and renal sinus, lymphadenopathy, major venous or arterial vascular invasion, pattern of the tumor growth, intratumor calcification and lipids, homogeneity of SI on T2-weighted images, attenuation and SI of the mass with respect to the normal renal cortex on precontrast and contrasted CT/MRI images, tumor SIs, tumor attenuations and tumor-to-cortex indices, homogeneity of enhancement on the contrasted images. The mean age was 32 years (range, 15-47 years). Most patients (4/5) were women. All tumors showed a cortical location. The average tumor size was 9 cm (range, 4-18 cm). Four tumors comprised a predominantly solid lesion with focal necrosis, and one tumor comprised a solid lesion with significant necrosis. All tumors showed intertumor hemorrhage, infiltrative growth and invasion of the perirenal adipose/renal sinus. Four cases showed retroperitoneal lymphadenopathy, of which one case showed simultaneous mediastinal and supraclavicular lymphadenopathy. All tumors from four cases showed mild hyperintensity on T1-weighted MRI images, and three tumors showed hypointensity on T2-weighted MRI images relative to the renal cortex except for 1 tumor that showed significant hemorrhage and a relative hyperintensity. For 3 cases who were imaged with CT, two tumors imaged using nonenhanced CT images showed mild hyperdensity relative to the renal cortex. Calcification was noted in all

  13. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  14. The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients – A pilot study

    PubMed Central

    2009-01-01

    Background An important aspect in functional imaging research employing magnetic resonance imaging (MRI) is how participants perceive the MRI scanning itself. For instance, the knowledge of how (un)comfortable MRI scanning is perceived may help institutional review boards (IRBs) or ethics committees to decide on the approval of a study, or researchers to design their experiments. Methods We provide empirical data from our lab gained from 70 neurologically healthy mainly student subjects and from 22 mainly elderly patients suffering from motor deficits after brain damage. All participants took part in various basic research fMRI studies using a 3T MRI scanner. Directly after the scanning, all participants completed a questionnaire assessing their experience with the fMRI procedure. Results 87.2% of the healthy subjects and 77.3% of the patients rated the MRI procedure as acceptable to comfortable. In healthy subjects, males found the procedure more comfortable, while the opposite was true for patients. 12.1% of healthy subjects considered scanning durations between 30 and 60 min as too long, while no patient considered their 30 min scanning interval as too long. 93.4% of the healthy subjects would like to participate in an fMRI study again, with a significantly lower rate for the subjects who considered the scanning as too long. Further factors, such as inclusion of a diffusion tensor imaging (DTI) scan, age, and study duration had no effect on the questionnaire responses. Of the few negative comments, the main issues were noise, the restriction to keep still for the whole time, and occasional feelings of dizziness. Conclusion MRI scanning in the basic research setting is an acceptable procedure for elderly and patient participants as well as young healthy subjects. PMID:19646238

  15. Adiposis dolorosa (Dercum's disease): MRI and ultrasound appearances.

    PubMed

    Tins, B J; Matthews, C; Haddaway, M; Cassar-Pullicino, V N; Lalam, R; Singh, J; Tyrrell, P N M

    2013-10-01

    To describe ultrasound and magnetic resonance imaging (MRI) features of adiposis dolorosa, Dercum's disease, and to evaluate the MRI features prospectively against a large number of MRI examinations. Institutional review board approval for this study was obtained. The imaging features at MRI and ultrasound of 13 cases of adiposis dolorosa (nine female, four male; age range 32-72 years) were reviewed. MRI findings typical for adiposis dolorosa were proposed and prospectively evaluated on 6247 MRI examinations performed over a period of 8 months. Adiposis dolorosa demonstrates multiple, oblong, fatty lesions in the superficial subcutaneous fatty tissue. They are mostly <2 cm in long axis diameter. They demonstrate nodular ("blush-like") increased fluid signal at unenhanced MRI and are markedly hyperechoic at ultrasound. There is no contrast medium enhancement at MRI and no increased Doppler signal at ultrasound. Most lesions were clinically asymptomatic, some were painful/tender. There was no imaging evidence of oedema or inflammation. During prospective validation of these MRI features on 6247 MRI examinations, two cases with typical imaging features were encountered; both were diagnosed as adiposis dolorosa on clinical review. All cases of adiposis dolorosa showed these imaging findings. This results in a very low likelihood that a nodular, blush-like appearance of subcutaneous fat on MRI is not due to adiposis dolorosa. Adiposis dolorosa, Dercum's disease, should be suggested in the presence of multiple (many) small, oblong, fatty lesions in the subcutaneous fatty tissue in adult patients if they are hyperechoic on ultrasound imaging or blush-like at unenhanced MRI; typically a small number of these lesions are tender/painful. Imaging does not demonstrate inflammation or oedema in relation to these lesions. These MRI features should suggest the diagnosis and are likely to be pathognomonic. The radiologist is often the first to suggest the diagnosis based on the

  16. Visualising uncertainty: Examining women's views on the role of Magnetic Resonance Imaging (MRI) in late pregnancy.

    PubMed

    Reed, Kate; Kochetkova, Inna; Whitby, Elspeth

    2016-09-01

    Prenatal screening occupies a prominent role within sociological debates on medical uncertainty. A particular issue concerns the limitations of routine screening which tends to be based on risk prediction. Computer assisted visual technologies such as Magnetic Resonance Imaging (MRI) are now starting to be applied to the prenatal realm to assist in the diagnosis of a range of fetal and maternal disorders (from problems with the fetal brain to the placenta). MRI is often perceived in popular and medical discourse as a technology of certainty and truth. However, little is known about the use of MRI as a tool to confirm or refute the diagnosis of a range of disorders in pregnancy. Drawing on qualitative research with pregnant women attending a fetal medicine clinic in the North of England this paper examines the potential role that MRI can play in mediating pregnancy uncertainty. The paper will argue that MRI can create and manage women's feelings of uncertainty during pregnancy. However, while MRI may not always provide women with unequivocal answers, the detailed information provided by MR images combined with the interpretation and communication skills of the radiologist in many ways enables women to navigate the issue. Our analysis of empirical data therefore highlights the value of this novel technological application for women and their partners. It also seeks to stress the merit of taking a productive approach to the study of diagnostic uncertainty, an approach which recognises the concepts dual nature. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Cai, J

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI atmore » the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on

  18. Photo-multiplier Tube Based Hybrid MRI and Frequency Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Lin, Y; Ghijsen, M T; Gao, H; Liu, N; Nalcioglu, O; Gulsen, G

    2014-01-01

    Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube (PMT) is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, Indocyanine Green (ICG) and 3-3′ Diethylthiatricarbocyanine Iodide (DTTCI), which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized. PMID:21753235

  19. Arterial Spin Labeling - Fast Imaging with Steady-State Free Precession (ASL-FISP): A Rapid and Quantitative Perfusion Technique for High Field MRI

    PubMed Central

    Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.

    2014-01-01

    Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124

  20. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China

    PubMed Central

    He, Xiaoning; Holtorf, Anke-Peggy; Rinde, Harald; Xie, Shuangshuang; Shen, Wen; Hou, Jiancun; Li, Xuehua; Li, Ziping; Lai, Jiaming; Wang, Yuting; Zhang, Lin; Wang, Jian; Li, Xuesong; Ma, Kuansheng; Ye, Feng; Ouyang, Han; Zhao, Hong

    2018-01-01

    Limited data exists in China on the comparative cost of gadolinium ethoxybenzyl diethylenetriamine magnetic resonance imaging (Gd-EOB-DTPA-MRI) with other imaging techniques. This study compared the total cost of Gd-EOB-DTPA-MRI with multidetector computed tomography (MDCT) and extracellular contrast media–enhanced MRI (ECCM-MRI) as initial imaging procedures in patients with suspected hepatocellular carcinoma (HCC). We developed a decision-tree model on the basis of the Chinese clinical guidelines for HCC, which was validated by clinical experts from China. The model compared the diagnostic accuracy and costs of alternative initial imaging procedures. Compared with MDCT and ECCM-MRI, Gd-EOB-DTPA-MRI imaging was associated with higher rates of diagnostic accuracy, i.e. higher proportions of true positives (TP) and true negatives (TN) with lower false positives (FP). Total diagnosis and treatment cost per patient after the initial Gd-EOB-DTPA-MRI evaluation was similar to MDCT (¥30,360 vs. ¥30,803) and lower than that reported with ECCM-MRI (¥30,360 vs. ¥31,465). Lower treatment cost after initial Gd-EOB-DTPA-MRI was driven by reduced utilization of confirmatory diagnostic procedures and unnecessary treatments. The findings reported that Gd-EOB-DTPA-MRI offered higher diagnostic accuracy compared with MDCT and ECCM-MRI at a comparable cost, which indicates Gd-EOB-DTPA-MRI could be the preferred initial imaging procedure for the diagnosis of HCC in China. PMID:29324837

  1. Comparative analysis of methods for extracting vessel network on breast MRI images

    NASA Astrophysics Data System (ADS)

    Gaizer, Bence T.; Vassiou, Katerina G.; Lavdas, Eleftherios; Arvanitis, Dimitrios L.; Fezoulidis, Ioannis V.; Glotsos, Dimitris T.

    2017-11-01

    Digital processing of MRI images aims to provide an automatized diagnostic evaluation of regular health screenings. Cancerous lesions are proven to cause an alteration in the vessel structure of the diseased organ. Currently there are several methods used for extraction of the vessel network in order to quantify its properties. In this work MRI images (Signa HDx 3.0T, GE Healthcare, courtesy of University Hospital of Larissa) of 30 female breasts were subjected to three different vessel extraction algorithms to determine the location of their vascular network. The first method is an experiment to build a graph over known points of the vessel network; the second algorithm aims to determine the direction and diameter of vessels at these points; the third approach is a seed growing algorithm, spreading selection to neighbors of the known vessel pixels. The possibilities shown by the different methods were analyzed, and quantitative measurements were performed. The data provided by these measurements showed no clear correlation with the presence or malignancy of tumors, based on the radiological diagnosis of skilled physicians.

  2. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  3. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation.

    PubMed

    Hammer, Niels; Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction . The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods . Microcomputed tomography ( μ -CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results . TFCC reconstruction was impossible using μ -CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion . This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ -CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool.

  4. Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI.

    PubMed

    2015-04-01

    Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.

  5. Supine MRI for regional breast radiotherapy: imaging axillary lymph nodes before and after sentinel-node biopsy

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; Eschbach-Zandbergen, Debora; Hoekstra, Nienke; van Asselen, Bram; Lagendijk, Jan J. W.; Verkooijen, Helena M.; Pijnappel, Ruud M.; de Waard, Stephanie N.; Witkamp, Arjen J.; van Dalen, Thijs; Desirée van den Bongard, H. J. G.; Philippens, Marielle E. P.

    2017-08-01

    Regional radiotherapy (RT) is increasingly used in breast cancer treatment. Conventionally, computed tomography (CT) is performed for RT planning. Lymph node (LN) target levels are delineated according to anatomical boundaries. Magnetic resonance imaging (MRI) could enable individual LN delineation. The purpose was to evaluate the applicability of MRI for LN detection in supine treatment position, before and after sentinel-node biopsy (SNB). Twenty-three female breast cancer patients (cTis-3N0M0) underwent 1.5 T MRI, before and after SNB, in addition to CT. Endurance for MRI was monitored. Axillary levels were delineated. LNs were identified and delineated on MRI from before and after SNB, and on CT, and compared by Wilcoxon signed-rank tests. LN locations and LN-based volumes were related to axillary delineations and associated volumes. Although postoperative effects were visible, LN numbers on postoperative MRI (median 26 LNs) were highly reproducible compared to preoperative MRI when adding excised sentinel nodes, and higher than on CT (median 11, p  <  0.001). LN-based volumes were considerably smaller than respective axillary levels. Supine MRI of LNs is feasible and reproducible before and after SNB. This may lead to more accurate RT target definition compared to CT, with potentially lower toxicity. With the MRI techniques described here, initiation of novel MRI-guided RT strategies aiming at individual LNs could be possible.

  6. MRI Features of Hepatocellular Carcinoma Related to Biologic Behavior

    PubMed Central

    Cho, Eun-Suk

    2015-01-01

    Imaging studies including magnetic resonance imaging (MRI) play a crucial role in the diagnosis and staging of hepatocellular carcinoma (HCC). Several recent studies reveal a large number of MRI features related to the prognosis of HCC. In this review, we discuss various MRI features of HCC and their implications for the diagnosis and prognosis as imaging biomarkers. As a whole, the favorable MRI findings of HCC are small size, encapsulation, intralesional fat, high apparent diffusion coefficient (ADC) value, and smooth margins or hyperintensity on the hepatobiliary phase of gadoxetic acid-enhanced MRI. Unfavorable findings include large size, multifocality, low ADC value, non-smooth margins or hypointensity on hepatobiliary phase images. MRI findings are potential imaging biomarkers in patients with HCC. PMID:25995679

  7. Imaging brain microstructure with diffusion MRI: practicality and applications.

    PubMed

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  8. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, A.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  9. Superficial Fascia (SF) in the Cheek and Parotid Area: Histology and Magnetic Resonance Image (MRI).

    PubMed

    Hwang, Kun; Kim, Hun; Kim, Dae Joong; Kim, Yeo Ju; Kang, Young Hye

    2016-08-01

    The aim of this study is to compare the superficial fascia (SF) in the cheek and parotid areas histologically and through MRI. An in vitro study included a histological report and an MRI of the cheek of two Korean adult cadavers. The in vivo study included 100 MRI images and three axial image cuts (mandibular condyle, notch, and half the distance between the top of the condyle and the angle). Four angles, one length, and four thicknesses were measured and compared. The MRI results were in concord with the gross specimen or histology. The SF consisted of multilayered horizontal and vertical fibrous connective tissues at all three levels in both the histology and MRI. In the cheek, both histology and MRI showed horizontal fibrous connective tissues which were connected with the zygomaticus major, visualized as a continuous membrane (membranous layer, MSF). MSF divided the SF into the superficial fatty layer (SFS) and the deep fatty layer. The thickness of the SF depended upon the thickness of the SFS since the thickness of the MSF was very similar irrespective of the three levels. The thickness of the SFS was thicker in females than in males. At the condyle level, the AS-PS angle (AP line-the most posterior superficial fascia angle) and AS-PS length increased significantly (p = 0.001, y = 0.15x + 16.19, and p < 0.001, y = 0.33x + 14.68, respectively). We hope the information we have gathered could be useful to provide subcutaneous dissection or sub-SMAS dissection in facelift surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  10. Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen; Brown, Steve; Chang, Isaac; Krycia, Joe; Mirotznik, Mark S.

    2003-06-01

    In this paper we present a numerical model for evaluating tissue heating during magnetic resonance imaging (MRI). Our method, which included a detailed anatomical model of a human head, calculated both the electromagnetic power deposition and the associated temperature elevations during a MRI head examination. Numerical studies were conducted using a realistic birdcage coil excited at frequencies ranging from 63 MHz to 500 MHz. The model was validated both experimentally and analytically. The experimental validation was performed at the MR test facility located at the FDA's Center for Devices and Radiological Health (CDRH).

  11. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    PubMed Central

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  12. [Focusing on MRI-suspected lesions in targeted transrectal prostate biopsy guided by MRI-TRUS fusion imaging for the diagnosis of prostate cancer].

    PubMed

    Qu, Hua-Wei; Liu, Hui; Cui, Zi-Lian; Jin, Xun-Bo; Zhao, Yong; Wang, Mu-Wen; Song, Wei; Zhang, Xin-Juan

    2016-09-01

    To improve the accuracy of prostate cancer (PCa) detection by focusing biopsy on the suspected lesion manifested by MRI with the total number of biopsy cores relatively unchanged. A prospective randomized analysis was performed on 262 cases of suspected PCa detected by multi-parametric MRI (mp-MRI), each with a single suspected lesion with 10 μg/L≤ PSA <20 μg/L. All the patients underwent targeted transrectal prostate biopsy guided by fusion imaging of MRI with transrectal ultrasonography (TRUS), using the 6X+6 strategy (6 cores in the suspected region and another 6 in the systematic prostate) for 134 cases and the traditional 12+2X method (12 cores in the systematic prostate and 2 in the suspected region) for the other 128. Comparisons were made between the two methods in the PCa detection rate in the cases of suspected lesion, total PCa detection rate, incidence of post-biopsy complications, and Gleason scores. Analyses were performed on the prostate imaging reporting and data system (PI-RADS) score, location, transverse section, and diameter of the suspected lesion. Both the total PCa detection rate and that in the cases of suspected lesion were significantly higher in the 6X+6 (44.8% and 37.3%) than in the 12+2X group (37.5% and 27.3%) (P<0.05). MRI showed that the suspected lesions were mostly (45%) located in the middle part of the prostate, the mean area of the transverse section was (0.48±0.11) cm2, and the mean diameter of the tumor was (8.51±2.21) mm. The results of biopsy showed that low-grade tumors (Gleason 3+3=6) accounted for 68% in the 6X+6 group and 71% in the 12+2X group. No statistically significant differences were found between the two groups in the incidence rate of post-biopsy complications. Compared with the traditional 12+2X method, for the suspected lesion manifested by mp-MRI, focusing biopsy on the suspected region with the 6X+6 strategy can achieve a higher PCa detection rate without increasing the incidence of complications.

  13. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.

    Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.

  14. Contactless Abdominal Fat Reduction With Selective RF™ Evaluated by Magnetic Resonance Imaging (MRI): Case Study.

    PubMed

    Downie, Jeanine; Kaspar, Miroslav

    2016-04-01

    Noninvasive body shaping methods seem to be an ascending part of the aesthetics market. As a result, the pressure to develop reliable methods for the collection and presentation of their results has also increased. The most used techniques currently include ultrasound measurements of fat thickness in the treated area, caliper measurements, bioimpedance-based scale measurements or circumferential tape measurements. Although these are the most used techniques, almost all of them have some limitations in reproducibility and/or accuracy. This study shows Magnetic Resonance Imaging (MRI) as the new method for the presentation of results in the body shaping industry. Six subjects were treated by a contactless selective radiofrequency device (BTL Vanquish ME, BTL Industries Inc., Boston, MA). The MRI fat thickness was measured at the baseline and at 4-weeks following the treatment. In addition to MRI images and measurements, digital photographs and anthropometric evaluations such as weight, abdominal circumference, and caliper fat thickness measurements were recorded. Abdominal fat thickness measurements from the MRI were performed from the same slices determined by the same tissue artefacts. The MRI fat thickness difference between the baseline measurement and follow up visit showed an average reduction of 5.36 mm as calculated from the data of 5 subjects. One subject dropped out of study due to non-study related issues. The results were statistically significant based on the Student's T-test evaluation. Magnetic resonance imaging abdominal fat thickness measurements seems to be the best method for the evaluation of fat thickness reduction after non-invasive body shaping treatments. In this study, this method shows average fat thickness reduction of 5.36 mm while the weight of the subjects didn't change significantly. A large spot size measuring 1317 cm(2) (204 square inches) covers the abdomen flank to flank. The average thickness of 5.36 mm of the fat layer reduced

  15. Assessment of Geometrical Accuracy of Multimodal Images Used for Treatment Planning in Stereotactic Radiotherapy and Radiosurgery: CT, MRI and PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Celis, M. A.

    2006-09-08

    An acrylic phantom was designed and constructed to assess the geometrical accuracy of CT, MRI and PET images for stereotactic radiotherapy (SRT) and radiosurgery (SRS) applications. The phantom was suited for each image modality with a specific tracer and compared with CT images to measure the radial deviation between the reference marks in the phantom. It was found that for MRI the maximum mean deviation is 1.9 {+-} 0.2 mm compared to 2.4 {+-} 0.3 mm reported for PET. These results will be used for margin outlining in SRS and SRT treatment planning.

  16. Dental MRI using wireless intraoral coils

    NASA Astrophysics Data System (ADS)

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-03-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.

  17. Compressed Sensing for Body MRI

    PubMed Central

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2016-01-01

    The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664

  18. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  19. Accuracy Verification of Magnetic Resonance Imaging (MRI) Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    PubMed Central

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements. PMID:22619599

  20. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality.

    PubMed

    Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg

    2015-01-01

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

  1. The Role of Preoperative Magnetic Resonance Imaging (MRI) in the Workup and Surgical Treatment of Interval and Screen-Detected Breast Cancer in Older Women

    PubMed Central

    Goodrich, Martha E.; Weiss, Julie; Onega, Tracy; Balch, Steve L.; Buist, Diana S.M.; Kerlikowske, Karla; Henderson, Louise M.; Hubbard, Rebecca A.

    2016-01-01

    Goals We describe the relationship between preoperative Magnetic Resonance Imaging (MRI) and the utilization of additional imaging, biopsy, and primary surgical treatment for subgroups of women with interval versus screen-detected breast cancer. We determined the proportion of women receiving additional breast imaging or biopsy and type of primary surgical treatment, stratified by use of preoperative MRI, separately for both groups. Methods Using Breast Cancer Surveillance Consortium (BCSC) data, we identified a cohort of women age 66 and older with an interval or screen-detected breast cancer diagnosis between 2005–2010. Using logistic regression, we explored associations between primary surgical treatment type and preoperative MRI use for interval and screen-detected cancers. Results There were 204 women with an interval cancer and 1254 with a screen-detected cancer. The interval cancer group was more likely to receive preoperative MRI (21% vs. 13%). In both groups, women receiving MRI were more likely to receive additional imaging and/or biopsy. Receipt of MRI was not associated with increased odds of mastectomy (OR =0.99, 95% CI: 0.67–1.50), while interval cancer diagnosis was associated with significantly higher odds of mastectomy (OR=1.64, 95% CI: 1.11–2.42). Conclusion Older women with interval cancer were more likely than women with a screen-detected cancer to have preoperative MRI, however, those with an interval cancer had 64% higher odds of mastectomy regardless of receipt of MRI. Given women with interval cancer are reported to have a worse prognosis, more research is needed to understand effectiveness of imaging modalities and treatment consequences within this group. PMID:27550072

  2. Exploiting the wavelet structure in compressed sensing MRI.

    PubMed

    Chen, Chen; Huang, Junzhou

    2014-12-01

    Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  4. Diffusion Tensor Imaging and Resting-State Functional MRI-Scanning in 5- and 6-Year-Old Children: Training Protocol and Motion Assessment

    PubMed Central

    Theys, Catherine; Wouters, Jan; Ghesquière, Pol

    2014-01-01

    Advanced Magnetic Resonance Imaging (MRI) techniques such as Diffusion Tensor Imaging (DTI) and resting-state functional MRI (rfMRI) are widely used to study structural and functional neural connectivity. However, as these techniques are highly sensitive to motion artifacts and require a considerable amount of time for image acquisition, successful acquisition of these images can be challenging to complete with certain populations. This is especially true for young children. This paper describes a new approach termed the ‘submarine protocol’, designed to prepare 5- and 6-year-old children for advanced MRI scanning. The submarine protocol aims to ensure that successful scans can be acquired in a time- and resource-efficient manner, without the need for sedation. This manuscript outlines the protocol and details its outcomes, as measured through the number of children who completed the scanning procedure and analysis of the degree of motion present in the acquired images. Seventy-six children aged between 5.8 and 6.9 years were trained using the submarine protocol and subsequently underwent DTI and rfMRI scanning. After completing the submarine protocol, 75 of the 76 children (99%) completed their DTI-scan and 72 children (95%) completed the full 35-minute scan session. Results of diffusion data, acquired in 75 children, showed that the motion in 60 of the scans (80%) did not exceed the threshold for excessive motion. In the rfMRI scans, this was the case for 62 of the 71 scans (87%). When placed in the context of previous studies, the motion data of the 5- and 6-year-old children reported here were as good as, or better than those previously reported for groups of older children (i.e., 8-year-olds). Overall, this study shows that the submarine protocol can be used successfully to acquire DTI and rfMRI scans in 5 and 6-year-old children, without the need for sedation or lengthy training procedures. PMID:24718364

  5. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  6. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  7. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  8. MRI assessment of local acute radiation syndrome.

    PubMed

    Weber-Donat, G; Amabile, J-C; Lahutte-Auboin, M; Potet, J; Baccialone, J; Bey, E; Teriitehau, C; Laroche, P

    2012-12-01

    To describe local acute radiation syndrome and its radiological imaging characteristics. We performed a retrospective study of patients who had suffered skin and deeper radiation damage who were investigated by magnetic resonance imaging (MRI). We compared the clinical findings, C-reactive protein (CRP) levels and MRI results. A total of 22 MRI examinations were performed between 2005 and 2010 in 7 patients; 6 patients had increased CRP levels and MRI abnormalities. They were treated by surgery and local cellular therapy. One patient had no CRP or MRI abnormalities, and had a spontaneous good outcome. Eighteen abnormal MR examinations demonstrated high STIR signal and/or abnormal enhancement in the dermis and muscle tissues. Three MRI examinations demonstrated skeletal abnormalities, consistent with radionecrosis. The four normal MRI examinations were associated only with minor clinical manifestations such as pain and pigmentation disorders. MRI seems to be a useful and promising imaging investigation in radiation burns management i.e. initial lesion evaluation, treatment evaluation and complication diagnosis. MRI findings correlated perfectly with clinical stage and no false negative examinations were obtained. In particular, the association between normal MRI and low CRP level seems to be related to good outcome without specific treatment. Local acute radiation syndrome (radioepidermitis) mainly affects the skin and superficial tissues. MRI findings correspond with clinical stage (with a strong negative predictive value). MRI outperformed X-ray examination for the diagnosis of bone radionecrosis. Diffusion-weighted imaging shows low ADC in bone and soft tissue necrosis. Perfusion sequence allows assessment of tissue microcirculation impairment.

  9. Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac.

    PubMed

    Liney, Gary P; Dong, Bin; Weber, Ewald; Rai, Robba; Destruel, Aurelien; Garcia-Alvarez, Roberto; Manton, David; Jelen, Urszula; Zhang, Kevin; Barton, Michael; Keall, Paul J; Crozier, Stuart

    2018-05-25

    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions. Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20  20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation. Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons. . © 2018 Institute of Physics and Engineering in Medicine.

  10. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions.

    PubMed

    Markowitz, Daniel; Lin, Dishen; Salas, Sussan; Kohn, Nina; Schulder, Michael

    2017-01-01

    Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy. © 2017 S. Karger AG, Basel.

  11. Can the Diagnostics of Triangular Fibrocartilage Complex Lesions Be Improved by MRI-Based Soft-Tissue Reconstruction? An Imaging-Based Workup and Case Presentation

    PubMed Central

    Hirschfeld, Ulrich; Strunz, Hendrik; Werner, Michael; Wolfskämpf, Thomas; Löffler, Sabine

    2017-01-01

    Introduction. The triangular fibrocartilage complex (TFCC) provides both mobility and stability of the radiocarpal joint. TFCC lesions are difficult to diagnose due to the complex anatomy. The standard treatment for TFCC lesions is arthroscopy, posing surgery-related risks onto the patients. This feasibility study aimed at developing a workup for soft-tissue reconstruction using clinical imaging, to verify these results in retrospective patient data. Methods. Microcomputed tomography (μ-CT), 3 T magnetic resonance imaging (MRI), and plastination were used to visualize the TFCC in cadaveric specimens applying segmentation-based 3D reconstruction. This approach further trialed the MRI dataset of a patient with minor radiological TFCC alterations but persistent pain. Results. TFCC reconstruction was impossible using μ-CT only but feasible using MRI, resulting in an appreciation of its substructures, as seen in the plastinates. Applying this approach allowed for visualizing a Palmer 2C lesion in a patient, confirming ex postum the arthroscopy findings, being markedly different from MRI (Palmer 1B). Discussion. This preliminary study showed that image-based TFCC reconstruction may help to identify pathologies invisible in standard MRI. The combined approach of μ-CT, MRI, and plastination allowed for a three-dimensional appreciation of the TFCC. Image quality and time expenditure limit the approach's usefulness as a diagnostic tool. PMID:28246600

  12. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: implications for principles underlying odor mapping

    PubMed Central

    Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed

    2015-01-01

    Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819

  13. Radiotherapy Planning using MRI

    PubMed Central

    Schmidt, Maria A; Payne, Geoffrey S

    2016-01-01

    The use of Magnetic Resonance Imaging (MRI) in Radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimised, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT. PMID:26509844

  14. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  15. Human developmental anatomy: microscopic magnetic resonance imagingMRI) of four human embryos (from Carnegie Stage 10 to 20).

    PubMed

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  16. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion

  17. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soliman, A; Elzibak, A; Fatemi, A

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate

  18. A guide for effective anatomical vascularization studies: useful ex vivo methods for both CT and MRI imaging before dissection.

    PubMed

    Renard, Yohann; Hossu, Gabriela; Chen, Bailiang; Krebs, Marine; Labrousse, Marc; Perez, Manuela

    2018-01-01

    The objective of this study was to develop a simple and useful injection protocol for imaging cadaveric vascularization and dissection. Mixtures of contrast agent and cast product should provide adequate contrast for two types of ex vivo imaging (MRI and CT) and should harden to allow gross dissection of the injected structures. We tested the most popular contrast agents and cast products, and selected the optimal mixture composition based on their availability and ease of use. All mixtures were first tested in vitro to adjust dilution parameters of each contrast agent and to fine-tune MR imaging acquisition sequences. Mixtures were then injected in 24 pig livers and one human pancreas for MR and computed tomography (CT) imaging before anatomical dissection. Colorized latex, gadobutrol and barite mixture met the above objective. Mixtures composed of copper sulfate (CuSO 4 ) gadoxetic acid (for MRI) and iodine (for CT) gave an inhomogeneous signal or extravasation of the contrast agent. Agar did not harden sufficiently for gross dissection but appears useful for CT and magnetic resonance imaging (MRI) studies without dissection. Silicone was very hard to inject but achieved the goals of the study. Resin is particularly difficult to use but could replace latex as an alternative for corrosion instead of dissection. This injection protocol allows CT and MRI images to be obtained of cadaveric vascularization and anatomical casts in the same anatomic specimen. Post-imaging processing software allow easy 3D reconstruction of complex anatomical structures using this technique. Applications are numerous, e.g. surgical training, teaching methods, postmortem anatomic studies, pathologic studies, and forensic diagnoses. © 2017 Anatomical Society.

  19. Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-06-01

    Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.

  20. [Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method].

    PubMed

    He, Qing-yuan; Han, Hong-bin; Xu, Fang-jing-wei; Yan, Jun-hao; Zeng, Jin-jin; Li, Xiao-gang; Fu, Yu; Peng, Yun; Chen, He; Hou, Chao; Xu, Xiao-juan

    2010-04-18

    To observe the diffusion of Gd-DTPA in brain extracellular space (ECS) by magnetic resonance imaging(MRI) and investigate the feasibility of ECS measurement by using MRI tracer method in vivo. 2 microL Gd-DTPA was introduced into ECS by caudate nucleus according to stereotaxic atlas in 8 Sprague Dawley(SD) rats (male, 280-320 g). The MRI scans were performed at 1 h, 3 h, 6 h, 9 h and 12 h respectively after administration. MRI appearances of Gd-DTPA diffusion and distribution was observed and compared. The MRI signal enhancement was measured at each time point. The neuroethology assessment was performed after MRI scanning at 12 h. The injection was accurate at the center of the caudate nucleus in 6 rats, while, at the capsula externa in other 2 rats. Gd-DTPA diffused isotropically after it was introduced into caudate nucleus, which spread into lateral cortex at 3 h. The MRI signal enhancement distributed mainly in the middle cerebral artery territory. A significant difference was found between the signal enhancement ratio at 1 h and that at 3 h in the original point of caudate nucleus (t=95.63, P<0.01), and the signal enhancement attenuated following the exponential power function y=1.7886x(-0.1776) (R2=0.94). In 2 rats with the injection point at capsula externa, Gd-DTPA diffused anisotropically along the fiber track of white matter during 1 h to 3 h, and spread into the lateral cortex at 6 h. The diffusion and clearance of Gd-DTPA in brain ECS could be monitored and measured quantitatively in vivo by MRI tracer method.

  1. Magnetic Resonance Imaging

    MedlinePlus

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  2. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  3. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  4. MRI of hand and wrist with a dedicated low field mini imager: preliminary report.

    PubMed

    Constantinesco, A; Brunot, B; Foucher, G

    1992-01-01

    In this paper we describe the development and the early results of an MRI system designed specifically for imaging of the hand and wrist. The imager takes up little space, uses a small 0.1 Tesla water-cooled electro-magnet with a vertical magnetic field and a 15 cm air gap. The system is based on a PC micro-computer and an integrated image processing board. There is no need for a Faraday cage. The image resolution is less than 1 mm using a 128 x 128 matrix format for a typical slice thickness of 3 mm. It is possible to achieve a 0.2 mm per pixel spatial resolution when imaging the fingers.

  5. PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method.

    PubMed

    Haddadpour, Mozhdeh; Daneshvar, Sabalan; Seyedarabi, Hadi

    2017-08-01

    The process of medical image fusion is combining two or more medical images such as Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) and mapping them to a single image as fused image. So purpose of our study is assisting physicians to diagnose and treat the diseases in the least of the time. We used Magnetic Resonance Image (MRI) and Positron Emission Tomography (PET) as input images, so fused them based on combination of two dimensional Hilbert transform (2-D HT) and Intensity Hue Saturation (IHS) method. Evaluation metrics that we apply are Discrepancy (D k ) as an assessing spectral features and Average Gradient (AG k ) as an evaluating spatial features and also Overall Performance (O.P) to verify properly of the proposed method. In this paper we used three common evaluation metrics like Average Gradient (AG k ) and the lowest Discrepancy (D k ) and Overall Performance (O.P) to evaluate the performance of our method. Simulated and numerical results represent the desired performance of proposed method. Since that the main purpose of medical image fusion is preserving both spatial and spectral features of input images, so based on numerical results of evaluation metrics such as Average Gradient (AG k ), Discrepancy (D k ) and Overall Performance (O.P) and also desired simulated results, it can be concluded that our proposed method can preserve both spatial and spectral features of input images. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  6. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.

    PubMed

    Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas

    2018-06-01

    To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  8. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  9. Development of a high resolution MRI intracranial atherosclerosis imaging phantom.

    PubMed

    Chueh, Ju-Yu; van der Marel, Kajo; Gounis, Matthew J; LeMatty, Todd; Brown, Truman R; Ansari, Sameer A; Carroll, Timothy J; Buck, Amanda K; Zhou, Xiaohong Joe; Chatterjee, A Rano; King, Robert M; Mao, Hui; Zheng, Shaokuan; Brooks, Olivia W; Rappleye, Jeff W; Swartz, Richard H; Feldmann, Edward; Turan, Tanya N

    2018-02-01

    Currently, there is neither a standard protocol for vessel wall MR imaging of intracranial atherosclerotic disease (ICAD) nor a gold standard phantom to compare MR sequences. In this study, a plaque phantom is developed and characterized that provides a platform for establishing a uniform imaging approach for ICAD. A patient specific injection mold was 3D printed to construct a geometrically accurate ICAD phantom. Polyvinyl alcohol hydrogel was infused into the core shell mold to form the stenotic artery. The ICAD phantom incorporated materials mimicking a stenotic vessel and plaque components, including fibrous cap and lipid core. Two phantoms were scanned using high resolution cone beam CT and compared with four different 3 T MRI systems across eight different sites over a period of 18 months. Inter-phantom variability was assessed by lumen dimensions and contrast to noise ratio (CNR). Quantitative evaluation of the minimum lumen radius in the stenosis showed that the radius was on average 0.80 mm (95% CI 0.77 to 0.82 mm) in model 1 and 0.77 mm (95% CI 0.74 to 0.81 mm) in model 2. The highest CNRs were observed for comparisons between lipid and vessel wall. To evaluate manufacturing reproducibility, the CNR variability between the two models had an average absolute difference of 4.31 (95% CI 3.82 to 5.78). Variation in CNR between the images from the same scanner separated by 7 months was 2.5-6.2, showing reproducible phantom durability. A plaque phantom composed of a stenotic vessel wall and plaque components was successfully constructed for multicenter high resolution MRI standardization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Portable MRI developed at Los Alamos

    ScienceCinema

    Espy, Michelle

    2018-02-14

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are

  12. Portable MRI developed at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines justmore » can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block

  13. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  14. An MRI-compatible platform for one-dimensional motion management studies in MRI.

    PubMed

    Nofiele, Joris; Yuan, Qing; Kazem, Mohammad; Tatebe, Ken; Torres, Quinn; Sawant, Amit; Pedrosa, Ivan; Chopra, Rajiv

    2016-08-01

    Abdominal MRI remains challenging because of respiratory motion. Motion compensation strategies are difficult to compare clinically because of the variability across human subjects. The goal of this study was to evaluate a programmable system for one-dimensional motion management MRI research. A system comprised of a programmable motorized linear stage and computer was assembled and tested in the MRI environment. Tests of the mutual interference between the platform and a whole-body MRI were performed. Organ trajectories generated from a high-temporal resolution scan of a healthy volunteer were used in phantom tests to evaluate the effects of motion on image quality and quantitative MRI measurements. No interference between the motion platform and the MRI was observed, and reliable motion could be produced across a wide range of imaging conditions. Motion-related artifacts commensurate with motion amplitude, frequency, and waveform were observed. T2 measurement of a kidney lesion in an abdominal phantom showed that its value decreased by 67% with physiologic motion, but could be partially recovered with navigator-based motion-compensation. The motion platform can produce reliable linear motion within a whole-body MRI. The system can serve as a foundation for a research platform to investigate and develop motion management approaches for MRI. Magn Reson Med 76:702-712, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Comparison of gadobenate dimeglumine-enhanced breast MRI and gadopentetate dimeglumine-enhanced breast MRI with mammography and ultrasound for the detection of breast cancer.

    PubMed

    Gilbert, Fiona J; van den Bosch, Harrie C M; Petrillo, Antonella; Siegmann, Katja; Heverhagen, Johannes T; Panizza, Pietro; Gehl, Hans-Björn; Pediconi, Federica; Diekmann, Felix; Peng, Wei-Jun; Ma, Lin; Sardanelli, Francesco; Belli, Paolo; Corcione, Stefano; Zechmann, Christian M; Faivre-Pierret, Matthieu; Martincich, Laura

    2014-05-01

    To compare gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) with gadopentetate dimeglumine-enhanced MRI, mammography, and ultrasound for breast cancer detection across different malignant lesion types and across different densities of breast tissue. In all, 153 women with Breast Imaging Reporting and Data System (BI-RADS) 3–5 findings on mammography and/or ultrasound underwent identical breast MRI exams at 1.5T with gadobenate dimeglumine and gadopentetate dimeglumine. Images were evaluated by three independent blinded radiologists. Mammography, ultrasound, and combined mammography and/or ultrasound findings were available for 108, 109, and 131 women. Imaging findings were matched with histology data by a fourth, independent, blinded radiologist. Malignant lesion detection rates and diagnostic performance were compared. In all, 120, 120, and 140 confirmed malignant lesions were present in patients undergoing MRI+mammography, MRI+ultrasound, and MRI+mammography and/or ultrasound, respectively. Significantly greater cancer detection rates were noted by all three readers for comparisons of gadobenate dimeglumine-enhanced MRI with mammography (Δ15.8–17.5%; P < 0.0001), ultrasound (Δ18.3–20.0%; P < 0.0001), and mammography and/or ultrasound (Δ8.6–10.7%; P ≤ 0.0105) but not for comparisons of gadopentetate dimeglumine-enhanced MRI with conventional techniques (P > 0.05). The false-positive detection rates were lower on gadobenate dimeglumine-enhanced MRI than on conventional imaging (4.0–5.5% vs. 11.1% at mammography; 6.3–8.4% vs. 15.5% at ultrasound). Significantly improved cancer detection on MRI was noted in heterogeneously dense breast (91.2–97.3% on gadobenate dimeglumine-enhanced MRI vs. 77.2–84.9% on gadopentetate dimeglumine-enhanced MRI vs. 71.9-84.9% with conventional techniques) and for invasive cancers (93.2–96.2% for invasive ductal carcinoma [IDC] on gadobenate dimeglumine-enhanced MRI vs. 79.7–88.5% on gadopentetate

  16. MRI in multiple sclerosis: current status and future prospects

    PubMed Central

    Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo

    2008-01-01

    Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455

  17. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  18. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  19. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2014-03-01

    Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.

  20. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  1. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging.

    PubMed

    Chen, Lihua; Liu, Daihong; Zhang, Jiuquan; Xie, Bing; Zhou, Xiaoyue; Grimm, Robert; Huang, Xuequan; Wang, Jian; Feng, Li

    2018-02-13

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be a promising technique for assessing lung lesions. However, DCE-MRI often suffers from motion artifacts and insufficient imaging speed. Therefore, highly accelerated free-breathing DCE-MRI is of clinical interest for lung exams. To test the performance of rapid free-breathing DCE-MRI for simultaneous qualitative and quantitative assessment of pulmonary lesions using Golden-angle RAdial Sparse Parallel (GRASP) imaging. Prospective. Twenty-six patients (17 males, mean age = 55.1 ± 14.4) with known pulmonary lesions. 3T MR scanner; a prototype fat-saturated, T 1 -weighted stack-of-stars golden-angle radial sequence for data acquisition and a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence for comparison. After a dual-mode GRASP reconstruction, one with 3-second temporal resolution (3s-GRASP) and the other with 15-second temporal resolution (15s-GRASP), all GRASP and BH-VIBE images were pooled together for blind assessment by two experienced radiologists, who independently scored the overall image quality, lesion delineation, overall artifact level, and diagnostic confidence of each case. Perfusion analysis was performed for the 3s-GRASP images using a Tofts model to generate the volume transfer coefficient (K trans ) and interstitial volume (V e ). Nonparametric paired two-tailed Wilcoxon signed-rank test; Cohen's kappa; unpaired Student's t-test. 15s-GRASP achieved comparable image quality with conventional BH-VIBE (P > 0.05), except for the higher overall artifact level in the precontrast phase (P = 0.018). The K trans and V e in inflammation were higher than those in malignant lesions (K trans : 0.78 ± 0.52 min -1 vs. 0.37 ± 0.22 min -1 , P = 0.020; V e : 0.36 ± 0.16 vs. 0.26 ± 0.1, P = 0.177). Also, the K trans and V e in malignant lesions were also higher than those in benign lesions (K trans : 0.37

  2. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    PubMed

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.

  3. Volume estimation of brain abnormalities in MRI data

    NASA Astrophysics Data System (ADS)

    Suprijadi, Pratama, S. H.; Haryanto, F.

    2014-02-01

    The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.

  4. Imaging of Herniated Discs of the Cervical Spine: Inter-Modality Differences between 64-Slice Multidetector CT and 1.5-T MRI

    PubMed Central

    Yi, Ji Sook; Han, Jong Kyu; Kim, Hyun-Joo

    2015-01-01

    Objective To assess inter-modality variability when evaluating cervical intervertebral disc herniation using 64-slice multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Materials and Methods Three musculoskeletal radiologists independently reviewed cervical spine 1.5-T MRI and 64-slice MDCT data on C2-3 though C6-7 of 51 patients in the context of intervertebral disc herniation. Interobserver and inter-modality agreements were expressed as unweighted kappa values. Weighted kappa statistics were used to assess the extents of agreement in terms of the number of involved segments (NIS) in disc herniation and epicenter measurements collected using MDCT and MRI. Results The interobserver agreement rates upon evaluation of disc morphology by the three radiologists were in fair to moderate agreement (k = 0.39-0.53 for MDCT images; k = 0.45-0.56 for MRIs). When the disc morphology was categorized into two and four grades, the inter-modality agreement rates were moderate (k-value, 0.59) and substantial (k-value, 0.66), respectively. The inter-modality agreements for evaluations of the NIS (k-value, 0.78) and the epicenter (k-value, 0.79) were substantial. Also, the interobserver agreements for the NIS (CT; k-value, 0.85 and MRI; k-value, 0.88) and epicenter (CT; k-value, 0.74 and MRI; k-value, 0.70) evaluations by two readers were substantial. MDCT tended to underestimate the extent of herniated disc lesions compared with MRI. Conclusion Multidetector-row computed tomography and MRI showed a moderate-to-substantial degree of inter-modality agreement for the assessment of herniated cervical discs. MDCT images have a tendency to underestimate the anterior/posterior extent of the herniated disc compared with MRI. PMID:26175589

  5. Small mammal MRI imaging in spinal cord injury: a novel practical technique for using a 1.5 T MRI.

    PubMed

    Levene, Howard B; Mohamed, Feroze B; Faro, Scott H; Seshadri, Asha B; Loftus, Christopher M; Tuma, Ronald F; Jallo, Jack I

    2008-07-30

    The field of spinal cord injury research is an active one. The pathophysiology of SCI is not yet entirely revealed. As such, animal models are required for the exploration of new therapies and treatments. We present a novel technique using available hospital MRI machines to examine SCI in a mouse SCI model. The model is a 60 kdyne direct contusion injury in a mouse thoracic spine. No new electronic equipment is required. A 1.5T MRI machine with a human wrist coil is employed. A standard multisection 2D fast spin-echo (FSE) T2-weighted sequence is used for imaging the mouse. The contrast-to-noise ratio (CNR) between the injured and normal area of the spinal cord showed a three-fold increase in the contrast between these two regions. The MRI findings could be correlated with kinematic outcome scores of ambulation, such as BBB or BMS. The ability to follow a SCI in the same animal over time should improve the quality of data while reducing the quantity of animals required in SCI research. It is the aim of the authors to share this non-invasive technique and to make it available to the scientific research community.

  6. Cardiac MRI in patients with complex CHD following primary or secondary implantation of MRI-conditional pacemaker system.

    PubMed

    Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern

    2016-02-01

    In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.

  7. MRI features of extramedullary myeloma.

    PubMed

    Tirumani, Sree Harsha; Shinagare, Atul B; Jagannathan, Jyothi P; Krajewski, Katherine M; Munshi, Nikhil C; Ramaiya, Nikhil H

    2014-04-01

    The purpose of this study was to describe the MRI features of extramedullary myeloma and to evaluate the role of MRI in extramedullary myeloma. The cases of 28 patients (15 men, 13 women; mean age, 57.53 years; range, 34-83 years) with extramedullary myeloma who underwent MRI at one institution from January 2004 through December 2012 were retrospectively identified through an electronic search of an institutional radiology database. Two radiologists reviewed images from 44 MRI examinations in consensus to document the morphologic, signal-intensity, and enhancement characteristics of extramedullary myeloma. Electronic medical records were reviewed to document the indication for MRI and subsequent management of extramedullary myeloma. A total of 72 sites of extramedullary myeloma were noted, most commonly the paraspinal-epidural location (28/72, 39%). Two radiologic patterns were identified: lesions contiguous with bone (n = 44) and lesions noncontiguous with bone (n = 28). Lesions contiguous with bone were larger (p = 0.001; Student t test). Of 28 paraspinal-epidural lesions, 13 compressed the cord. Compared with skeletal muscle, most of the lesions were hypointense to isointense on T1-weighted images (67/72, 93.1%) and isointense to hyperintense on T2-weighted images (62/72, 86.1%). Lesions noncontiguous with bone were more often hypointense on T2-weighted images (8/28 vs 2/44; p = 0.006; Fisher exact test). Neurologic symptoms prompted MRI in most cases (n = 32/44). MRI was helpful in management by radiotherapy and surgery (19/28). Extramedullary myeloma can be contiguous or noncontiguous with bone. Lesions contiguous with bone are larger, often occur in a paraspinal or epidural location, and can cause cord compression. Lesions noncontiguous with bone can be T2 hypointense. MRI helps in treatment planning.

  8. SU-E-J-226: Efficient Use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) for Cervical-Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, A; Bhagwat, M; Buzurovic, I

    Purpose: To investigate image modality selection in an environment with limited access to interventional MRI for image-guided high-dose-rate cervical-cancer brachytherapy. Methods: Records of all cervical-cancer patients treated with brachytherapy between 1/2013 and 8/2014 were analyzed. Insertions were performed under CT guidance (CT group) or with >1 fraction under 3T MR guidance (MRI group; subMRI includes only patients who also had a CT-guided insertion). Differences between groups in clinical target volume (CTV), disease stage (I/II or III/IV), number of patients with or without interstitial needles, and CTV D90 were investigated. Statistical significance was evaluated with the Student T test and Fishermore » test (p <0.05). Results: 46 cervical-cancer patients were included (16 MRI [3 subMRI], 30 CT). CTV: overall, 55±53 cm3; MRI, 81±61 cm3; CT, 42±44 cm3 (p = 0.017). Stage: overall, 24 I/II and 22 III/IV; MRI, 3 I/II and 13 III/IV; CT, 21 I/II and 9 III/IV (p = 0.002). Use of needles: overall, 26 without and 20 with; MRI, 5 without and 11 with; CT, 21 without and 9 with (p = 0.015). CTV D90: overall, 82±5 Gy; MRI, 81±6 Gy; CT, 82±5 Gy (p = 0.78). SubMRI: CTV and D90 (as % of nominal fraction dose) were 23±6 cm3 and 124±3% for MRI-guided insertions and 21±5 cm3 (p = 0.83) and 106±12% (p = 0.15) for CT-guided insertions. Conclusion: Statistically significant differences in patient population indicate preferential use of MRI for patients with high-stage disease and large residual CTVs requiring the use of interstitial needles. CTV D90 was similar between groups, despite the difference in patient selection. For patients who underwent both CT and MRI insertions, a larger MR CTV D90 and similar CTVs between insertions were observed. While MRI is generally preferable to CT, MRI selection can be optimized in environments without a dedicated MRI brachytherapy suite. This work was partially funded by the NIH R21 CA167800 (PI: Viswanathan; aviswanathan@partners.org)« less

  9. Connectivity changes after laser ablation: Resting-state fMRI.

    PubMed

    Boerwinkle, Varina L; Vedantam, Aditya; Lam, Sandi; Wilfong, Angus A; Curry, Daniel J

    2018-05-01

    Resting-state functional magnetic resonance imaging (rsfMRI) is emerging as a useful tool in the multimodal assessment of patients with epilepsy. In pediatric patients who cannot perform task-based fMRI, rsfMRI may present an adjunct and alternative. Although changes in brain activation during task-based fMRI have been described after surgery for epilepsy, there is limited data on the role of postoperative rsfMRI. In this short review, we discuss the role of postoperative rsfMRI after laser ablation of seizure foci. By establishing standardized anesthesia protocols and imaging parameters, we have been able to perform serial rsfMRI at postoperative follow-up. The development of in-house software that can merge rsfMRI images to surgical navigation systems has allowed us to enhance the clinical applications of this technique. Resting-state fMRI after laser ablation has the potential to identify changes in connectivity, localize new seizure foci, and guide antiepileptic therapy. In our experience, rsfMRI complements conventional MR imaging and task-based fMRI for the evaluation of patients with seizure recurrence after laser ablation, and represents a potential noninvasive biomarker for functional connectivity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials.

    PubMed

    Neggers, S F W; Langerak, T R; Schutter, D J L G; Mandl, R C W; Ramsey, N F; Lemmens, P J J; Postma, A

    2004-04-01

    Transcranial Magnetic Stimulation (TMS) delivers short magnetic pulses that penetrate the skull unattenuated, disrupting neural processing in a noninvasive, reversible way. To disrupt specific neural processes, coil placement over the proper site is critical. Therefore, a neural navigator (NeNa) was developed. NeNa is a frameless stereotactic device using structural and functional magnetic resonance imaging (fMRI) data to guide TMS coil placement. To coregister the participant's head to his MRI, 3D cursors are moved to anatomical landmarks on a skin rendering of the participants MRI on a screen, and measured at the head with a position measurement device. A method is proposed to calculate a rigid body transformation that can coregister both sets of coordinates under realistic noise conditions. After coregistration, NeNa visualizes in real time where the device is located with respect to the head, brain structures, and activated areas, enabling precise placement of the TMS coil over a predefined target region. NeNa was validated by stimulating 5 x 5 positions around the 'motor hotspot' (thumb movement area), which was marked on the scalp guided by individual fMRI data, while recording motor-evoked potentials (MEPs) from the abductor pollicis brevis (APB). The distance between the center of gravity (CoG) of MEP responses and the location marked on the scalp overlying maximum fMRI activation was on average less then 5 mm. The present results demonstrate that NeNa is a reliable method for image-guided TMS coil placement.

  11. Imaging Characteristics of Prostate Cancer Patients Who Discontinued Active Surveillance on 3-T Multiparametric Prostate MRI.

    PubMed

    Habibian, David J; Liu, Corinne C; Dao, Alex; Kosinski, Kaitlin E; Katz, Aaron E

    2017-03-01

    Early-stage prostate cancer may be followed with active surveillance to avoid overtreatment. Our institution's active surveillance regimen uses annual MRI in place of serial biopsies, and biopsies are performed only when clinically necessary. The objective of our study was to report the multiparametric MRI characteristics of prostate cancer patients who discontinued active surveillance at our institution after repeat imaging revealed possible evidence of tumor upgrading. The Department of Urology at Winthrop University Hospital prospectively maintains a database of prostate cancer patients who are monitored with active surveillance. At the time of this study, there were 200 prostate cancer patients being monitored with active surveillance. Of those patients, 114 patients had an initial multiparametric MRI study that was performed before active surveillance started and at least one follow-up multiparametric MRI study that was performed after active surveillance began. The MRI findings were evaluated and correlated with pathology results, if available. Fourteen patients discontinued active surveillance because changes on follow-up MRI suggested progression of cancer. Follow-up MRI showed an enlarged or more prominent lesion compared with the appearance on a previous MRI in three (21.4%) patients, a new lesion or lesions suspicious for cancer in two (14.3%) patients, and findings suspicious for or confirming extracapsular extension in nine (64.3%) patients. Seven of the 14 (50.0%) patients had a biopsy after follow-up multiparametric MRI, and biopsy results led to tumor upgrading in six of the 14 (42.9%) patients. The duration of active surveillance ranged from 4 to 110 months. All patients received definitive treatment. The small number of patients with follow-up multiparametric MRI findings showing worsening disease supports the role of MRI in patients with early-stage prostate cancer. Multiparametric MRI is useful in monitoring patients on active surveillance and

  12. Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation.

    PubMed

    Mehmood, Irfan; Ejaz, Naveed; Sajjad, Muhammad; Baik, Sung Wook

    2013-10-01

    The objective of the present study is to explore prioritization methods in diagnostic imaging modalities to automatically determine the contents of medical images. In this paper, we propose an efficient prioritization of brain MRI. First, the visual perception of the radiologists is adapted to identify salient regions. Then this saliency information is used as an automatic label for accurate segmentation of brain lesion to determine the scientific value of that image. The qualitative and quantitative results prove that the rankings generated by the proposed method are closer to the rankings created by radiologists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Tze Yee

    Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images. Visualization of these markers under varying scan parameters was investigated. Methods: To simulate a clinical scenario, a prostate phantom was implanted with 66 markers and 86 seeds, and imaged on a 3.0T MRI scanner using a 3D fast radiofrequency-spoiled gradient recalled echo acquisitionmore » with various combinations of scan parameters. Scan parameters, including flip angle, number of excitations, bandwidth, field-of-view, slice thickness, and encoding steps were systematically varied to study their effects on signal, noise, scan time, image resolution, and artifacts. Results: The effects of pulse sequence parameter selection on the marker signal strength and image noise were characterized. The authors also examined the tradeoff between signal-to-noise ratio, scan time, and image artifacts, such as the wraparound artifact, susceptibility artifact, chemical shift artifact, and partial volume averaging artifact. Given reasonable scan time and managable artifacts, the authors recommended scan parameter combinations that can provide robust visualization of the MRI markers. Conclusions: The recommended MRI pulse sequence protocol allows for consistent visualization of the markers to assist seed localization, potentially enabling MRI-only prostate postimplant dosimetry.« less

  14. Peripouch Fat Area Measured on MRI Image and Its Association With Adverse Pouch Outcomes.

    PubMed

    Gao, Xian Hua; Chouhan, Hanumant; Liu, Gang Lei; Lan, Nan; Remer, Erick; Stocchi, Luca; Ashburn, Jean; Hull, Tracy L; Shen, Bo

    2018-03-19

    There are no published studies on the impact of peripouch fat on pouch outcomes in inflammatory bowel disease (IBD) patients. Patients with pelvic MRI-DIXON scans from our prospectively maintained Pouch Database between 2002 and 2016 were evaluated. Peripouch fat area was measured on MRI-DIXON-F images at the middle height level of the pouch (area M) and the highest level of the pouch (area H). Of all 1863 patients in the database, 197 eligible patients were included in this study. The median of area M was 52.4 cm2, so the 197 patients were classified into 2 groups: group 1 (Area-M <52.4 cm2) and group 2 (Area-M ≥52.4 cm2). Compared with group 1, group 2 was found to have thicker perianal fat, more Caucasian and more males. Group 2 also had a higher Area-H, more weight, height, and body mass index, along with greater age at IBD diagnosis, age at pouch construction and pouch age, and a higher frequency of total pouch complication (86.7% versus 66.7%, P = 0.001), chronic pouch complication (68.4% versus 51.5%, P = 0.016), and chronic antibiotic-refractory pouchitis (16.3% versus 7.1%, P = 0.043). Multivariate logistic analysis showed that Area-M was an independent risk factor for chronic antibiotic-refractory pouchitis (odds ratio [OR]: 1.025; 95% confidence interval [CI]: 1.007-1.042, P = 0.005). The 22 patients with 2 or more pelvic MRI-DIXON scans were further classified into 2 groups by the change from the initial to latest MRI-DIXON scans. Patients with Area-M increase ≥10% and Area-M/height increase ≥10% were found to have shorter pouch survivals than those with increase <10%. A new method was established for measuring peripouch fat using pelvic MRI-DIXON-F image. Our study suggests that accumulation of peripouch fat may be associated with poor outcomes in selected IBD patients suspected of inflammatory or mechanical disorders of the pouch. Whether this association is causal warrants further investigation.

  15. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    PubMed

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  16. Magnetic resonance imaging (MRI) and prognostication in neonatal hypoxic-ischemic injury: a vignette-based study of Canadian specialty physicians.

    PubMed

    Bell, Emily; Rasmussen, Lisa Anne; Mazer, Barbara; Shevell, Michael; Miller, Steven P; Synnes, Anne; Yager, Jerome Y; Majnemer, Annette; Muhajarine, Nazeem; Chouinard, Isabelle; Racine, Eric

    2015-02-01

    Magnetic resonance imaging (MRI) could improve prognostication in neonatal brain injury; however, factors beyond technical or scientific refinement may impact its use and interpretation. We surveyed Canadian neonatologists and pediatric neurologists using general and vignette-based questions about the use of MRI for prognostication in neonates with hypoxic-ischemic injury. There was inter- and intra-vignette variability in prognosis and in ratings about the usefulness of MRI. Severity of predicted outcome correlated with certainty about the outcome. A majority of physicians endorsed using MRI results in discussing prognosis with families, and most suggested that MRI results contribute to end-of-life decisions. Participating neonatologists, when compared to participating pediatric neurologists, had significantly less confidence in the interpretation of MRI by colleagues in neurology and radiology. Further investigation is needed to understand the complexity of MRI and of its application. Potential gaps relative to our understanding of the ethical importance of these findings should be addressed. © The Author(s) 2014.

  17. Acute Brain Imaging in Children: Can MRI Replace CT as a Screening Tool?

    PubMed

    Wagner, Matthias W; Kontzialis, Marinos; Seeburg, Daniel; Stern, Steven E; Oshmyansky, Alexander; Poretti, Andrea; Huisman, Thierry A G M

    2016-01-01

    To determine if axial T2-weighted imaging can serve as screening tool for pediatric brain imaging. We retrospectively evaluated consecutive brain magnetic resonance imaging (MRI) data of 161 children (74 girls) with a mean age of 7.44 ± 5.71 years. Standard of reference was the final report of neuroradiology attendings. Three readers with different levels of experience were blinded for clinical diagnoses and study indications. First, readers studied only the axial T2-weighted screening sequence. Second, they studied all available anatomical and functional MRI sequences as performed per standard protocol for each clinical indication. The readings were classified as normal or abnormal. Sensitivity and specificity were measured. Axial T2 screening yielded a sensitivity of 77-88% and a specificity of 92%. The full studies/data sets had a sensitivity of 89-95% and a specificity of 86-93%. Nineteen of 167 studies were acquired for acute and 148 of 167 studies for nonacute clinical indication. Twenty-five false-negative diagnoses paneled in three groups were made by all readers together. Readers misread four of 19 studies with acute and 21 of 148 studies with nonacute clinical indication. Four of 21 misread studies with nonacute indications harbored unexpected findings needing management. Axial T2 screening can detect pediatric brain abnormalities with high sensitivity and specificity and can possibly replace CT as screening tool if the reading physician is aware of possible limitations/pitfalls. The level of experience influences sensitivity and specificity. Adding diffusion-weighted imaging and susceptibility-weighted imaging to a 3-dimensional T2-weighted sequence would most likely further increase sensitivity and specificity. Copyright © 2015 by the American Society of Neuroimaging.

  18. Recent advances in MRI technology: Implications for image quality and patient safety

    PubMed Central

    Sobol, Wlad T.

    2012-01-01

    Recent advances in MRI technology are presented, with emphasis on how this new technology impacts clinical operations (better image quality, faster exam times, and improved throughput). In addition, implications for patient safety are discussed with emphasis on the risk of patient injury due to either high local specific absorption rate (SAR) or large cumulative energy doses delivered during long exam times. Patient comfort issues are examined as well. PMID:23961024

  19. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    PubMed

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  20. Studying neuroanatomy using MRI.

    PubMed

    Lerch, Jason P; van der Kouwe, André J W; Raznahan, Armin; Paus, Tomáš; Johansen-Berg, Heidi; Miller, Karla L; Smith, Stephen M; Fischl, Bruce; Sotiropoulos, Stamatios N

    2017-02-23

    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging and disease. Developments in MRI acquisition, image processing and data modeling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and for inferring microstructural properties; we also describe key artifacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, although methods need to improve and caution is required in interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works.

  1. Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong

    2017-02-01

    In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.

  2. Application of probabilistically weighted graphs to image-based diagnosis of Alzheimer's disease using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg

    2017-03-01

    The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.

  3. MRI in local staging of rectal cancer: an update

    PubMed Central

    Tapan, Ümit; Özbayrak, Mustafa; Tatlı, Servet

    2014-01-01

    Preoperative imaging for staging of rectal cancer has become an important aspect of current approach to rectal cancer management, because it helps to select suitable patients for neoadjuvant chemoradiotherapy and determine the appropriate surgical technique. Imaging modalities such as endoscopic ultrasonography, computed tomography, and magnetic resonance imaging (MRI) play an important role in assessing the depth of tumor penetration, lymph node involvement, mesorectal fascia and anal sphincter invasion, and presence of distant metastatic diseases. Currently, there is no consensus on a preferred imaging technique for preoperative staging of rectal cancer. However, high-resolution phased-array MRI is recommended as a standard imaging modality for preoperative local staging of rectal cancer, with excellent soft tissue contrast, multiplanar capability, and absence of ionizing radiation. This review will mainly focus on the role of MRI in preoperative local staging of rectal cancer and discuss recent advancements in MRI technique such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. PMID:25010367

  4. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  5. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  6. Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis.

    PubMed

    Padgett, Kyle R; Stoyanova, Radka; Pirozzi, Sara; Johnson, Perry; Piper, Jon; Dogan, Nesrin; Pollack, Alan

    2018-03-01

    Validating deformable multimodality image registrations is challenging due to intrinsic differences in signal characteristics and their spatial intensity distributions. Evaluating multimodality registrations using these spatial intensity distributions is also complicated by the fact that these metrics are often employed in the registration optimization process. This work evaluates rigid and deformable image registrations of the prostate in between diagnostic-MRI and radiation treatment planning-CT by utilizing a planning-MRI after fiducial marker placement as a surrogate. The surrogate allows for the direct quantitative analysis that can be difficult in the multimodality domain. For thirteen prostate patients, T2 images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day as the planning-CT (planning-MRI). The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available algorithm which synthesizes a deformable image registration (DIR) algorithm from local rigid registrations. The planning-MRI provided an independent surrogate for the planning-CT for assessing registration accuracy using image similarity metrics, including Pearson correlation and normalized mutual information (NMI). A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb, and combined areas. The planning-MRI provided an excellent surrogate for the planning-CT with residual error in fiducial alignment between the two datasets being submillimeter, 0.78 mm. DIR was superior to the rigid registration in 11 of 13 cases demonstrating a 27.37% improvement in NMI (P < 0.009) within a regional area surrounding the prostate and associated critical organs. Pearson correlations showed similar results, demonstrating a 13.02% improvement (P < 0.013). By utilizing the planning-MRI as a surrogate for the planning-CT, an independent evaluation of registration

  7. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  8. 7 T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.

  9. Utility of Postmortem Autopsy via Whole-Body Imaging: Initial Observations Comparing MDCT and 3.0T MRI Findings with Autopsy Findings

    PubMed Central

    Cha, Jang Gyu; Kim, Dong Hun; Kim, Dae Ho; Paik, Sang Hyun; Park, Jai Soung; Park, Seong Jin; Lee, Hae Kyung; Hong, Hyun Sook; Choi, Duek Lin; Chung, Nak Eun; Lee, Bong Woo; Seo, Joong Seok

    2010-01-01

    Objective We prospectively compared whole-body multidetector computed tomography (MDCT) and 3.0T magnetic resonance (MR) images with autopsy findings. Materials and Methods Five cadavers were subjected to whole-body, 16-channel MDCT and 3.0T MR imaging within two hours before an autopsy. A radiologist classified the MDCT and 3.0T MRI findings into major and minor findings, which were compared with autopsy findings. Results Most of the imaging findings, pertaining to head and neck, heart and vascular, chest, abdomen, spine, and musculoskeletal lesions, corresponded to autopsy findings. The causes of death that were determined on the bases of MDCT and 3.0T MRI findings were consistent with the autopsy findings in four of five cases. CT was useful in diagnosing fatal hemorrhage and pneumothorax, as well as determining the shapes and characteristics of the fractures and the direction of external force. MRI was effective in evaluating and tracing the route of a metallic object, soft tissue lesions, chronicity of hemorrhage, and bone bruises. Conclusion A postmortem MDCT combined with MRI is a potentially powerful tool, providing noninvasive and objective measurements for forensic investigations. PMID:20592923

  10. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool.

    PubMed

    Gaziev, Gabriele; Wadhwa, Karan; Barrett, Tristan; Koo, Brendan C; Gallagher, Ferdia A; Serrao, Eva; Frey, Julia; Seidenader, Jonas; Carmona, Lina; Warren, Anne; Gnanapragasam, Vincent; Doble, Andrew; Kastner, Christof

    2016-01-01

    To determine the accuracy of multiparametric magnetic resonance imaging (mpMRI) during the learning curve of radiologists using MRI targeted, transrectal ultrasonography (TRUS) guided transperineal fusion biopsy (MTTP) for validation. Prospective data on 340 men who underwent mpMRI (T2-weighted and diffusion-weighted MRI) followed by MTTP prostate biopsy, was collected according to Ginsburg Study Group and Standards for Reporting of Diagnostic Accuracy standards. MRI data were reported by two experienced radiologists and scored on a Likert scale. Biopsies were performed by consultant urologists not 'blinded' to the MRI result and men had both targeted and systematic sector biopsies, which were reviewed by a dedicated uropathologist. The cohorts were divided into groups representing five consecutive time intervals in the study. Sensitivity and specificity of positive MRI reports, prostate cancer detection by positive MRI, distribution of significant Gleason score and negative MRI with false negative for prostate cancer were calculated. Data were sequentially analysed and the learning curve was determined by comparing the first and last group. We detected a positive mpMRI in 64 patients from Group A (91%) and 52 patients from Group E (74%). The prostate cancer detection rate on mpMRI increased from 42% (27/64) in Group A to 81% (42/52) in Group E (P < 0.001). The prostate cancer detection rate by targeted biopsy increased from 27% (17/64) in Group A to 63% (33/52) in Group E (P < 0.001). The negative predictive value of MRI for significant cancer (>Gleason 3+3) was 88.9% in Group E compared with 66.6% in Group A. We demonstrate an improvement in detection of prostate cancer for MRI reporting over time, suggesting a learning curve for the technique. With an improved negative predictive value for significant cancer, decision for biopsy should be based on patient/surgeon factors and risk attributes alongside the MRI findings. © 2014 The Authors BJU International

  11. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  12. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    PubMed

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  13. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  14. 18F-DCFBC Prostate-Specific Membrane Antigen-Targeted PET/CT Imaging in Localized Prostate Cancer: Correlation With Multiparametric MRI and Histopathology.

    PubMed

    Turkbey, Baris; Mena, Esther; Lindenberg, Liza; Adler, Stephen; Bednarova, Sandra; Berman, Rose; Ton, Anita T; McKinney, Yolanda; Eclarinal, Philip; Hill, Craig; Afari, George; Bhattacharyya, Sibaprasad; Mease, Ronnie C; Merino, Maria J; Jacobs, Paula M; Wood, Bradford J; Pinto, Peter A; Pomper, Martin G; Choyke, Peter L

    2017-10-01

    To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it

  15. Choosing Between MRI and CT Imaging in the Adult with Congenital Heart Disease.

    PubMed

    Bonnichsen, Crystal; Ammash, Naser

    2016-05-01

    Improvements in the outcomes of surgical and catheter-based interventions and medical therapy have led to a growing population of adult patients with congenital heart disease. Adult patients with previously undiagnosed congenital heart disease or those previously palliated or repaired may have challenging echocardiographic examinations. Understanding the distinct anatomic and hemodynamic features of the congenital anomaly and quantifying ventricular function and valvular dysfunction plays an important role in the management of these patients. Rapid advances in imaging technology with magnetic resonance imaging (MRI) and computed tomography angiography (CTA) allow for improved visualization of complex cardiac anatomy in the evaluation of this unique patient population. Although echocardiography remains the most widely used imaging tool to evaluate congenital heart disease, alternative and, at times, complimentary imaging modalities should be considered. When caring for adults with congenital heart disease, it is important to choose the proper imaging study that can answer the clinical question with the highest quality images, lowest risk to the patient, and in a cost-efficient manner.

  16. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  17. Sodium and T1ρ MRI for molecular and diagnostic imaging of articular cartilage†

    PubMed Central

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J. Bruce; Reddy, Ravinder

    2010-01-01

    In this article, both sodium magnetic resonance (MR) and T1ρ relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1ρ, a brief description of (i) principles of measuring T1ρ relaxation, (ii) pulse sequences for computing T1ρ relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1ρ in biological tissues and (v) effects of exchange and dipolar interaction on T1ρ dispersion are discussed. Correlation of T1ρ relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1ρ data from osteoarthritic specimens, animal models, healthy human

  18. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    PubMed

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    In this article, both sodium magnetic resonance (MR) and T1rho relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi-exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra-high field scanners and parallel imaging methods). In the theory section on T1rho, a brief description of (i) principles of measuring T1rho relaxation, (ii) pulse sequences for computing T1rho relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1rho in biological tissues and (v) effects of exchange and dipolar interaction on T1rho dispersion are discussed. Correlation of T1rho relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine-induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1rho data from osteoarthritic specimens, animal models

  19. Current whole-body MRI applications in the neurofibromatoses

    PubMed Central

    Fayad, Laura M.; Khan, Muhammad Shayan; Bredella, Miriam A.; Harris, Gordon J.; Evans, D. Gareth; Farschtschi, Said; Jacobs, Michael A.; Chhabra, Avneesh; Salamon, Johannes M.; Wenzel, Ralph; Mautner, Victor F.; Dombi, Eva; Cai, Wenli; Plotkin, Scott R.; Blakeley, Jaishri O.

    2016-01-01

    Objectives: The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration Whole-Body MRI (WB-MRI) Working Group reviewed the existing literature on WB-MRI, an emerging technology for assessing disease in patients with neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN), to recommend optimal image acquisition and analysis methods to enable WB-MRI as an endpoint in NF clinical trials. Methods: A systematic process was used to review all published data about WB-MRI in NF syndromes to assess diagnostic accuracy, feasibility and reproducibility, and data about specific techniques for assessment of tumor burden, characterization of neoplasms, and response to therapy. Results: WB-MRI at 1.5T or 3.0T is feasible for image acquisition. Short tau inversion recovery (STIR) sequence is used in all investigations to date, suggesting consensus about the utility of this sequence for detection of WB tumor burden in people with NF. There are insufficient data to support a consensus statement about the optimal imaging planes (axial vs coronal) or 2D vs 3D approaches. Functional imaging, although used in some NF studies, has not been systematically applied or evaluated. There are no comparative studies between regional vs WB-MRI or evaluations of WB-MRI reproducibility. Conclusions: WB-MRI is feasible for identifying tumors using both 1.5T and 3.0T systems. The STIR sequence is a core sequence. Additional investigation is needed to define the optimal approach for volumetric analysis, the reproducibility of WB-MRI in NF, and the diagnostic performance of WB-MRI vs regional MRI. PMID:27527647

  20. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences.

    PubMed

    Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida

    2015-01-01

    We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.

  1. Impact of functional magnetic resonance imaging (fMRI) scanner noise on affective state and attentional performance.

    PubMed

    Jacob, Shawna N; Shear, Paula K; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M; Cerullo, Michael; Fleck, David E; Lee, Jing-Huei; Eliassen, James C

    2015-01-01

    Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in a magnetic resonance imaging (MRI) environment. Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a Self-Assessment Manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar functional magnetic resonance imaging (fMRI) tasks.

  2. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  3. CT and MRI imaging at the acute phase of inaugural non-traumatic hepatic haemorrhages.

    PubMed

    Boulouis, G; Marmin, C; Lemaire, S; Boury, S; Sergent, G; Mordon, S; Ernst, O

    2013-03-01

    Although rare, non-traumatic hepatic haemorrhage is a known complication of liver tumors. In cases where the haemorrhage is the first clinical event, diagnostic work-up is critical. This retrospective study was conducted between July 2001 and March 2011. Acute phase CT-scan and MRI imaging in patients diagnosed with non-traumatic liver hematomas were interpreted with particular attention to the radio-semiotic characteristics of hematomas and liver lesions. Those findings were then confronted to the patients' final diagnoses. Twelve patients were included (mean age of 42 years). In seven of them a suspect liver lesion was discovered in the acute CT-Scan or MRI imaging. All lesions were strongly hyper vascular.The haemorrhage revealed hepatocarcinoma in four patients, liver adenoma in two and focal nodular hyperplasia in an other. It is important in spontaneous liver haemorrhage to consider the high probability of hepatocarcinoma or potentially malignant lesions even when the patient has no known hepatic disorders, and especially in young patients. The results of this study show that imaging is a key issue at the acute phase of inaugural non-traumatic hepatic haemorrhages and requires a simple but complete triphasic injected protocol. Copyright © 2012 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  4. Validation of diffuse optical tomography using a bi-functional optical-MRI contrast agent and a hybrid MRI-DOT system

    NASA Astrophysics Data System (ADS)

    Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin

    2013-03-01

    Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"

  5. Clinical oncologic applications of PET/MRI: a new horizon

    PubMed Central

    Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R

    2014-01-01

    Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986

  6. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    PubMed

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  7. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.

    2015-05-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  9. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.

    PubMed

    Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A

    2015-01-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  10. Coregistration of Preoperative MRI with Ex Vivo Mesorectal Pathology Specimens to Spatially Map Post-treatment Changes in Rectal Cancer Onto In Vivo Imaging: Preliminary Findings.

    PubMed

    Antunes, Jacob; Viswanath, Satish; Brady, Justin T; Crawshaw, Benjamin; Ros, Pablo; Steele, Scott; Delaney, Conor P; Paspulati, Raj; Willis, Joseph; Madabhushi, Anant

    2018-07-01

    The objective of this study was to develop and quantitatively evaluate a radiology-pathology fusion method for spatially mapping tissue regions corresponding to different chemoradiation therapy-related effects from surgically excised whole-mount rectal cancer histopathology onto preoperative magnetic resonance imaging (MRI). This study included six subjects with rectal cancer treated with chemoradiation therapy who were then imaged with a 3-T T2-weighted MRI sequence, before undergoing mesorectal excision surgery. Excised rectal specimens were sectioned, stained, and digitized as two-dimensional (2D) whole-mount slides. Annotations of residual disease, ulceration, fibrosis, muscularis propria, mucosa, fat, inflammation, and pools of mucin were made by an expert pathologist on digitized slide images. An expert radiologist and pathologist jointly established corresponding 2D sections between MRI and pathology images, as well as identified a total of 10 corresponding landmarks per case (based on visually similar structures) on both modalities (five for driving registration and five for evaluating alignment). We spatially fused the in vivo MRI and ex vivo pathology images using landmark-based registration. This allowed us to spatially map detailed annotations from 2D pathology slides onto corresponding 2D MRI sections. Quantitative assessment of coregistered pathology and MRI sections revealed excellent structural alignment, with an overall deviation of 1.50 ± 0.63 mm across five expert-selected anatomic landmarks (in-plane misalignment of two to three pixels at 0.67- to 1.00-mm spatial resolution). Moreover, the T2-weighted intensity distributions were distinctly different when comparing fibrotic tissue to perirectal fat (as expected), but showed a marked overlap when comparing fibrotic tissue and residual rectal cancer. Our fusion methodology enabled successful and accurate localization of post-treatment effects on in vivo MRI. Copyright © 2018 The

  11. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    PubMed

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing.

    PubMed

    McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric

    2010-11-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing

    PubMed Central

    McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric

    2010-01-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212

  14. Value of Endorectal MRI in Romanian Men for High Risk of Prostate Cancer: MRI Findings Compared with Saturation Biopsy.

    PubMed

    Lebovici, A; Sfrangeu, S A; Caraiani, C; Lucan, C; Suciu, M; Elec, F; Iacob, Gh; Buruian, M

    2015-01-01

    To evaluate the potentials of T2 weighted (T2W)MRI and diffusion weighted (DW) MRI for prostate cancer(PCa) detection, local staging and treatment planning in high-risk group. Endorectal MRI was performed in 17 Romanian men (median age: 66 years; range: 58 75 years), prostate specific antigen (PSA) serum levels (median: 20 ng mL; range: 8.6 100 ng mL) with positive findings for PCa(median Gleason score: 8; range: 7 - 9). Imaging findings were compared to standarised 20-core transperineal saturation biopsy. The prostate was divided into 16 standart sectors(10 posterior and 6 anterior). Overall, prostate cancer was detected in 16 patients(94%) on DW-MRI alone and in all 17 patients (100%) on T2W-MRI alone, and on combined imaging. On T2W-MRI165 sectors out of 272 were suspicious for PCa and 124 (75%)were cancer positive. On DW-MRI 126 sectors out of 272 were suspicious for PCa and 118 (95%) were cancer positive. On the combined imaging approach 134 sectors out of 272 were suspicious for PCa and 126 (94%) were cancer positive. This resulted in diagnostic accuracies per sector of 76% for T2WMRI, 86% for DW-MRI and 89% for combined imaging. Multifocal PCa was confirmed both on MR imaging and by biopsy in 8 of the 17 men (47%) Extra capsular extension(ECE) or seminal vesicles invasion (SVI) was highly suspected in 8 (47%) respectively 7 (41%) of the 17 patients. 6 patients(35%) presented both ECE and SVI. MRI findings were taken into account for treatment planning and none of these patients underwent radical prostatectomy and instead was treated with palliative cryotherapy, radiotherapy and hormone therapy. Endorectal MRI is highly accurate in PCa detection in the high-risk group and seems to have an important role in local staging and treatment planning for Romanian population. Celsius.

  15. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  16. The effects of the use of piezoelectric motors in a 1.5-Tesla high-field magnetic resonance imaging system (MRI).

    PubMed

    Wendt, O; Oellinger, J; Lüth, T C; Felix, R; Boenick, U

    2000-01-01

    This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios

  17. Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.

    PubMed

    Gou, Shuiping; Wang, Yueyue; Wu, Jiaolong; Lee, Percy; Sheng, Ke

    2015-04-01

    Lung dynamic MRI (dMRI) has emerged to be an appealing tool to quantify lung motion for both planning and treatment guidance purposes. However, this modality can result in blurry images due to intrinsically low signal-to-noise ratio in the lung and spatial/temporal interpolation. The image blurring could adversely affect the image processing that depends on the availability of fine landmarks. The purpose of this study is to reduce dMRI blurring using image postprocessing. To enhance the image quality and exploit the spatiotemporal continuity of dMRI sequences, a low-rank decomposition and dictionary learning (LDDL) method was employed to deblur lung dMRI and enhance the conspicuity of lung blood vessels. Fifty frames of continuous 2D coronal dMRI frames using a steady state free precession sequence were obtained from five subjects including two healthy volunteer and three lung cancer patients. In LDDL, the lung dMRI was decomposed into sparse and low-rank components. Dictionary learning was employed to estimate the blurring kernel based on the whole image, low-rank or sparse component of the first image in the lung MRI sequence. Deblurring was performed on the whole image sequences using deconvolution based on the estimated blur kernel. The deblurring results were quantified using an automated blood vessel extraction method based on the classification of Hessian matrix filtered images. Accuracy of automated extraction was calculated using manual segmentation of the blood vessels as the ground truth. In the pilot study, LDDL based on the blurring kernel estimated from the sparse component led to performance superior to the other ways of kernel estimation. LDDL consistently improved image contrast and fine feature conspicuity of the original MRI without introducing artifacts. The accuracy of automated blood vessel extraction was on average increased by 16% using manual segmentation as the ground truth. Image blurring in dMRI images can be effectively reduced using a

  18. WE-EF-BRD-03: I Want It Now!: Advances in MRI Acquisition, Reconstruction and the Use of Priors to Enable Fast Anatomic and Physiologic Imaging to Inform Guidance and Adaptation Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Y.

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  19. Perceptual Characterization of the Macronutrient Picture System (MaPS) for Food Image fMRI

    PubMed Central

    King, Jill L.; Fearnbach, S. Nicole; Ramakrishnapillai, Sreekrishna; Shankpal, Preetham; Geiselman, Paula J.; Martin, Corby K.; Murray, Kori B.; Hicks, Jason L.; McClernon, F. Joseph; Apolzan, John W.; Carmichael, Owen T.

    2018-01-01

    Food image fMRI paradigms are used widely for investigating the neural basis of ingestive behavior. However, these paradigms have not been validated in terms of ingestive behavior constructs, engagement of food-relevant neural systems, or test-retest reliability, making the generalizability of study findings unclear. Therefore, we validated the Macronutrient Picture System (MaPS) (McClernon et al., 2013), which includes food images from the six categories represented in the Geiselman Food Preference Questionnaire (FPQ) (Geiselman et al., 1998). Twenty-five healthy young adults (n = 21 female, mean age = 20.6 ± 1.1 years, mean BMI = 22.1 ± 1.9 kg/m2) rated the MaPS images in terms of visual interest, appetitive quality, nutrition, emotional valence, liking, and frequency of consumption, and completed the FPQ. In a second study, 12 individuals (n=8 female, mean age = 25.0 ± 6.5 years, mean BMI = 28.2 ± 8.7 kg/m2) viewed MaPS and control images (vegetables and non-food) during two separate 3T BOLD fMRI scans after fasting overnight. Intuitively, high fat/high sugar (HF/HS) and high fat/high complex carbohydrate (HF/HCCHO) images achieved higher liking and appetitive ratings, and lower nutrition ratings, than low fat/low complex carbohydrate/high protein (LF/LCHO/HP) images on average. Within each food category, FPQ scores correlated strongly with MaPS image liking ratings (p < 0.001). Brain activation differences between viewing images of HF/HS and vegetables, and between HF/HCCHO and vegetables, were seen in several reward-related brain regions (e.g., putamen, insula, and medial frontal gyrus). Intra-individual, inter-scan agreement in a summary measure of brain activation differences in seven reward network regions of interest was high (ICC = 0.61), and was even higher when two distinct sets of food images with matching visual ratings were shown in the two scans (ICC = 0.74). These results suggest that the MaPS provides valid representation of food categories

  20. [Magnetic resonance imaging (MRI) in children and adolescents – study design of a feasibility study concerning examination related emotions].

    PubMed

    Jaite, Charlotte; Bachmann, Christian; Dewey, Marc; Weschke, Bernhard; Spors, Birgit; von Moers, Arpad; Napp, Adriane; Lehmkuhl, Ulrike; Kappel, Viola

    2013-11-01

    Numerous research centres apply magnetic resonance imaging (MRI) for research purposes in children. In view of this practical research, ethical concerns regarding the strains the study participants are exposed to during the MRI examination are discussed. The study evaluates whether an MRI examination induces negative emotions in children and adolescents which are more intense than the ones caused by electroencephalography (EEG), an examination method currently classified as causing "minimal stress." Furthermore, the emotional stress induced by the MRI examination in children and adolescents is compared with that induced in adults. The study gathers data on examination-related emotions in children (age 8-17;11, male and female) who undergo an MRI examination of the cerebrum with a medical indication. The comparison group is a sample of children and adolescents examined with EEG (age 8-17;11, male and female) as well as a sample of adults (age 18-65, male and female) examined with MRI. At present, the study is in the stage of data collection. This article presents the study design of the MRI research project.

  1. A study of structural and functional connectivity in early Alzheimer's disease using rest fMRI and diffusion tensor imaging.

    PubMed

    Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S

    2015-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.

  2. SU-F-J-161: Prostate Contouring in Patients with Bilateral Hip Prostheses: Impact of Using Artifact-Reduced CT Images and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Loblaw, A; Morton, G

    Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philipsmore » Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of

  3. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  4. Ultra-high field MRI for primate imaging using the travelling-wave concept.

    PubMed

    Mallow, Johannes; Herrmann, Tim; Kim, Kyoung-Nam; Stadler, Joerg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2013-08-01

    Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment. In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B1+ fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation. In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details. The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.

  5. Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.

    PubMed

    Wang, Silun; Tryggestad, Erik; Zhou, Tingting; Armour, Michael; Wen, Zhibo; Fu, De-Xue; Ford, Eric; van Zijl, Peter C M; Zhou, Jinyuan

    2012-07-01

    Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T(1), T(2), apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 × 10 mm(2)) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at ~25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T(1), T(2), MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T(1), T(2), MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Functional brain imaging in irritable bowel syndrome with rectal balloon-distention by using fMRI.

    PubMed

    Yuan, Yao-Zong; Tao, Ran-Jun; Xu, Bin; Sun, Jing; Chen, Ke-Min; Miao, Fei; Zhang, Zhong-Wei; Xu, Jia-Yu

    2003-06-01

    Irritable bowel syndrome (IBS) is characterized by abdominal pain and changes in stool habits. Visceral hypersensitivity is a key factor in the pathophysiology of IBS. The aim of this study was to examine the effect of rectal balloon-distention stimulus by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) in visceral pain center and to compare the distribution, extent, and intensity of activated areas between IBS patients and normal controls. Twenty-six patients with IBS and eleven normal controls were tested for rectal sensation, and the subjective pain intensity at 90 ml and 120 ml rectal balloon-distention was reported by using Visual Analogue Scale. Then, BOLD-fMRI was performed at 30 ml, 60 ml, 90 ml, and 120 ml rectal balloon-distention in all subjects. Rectal distention stimulation increased the activity of anterior cingulate cortex (35/37), insular cortex (37/37), prefrontal cortex (37/37), and thalamus (35/37) in most cases. At 120 ml of rectal balloon-distention, the activation area and percentage change in MR signal intensity of the regions of interest (ROI) at IC, PFC, and THAL were significantly greater in patients with IBS than that in controls. Score of pain sensation at 90 ml and 120 ml rectal balloon-distention was significantly higher in patients with IBS than that in controls. Using fMRI, some patients with IBS can be detected having visceral hypersensitivity in response to painful rectal balloon-distention. fMRI is an objective brain imaging technique to measure the change in regional cerebral activation more precisely. In this study, IC and PFC of the IBS patients were the major loci of the CNS processing of visceral perception.

  7. Application of the Karhunen-Loeve transform temporal image filter to reduce noise in real-time cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.

    2009-06-01

    Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.

  8. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    PubMed

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  9. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents.

    PubMed

    Patel, Daksha; Kell, Arnold; Simard, Benoit; Xiang, Bo; Lin, Hung Yu; Tian, Ganghong

    2011-02-01

    A new class of nanoparticle-based dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) contrast agents has been developed. The probe consists of a superparamagnetic iron oxide (SPIO) or manganese oxide core coated with 3,4-dihydroxy-D,L-phenylalanine (DL-DOPA). The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to DOPA termini. The DOTA modified nanoparticles allow chelation of copper for PET imaging. These surface functionalized nanoparticle-based probes have been characterized by various analytical techniques. The cell-labeling efficacy, cytotoxicity and relaxivity of these nanoparticles have been evaluated and compared with the same properties of one of the most commonly utilized MRI contrast agents, Feridex(®). Evidently, this new nanoparticle has a great potential for use in cell tracking with MRI and PET in the absence of transfecting agent. It is noteworthy that there is a sharp increase in r(2) relaxivity of these nanoparticles on coordination with Cu(2+) ions. Thus these iron oxide nanoparticles can also be explored as the smart magnetic resonance (MR) sensor for the detection of micromolar changes in copper concentration for neurodegenerative diseases such as Alzheimer's disease, Menkes and Wilson's diseases, amyotrophic lateral sclerosis and prion diseases. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  10. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles

    PubMed Central

    2013-01-01

    Background In the present study, we used multimodal imaging to investigate biodistribution in rats after intravenous administration of a new 99mTc-labeled delivery system consisting of polymer-shelled microbubbles (MBs) functionalized with diethylenetriaminepentaacetic acid (DTPA), thiolated poly(methacrylic acid) (PMAA), chitosan, 1,4,7-triacyclononane-1,4,7-triacetic acid (NOTA), NOTA-super paramagnetic iron oxide nanoparticles (SPION), or DTPA-SPION. Methods Examinations utilizing planar dynamic scintigraphy and hybrid imaging were performed using a commercially available single-photon emission computed tomography (SPECT)/computed tomography (CT) system. For SPION containing MBs, the biodistribution pattern of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs was investigated and co-registered using fusion SPECT/CT and magnetic resonance imaging (MRI). Moreover, to evaluate the biodistribution, organs were removed and radioactivity was measured and calculated as percentage of injected dose. Results SPECT/CT and MRI showed that the distribution of 99mTc-labeled ligand-functionalized MBs varied with the type of ligand as well as with the presence of SPION. The highest uptake was observed in the lungs 1 h post injection of 99mTc-labeled DTPA and chitosan MBs, while a similar distribution to the lungs and the liver was seen after the administration of PMAA MBs. The highest counts of 99mTc-labeled NOTA-SPION and DTPA-SPION MBs were observed in the lungs, liver, and kidneys 1 h post injection. The highest counts were observed in the liver, spleen, and kidneys as confirmed by MRI 24 h post injection. Furthermore, the results obtained from organ measurements were in good agreement with those obtained from SPECT/CT. Conclusions In conclusion, microbubbles functionalized by different ligands can be labeled with radiotracers and utilized for SPECT/CT imaging, while the incorporation of SPION in MB shells enables imaging using MR. Our investigation revealed that biodistribution

  11. Evaluation of carotid plaque vulnerability in vivo: Correlation between dynamic contrast-enhanced MRI and MRI-modified AHA classification.

    PubMed

    Ge, Xiaoqian; Zhou, Zien; Zhao, Huilin; Li, Xiao; Sun, Beibei; Suo, Shiteng; Hackett, Maree L; Wan, Jieqing; Xu, Jianrong; Liu, Xiaosheng

    2017-09-01

    To noninvasively monitor carotid plaque vulnerability by exploring the relationship between pharmacokinetic parameters (PPs) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and plaque types based on MRI-modified American Heart Association (AHA) classification, as well as to assess the ability of PPs in discrimination between stable and vulnerable plaques suspected on MRI. Of 70 consecutive patients with carotid plaques who volunteered for 3.0T MRI (3D time-of-flight [TOF], T 1 -weighted, T 2 -weighted, 3D magnetization-prepared rapid acquisition gradient-echo [MP-RAGE] and DCE-MRI), 66 participants were available for analysis. After plaque classification according to MRI-modified AHA Lesion-Type (LT), PPs (K trans , k ep , v e , and v p ) of DCE-MRI were measured. The Extended Tofts model was used for calculation of PPs. For participants with multiple carotid plaques, the plaque with the worst MRI-modified AHA LT was chosen for analysis. Correlations between PPs and plaque types and the ability of these parameters to distinguish stable and vulnerable plaques suspected on MRI were assessed. Significant positive correlation between K trans and LT III to VI was found (ρ = 0.532, P < 0.001), as was the correlation between k ep and LT III to VI (ρ = 0.409, P < 0.001). Stable and vulnerable plaques suspected on MRI could potentially be distinguished by K trans (sensitivity 83%, specificity 100%) and k ep (sensitivity 77%, specificity 91%). K trans and k ep from DCE-MRI can provide quantitative information to monitor plaque vulnerability in vivo and differentiate vulnerable plaques suspected on MRI from stable ones. These two parameters could be adopted as imaging biomarkers for plaque characterization and risk stratification. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:870-876. © 2017 International Society for Magnetic Resonance in Medicine.

  12. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    PubMed Central

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  13. Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Slottje, Pauline; Kromhout, Hans

    2013-12-01

    This study aims to characterise and quantify the population that is occupationally exposed to electromagnetic fields (EMF) from magnetic resonance imaging (MRI) devices and to identify factors that determine the probability and type of exposure. A questionnaire survey was used to collect information about scanners, procedures, historical developments and employees working with or near MRI scanners in clinical and research MRI departments in the Netherlands. Data were obtained from 145 MRI departments. A rapid increase in the use of MRI and field strength of the scanners was observed and quantified. The strongest magnets were employed by academic hospitals and research departments. Approximately 7000 individuals were reported to be working inside an MRI scanner room and were thus considered to have high probability of occupational exposure to static magnetic fields (SMF). Fifty-four per cent was exposed to SMF at least one day per month. The largest occupationally exposed group were radiographers (n ~ 1700). Nine per cent of the 7000 involved workers were regularly present inside a scanner room during image acquisition, when exposure to additional types of EMF is considered a possibility. This practice was most prevalent among workers involved in scanning animals. The data illustrate recent trends and historical developments in magnetic resonance imaging and provide an extensive characterisation of the occupationally exposed population. A considerable number of workers are potentially exposed to MRI-related EMF. Type and frequency of potential exposure depend on the job performed, as well as the type of workplace. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. WE-B-BRD-00: MRI for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less

  15. Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI.

    PubMed

    Zhou, Heling; Zhao, Dawen

    2014-03-06

    Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.

  16. Characteristic findings of magnetic resonance imaging (MRI) and computed tomography (CT) for severe chronic laminitis in a Thoroughbred horse

    PubMed Central

    YAMADA, Kazutaka; INUI, Tomohiro; ITOH, Megumi; YANAGAWA, Masashi; SATO, Fumio; TOMINARI, Masataka; MIZOBE, Fumiaki; KISHIMOTO, Miori; SASAKI, Naoki

    2017-01-01

    ABSTRACT A Thoroughbred horse with severe chronic laminitis of both forelimbs was evaluated on the same day with magnetic resonance imaging (MRI) and computed tomography (CT). Both MRI and CT revealed loss of the dorsal aspect of the cortical bone of the 3rd phalanx and sclerosis. CT reflected the status of the horny layer and bone of the affected feet, while MRI depicted inflammation of the laminar corium, together with tendon edema. On the 3-dimensional CT venogram, vessels were visualized in both the right and left forelimbs, although there was a difference in the vasculature of the coronary plexus and circumflex vessels between the right and left forelimbs. A combination of both MRI and CT provides detailed information regarding pathological conditions. PMID:28955162

  17. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  18. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small

  19. Measuring the Mutual Effects of a CZT Detector and a 3T MRI for the Development of a Simultaneous MBI/MRI Insert

    NASA Astrophysics Data System (ADS)

    Tao, Ashley T.; Noseworthy, Michael D.; Farncombe, Troy H.

    2016-10-01

    A cadmium zinc telluride (CZT) based detector system has been developed with the goal of combining molecular breast imaging (MBI) and magnetic resonance imaging (MRI) to address shortcomings of each modality. The CZT detector system is comprised of four CZT modules tiled in a 2×2 array. Each module consists of 256 pixels (16×16, 2.4 mm pixels) and features a built-in ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a data acquisition PC. The system was placed within the bore of a 3 T GE Discovery MR750 and imaging performance of each modality evaluated using both sequential and simultaneous imaging protocols. The mean energy resolution of the gamma camera both inside and outside the MRI is 7.3% at 140 keV. The maximum increase in the integral uniformity was 3% when using a gradient echo MRI sequence while the mean differential uniformity when inside the MRI increased by 1%. Spatial resolution varied in a predictable manner from 2.4 mm FWHM at the collimator face to 6.9 mm at 10 cm from the collimator. Performance of the 3 T GE Discovery MR750 using a 16-channel breast RF coil array was measured with and without the gamma camera present using a gradient echo and spoiled gradient echo imaging sequence. A realistic 99mTc-filled breast-like phantom containing two lesions (30:1 lesion to background ratio) was used to assess the feasibility of both serial and simultaneous hybrid imaging. Sequential imaging resulted in a reduction in MRI SNR of 70-80% and a further decrease of 93-98% was observed when performing simultaneous MR/scintigraphy imaging, likely a result of RF interference originating from the CZT detector modules and associated analog electronics. Co-registered scintigraphic and MRI images display negligible geometric distortion when imaged with both simultaneous and serial imaging modes, thus indicating the feasibility of combining MBI with breast MRI.

  20. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  1. Predicting axillary lymph node metastasis from kinetic statistics of DCE-MRI breast images

    NASA Astrophysics Data System (ADS)

    Ashraf, Ahmed B.; Lin, Lilie; Gavenonis, Sara C.; Mies, Carolyn; Xanthopoulos, Eric; Kontos, Despina

    2012-03-01

    The presence of axillary lymph node metastases is the most important prognostic factor in breast cancer and can influence the selection of adjuvant therapy, both chemotherapy and radiotherapy. In this work we present a set of kinetic statistics derived from DCE-MRI for predicting axillary node status. Breast DCE-MRI images from 69 women with known nodal status were analyzed retrospectively under HIPAA and IRB approval. Axillary lymph nodes were positive in 12 patients while 57 patients had no axillary lymph node involvement. Kinetic curves for each pixel were computed and a pixel-wise map of time-to-peak (TTP) was obtained. Pixels were first partitioned according to the similarity of their kinetic behavior, based on TTP values. For every kinetic curve, the following pixel-wise features were computed: peak enhancement (PE), wash-in-slope (WIS), wash-out-slope (WOS). Partition-wise statistics for every feature map were calculated, resulting in a total of 21 kinetic statistic features. ANOVA analysis was done to select features that differ significantly between node positive and node negative women. Using the computed kinetic statistic features a leave-one-out SVM classifier was learned that performs with AUC=0.77 under the ROC curve, outperforming the conventional kinetic measures, including maximum peak enhancement (MPE) and signal enhancement ratio (SER), (AUCs of 0.61 and 0.57 respectively). These findings suggest that our DCE-MRI kinetic statistic features can be used to improve the prediction of axillary node status in breast cancer patients. Such features could ultimately be used as imaging biomarkers to guide personalized treatment choices for women diagnosed with breast cancer.

  2. MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy.

    PubMed

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko

    2009-11-01

    To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.

  3. Cross-sectional imaging of metal-on-metal hip arthroplasties. Can we substitute MARS MRI with CT?

    PubMed

    Robinson, Elizabeth; Henckel, Johann; Sabah, Shiraz; Satchithananda, Keshthra; Skinner, John; Hart, Alister

    2014-12-01

    Metal artifact reduction sequence (MARS) MRI is widely advocated for surveillance of metal-on-metal hip arthroplasties (MOM-HAs). However, its use is limited by susceptibility artifact at the prosthesis-bone interface, local availability, patient compliance, and cost (Hayter et al. 2011a). We wanted to determine whether CT is a suitable substitute for MARS MRI in evaluation of the painful MOM-HA. 50 MOM-HA patients (30 female) with unexplained painful prostheses underwent MARS MRI and CT imaging. 2 observers who were blind regarding the clinical data objectively reported the following outcomes: soft tissue lesions (pseudotumors), muscle atrophy, and acetabular and femoral osteolysis. Diagnostic test characteristics were calculated. Pseudotumor was diagnosed in 25 of 50 hips by MARS MRI and in 11 of 50 by CT. Pseudotumors were classified as type 1 (n=2), type 2A (n=17), type 2B (n=4), and type 3 (n=2) by MARS MRI. CT did not permit pseudotumor classification. The sensitivity of CT for diagnosis of pseudotumor was 44% (95% CI: 25-65). CT had "slight" agreement with MARS MRI for quantification of muscle atrophy (κ=0.23, CI: 0.16-0.29; p<0.01). Osteolysis was identified in 15 of 50 patients by CT. 4 of these lesions were identified by MARS MRI. CT was found to be superior to MRI for detection of osteolysis adjacent to MOM-HA, and should be incorporated into diagnostic algorithms. CT was unable to classify and failed to detect many pseudotumors, and it was unreliable for assessment of muscle atrophy. Where MARS MRI is contraindicated or unavailable, CT would be an unsuitable substitute and other modalities such as ultrasound should be considered.

  4. Comparison of magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in the evaluation of unclear solid renal lesions.

    PubMed

    Rübenthaler, J; Paprottka, K; Marcon, J; Hameister, E; Hoffmann, K; Joiko, N; Reiser, M; Clevert, D A

    2016-01-01

    To compare the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) in the evaluation of unclear renal lesions to the histopathological outcome. A total of 36 patients with a single unclear solid renal lesion with initial imaging studies between 2005 and 2015 were included. CEUS and MRI were used for determining malignancy or benignancy and initial findings were correlated with the histopathological outcome. Out of the 36 renal masses a total of 28 lesions were malignant (77.8%) and 8 were found to be benign (22.2%). Diagnostic accuracy was testes by using the histopathological diagnosis as the gold standard. CEUS showed a sensitivity of 96.4%, a specificity of 100.0%, a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 88,9%. MRI showed a sensitivity of 96.4%, a specificity of 75.0%, a PPV of 93.1% and a NPV of 85.7%. Out of the 28 malignant lesions a total of 18 clear cell renal carcinomas, 6 papillary renal cell carcinomas and 4 other malignant lesions, e.g. metastases, were diagnosed. Out of the 8 benign lesions a total 3 angiomyolipomas, 2 oncocytomas, 1 benign renal cyst and 2 other benign lesions, e.g. renal adenomas were diagnosed. Using CEUS, 1 lesion was falsely identified as benign. Using MRI, 2 lesions were falsely identified as benign and 1 lesion was falsely identified as malignant. CEUS is an useful method which can be additionally used to clinically differentiate between malignant and benign renal lesions. CEUS shows a comparable sensitivity, specificity, PPV and NPV to MRI. In daily clinical routine, patients with contraindications for other imaging modalities can particularly benefit using this method.

  5. A new MRI grading system for chondromalacia patellae.

    PubMed

    Özgen, Ali; Taşdelen, Neslihan; Fırat, Zeynep

    2017-04-01

    Background Chondromalacia patellae is a very common disorder. Although magnetic resonance imaging (MRI) is widely used to investigate patellar cartilage lesions, there is no descriptive MRI-based grading system for chondromalacia patellae. Purpose To propose a new MRI grading system for chondromalacia patellae with corresponding high resolution images which might be useful in precisely reporting and comparing knee examinations in routine daily practice and used in predicting natural course and clinical outcome of the patellar cartilage lesions. Material and Methods High resolution fat-saturated proton density (FS PD) images in the axial plane with corresponding T2 mapping images were reviewed. A detailed MRI grading system covering the deficiencies of the existing gradings has been set and presented on these images. Two experienced observers blinded to clinical data examined 44 knee MR images and evaluated patellar cartilage changes according to the proposed grading system. Inter- and intra-rater validity testing using kappa statistics were calculated. Results A descriptive and detailed grading system with corresponding FS PD and T2 mapping images has been presented. Inter-rater agreement was 0.80 (95% confidence interval [CI], 0.71-0.89). Intra-rater agreements were 0.83 (95% CI, 0.74-0.91) for observer A and 0.79 (95% CI, 0.70-0.88) for observer B (k-values). Conclusion We present a new MRI grading system for chondromalacia patellae with corresponding images and good inter- and intra-rater agreement which might be useful in reporting and comparing knee MRI examinations in daily practice and may also have the potential for using more precisely predicting prognosis and clinical outcome of the patients.

  6. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  7. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  8. Feasibility of conductivity imaging using subject eddy currents induced by switching of MRI gradients.

    PubMed

    Oran, Omer Faruk; Ider, Yusuf Ziya

    2017-05-01

    To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject eddy currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject eddy currents and the magnetic fields they generate (subject eddy fields). The inverse problem of obtaining conductivity distribution from subject eddy fields was formulated as a convection-reaction partial differential equation. For measuring subject eddy fields, a modified spin-echo pulse sequence was used to determine the contribution of subject eddy fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject eddy field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Echocardiography and cardiovascular MRI entwined within the imaging domain; uniting the two. A compendium for the echocardiographer.

    PubMed

    Shah, Moneal B; Doyle, Mark; Farah, Victor; Biederman, Robert W W

    2018-04-01

    A review of the unique and complementary roles echocardiography and cardiovascular MRI provide to the clinician. A focus on the physics of each modality as well as imaging of the left ventricle. © 2018 Wiley Periodicals, Inc.

  10. MRI of the lung: state of the art.

    PubMed

    Wielpütz, Mark; Kauczor, Hans-Ulrich

    2012-01-01

    Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.

  11. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  12. Current Status of Efforts on Standardizing Magnetic Resonance Imaging of Juvenile Idiopathic Arthritis: Report from the OMERACT MRI in JIA Working Group and Health-e-Child.

    PubMed

    Nusman, Charlotte M; Ording Muller, Lil-Sofie; Hemke, Robert; Doria, Andrea S; Avenarius, Derk; Tzaribachev, Nikolay; Malattia, Clara; van Rossum, Marion A J; Maas, Mario; Rosendahl, Karen

    2016-01-01

    To report on the progress of an ongoing research collaboration on magnetic resonance imaging (MRI) in juvenile idiopathic arthritis (JIA) and describe the proceedings of a meeting, held prior to Outcome Measures in Rheumatology (OMERACT) 12, bringing together the OMERACT MRI in JIA working group and the Health-e-Child radiology group. The goal of the meeting was to establish agreement on scoring definitions, locations, and scales for the assessment of MRI of patients with JIA for both large and small joints. The collaborative work process included premeeting surveys, presentations, group discussions, consensus on scoring methods, pilot scoring, conjoint review, and discussion of a future research agenda. The meeting resulted in preliminary statements on the MR imaging protocol of the JIA knee and wrist and determination of the starting point for development of MRI scoring systems based on previous studies. It was also considered important to be descriptive rather than explanatory in the assessment of MRI in JIA (e.g., "thickening" instead of "hypertrophy"). Further, the group agreed that well-designed calibration sessions were warranted before any future scoring exercises were conducted. The combined efforts of the OMERACT MRI in JIA working group and Health-e-Child included the assessment of currently available material in the literature and determination of the basis from which to start the development of MRI scoring systems for both the knee and wrist. The future research agenda for the knee and wrist will include establishment of MRI scoring systems, an atlas of MR imaging in healthy children, and MRI protocol requisites.

  13. Ex vivo tissue imaging of human glioblastoma using a small bore 7T MRI and correlation with digital pathology and proteomics profiling

    NASA Astrophysics Data System (ADS)

    Matsuda, Kant M.; Lopes-Calcas, Ana; Magyar, Thalia; O'Brien-Moran, Zoe; Buist, Richard; Martin, Melanie

    2017-03-01

    Recent advancement in MRI established multi-parametric imaging for in vivo characterization of pathologic changes in brain cancer, which is expected to play a role in imaging biomarker development. Diffusion Tensor Imaging (DTI) is a prime example, which has been deployed for assessment of therapeutic response via analysis of apparent diffusion coefficient (ADC) / mean diffusivity (MD) values. They have been speculated to reflect apoptosis/necrosis. As newer medical imaging emerges, it is essential to verify that apparent abnormal features in imaging correlate with histopathology. Furthermore, the feasibility of imaging correlation with molecular profile should be explored in order to enhance the potential of biomedical imaging as a reliable biomarker. We focus on glioblastoma, which is an aggressive brain cancer. Despite the increased number of studies involving DTI in glioblastoma; however, little has been explored to bridge the gap between the molecular biomarkers and DTI data. Due to spatial heterogeneity in, MRI signals, pathologic change and protein expression, precise correlation is required between DTI, pathology and proteomics data in a histoanatomically identical manner. The challenge is obtaining an identical plane from in vivo imaging data that exactly matches with histopathology section. Thus, we propose to incorporate ex vivo tissue imaging to bridge between in vivo imaging data and histopathology. With ex vivo scan of removed tissue, it is feasible to use high-field 7T MRI scanner, which can achieve microscopic resolution. Once histology section showing the identical plane, it is feasible to correlate protein expression by a unique technology, "multiplex tissue immunoblotting".

  14. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  15. MRI appearance of posterior cruciate ligament tears.

    PubMed

    Rodriguez, William; Vinson, Emily N; Helms, Clyde A; Toth, Alison P

    2008-10-01

    There is little in the radiology literature regarding the MRI appearance of a torn posterior cruciate ligament (PCL). The purpose of this study was to describe the MRI appearance of surgically proven PCL tears and to emphasize previously unreported signs. The PCL is usually injured as the result of stretching deformation; on MRI, the ligament maintains continuity as a single structure with apparent thickening. On sagittal T2-weighted images, an anteroposterior diameter of 7 mm or more is highly suggestive of a torn PCL. Increased intrasubstance signal intensity in the PCL on proton-density images with lower signal intensity on T2-weighted images is another common feature.

  16. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  17. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu

    2013-04-01

    We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.

  18. Evaluation of posterior lateral femoral condylar hypoplasia using axial MRI images in patients with complete discoid meniscus.

    PubMed

    Xu, Zhihong; Chen, Dongyang; Shi, Dongquan; Dai, Jin; Yao, Yao; Jiang, Qing

    2016-03-01

    Hypoplasia of the lateral femoral condyle has been reported in discoid lateral meniscus patients, but associated imaging findings in the axial plane have not been characterized. In this study, we aimed to identify differences in the lateral femoral condyle between patients with discoid lateral meniscus and those with normal menisci using axial MRI images. Twenty-three patients (24 knees) with complete discoid lateral meniscus, 43 (45 knees) with incomplete discoid lateral meniscus, and 50 with normal menisci (50 knees) were enrolled and distributed into three groups. Two new angles, posterior lateral condylar angle (PLCA) and posterior medial condylar angle (PMCA), were measured on axial MRI images; the posterior condylar angle (PCA) was also measured. Differences between the three groups in the PLCA, PMCA, PCA, and PLCA/PMCA were analysed. The predictive value of PLCA and PLCA/PMCA for complete discoid lateral meniscus was assessed. In the complete discoid lateral meniscus group, PLCA and PLCA/PMCA were significantly smaller compared with the normal meniscus group and the incomplete discoid lateral meniscus group (P < 0.001). A significantly larger PCA was identified in the complete discoid lateral meniscus group compared with the incomplete discoid lateral meniscus group (P < 0.05) and normal meniscus group (P < 0.05). Both PLCA and PLCA/PMCA showed excellent predictive value for complete discoid lateral meniscus. Hypoplasia of the posterior lateral femoral condyle is typically seen in patients with complete discoid lateral meniscus. PLCA and PLCA/PMCA can be measured from axial MRI images and used as excellent predictive parameters for complete discoid lateral meniscus. Diagnostic study, Level III.

  19. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI

    PubMed Central

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-01-01

    Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919

  20. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288