Science.gov

Sample records for resonant thermal noise

  1. A second generation of low thermal noise cryogenic silicon resonators

    NASA Astrophysics Data System (ADS)

    Matei, D. G.; Legero, T.; Grebing, Ch; Häfner, S.; Lisdat, Ch; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J. M.; Riehle, F.; Ye, J.; Sterr, U.

    2016-06-01

    We have set up an improved vertically mounted silicon cavity operating at the zero-crossing temperature of the coefficient of thermal expansion (CTE) near 123 K with estimated thermal noise limited instability of 4 x 10-17 in the modified Allan deviation. Owing to the anisotropic elasticity of single-crystal silicon, the vertical acceleration sensitivity was minimized in situ by axially rotating the resonator with respect to the mounting frame. The control of the resonator temperature is greatly improved by using a combination of two thermal shields, monitoring with several temperature sensors, and employing low-thermal conductivity materials. The instability of the resonator stabilized laser was characterized by comparing with another low-noise system based on a 48 cm long room temperature cavity of PTB's strontium lattice clock, resulting in a modified Allan deviation of 7 x 10-17 at 100 s.

  2. Thermal noise induced stochastic resonance in self organizing Fe nanoparticle system

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra Prakash; Sen, P.

    2014-12-01

    The natural world is replete with examples of multistable systems, known to respond to periodic modulations and produce a signal that exhibits resonance with noise amplitude. This is a concept not demonstrated in pure materials, which involve a measured physical property. In a thermoremanent magnetization experiment with a common magnetic material, Fe, in the nanoparticulate form, we establish how magnetization in a system of dilute spins during dissipation of stored magnetic energy breaks up into spontaneous oscillatory behavior. Starting at 175 K and aided by temperature (stochastic noise) the oscillation amplitude goes through a maximum reminiscent of stochastic resonance. Our observation of thermal noise induced coherent resonance is due to intrinsic self-organizing magnetic dynamics of the Fe nanoparticle system without applying any external periodic force. These results yield new possibilities in the design of magnetic materials and a platform to understand stochastic interference and phase synchronization in neural activity, as models for neural communication.

  3. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  4. Absolute measurement of thermal noise in a resonant short-range force experiment

    NASA Astrophysics Data System (ADS)

    Yan, H.; Housworth, E. A.; Meyer, H. O.; Visser, G.; Weisman, E.; Long, J. C.

    2014-10-01

    Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite-element model. The measured average kinetic energy, Eexp = (2.0 ± 0.3) × 10-21 J, is in agreement with the expected value of 1/2{{k}B}T.

  5. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    SciTech Connect

    Sader, John E.; Yousefi, Morteza; Friend, James R.

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  6. Optical Coating Thermal Noise Testbed

    NASA Astrophysics Data System (ADS)

    Hartman, Michael T.; Eichholz, Johannes; Tanner, David B.; Mueller, Guido

    2015-04-01

    Interferometric gravitational-wave detectors measure the length strain of a passing gravitational-wave as differential arm length changes in kilometer-long Michelson interferometers. The second-generation detectors, such as Advanced LIGO (aLIGO), will achieve strain sensitivities which are limited by Brownian thermal noise in the optical coatings of the interferometers' arm-cavity mirror test masses. Brownian coating thermal noise (CTN) is the apparent motion on the mirror surface on the order of 10-17 -10-20 m resulting from thermal fluctuations in the coating and the coating's internal friction. The result is a source of length noise in optical resonators that is a function of the coating temperature and the coating material's mechanical loss. At the University of Florida we are constructing the THermal noise Optical Resonator (THOR), a testbed for the direct measurement of CTN in the aLIGO test mass coating as well as future coating candidates. The material properties of the coating (namely mechanical loss) are temperature dependent, making cryogenic mirrors a prospect for future gravitational-wave detectors. To explore this option we are simultaneously building a cryogenic CTN testbed, CryoTHOR. This is a presentation on the status of these testbeds. This work is supported by NSF Grants PHY-0969935 and PHY-1306594.

  7. The Hannover thermal noise experiment

    NASA Astrophysics Data System (ADS)

    Leonhardt, V.; Ribichini, L.; Lück, H.; Danzmann, K.

    2004-03-01

    To analyse the thermal noise of the pendulum mode of a suspended mirror, we interferometrically detect the differential movement of two mirrors suspended as multiple-stage pendulums. We present the set-up of this experiment and the current sensitivity, and also the different steps that we took in the past to increase the sensitivity, which include an auto alignment of the laser beam into the resonator eigenmode, changes of the seismic isolation system to more damping stages and higher moments of inertia and an intensive noise hunting.

  8. Noise in nonlinear nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by

  9. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise. PMID:25093235

  10. Eliminating thermal violin spikes from LIGO noise

    SciTech Connect

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  11. System Measures Thermal Noise In A Microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ngo, Kim Chi T.

    1994-01-01

    Vacuum provides acoustic isolation from environment. System for measuring thermal noise of microphone and its preamplifier eliminates some sources of error found in older systems. Includes isolation vessel and exterior suspension, acting together, enables measurement of thermal noise under realistic conditions while providing superior vibrational and accoustical isolation. System yields more accurate measurements of thermal noise.

  12. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  13. Magnetostochastic resonance under colored noise condition

    NASA Astrophysics Data System (ADS)

    Trapanese, Marco

    2012-04-01

    Stochastic resonance (SR) is an amplification of the system output in correspondence of well-defined finite values of the noise strength that is injected into the system [Gammaitoni et al., Rev. Mod. Phys. 70, 223 (1998), Grigorenko et al., IEEE Trans. Magn. 31, 2491 (1995), Mantegna et al., J. Appl. Phys. 97, 10E519 (2005)]. In order to clarify the influence of a colored noise, in this paper magnetostochastic resonance (MSR) in magnetic systems described by the dynamic Preisach model is numerically investigated in the presence of colored noise. In this paper it is shown that: a) noise spectrum affects MSR; b) white noise, 1/f and 1/f2 noise induce in magnetic systems described by the dynamic Preisach model MSR; c) the maximum level of signal-to-noise (SNR) is obtained by using white noise but 1/f noise presents a range where SNR value is higher than the case of white noise; d) maximum signal amplification is obtained for white noise.

  14. Flow noise source-resonator coupling

    SciTech Connect

    Pollack, M.L.

    1997-11-01

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.

  15. Brownian thermal noise in multilayer coated mirrors

    NASA Astrophysics Data System (ADS)

    Hong, Ting; Yang, Huan; Gustafson, Eric K.; Adhikari, Rana X.; Chen, Yanbei

    2013-04-01

    We analyze the Brownian thermal noise of a multilayer dielectric coating used in high-precision optical measurements, including interferometric gravitational-wave detectors. We assume the coating material to be isotropic, and therefore study thermal noises arising from shear and bulk losses of the coating materials. We show that coating noise arises not only from layer thickness fluctuations, but also from fluctuations of the interface between the coating and substrate, driven by fluctuating shear stresses of the coating. Although thickness fluctuations of different layers are statistically independent, there exists a finite coherence between the layers and the substrate-coating interface. In addition, photoelastic coefficients of the thin layers (so far not accurately measured) further influence the thermal noise, although at a relatively low level. Taking into account uncertainties in material parameters, we show that significant uncertainties still exist in estimating coating Brownian noise.

  16. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high

  17. Dependence of SAW resonator 1/f noise on device size.

    PubMed

    Parker, T E

    1993-01-01

    Experiments were conducted with eight 450-MHz surface acoustic wave (SAW) resonators which demonstrate that a resonator's 1/f noise depends approximately inversely on the active acoustic area of the device. This observation is consistent with a proposed theory that 1/f noise in acoustic resonators is caused by localized velocity or dimensional fluctuations. PMID:18263254

  18. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  19. Can intrinsic noise induce various resonant peaks?

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Marro, J.; Mejias, J. F.

    2011-05-01

    We theoretically describe how weak signals may be efficiently transmitted throughout more than one frequency range in noisy excitable media by a sort of stochastic multiresonance. This helps us to reinterpret recent experiments in neuroscience and to suggest that many other systems in nature might be able to exhibit several resonances. In fact, the observed behavior happens in our model as a result of competition between (i) changes in the transmitted signals as if the units were varying their activation threshold, and (ii) adaptive noise realized in the model as rapid activity-dependent fluctuations of the connection intensities. These two conditions are indeed known to characterize heterogeneously networked systems of excitable units, e.g. sets of neurons and synapses in the brain. Our results may find application also in the design of detector devices.

  20. Majorana Braiding with Thermal Noise.

    PubMed

    Pedrocchi, Fabio L; DiVincenzo, David P

    2015-09-18

    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture. PMID:26430973

  1. Majorana Braiding with Thermal Noise

    NASA Astrophysics Data System (ADS)

    Pedrocchi, Fabio L.; DiVincenzo, David P.

    2015-09-01

    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.

  2. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  3. Measurement of Thermal Noise in Optical Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Hartman, Michael; Eichholz, Johannes; Fulda, Paul; Ciani, Giacomo; Tanner, David B.; Mueller, Guido

    2014-03-01

    Interferometric gravitational-wave detectors measure the gravitational-wave-induced strain in the arms of kilometer scale Michelson interferometers. Second-generation detectors, such as Advanced LIGO, are expected to be limited by optical coating thermal noise in the most sensitive region (30-300 Hz) of the detectors' frequency bands. The direct measurement of coating thermal noise in different optical coatings is essential to both the validation of current thermal noise models as well as the research of future coating material candidates. The THermal noise Optical Resonator (THOR) is a testbed being developed at the University of Florida to directly measure the thermal noise in optical coatings on mirrors in the frequency band around 100 Hz. This is a presentation on the status of THOR. This work is supported by NSF grants PHY-0969935 and PHY-1306594.

  4. Thermal nonlinearity in silicon microcylindrical resonators

    NASA Astrophysics Data System (ADS)

    Vukovic, Natasha; Healy, Noel; Mehta, Priyanth; Day, Todd D.; Sazio, Pier J. A.; Badding, John V.; Peacock, Anna C.

    2012-04-01

    We explore the thermally induced nonlinearity in hydrogenated amorphous silicon microcylindrical resonators that are fabricated from the silicon optical fiber platform. In particular, we use a pump-probe technique to experimentally demonstrate thermally induced optical modulation and determine the response time. Through characterization of the thermal properties and the associated resonance wavelength shifts, we will show that it is possible to infer the material absorption coefficient for a range of whispering gallery mode resonators.

  5. Loss and thermal noise in plasmonic waveguides

    SciTech Connect

    Syms, R. R. A. Solymar, L.

    2014-06-07

    Rytov's theory of thermally generated radiation is used to find the noise in two-dimensional passive guides based on an arbitrary distribution of lossy isotropic dielectric. To simplify calculations, the Maxwell curl equations are approximated using difference equations that also permit a transmission-line analogy, and material losses are assumed to be low enough for modal losses to be estimated using perturbation theory. It is shown that an effective medium representation of each mode is valid for both loss and noise and, hence, that a one-dimensional model can be used to estimate the best achievable noise factor when a given mode is used in a communications link. This model only requires knowledge of the real and imaginary parts of the modal dielectric constant. The former can be found by solving the lossless eigenvalue problem, while the latter can be estimated using perturbation theory. Because of their high loss, the theory is most relevant to plasmonic waveguides, and its application is demonstrated using single interface, slab, and slot guide examples. The best noise performance is offered by the long-range plasmon supported by the slab guide.

  6. Stochastic resonance enhanced by dichotomic noise in a bistable system

    SciTech Connect

    Rozenfeld, Robert; Neiman, Alexander; Schimansky-Geier, Lutz

    2000-09-01

    We study linear responses of a stochastic bistable system driven by dichotomic noise to a weak periodic signal. We show that the effect of stochastic resonance can be greatly enhanced in comparison with the conventional case when dichotomic forcing is absent, that is, both the signal-to-noise ratio and the spectral power amplification reach much greater values than in the standard stochastic resonance setup. (c) 2000 The American Physical Society.

  7. Qubit dephasing due to photon shot noise from coherent and thermal sources

    NASA Astrophysics Data System (ADS)

    Gustavsson, S.; Yan, F.; Kamal, A.; Orlando, T. P.; Oliver, W. D.; Birenbaum, J.; Sears, A.; Hover, D.; Gudmundsen, T.; Yoder, J.

    We investigate qubit dephasing due to photon shot noise in a superconducting flux qubit transversally coupled to a coplanar microwave resonator. Due to the AC Stark effect, photon fluctuations in the resonator cause frequency shifts of the qubit, which in turn lead to dephasing. While this is universally understood, we have made the first quantitative spectroscopy of this noise for both thermal (i.e., residual photons from higher temperature stages) and coherent photons (residual photons from the readout and control pulses). We find that the bandwidth of the shot noise from thermal and coherent photons differ by approximately a factor of two, which we attribute to differences in the correlation time for the two noise sources. By comparing the results with noise spectra measured without any externally applied photons, we conclude that the qubit coherence times in our setup were limited by photon shot noise from thermal radiation, with an average resonator photon population of 0.006. Equipped with this knowledge, we improved the filtering for thermal noise and thereby improved the qubit coherence times by more than a factor of two, with T2 echo times approaching 100 us. From the measured T2 decay, we determine an upper bound on the residual photon population of 0.0004. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT LL under Air Force Contract No. FA8721-05-C-0002.

  8. Current noise of the interacting resonant level model

    NASA Astrophysics Data System (ADS)

    Suzuki, T. J.; Kennes, D. M.; Meden, V.

    2016-02-01

    We study the zero-frequency current noise of the interacting resonant level model for arbitrary bias voltages using a functional renormalization group approach. For this we extend the existing nonequilibrium scheme by deriving and solving flow equations for the current-vertex functions. On-resonance artificial divergences of the latter found in lowest-order perturbation theory in the two-particle interaction are consistently removed. Away from resonance they are shifted to higher orders. This allows us to gain a comprehensive picture of the current noise in the scaling limit. At high bias voltages, the current noise exhibits a universal power-law decay, whose exponent is, to leading order in the interaction, identical to that of the current. The effective charge on resonance is analyzed in detail, employing properties of the vertex correction. We find that it is only modified to second or higher order in the two-particle interaction.

  9. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  10. Stochastic resonance in the fractional Langevin equation driven by multiplicative noise and periodically modulated noise

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Zhang, Lu; Luo, Mao-Kang

    2013-10-01

    First we study the time and frequency characteristics of fractional calculus, which reflect the memory and gain properties of fractional-order systems. Then, the fractional Langevin equation driven by multiplicative colored noise and periodically modulated noise is investigated in the over-damped case. Using the moment equation method, the exact analytical expression of the output amplitude is derived. Numerical results indicate that the output amplitude presents stochastic resonance driven by periodically modulated noise. For low frequency signal, the higher the system order is, the bigger the resonance intensity will be; while the result of high frequency signal is quite the contrary. This is consistent with the frequency characteristics of fractional calculus.

  11. Adaptive noise cancelling of multichannel magnetic resonance sounding signals

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Auken, E.; Larsen, J. J.

    2012-10-01

    Adaptive noise cancelling of multichannel magnetic resonance sounding (MRS) signals is investigated. An analysis of the noise sources affecting MRS signals show that the applicability of adaptive noise cancelling is primarily limited to cancel powerline harmonics. The problems of handling spikes in MRS signals are discussed and an efficient algorithm for spike detection is presented. The optimum parameters for multichannel adaptive noise cancelling are identified through simulations with synthetic signals added to noise-only recordings from an MRS instrument. We discuss the design and the efficiency of different stacking methods. The results from multichannel adaptive noise cancelling are compared to time-domain multichannel Wiener filtering. Our results show that within the experimental uncertainty the two methods give identical results.

  12. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  13. Thermally affected characterization region by Barkhausen noise.

    PubMed

    Zergoug, M; Boucherrou, N; Haddad, A; Benchaala, A; Moulti, B; Tahraoui, H; Sellidj, F; Hammouda, A

    2000-07-01

    The controlling of some industrial components require the development of new and particular nondestructive testing techniques. The testing method using Barkhausen noise (BN) is a particular one which can be applied to ferromagnetic materials. It is a magnetic nondestructive evaluation method and can provide very important information about the material structure. The aim of our work is to study the material structure using this technique to characterize the region submitted to thermal processing. Samples of steel have been heated at temperatures between 650 degrees C and 1,200 degrees C with variable parameters (time processing, maintenance time, etc.). Acoustic BN processing allows an easy interpretation of results. Micrographs of samples have been obtained to confirm the results obtained by BN. PMID:10950355

  14. Robust stochastic resonance: Signal detection and adaptation in impulsive noise

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2001-11-01

    Stochastic resonance (SR) occurs when noise improves a system performance measure such as a spectral signal-to-noise ratio or a cross-correlation measure. All SR studies have assumed that the forcing noise has finite variance. Most have further assumed that the noise is Gaussian. We show that SR still occurs for the more general case of impulsive or infinite-variance noise. The SR effect fades as the noise grows more impulsive. We study this fading effect on the family of symmetric α-stable bell curves that includes the Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter α falls from 2 (the Gaussian case) to 1 (the Cauchy case) to even lower values. Thicker tails create more frequent and more violent noise impulses. The main feedback and feedforward models in the SR literature show this fading SR effect for periodic forcing signals when we plot either the signal-to-noise ratio or a signal correlation measure against the dispersion of the α-stable noise. Linear regression shows that an exponential law γopt(α)=cAα describes this relation between the impulsive index α and the SR-optimal noise dispersion γopt. The results show that SR is robust against noise ``outliers.'' So SR may be more widespread in nature than previously believed. Such robustness also favors the use of SR in engineering systems. We further show that an adaptive system can learn the optimal noise dispersion for two standard SR models (the quartic bistable model and the FitzHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological systems.

  15. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  16. Estimation of Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We evaluate mechanical thermal noise in semiconductor lasers, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Our simple model determines an underlying fundamental limit for the frequency noise of free-running semiconductor laser, and provides a framework: where the noise may be potentially reduced with improved design.

  17. Frequency dependence of thermal noise in gram-scale cantilever flexures

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh T.-H.; Mow-Lowry, Conor M.; Slagmolen, Bram J. J.; Miller, John; Mullavey, Adam J.; Goßler, Stefan; Altin, Paul A.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    We present measurements of the frequency dependence of thermal noise in aluminum and niobium flexures. Our measurements cover the audio-frequency band from 10 Hz to 10 kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances. Results from two flexures are well explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit. Furthermore, measurements on a third flexure provide evidence that surface damage can affect the frequency dependence of thermal noise in addition to reducing the quality factor, a result which will aid the understanding of how aging effects impact on thermal noise behavior.

  18. Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, K.; Camp, J.

    2011-01-01

    So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design.

  19. Thermal Noise in Laser Interferometer Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Flaminio, Raffaele

    Thermal noise is one of the major limitations to the sensitivity of present and future laser interferometers devoted to gravitational wave detection. According to the fluctuation-dissipation theorem any mechanical oscillator is affected by a motion of thermal origin directly related to its thermodynamic temperature. The mirrors and their suspensions that are used in gravitational wave detectors such as Virgo or LIGO are examples of such mechanical oscillators. As a consequence their position is affected by this thermal vibration and the sensitivity of the gravitational wave detector is thermal noise limited over a wide range of frequencies. After recalling briefly the fluctuation-dissipation theorem and its origins, this chapter describes the main types of thermal noise affecting gravitational wave detectors. In the last part of the chapter a special emphasis is given to the thermal noise due to dissipation in the mirrors optical coatings.

  20. Bimaterial Thermal Compensators for WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2008-01-01

    Bimaterial thermal compensators have been proposed as inexpensive means of preventing (to first order) or reducing temperature-related changes in the resonance frequencies of whispering-gallery-mode (WGM) optical resonators. A bimaterial compensator would apply, to a WGM resonator, a pressure that would slightly change the shape of the resonator and thereby change its resonance frequencies. Through suitable choice of the compensator dimensions and materials, it should be possible to make the temperature dependence of the pressure-induced frequency shift equal in magnitude and opposite in sign to the temperature dependence of the frequency shift of the uncompensated resonator so that, to first order, a change in temperature would cause zero net change in frequency.

  1. Cross-spectrum measurement of thermal-noise limited oscillators.

    PubMed

    Hati, A; Nelson, C W; Howe, D A

    2016-03-01

    Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem. PMID:27036804

  2. Cross-spectrum measurement of thermal-noise limited oscillators

    NASA Astrophysics Data System (ADS)

    Hati, A.; Nelson, C. W.; Howe, D. A.

    2016-03-01

    Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem.

  3. Optical Coatings and Thermal Noise in Precision Measurement

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Bodiya, Timothy P.; DeSalvo, Riccardo

    2012-01-01

    1. Theory of thermal noise in optical mirrors Y. Levin; 2. Coating technology S. Chao; 3. Compendium of thermal noises in optical mirrors V. B. Braginsky, M. L. Gorodetsky and S. P. Vyatchanin; 4. Coating thermal noise I. Martin and S. Reid; 5. Direct measurements of coating thermal noise K. Numata; 6. Methods of improving thermal noise S. Ballmer and K. Somiya; 7. Substrate thermal noise S. Rowan and I. Martin; 8. Cryogenics K. Numata and K. Yamamoto; 9. Thermo-optic noise M. Evans and G. Ogin; 10. Absorption and thermal issues P. Willems, D. Ottaway and P. Beyersdorf; 11. Optical scatter J. R. Smith and M. E. Zucker; 12. Reflectivity and thickness optimisation I. M. Pinto, M. Principe and R. DeSalvo; 13. Beam shaping A. Freise; 14. Gravitational wave detection D. Ottaway and S. D. Penn; 15. High-precision laser stabilisation via optical cavities M. J. Martin and J. Ye; 16. Quantum optomechanics G. D. Cole and M. Aspelmeyer; 17. Cavity quantum electrodynamics T. E. Northup.

  4. Asymmetric resonant exchange qubit under the influence of electrical noise

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-06-01

    We investigate the influence of electrical charge noise on a resonant exchange (RX) qubit in a triple quantum dot. This RX qubit is a variation of the exchange-only spin qubit which responds to a narrow-band resonant frequency. Our noise model includes uncorrelated charge noise in each quantum dot giving rise to two independent (noisy) bias parameters ɛ and Δ . We calculate the energy splitting of the two qubit states as a function of these two bias detuning parameters to find "sweet spots," where the qubit is least susceptible to noise. Our investigation shows that such sweet spots exist within the low-bias regime, in which the bias detuning parameters have the same magnitude as the hopping parameters. The location of the sweet spots in the (ɛ ,Δ ) plane depends on the hopping strength and asymmetry between the quantum dots. In the regime of weak charge noise, we identify a new favorable operating regime for the RX qubit based on these sweet spots.

  5. Magnetic resonance-guided thermal surgery.

    PubMed

    Cline, H E; Schenck, J F; Watkins, R D; Hynynen, K; Jolesz, F A

    1993-07-01

    A demonstration of MR guided thermal surgery involved experiments with imaging of focused ultrasound in an MRI system, measurements of the thermal transients and a thermal analysis of the resulting images. Both the heat distribution and the creation of focused ultrasound lesions in gel phantoms, in vitro bovine muscle and in vivo rabbit muscle were monitored with magnetic resonance imaging. Thermal surgical procedures were modeled by an elongated gaussian heat source where heat flow is controlled by tissue thermal properties and tissue perfusion. Temperature profiles were measured with thermocouples or calculated from magnetic resonance imaging in agreement with the model. A 2-s T1-weighted gradient-refocused acquisition provided thermal profiles needed to localize the heat distribution produced by a 4-s focused ultrasound pulse. Thermal analysis of the images give an effective thermal diffusion coefficient of 0.0015 cm2/s in gel and 0.0033 cm2/s in muscle. The lesions were detected using a T2-weighted spin-echo or fast spin-echo pulse sequence in agreement with muscle tissue sections. Potential thermal surgery applications are in the prostate, liver, kidney, bladder, breast, eye and brain. PMID:8371680

  6. Ultralow-phase-noise oscillators based on BAW resonators.

    PubMed

    Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent

    2014-06-01

    This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock. PMID:24859654

  7. Effect of thermal noise on random lasers in diffusion regime

    NASA Astrophysics Data System (ADS)

    Zarei, Mohammad Ali; Hosseini-Farzad, Mahmood; Montakhab, Afshin

    2015-09-01

    In this paper, we study the effects of thermal noise on the time evolution of a weak light pulse (probe) in the presence of a strong light pulse (pump) within a gain medium which includes random scatterer particles. Suitable thermal noise term is added to a set of four coupled equations including three diffusion equations for energy densities and a rate equation for the upper level population in a four-level gain medium. These equations have been solved simultaneously by Crank-Nicholson numerical method. The main result is that the back-scattered output probe light is increased as the thermal noise strength is increased and simultaneously, with the same rate, the amplified spontaneous emission is decreased. Therefore, the amplified response of the random laser in diffusion regime for the input probe pulse is enhanced due to effect of the thermal noise.

  8. Stochastic resonance in periodic potentials driven by colored noise

    NASA Astrophysics Data System (ADS)

    Liu, Kaihe; Jin, Yanfei

    2013-11-01

    We studied the motion of an underdamped Brownian particle in a periodic potential subject to a harmonic excitation and a colored noise. The average input energy per period and the phase lag are calculated to quantify the phenomenon of stochastic resonance (SR). The numerical results show that most of the out-of-phase trajectories make a transition to the in-phase state as the temperature increases. And the colored noise delays the transitions between these two dynamical states. The each curve of the average input energy per period and the phase lag versus the temperature exist a mono peak and SR appears in this system. Moreover, the optimal temperature where the SR occurs becomes larger and the region of SR grows wider as the correlation time of colored noise increases.

  9. Gaussian approximation and single-spin measurement in magnetic resonance force microscopy with spin noise

    SciTech Connect

    Raghunathan, Shesha; Brun, Todd A.; Goan, Hsi-Sheng

    2010-11-15

    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. The most effective experimental technique is the oscillating cantilever-driven adiabatic reversals (OSCAR) protocol, in which the signal takes the form of a frequency shift. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point where it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occurs on a time scale that is short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system and show how this noise is transformed to become time dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wave function as a Gaussian wave packet and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.

  10. Noise-enhanced Parametric Resonance in Perturbed Galaxies

    NASA Astrophysics Data System (ADS)

    Sideris, Ioannis V.; Kandrup, Henry E.

    2004-02-01

    This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.

  11. Physiological Noise Reduction Using Volumetric Functional Magnetic Resonance Inverse Imaging

    PubMed Central

    Lin, Fa-Hsuan; Nummenmaa, Aapo; Witzel, Thomas; Polimeni, Jonathan R.; Zeffiro, Thomas A.; Wang, Fu-Nien; Belliveau, John W.

    2013-01-01

    Physiological noise arising from a variety of sources can significantly degrade the detection of task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effective suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite difficult without external monitoring, since traditional EPI acquisition methods cannot sample the signal rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demonstrate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57-58% improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI data (FWHM =8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit significant reductions in physiological noise using standard temporal filtering techniques that result in significant improvements in hemodynamic response estimation. PMID:21954026

  12. Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise.

    PubMed

    Jia, Yanbing; Gu, Huaguang

    2015-12-01

    The effect of phase noise on the coherence dynamics of a neuronal network composed of FitzHugh-Nagumo (FHN) neurons is investigated. Phase noise can induce dissimilar coherence resonance (CR) effects for different coupling strength regimes. When the coupling strength is small, phase noise can induce double CRs. One corresponds to the average frequency of phase noise, and the other corresponds to the intrinsic firing frequency of the FHN neuron. When the coupling strength is large enough, phase noise can only induce single CR, and the CR corresponds to the intrinsic firing frequency of the FHN neuron. The results show a transition from double CRs to single CR with the increase in the coupling strength. The transition can be well interpreted based on the dynamics of a single neuron stimulated by both phase noise and the coupling current. When the coupling strength is small, the coupling current is weak, and phase noise mainly determines the dynamics of the neuron. Moreover, the phase-noise-induced double CRs in the neuronal network are similar to the phase-noise-induced double CRs in an isolated FHN neuron. When the coupling strength is large enough, the coupling current is strong and plays a key role in the occurrence of the single CR in the network. The results provide a novel phenomenon and may have important implications in understanding the dynamics of neuronal networks. PMID:26723163

  13. CryoTHOR: measuring thermal noise in optical coatings

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Eichholz, Johannes; Hartman, Michael; Mueller, Guido

    2016-03-01

    Brownian thermal noise in the optical coatings of the test mirrors is expected to be one of dominant noise sources in the most sensitive frequency band of the Advanced LIGO detectors, from a few tens to a few hundreds Hz. Together with thermo-optic noise, it is also envisioned to be one of the main obstacles to improving the sensitivity of future gravitational wave observatories, including cryogenic ones. Many groups are currently engaged in the development of advanced coatings designs with reduced noise. Expected performances of such coatings are usually calculated using independent measurements of material properties which enters in the modeling of thermal noise. However, these properties are often highly dependent on the material history and specific geometric arrangement, and their measured values affected by relatively big uncertainties. Furthermore, their temperature dependence is not always well studied. A direct measurement of the thermal noise over a wide range of temperatures is clearly the preferred way of assessing a coating design viability. We report on the design, performance and latest results of cryoTHOR, an experiment developed for the direct measurements of coating thermal noise over the entire LIGO frequency band, both at room and cryogenic temperatures.

  14. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  15. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures

    PubMed Central

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F. Levent

    2008-01-01

    In many micromachined sensors the thin (2–10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement—demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz. PMID:19081811

  16. Thermal noise from optical coatings in gravitational wave detectors.

    PubMed

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now. PMID:16539265

  17. Determination of the Thermal Noise Limit of Graphene Biotransistors.

    PubMed

    Crosser, Michael S; Brown, Morgan A; McEuen, Paul L; Minot, Ethan D

    2015-08-12

    To determine the thermal noise limit of graphene biotransistors, we have measured the complex impedance between the basal plane of single-layer graphene and an aqueous electrolyte. The impedance is dominated by an imaginary component but has a finite real component. Invoking the fluctuation-dissipation theorem, we determine the power spectral density of thermally driven voltage fluctuations at the graphene/electrolyte interface. The fluctuations have 1/f(p) dependence, with p = 0.75-0.85, and the magnitude of fluctuations scales inversely with area. Our results explain noise spectra previously measured in liquid-gated suspended graphene devices and provide realistic targets for future device performance. PMID:26176844

  18. Mirror thermal noise in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Rao, Shanti Raja

    2003-12-01

    The LIGO (Laser Interferometer Gravitational-wave Observatory) project has begun its search for gravitational waves, and efforts are being made to improve its ability to detect these. The LIGO observatories are long, Fabry-Perot-Michelson interferometers, where the interferometer mirrors are also the gravitational wave test masses. LIGO is designed to detect the ripples in spacetime caused by cataclysmic astrophysical events, with a target gravitational wave minimum strain sensitivity of 4 × 10-22 [7] around 100 Hz. The Advanced LIGO concept [57] calls for an order of magnitude improvement in strain sensitivity, with a better signal to noise ratio to increase the rate of detection of events. Some of Advanced LIGO's major requirements are improvements over the LIGO design for thermal noise in the test mass substrates and reflective coatings [57]. Thermal noise in the interferometer mirrors is a significant challenge in LIGO's development. This thesis reviews the theory of test mass thermal noise and reports on several experiments conducted to understand this theory. Experiments to measure the thermal expansion of mirror substrates and coatings use the photothermal effect in a cross-polarized Fabry-Perot interferometer, with displacement sensitivity of 10-15m/rHz. Data are presented from 10 Hz to 4 kHz on solid aluminum, and on sapphire, BK7, and fused silica, with and without commercial TiO2/SiO2 dielectric mirror coatings. The substrate contribution to thermal expansion is compared to theories by Cerdonio et al. [32] and Braginsky, Vyatchanin, and Gorodetsky [22]. New theoretical models are presented for estimating the coating contribution to the thermal expansion. These results can also provide insight into how heat flows between coatings and substrates relevant to predicting coating thermoelastic noise [26, 108]. The Thermal Noise Interferometer (TNI) project is a interferometer built specifically to study thermal noise, and this thesis describes its

  19. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III; Castellino, Craig

    1989-01-01

    Existing interior noise reduction techniques for aircraft fuselages perform reasonably well at higher frequencies, but are inadequate at lower, particularly with respect to the low blade passage harmonics with high forcing levels found in propeller aircraft. A method is being studied which considers aircraft fuselages lines with panels alternately tuned to frequencies above and below the frequency to be attenuated. Adjacent panels would oscillate at equal amplitude, to give equal source strength, but with opposite phase. Provided these adjacent panels are acoustically compact, the resulting cancellation causes the interior acoustic modes to become cut off and therefore be non-propagating and evanescent. This interior noise reduction method, called Alternate Resonance Tuning (ART), is currently being investigated both theoretically and experimentally. This new concept has potential application to reducing interior noise due to the propellers in advanced turboprop aircraft as well as for existing aircraft configurations. This program summarizes the work carried out at Duke University during the third semester of a contract supported by the Structural Acoustics Branch at NASA Langley Research Center.

  20. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  1. Receptivity to thermal noise in real airfoil configurations

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo

    2014-11-01

    Thermal noise, the macroscopic manifestation of microscopic particle agitation, is present in fluid flow just as in electron flow in conductors or in other physical transport phenomena. When the flow acts as an amplifier, typically during transition to turbulence, the transition position can be influenced by the amplitude of external disturbances through the so called receptivity of the flow instabilities; internally generated thermal noise represents a thermodynamically enforced lower bound to how much disturbances can be reduced. In a previous paper (Seventh IUTAM Symposium on Laminar-Turbulent Transition, IUTAM Bookseries Volume 18, Springer, 2010, pp. 11-18), the present author showed that the maximum transition distance in a Blasius boundary layer corresponds to a Reynolds number little above 6 .106 and to an N-factor of the order of 13. Results to be exhibited at this conference show that in a real airfoil configuration the maximum transition Reynolds number imposed by thermal noise is even lower than on a flat wall, and not far from the actually observed transition position. It follows that thermal noise might actually have a role in natural transition; and that even a perfectly silenced laboratory environment cannot push the transition position much farther. Work supported by the European Community through the RECEPT grant.

  2. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    NASA Astrophysics Data System (ADS)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  3. Role of thermal noise in tripartite quantum steering

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Gong, Qihuang; Ficek, Zbigniew; He, Qiongyi

    2014-08-01

    The influence of thermal noise on bipartite and tripartite quantum steering induced by a short laser pulse in a hybrid three-mode optomechanical system is investigated. The calculation is carried out under the bad cavity limit, the adiabatic approximation of a slowly varying amplitude of the cavity mode, and with the assumption of driving the cavity mode with a blue detuned strong laser pulse. Under such conditions, explicit expressions of the bipartite and tripartite steering parameters are obtained, and the concept of collective tripartite quantum steering, recently introduced by He and Reid [Phys. Rev. Lett. 111, 250403 (2013), 10.1103/PhysRevLett.111.250403], is clearly explored. It is found that both bipartite and tripartite steering parameters are sensitive functions of the initial state of the modes and distinctly different steering behavior could be observed depending on whether the modes were initially in a thermal state or not. For the modes initially in a vacuum state, the bipartite and tripartite steering occur simultaneously over the entire interaction time. This indicates that collective tripartite steering cannot be achieved. The collective steering can be achieved for the modes initially prepared in a thermal state. We find that the initial thermal noise is more effective in destroying the bipartite rather than the tripartite steering which, on the other hand, can persist even for a large thermal noise. For the initial vacuum state of a steered mode, the tripartite steering exists over the entire interaction time even if the steering modes are in very noisy thermal states. When the steered mode is initially in a thermal state, it can be collectively steered by the other modes. There are thresholds for the average number of the thermal photons above which the existing tripartite steering appears as the collective steering. Finally, we point out that the collective steering may provide a resource in a hybrid quantum network for quantum secret sharing

  4. Thermal magnetic field noise: electron optics and decoherence.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Zach, Joachim; Haider, Max

    2015-04-01

    Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. PMID:25499019

  5. Waterborne noise due to ocean thermal energy conversion plants

    NASA Astrophysics Data System (ADS)

    Janota, C. P.; Thompson, D. E.

    1982-06-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  6. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  7. Measurement of thermal noise in multilayer coatings with optimized layer thickness

    SciTech Connect

    Villar, Akira E.; Black, Eric D.; DeSalvo, Riccardo; Libbrecht, Kenneth G.; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Pinto, Innocenzo M.; Pierro, Vincenzo; Galdi, Vincenzo; Principe, Maria; Taurasi, Ilaria

    2010-06-15

    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.

  8. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  9. Brownian motion at fast time scales and thermal noise imaging

    NASA Astrophysics Data System (ADS)

    Huang, Rongxin

    This dissertation presents experimental studies on Brownian motion at fast time scales, as well as our recent developments in Thermal Noise Imaging which uses thermal motions of microscopic particles for spatial imaging. As thermal motions become increasingly important in the studies of soft condensed matters, the study of Brownian motion is not only of fundamental scientific interest but also has practical applications. Optical tweezers with a fast position-sensitive detector provide high spatial and temporal resolution to study Brownian motion at fast time scales. A novel high bandwidth detector was developed with a temporal resolution of 30 ns and a spatial resolution of 1 A. With this high bandwidth detector, Brownian motion of a single particle confined in an optical trap was observed at the time scale of the ballistic regime. The hydrodynamic memory effect was fully studied with polystyrene particles of different sizes. We found that the mean square displacements of different sized polystyrene particles collapse into one master curve which is determined by the characteristic time scale of the fluid inertia effect. The particle's inertia effect was shown for particles of the same size but different densities. For the first time the velocity autocorrelation function for a single particle was shown. We found excellent agreement between our experiments and the hydrodynamic theories that take into account the fluid inertia effect. Brownian motion of a colloidal particle can be used to probe three-dimensional nano structures. This so-called thermal noise imaging (TNI) has been very successful in imaging polymer networks with a resolution of 10 nm. However, TNI is not efficient at micrometer scale scanning since a great portion of image acquisition time is wasted on large vacant volume within polymer networks. Therefore, we invented a method to improve the efficiency of large scale scanning by combining traditional point-to-point scanning to explore large vacant

  10. Speckle and thermal noise reduction techniques for SAR interferogram

    SciTech Connect

    Huang, Y.; Genderen, J.L. van

    1996-11-01

    Thermal and speckle noise is an obstacle to generating digital elevation model (DAM) from interferograms by 2-D phase unwrapping of Interferometric SAR (INSAR). Multi-look processing as a traditional method to reduce speckle noise is addressed briefly in this paper. Alternatively, we investigate the box filters in depth, as it deals with the single complex images more flexible in the complex image domain than in the frequency domain. Several Box filters are proposed and the comparison between these filters is made to illustrate the noise reduction by implementation of filtering techniques. Window size selection of the box filters is examined in details. Simulation results and raw data testing results are presented to confirm the validity of the filtering algorithms proposed in this paper.

  11. Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system

    NASA Astrophysics Data System (ADS)

    Wang, Can-Jun; Yang, Ke-Li

    2016-07-01

    The correlated noise-based switches and stochastic resonance are investigated in a bistable single gene switching system driven by an additive noise (environmental fluctuations), a multiplicative noise (fluctuations of the degradation rate). The correlation between the two noise sources originates from on the lysis-lysogeny pathway system of the λ phage. The steady state probability distribution is obtained by solving the time-independent Fokker-Planck equation, and the effects of noises are analyzed. The effects of noises on the switching time between the two stable states (mean first passage time) is investigated by the numerical simulation. The stochastic resonance phenomenon is analyzed by the power amplification factor. The results show that the multiplicative noise can induce the switching from "on" → "off" of the protein production, while the additive noise and the correlation between the noise sources can induce the inverse switching "off" → "on". A nonmonotonic behaviour of the average switching time versus the multiplicative noise intensity, for different cross-correlation and additive noise intensities, is observed in the genetic system. There exist optimal values of the additive noise, multiplicative noise and cross-correlation intensities for which the weak signal can be optimal amplified.

  12. Quasi-thermal noise in space plasma: 'kappa' distributions

    SciTech Connect

    Le Chat, G.; Issautier, K.; Meyer-Vernet, N.; Maksimovic, M.; Moncuquet, M.; Zouganelis, I.

    2009-10-15

    The transport of energy in collisionless plasmas, especially in space plasmas, is far from being understood. Measuring the temperature of the electrons and their nonthermal properties can give important clues to understand the transport properties. Quasi-thermal noise (QTN) spectroscopy is a reliable tool for measuring accurately the electron density and temperature since it is less sensitive to the spacecraft perturbations than particle detectors. This work models the plasma QTN using a generalized Lorentzian ('kappa') distribution function for the electrons. This noise is produced by the quasi-thermal fluctuations of the electrons and by the Doppler-shifted thermal fluctuations of the ions. A sum of two Maxwellian functions has mainly been used for modeling the QTN of the electrons, but the observations have shown that the electrons are better fitted by a kappa distribution function. Pioneer work on QTN calculation only considered integer values of {kappa}. This paper extends these calculations to real values of {kappa} and gives the analytic expressions and numerical calculations of the QTN with a kappa distribution function. This paper shows some generic properties and gives some practical consequences for plasma wave measurements in space.

  13. Thermal noise informatics: totally secure communication via a wire, zero-power communication, and thermal noise driven computing

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Mingesz, Robert; Gingl, Zoltan

    2007-06-01

    Very recently, it has been shown that Gaussian thermal noise and its artificial versions (Johnson-like noises) can be utilized as an information carrier with peculiar properties therefore it may be proper to call this topic Thermal Noise Informatics. Zero Power (Stealth) Communication, Thermal Noise Driven Computing, and Totally Secure Classical Communication are relevant examples. In this paper, while we will briefly describe the first and the second subjects, we shall focus on the third subject, the secure classical communication via wire. This way of secure telecommunication utilizes the properties of Johnson(-like) noise and those of a simple Kirchhoff's loop. The communicator is unconditionally secure at the conceptual (circuit theoretical) level and this property is (so far) unique in communication systems based on classical physics. The communicator is superior to quantum alternatives in all known aspects, except the need of using a wire. In the idealized system, the eavesdropper can extract zero bit of information without getting uncovered. The scheme is naturally protected against the man-in-the-middle attack. The communication can take place also via currently used power lines or phone (wire) lines and it is not only a point-to-point communication like quantum channels but network-ready. We report that a pair of Kirchhoff-Loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line with ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance. This simple device has single-wire secure key generation/sharing rates of 0.1, 1, 10, and 100 bit/second for copper wires with diameters/ranges of 21 mm / 2000 km, 7 mm / 200 km, 2.3 mm / 20 km, and 0.7 mm / 2 km, respectively and it performs with 0.02% raw-bit error rate (99.98 % fidelity). The raw-bit security of this practical system

  14. Characteristic analysis on the thermal noise of infrared CCD

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-zhu; Yu, Xing; Liu, Guo-dong

    2014-09-01

    1.064 μm, 1.319 μm and 10.6 μm laser were used to irradiate silicon-based HgCdTe CCD image system. The temperature distribution of detector induced by infrared laser irradiating in the experiment above was simulated. The influence of temperature on photoelectric parameters of HgCdTe CCD was calculated. A CCD physical model of crosstalk saturation was built and the response characteristic of CCD under the influence of thermal noise was analyzed. Result indicated that the rise of temperature induced by laser irradiating little influenced imaging effect of CCD.

  15. Parameter optimization analysis to minimize the polarization error in a localized thermal tunable fiber ring resonator gyro.

    PubMed

    Bobbili, Prasada Rao; Nayak, Jagannath; Pinnoji, Prerana Dabral; Rama Koti Reddy, D V

    2016-03-10

    The accuracy of the resonant frequency servo loop is a major concern for the high-performance operation of a resonant fiber optic gyro. For instance, a bias error as large as tens or even hundreds of degrees/hour has been observed at the demodulated output of the resonant frequency servo loop. The traditional frequency servo mechanism is not an efficient tool to address this problem. In our previous work, we proposed a novel method to minimize the laser frequency noise to the level of the shot noise by refractive index modulation by a thermally tunable resonator. In this paper, we performed the parameter optimization for the resonator coil, multifunction integrated-optics chip, and couplers by the transition matrix using the Jones matrix methodology to minimize the polarization error. With the optimized parameter values, we achieved the bias value of the resonator fiber optic gyro to 1.924°/h. PMID:26974794

  16. Thermal noise in aqueous quadrupole micro- and nano-traps.

    PubMed

    Park, Jae Hyun; Krstić, Predrag S

    2012-01-01

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuations as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches. PMID:22369362

  17. High Resolution Viscosity Measurement by Thermal Noise Detection

    PubMed Central

    Aguilar Sandoval, Felipe; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 μL. PMID:26540061

  18. High Resolution Viscosity Measurement by Thermal Noise Detection.

    PubMed

    Sandoval, Felipe Aguilar; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0:03mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL. PMID:26540061

  19. Parameter-Induced Stochastic Resonance of Weak Periodic Signal Excitation with α Stable Noise

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Kou, Jie; Jiao, Shang-Bin

    In view of the nonlinear bistable system, this paper studied the parameter-induced stochastic resonance phenomenon of low-frequency weak signal excitation under α stable noise environment, and explored the action laws of the α stable noise distribution parameters α, β, μ, σ and the bistable system parameters a, b on stochastic resonance effect. The results show that in different α stable noise, adjusting the bistable system parameters can induce stochastic resonance; Moreover, when a(or b) is fixed, the intervals of b(or a) which can induce stochastic resonance are multiple and don't change with any α stable distribution parameter. Further, by combining with the parameter compensation method for researching on high-frequency weak signal, the same action laws as the low-frequency signal are got. The conclusions are significant for using parameter-induced stochastic resonance principle in weak signal detection in the abnormal diffusion dynamical system.

  20. 1/f frequency noise of 2-GHZ high-Q thin-film sapphire resonators.

    PubMed

    Ferre-Pikal, E S; Delgado Arámburo, M C; Walls, F L; Lakin, K M

    2001-03-01

    We present experimental results on intrinsic 1/f frequency modulation (FM) noise in high-overtone thin-film sapphire resonators that operate at 2 GHz. The resonators exhibit several high-Q resonant modes approximately 100 kHz apart, which repeat every 13 MHz. A loaded Q of approximately 20,000 was estimated from the phase response. The results show that the FM noise of the resonators varied between Sy (10 Hz) = -202 dB relative (rel) to 1/Hz and -210 dB rel to 1/Hz. The equivalent phase modulation (PM) noise of an oscillator using these resonators (assuming a noiseless amplifier) would range from [symbol: see text](10 Hz) = -39 to -47 dBc/Hz. PMID:11370364

  1. Noise-enhanced stability and double stochastic resonance of active Brownian motion

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zhang, Chun; Zeng, Jiakui; Liu, Ruifen; Wang, Hua

    2015-08-01

    In this paper, we study the transient and resonant properties of active Brownian particles (ABPs) in the Rayleigh-Helmholtz (RH) and Schweitzer-Ebeling-Tilch (SET) models, which is driven by the simultaneous action of multiplicative and additive noise and periodic forcing. It is shown that the cross-correlation between two noises (λ) can break the symmetry of the potential to generate motion of the ABPs. In case of no correlation between two noises, the mean first passage time (MFPT) is a monotonic decrease depending on the multiplicative noise, however in case of correlation between two noises, the MFPT exhibits a maximum, depending on the multiplicative noise for both models, this maximum for MFPT identifies the noise-enhanced stability (NES) effect of the ABPs. By comparing with case of no correlation (λ =0.0 ), we find two maxima in the signal-to-noise ratio (SNR) depending on the cross-correlation intensity, i.e. the double stochastic resonance is shown in both models. For the RH model, the SNR exhibits two maxima depending on the multiplicative noise for small cross-correlation intensity, while in the SET model, it exhibits only a maximum depending on the multiplicative noise. Whether λ =0.0 or not, the MFPT is a monotonic decrease, and the SNR exhibits a maximum, depending on the additive noise in both models.

  2. Thermal design of a thermoelectrically cooled low-noise amplifier

    NASA Astrophysics Data System (ADS)

    Hyman, N. L.; Hung, H.-L.

    1981-06-01

    The development of a thermoelectrically cooled low-noise amplifier is described in terms of thermal design concepts, optimization procedures, supporting analyses, and examples of measured performance. The design objectives achieved include a compact, low-cost small overall package size (19 x 19 x 28 cm) with a heat exchanger and fan capable of maintaining at room temperature ambient the preamplifier unit of an earth station low-noise amplifier at -90 C. The size of the unit measures 1.0 x 1.8 x 8.4 cm and has a heat dissipation of 150 mW. A low system component production cost was maintained, and a high reliability from a solid-state TEHP and a gas-filled hermetically sealed container guaranteed. An inexpensive and effective insulation system was developed, based on perlite powder-krypton gas and thermal shielding, and a flexible heat conductor for strain relief was built. It is concluded that the design principles are applicable to other electronic and optical components to maintain temperatures as low as -100 C.

  3. Metallic-thin-film instability with spatially correlated thermal noise

    NASA Astrophysics Data System (ADS)

    Diez, Javier A.; González, Alejandro G.; Fernández, Roberto

    2016-01-01

    We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓc, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β ˜ℓc-1 ). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓc larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓc this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓc, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β . For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).

  4. Metallic-thin-film instability with spatially correlated thermal noise.

    PubMed

    Diez, Javier A; González, Alejandro G; Fernández, Roberto

    2016-01-01

    We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓ_{c}, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β∼ℓ_{c}^{-1}). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓ_{c} larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓ_{c} this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓ_{c}, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β. For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations). PMID:26871167

  5. Quasi-thermal noise measurements on STEREO: Kinetic temperature deduction using electron shot noise model

    NASA Astrophysics Data System (ADS)

    Martinović, M. M.; Zaslavsky, A.; Maksimović, M.; Meyer-Vernet, N.; Å egan, S.; Zouganelis, I.; Salem, C.; Pulupa, M.; Bale, S. D.

    2016-01-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. A QTN spectrum is determined by plasma and antenna properties. On STEREO/WAVES, since the antennas are relatively short and thick, the QTN spectrum is dominated by electron shot noise, especially at low frequencies, which reduces the accuracy of the method. Here we use the STEREO low-frequency receiver, proton density measured by Plasma and Suprathermal Ion Composition instrument, and a QTN and shot noise models to provide electron temperature data from both STEREO A and B spacecraft. This derivation is important since no reliable measurements of electron temperature exist on board these spacecraft. We compare the results of our analysis with the electron temperature provided by the Wind spacecraft during the period when Wind and STEREO B were close to each other. The comparison shows that our technique is reliable when results are integrated on a time scale of the order of 50 to 60 min.

  6. Noise-induced relaxation of a quantum oscillator interacting with a thermal bath

    NASA Astrophysics Data System (ADS)

    Efremov, G. F.; Mourokh, L. G.; Smirnov, A. Yu.

    1993-04-01

    The non-Markovian theory of quantum Brownian motion is used to analyse the relaxation of a harmonic oscillator nonlinearly coupled to a thermal bath and driven by external noise. It is shown that this nonlinearity leads to interference between additive noise and multiplicative noise and to the effect of additive noise-induced relaxation of a high frequency oscillator interacting with a low frequency thermal bath.

  7. Analysis and design of a single-resonator GaAs FET oscillator with noise degeneration

    NASA Astrophysics Data System (ADS)

    Galani, Z.; Bianchini, M. J.; Waterman, R. C., Jr.; Dibiase, R.; Laton, R. W.; Cole, J. B.

    1984-12-01

    This paper presents an analysis of a low-noise dielectric resonator GaAs FET oscillator in a frequency-locked loop (FLL), which is used for FM noise degeneration. In this circuit, one resonator serves both as the frequency-determining element of the oscillator and as the dispersive element of the discriminator. The results of the analysis are used to generate design guidelines. These guidelines were followed in an experimental realization of an X-band circuit. The measured FM noise was -120 and -142 dBc/Hz at 10- and 100-kHz offset frequencies, respectively, and corresponded closely to predicted results.

  8. Optical resonance shifts in thermal and cold Rb atomic gases

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Jenkins, S. D.; Javanainen, J.; Bourgain, R.; Jennewein, S.; Sortais, Y. R. P.; Browaeys, A.; University of Southampton Collaboration; University of Connecticut Collaboration; Institut d'Optique, CNRS, Univ Paris Sud Collaboration

    2016-05-01

    We show that the resonance shifts in fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in light propagation.

  9. Stochastic Resonance in Ensembles of Nondynamical Elements: The Role of Internal Noise

    SciTech Connect

    Gailey, P.C.; Neiman, A.; Moss, F.; Neiman, A.; Collins, J.J.

    1997-12-01

    While many examples of noise-induced signal enhancement have been reported, the role of internal noise has received little attention. Here we study aperiodic stochastic resonance in parallel arrays of nondynamical elements with internal noise. Ensembles of both threshold and threshold-free elements are studied, and the model is applied to two-state ion channels. In finite systems where the input signal controls the probability of discrete events, we demonstrate that the internal noise is modulated by both the applied signal and the external noise. We also show that the internal noise plays a constructive role in information transfer through such systems via an increase in external noise. {copyright} {ital 1997} {ital The American Physical Society}

  10. Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hao, Mengli; Gu, Xudong; Yang, Guidong

    2014-05-01

    In this paper, the stochastic resonance phenomenon in a tumor growth model under subthreshold periodic therapy and Lévy noise excitation is investigated. The possible reoccurrence of tumor due to stochastic resonance is discussed. The signal-to-noise ratio (SNR) is calculated numerically to measure the stochastic resonance. It is found that smaller stability index is better for avoiding tumor reappearance. Besides, the effect of the skewness parameter on the tumor regrowth is related to the stability index. Furthermore, increasing the intensity of periodic treatment does not always facilitate tumor therapy. These results are beneficial to the optimization of periodic tumor therapy.

  11. Efficient and robust analysis of complex scattering data under noise in microwave resonators

    SciTech Connect

    Probst, S.; Song, F. B.; Bushev, P. A.; Ustinov, A. V.; Weides, M.

    2015-02-15

    Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

  12. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  13. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  14. An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors.

    PubMed

    Ghasemi, Farshid; Chamanzar, Maysamreza; Eftekhar, Ali A; Adibi, Ali

    2014-11-21

    A systematic study of the limit of detection (LOD) in resonance-based silicon photonic lab-on-chip sensors is presented. The effects of the noise, temperature fluctuations, and the fundamental thermodynamic limit of the resonator are studied. Wavelength noise is identified as the dominant source of noise, and an efficient technique for suppressing this noise is presented. A large ensemble of statistical data from the transmission measurements in a laser-scanning configuration on five silicon nitride (SiN) microrings is collected to discuss and identify the sources of noise. The experimental results show that the LOD is limited by a 3σ wavelength noise of ∼1.8 pm. We present a sub-periodic interferometric technique, relying on an inverse algorithm, to suppress this noise. Our technique reduces the wavelength noise by more than one order of magnitude to an ensemble average of 3σ = 120 fm, for a resonator quality factor (Q) of about 5 × 10(4) without any temperature stabilization or cooling. This technique is readily amenable to on-chip integration to realize highly accurate and low-cost lab-on-chip sensors. PMID:25243248

  15. Trichotomous Noise Induced Resonance Behavior for a Fractional Oscillator with Random Mass

    NASA Astrophysics Data System (ADS)

    Zhong, Suchuan; Wei, Kun; Gao, Shilong; Ma, Hong

    2015-04-01

    We investigate the stochastic resonance (SR) phenomenon in a fractional oscillator with random mass under the external periodic force. The fluctuations of the mass are modeled as a trichotomous noise. Applying the Shapiro-Loginov formula and the Laplace transform technique, we obtain the exact expression of the first moment of the system. The non-monotonic behaviors of the spectral amplification (SPA) versus the driving frequency indicate that the bona fide SR appears. The necessary and sufficient conditions for the emergence of the generalized stochastic resonance phenomena on the noise flatness and on the noise intensity in the particular case of are established. Particularly, the hypersensitive response of the SPA to the noise intensity is found, which is previously reported and believed to be absent in the case of dichotomous noise.

  16. Phase Noise Improvement Techniques for Oscillator Circuit Using External Crystal Resonant Circuit

    NASA Astrophysics Data System (ADS)

    Imaike, Takeshi; Sakuta, Yukinori; Sekine, Yoshifumi

    This paper describes a new techniques of reducing phase noise in oscillator circuits. Our method uses an external crystal resonant circuit that acts as a frequency reference and is based on correlation with negative feedback control. We present the circuit configuration and the transfer function used in this method, as well as measured single sideband (SSB) phase noise characteristics. Our experiments show that phase noise can be decreased as it is a theoretical value when using LC oscillator. Furthermore, we examine application for voltage controlled crystal oscillator (VCXO). As a results, we can improve that the phase noise characteristics more than that of original VCXO without spoiling frequency tuning range of VCXO.

  17. Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin

    2004-01-01

    A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.

  18. Logical stochastic resonance in bistable system under α-stable noise

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Song, Aiguo

    2014-05-01

    In the presence of α-stable noise, the logical stochastic resonance (LSR) phenomenon in a class of double well nonlinear system is investigated in this paper. LSR effect is obtained under α-stable noise. The probability of getting correct logic outputs is used to evaluate LSR behavior. Four main results are presented. Firstly, in the optimal band of noise intensity, Gaussian white noise is considered a better choice than heavy tailed noise to obtain clean logic operation. But at weak noise background, the success probability of getting the right logic outputs is higher when the system is subjected to heavy tailed noise. Secondly, it is shown that over the entire range of noise variance, the asymmetric noise induced LSR performs better than that induced by the symmetric noise. Furthermore, we find which side the tail skews also affects the correct probability of LSR. At last, the fractional Fokker-Planck equation is presented to show when the characteristic exponent of α-stable noise is less than 1, LSR behavior will not be obtained irrespective of the setting for other parameters.

  19. Double-maximum enhancement of signal-to-noise ratio gain via stochastic resonance and vibrational resonance.

    PubMed

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2014-08-01

    This paper studies the signal-to-noise ratio (SNR) gain of a parallel array of nonlinear elements that transmits a common input composed of a periodic signal and external noise. Aiming to further enhance the SNR gain, each element is injected with internal noise components or high-frequency sinusoidal vibrations. We report that the SNR gain exhibits two maxima at different values of the internal noise level or of the sinusoidal vibration amplitude. For the addition of internal noise to an array of threshold-based elements, the condition for occurrence of stochastic resonance is analytically investigated in the limit of weak signals. Interestingly, when the internal noise components are replaced by high-frequency sinusoidal vibrations, the SNR gain displays the vibrational multiresonance phenomenon. In both considered cases, there are certain regions of the internal noise intensity or the sinusoidal vibration amplitude wherein the achieved maximal SNR gain can be considerably beyond unity for a weak signal buried in non-Gaussian external noise. Due to the easy implementation of sinusoidal vibration modulation, this approach is potentially useful for improving the output SNR in an array of nonlinear devices. PMID:25215715

  20. Consistent thermodynamic framework for interacting particles by neglecting thermal noise.

    PubMed

    Nobre, Fernando D; Curado, Evaldo M F; Souza, Andre M C; Andrade, Roberto F S

    2015-02-01

    An effective temperature θ, conjugated to a generalized entropy s(q), was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T≪θ, the thermal noise can be neglected (T/θ≃0) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, du=θds(q)+δW, were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η=1-(θ(2)/θ(1)). Herein we explore further the heat contribution δQ=θds(q) by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T>0. PMID:25768486

  1. Consistent thermodynamic framework for interacting particles by neglecting thermal noise

    NASA Astrophysics Data System (ADS)

    Nobre, Fernando D.; Curado, Evaldo M. F.; Souza, Andre M. C.; Andrade, Roberto F. S.

    2015-02-01

    An effective temperature θ , conjugated to a generalized entropy sq, was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T ≪θ , the thermal noise can be neglected (T /θ ≃0 ) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, d u =θ d sq+δ W , were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η =1 -(θ2/θ1) . Herein we explore further the heat contribution δ Q =θ d sq by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T >0 .

  2. Thermal conductivity and resonant multipole interactions.

    NASA Technical Reports Server (NTRS)

    Nyeland, C.; Mason, E. A.; Monchick, L.

    1972-01-01

    Investigation of the influence of resonant multipole interactions on exchanges of rotational energy in molecular collisions, by means of a simple two-state impact-parameter approximation. It is found that dipole-quadrupole and quadrupole-quadrupole interactions can have a significant effect for molecules with low moments of inertia.

  3. How does stochastic resonance work within the human brain? - Psychophysics of internal and external noise

    NASA Astrophysics Data System (ADS)

    Aihara, Takatsugu; Kitajo, Keiichi; Nozaki, Daichi; Yamamoto, Yoshiharu

    2010-10-01

    We review how research on stochastic resonance (SR) in neuroscience has evolved and point out that the previous studies have overlooked the interaction between internal and external noise. We propose a new psychometric function incorporating SR effects, and show that a Bayesian adaptive method applied to the function efficiently estimates the parameters of the function. Using this procedure in visual detection experiments, we provide significant insight into the relationship between internal and external noise in SR within the human brain.

  4. Laser phase noise effects on the dynamics of optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Phelps, Gregory; Meystre, Pierre

    2011-05-01

    We present a theoretical analysis of the effects of laser phase noise on the sideband cooling of opto-mechanical oscillators, demonstrating how it limits the minimum occupation number of the phonon mode being cooled and how it modifies optical cooling rate and mechanical frequency shift of the mechanical element. We also comment on the effects of laser phase noise on coherent oscillations of the mechanical element in the blue detuned regime and on the back-action evasion detection method where an additional drive is used to prevent heating of one quadrature of motion of the oscillator. This work was supported by the US Office of Naval Research, the US National Science Foundation, the US Army Research Office and the DARPA ORCHID program through a grant from AFOSR.

  5. Fan Noise Control Using Herschel-quincke Resonators

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo A.; Ng, Wing F.; Provenza, Andrew (Technical Monitor)

    2003-01-01

    The research effort proposed for this NASA NRA is mainly experimental. In addition, Virginia Tech is working in partnership with Goodrich Aerospace, Aerostructures Group for the analytical development needed to support the experimental endeavor, i.e. model development, design, and system studies. In this project, Herschel-Quincke (HQ)liner technology experiments will be performed at the NASA Glenn Active Noise Control Fan (ANCF) facility. A schematic of both inlet and aft HQ-liner systems installed in the ANCF rig as well as a picture of the Glenn facility is shown. The main goal is to simultaneously test in both the inlet and bypass duct sections. The by-pass duct will have HQ-systems in both the inner and outer duct walls. The main advantages of performing tests at the ANCF facility are that the effect of the inlet HQ-system on the by-pass HQ-system and vice versa, can be accurately determined from the in-duct modal data. Another significant advantage is that it offers the opportunity to assess (on a common basis) the proposed noise reduction concept on the ANCF rig which in the past has been used for assessing other active and passive noise reduction strategies.

  6. Fan Noise Control Using Herschel-Quincke Resonators

    NASA Astrophysics Data System (ADS)

    Burdisso, Ricardo A.; Ng, Wing F.

    2003-01-01

    The research effort proposed for this NASA NRA is mainly experimental. In addition, Virginia Tech is working in partnership with Goodrich Aerospace, Aerostructures Group for the analytical development needed to support the experimental endeavor, i.e. model development, design, and system studies. In this project, Herschel-Quincke (HQ)liner technology experiments will be performed at the NASA Glenn Active Noise Control Fan (ANCF) facility. A schematic of both inlet and aft HQ-liner systems installed in the ANCF rig as well as a picture of the Glenn facility is shown. The main goal is to simultaneously test in both the inlet and bypass duct sections. The by-pass duct will have HQ-systems in both the inner and outer duct walls. The main advantages of performing tests at the ANCF facility are that the effect of the inlet HQ-system on the by-pass HQ-system and vice versa, can be accurately determined from the in-duct modal data. Another significant advantage is that it offers the opportunity to assess (on a common basis) the proposed noise reduction concept on the ANCF rig which in the past has been used for assessing other active and passive noise reduction strategies.

  7. Improved rejection of transmitter noise: a convenient scheme with resonant crossed diodes.

    PubMed

    Sinkovits, Daniel W; Conradi, Mark S

    2004-11-01

    A method is presented for improved rejection of transmitter noise in the duplexer (transmit-receive switch). The capacitance of a set of crossed diodes forms a resonant circuit with a length of coaxial cable. The rejection of our resonant design is 60 dB, compared with only 12-15 dB for the usual method, all measured at 175 MHz. Tuning the entire duplexer to different frequencies is convenient, requiring only two new lengths of cable. The scheme is most useful with ungated linear rf power amplifiers at very high frequencies (above 100 MHz), where transmitter noise can be a severe problem. PMID:15504675

  8. Extremely low-phase-noise SAW resonators and oscillators: design and performance.

    PubMed

    Montress, G K; Parker, T E; Loboda, M J; Greer, J A

    1988-01-01

    The authors describe prototype low-noise SAW (surface acoustic wave) resonator oscillators which have demonstrated state-of-the-art phase-noise performance not only at their fundamental operating frequencies in the 400- to 600-MHz range but also after 16x frequency multiplication to X-band as well. SAW resonator designs with overmoded cavities, very wide apertures, and dual apertures, as well as modified fabrication techniques, have been used to realize an overall reduction in an oscillator's phase-noise spectrum, i.e. white phiM, flicker FM, and random-walk FM. The S resonators can typically handle incident RF power in excess of +20 dBm, a key requirement to achieving an extremely low oscillator-phase-noise floor. A novel burn-in procedure at relatively high incident-RF-power levels (>27 dBm) was used to reduce both the flicker FM and random-walk FM phase-noise levels. Using these various techniques, a 5- to 15-dB improvement in the overall phase-noise spectrum for several prototype oscillators was demonstrated. PMID:18290201

  9. Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators

    SciTech Connect

    Yoo, Gwangsu; Sim, H.-S.; Schomerus, Henning

    2011-12-15

    PT-symmetric optical resonators combine absorbing regions with active, amplifying regions. The latter are the source of radiation generated via spontaneous and stimulated emission, which embodies quantum noise and can result in lasing. We calculate the frequency-resolved output radiation intensity of such systems and relate it to a suitable measure of excess noise and mode nonorthogonality. The line shape differs depending on whether the emission lines are isolated (as for weakly amplifying, almost-Hermitian systems) or overlapping (as for the almost-degenerate resonances in the vicinity of exceptional points associated with spontaneous PT-symmetry breaking). The calculations are carried out in the scattering input-output formalism, and are illustrated for a quasi-one-dimensional resonator setup. In our derivations, we also consider the more general case of a resonator in which the amplifying and absorbing regions are not related by symmetry.

  10. Bi-material resonant infrared thermal detector and array

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2014-10-01

    A resonant infrared thermal sensor with high sensitivity, whose sensing element is a bi-material structure with thermal expansion mismatch effect, is presented in this paper. The sensor detects infrared radiation by means of tracking the change in resonance frequency of the bi-material structure with temperature change attributed to the infrared radiation from targets. The bi-material structure can amplify the change in resonance frequency compared to a single material sensing structure. In accordance with the theory of vibration mechanics and design principle of infrared thermal detector, the bi-material resonant sensor by means of which an array can be achieved is designed. The simulation results, by ANSYS software analysis based on multi-layer shell finite element, demonstrate that the dependence of resonance frequency on temperature of the designed sensing structure achieves 1Hz/0.01°C. A microarray with 6×6 resonant infrared sensors is fabricated based on microelectronics processes being compatible with integrated circuit fabrication technology. The frequency variation corresponding to the temperature shift can be obtained by electrical measurement.

  11. Coherence resonance in the two-dimensional neural map driven by non-Gaussian colored noise

    NASA Astrophysics Data System (ADS)

    Li, Dongxi; Hu, Bing; Wang, Jia; Jing, Yingchuan; Hou, Fangmei

    2016-01-01

    Based on the two-dimensional (2D) neural map, we investigate the impacts of non-Gaussian colored noise on the firing activity of discrete system. Taking the coherence parameter R to measure the regularity of firing behavior, it is demonstrated that coherence parameter R has a pronounced minimum value with the noise intensity and the correlation time of non-Gaussian colored noise, which is the so-called phenomenon of coherence resonance (CR). Besides, the firing activity is not sensitive to the non-Gaussian parameter which determines the departure from the Gaussian distribution when the correlation time is large enough.

  12. Spin-noise spectroscopy under resonant optical probing conditions: Coherent and nonlinear effects

    SciTech Connect

    Horn, H.; Mueller, G. M.; Huebner, J.; Oestreich, M.; Rasel, E. M.; Santos, L.

    2011-10-15

    Highly sensitive Faraday rotation spectroscopy is used to measure the fluctuating magnetization noise of noninteracting rubidium atoms under resonant and nonresonant optical probing conditions. The spin-noise frequency spectra, in conjunction with the probe light detuning with respect to the D{sub 2} transition, reveal clear signatures of coherent coupling of the participating electronic levels. The results are explained by extended Bloch equations, including homogeneous and inhomogeneous broadening mechanisms. Our measurements further indicate that spin noise originating from excited states is governed at high intensities by collective effects.

  13. Study of noise reduction characteristics of multilayered panels and dual pane windows with Helmholtz resonators

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.

    1981-01-01

    The experimental noise attenuation characteristics of flat, general aviation type, multilayered panels are discussed. Experimental results of stiffened panels, damping tape, honeycomb materials and sound absorption materials are presented. Single degree of freedom theoretical models were developed for sandwich type panels with both shear resistant and non-shear resistant core material. The concept of Helmholtz resonators used in conjunction with dual panel windows in increasing the noise reduction around a small range of frequency was tested. It is concluded that the stiffening of the panels either by stiffeners or by sandwich construction increases the low frequency noise reduction.

  14. Ultra-Narrow Bandwidth Optical Resonators for Integrated Low Frequency Noise Lasers

    NASA Astrophysics Data System (ADS)

    Spencer, Daryl T.

    The development of narrowband resonators has far reaching applications in integrated optics. As a precise reference of wavelength, filters can be used in sensors, metrology, nonlinear optics, microwave photonics, and laser stabilization. In this work, we develop record high quality factor (Q) Si 3N4 waveguide resonators, and utilize them to stabilize a heterogeneously integrated Si/III V laser. To increase the Q factor of waveguide resonators, particular attention is given to loss mechanisms. Propagation loss of <0.1 dB/m is demonstrated on the ultra low loss waveguide platform, a low index contrast, high aspect ratio Si3N4 waveguide geometry fabricated with high quality materials and high temperature anneals. Ideality in the directional couplers used for coupling to the resonators is studied and losses are reduced such that 81 million intrinsic Q factor is achieved. Additional results include 1x16 resonant splitters, low ? narrowband gratings, and a dual layer waveguide technology for low loss and low bend radius in separate regions of the same device layer. We then combine an ultra high Q resonator and a heterogeneous Si/III V laser in a Pound Drever Hall (PDH) frequency stabilization system to yield narrow linewidth characteristics for a stable on chip laser reference. The high frequency noise filtering is performed with Si resonant mirrors in the laser cavity. A 30 million Q factor Si3N4 resonator is used with electrical feedback to reduce close in noise and frequency walk off. The laser shows high frequency noise levels of 60x103 Hz2/Hz corresponding to 160 kHz linewidth, and the low frequency noise is suppressed 33 dB to 103 Hz2/Hz with the PDH system.

  15. Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise

    NASA Astrophysics Data System (ADS)

    Nozaki, Daichi; Collins, James J.; Yamamoto, Yoshiharu

    1999-10-01

    Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance (SR). In a previous study [Phys. Lett. A 243, 281 (1998)], we showed that when colored noise with 1/fβ spectrum is added to the FitzHugh-Nagumo (FHN) neuronal model, the optimal noise variance for SR could be minimized with β~1. In this study, we investigate analytically how the noise color (β) affects the SR profile in a linearized version of the FHN model. We demonstrate that the aforementioned effect of 1/f noise is related to the dynamical characteristics of the model neuron, i.e., the refractory period, the low-pass filtering effect of the membrane capacitance, and the high-pass filtering effect of the recovery variable.

  16. 239Pu Resonance Evaluation for Thermal Benchmark System Calculations

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Noguere, G.; de Saint Jean, C.; Kahler, A. C.

    2014-04-01

    Analyses of thermal plutonium solution critical benchmark systems have indicated a deficiency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplicity (νbar) and the prompt neutron fission spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation effort.

  17. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    PubMed

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system. PMID:24353303

  18. Noise-induced transitions and resonant effects in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  19. Resonant and time-resolved spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Pursley, Brennan C.; Song, X.; Sih, V.

    2015-11-01

    We demonstrate a method to extend the range of pulsed laser spin noise measurements to long spin lifetimes. We use an analog detection scheme with a bandwidth limited only by laser pulse duration. Our model uses statistics and Bloch-Torrey equations to extract the Lande g-factor, Faraday cross-section σ F , and spin lifetime τ s , while accounting for finite detector response. Varying the magnetic field with a fixed probe-probe delay yields τ s when it is longer than the laser repetition period. Varying the probe-probe delay with a fixed field produces a time-domain measurement of the correlation function.

  20. Cross correlation of thermal flux noise in layered superconductors

    SciTech Connect

    Ashkenazy, V.D.; Jung, G. |; Shapiro, B.Y. |

    1996-10-01

    Cross correlation in the magnetic flux noise due to thermally activated movements of pancake vortices in strongly anisotropic layered superconductors has been investigated theoretically. It has been shown that there exists a crossover frequency, inversely proportional to the sample thickness, below which vortices behave as rigid rods and their ends move coherently on the opposite sides of the sample. At low frequencies, the cross-correlation spectrum is identical to the spectrum measured at each side of the sample. The cross-correlation spectrum demonstrates two regimes of behavior, separated by a characteristic frequency which depends on the geometry of the flux measuring loop. At high frequencies above the crossover frequency, the excitations of the elastic lattice modes lead to exponentially vanishing oscillations of the cross-correlation spectra. Pancake movements became incoherent and the correlation function decays, accompanied by the oscillations. The oscillations are most pronounced for the separation between pickup loops smaller than the sample thickness. In a typical experimental configuration with pickup loops located on the sample surface, the oscillations constitute only small perturbations to the dominating powerlike decay of the correlation function. {copyright} {ital 1996 The American Physical Society.}

  1. Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    PubMed Central

    Lugo, Eduardo; Doti, Rafael; Faubert, Jocelyn

    2008-01-01

    Background Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. Methodology/Principal Findings Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. Conclusions/Significance We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for

  2. Design of thermal-noise-harnessing single-electron circuit for efficient signal propagation

    NASA Astrophysics Data System (ADS)

    Hirashima, Ryo; Oya, Takahide

    2016-06-01

    We propose a new single-electron (SE) circuit that can improve the signal propagation speed by harnessing thermal noise efficiently. Generally, an SE circuit has some weaknesses. It is very sensitive to thermal noise and it takes a long time for signal propagation. To solve these problems, we focus on a unique function at an output terminal (an axon) of a neuron that can improve the signal propagation speed because of its distinctive structure. It is expected that a new high-speed SE circuit can be realized by mimicking the structure of the neuron. Here, we indicate the possibility of improving the signal propagation speed by harnessing the thermal noise in one-dimensional neuromorphic single-electron oscillators. Moreover, we designed a two-dimensional neuromorphic single-electron oscillator as an advanced circuit and confirmed its tolerance to thermal noise. Our study will be useful for constructing novel devices that actively use noise energy in the future.

  3. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator.

    PubMed

    Pirkkalainen, J-M; Damskägg, E; Brandt, M; Massel, F; Sillanpää, M A

    2015-12-11

    A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations that are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude 1.1±0.4  dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object. PMID:26705631

  4. Enhanced visibility of two-mode thermal squeezed states via degenerate parametric amplification and resonance

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Okamoto, H.; Yamaguchi, H.

    2016-08-01

    Two-mode squeezed states, generated via non-degenerate parametric down-conversion, are invariably revealed via their entangled vacuum or correlated thermal fluctuations. Here, two-mode thermal squeezed states, generated in an electromechanical system, are made bright by means of degenerate parametric amplification of their constituent modes to the point where they are almost perfect, even when seeded from low intensity non-degenerate parametric down-conversion. More dramatically, activating the degenerate parametric resonances of the underlying modes yields perfect correlations which can be resolved via the coordinated switching of their phase bi-stable vibrations, without recourse to monitoring their thermal fluctuations. This ability to enhance the two-mode squeezed states and to decipher them without needing to observe their intrinsic noise is supported by both analytical and numerical modelling and it suggests that the technical constraints to making this phenomenon more widely available can be dramatically relaxed.

  5. Noise effects on a birhythmic Josephson junction coupled to a resonator

    NASA Astrophysics Data System (ADS)

    Yamapi, R.; Filatrella, G.

    2014-05-01

    We study the effect of noise on a Josephson junction that, coupled to a linear RLC resonator, can oscillate at two frequencies. To establish the global stability of the attractors, we estimate the position of the separatrix, essential information to establish the stability of the attractor for this multidimensional system, from the analysis of the mean first passage time. We find that the frequency locked to the resonator is most stable at low bias and less stable at high bias, where the resonator exhibits the largest oscillations. The change in the birhythmic region is dramatic for the effective barrier changes of an order of magnitude and the corresponding lifetime of about seven decades.

  6. 1/f noise in etched groove surface acoustic wave (SAW) resonators.

    PubMed

    Parker, T E; Andres, D; Greer, J A; Montress, G K

    1994-01-01

    Measurements of 1/f (or flicker) frequency fluctuations in SAW resonators fabricated with etched groove reflectors on single crystal quartz have shown that the observed noise levels vary inversely with device size. These measurements were made on sixteen 450 MHz resonators of four different sizes. The 1/f noise levels were also evaluated on twenty-eight other SAW resonators ranging in frequency from 401 to 915 MHz. This additional data provides valuable information on the dependence of the flicker noise levels on resonator frequency. A model based an localized, independent velocity fluctuations in the quartz is proposed which correctly fits the observed size and frequency dependence of the measured 1/f noise levels. This model suggests that the velocity fluctuations originate in small regions (much less than ~5 mum in diameter) randomly distributed throughout the quartz with an average separation of about 5 mum between independent (incoherent) sources. The magnitude of the localized fractional velocity fluctuations, Deltav/v, averaged over a 5 micron cube is on the order of 1x10 (-9). PMID:18263275

  7. Role of the nature of noise in the thermal conductance of mechanical systems.

    PubMed

    Morgado, Welles A M; Duarte Queirós, Sílvio M

    2012-10-01

    Focusing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role of the Lévy-Itô nature of the noise in the thermal conductance. For white noises, we prove that the Lévy-Itô composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a nonequilibrium linearly coupled chain, which signals the independence of mechanical and thermodynamical properties. In contrast, for the nonlinearly coupled case, the two types of properties mix and the explicit definition of the noise plays a central role. PMID:23214530

  8. Finite-difference time-domain simulation of thermal noise in open cavities

    SciTech Connect

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem |; Cao Changqi

    2008-02-15

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes.

  9. Partial removal of correlated noise in thermal imagery

    SciTech Connect

    Borel, C.C.; Cooke, B.J.; Laubscher, B.E.

    1996-04-01

    Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits. Correlated noise appears as streaking along the scan direction of a scanner or in the along track direction of a push-broom imager. We have developed algorithms to simulate correlated noise and pre-filter to reduce the amount of streaking while not destroying the scene content. The pre- filter in the Fourier domain consists of the product of two filters. One filter models the correlated noise spectrum, the other is a windowing function e.g. Gaussian or Hanning window with variable width to block high frequency noise away from the origin of the Fourier Transform of the image data. We have optimized the filter parameters for various scenes and find improvements of the RMS error of the original minus the pre-filtered noisy image.

  10. Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2009-05-01

    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance.

  11. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    SciTech Connect

    Sun, Zhongkui Xu, Wei; Yang, Xiaoli; Xiao, Yuzhu

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  12. Tailoring photonic metamaterial resonances for thermal radiation

    PubMed Central

    2011-01-01

    Selective solar absorbers generally have limited effectiveness in unconcentrated sunlight, because of reradiation losses over a broad range of wavelengths and angles. However, metamaterials offer the potential to limit radiation exchange to a proscribed range of angles and wavelengths, which has the potential to dramatically boost performance. After globally optimizing one particular class of such designs, we find thermal transfer efficiencies of 78% at temperatures over 1,000°C, with overall system energy conversion efficiencies of 37%, exceeding the Shockley-Quiesser efficiency limit of 31% for photovoltaic conversion under unconcentrated sunlight. This represents a 250% increase in efficiency and 94% decrease in selective emitter area compared to a standard, angular-insensitive selective absorber. PACS: 42.70.Qs; 81.05.Xj; 78.67.Pt; 42.79.Ek PMID:21978732

  13. Relationship of core exit-temperature noise to thermal-hydraulic conditions in PWRs

    SciTech Connect

    Sweeney, F.J.; Upadhyaya, B.R.

    1983-01-01

    Core exit thermocouple temperature noise and neutron detector noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and a Westinghouse, 1148 MW(e) PWR to relate temperature noise to core thermal-hydraulic conditions. The noise analysis results show that the RMS of the temperature noise increases linearly with increasing core ..delta..T at LOFT and the commercial PWR. Out-of-core test loop temperature noise has shown similar behavior. The phase angle between core exit temperature noise and in-core or ex-core neutron noise is directly related to the core coolant flow velocity. However, if the thermocouple response time is slow, compared to the coolant transit time between the sensors, velocities inferred from the phase angle are lower than measured coolant flow velocities.

  14. Living Organisms Coupling to Electromagnetic Radiation Below Thermal Noise

    NASA Astrophysics Data System (ADS)

    Stolc, Viktor; Freund, Friedemann

    2013-04-01

    Ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) radiation is part of the natural environment. Prior to major earthquakes the local ULF and global ELF radiation field is often markedly perturbed. This has detrimental effects on living organisms. We are studying the mechanism of these effects on the biochemical, cellular and organismal levels. The transfer of electrons along the Electron Transfer Chain (ETC) controls the universal reduction-oxidation reactions that are essential for fundamental biochemical processes in living cells. In order for these processes to work properly, the ETC has to maintain some form of synchronization, or coherence with all biochemical reactions in the living cells, including energy production, RNA transcription, and DNA replication. As a consequence of this synchronization, harmful chemical conflict between the reductive and the oxidative partial reactions can be minimized or avoided. At the same time we note that the synchronization allows for a transfer of energy, coherent or interfering, via coupling to the natural ambient EM field. Extremely weak high frequency EM fields, well below the thermal noise level, tuned in frequency to the electron spins of certain steps in the ETC, have already been shown to cause aberrant cell growth and disorientation among plants and animals with respect to the magnetic and gravity vectors. We investigate EM fields over a much wider frequency range, including ULF known to be generated deep in the Earth prior to major earthquakes locally, and ELF known to be fed by lightning discharges, traveling around the globe in the cavity formed between the Earth's surface and the ionosphere. This ULF/ELF radiation can control the timing of the biochemical redox cycle and thereby have a universal effect on physiology of organisms. The timing can even have a detrimental influence, via increased oxidative damage, on the DNA replication, which controls heredity.

  15. Stochastic resonance and noise delayed extinction in a model of two competing species

    NASA Astrophysics Data System (ADS)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  16. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  17. Range performance impact of noise for thermal system modeling

    NASA Astrophysics Data System (ADS)

    Fanning, Jonathan D.; Teaney, Brian P.; Reynolds, Joseph P.; Du Bosq, Todd W.

    2009-05-01

    This paper presents a comparison of the predictions of NVThermIP to human perception experiment results in the presence of large amounts of noise where the signal to noise ratio is around 1. First, the calculations used in the NVESD imager performance models that deal with sensor noise are described outlining a few errors that appear in the NVThermIP code. A perception experiment is designed to test the range performance predictions of NVThermIP with varying amounts of noise and varying frame rates. NVThermIP is found to overestimate the impact of noise, leading to pessimistic range performance predictions for noisy systems. The perception experiment results are used to find a best fit value of the constant α used to relate system noise to eye noise in the NVESD models. The perception results are also fit to an alternate eye model that handles frame rates below 30Hz and smoothly approaches an accurate prediction of the performance in the presence of static noise. The predictions using the fit data show significantly less error than the predictions from the current model.

  18. Active control of the volume acquisition noise in functional magnetic resonance imaging: Method and psychoacoustical evaluation

    NASA Astrophysics Data System (ADS)

    Chambers, John; Akeroyd, Michael A.; Summerfield, A. Quentin; Palmer, Alan R.

    2001-12-01

    Functional magnetic resonance imaging (fMRI) provides a noninvasive tool for observing correlates of neural activity in the brain while a subject listens to sound. However, intense acoustic noise is generated in the process of capturing MR images. This noise stimulates the auditory nervous system, limiting the dynamic range available for displaying stimulus-driven activity. The noise is potentially damaging to hearing and is distracting for the subject. In an active noise control (ANC) system, a reference sample of a noise is processed to form a sound which adds destructively with the noise at the listener's ear. We describe an implementation of ANC in the electromagnetically hostile and physically compact MRI scanning environment. First, a prototype system was evaluated psychoacoustically in the laboratory, using the electrical drive to a noise-generating loudspeaker as the reference. This system produced 10-20 dB of subjective noise-reduction between 250 Hz and 1 kHz, and smaller amounts at higher frequencies. The system was modified to operate in a real MR scanner where the reference was obtained by recording the acoustic scanner noise. Objective reduction by 30-40 dB of the most intense component in scanner noises was realized between 500 Hz and 3500 Hz, and subjective reduction of 12 dB and 5 dB in tests at frequencies of 600 Hz and at 1.9 kHz, respectively. Although the benefit of ANC is limited by transmission paths to the cochlea other than air-conduction routes from the auditory meatus, ANC achieves worthwhile attenuation even in the frequency range of maximum bone conduction (1.5-2 kHz). ANC should, therefore, be generally useful during auditory fMRI.

  19. Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method

    NASA Astrophysics Data System (ADS)

    Feng, Lishuang; Zhi, Yinzhou; Lei, Ming; Wang, Junjie

    2014-10-01

    The performance of the resonator fiber optic gyro (RFOG) is influenced by frequency locking noise. This paper proposes a differential detection method (DDM) to suppress the frequency locking noise. First, the frequency locking noise induced by the frequency locking error is described theoretically; the description indicates that it acts as the common-mode noise in the RFOG. In the traditional signal-path detection method (SDM), there is a trade-off between suppressing the frequency locking noise and improving the gyro sensitivity. Thus, a model of the DDM is set up and analyzed. The frequency locking noise can be suppressed using the DDM by adjusting the gains of two lock-in amplifiers. Finally, the experimental setup is established, and the SDM and DDM are compared. When the tested equivalent frequency locking noise is 10.6°/h, the bias stability of the RFOG is improved from 12.9°/h to 1.1°/h by the DDM.

  20. Possible breakthrough: Significant improvement of signal to noise ratio by stochastic resonance

    SciTech Connect

    Kiss, L.B.

    1996-06-01

    The {ital simplest} {ital stochastic} {ital resonator} {ital is} {ital used}, {ital a} {ital level} {ital crossing} {ital detector} (LCD), to investigate key properties of stochastic resonance (SR). It is pointed out that successful signal processing and biological applications of SR require to work in the {ital large} {ital signal} {ital limit} (nonlinear transfer limit) which requires a completely new approach: {ital wide} {ital band} {ital input} {ital signal} and a {ital new}, {ital generalised} {ital definition} {ital of} {ital output} {ital noise}. The new way of approach is illustrated by a new arrangement. The arrangement employs a special LCD, white input noise and a special, large, subthreshold wide band signal. {ital First} {ital time} {ital in} {ital the} {ital history} {ital of} {ital SR} (for a wide band input noise), the {ital signal} {ital to} {ital noise} {ital ratio} {ital becomes} {ital much} {ital higher} {ital at} {ital the} {ital output} of a stochastic resonator than {ital at} {ital its} {ital input}. In that way, SR is proven to have a potential to improve signal transfer. Note, that the new arrangement seems to have resemblance to {ital neurone} {ital models}, therefore, it has a potential also for biological applications. {copyright} {ital 1996 American Institute of Physics.}

  1. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758

  2. Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance

    NASA Astrophysics Data System (ADS)

    Davis, Bruce L.; Hussein, Mahmoud I.

    2014-02-01

    We present the concept of a locally resonant nanophononic metamaterial for thermoelectric energy conversion. Our configuration, which is based on a silicon thin film with a periodic array of pillars erected on one or two of the free surfaces, qualitatively alters the base thin-film phonon spectrum due to a hybridization mechanism between the pillar local resonances and the underlying atomic lattice dispersion. Using an experimentally fitted lattice-dynamics-based model, we conservatively predict the metamaterial thermal conductivity to be as low as 50% of the corresponding uniform thin-film value despite the fact that the pillars add more phonon modes to the spectrum.

  3. Ultra-stable, low phase noise dielectric resonator stabilized oscillators for military and commercial systems

    NASA Technical Reports Server (NTRS)

    Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana

    1993-01-01

    EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.

  4. Clinical utility of magnetic resonance thermal imaging (MRTI) for realtime guidance of deep hyperthermia

    NASA Astrophysics Data System (ADS)

    Stauffer, P. R.; Craciunescu, Oana I.; Maccarini, P. F.; Wyatt, Cory; Arunachalam, K.; Arabe, O.; Stakhursky, V.; Soher, B.; MacFall, J. R.; Li, Z.; Joines, William T.; Rangarao, S.; Cheng, K. S.; Das, S. K.; Martins, Carlos D.; Charles, Cecil; Dewhirst, Mark W.; Wong, T.; Jones, E.; Vujaskovic, Z.

    2009-02-01

    A critical need has emerged for volumetric thermometry to visualize 3D temperature distributions in real time during deep hyperthermia treatments used as an adjuvant to radiation or chemotherapy for cancer. For the current effort, magnetic resonance thermal imaging (MRTI) is used to measure 2D temperature rise distributions in four cross sections of large extremity soft tissue sarcomas during hyperthermia treatments. Novel hardware and software techniques are described which improve the signal to noise ratio of MR images, minimize motion artifact from circulating coupling fluids, and provide accurate high resolution volumetric thermal dosimetry. For the first 10 extremity sarcoma patients, the mean difference between MRTI region of interest and adjacent interstitial point measurements during the period of steady state temperature was 0.85°C. With 1min temporal resolution of measurements in four image planes, this noninvasive MRTI approach has demonstrated its utility for accurate monitoring and realtime steering of heat into tumors at depth in the body.

  5. A study of tyre cavity resonance and noise reduction using inner trim

    NASA Astrophysics Data System (ADS)

    Mohamed, Zamri; Wang, Xu

    2015-01-01

    A study of tyre inner trim as a method for reducing tyre cavity resonance noise is presented. The tyre is modelled as a rectangular toroid where only the outside shell is flexible. A modal series solution of the sound pressure frequency response inside the tyre cavity is derived from the wave equation using modal superposition. In the solution with the rigid and flexible wall boundary condition, the effect of placing a trim layer onto the inner surface of the tyre tread plate wall is reflected by adding a damping loss term in the sound pressure frequency response function. The numerical simulation result was then compared with the result obtained from a roving impact test performed on a tyre. The results show that selective trim material may be effective for reducing the structure-borne noise magnitude resulting from the tyre cavity resonance.

  6. Calculation and observation of thermal electrostatic noise in solar wind plasma

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.

    1981-01-01

    Calculations, both approximate algebraic and numerical, have been carried out for the noise due to electrostatic waves incident on a dipole antenna. The noise is calculated both for a thermal equilibrium plasma, and one having several components at different temperatures. The results are compared with measurements from the IMP-6 satellite. In various frequency ranges, the noise power is dominated by Langmuir oscillations, by electron acoustic waves and by ion acoustic waves. The measurements are consistent with all of these, although the ion waves are not definitely observed, due to interference from shot noise.

  7. Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves

    NASA Astrophysics Data System (ADS)

    Mori, Toshio; Kai, Shoichi

    2002-05-01

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR.

  8. Strong quantum memory at resonant Fermi edges revealed by shot noise.

    PubMed

    Ubbelohde, N; Roszak, K; Hohls, F; Maire, N; Haug, R J; Novotný, T

    2012-01-01

    Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges. PMID:22530093

  9. Electron concentrations calculated from the lower hybrid resonance noise band observed by Ogo 3.

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.

    1973-01-01

    A noise band at the lower hybrid resonance (LHR) is often detected by the VLF and ELF receivers on Ogo 3, using the electric antenna. In some cases the noise band is at the geometric mean gyrofrequency as measured by the Goddard Space Flight Center (GSFC) magnetometer, and local LHR in a dense H(+) plasma is indicated; in such cases, electron concentration can be calculated, if it is assumed that heavy ions are negligible. Observations at midlatitudes and altitudes of a few earth radii show local concentrations as low as 1.4 electrons/cu cm. In one case the concentrations obtained from the LHR noise band agree with those measured simultaneously by the GSFC ion mass spectrometer within a factor of 2. In another case the concentration is observed to fall by a factor of 2 in 150 km and then to decrease roughly as R to the minus fourth power, in agreement with whistler measurements outside the plasmapause.

  10. Vacuum-isolation vessel and method for measurement of thermal noise in microphones

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)

    1992-01-01

    The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.

  11. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique.

    PubMed

    Somiya, Kentaro

    2009-06-12

    Thermal noise of a mirror is one of the most important issues in high-precision measurements such as gravitational-wave detection or cold damping experiments. It has been pointed out that thermal noise of a mirror with multilayer coatings can be reduced by mechanical separation of the layers. In this Letter, we introduce a way to further reduce thermal noise by locking the mechanically separated mirrors. The reduction is limited by the standard quantum limit of control noise, but it can be overcome with a quantum-nondemolition technique, which finally raises a possibility of complete elimination of coating thermal noise. PMID:19658917

  12. Thermally tunable resonator using directly integrated metallic heater

    NASA Astrophysics Data System (ADS)

    Chen, Ruobing; Li, Xinbai; Deng, Qingzhong; Michel, Jurgen; Zhou, Zhiping

    2015-08-01

    A thermally tunable half-disk resonator (HDR) with directly-integrated metallic heater is presented. The proposed resonator is based on the structure of HDR, which allows direct electrical contacts in HDR region without causing extra loss. The metallic heater is designed to be directly integrated on the silicon devices, and single-mode operation can be retained simultaneously. Metallic heater deposited on inner side of the ring, which cannot realize before because of weakened light confinement resulting in substantial leakage and loss, guides most heat power to the waveguide. This thermal localization enhances tuning efficiency. The simulation result shows a wavelength shift of 0.855 nm under ultralow driving voltage of 0.02V, corresponding to high thermal tuning efficiency of 2.831 nm/mW. The structure possesses both the advantages of high thermal tuning efficiency and low resistance, hence requiring smaller voltage and energy to drive, desirable for optical interconnects applications. Moreover, the proposed structure also eliminates the need to use doped silicon slab for electrical contacts, as widely used in conventional directly integrated heaters. Undoped strip waveguide in HDR enables higher Q-factor and improves optical performance.

  13. Thermal magnetic noise control in the ultra-high-density read head

    NASA Astrophysics Data System (ADS)

    Zheng, Y. K.; Han, G. C.; Liu, B.

    In order to reduce the resistance of tunnel magnetoresistive (TMR) read heads, a large stripe height sensor structure was proposed. The thermal magnetic noise, called as mag-noise, in this type of TMR heads was simulated by micromagnetic modeling using the Landau-Lifshitz-Gilbert (LLG) gyro-magnetic equation. It is found that for the same hard bias strength, both the sensitivity and the mag-noise of TMR heads increase as the sensor height increases. The signal-to-noise ratio (SNR) is reduced at large stripe height. The large increase in the demagnetization field resulting from the stripe height increase causes the weakening of the effective bias field, thus increasing the mag-noise significantly. Low mag-noise and high SNR can be obtained by increasing the hard bias strength and reducing the spacer between the hard bias and the free layer. An extended hard bias structure has been proposed to further increase SNR of TMR heads.

  14. Padé-Froissart exact signal-noise separation in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Belkić, Karen

    2011-06-01

    Nuclear magnetic resonance spectroscopy is one of the key methods for studying the structure of matter on different levels (sub-nuclear, nuclear, atomic, molecular, cellular, etc). Its overall success critically depends upon reliable mathematical analysis and interpretation of the studied data. This is especially aided by parametric signal processing with the ensuing data quantification, which can yield the abundance or concentrations of the constituents in the examined matter. The sought reliability of signal processing rests upon the possibility of an accurate solution of the quantification problem alongside the unambiguous separation of true from false information in the spectrally analysed data. We presently demonstrate that the fast Padé transform (FPT), as the unique ratio of two polynomials for a given Maclaurin series, can yield exact signal-noise separation for a synthesized free induction decay curve built from 25 molecules. This is achieved by using the concept of Froissart doublets or pole-zero cancellations. Unphysical/spurious (noise or noise-like) resonances have coincident or near-coincident poles and zeros. They possess either zero- or near-zero-valued amplitudes. Such spectral structures never converge due to their instability against even the smallest perturbations. By contrast, upon convergence of the FPT, physical/genuine resonances are identified by their persistent stability against external perturbations, such as signal truncation or addition of random noise, etc. In practice, the computation is carried out by gradually and systematically increasing the common degree of the Padé numerator and denominator polynomials in the diagonal FPT. As this degree changes, the reconstructed parameters and spectra fluctuate until stabilization occurs. The polynomial degree at which this full stabilization is achieved represents the sought exact number of resonances. An illustrative set of results is reported in this work to show the exact separation of

  15. A review of the combined effects of thermal and noise conditions on human performance

    NASA Astrophysics Data System (ADS)

    Moscoso, Richard A.; Wang, Lily M.; Musser, Amy

    2001-05-01

    Human perception and annoyance due to background noise has been the subject of much research. A great deal of work has also been done to identify conditions that produce an acceptable thermal environment for building occupants. The experience of occupants in indoor environments, however, is much more complex than can be represented by thermal comfort or the acoustic environment in isolation. Occupants normally experience a mix of thermal, auditory, visual, and olfactory stimuli that combines to form an impression of the environment. This paper is specifically interested in how building occupants trade off between acoustic and thermal comfort. Heating, ventilation, and air-conditioning systems in buildings are often adjusted by building users to arrive at a more comfortable temperature, but this change may also produce more noise. Previous studies on the interaction effects between temperature and noise on human performance are reviewed in this presentation, followed by a discussion of the authors' current work in this area.

  16. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    SciTech Connect

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-11-15

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  17. Noise effects on a birhythmic Josephson junction coupled to a resonator.

    PubMed

    Yamapi, R; Filatrella, G

    2014-05-01

    We study the effect of noise on a Josephson junction that, coupled to a linear RLC resonator, can oscillate at two frequencies. To establish the global stability of the attractors, we estimate the position of the separatrix, essential information to establish the stability of the attractor for this multidimensional system, from the analysis of the mean first passage time. We find that the frequency locked to the resonator is most stable at low bias and less stable at high bias, where the resonator exhibits the largest oscillations. The change in the birhythmic region is dramatic for the effective barrier changes of an order of magnitude and the corresponding lifetime of about seven decades. PMID:25353859

  18. Low-noise Brillouin random fiber laser with a random grating-based resonator.

    PubMed

    Xu, Yanping; Gao, Song; Lu, Ping; Mihailov, Stephen; Chen, Liang; Bao, Xiaoyi

    2016-07-15

    A novel Brillouin random fiber laser (BRFL) with the random grating-based Fabry-Perot (FP) resonator is proposed and demonstrated. Significantly enhanced random feedback from the femtosecond laser-fabricated random grating overwhelms the Rayleigh backscattering, which leads to efficient Brillouin gain for the lasing modes and reduced lasing threshold. Compared to the intensity and frequency noises of the Rayleigh feedback resonator, those of the proposed random laser are effectively suppressed due to the reduced resonating modes and mode competition resulting from the random grating-formed filters. Using the heterodyne technique, the linewidth of the coherent random lasing spike is measured to be ∼45.8  Hz. PMID:27420494

  19. Thermal noise for SBS suppression in fiber optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Le Parquier, Marc; Szriftgiser, Pascal

    2010-06-01

    We demonstrate a new and simple solution to suppress stimulated Brillouin scattering in fiber optical parametric amplifiers. Cumbersome PRBS or sinusoidal generators used to broaden the pump spectrum are replaced by a filtered microwave noise source. Stimulated Brillouin scattering threshold can be increased up to large values still keeping an excellent quality of amplification of nonreturn to zero signals. The simplicity and the performances of this setup open the way for a wide variety of applications for FOPAs.

  20. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  1. Stochastic resonance in an ensemble of bistable systems under stable distribution noises and nonhomogeneous coupling.

    PubMed

    Tang, Yang; Zou, Wei; Lu, Jianquan; Kurths, Jürgen

    2012-04-01

    In this paper, stochastic resonance of an ensemble of coupled bistable systems driven by noise having an α-stable distribution and nonhomogeneous coupling is investigated. The α-stable distribution considered here is characterized by four intrinsic parameters: α∈(0,2] is called the stability parameter for describing the asymptotic behavior of stable densities; β∈[-1,1] is a skewness parameter for measuring asymmetry; γ∈(0,∞) is a scale parameter for measuring the width of the distribution; and δ∈(-∞,∞) is a location parameter for representing the mean value. It is demonstrated that the resonant behavior is optimized by an intermediate value of the diversity in coupling strengths. We show that the stability parameter α and the scale parameter γ can be well selected to generate resonant effects in response to external signals. In addition, the interplay between the skewness parameter β and the location parameter δ on the resonance effects is also studied. We further show that the asymmetry of a Lévy α-stable distribution resulting from the skewness parameter β and the location parameter δ can enhance the resonance effects. Both theoretical analysis and simulation are presented to verify the results of this paper. PMID:22680556

  2. Quasi-thermal noise observed by CASSINI during the first flyby of Venus

    NASA Astrophysics Data System (ADS)

    Martinović, M.; Zaslavsky, A.; Maksimovic, M.; Šegan, S.; Svetlik, M.

    2015-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. In this work, we analyze the period during the first CASSINI flyby of Venus where the thermal noise peak was visible by CASSINI/RPWS instrument. Development of the plasma parameters in the ionosphere of Venus during the closest approach (up to 284 km above the planet surface), as well as characteristics of velocity distribution function of electrons are evaluated using this method.

  3. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  4. Stochastic resonance in a tumor-immune system subject to bounded noises and time delay

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Mei, Dong-Cheng

    2014-12-01

    Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.

  5. The effect of magnetic resonance imaging noise on cochlear function in dogs.

    PubMed

    Venn, R E; McBrearty, A R; McKeegan, D; Penderis, J

    2014-10-01

    Noise produced by magnetic resonance imaging (MRI) scanners (which can peak at a sound pressure level of 131 dB) has been shown to cause noise-induced cochlear dysfunction in people. The aim of this study was to investigate whether noise produced during MRI had a deleterious effect on cochlear function in dogs, using distortion product otoacoustic emission (DPOAE) testing, which allows frequency specific, non-invasive assessment of cochlear function. DPOAE testing was performed before and after MRI in one or both ears under general anaesthesia at 14 frequency pairs (f2 frequency ranging from 0.84 kHz to 8.0 kHz). A control group comprised dogs undergoing anaesthesia of a similar duration for quiet procedures. Thirty-six dogs (66 ears) and 17 dogs (28 ears) were included in the MRI and control groups respectively. There was a reduction in DPOAE at all frequencies tested in the MRI group; a similar effect was not evident in the control group. This reduction in the MRI group was statistically significant in five of the 14 frequencies assessed (P < 0.05). These results demonstrate that exposure to MRI noise results in a significant reduction in frequency-specific cochlear function in dogs, although it is not known whether this is reversible or permanent. This suggests that all dogs undergoing MRI studies should be provided with ear protection as a routine precautionary measure. PMID:25155216

  6. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains

    NASA Astrophysics Data System (ADS)

    Hu, Bingbing; Li, Bing

    2016-02-01

    It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.

  7. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  8. Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Nand, Nitin R.; Lu, Chuan

    2012-04-01

    Two nominally identical ultra-stable microwave oscillators are compared. Each incorporates a sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a pulse-tube cryocooler. The phase noise for a single oscillator is measured at -105 dBc/Hz at 1 Hz offset on the 11.2 GHz carrier. The oscillator fractional frequency stability, after subtracting a linear frequency drift of 3.5×10-14/day, is characterized by 5.3×10-16τ-1/2+9×10-17 for integration times 0.1s<τ<1000s and is limited by a flicker frequency noise floor near 1×10-16.

  9. Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqing; Yang, Tingting; Xu, Yong; Xu, Wei

    2015-05-01

    We investigate the stochastic resonance in a FitzHugh-Nagumo neuron model driven by trichotomous noise and periodic signal, focusing on the dependence of properties of stochastic resonance (SR) on system parameters. The stochastic resonance is shown through several different measures: system response, power spectrum and signal-to-noise ratio. Firstly, it is found that whether the neuron can fire regularly depends on the cooperative effect of the signal frequency and the signal amplitude for the deterministic FHN neuron. When the forcing amplitude alone is insufficient to cause the neuron firing, the neuron can fire with the addition of trichotomous noise. Secondly, we show that power spectrum is maximized for an optimal value of the noise correlation time, which is the signature of SR. Finally, from studying SNR, the specific system parameters are found to optimize the SR phenomenon.

  10. Quantum minimax receiver for ternary coherent state signal in the presence of thermal noise

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro

    2013-02-01

    This paper is concerned with the minimax strategy in quantum signal detection theory. First we show a numerical calculation method for finding a solution to the quantum minimax decision problem in the case that the average probability of decision errors is used as the quality function of a quantum communication system. To verify the numerical calculation method, ternary coherent state signal is considered in the absence of thermal noise. After that, the error probability of the quantum minimax receiver for the ternary coherent state signal in the pressure of thermal noise is computed by using this numerical calculation method.

  11. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    ERIC Educational Resources Information Center

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  12. Magnetic-resonance-guided directional transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Ross, Anthony; Diederich, Chris J.; Nau, William H.; Tyreus, Per Daniel; Gill, Harchi; Bouley, Donna; Butts, R. K.; Rieke, Viola; Daniel, Bruce; Sommer, Graham

    2003-06-01

    Two catheter-based transurethral ultrasound applicators designed for selective thermal coagulation of prostate tissue were evaluated. The first applicator utilized two 3.5 mm piezoelectric sectored tubes with the active transducer surface forming 90°. The second applicator's transducer assembly consisted of a linear array of 3.5 x 10 mm planar transducer elements. Both applicators operated at 8 MHz and were positioned on a 4 mm diameter catheter within an integrated expandable balloon (10 mm). Manual rotation of the transducer assembly within the balloon allowed for angular control and/or sweeping of the treatment volume. Ambient temperature degassed cooling water (~120 ml/min) was circulated inside the balloon to preserve the urethral mucosa. Acoustic efficiencies of 20-54% and acoustic beam distributions were measured. The thermal treatment characteristics of the applicator were investigated in vivo (canine prostate) under MRI guidance in an interventional open magnet (0.5 T). Magnetic resonance thermal imaging (MRTI) monitored the treatments (GRE phase mapping, multiple planes, 15 sec update intervals). Post-treatment imaging (T1 w/contrast) and TTC staining of the prostate were used to verify zones of thermal damage. Single sonications lasting 8-15 min produced coagulated zones of tissue extending to the outer boundary of the prostate while preserving 2-3 mm of urethral mucosa. Multiple sonications in sequence produced larger contiguous sectors of coagulated tissue (~ 3/4 of the gland). In summary, highly directional transurethral applicators under MRI guidance were able to produce selective and controllable thermal coagulation.

  13. Measurements of plasma quasi-thermal noise on STEREO spacecraft and plasma temperature deduction using antenna electron shot noise model

    NASA Astrophysics Data System (ADS)

    Martinović, M.; Zaslavsky, A.; Maksimovic, M.; Zouganelis, Y.

    2014-12-01

    Quasi-thermal noise spectroscopy is very accurate technique for in situ measurements of electron density and temperature in space plasmas. This technique uses the voltage fluctuation spectrum, which is ubiquitous in interplanetary space, obtained by an electric antenna. It is independent of antenna orientation if velocity distribution function of plasma particles is considered to be isotropic. On STEREO/WAVES antennas electron shot noise spectrum dominates because of large antenna surface area, especially at lower frequencies. This feature of antennas disables simultaneous measurements of electron density and temperature. However, technique may work accurately in high-density filamentary structures, where Debye length is small. In this paper, it has been illustrated on magnetic clouds. Obtained results have been used to recalibrate the data of PLASTIC instrument. Further on, in unperturbed solar wind, electron shot noise has been used to infer electron temperature. Electron density data, necessary in data processing, has been estimated from recalibrated PLASTIC data. For this purpose, data of both STEREO A and STEREO B spacecraft have been processed by selecting only spectra from free solar wind.

  14. Nanophononic metamaterial: Thermal conductivity reduction by dispersion-resonance hybridization

    NASA Astrophysics Data System (ADS)

    Hussein, Mahmoud I.; Honarvar, Hossein; Yang, Lina

    2015-03-01

    Engineered manipulation of phonons can yield beneficial thermal properties in semiconducting materials. One pivotal application relates to thermoelectric materials, or the concept of converting energy in the form of heat into electricity and vice-versa. The ability to use nanostructuring to reduce the thermal conductivity without negatively impacting the power factor provides a promising avenue for achieving high values of the thermoelectric energy conversion figure-of-merit, ZT. In this work, we propose a novel nanostructured material configuration that seeks to achieve this goal. Termed ``nanophononic metamaterial,'' the configuration is based on a silicon thin-film with a periodic array of pillars erected on one or two of the free surfaces. The pillars qualitatively alter the base thin-film phonon spectrum due to a hybridization mechanism between their local resonances and the underlying atomic lattice dispersion. Using lattice dynamics calculations and molecular dynamics simulations, we predict a drop in the thermal conductivity to as low as 50% of the corresponding uniform thin-film value despite the fact that the pillars add more phonon modes to the spectrum.

  15. Nanophononic metamaterial: Thermal conductivity reduction by local resonance

    NASA Astrophysics Data System (ADS)

    Davis, Bruce; Hussein, Mahmoud

    2014-03-01

    Engineered manipulation of phonons can yield beneficial thermal properties in semiconducting materials. One pivotal application relates to thermoelectric materials, or the concept of converting energy in the form of heat into electricity and vice-versa. The ability to use nanostructuring to reduce the thermal conductivity without negatively impacting the power factor provides a promising avenue for achieving high values of the thermoelectric energy conversion figure-of-merit, ZT. In this work, we propose a novel nanostructured material configuration that seeks to achieve this goal. Termed nanophononic metamaterial, the configuration is based on a silicon thin-film with a periodic array of pillars erected on one or two of the free surfaces. The pillars qualitatively alter the base thin-film phonon spectrum due to a hybridization mechanism between their local resonances and the underlying atomic lattice dispersion. Using an experimentally-fitted lattice-dynamics-based model, we conservatively predict a drop in the thermal conductivity to as low as 50% of the corresponding uniform thin-film value despite the fact that the pillars add more phonon modes to the spectrum.

  16. Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics

    NASA Astrophysics Data System (ADS)

    Reinhardt, Christoph; Müller, Tina; Bourassa, Alexandre; Sankey, Jack C.

    2016-04-01

    In force sensing, optomechanics, and quantum motion experiments, it is typically advantageous to create lightweight, compliant mechanical elements with the lowest possible force noise. Here, we report the fabrication and characterization of high-aspect-ratio, nanogram-scale Si3 N4 "trampolines" having quality factors above 4 ×107 and ringdown times exceeding 5 min (mHz linewidth). These devices exhibit thermally limited force noise sensitivities below 20 aN /Hz1 /2 at room temperature, which is the lowest among solid-state mechanical sensors. We also characterize the suitability of these devices for high-finesse cavity readout and optomechanics applications, finding no evidence of surface or bulk optical losses from the processed nitride in a cavity achieving finesse 40,000. These parameters provide access to a single-photon cooperativity C0˜8 in the resolved-sideband limit, wherein a variety of outstanding optomechanics goals become feasible.

  17. Coherent population trapping resonances in the presence of the frequency-phase noises of an exciting field

    SciTech Connect

    Sokolov, A V; Matveev, A N; Samokotin, A Yu; Akimov, A V; Sorokin, Vadim N; Kolachevsky, Nikolai N

    2009-05-31

    The influence of noises of the frequency and phase difference of an exciting bichromatic field on the parameters of coherent population trapping resonances is studied experimentally. When the phase difference fluctuates within a limited interval near its average value with a short correlation time, the resonance contrast decreases proportionally to exp({phi}{sup 2}{sub rms}), where {phi}{sup 2}{sub rms} is the phase dispersion (in rad{sup 2}). In this case, the spectral width of the resonance remains constant. In another limiting case, when the phase noise has a long correlation time, the resonance contour broadens, the area under the contour being invariable. Experiments were performed with the Zeeman sublevels of the ground state of {sup 87}Rb by exciting rubidium vapour in a glass cell at the resonance wavelength of 795 nm. (interaction of laser radiation with matter)

  18. Reducing the suspension thermal noise of advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Hammond, G. D.; Cumming, A. V.; Hough, J.; Kumar, R.; Tokmakov, K.; Reid, S.; Rowan, S.

    2012-06-01

    The international network of gravitational wave detectors is currently undergoing sensitivity upgrades (aLIGO, aVIRGO and GEO-HF) which will lead to the first detection and subsequent observation of a rich variety of astrophysical sources. To obtain a factor of 10 improvement in the strain sensitivity at low frequencies requires the use of ultralow mechanical loss materials and monolithic fused silica suspensions, optimized mirror coatings and the development of cutting edge techniques to super-polish and figure the interferometer optics. The possibility of applying incremental upgrades to the second generation detectors can be realized by making small but significant changes to the suspensions and/or optical mirror coatings. This includes the use of longer suspensions to increase the dissipation dilution, the development of techniques to reduce the surface loss in fused silica suspensions and methods to lower the mechanical loss from the metal springs used to support the test mass. Such upgrades can potentially improve the strain sensitivity by a factor of 2.5. Looking beyond 2015, the development of techniques to further improve the sensitivity by one order of magnitude are discussed. The third generation detectors will be located underground and will be operated at cryogenic temperatures. At low temperatures, silicon is a particularly promising candidate material as it displays good thermal conductivity, high tensile strength and zero thermal expansion coefficient at 120 K, 18 K and T → 0 K.

  19. A new noise suppression algorithm for optical fiber temperature surveillance of heavy oil thermal recovery well

    NASA Astrophysics Data System (ADS)

    Wang, Jiahuai; Han, Jisheng; Pan, Yong; Zhang, Min; Zou, Qilin; Xie, Shangran

    2011-11-01

    Pure silica core optical fiber is commonly used as the sensing fiber in Raman-backscatter distributed temperature sensors (DTS) in heavy oil thermal well. However the sensing signal collected from this type of fiber statistically belongs to nonstationary random process which cannot be effectively de-noised by simply applying conventional methods. To solve this problem, we develop a novel noise suppression algorithm by combining wavelet multi-scale analysis and moving grey model GM(1,1). The algorithm first applies wavelet de-noising in spatial domain of temperature profile to remove the high frequency noise, then uses moving GM(1,1) method to remove both high frequency and low frequency nonstationary noise in time domain. Autoregressive (AR) model and least square regression are used to optimize the forecasting parameters of GM(1,1). Finally the results of both domains are reconstructed to obtain the de-noised profile. Long-term field test was proposed on the Karamay oil field F11051 steam stimulation well, Xinjiang Province, China. Field test result shows that signal to noise ratio (SNR) is improved by 11dB using the algorithm.

  20. Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter

    NASA Astrophysics Data System (ADS)

    Ueda, Michihito

    2010-05-01

    Stochastic resonance (SR) has become a well-known phenomenon that can enhance weak periodic signals with the help of noise. SR is an interesting phenomenon when applied to signal processing. Although it has been proven that SR does not always improve the signal-to-noise ratio (SNR), in a strongly nonlinear system such as simple threshold system, SR does in fact improve SNR for noisy pulsed signals at appropriate noise strength. However, even in such cases, when noise is weak, the SNR is degraded. Since the noise strength cannot be known in advance, it is difficult to apply SR to real signal processing. In this paper, we focused on the shape of the threshold at which SR did not degrade the SNR when noise was weak. To achieve output change when noise was weak, we numerically analyzed a sigmoid function threshold system. When the slope around the threshold was appropriate, SNR did not degrade when noise was weak and instead was improved at suitable noise strength. We also demonstrated SNR improvement for noisy pulsed voltages using a CMOS inverter, a very common threshold device. The input-output property of a CMOS inverter resembles the sigmoid function. By inputting the noisy signal voltage to a CMOS inverter, we measured the input and output voltages and analyzed the SNRs. The results showed that SNR was effectively improved over a wide range of noise strengths.

  1. Normal metal-superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Kinnunen, K. M.; Palosaari, M. R. J.; Maasilta, I. J.

    2012-08-01

    We have studied the origin of excess noise in superconducting transition-edge sensors (TES) with several different detector designs. We show that most of the observed noise and complex impedance features can be explained by a thermal model consisting of three bodies. We suggest that one of the thermal blocks and the corresponding thermal fluctuation noise arise due to the high-frequency thermal decoupling of the normal and superconducting phase regions inside the TES film. Our results are also consistent with the prediction that in thin bilayer proximitized superconductors, the jump in heat capacity at the critical temperature is smaller than the universal BCS theory result.

  2. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction

  3. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities.

    PubMed

    Numata, Kenji; Kemery, Amy; Camp, Jordan

    2004-12-17

    We evaluate thermal noise (Brownian motion) in a rigid reference cavity used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/ square root Hz (0.01 Hz/ square root Hz) at 10 mHz (100 Hz) at room temperature. This level coincides with the world-highest level stabilization results. PMID:15697887

  4. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  5. Why and how to implement the quasi-thermal noise spectroscopy on a Solar Probe ?

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Issautier, K.; Maksimovic, M.; Meyer-Vernet, N.

    Measuring in-situ the plasma charge density and more electron thermodynamic parameters onboard a close-to-the-Sun spacecraft presents a number of difficulties. Among other problems, particle analyzers have to deal with the spacecraft floating potential and with photoelectrons perturbations, especially at 4 R⊙ from the Sun. This may introduce important artifacts and, in absence of independent calibration from an other instrument, a large inaccuracy on electron parameters measurements. But on the other hand, if we may dispose of a few meters double thin wire antenna (thermal resistant), we could implement the technique of the Quasi Thermal Noise (QTN) spectroscopy, which is relatively immune (depending on its design - and thin wires fit this point) to both floating potential and photoelectrons perturbations. It also senses a large plasma volume (≳ cube of the local Debye length) while particle analyzers are usually limited by their small/directional collection area. QTN spectroscopy relies upon a fully understood theory and measurements with a simple electric dipole antenna of the quasi-thermal fluctuations of the electron population in a plasma. The quasi-thermal noise is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of a well-designed electric antenna immersed in a plasma and can be used to measure in-situ the plasma thermodynamic parameters. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distributions and the antenna geometry. Therefore, conversely, the spectroscopy of this noise reveals the local plasma properties. Theory addresses non-Maxwellian distributions (core+halo, kappa - this is why we call it "quasi-thermal" noise ), has been extended to the magnetized case and to the measure of the plasma bulk velocity. It provides, without any free parameter fit, measurements with an accuracy of

  6. Exact calculation of shot noise suppression in resonant diodes under coherent tunneling

    NASA Astrophysics Data System (ADS)

    Aleshkin, V. Ya.; Reggiani, L.

    2012-07-01

    Shot noise suppression in resonant diodes with transport controlled by coherent tunneling is investigated using the tunneling transparency D(ɛ) obtained from an exact numerical solution of the Schrödinger equation in the presence of an applied voltage. The cases of two potential barriers in GaAs/AlAs heterostructures are considered. Results show that the use of an exact dependence of D(ɛ) confirms the existence of a voltage range of values where the Fano factor γ is significantly less than 0.5, in agreement with previous findings obtained within a Lorentzian approximation and with experiments available in the literature for different heterostructures. At increasing values of the barrier width the Fano factor recovers the 0.5 value common to a transport controlled by the sequential tunneling regime.

  7. Graphene thermal transport studies via radio-frequency, cross-correlated Johnson noise thermometry

    NASA Astrophysics Data System (ADS)

    Crossno, Jesse; Liu, Xiaomeng; Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Ohki, Thomas; Fong, Kin Chung; Kim, Philip

    2015-03-01

    The electronic temperature of a dissipative, mesoscale device can be determined by monitoring the Johnson noise power emitted over a wide frequency range. Using radiometry techniques, we have developed a high-frequency, wide bandwidth, cross-correlation Johnson noise thermometer operating from room temperature to cryogenic levels that is compatible with strong magnetic fields. Precisions ranging from 2 to 25 mK are demonstrated over the temperature range of 3 to 300 K with 1 second of integration time. This non-invasive thermometer has enabled us to perform sensitive electronic thermal transport studies in boron nitride encapsulated monolayer graphene over two orders of magnitude in temperature. This versatile technique also enables precision Fano factor measurements as well as studies of correlated noise phenomena, such as those found in layered Van der Waals heterostructures.

  8. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit

    NASA Astrophysics Data System (ADS)

    Haiberger, L.; Weingran, M.; Schiller, S.

    2007-02-01

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor (˜105 at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2×10-18 N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses.

  9. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit

    SciTech Connect

    Haiberger, L.; Weingran, M.; Schiller, S.

    2007-02-15

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor ({approx}10{sup 5} at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2x10{sup -18} N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses.

  10. Highly sensitive silicon crystal torque sensor operating at the thermal noise limit.

    PubMed

    Haiberger, L; Weingran, M; Schiller, S

    2007-02-01

    We describe a sensitive torque detector, based on a silicon single-crystal double-paddle oscillator (DPO). The high Q-factor (approximately 10(5) at room temperature and in vacuum) makes DPOs well suited for the detection of weak forces. The limiting sensitivity of a sensor is given by Brownian (thermal) noise if all external disturbances are eliminated. In this case, the minimum detectable force can be decreased by measuring over a time significantly longer than the oscillator's relaxation time. We demonstrate operation in this regime, with integration times of up to 14 h. A resulting torque sensitivity of 2 x 10(-18) N m is reached. Tests are performed to show that the sensor is only affected by thermal noise. The present sensor is well suited for measurements of extremely weak forces, e.g., of gravitational attraction between laboratory masses. PMID:17578142

  11. Spectral properties of thermal fluctuations on simple liquid surfaces below shot-noise levels.

    PubMed

    Aoki, Kenichiro; Mitsui, Takahisa

    2012-07-01

    We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons. Analytical properties of the spectral function are investigated and are shown to be composed of regions with simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared to spectral measurements performed orders of magnitude below shot-noise levels, which is achieved using a novel noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment is found to be excellent, elucidating the spectral properties of the surface fluctuations. The measurement method requires relatively only a small sample both spatially (few μm) and temporally (~20 s). The method also requires relatively weak light power (~0.5 mW) so that it has a broad range of applicability, including local measurements, investigations of time-dependent phenomena, and noninvasive measurements. PMID:23005425

  12. Experimental upper limit on the estimated thermal noise at low frequencies in a gravitational wave detector

    SciTech Connect

    Di Virgilio, A.; Bigotta, S.; Barsotti, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Del Prete, M.; Fiori, I.; Frasconi, F.; Gennai, A.; Giazotto, A.; Passuello, D.; Raffaelli, F.; Dattilo, V.; La Penna, P.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Losurdo, G.; Majorana, E.

    2007-12-15

    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-100 Hz. The experimental measurements presented in this paper have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system like the one of the VIRGO gravitational wave antenna. Because of the radiation pressure between the two mirrors of the cavity, the dynamic behavior of the system is characterized by the optical spring stiffness. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the mirror displacement noise is stationary and its statistical distribution is Gaussian. Using a simplified mechanical model of the suspended system and applying the fluctuation dissipation theorem, we show that the measured power spectrum is reproduced in the frequency region 3-90 Hz. Since the contribution coming from different sources of the system to the total noise budget turns out to be negligible, we conclude that the relative displacement power spectrum of this opto-mechanical system is compatible with a system at thermal equilibrium within its environment. In the region 3-10 Hz this measurement gives so far the best upper limit for the thermal noise of the suspension for a gravitational wave interferometer.

  13. A digital accelerometer array utilizing suprathreshold stochastic resonance for detection of sub-Brownian noise floor accelerations.

    SciTech Connect

    Carr, Dustin Wade; Olsson, Roy H.

    2004-12-01

    The goal of this LDRD project was to evaluate the possibilities of utilizing Stochastic resonance in micromechanical sensor systems as a means for increasing signal to noise for physical sensors. A careful study of this field reveals that in the case of a single sensing element, stochastic resonance offers no real advantage. We have, however, identified a system that can utilize very similar concepts to stochastic resonance in order to achieve an arrayed sensor system that could be superior to existing technologies in the field of inertial sensors, and could offer a very low power technique for achieving navigation grade inertial measurement units.

  14. Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.

    PubMed

    Granata, Massimo; Craig, Kieran; Cagnoli, Gianpietro; Carcy, Cécile; Cunningham, William; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Hart, Martin; Hennig, Jan-Simon; Hough, James; MacLaren, Ian; Martin, Iain William; Michel, Christophe; Morgado, Nazario; Otmani, Salim; Pinard, Laurent; Rowan, Sheila

    2013-12-15

    We report on low-frequency measurements of the mechanical loss of a high-quality (transmissivity T<5 ppm at λ(0)=1064 nm, absorption loss <0.5 ppm) multilayer dielectric coating of ion-beam-sputtered fused silica and titanium-doped tantala in the 10-300 K temperature range. A useful parameter for the computation of coating thermal noise on different substrates is derived as a function of temperature and frequency. PMID:24322234

  15. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  16. Joint application of a statistical optimization process and Empirical Mode Decomposition to Magnetic Resonance Sounding Noise Cancelation

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Fallahsafari, Mahdi; Hafizi, Mohammad Kazem

    2014-12-01

    The signal quality of Magnetic Resonance Sounding (MRS) measurements is a crucial criterion. The accuracy of the estimation of the signal parameters (i.e. E0 and T2*) strongly depends on amplitude and conditions of ambient electromagnetic interferences at the site of investigation. In this paper, in order to enhance the performance in the noisy environments, a two-step noise cancelation approach based on the Empirical Mode Decomposition (EMD) and a statistical method is proposed. In the first stage, the noisy signal is adaptively decomposed into intrinsic oscillatory components called intrinsic mode functions (IMFs) by means of the EMD algorithm. Afterwards based on an automatic procedure the noisy IMFs are detected, and then the partly de-noised signal is reconstructed through the no-noise IMFs. In the second stage, the signal obtained from the initial section enters an optimization process to cancel the remnant noise, and consequently, estimate the signal parameters. The strategy is tested on a synthetic MRS signal contaminated with Gaussian noise, spiky events and harmonic noise, and on real data. By applying successively the proposed steps, we can remove the noise from the signal to a high extent and the performance indexes, particularly signal to noise ratio, will increase significantly.

  17. Thermo-optically tuned photonic resonators with concurrent electrical connection and thermal isolation

    DOEpatents

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.; Savignon, Daniel J.

    2016-06-14

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.

  18. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties

    SciTech Connect

    Boudaoud, Mokrane; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe

    2012-01-15

    The atomic force microscope (AFM) is a powerful tool for the measurement of forces at the micro/nano scale when calibrated cantilevers are used. Besides many existing calibration techniques, the thermal calibration is one of the simplest and fastest methods for the dynamic characterization of an AFM cantilever. This method is efficient provided that the Brownian motion (thermal noise) is the most important source of excitation during the calibration process. Otherwise, the value of spring constant is underestimated. This paper investigates noise interference ranges in low stiffness AFM cantilevers taking into account thermal fluctuations and acoustic pressures as two main sources of noise. As a result, a preliminary knowledge about the conditions in which thermal fluctuations and acoustic pressures have closely the same effect on the AFM cantilever (noise interference) is provided with both theoretical and experimental arguments. Consequently, beyond the noise interference range, commercial low stiffness AFM cantilevers are calibrated in two ways: using the thermal noise (in a wide temperature range) and acoustic pressures generated by a loudspeaker. We then demonstrate that acoustic noises can also be used for an efficient characterization and calibration of low stiffness AFM cantilevers. The accuracy of the acoustic characterization is evaluated by comparison with results from the thermal calibration.

  19. Experimental evidence of simultaneous multi-resonance noise reduction using an absorber with essential nonlinearity under two excitation frequencies

    NASA Astrophysics Data System (ADS)

    Côte, Renaud; Pachebat, Marc; Bellizzi, Sergio

    2014-09-01

    The addition of an essentially nonlinear membrane absorber to a linear vibroacoustic system with multiple resonances is studied experimentally, using quasiperiodic excitation. An extended experimental dataset of the system response is analyzed under steady-state excitation at two frequencies. Thresholds between low and high damping states within the system and associated noise reduction are observed and quantified thanks to frequency conversion and RMS efficiency indicators. Following previous numerical results, it is shown that the membrane NES (Nonlinear Energy Sink) acts simultaneously and efficiently on two acoustic resonances. In all cases, the introduction of energy at a second excitation frequency appears favorable to lower the frequency conversion threshold and to lower the noise within the system. In particular, a simultaneous control of two one-to-one resonances by the NES is observed. Exploration of energy conversion in the two excitation amplitudes plane advocates for a linear dependence of the frequency conversion thresholds on the two excitation amplitudes.

  20. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, A.; Garcia, J. A.

    2000-07-01

    A liquid-ambient-compatible thermal wave resonant cavity (TWRC) has been constructed for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol, ethylene glycol, and olive oil were determined at room temperature (25 °C), with four-significant-figure precision as follows: (0.1445±0.0002)×10-2 cm2/s (distilled water); (0.0922±0.0002)×10-2 cm2/s (glycerol); (0.0918±0.0002)×10-2 cm2/s (ethylene glycol); and (0.0881±0.0004)×10-2 cm2/s (olive oil). The liquid-state TWRC sensor was found to be highly sensitive to various mixtures of methanol and salt in distilled water with sensitivity limits 0.5% (v/v) and 0.03% (w/v), respectively. The use of the TWRC to measure gas evolution from liquids and its potential for environmental applications has also been demonstrated.

  1. Diurnal variations of ELF transients and background noise in the Schumann resonance band

    NASA Astrophysics Data System (ADS)

    Greenberg, Eran; Price, Colin

    2007-02-01

    Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is

  2. Electrically Isolating Thermally Coupled Device for Noise Suppression of Circuits in Deep Space

    NASA Technical Reports Server (NTRS)

    Mantooth, A.; McNutt, T.; Mojarradi, M.; Li, H.; Blalock, B.

    2001-01-01

    Mixed mode rad hard avionics Systems on a Chip (SoC) designed for deep space applications such as Europa orbiters and Europa Landers will require data isolation circuits to block noise. This paper presents the simulation performance for a novel rad hard SOI CMOS compatible thermal transducer used for on-chip data isolation in SoC. The research presented involves the use of commercially available computer aided design tools to model the transient electrothermal behavior of the transducer. Both one- and two-dimensional analyses of a prototype thermal transducer were performed. Results indicate that thermal-based data isolator technology can pass a data bit in under a microsecond and, as a measurement of feasibility, I(exp 2)C bus specifications can be met.

  3. Optimization of microelectrode design for cortical recording based on thermal noise considerations.

    PubMed

    Lempka, Scott F; Johnson, Matthew D; Barnett, David W; Moffitt, Michael A; Otto, Kevin J; Kipke, Daryl R; McIntyre, Cameron C

    2006-01-01

    Intracortical microelectrode recordings of neural activity show great promise as control signals for neuroprosthetic applications. However, faithful, consistent recording of single unit spiking activity with chronically implanted silicon-substrate microelectrode arrays has proven difficult. Many approaches seek to enhance the long-term performance of microelectrode arrays by, for example, increasing electrode biocompatibility, decreasing electrode impedance, or improving electrode interface properties through application of small voltage pulses. The purpose of this study was to use computational models to optimize the design of microelectrodes. We coupled detailed models of the neural source signal, silicon-substrate microelectrodes, and thermal noise to define the electrode contact size that maximized the signal-to-noise ratio (SNR). Model analysis combined a multi-compartment cable model of a layer V cortical pyramidal neuron with a 3D finite element model of the head and microelectrode to define the amplitude and time course of the recorded signal. A spatially-lumped impedance model was parameterized with in vitro and in vivo spectroscopy data and used to define thermal noise as a function of electrode contact size. Our results suggest that intracortical microelectrodes with a contact size of ~380 microm2 will provide an increased SNR in vivo and improve the long-term recording capabilities of silicon-substrate microelectrode arrays. PMID:17947023

  4. Feasibility study of noise analysis methods on virtual thermal reactor subcriticality monitoring

    SciTech Connect

    Kong, C.; Lee, D.; Lee, E.

    2013-07-01

    This paper presents the analysis results of Rossi-alpha, cross-correlation, Feynman-alpha, and Feynman difference methods applied to the subcriticality monitoring of nuclear reactors. A thermal spectrum Godiva model has been designed for the analysis of the four methods. This Godiva geometry consists of a spherical core containing the isotopes of H-l, U-235 and U-238, and the H{sub 2}O reflector outside the core. A Monte Carlo code, McCARD, is used in real time mode to generate virtual detector signals to analyze the feasibility of the four methods. The analysis results indicate that the four methods can be used with high accuracy for the continuous monitoring of subcriticality. In addition to that, in order to analyze the impact of the random noise contamination on the accuracy of the noise analysis, the McCARD-generated signals are contaminated with arbitrary noise. It is noticed that, even when the detector signals are contaminated, the four methods can predict the subcriticality with reasonable accuracy. Nonetheless, in order to reduce the adverse impact of the random noise, eight detector signals, rather than a single signal, are generated from the core, one signal from each equally divided eighth part of the core. The preliminary analysis with multiple virtual detector signals indicates that the approach of using many detectors is promising to improve the accuracy of criticality prediction and further study will be performed in this regard. (authors)

  5. Densely-tiled metal-insulator-metal metamaterial resonators with quasi- monochromatic thermal emission.

    PubMed

    Ito, Kota; Toshiyoshi, Hiroshi; Iizuka, Hideo

    2016-06-13

    Metal-insulator-metal metamaterial thermal emitters strongly radiate at multiple resonant wavelengths. The fundamental mode, whose wavelength is the longest among resonances, is generally utilized for selective emission. In this paper, we show that parasitic modes at shorter wavelengths are suppressed by newly employed densely-tiled resonators, and that the suppression enables quasi-monochromatic thermal emission. The second-order harmonics, which is excited at half the fundamental wavelength in conventional emitters, shifts toward shorter wavelength. The blue-shift reduces the amplitude of the second-order emission by taking a distance from the Wien wavelength. Other parasitic modes are eliminated by the small spacing between resonators. The densely-tiled resonators are fabricated, and the measured emission spectra agree well with numerical simulations. The methodology presented here for the suppression of parasitic modes adds flexibility to metamaterial thermal emitters. PMID:27410299

  6. New Performance Results for Optimum Combining in Presence of Arbitrary-Power Interferers and Thermal Noise

    NASA Astrophysics Data System (ADS)

    Wu, Yongpeng; Ding, Lv; Chen, Jiee; Gao, Xiqi

    This paper studies the optimum combining (OC) system with multiple arbitrary-power interferers and thermal noise in a flat Rayleigh fading environment. The main contribution of the paper is a concise performance analysis for the overload OC system where the number of interferers exceeds or is equal to the number of antennas elements. Simple closed-form formulas are derived for the moment generating function (m.g.f) of the output signal-to-interference-plus-noise ratio (SINR) and the symbol error rate (SER) with M-ary phase shift keying (M-PSK). These formulas are expressed as a finite sum involving polynomial, exponential and exponential integral terms. Based on the derived m.g.f, the closed-form explicit expressions for the moments of the output SINR are determined. Finally, asymptotic analysis illustrates that employing distinguished power control is an effective approach to combat the SER floor for the overload OC system.

  7. Constraints of thermal noise on the effects of weak 60-Hz magnetic fields acting on biological magnetite.

    PubMed Central

    Adair, R K

    1994-01-01

    Previous calculations of limits imposed by thermal noise on the effects of weak 60-Hz magnetic fields on biological magnetite are generalized and extended to consider multiple signals, the possibility of anomalously large magnetosome structures, and the possibility of anomalously small cytoplasm viscosities. The results indicate that the energies transmitted to the magnetite elements by fields less than 5 microT, characteristic of the electric power distribution system, will be much less than thermal noise energies. Hence, the effects of such weak fields will be masked by that noise and cannot be expected to affect biology or, therefore, the health of populations. PMID:8159681

  8. Resonance cone measurements of non-thermal plasma properties in the mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Piel, A.; Oyama, K.-I.; Thiemann, H.; Morioka, A.

    Resonance cone data obtained during the Corex experiment on January 25, 1988, were used to evaluate the electron density and temperature in the midlatitude ionosphere. The electron temperature obtained from the resonance cone measurements was found to be close to gas temperature, while the thermal electron detector results resulted in much higher temperatures, indicating that actual distribution may be characterized by two characteristic temperatures.

  9. Optical Resonance Shifts in the Fluorescence of Thermal and Cold Atomic Gases

    NASA Astrophysics Data System (ADS)

    Jenkins, S. D.; Ruostekoski, J.; Javanainen, J.; Bourgain, R.; Jennewein, S.; Sortais, Y. R. P.; Browaeys, A.

    2016-05-01

    We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.

  10. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  11. Optical Resonance Shifts in the Fluorescence of Thermal and Cold Atomic Gases.

    PubMed

    Jenkins, S D; Ruostekoski, J; Javanainen, J; Bourgain, R; Jennewein, S; Sortais, Y R P; Browaeys, A

    2016-05-01

    We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation. PMID:27203321

  12. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data

    NASA Astrophysics Data System (ADS)

    Dillon, C. R.; Borasi, G.; Payne, A.

    2016-01-01

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.

  13. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data.

    PubMed

    Dillon, C R; Borasi, G; Payne, A

    2016-01-21

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344

  14. Brownian Thermal Noise in Interferometric Gravitational Wave Detectors and Single Photon Optomechanics

    NASA Astrophysics Data System (ADS)

    Hong, Ting

    The Laser Interferometric Gravitational-Wave Observatory (LIGO) is designed to detect the Gravitational Waves (GW) predicted by Albert Einstein's general theory of relativity. The advanced LIGO project is ongoing an upgrade to increase the detection sensitivity by more than a factor of 10, which will make the events detection a routine occurrence. In addition to using higher power lasers, heavier test mass, and better isolation systems, several new designs and techniques are proposed in the long-term upgrade, such as modifying the optics configuration to reduce the quantum noise, active noise cancellation of the Newtonian noise, optimizing the coating structure, and employing non-Guassian laser beams etc. In the first part of my thesis (Chapters 2 and 3), I apply statistical mechanics and elastostatics to the LIGO coated mirrors, and study the thermal fluctuations that dominate advanced LIGO's most sensitive frequency band from 40 Hz to 200 Hz. In particular, in Chapter 2, I study the so-called coating Brownian noise, fluctuations of mirrors coated with multiple layers of dielectrics due to internal friction. Assuming coating materials to be isotropic and homogeneous, I calculate the cross spectra of Brownian fluctuations in the bulk and shear strains of the coating layers, as well as fluctuations in the height of the coating-substrate interface. The additional phase shifting and back-scattering caused by photo elastic effects are also considered for the first time. In Chapter 3, I study whether it is realistic to adopt higher-order Laguerre-Gauss modes in LIGO, in order to mitigate the effect of mirror thermal noise. We investigate the effect on the detector's contrast defect caused by the mode degeneracy. With both analytical calculation and numerical simulation, we show that with this approach, the detector's susceptibility to mirror figure errors is reduced greatly compared to using the nondegenerate modes, therefore making it unacceptable for LIGO requirements

  15. An improved multiscale noise tuning of stochastic resonance for identifying multiple transient faults in rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2014-12-01

    Stochastic resonance (SR), a noise-assisted tool, has been proved to be very powerful in weak signal detection. The multiscale noise tuning SR (MSTSR), which breaks the restriction of the requirement of small parameters and white noise in classical SR, has been applied to identify the characteristic frequency of a bearing. However, the multiscale noise tuning (MST), which is originally based on discrete wavelet transform (DWT), limits the signal-to-noise ratio (SNR) improvement of SR and the performance in identifying multiple bearing faults. In this paper, the wavelet packet transform (WPT) is developed and incorporated into the MSTSR method to overcome its shortcomings and to further enhance its capability in multiple faults detection of bearings. The WPT-based MST can achieve a finer tuning of multiscale noise and aims at detecting multiple target frequencies separately. By introducing WPT into the MST of SR, this paper proposes an improved SR method particularly suited for the identification of multiple transient faults in rolling element bearings. Simulated and practical bearing signals carrying multiple characteristic frequencies are employed to validate the performance improvement of the proposed method as compared to the original DWT-based MSTSR method. The results confirm the good capability of the proposed method in multi-fault diagnosis of rolling element bearings.

  16. Noise-induced resonance-like phenomena in InP crystals embedded in fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Persano Adorno, D.; Pizzolato, N.; Spagnolo, B.

    2016-05-01

    We explore and discuss the complex electron dynamics inside a low-doped n-type InP bulk embedded in a sub-THz electric field, fluctuating for the superimposition of an external source of Gaussian correlated noise. The results presented in this study derive from numerical simulations obtained by means of a multi-valley Monte Carlo approach to simulate the nonlinear transport of electrons inside the semiconductor crystal. The electronic noise characteristics are statistically investigated by calculating the correlation function of the velocity fluctuations, its spectral density and the integrated spectral density, i.e. the total noise power, for different values of both amplitude and frequency of the driving oscillating electric field and for different correlation times of the field fluctuations. Our results show that the nonlinear response of electrons is strongly affected by the field fluctuations. In particular, crucially depending on the relationship between the correlation times of the external Gaussian noise and the timescales of complex phenomena involved in the electron dynamical behavior: (i) electrons self-organize among different valleys, giving rise to intrinsic noise suppression; (ii) this cooperative behavior causes the appearance of a resonance-like phenomenon in the noise spectra.

  17. Self-sustained oscillation limit of tube bundle resonant noise. (Phase 1: Evaluation equation of oscillation limit)

    SciTech Connect

    Nishimura, M.; Fujita, K.; Hasegawa, N.

    1995-12-01

    Self-sustained oscillation limit of tube bundle resonant noise is studied in this paper. Excited acoustic energy and dissipating one in tube bundle are derived theoretically. In the exciting stage, the acoustic field is considered to be fed back to the flow field as the inlet flow fluctuation. And the acoustic damping is considered to induce the dissipating energy. Based on the energy balance of both and dimensional analysis, a new simple evaluation equation of self-sustained oscillation limit is proposed concerning on tube bundle resonant noise. A typical experimental results are evaluated based on this equation. The results are roughly good, but this suggests that model analysis of both exciting energy and dissipating one is necessary for more precise evaluation.

  18. Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan

    2015-11-01

    A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.

  19. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Nofrarias, M.; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, Ll; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.

  20. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, Ll; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-04-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.

  1. Statistical Properties of Thermal Noise Driving the Brownian Particles in Fluids

    NASA Astrophysics Data System (ADS)

    Tóthová, Jana; Lisý, Vladimír

    2016-02-01

    In several recent works high-resolution interferometric detection allowed to study the Brownian motion of optically trapped microparticles in air and fluids. The observed positional fluctuations of the particles are well described by the generalized Langevin equation with the Boussinesq-Basset "history force" instead of the Stokes friction, which is valid only for the steady motion. Recently, also the time correlation function of the thermal random force Fth driving the Brownian particles through collisions with the surrounding molecules has been measured. In the present contribution we propose a method to describe the statistical properties of Fth in incompressible fluids. Our calculations show that the time decay of the correlator is significantly slower than that found in the literature. It is also shown how the "color" of the thermal noise can be determined from the measured positions of the Brownian particles.

  2. CFD simulation of pulsation noise in a small centrifugal compressor with volute and resonance tube

    NASA Astrophysics Data System (ADS)

    Wakaki, Daich; Sakuka, Yuta; Inokuchi, Yuzo; Ueda, Kosuke; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2015-02-01

    The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.

  3. Effects of Thermal Noise on the Transitional Dynamics of an Inextensible Elastic Filament in Stagnation Flow

    PubMed Central

    Deng, Mingge; Grinberg, Leopold; Caswell, Bruce

    2015-01-01

    We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834

  4. Effect of temperature variations and thermal noise on the static and dynamic behavior of straintronics devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Mazumder, Pinaki

    2015-11-01

    A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.

  5. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.

  6. Chapter 3 Exact Signal-Noise Separation by Froissart Doublets in Fast Padé Transform for Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belkic, Dz; Evad

    In the present study, it is demonstrated that the fast padé transform (FPT) is capable of providing the exponential convergence rate (the spectral convergence) for the exact reconstructions of all the spectral parameters from time signals equivalent to the corresponding in vivo free induction decay curves encoded by means of magnetic resonance spectroscopy with short echo times of about 20 ms at the standard clinical magnetic field strength 1.5 T from the brain of a healthy volunteer. Further, it is shown that residual spectra (the difference between the model and input spectra) are a necessary, but not a sufficient, criterion to estimate the error invoked in quantification. Full validation of the performed quantification within the FPT is possible by monitoring stabilization of all the reconstructed spectral parameters as a function of the partial signal length for a fixed bandwidth (this is equivalent to varying the total acquisition time). Moreover, all the converged fundamental frequencies and amplitudes found in this way must further be cross-validated by checking whether they also represent the joint results of both Padé variants, the FPT(+) and the FPT(-), inside and outside the unit circle, as done in the present study. The Froissart doublets (pole-zero cancellations) are used to unequivocally distinguish between genuine and spurious resonances in both noise-free and noise-corrupted time signals. This permits the exact reconstruction of all the genuine spectral parameters including the fundamental frequencies, the corresponding amplitudes, and the true number of physical resonances. The FPT is shown to be able to resolve and quantify tightly overlapped resonances that are abundantly seen in magnetic resonance spectra generated using encoded in vivo time signals. Most importantly, precisely such overlapping resonances are often of critical relevance for diagnostics in clinical oncology.

  7. Frequency-dependent hydrodynamic inductance and the determination of the thermal and quantum noise of a superfluid gyroscope

    SciTech Connect

    Chui, Talso; Penanen, Konstantin

    2005-04-01

    We reexamine mass flow in a superfluid gyroscope containing a superfluid Josephson weak link. We introduce a frequency-dependent hydrodynamic inductance to account for an oscillatory flow of the normal fluid component in the sensing loop. With this hydrodynamic inductance, we derive the thermal phase noise, and hence the thermal rotational noise of the gyroscope. We examine the thermodynamic stability of the system based on an analysis of the free energy. We derive a quantum phase noise, which is analogous to the zero-point motion of a simple harmonic oscillator. The configuration of the studied gyroscope is analogous to a conventional superconducting RF SQUID. We show that the gyroscope has very low intrinsic noise (1.9x10{sup -13} rad s{sup -1}/{radical}(Hz)), and it can potentially be applied to study general relativity, Earth science, and to improve global positioning systems (GPS)

  8. Noise analysis in fast magnetic resonance electrical impedance tomography (MREIT) based on spoiled multi gradient echo (SPMGE) pulse sequence

    NASA Astrophysics Data System (ADS)

    In Oh, Tong; Jeong, Woo Chul; Kim, Ji Eun; Sajib, Saurav Z. K.; Kim, Hyung Joong; In Kwon, Oh; Woo, Eung Je

    2014-08-01

    Magnetic resonance electrical impedance tomography (MREIT) is a promising non-invasive method to visualize a static cross-sectional conductivity and/or current density image by injecting low frequency currents. MREIT measures one component of the magnetic flux density caused by the injected current using a magnetic resonance (MR) scanner. For practical in vivo implementations of MREIT, especially for soft biological tissues where the MR signal rapidly decays, it is crucial to develop a technique for optimizing the magnetic flux density signal by the injected current while maintaining spatial-resolution and contrast. We design an MREIT pulse sequence by applying a spoiled multi-gradient-echo pulse sequence (SPMGE) to the injected current nonlinear encoding (ICNE), which fully injects the current at the end of the read-out gradient. The applied ICNE-SPMGE pulse sequence maximizes the duration of injected current almost up to a repetition time by measuring multiple magnetic flux density data. We analyze the noise level of measured magnetic flux density with respect to the pulse width of injection current and T_{2}^{*} relaxation time. In due consideration of the ICNE-SPMGE pulse sequence, using a reference information of T_{2}^{*} values in a local region of interest by a short pre-scan data, we predict the noise level of magnetic flux density to be measured for arbitrary repetition time TR. Results from phantom experiment demonstrate that the proposed method can predict the noise level of magnetic flux density for an appropriate TR = 40 ms using a reference scan for TR = 75 ms. The predicted noise level was compared with the noise level of directly measured magnetic flux density data.

  9. Effect of negative emotions evoked by light, noise and taste on trigeminal thermal sensitivity

    PubMed Central

    2014-01-01

    Background Patients with migraine often have impaired somatosensory function and experience headache attacks triggered by exogenous stimulus, such as light, sound or taste. This study aimed to assess the influence of three controlled conditioning stimuli (visual, auditory and gustatory stimuli and combined stimuli) on affective state and thermal sensitivity in healthy human participants. Methods All participants attended four experimental sessions with visual, auditory and gustatory conditioning stimuli and combination of all stimuli, in a randomized sequence. In each session, the somatosensory sensitivity was tested in the perioral region with use of thermal stimuli with and without the conditioning stimuli. Positive and Negative Affect States (PANAS) were assessed before and after the tests. Subject based ratings of the conditioning and test stimuli in addition to skin temperature and heart rate as indicators of arousal responses were collected in real time during the tests. Results The three conditioning stimuli all induced significant increases in negative PANAS scores (paired t-test, P ≤0.016). Compared with baseline, the increases were in a near dose-dependent manner during visual and auditory conditioning stimulation. No significant effects of any single conditioning stimuli were observed on trigeminal thermal sensitivity (P ≥0.051) or arousal parameters (P ≥0.057). The effects of combined conditioning stimuli on subjective ratings (P ≤0.038) and negative affect (P = 0.011) were stronger than those of single stimuli. Conclusions All three conditioning stimuli provided a simple way to evoke a negative affective state without physical arousal or influence on trigeminal thermal sensitivity. Multisensory conditioning had stronger effects but also failed to modulate thermal sensitivity, suggesting that so-called exogenous trigger stimuli e.g. bright light, noise, unpleasant taste in patients with migraine may require a predisposed or sensitized nervous

  10. Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Rejkjaer, Simon

    2016-04-01

    Surface nuclear magnetic resonance technique, also called magnetic resonance sounding (MRS), is an emerging geophysical method that can detect the presence and spatial variations of the subsurface water content directly. In this paper, we introduce the MRS central loop geometry, in which the receiver loop is smaller than the transmitter loop and placed in its centre. In addition, using a shielded receiver coil we show how this configuration greatly increases signal-to-noise ratio and improves the resolution of the subsurface layers compared to the typically used coincident loop configuration. We compare sensitivity kernels for different loop configurations and describe advantages of the MRS central loop geometry in terms of superior behaviour of the sensitivity function, increased sensitivity values, reduced noise level of the shielded receiver coil, improved resolution matrix and reduced instrument dead time. With no extra time and effort in the field, central-loop MRS makes it possible to reduce measurement time and to measure data in areas with high anthropogenic noise. The results of our field example agree well with the complementary data, namely airborne electromagnetics, borehole data, and the hydrologic model of the area.

  11. Electron Paramagnetic Resonance Study of Thermally Treated Bismuth Subgallate

    PubMed Central

    Ramos, Paweł; Pilawa, Barbara

    2014-01-01

    Complex of bismuth, an anti-inflammatory drug, was studied by EPR spectroscopy. The aim of this study was to determine concentrations and properties of free radicals formed during thermal sterilization of bismuth subgallate according to pharmacopoeia norms to optimize its sterilization process. Different temperatures (160°C, 170°C, and 180°C) and times (120 minutes, 60 minutes, and 30 minutes) of sterilization were used. Interactions of bismuth subgallate with DPPH, the model free radical reference, were checked. g-Factors, amplitudes (A), integral intensities (I), and linewidths (ΔBpp) were obtained. Integral intensities were obtained by double integration of the first-derivative EPR lines. The influence of microwave power in the range of 2.2–70 mW on shape and parameters of the EPR spectra was examined. Thermal sterilization produced free radicals in bismuth subgallate in all tested cases. Strong interactions with free radicals were pointed out for all the analysed samples containing bismuth independent of sterilization conditions. Optimal conditions of thermal sterilization for bismuth subgallate with the lowest free radical formation are temperature 170°C and time of heating 60 minutes. Strong dipolar interactions exist in thermally sterilized bismuth subgallate. EPR spectroscopy is a useful method of examination of thermal sterilization conditions. PMID:25525421

  12. Electron paramagnetic resonance study of thermally treated bismuth subgallate.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    2014-01-01

    Complex of bismuth, an anti-inflammatory drug, was studied by EPR spectroscopy. The aim of this study was to determine concentrations and properties of free radicals formed during thermal sterilization of bismuth subgallate according to pharmacopoeia norms to optimize its sterilization process. Different temperatures (160°C, 170°C, and 180°C) and times (120 minutes, 60 minutes, and 30 minutes) of sterilization were used. Interactions of bismuth subgallate with DPPH, the model free radical reference, were checked. g-Factors, amplitudes (A), integral intensities (I), and linewidths (ΔB pp) were obtained. Integral intensities were obtained by double integration of the first-derivative EPR lines. The influence of microwave power in the range of 2.2-70 mW on shape and parameters of the EPR spectra was examined. Thermal sterilization produced free radicals in bismuth subgallate in all tested cases. Strong interactions with free radicals were pointed out for all the analysed samples containing bismuth independent of sterilization conditions. Optimal conditions of thermal sterilization for bismuth subgallate with the lowest free radical formation are temperature 170°C and time of heating 60 minutes. Strong dipolar interactions exist in thermally sterilized bismuth subgallate. EPR spectroscopy is a useful method of examination of thermal sterilization conditions. PMID:25525421

  13. Thermal enhancement and stochastic resonance of polaron ratchets.

    PubMed

    Brizhik, L S; Eremko, A A; Piette, B M A G; Zakrzewski, W J

    2014-06-01

    We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature, the critical value of the intensity of the electric field above which the ratchet phenomenon takes place is lower than at zero temperature for the same frequency of the field. We show that there is a range of temperatures for which the polaron drift is larger than that at zero temperature. We also show that temperature decreases the value of the lowest critical period of the field. And, finally, we demonstrate that there is a stochastic resonance in a polaron ratchet, namely that there is an optimal temperature at which the polaron drift is a maximum. The values of the stochastic resonance temperature, the lowest critical values of the field intensity, and its period depend on various parameters of the system and, in particular, on the anisotropy of the chain parameters. This temperature induced decrease of the critical value of the field intensity and its period, as well as the stochastic resonance itself, may be important for practical applications of the ratchet phenomenon in systems involving conducting polymers and other low-dimensional materials. They may also be important in some biological macromolecules where the ratchet phenomenon could take place in biomotors and energy and/or charge transport. PMID:25019849

  14. Thermal enhancement and stochastic resonance of polaron ratchets

    NASA Astrophysics Data System (ADS)

    Brizhik, L. S.; Eremko, A. A.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2014-06-01

    We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature, the critical value of the intensity of the electric field above which the ratchet phenomenon takes place is lower than at zero temperature for the same frequency of the field. We show that there is a range of temperatures for which the polaron drift is larger than that at zero temperature. We also show that temperature decreases the value of the lowest critical period of the field. And, finally, we demonstrate that there is a stochastic resonance in a polaron ratchet, namely that there is an optimal temperature at which the polaron drift is a maximum. The values of the stochastic resonance temperature, the lowest critical values of the field intensity, and its period depend on various parameters of the system and, in particular, on the anisotropy of the chain parameters. This temperature induced decrease of the critical value of the field intensity and its period, as well as the stochastic resonance itself, may be important for practical applications of the ratchet phenomenon in systems involving conducting polymers and other low-dimensional materials. They may also be important in some biological macromolecules where the ratchet phenomenon could take place in biomotors and energy and/or charge transport.

  15. A low noise and high precision linear power supply with thermal foldback protection

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50 nV / √{ Hz } at 1 Hz and 20 nV / √{ Hz } white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/∘C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  16. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    PubMed

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity. PMID:23984679

  17. A low noise and high precision linear power supply with thermal foldback protection.

    PubMed

    Carniti, P; Cassina, L; Gotti, C; Maino, M; Pessina, G

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50nV/Hz at 1 Hz and 20nV/Hz white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/(∘)C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus. PMID:27250450

  18. A low noise 500 MHz frequency source

    NASA Astrophysics Data System (ADS)

    Vulcan, A.; Bloch, M.; Tanski, W.

    A low-noise signal source providing multiple 500 MHz and 400 MHz outputs is presented whose noise characteristics approach the thermal limit at frequencies spaced greater than 1 MHz from the carrier. The unit uses bulk and surface acoustic wave resonators to insure low phase noise and spurious outputs and is totally redundant for failsafe operation. The packaging concept minimizes subassembly interconnections and provides both physical and electrical independence of two redundant generators; package shielding insures minimum conducted and radiated susceptibility.

  19. Thermal rectification in anharmonic chains under an energy-conserving noise.

    PubMed

    Guimarães, Pedro H; Landi, Gabriel T; de Oliveira, Mário J

    2015-12-01

    Systems in which the heat flux depends on the direction of the flow are said to present thermal rectification. This effect has attracted much theoretical and experimental interest in recent years. However, in most theoretical models the effect is found to vanish in the thermodynamic limit, in disagreement with experiment. The purpose of this paper is to show that the rectification may be restored by including an energy-conserving noise which randomly flips the velocity of the particles with a certain rate λ. It is shown that as long as λ is nonzero, the rectification remains finite in the thermodynamic limit. This is illustrated in a classical harmonic chain subject to a quartic pinning potential (the Φ(4) model) and coupled to heat baths by Langevin equations. PMID:26764645

  20. Exploiting metastability and thermal noise to build a reconfigurable hardware random number generator

    NASA Astrophysics Data System (ADS)

    Lim, Daihyun; Ranasinghe, Damith C.; Devadas, Srinivas; Jamali, Behnam; Abbott, Derek; Cole, Peter H.

    2005-05-01

    While pseudo random number generators based on computational complexity are widely used for most of cryptographic applications and probabilistic simulations, the generation of true random numbers based on physical randomness is required to guarantee the advanced security of cryptographic systems. In this paper we present a method to exploit manufacturing variations, metastablity, and thermal noise in integrated circuits to generate random numbers. This metastability based physical random number generator provides a compact and low-power solution which can be fabricated using standard IC manufacturing processes. Test-chips were fabricated in TSMC 0.18um process and experimental results show that the generated random bits pass standard randomness tests successfully. The operation of the proposed scheme is robust against environmental changes since it can be re-calibrated to new environmental conditions such as temperature and power supply voltage.

  1. White noise response of turbine blades subjected to heat flux and thermal gradient

    SciTech Connect

    Karadag, V.; Aba, E.; Morguel, O.K.

    1997-07-01

    Design and production of the complex mechanical structures rarely result in an optimal solution. A typical example for this is a turbine blade design. Fatigue failures of the turbine blades is one of the most vexing problems of turbo-machine manufacturers, ever since the steam turbine became the main stay for power generating equipment and the gas turbines are increasingly used in air transport. Turbine blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many different sources such as the high rotational speed, the high operating temperatures, the asymmetric aerofil tapered form of the turbine blade etc. Therefore, vibratory analysis is one of the most important stage in the designing of the turbine blades. In this study, the random response of the turbine blade to white noise excitation has been consistently calculated, including the internal damping mechanisms of the blade. Beside the damping effects, the rotational speed and the linear thermal gradient along the turbine blade are incorporated into the analysis. Pressure difference between the two surfaces of the turbine blades are modelled as white noise excitation along all over the turbine blade. The system dynamic equation of motion are derived and solved by using the combined Finite Element-Modal Analysis Method.

  2. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-05-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  3. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  4. Thermal noise limitations to force measurements with torsion pendulums: applications to the measurement of the Casimir force and its thermal correction.

    PubMed

    Lamoreaux, S K; Buttler, W T

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction. PMID:15903495

  5. Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    SciTech Connect

    Lamoreaux, S.K.; Buttler, W.T.

    2005-03-01

    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular we elaborate on the prospects for measuring the thermal correction.

  6. Ultrasonic Resonance Spectrometry with Fourier Synthesized Pseudorandom Noise Excitation and Its Application to a Lyotropiec Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Nakamura, Haruki; Naito, Yasushi; Tsuboi, Yukitoshi; Mitaku, Shigeki; Okano, Koji

    1982-11-01

    Time domain measurement to obtain ultrasonic resonance spectra was made using Fourier Synthesized Pseudorandom Noise (FSPN) excitation in order to observe the viscoelastic property of a lyotropic liquid crystal. The FSPN with multiple frequency components was amplitude-modulated by a carrier signal with a much higher single frequency component, and a quadrature detection technique was used to obtain a shear ultrasonic resonance spectrum produced between two transducers. A reflection method was applied to observe mechanical impedance of viscous and elastic materials at about 3 MHz. The viscosities obtained for standard viscous materials agreed well with literature values, and the rigidity and viscosity of a lyotropic liquid crystal of Sodium Lauryl Sulfate with water were measured; they were ˜ 106 dyn/cm2 and ˜0.1 P, respectively.

  7. Resistance noise spectroscopy across the thermally and electrically driven metal-insulator transitions in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.

  8. Nuclear magnetic resonance study of thermal oxidation of polyisoprene

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Hsu, M. S.

    1975-01-01

    An investigation was conducted concerning the microstructural changes occurring in cis- and trans-1,4-polyisoprenes during uncatalized thermal oxidation in the solid phase. The investigation made use of approaches based on proton and carbon-13 NMR spectroscopy. The oxidation of squalene and dihydromyrcene in the liquid phase was also studied. The studies provide the first NMR spectroscopic evidence for the presence of epoxy and peroxide, hydroperoxide, and alcohol groups within the oxidized polyisoprene chain.

  9. Carnot cycle for interacting particles in the absence of thermal noise.

    PubMed

    Curado, Evaldo M F; Souza, Andre M C; Nobre, Fernando D; Andrade, Roberto F S

    2014-02-01

    A thermodynamic formalism is developed for a system of interacting particles under overdamped motion, which has been recently analyzed within the framework of nonextensive statistical mechanics. It amounts to expressing the interaction energy of the system in terms of a temperature θ, conjugated to a generalized entropy s(q), with q = 2. Since θ assumes much higher values than those of typical room temperatures T ≪ θ, the thermal noise can be neglected for this system (T/θ ≃ 0). This framework is now extended by the introduction of a work term δW which, together with the formerly defined heat contribution (δ Q = θ ds(q)), allows for the statement of a proper energy conservation law that is analogous to the first law of thermodynamics. These definitions lead to the derivation of an equation of state and to the characterization of s(q) adiabatic and θ isothermic transformations. On this basis, a Carnot cycle is constructed, whose efficiency is shown to be η = 1-(θ(2)/θ(1)), where θ(1) and θ(2) are the effective temperatures of the two isothermic transformations, with θ(1)>θ(2). The results for a generalized thermodynamic description of this system open the possibility for further physical consequences, like the realization of a thermal engine based on energy exchanges gauged by the temperature θ. PMID:25353432

  10. Assessment of the Fundamental Resonance Frequency of the Sedimentary Cover in the Eskisehir Basin (Turkey) Using Noise Measuremeets

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Karabulut, Savaş; Avdan, Uǧur; Özel, Oǧuz; Güney, Yücel

    2014-05-01

    Geological observations indicate that the Eskisehir graben is related with Eskisehir Fault Zone (EFZ), one of the major active structures within the Anatolian plate. The fault zone has a considerable seismic risk for the urban area of Eskişehir. Local site conditions substantially affect the characteristics of seismic waves and generally have a direct effect on the potential of the earthquake damage. Site effects are very complex factors. The importance of site response is well known, and few would question the assertion that the motion on soil is usually greater than on rock, when all other things were being held equal. In general, site response estimation can be obtained from instrumental recordings. The purpose of this study was to estimate if there would be a relationship between the structural geology in the Eskisehir Basin and the fundamental resonance frequency. Extensive ambient noise measurements were performed in the basin of Eskisehir from June 2010 to spring 2012. In this work, we conduct microtremor surveys to investigate the 3-D basin structure of Eskisehir Basin and determine the fundamental resonance frequency of the sedimentary cover in the Eskisehir Valley area. The measurements of single-station microtremor were carried out at 318 sites in the Eskişehir Basin. We use data recorded by a broadband seismometer and digitizer CMG-6TD, Guralp seismometer. Some of the measurement locations, the CMG-6TD sensor was located into 30 cm-deep holes in the ground to avoid strongly wind-generated, long-period noise. Finally, a map showing the fundamental resonance frequency distribution in the studied area was drawn using the results obtained from applying the HVSR technique. A fundamental resonance frequency map of the Eskisehir Basin was produced from main peak in the horizontal-to-vertical component (H/V) spectral ratio.