Science.gov

Sample records for resonant third-integer extraction

  1. Preliminaries toward studying resonant extraction from the Debuncher

    SciTech Connect

    Michelotti, Leo; Johnstone, John; /Fermilab

    2009-06-01

    A recent proposal to detect {mu} {yields} e direct conversion at Fermilab asks for slow extraction of protons from the antiproton source, specifically from the Debuncher. [1] A third-integer resonance originally was considered for this, partly because of the Debuncher's three-fold symmetry and partly because its operational horizontal tune, {nu}{sub x} {approx} 9.765, is already within 0.1 of {nu}{sub x} = 29/3. Using a half integer resonance, {nu}{sub x} = 19/2, though not part of the original proposal, has been suggested more recently because (a) Fermilab has had a good deal of experience with half-integer extraction from the Tevatron, the Main Injector and the erstwhile Main Ring, and (b) for reasons we shall examine later, it depopulates the entire bunch without an abort at the end. This memo presents considerations preliminary to studying both possibilities. It is meant only as a starting point for investigations to be carried out in the future. The working constraints and assumptions have oscillated between two extremes: (1) making minimal changes in the antiproton source to minimize cost and (2) building another machine in the same tunnel. In this memo we adopt an attitude aligned more toward the first. The assumed parameters are listed in Table 1. A few are not (easily) subject to change, such as those related to the beam's momentum and revolution frequency and the acceptance of the debuncher. Two resonance exemplars are presented in the next section, with an explanation of the analytic and semi-analytic calculations that can be done for each. Section 3 contains preliminary numerical work that was done to validate the exemplars within the context of extraction from the Debuncher. A final section contains a summary. Following the bibliography, appendices contain (a) a qualitative, conceptual discussion of extraction for the novice, (b) a telegraphic review of the perturbative incantations used to filter the exemplars as principal resonances of quadrupole, sextupole and octupole distributions, (c) a brief discussion of linearly independent control circuits, and (d) two files describing the antiproton source's rings in MAD v.8 format, not readily available elsewhere. All figures are located at the end. We emphasize again, the work reported here barely begins the effort that will be required to design, validate and perform resonant extraction from the Debuncher. Our goal was to compile these preliminary notes in one place for easy future reference, preferably by a young, intelligent, motivated and energetic graduate student.

  2. Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab

    SciTech Connect

    Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

    2011-03-01

    The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

  3. Resonance Extraction from the SAID Analysis

    E-print Network

    Ron Workman; Alfred Svarc

    2015-10-28

    Resonances are extracted from a number of energy-dependent and single-energy fits to scattering data. The influence of recent, precise EPECUR data is investigated. Results for the single-energy fits are derived using the L+P method of analysis and are compared to those obtained using contour integration applied to the global energy-dependent fits.

  4. Temporal feature extraction in photorefractive resonators

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.; Zhou, Gan; Montemezzani, Germano

    1994-12-01

    A holographic optical system listens to an incoming signal and extracts the most common repetitive temporal features of that signal. An example might be to extract the features of Morse code, which consists of two tone lengths and two pause lengths. This optical system is self-organizing, in that very little a priori information is imbeded in the system to indicate what form the temporal signals take. The primary constraints imposed on the signal is: (1) finite bandwidth; (2) limited feature duration; and (3) rates of reoccurrence. The optical apparatus uses a photorefractively pumped multimode optical oscillator having a delay line in the feedback loop. The delay line serves to translate the temporal dimension into a spatial one, and it also builds into the system a notion of the direction of time. Temporal feature extraction takes place as a competitive interaction among sets of modes, which are termed chronomodes. Experiments illustrate the principles of such a system by extracting the two most probable temporal features from a signal imposed on a laser beam.

  5. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  6. Comments on extracting the resonance strength parameter from yield data

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea

    2015-10-01

    The F(?,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (?,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping ?-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant ?-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV ?-rays from the resonance at 340.5 keV (laboratory ?-particle kinetic energy) in the 19F(p,??) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (?,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to explain the origin of the reported resonance strength. Fortunately the original notes spanning the period 12 January 1988 to 16 January 1990 were available to consult. In hindsight there is certainly a case of excessive brevity to rectify. In essence the step requiring explanation is how to compute the resonance strength, ??, from the reported thick target resonance yield Y.

  7. Extraction of Meson Resonances from Three-pions Photo-production Reactions

    SciTech Connect

    S. X. Nakamura, H. Kamano, T.-S. H. Lee, T. Sato

    2012-12-01

    We have investigated the model dependence of meson resonance properties extracted from the Dalitz-plot analysis of the three-pions photoproduction reactions on the nucleon. Within a unitary model developed in Phys. Rev. D 84, 114019 (2011), we generate Dalitz-plot distributions as data to perform an isobar model fit that is similar to most of the previous analyses of three-pion production reactions. It is found that the resonance positions from the two models agree well when both fit the data accurately, except for the resonance poles near branch points. The residues of the resonant amplitudes extracted from the two models and by the usual Breit-Wigner procedure agree well only for the isolated resonances with narrow widths. For overlapping resonances, most of the extracted residues could be drastically different. Our results suggest that even with high precision data, the resonance extraction should be based on models within which the amplitude parametrization is constrained by three-particle unitarity condition.

  8. Multichannel parametrization of ?N scattering amplitudes and extraction of resonance parameters

    E-print Network

    M. Shrestha; D. M. Manley

    2012-08-17

    We present results of a new multichannel partial-wave analysis for \\pi N scattering in the c.m. energy range 1080 to 2100 MeV. This work explicitly includes \\eta N and K \\Lambda channels and the single pion photoproduction channel. Resonance parameters were extracted by fitting partial-wave amplitudes from all considered channels using a multichannel parametrization that is consistent with S-matrix unitarity. The resonance parameters so obtained are compared to predictions of quark models.

  9. Dynamical coupled-channels model of K-p reactions. II. Extraction of ?* and ?* hyperon resonances

    NASA Astrophysics Data System (ADS)

    Kamano, H.; Nakamura, S. X.; Lee, T.-S. H.; Sato, T.

    2015-08-01

    Resonance parameters (pole masses and residues) associated with the excited states of hyperons, ?* and ?*, are extracted within a dynamical coupled-channels model developed recently by us [Phys. Rev. C 90, 065204 (2014)], 10.1103/PhysRevC.90.065204 through a comprehensive partial-wave analysis of the K-p ?K ¯N ,? ? ,? ? ,? ? ,K ? data up to invariant mass W =2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow JP=3 /2+ ? resonance that couples strongly to the ? ? channel. The JP=1 /2- ? resonances located below the K ¯N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K-p reactions including polarization observables to eliminate such an analysis dependence of the resonance parameters. In addition, the determined large branching ratios of the decays of high-mass resonances to the ? ?* and K¯*N channels also suggest the importance of the data of 2 ?3 reactions such as K-p ?? ? ? and K-p ?? K ¯N . Experiments on measuring cross sections and polarization observables of these fundamental reactions are highly desirable at hadron beam facilities such as J-PARC for establishing the ?* and ?* spectrum.

  10. Dynamical coupled-channels model of $K^- p$ reactions (II): Extraction of $?^*$ and $?^*$ hyperon resonances

    E-print Network

    H. Kamano; S. X. Nakamura; T. -S. H. Lee; T. Sato

    2015-08-12

    Resonance parameters (pole masses and residues) associated with the excited states of hyperons, Lambda^* and Sigma^*, are extracted within a dynamical coupled-channels model developed recently by us [Phys. Rev. C 90, 065204 (2014)] through a comprehensive partial-wave analysis of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi data up to invariant mass W = 2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow J^P=3/2^+ Lambda resonance that couples strongly to the eta Lambda channel. The J^P=1/2^- Lambda resonances located below the barK N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K^- p reactions including polarization observables to eliminate such an analysis dependence of the resonance parameters. In addition, the determined large branching ratios of the decays of high-mass resonances to the pi Sigma^* and barK^* N channels also suggest the importance of the data of 2 --> 3 reactions such as K^- p --> pi pi Lambda and K^- p --> pi barK N. Experiments on measuring cross sections and polarization observables of these fundamental reactions are highly desirable at hadron beam facilities such as J-PARC for establishing the Lambda^* and Sigma^* spectrum.

  11. Extraction of kinetic freeze-out properties and effect of resonance decays

    E-print Network

    Levente Molnar

    2005-07-21

    We present STAR results from identified particle spectra measured in $\\sqrt{s_{NN}}$ = 62.4 GeV Au-Au collisions. Particle production and system dynamics are compared to results at $\\sqrt{s_{NN}}$ = 200 GeV. We extract kinetic and chemical freeze-out parameters using blast wave model parameterization and statistical model. We discuss the effect of resonance decays on the extracted kinetic freeze-out parameters.

  12. Measuring acoustic mode resonance alone as a sensitive technique to extract antiferromagnetic coupling strength

    NASA Astrophysics Data System (ADS)

    Wei, Yajun; Svedlindh, Peter; Kostylev, Mikhail; Ranjbar, Mojtaba; Dumas, Randy K.; Ã kerman, Johan

    2015-08-01

    We have studied static and dynamic magnetic properties of a general asymmetric trilayer system using numerical simulations. For ferromagnetic, 90?, and antiferromagnetic coupling, the magnetizations of the two magnetic layers exhibit one, two, and three phases with increasing external field, respectively. The total magnetization and ferromagnetic resonance accordingly follow these phases of the magnetization vectors. The resonance condition is related to the interlayer coupling strength in such a way that a larger coupling constant yields a higher value of fres/H , where fres is the resonance frequency at the external magnetic field H . Based on the simulation results, it is proposed that measurements of the acoustic mode resonance alone at unsaturated conditions provide a sensitive and accurate technique to extract the antiferromagnetic coupling strength. The technique is demonstrated experimentally with the broadband ferromagnetic resonance measurements of two trilayer films with weak and strong coupling strengths. The technique offers an efficient and sensitive method for antiferromagnetic coupling strength extraction, yielding coupling constant values with a precision of better than 0.03 erg/cm2. Also, separation of the bilinear and biquadratic coupling contributions is possible with the technique.

  13. Measurement of Optical Response of a Detuned Resonant Sideband Extraction Interferometer

    E-print Network

    Osamu Miyakawa; Robert Ward; Rana Adhikari; Matthew Evans; Benjamin Abbott; Rolf Bork; Daniel Busby; Jay Heefner; Alexander Ivanov; Michael Smith; Robert Taylor; Stephen Vass; Alan Weinstein; Monica Varvella; Seiji Kawamura; Fumiko Kawazoe; Shihori Sakata; Conor Mow-Lowry

    2006-04-18

    We report on the optical response of a suspended-mass detuned resonant sideband extraction (RSE) interferometer with power recycling. The purpose of the detuned RSE configuration is to manipulate and optimize the optical response of the interferometer to differential displacements (induced by gravitational waves) as a function of frequency, independently of other parameters of the interferometer. The design of our interferometer results in an optical gain with two peaks: an RSE optical resonance at around 4 kHz and a radiation pressure induced optical spring at around 41 Hz. We have developed a reliable procedure for acquiring lock and establishing the desired optical configuration. In this configuration, we have measured the optical response to differential displacement and found good agreement with predictions at both resonances and all other relevant frequencies. These results build confidence in both the theory and practical implementation of the more complex optical configuration being planned for Advanced LIGO.

  14. A proposed U.S./China theoretical/experimental collaborative effort on baryon resonance extraction

    SciTech Connect

    P.L. Cole

    2009-12-01

    In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the 1{pi}- and 2{pi}-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) at the BEPC has collected high statistics data on J/{Psi} production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q{sup 2}, which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-III and CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.

  15. Dynamical coupled-channels model of $K^- p$ reactions (II): Extraction of $\\Lambda^*$ and $\\Sigma^*$ hyperon resonances

    E-print Network

    Kamano, H; Lee, T -S H; Sato, T

    2015-01-01

    Resonance parameters (pole masses and residues) associated with the excited states of hyperons, Lambda^* and Sigma^*, are extracted within a dynamical coupled-channels model developed recently in Phys. Rev. C 90, 065204 (2014) through a comprehensive partial-wave analysis of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi data up to invariant mass W = 2.1 GeV. We confirm the existence of resonances corresponding to most, if not all, of the four-star resonances rated by the Particle Data Group. We also find several new resonances, and in particular propose a possible existence of a new narrow J^P=3/2^+ Lambda resonance that couples strongly to the eta Lambda channel. The J^P=1/2^- Lambda resonances located below the barK N threshold are also discussed. Comparing our extracted pole masses with the ones from a recent analysis by the Kent State University group, some significant differences in the extracted resonance parameters are found, suggesting the need of more extensive and accurate data of K^- ...

  16. Study of ion beam extraction and transport from an electron cyclotron resonance ion source

    SciTech Connect

    Saminathan, S.; Mironov, V.; Beijers, J. P. M.; Kremers, R.; Brandenburg, S.

    2010-02-15

    We have started an experimental and theoretical program to better understand the extraction and transport of intense multiply charged ion beams from an electron cyclotron resonance ion source (ECRIS). In this paper we present the first results of this program concerning a simple, monocomponent He{sup +} beam extracted from an ECRIS. We have calculated the ion trajectories starting from the ECRIS plasma electrode up to the image plane of the analyzing magnet taking into account space-charge effects and fringe fields. The initial phase-space distribution of the He{sup +} beam at the extraction aperture has been calculated with a particle-in-cell code. To check the simulations we have measured beam profiles with a viewing screen both before and after the analyzing magnet. In addition also measurements with a pepperpot emittance meter located behind the analyzing magnet have been performed. We find good agreement between these measurements and simulations showing that (i) there is a significant compensation of the space charge and that (ii) our analyzing magnet causes a severe increase in effective beam emittance.

  17. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  18. Extracting nanosecond pulse signals via stochastic resonance generated by surface plasmon bistability.

    PubMed

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Li, Shaopeng

    2015-11-15

    A technology is investigated to extract nanosecond pulse noise hidden signals via stochastic resonance, which is based on surface plasmon bistability. A theoretical model for recovering nanosecond pulse signals is derived to describe the nonlinear process. It is found that the incident angle, polarization state, medium properties, and input noise intensity all determine the efficiency and fidelity of the output signal. The bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 6 in a wide range of input signal-to-noise ratio from 1?5 to 1?30. Meanwhile, the distortion in the time domain induced by phase shift can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields. PMID:26565876

  19. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source.

    PubMed

    Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source. PMID:24689571

  20. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  1. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Mishra, L.; Kewlani, H.; Patil, D. S.; Mittal, K. C.

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10-3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  2. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition.

    PubMed

    Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas

    2015-06-30

    We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. PMID:25912090

  3. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  4. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    NASA Astrophysics Data System (ADS)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  5. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  6. Simple spectral width estimation formula extracted from real energy shape resonance wavefunctions

    NASA Astrophysics Data System (ADS)

    Chrysos, Michael

    1998-04-01

    A formula for estimating spectral widths of narrow or moderately broad isolated shape resonances is established, by simple arguments based on the three-turning point WKB theory. This formula enables one to handle all resonances of the potential at one go, by only using as input real-energy wavefunctions obtained from a standard Hamiltonian-matrix diagonalization. For its derivation, the ratio between the probability amplitude computed near the equilibrium position and that defined asymptotically, both referring to maxima of the (un-normalized) resonance wavefunction, is of major importance. The performance of the formula is demonstrated on the unimolecular dissociation of the ground electronic state of the exotic 0953-4075/31/7/007/img1. Comparison is made with results from a complex-energy propagation and a previous WKB analysis.

  7. P_11 Resonance Extracted from pi-N Data and Its Stability

    SciTech Connect

    Satoshi Nakamura

    2012-04-01

    We study the stability of resonance poles in {pi}N P{sub 11} partial wave, particularly the Roper resonance, by varying parameters significantly within the EBAC dynamical coupled-channels model, keeping a good fit to the empirical amplitude. We find that two Roper poles are stable against the variation. However, for higher energies, the number of poles can change depending on how the parameters are fitted within error bars. We also developed a model with a bare nucleon which forms the physical nucleon by being dressed by the meson-cloud. We still find a good stability of the Roper poles.

  8. Combining magnetic resonance measurements with numerical simulations Extracting blood flow physiology information relevant to the investigation

    E-print Network

    Daraio, Chiara

    physiology information relevant to the investigation of intracranial aneurysms in the circle of Willis aneurysms Phase-contrast magnetic resonance angiography (PC-MRA) Oscillatory shear index (OSI) Wall shear stress gradient (WSSG) a b s t r a c t Cerebral aneurysms in the region of the circle of Willis have

  9. Picosecond high power extraction from an unstable resonator based injection-lock XeCl laser

    NASA Astrophysics Data System (ADS)

    Varghese, T.

    1982-01-01

    Single pulse peak power of over 0.3 GW with good beam quality was obtained from an injection-locked XeCl laser based on a positive branch confocal unstable resonator. The high power thus obtained has the potential of generating efficient high power tunable picosecond pulses from organic dyes in the UV and near UV region of the spectrum by pumping in a synchronous scheme.

  10. Energy Extraction in Idealized Models of Global and Regional Tides: Effects of Boundary Conditions and Tidal Resonance

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2012-12-01

    Ocean tide is generated by astronomical processes at the global scale. However, most regional models of marine hydrodynamics have tides imposed at the edge of the model domain as boundary conditions, and often omit local tide-generating force. This introduces uncertainties into results of regional models when used in tidal energy applications, because a regional model cannot represent a complete energetics of the tide unambiguously. We have set up a highly idealized model of a global ocean-estuary system, in which tides are forced astronomically and thus the integrated energy balance is complete and unambiguous; and a suite of subdomain models forced by tides sampled from the global model. We use both models to perform experiments simulating tidal energy extraction, where locally enhanced quadratic drag is used to mimic the effect of a tidal energy array. We consider the physical limit of extraction and effects on the estuarine tide, and how these compare in regional models with the global model. Previous experiments showed that tidal response to energy extraction is sensitive to the configuration of the subdomain model, and that adding local tide-generating force to the subdomain model leads to small but significant improvement in the agreement of results with the full domain model. In this study, we investigate the effects of various commonly-used boundary conditions for regional models on extraction limit and tidal regime change. We also consider a case in which the estuary is extended to become nearly quarter-wave resonant with the semi-diurnal tide, in which case local source of energy from astronomical forcing is expected to be more prominent.

  11. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    SciTech Connect

    Maimone, F.; Celona, L.; Lang, R.; Maeder, J.; Rossbach, J.; Spaedtke, P.; Tinschert, K.

    2011-12-15

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the ''frequency tuning effect'' and ''double frequency heating'' on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  12. Results of Nucleon Resonance Extraction via Dynamical Coupled-Channels Analysis from #11;Collaboration @ EBAC

    SciTech Connect

    Hiroyuki Kamano

    2012-04-01

    We review a global analysis of meson production reactions off the nucleons by a collaboration at Excited Baryon Analysis Center of Jefferson Lab. The analysis is pursued with a dynamical coupled-channels approach, within which the dynamics of multi-channel reaction processes are taken into account in a fully consistent way with the two-body as well as three-body unitarity of the S-matrix. With this approach, new features of nucleon excitations are revealed as resonant particles originating from the non-trivial multi-channel reaction dynamics, which cannot be addressed by static hadron models where the nucleon excitations are treated as stable particles.

  13. Influence of magnification on extraction efficiency in laser resonators with non-overlapping beams

    NASA Astrophysics Data System (ADS)

    González, M. G.; Peuriot, A. L.; Garea, M. T.; Santiago, G. D.

    2015-04-01

    The magnification and the Fresnel number determine the mode profile and losses in a bare unstable resonator. Upon inclusion of gain, both the beam pattern and the reflectivity are changed, more than in a stable cavity, because the counter-propagation intensities differ spatially and saturate the amplifier in a way that alters the mode profile, the reflectivity and the conditions of optimal operation. In this paper we present a numerical study of two types of cavities and compute the mode profile and losses in presence of an amplifier that saturates homogeneously. We compare these results with experimental data obtained on a TEA CO2 laser.

  14. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine ( Pinus sylvestris) wood . Part II. Hydrophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Vuorinen, T.

    2004-11-01

    Hydrophilic extracts of Scots pine ( Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm -1. Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm -1. The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm -1. The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm -1) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.

  15. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Vuorinen, T

    2004-11-01

    Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin. PMID:15477131

  16. Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy.

    PubMed

    Chan, Pui Hei; Zhang, Wendy L; Lau, Chung-Ho; Cheung, Chi Yuen; Keun, Hector C; Tsim, Karl W K; Lam, Henry

    2014-01-01

    Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. ¹H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of ¹H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied ¹H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites. PMID:24658570

  17. Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models.

    PubMed

    Chaddad, Ahmad

    2015-01-01

    This paper presents a novel method for Glioblastoma (GBM) feature extraction based on Gaussian mixture model (GMM) features using MRI. We addressed the task of the new features to identify GBM using T1 and T2 weighted images (T1-WI, T2-WI) and Fluid-Attenuated Inversion Recovery (FLAIR) MR images. A pathologic area was detected using multithresholding segmentation with morphological operations of MR images. Multiclassifier techniques were considered to evaluate the performance of the feature based scheme in terms of its capability to discriminate GBM and normal tissue. GMM features demonstrated the best performance by the comparative study using principal component analysis (PCA) and wavelet based features. For the T1-WI, the accuracy performance was 97.05% (AUC = 92.73%) with 0.00% missed detection and 2.95% false alarm. In the T2-WI, the same accuracy (97.05%, AUC = 91.70%) value was achieved with 2.95% missed detection and 0.00% false alarm. In FLAIR mode the accuracy decreased to 94.11% (AUC = 95.85%) with 0.00% missed detection and 5.89% false alarm. These experimental results are promising to enhance the characteristics of heterogeneity and hence early treatment of GBM. PMID:26136774

  18. Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models

    PubMed Central

    Chaddad, Ahmad

    2015-01-01

    This paper presents a novel method for Glioblastoma (GBM) feature extraction based on Gaussian mixture model (GMM) features using MRI. We addressed the task of the new features to identify GBM using T1 and T2 weighted images (T1-WI, T2-WI) and Fluid-Attenuated Inversion Recovery (FLAIR) MR images. A pathologic area was detected using multithresholding segmentation with morphological operations of MR images. Multiclassifier techniques were considered to evaluate the performance of the feature based scheme in terms of its capability to discriminate GBM and normal tissue. GMM features demonstrated the best performance by the comparative study using principal component analysis (PCA) and wavelet based features. For the T1-WI, the accuracy performance was 97.05% (AUC = 92.73%) with 0.00% missed detection and 2.95% false alarm. In the T2-WI, the same accuracy (97.05%, AUC = 91.70%) value was achieved with 2.95% missed detection and 0.00% false alarm. In FLAIR mode the accuracy decreased to 94.11% (AUC = 95.85%) with 0.00% missed detection and 5.89% false alarm. These experimental results are promising to enhance the characteristics of heterogeneity and hence early treatment of GBM. PMID:26136774

  19. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling.

    PubMed

    Anwar, Muzaffar A; Vorkas, Panagiotis A; Li, Jia V; Shalhoub, Joseph; Want, Elizabeth J; Davies, Alun H; Holmes, Elaine

    2015-10-26

    Human vein tissue is an important matrix to examine when investigating vascular diseases with respect to understanding underlying disease mechanisms. Here, we report the development of an extraction protocol for multi-platform metabolic profiling of human vein tissue. For the first stage of the optimization, two different ratios of methanol/water and 5 organic solvents - namely dichloromethane, chloroform, isopropanol, hexane and methyl tert-butyl ether (MTBE) solutions with methanol - were tested for polar and organic compound extraction, respectively. The extraction output was assessed using (1)H Nuclear Magnetic Resonance (NMR) spectroscopy and a panel of Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) methodologies. On the basis of the reproducibility of extraction replicates and metabolic coverage, the optimal aqueous (methanol/water) and organic (MTBE/methanol) solvents identified from the first stage were used in a sequential approach for metabolite extraction, altering the order of solvent-mixture addition. The combination of organic metabolite extraction with MTBE/methanol (3?:?1) followed by extraction of polar compounds with methanol/water (1?:?1) was shown to be the best method for extracting metabolites from human vein tissue in terms of reproducibility and number of signals detected and could be used as a single extraction procedure to serve both NMR and UPLC-MS analyses. Molecular classes such as triacylglycerols, phosphatidylcholines, phosphatidylethanolamines, sphingolipids, purines, and pyrimidines were reproducibly extracted. This study enabled an optimal extraction protocol for robust and more comprehensive metabolome coverage for human vein tissue. Many of the physiological and pathological processes affecting the composition of human vein tissue are common to other tissues and hence the extraction method developed in this study can be generically applied. PMID:26468486

  20. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine ( Pinus sylvestris) wood . Part I: Lipophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.

    2004-11-01

    The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  1. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T

    2004-11-01

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin. PMID:15477130

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  3. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  4. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  5. Combined use of high-resolution ?-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective ?-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for ?-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 ?g/mL. Subsequently, high-resolution ?-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the ?-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main ?-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-?-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-?-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main ?-glucosidase inhibitors in R. palmatum root. PMID:25652946

  6. pH recycling aqueous two-phase systems applied in extraction of Maitake ?-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of ?-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that ?-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for ?-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake ?-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of ?-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and ?-Glucan. PMID:26094138

  7. Extracting meson-baryon contributions to the electroexcitation of the N (1675)-5/2 nucleon resonance

    DOE PAGESBeta

    Aznauryan, Inna G.; Burkert, Volker D.

    2015-07-01

    We report on the determination of the electrocouplings for the transition from the proton to the N (1675)-5/2 resonance state using recent differential cross section data on ep ? e?+n by the CLAS collaboration at 1.8 ? Q² -5/2 helicity amplitudes show considerable coupling through the AP1/2 amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude AP3/2 is much smaller. Both results are consistent with the predicted sizes of the meson-baryonmore »contributions at Q² ? 1.8 GeV² from the dynamical coupled-channel model.« less

  8. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    SciTech Connect

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Elouadrhiri, L.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Joo, H. S.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J.; Markov, N.; Martinez, D.; McKinnon, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati??, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-04-01

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

  9. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE PAGESBeta

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al

    2015-04-01

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted atmore »different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 « less

  10. Direct proof by 13C-nuclear magnetic resonance of semi-purified extract and isolation of ent-Catechin from leaves of Eucalyptus cinerea

    PubMed Central

    Silva, Sayonara Mendes; Abe, Simone Yae; Bueno, Fernanda Giacomini; Lopes, Norberto Peporine; de Mello, João Carlos Palazzo; Nakashima, Tomoe

    2014-01-01

    Background: Eucalyptus cinerea F. Muell. ex Benth. is native to Australia and acclimatized to Southern Brazil. Its aromatic leaves are used for ornamental purposes and have great potential for essential oil production, although reports of its use in folk medicine are few. Objective: This study evaluated the composition of E. cinerea leaves using the solid state 13C-nuclear magnetic resonance (NMR) and isolation of the compound from the semipurified extract (SE). Materials and Methods: The SE of E. cinerea leaves was evaluated in the solid state by 13C-NMR spectrum, and the SE was chromatographed on a Sephadex LH-20 column, followed by high-speed counter-current chromatography to isolate the compound. The SE was analyzed by 13C-NMR and matrix-assisted laser desorption/ionization-time-of-flight spectra. Results: Flavan-3-ol units were present, suggesting the presence of proanthocyanidins as well as a gallic acid unit. The uncommon ent-catechin was isolated. Conclusion: The presence of ent-catechin is reported for the first time in this genus and species. PMID:25210302

  11. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy

    SciTech Connect

    Kishii, Y. Kawasaki, S.; Kitagawa, A.; Muramatsu, M.; Uchida, T.; Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe 350-8585

    2014-02-15

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  12. Feature extraction Feature extraction

    E-print Network

    Giger, Christine

    Feature extraction #12;Feature extraction ! · Image interpretation: extract information from images · but the desired information may not be explicit in the raw observed pixel intensities · Transform image to make (hyperspectral sensors) Meteosat thermal IR channel hyperspectral "image cube" #12;Raw intensities ! · Pros

  13. Feature extraction Feature extraction

    E-print Network

    Giger, Christine

    Feature extraction #12;Feature extraction · Image interpretation: extract information from images · but the desired information may not be explicit in the raw observed pixel intensities · Transform image to make (hyperspectral sensors) Meteosat thermal IR channel hyperspectral "image cube" #12;Raw intensities · Pros

  14. Conventional sample enrichment strategies combined with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance analysis allows analyte identification from a single minuscule Corydalis solida plant tuber.

    PubMed

    Sturm, Sonja; Seger, Christoph; Godejohann, Markus; Spraul, Manfred; Stuppner, Hermann

    2007-09-01

    Identification of putative biomarker molecules within the genus Corydalis (Papaveraceae) was pursued by combining conventional off-line sample enrichment with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR) based structure elucidation. Off-line reversed phase solid phase extraction (SPE) was used to enrich the desired analytes from a methanolic extract (93 mg dry weight) of a miniscule single tuber (233 mg dry weight) of C. solida. An aliquot of the SPE fraction (2.1 mg) was subjected to separation in the HPLC-SPE-NMR hyphenation. Chromatographic peaks bearing the metabolites under investigation were trapped in the SPE device in a single experiment and transferred to a 600 MHz NMR spectrometer equipped with a 30 microl cryofit insert fed into a 3 mm cryoprobe. Recorded homo- and heteronuclear 1D and 2D NMR data allowed the identification of the three analytes under investigation as protopine, allocryptopine, and N-methyl-laudanidinium acetate. The latter is a rare alkaloid, which has been isolated only once before. PMID:17628575

  15. Molecular resonance phenomena. [Calculation of resonance widths

    SciTech Connect

    Hazi, A.U.

    1980-01-01

    It is attempted to show that the Stieltjes-moment-theory provides a practical and a reasonably accurate method for calculating the widths of molecular resonances. The method seems to possess a number of advantages for molecular applications, since it avoids the explicit construction of continuum wavefunctions. It is very simple to implement the technique numerically, because it requires only existing bound-state electronic structure codes. Through the use of configuration interaction techniques, many-electron correlation and polarization effects can be included in the description of both the resonance and the non-resonant background continuum. To illustrate the utility and the accuracy of the Stieltjes-moment-theory technique, used in conjunction with configuration interaction (CI) wave functions, recent applications to the /sup 1/..sigma../sub u/(1sigma/sub u/ 2sigma/sub g/) autoionizing resonance state of H/sub 2/ and the well known /sup 2/PI/sub g/ state of N/sub 2//sup -/ are discussed. The choices of the one-electron basis sets and the types of many-electron configurations appropriate for these two cases are described. Also, guidelines for the selection of the projection operators defining the resonant and non-resonant subspaces in the case of both Feshbach and shape-resonances are given. The numerical results indicate that the Stieltjes-moment-theory technique, which employs L/sup 2/ basis functions exclusively, produces as accurate resonance parameters as can be extracted from direct electron-molecule scattering calculations, provided approximately the same approximations are used to describe important physical effects such as target polarization. Furthermore the method provides sufficiently accurate fixed-nuclei electronic resonance parameters to be used in ab initio calculation of resonant vibrational excitation cross sections. (WHK)

  16. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H.

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  17. Extraction of Overt Verbal Response from the Acoustic Noise in a Functional Magnetic Resonance Imaging Scan by Use of Segmented Active Noise Cancellation

    PubMed Central

    Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.

    2013-01-01

    A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385

  18. A derivatization strategy for the detection and identification of volatile trialkylphosphites using liquid chromatography-online solid phase extraction and offline nuclear magnetic resonance spectroscopy.

    PubMed

    Mazumder, Avik; Gutch, Pranav K; Dubey, Devendra K

    2015-05-01

    We demonstrate herein the application of selective derivatization method that converts volatile and labile trialkylphosphites (TAPs) into virtually non-volatile, thermally stable, and UV absorbing derivatives. After simple sample preparation, purification/enrichment of the derivatives was achieved by using high performance liquid chromatography (HPLC) coupled to on-line post column solid phase extraction (SPE) system. These derivatives were subjected to (31)P{(1)H} NMR and 1D-selTOCSY experiments. Conclusive identification was achieved on the basis of their HPLC retention time and NMR spectral signatures ( [Formula: see text] , (n)JH-H, and (3)JP-H). This method was tested for the unambiguous identification of a mixture containing low concentrations (?10?gmL(-1)) of trimethylphosphite (TMP), triethylphosphite (TEP), triisopropylphosphite (TIP), and tributylphosphite (TBP) along with a high concentration of irrelevant background chemicals. It offered a high dynamic range and good detection limit and recovery (>75%) without the need for special NMR probe heads or exotic NMR experiments. PMID:25840658

  19. Object extraction Object extraction

    E-print Network

    Giger, Christine

    ("house", "lake") · usually solved jointly as detection: identify all objects of a certain class · object methods · for well-defined corners ­ least-squares matching pixel ­ human (stereoscopic) >0.3 pixel ­ least-squares matching pixel ­ human (stereoscopic) >0.3 pixel #12;Semi-automatic extraction

  20. Experimental investigations of toric resonators

    NASA Astrophysics Data System (ADS)

    Du, Keming; Flieger, Ranier; Loosen, Peter

    1993-08-01

    There is much work devoted to the design of new resonator configurations which could optimize efficiency of energy extraction and beam quality of high-power lasers with large- volume gain media. In general, operation with stable resonators at high beam quality limits filling of the gain volume and leads to a reduced efficiency. Unstable resonators exhibit large modal volume and excellent transverse mode discrimination. These are of primary concern in high-power laser systems. Output beams from unstable resonators with spheric mirrors have an annular intensity profile. Beam quality as well as the outcoupling increase as magnification increases. If the gain is not sufficiently high, the increase in the outcoupling reduces laser efficiency. From this it turns out, that in general the maximum beam quality and the maximum efficiency cannot be reached at the same time. This limits the use of these unstable resonators in lasers with low or medium gain. The problem can be overcome using the toric resonators. The beam quality of toric resonators is higher than in the case of unstable resonators with spheric mirrors and is not influenced by the magnification. Therefore, in the case of toric resonators the outcoupling can be matched to the gain in order to optimize the efficiency of energy extraction at high beam quality. Following theoretical analyses and design considerations, different configurations of toric unstable resonators were established for a fast axial flow CO2 laser with two rf-discharge tubes. The efficiency, the beam quality and the alignment sensitivity of toric resonators with different configurations were studied.

  1. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  2. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  3. Quantitative metamaterial property extraction

    E-print Network

    Schurig, David

    2015-01-01

    We examine an extraction model for metamaterials, not previously reported, that gives precise, quantitative and causal representation of S parameter data over a broad frequency range, up to frequencies where the free space wavelength is only a modest factor larger than the unit cell dimension. The model is comprised of superposed, slab shaped response regions of finite thickness, one for each observed resonance. The resonance dispersion is Lorentzian and thus strictly causal. This new model is compared with previous models for correctness likelihood, including an appropriate Occam's factor for each fit parameter. We find that this new model is by far the most likely to be correct in a Bayesian analysis of model fits to S parameter simulation data for several classic metamaterial unit cells.

  4. Magnetic Resonance

    Cancer.gov

    Focus Group on Magnetic Resonance Spectroscopy (MRS) in Clinical Oncology(April 1999) To explore the technical requirements for MRS and the application of hydrogen and multinuclear spectroscopy for tumor response to therapy.

  5. Fluid extraction

    DOEpatents

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  6. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  7. Extractant composition

    DOEpatents

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1990-01-01

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  8. Extractable resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of information from space systems in the operation of extractive industries, particularly in exploration for mineral and fuel resources was reviewed. Conclusions and recommendations reported are based on the fundamental premise that survival of modern industrial society requires a continuing secure flow of resources for energy, construction and manufacturing, and for use as plant foods.

  9. Resonances in pi-K scattering

    SciTech Connect

    Wilson, David J.

    2014-06-23

    We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).

  10. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  11. Contrasting Extraction Types.

    ERIC Educational Resources Information Center

    Postal, Paul M.

    1994-01-01

    This paper grounds a novel typology yielding three major types of English (L(eft)-extraction, defined by their relationship to resumptive pronouns (RPs): (1) B-extractions, which require RPs in their extraction sites, (2) A1-extractions, which allow RPs in their extraction sites, and (3) A2-extractions, which forbid RPs in their extraction sites.…

  12. Detection of kestoses and kestose-related oligosaccharides in extracts of Festuca arundinacea, Dactylis glomerate L. , and Asparagus officinalis L. root cultures and invertase by sup 13 C and sup 1 H nuclear magnetic resonance spectroscopy

    SciTech Connect

    Forsythe, K.L.; Feather, M.S.; Gracz, H.; Wong, T.C. )

    1990-04-01

    Previous studies show that {sup 13}C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis gomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose.

  13. Extractant composition

    SciTech Connect

    Smith, B.F.; Jarvihen, G.D.; Ryan, R.R.

    1990-05-08

    This patent describes an organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. It comprises: primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoly-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  14. High-Field Electron Paramagnetic Resonance and Density Functional Theory Study of Stable Organic Radicals in Lignin: Influence of the Extraction Process, Botanical Origin, and Protonation Reactions on the Radical g Tensor.

    PubMed

    Bährle, Christian; Nick, Thomas U; Bennati, Marina; Jeschke, Gunnar; Vogel, Frédéric

    2015-06-18

    The radical concentrations and g factors of stable organic radicals in different lignin preparations were determined by X-band EPR at 9 GHz. We observed that the g factors of these radicals are largely determined by the extraction process and not by the botanical origin of the lignin. The parameter mostly influencing the g factor is the pH value during lignin extraction. This effect was studied in depth using high-field EPR spectroscopy at 263 GHz. We were able to determine the gxx, gyy, and gzz components of the g tensor of the stable organic radicals in lignin. With the enhanced resolution of high-field EPR, distinct radical species could be found in this complex polymer. The radical species are assigned to substituted o-semiquinone radicals and can exist in different protonation states SH3+, SH2, SH1-, and S2-. The proposed model structures are supported by DFT calculations. The g principal values of the proposed structure were all in reasonable agreement with the experiments. PMID:25978006

  15. Neutron Skin and Giant Resonances in Nuclei

    E-print Network

    Vadim Rodin

    2007-04-02

    Some aspects, both experimental and theoretical, of extracting the neutron skin $\\Delta R$ from properties of isovector giant resonances are discussed. Existing proposals are critically reviewed. The method relying on the energy difference between the GTR and IAS is shown to lack sensitivity to $\\Delta R$. A simple explanation of the linear relation between the symmetry energy and the neutron skin is also given.

  16. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  17. Determination of Delta resonance parameters from lattice QCD

    E-print Network

    C. Alexandrou; J. W. Negele; M. Petschlies; A. Strelchenko; A. Tsapalis

    2013-05-27

    A method suitable for extracting resonance parameters of unstable baryons in lattice QCD is examined. The method is applied to the strong decay of the Delta to a pion-nucleon state, extracting the pion-nucleon - Delta coupling constant and Delta decay width.

  18. Apparatus for hydrocarbon extraction

    DOEpatents

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  19. Resonant cortical dynamics of speech perception

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen

    2003-04-01

    What is the neural representation of a speech code as it evolves in time? How do listeners integrate temporally distributed phonemic information into coherent representations of syllables and words? How does the brain extract invariant properties of variable-rate speech? This talk describes a neural model that suggests answers to these questions, while quantitatively simulating speech and word recognition data. The conscious speech and word recognition code is suggested to be a resonant wave, and a percept of silence a temporal discontinuity in the rate that resonance evolves. A resonant wave emerges when sequential activation and storage of phonemic items in working memory provides bottom-up input to list chunks that group together sequences of items of variable length. The list chunks compete and winning chunks activate top-down expectations that amplify and focus attention on consistent working memory items, while suppressing inconsistent ones. The ensuing resonance boosts activation levels of selected items and chunks. Because resonance occurs after working memory activation, it can incorporate information presented after intervening silence intervals, so future sounds can influence how we hear past sounds. The model suggests that resonant dynamics enable the brain to learn quickly without suffering catastrophic forgetting, as described within Adaptive Resonance Theory.

  20. Grape Seed Extract

    MedlinePLUS

    ... Read our disclaimer about external links Menu Grape Seed Extract Common Name: grape seed extract Latin Name: Vitis vinifera On this page: ... This fact sheet provides basic information about grape seed extract—common names, what the science says, potential ...

  1. Analysis and calibration techniques for superconducting resonators.

    PubMed

    Cataldo, Giuseppe; Wollack, Edward J; Barrentine, Emily M; Brown, Ari D; Moseley, S Harvey; U-Yen, Kongpop

    2015-01-01

    A method is proposed and experimentally explored for in-situ calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response is analyzed in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microstrip and coplanar-waveguide resonator devices were investigated and a recovery within 1% of the observed complex transmission amplitude was achieved with both analysis approaches. The experimental configuration used in microwave characterization of the devices and self-consistent constraints for the electromagnetic constitutive relations for parameter extraction are also presented. PMID:25638068

  2. Photoacoustic resonance spectroscopy for biological tissue characterization

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-06-01

    By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.

  3. Photoacoustic resonance spectroscopy for biological tissue characterization.

    PubMed

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-06-01

    By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues. PMID:24928154

  4. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  5. Resonances in barred galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, D.; Klypin, A.

    2007-08-01

    The inner parts of many spiral galaxies are dominated by bars. These are strong non-axisymmetric features which significantly affect orbits of stars and dark matter particles. One of the main effects is the dynamical resonances between galactic material and the bar. We detect and characterize these resonances in N-body models of barred galaxies by measuring angular and radial frequencies of individual orbits. We found narrow peaks in the distribution of orbital frequencies with each peak corresponding to a specific resonance. We found five different resonances in the stellar disc and two in the dark matter. The corotation resonance (CR) and the inner and outer Lindblad resonances are the most populated. The spatial distributions of particles near resonances are wide. For example, the inner Lindblad resonance is not localized at a given radius. Particles near this resonance are mainly distributed along the bar and span a wide range of radii. On the other hand, particles near the CR are distributed in two broad areas around the two stable Lagrange points. The distribution resembles a wide ring at the corotation radius. Resonances capture disc and halo material in near-resonant orbits. Our analysis of orbits in both N-body simulations and simple analytical models indicates that resonances tend to prevent the dynamical evolution of this trapped material. Only if the bar evolves as a whole, resonances drift through the phase space. In this case particles anchored near resonant orbits track the resonance shift and evolve. The criteria to ensure a correct resonant behaviour discussed by Weinberg and Katz can be achieved with few millions particles because the regions of trapped orbits near resonances are large and evolving.

  6. Crossing simple resonances

    SciTech Connect

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  7. Magnetic Resonance Imaging (MRI)

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Magnetic Resonance Imaging (MRI) KidsHealth > Teens > Cancer Center > Diagnostic Tests > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ...

  8. MRI (Magnetic Resonance Imaging)

    MedlinePLUS

    ... Radiation-Emitting Products and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More ... MB) Also available in Other Language versions . Description Magnetic resonance imaging (MRI) is a medical imaging procedure ...

  9. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  10. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  11. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

    E-print Network

    Crofts, Antony R.

    CHAPTER 3 ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 1 Sergei A. Dikanov and 2 Antony R. Crofts 1 for the investigation of unpaired electron spins. Two terms are used in the literature: electron paramagnetic resonance (EPR) and electron spin resonance (ESR). We will use the first term in this chapter. During the sixty

  12. Ovenized microelectromechanical system (MEMS) resonator

    DOEpatents

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  13. Chaotic spectra: How to extract dynamic information

    SciTech Connect

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H/sub 3//sup +/. Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs.

  14. Acoustic wave flow sensor using quartz thickness shear mode resonator.

    PubMed

    Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming

    2009-09-01

    A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997

  15. Probabilistic interpretation of compositeness relation for resonances

    E-print Network

    Zhi-Hui Guo; J. A. Oller

    2015-08-26

    Bound, antibound and resonances states are associated to poles in the on-shell partial wave amplitudes. We show here that from the residues of the pole a rank 1 projection operator associated with any of these states can be extracted, in terms of which a sum rule related to the composition of the state can be derived. Although typically it involves complex coefficients for the compositeness and elementariness, except for the bound state case, we demonstrate that one can formulate a meaningful compositeness relation with only positive coefficients for resonances whose associated Laurent series in the variable $s$ converges in a region of the physical axis around its squared mass. We apply this formalism to study the two-body components of several resonances of interest.

  16. Extraction of carboxylic acids by amine extractants

    SciTech Connect

    Tamada, Janet Ayako; King, C.J.

    1989-01-01

    This work examines the chemistry of solvent extraction by long-chain amines for recovery of carboxylic acids from dilute aqueous solution. Long-chain amines act as complexing agents with the acid, which facilitates distribution of the acid into the organic phase. The complexation is reversible, allowing for recovery of the acid from the organic phase and regeneration of the extractant. Batch extraction experiments were performed to study the complexation of acetic, lactic, succinic, malonic, fumaric, and maleic acids with Alamine 336, an aliphatic, tertiary amine extractant, dissolved in various diluents. Results were interpreted by a ''chemical'' model, in which stoichiometric ratios of acid and amine molecules are assumed to form complexes in the solvent phase. From fitting of the extraction data, the stoichiometry of complexes formed and the corresponding equilibrium constants were obtained. The results of the model were combined with infrared spectroscopic experiments and results of past studies to analyze the chemical interactions that are responsible for extraction behavior. The information from the equilibrium studies was used to develop guidelines for large-scale staged extraction and regeneration schemes. A novel scheme, in which the diluent composition is shifted between extraction and regeneration, was developed which could achieve both high solute recovery and high product concentration. 169 refs., 57 figs., 15 tabs.

  17. Low-Lying "Pygmy" Dipole Resonances and Strength Functions

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Goddard, P. M.; Ilieva, R. S.; Humby, P.; Pietralla, N.

    2015-10-01

    Recent investigations into dipole resonances below the neutron separation threshold have focused on characterizing the properties of the so-called Pygmy Dipole Resonance. The amount of extra PDR strength on top of a GDR tail depends largely on the choice, or the method of extraction of photon strength functions. Whereas most experimental searches for the PDR were performed on spherical nuclei, the present work focuses on recent experiments on 76Se and 76Ge, on the virge of deformation.

  18. A proton nuclear magnetic resonance study of sulfmyoglobin cyanide.

    PubMed

    Magliozzo, R S; Peisach, J

    1986-07-25

    The proton nuclear magnetic resonance spectrum of sulfmyoglobin cyanide was studied at 400 MHz. The position of a methyl-group resonance at low field is consistent with a chlorin-like structure for the prosthetic group. The proton NMR spectrum of the cyanide derivative of the purified prosthetic group which decomposes upon extraction from the protein was found to be the same as that of the cyanide derivative of the prosthetic group extracted from myoglobin and a sample prepared from hemin-Cl. PMID:3730393

  19. Tunability of aluminum nitride acoustic resonators: a phenomenological approach.

    PubMed

    Defay, Emmanuel; Ben Hassine, Nizar; Emery, Patrick; Parat, Guy; Abergel, Julie; Devos, Arnaud

    2011-12-01

    A phenomenological approach is developed to identify the physical parameters causing the dc-voltage-induced tunability of aluminum nitride (AlN) acoustic resonators, widely used for RF filters. The typical resonance frequency of these resonators varies from 2.038 GHz at -200 V to 2.062 GHz at +200 V. This indicates, based on these RF measurements versus dc bias and the model used, that the AlN stiffness variation versus dc bias is the prominent effect because both resonance and antiresonance experience a similar variation, respectively, 24 MHz and 19 MHz at 400 V. Picosecond ultrasonics were also used to prove independently that the acoustic velocity (and therefore AlN stiffness) is sensitive to dc bias and that the variation induced is comparable to that extracted from the resonance measurements. It turned out that the stiffness relative variation for an electric field of 1 V/?m extracted from picosecond ultrasonics is 54 ppm-?m/V. This is in good agreement with the value extracted from the RF measurements, namely 57.2 ppm-?m/V. The overall tunability of these AlN resonators reaches 1.1%, which is an interesting figure, although probably not high enough for genuine applications. PMID:23443687

  20. White Light Emission from Vegetable Extracts

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Mishra, Ashok K.

    2015-06-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380?nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.

  1. Geometric Model Extraction from Magnetic Resonance Volume Data

    E-print Network

    smaller and taken a lot longer. Thanks to Jose Jimenez for the late­night MR sessions and to Dr. Brian to my wife, Barbara Meier, for the moral and emotional support that helped me make it through this long

  2. Geometric Model Extraction from Magnetic Resonance Volume Data

    E-print Network

    Laidlaw, David

    smaller and taken a lot longer. Thanks to Jose Jimenez for the late-night MR sessions and to Dr. Brian to my wife, Barbara Meier, for the moral and emotional support that helped me make it through this long

  3. Grape Seed Extract

    MedlinePLUS

    ... Extract Common Name: grape seed extract Latin Name: Vitis vinifera grapes.jpg © Steven Foster On this page: What ... naturaldatabase.com on June 25, 2009. Grape seed ( Vitis vinifera, Vitis coignetiae ). Natural Standard Database Web site. Accessed ...

  4. On the extraction of electromagnetic properties of the Delta(1232) excitation from pion photoproduction

    E-print Network

    Th. Wilbois; P. Wilhelm; H. Arenhoevel

    1997-08-05

    Several methods for the treatment of pion photoproduction in the region of the Delta(1232) resonance are discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we try to relate the various values for the ratio R_{EM} of the E2 to M1 multipole excitation strengths for the Delta(1232) resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due to some phenomenological contributions entering the models.

  5. Method of infusion extraction

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1989-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  6. Thermoacoustic resonance effect and circuit modelling of biological tissue

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zheng, Yuanjin; Feng, Xiaohua; Ohl, Claus-Dieter

    2013-02-01

    In this letter, thermoacoustic resonance effect is predicted from theoretical analysis with series resistor-inductor-capacitor resonance circuit model and then observed experimentally using muscle tissue illuminated by multi-pulse microwave source. Through model fitting, the circuit parameters are extracted to characterize quantitatively the resonant response of the tissue. Coherent demodulation is applied to obtain the enhanced signal-to-noise ratio and spatial information by treating tissue as a communication channel. This physical phenomenon shows significantly higher sensitivity than conventional single microwave pulse induced thermoacoustic effect, enabling the potential design of low-power thermoacoustic imaging device for portable and on-site diagnosis.

  7. Information extraction system

    DOEpatents

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  8. Unfolding the Second Riemann sheet with Pade Approximants: hunting resonance poles

    SciTech Connect

    Masjuan, Pere

    2011-05-23

    Based on Pade Theory, a new procedure for extracting the pole mass and width of resonances is proposed. The method is systematic and provides a model-independent treatment for the prediction and the errors of the approximation.

  9. Thermal Resonance Fusion

    E-print Network

    Bao-Guo Dong

    2015-07-07

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at different resonance energy given by the WKB method is shown that indicates the thermal resonance fusion mode, especially combined with the tunnel effect, is possible and feasible. But the penetrating probability decreases very sharply when the input resonance energy decreases less than 3 keV, so for thermal resonance fusion, the key point is to increase the resonance peak or make the resonance sharp enough to the acceptable energy level by the suitable compound catalysts, and it is better to reach up more than 3 keV to make the penetrating probability larger than 10^{-10}.

  10. P11 Resonances with Dubna-Mainz-Taipei dynamical model for ?N scattering and pion electromagnetic production

    NASA Astrophysics Data System (ADS)

    Yang, Shin Nan; Kamalov, S. S.; Tiator, L.

    2012-04-01

    We present the results on P11 resonances obtained with Dubna-Mainz-Taipei (DMT) dynamical model for pion-nucleon scattering and pion electromagnetic production. The extracted values agree well, in general, with PDG values. One pole is found corresponding to the Roper resonance and two more resonances are definitely needed in DMT model. We further find indication for a narrow P11 resonance at around 1700 MeV with a width ~ 50 MeV in both ?N and ?? reactions.

  11. Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy

    E-print Network

    successfully to determine the elastic properties of single crystals and homogeneous samples. In this paper, weDetermination of elastic moduli of rock samples using resonant ultrasound spectroscopy TJ Ulrich the elastic tensor of a sample is extracted from a set of measured resonance frequencies. RUS has been used

  12. The resonator handbook

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Zhou, Shiliang

    1993-01-01

    The purpose of this work is to extend resonator theory into the region in which the planar mirror is quite small. Results of the theoretical description are then extended to resonator design and experimental arrangements as discussed in further sections of this work. Finally, a discussion of dielectric measurements for small samples is included as a specific application of this work.

  13. The Concept of Resonance

    ERIC Educational Resources Information Center

    Truhlar, Donald G.

    2007-01-01

    A general example of a delocalization system associated with a higher energy than the localized one, which suggests that it is wrong to consider delocalization as equivalent to resonance stabilization, is presented. The meaning of resonance energy as it appears in valence bond theory is described as the lowering of the calculated ground-state…

  14. Helioseismology The Resonant Sun

    E-print Network

    Helioseismology The Resonant Sun Professor Bill Chaplin, School of Physics & Astronomy University Eddington #12;The Unseen Interior ''At first sight it would seem that the deep interior of the sun and stars;Overview What are resonant oscillations of the Sun? How do we observe the oscillations? What can we learn

  15. Efficient utilization of licorice root by alkaline extraction.

    PubMed

    Ohno, Hirokazu; Miyoshi, Shozo; Araho, Daisuke; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Tsuda, Tadashi; Sunaga, Katsuyoshi; Amano, Shigeru; Ohkoshi, Emika; Sakagami, Hiroshi; Satoh, Kazue; Yamamoto, Masaji

    2014-01-01

    Compared to studies of water extracts of plants, those utilising alkaline extracts are limited. Both water and alkaline extracts from licorice root were compared regarding their biological activities. Licorice root was successively extracted first with water or alkaline solution (pH 9 or 12), and the alkaline (pH 12.0) extract was further separated into 50% ethanol-soluble and -insoluble fractions. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Antibacterial activity against Porphyromonas gingivalis 381 was determined by turbidity assay. Cytochrome P-450 (CYP)3A4 activity was measured by ?-hydroxylation of testosterone using human recombinant CYP3A4. Radical intensity of superoxide and hydroxyl radicals was determined by electron spin resonance spectroscopy. Alkaline extraction yielded slightly higher amounts of dried materials compared to water extraction. Alkaline extract showed higher anti-HIV and antibacterial activities, and similar magnitudes of CYP3A4 inhibitory and superoxide and hydroxyl radical-scavenging activities, compared to water extract. When alkaline extract was fractionated by 50% ethanol, anti-HIV activity was recovered from the insoluble fraction representing approximately 3% of the alkaline extract, whereas antibacterial activity was concentrated in the soluble fraction rich in glycyrrhizid acid, flavanones and chalcones. All extracts and sub-fractions led to bimodal hormetic dose-response (maximum hormetic response=238%) on the bacterial growth. The present study demonstrated the superiority of alkaline extraction over water extraction for preparing anti-HIV and antibacterial agents at higher yield from licorice root. PMID:25189890

  16. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  17. Neutrino Production of Resonances

    E-print Network

    Paschos, E A; Yu, J Y; Paschos, Emmanuel A.; Sakuda, Makoto; Yu, Ji--Young

    2004-01-01

    We take a fresh look at the analysis of resonance production by neutrinos. We consider three resonances $P_{33}, P_{11}$ and $S_{11}$ with a detailed discussion of their form factors. The article presents results for free proton and neutron targets and discusses the corrections which appear on nuclear targets. The Pauli suppression factor is derived in the Fermi gas model and shown to apply to resonance production. The importance of the various resonances is demonstrated with numerical calculations. The $\\Delta$-resonance is described by two formfactors and its differential cross sections are compared with experimental data. The article is self-contained and could be helpful to readers who wish to reproduce and use these cross sections.

  18. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  19. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng (Knoxville, TN); Young, Sr., Robert W. (Oak Ridge, TN); Chen, Daoshen (Knoxville, TN); Scudiere, Matthew B. (Oak Ridge, TN); Ott, Jr., George W. (Knoxville, TN); White, Clifford P. (Knoxville, TN); McKeever, John W. (Oak Ridge, TN)

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  20. Neutral Pion Electroproduction in the Delta Resonance Region

    SciTech Connect

    Anthony Villano

    2007-11-01

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Delta(1232) resonance via exclusive pseudoscalar meson production of À0 particles. Differential cross sections are extracted for exclusive À0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Delta(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Delta region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G#23;M is extracted along with the scalar to magnetic dipole ratio C2/M1.

  1. Neutral pion electroproduction in the Delta resonance region

    NASA Astrophysics Data System (ADS)

    Villano, Anthony Nicholas

    The electroproduction of baryon resonances at high Q2 is examined. Analysis focuses on the Delta(1232) resonance via exclusive pseudoscalar meson production of pi0 particles. Differential cross sections are extracted for exclusive pi 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Delta(1232) resonance. The transition to pQCD is discussed in terms of E2/ M1 and other multipoles. The helicity amplitude A32 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Delta region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor G*M is extracted along with the scalar to magnetic dipole ratio C2/M1.

  2. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  3. Thesis: COLD TESTING OF A RADIAL EXTRACTION OUTPUT CAVITY FOR A

    E-print Network

    Anlage, Steven

    ABSTRACT Thesis: COLD TESTING OF A RADIAL EXTRACTION OUTPUT CAVITY FOR A FREQUENCY DOUBLING, optimization, cold test methodology and performance data of a proposed radial extraction output cavity in which accelerator structure. Cold #12;test results show that this new cavity, which has a Q of 458 and a resonant

  4. Extraction of zirconium(IV) from aqueous acid solutions by trioctylphosphine oxide

    SciTech Connect

    Sato, T.

    1983-01-01

    The extraction of zirconium(IV) from aqueous solutions of hydrochloric, nitric and sulphuric acids by trioctylphosphine oxide (TOPO) in kerosene has been investigated under different conditions. The organic phases have been studied by infrared and nuclear magnetic resonance spectroscopies. The extraction equilibria are discussed in light of the results obtained. 7 figures, 2 tables.

  5. Resonant elements contactless coupled to bolometric micro-stripes

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; Silva-López, Manuel; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, José M.; González, Francisco J.; Alda, Javier

    2015-08-01

    One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.

  6. Coronary Sinus Lead Extraction.

    PubMed

    Cronin, Edmond M; Wilkoff, Bruce L

    2015-12-01

    Expanded indications for cardiac resynchronization therapy and the increasing incidence of cardiac implantable electronic device infection have led to an increased need for coronary sinus (CS) lead extraction. The CS presents unique anatomical obstacles to successful lead extraction. Training and facility requirements for CS lead extraction should mirror those for other leads. Here we review the indications, technique, and results of CS lead extraction. Published success rates and complications are similar to those reported for other leads, although multiple techniques may be required. Re-implantation options may be limited, which should be incorporated into pre-procedural decision making. PMID:26596810

  7. LABCOM resonator Phase 3

    SciTech Connect

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  8. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K. (Kensington, CA); Jensen, Kenneth J. (Berkeley, CA); Girit, Caglar (Albany, CA); Mickelson, William E. (San Francisco, CA); Grossman, Jeffrey C. (Berkeley, CA)

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  9. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  10. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  11. Perspective on resonances of metamaterials.

    PubMed

    Min, Li; Huang, Lirong

    2015-07-27

    Electromagnetic resonance as the most important characteristic of metamaterials enables lots of exotic phenomena, such as invisible, negative refraction, man-made magnetism, etc. Conventional LC-resonance circuit model as the most authoritative and classic model is good at explaining and predicting the fundamental resonance wavelength of a metamaterial, while feels hard for high-order resonances, especially for resonance intensity (strength of resonance, determining on the performance and efficiency of metamaterial-based devices). In present work, via an easy-to-understand mass-spring model, we present a different and comprehensive insight for the resonance mechanism of metamaterials, through which both the resonance wavelengths (including the fundamental and high-order resonance wavelengths) and resonance intensities of metamaterials can be better understood. This developed theory has been well verified by different-material and different-structure resonators. This perspective will provide a broader space for exploring novel optical devices based on metamaterials (or metasurfaces). PMID:26367565

  12. Extensive screening for herbal extracts with potent antioxidant properties.

    PubMed

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O(2) (•-)) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O(2) (•-) was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O(2) (•-). They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical ((•)OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H(2)O(2) induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge (•)OH. Furthermore, the scavenging activities against O(2) (•-) and (•)OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant.The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  13. Extensive screening for herbal extracts with potent antioxidant properties

    PubMed Central

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•?) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•? was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•?. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•? and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  14. The market for magnetic resonance spectroscopy

    SciTech Connect

    Carlson, L.

    1990-01-01

    The medical market is, at present, the most dominant market for low T{sub c} superconductors. Indeed, without magnetic resonance imaging (MRI), there would hardly be a low T{sub c} superconductor market at all. According to the author, any development that can expand the medical market for MRI machines would be a welcome one. This paper reports how the recent advances in magnetic resonance spectroscopy (MRS) are such a development. While the principle of MRS has bee around as long as MRI, only recently have advances in technique, computer programming and magnet technology allowed MRS to advance to a point where it may become an important technology-one that could increase the medical market for superconductors. The author discussed how MRS can be used to analyze oil core samples for their oil content, oil/water ratios, how the oil is bound and how to extract it.

  15. Resonance decay effects on anisotropy parameters

    E-print Network

    X. Dong; S. Esumi; P. Sorensen; N. Xu; Z. Xu

    2004-07-19

    We present the elliptic flow $v_2$ of pions produced from resonance decays. The transverse momentum $p_T$ spectra of the parent particles are taken from thermal model fits and their $v_2$ are fit under the assumption that they follow number-of-constituent-quark (NCQ) scaling expected from quark-coalescence models. The $v_2$ of pions from resonance particle decays is found to be similar to the measured pion $v_2$. We also propose the measurement of electron $v_2$ as a means to extract open-charm $v_2$ and investigate whether a thermalized system of quarks and gluons (a quark-gluon plasma) is created in collisions of Au nuclei at RHIC.

  16. Hunting resonance poles with Rational Approximants

    E-print Network

    Pere Masjuan

    2010-12-13

    Based on the mathematically well defined Pad\\'e Theory, a theoretically safe new procedure for the extraction of the pole mass and width of resonances is proposed. In particular, thanks to the Montessus de Ballore's theorem we are able to unfold the Second Riemann sheet of an amplitude to search the position of the resonant pole in the complex plane. The method is systematic and provides a model-independent treatment of the prediction and the corresponding errors of the approximation. This letter partially covers the material presented by the author at the 15th International QCD Conference: QCD 10 (25th anniversary), Montpellier, France, 28 Jun - 3 Jul 2010 and at the Quark Confinement and the Hadron Spectrum IX, 30 August - 3 September 2010, Madrid, Spain.

  17. Differential phase surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Ho, Ho Pui; Wu, Shu Yuen; Lin, Chinlon

    2005-01-01

    An optical differential phase surface plasmon resonance (SPR) technique capable of performing refractive index measurement with accuracy in the order of 5 x 10-8 is presented. The system makes use of the s-polarization as the reference beam to interfere with the p-polarization, of which the phase has close relationship with the change of surface plasmon resonance conditions at the sensor surface. The extraction of phase information is achieved by performing fringe analysis on the interference pattern captured by a digital oscilloscope. Results obtained from monitoring BSA (Bovine Serum Albumin) binding reaction with BSA antibodies demonstrated that our setup has a sensitivity limit of 7.4 ng ml-1.

  18. Plasmon Resonance in Multilayer Graphene Nanoribbons

    E-print Network

    Emani, Naresh Kumar; Chung, Ting-Fung; Prokopeva, Ludmila J; Kildishev, Alexander V; Shalaev, Vladimir M; Chen, Yong P; Boltasseva, Alexandra

    2015-01-01

    Plasmon resonance in nanopatterned single layer graphene nanoribbon (SL-GNR), double layer graphene nanoribbon (DL-GNR) and triple layer graphene nanoribbon (TL-GNR) structures is studied both experimentally and by numerical simulations. We use 'realistic' graphene samples in our experiments to identify the key bottle necks in both experiments and theoretical models. The existence of electrical tunable plasmons in such stacked multilayer GNRs was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNR when compared to SL-GNRs. However, we do not find a further such increase in TL-GNRs compared to DL-GNRs. We carried out systematic full wave simulations using finite element technique to validate and fit experimental results, and extract the carrier scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for unpatterned SLG sheet, and a qualitative agreement for patterned graphene sheet. W...

  19. Time scales in nuclear giant resonances

    E-print Network

    WD Heiss; RG Nazmitdinov; FD Smit

    2009-12-18

    We propose a general approach to characterise fluctuations of measured cross sections of nuclear giant resonances. Simulated cross sections are obtained from a particular, yet representative self-energy which contains all information about fragmentations. Using a wavelet analysis, we demonstrate the extraction of time scales of cascading decays into configurations of different complexity of the resonance. We argue that the spreading widths of collective excitations in nuclei are determined by the number of fragmentations as seen in the power spectrum. An analytic treatment of the wavelet analysis using a Fourier expansion of the cross section confirms this principle. A simple rule for the relative life times of states associated with hierarchies of different complexity is given.

  20. Quantum Phase Extraction in Isospectral Electronic Nanostructures

    SciTech Connect

    Moon, Christopher

    2010-04-28

    Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

  1. Evaluations of Resonance Parameters and Resonance Integral of Tungsten

    NASA Astrophysics Data System (ADS)

    Moinul Haque Meaze, A. K. M.

    2007-03-01

    I present evaluated values of resonance parameters and resonance integral for natural tungsten on the basis of experimental transmissions data obtained at the Pohang Neutron Facility (PNF), Republic of Korea. Resonance parameters were obtained by using the Bayesian code SAMMY. The output values of SAMMY were used to evaluate the resonance integral for the capture cross-section.

  2. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  3. Resonances in QCD

    E-print Network

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  4. Resonances in QCD

    E-print Network

    Matthias F. M. Lutz; Jens Sören Lange; Michael Pennington; Diego Bettoni; Nora Brambilla; Volker Crede; Simon Eidelman; Albrecht Gillitzer; Wolfgang Gradl; Christian B. Lang; Volker Metag; Juan Nieves; Sebastian Neubert; Makoto Oka; Steve L. Olsen; Marco Pappagallo; Stephan Paul; Marc Pelizäus; Alessandro Pilloni; Elisabetta Prencipe; Jim Ritman; Sinead Ryan; Ulrike Thoma; Ulrich Uwer; Wolfram Weise

    2015-11-30

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  5. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert (Santa Fe, NM)

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  6. Chemical resonant sensors

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter R.

    1993-03-01

    Resonant sensors designed to have a mechanical resonance frequency are a subject of special practical interest. They are sensors with outputs based on a quasi-digital frequency signal which is a great advantage over conventional analog sensors. Micromachined mechanical resonant sensors can be used to replace conventional piezoresistors in precision sensor applications such as pressure sensors and accelerometers. For the detecting of chemical species, only a part of known resonant sensor principles can be used for practical aims. Ultrasonic sensors can be classified in this category. They include BAW-, SAW-, APM-, and FPW-sensors. The theoretical concepts for their behavior and the advantages and disadvantages in comparison with other chemical sensors are discussed. Experimental results with BAW-sensors for gas and under-liquid sensing are given. Finally, the actual situation in research and industrial application of this sensor class is reviewed.

  7. Micro-machined resonator

    DOEpatents

    Godshall, Ned A. (Albuquerque, NM); Koehler, Dale R. (Albuquerque, NM); Liang, Alan Y. (Albuquerque, NM); Smith, Bradley K. (Albuquerque, NM)

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  8. Electrically detected ferromagnetic resonance

    SciTech Connect

    Goennenwein, S. T. B.; Schink, S. W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R. S.; Klapwijk, T. M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M. S.

    2007-04-16

    We study the magnetoresistance properties of thin ferromagnetic CrO{sub 2} and Fe{sub 3}O{sub 4} films under microwave irradiation. Both the sheet resistance {rho} and the Hall voltage V{sub Hall} characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonance (EDFMR) signals closely match the conventional FMR, measured simultaneously, in both resonance fields and line shapes. The sign and the magnitude of the resonant changes {delta}{rho}/{rho} and {delta}V{sub Hall}/V{sub Hall} can be consistently described in terms of a Joule heating effect. Bolometric EDFMR thus is a powerful tool for the investigation of magnetic anisotropy and magnetoresistive phenomena in ferromagnetic micro- or nanostructures.

  9. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We re-examine the problem of calculating the positions and widths of the lowest-lying resonances in the Ps + H scattering system which consists of two electrons, one positron and one proton. The first of these resonances, for L=0, was found by the methods of complex rotation and stabilization, and later described as a Feshbach resonance lying close to a bound state in the closed-channel e (+) + H (-) system. Recently, results for the L=1 and 2 scattering states were published, and it was found, surprisingly, that there is a larae shift in the positions of these resonances. In this work we repeat the analysis for L=1 and find an unexpected explanation for the shift.

  10. Electroproduction of the {Delta}(1232) Resonance at High Momentum Transfer

    SciTech Connect

    Frolov, V.V.; Adams, G.S.; Davidson, R.M.; Klusman, M.; Mukhopadhyay, N.C.; Napolitano, J.; Nozar, M.; Price, J.W.; Stoler, P.; Witkowski, M.; Bosted, P.; Armstrong, C.S.; Meekins, D.; Assamagan, K.; Avery, S.; Baker, O.K.; Eden, T.; Gaskell, D.; Gueye, P.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, G.; Niculescu, I.; Tang, L.; Ahmidouch, A.; Madey, R.; Kim, W.; Baker, O.K.; Burkert, V.; Carlini, R.; Dunne, J.; Ent, R.; Keppel, C.; Mack, D.; Mitchell, J.; Tang, L.; Wood, S.; Koltenuk, D.; Minehart, R.; Mkrtchyan, H.; Tadevosian, V.

    1999-01-01

    We studied the electroproduction of the {Delta}(1232) resonance via the reaction p(e,thinspe{sup {prime}}p){pi}{sup 0} at four-momentum transfers Q{sup 2}=2.8 and 4.0 GeV{sup 2} . This is the highest Q{sup 2} for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for {Delta}{r_arrow}p{pi}{sup 0} were measured over a wide range of barycentric energies covering the resonance. The N{endash}{Delta} transition form factor G{sup {asterisk}}{sub M} and ratios of resonant multipoles E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers. {copyright} {ital 1998} {ital The American Physical Society }

  11. Introduction: quantum resonances Classical and quantum mechanics

    E-print Network

    Ramond, Thierry

    : quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Introduction: quantum resonances Classical and quantum mechanics Microlocal analysis Resonances associated with homoclinic orbits Outline Introduction: quantum resonances Classical and quantum mechanics Microlocal

  12. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  13. Injector with integrated resonator

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier

    2014-07-29

    The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.

  14. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  15. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  16. Hexagonal quartz resonator

    DOEpatents

    Peters, Roswell D. M. (Rustburg, VA)

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  17. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A. (Santa Fe, NM); TenCate, James A. (Los Alamos, NM); Guyer, Robert A. (Amherst, MA); Van Den Abeele, Koen E. A. (Sint-Niklaas, BE)

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  18. Thermal Resonance Fusion

    E-print Network

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...

  19. Anomalous Diffusion Near Resonances

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  20. Hyperbolic Resonances of Metasurface Cavities

    E-print Network

    Keene, David

    2015-01-01

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

  1. Recoil-induced Resonances as All-optical Switches

    NASA Astrophysics Data System (ADS)

    Narducci, F. A.; Desavage, S. A.; Gordon, K. H.; Duncan, D. L.; Welch, G. R.; Davis, J. P.

    2010-03-01

    We have measured recoil-induced resonances (RIR) [1,2] in our system of laser-cooled 85Rb atoms. Although this technique has been demonstrated to be useful for the purpose of extracting the cloud temperature [3], our aim was to demonstrate an all optical switch based on recoil-induced resonances. In addition to a very narrow ``free-space'' recoil-induced resonance of approximately 15 kHz, we also discovered a much broader resonance (˜30 MHz), caused by standing waves established by our trapping fields. We compare and contrast the switching dynamics of these two resonances and demonstrate optical switching using both resonances. Finally, we consider the applicability of the narrow, free-space resonance to the slowing of a weak probe field. [1] J. Guo, P.R. Berman, B. Dubetsky and G. Grynberg PRA, 46, 1426 (1992). [2] (a) P. Verkerk, B. Loumis, C. Salomon, C. Cohen-Tannoudji, J. Courtois PRL, 68, 3861 (1992). (b) G. Grynberg, J-Y Courtois, B. Lounis, P. Verkerk PRL, 72, 3017 (1994). [3] (a) T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik PRA, 71, 013401 (2005). (b) M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik PRA, 72, 061401(R), (2005).

  2. Threshold voltage extraction circuit 

    E-print Network

    Hoon, Siew Kuok

    2000-01-01

    A novel optimally self-biasing MOSFET threshold-voltage (V[]) extractor circuit is presented. It implements the most popular industrial extraction algorithm of biasing a saturated MOSFET to the linear portion of its [] versus [] characteristic...

  3. Extracting information from fiction 

    E-print Network

    Givon, Sharon

    2006-01-01

    Information Extraction (IE) based techniques have great potential to enable companies to leverage valuable information embedded in unstructured textual data. Such data could be exploited to help drive sales and to ...

  4. Supercritical Fluid Extraction 

    E-print Network

    Johnston, K. P.; Flarsheim, W. M.

    1984-01-01

    are in a competitive and infantile stage, few examples of the process economics are available. In the temperature-controlled Residuum Oil Supercritical Extraction (ROSE) process, discussed in the section on petroleum applications, the utility costs...

  5. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-01

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

  6. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup ?3}, respectively.

  7. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-13

    A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

  8. Liquid chromatographic extraction medium

    DOEpatents

    Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

    1994-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  9. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert (Santa Fe, NM); Visscher, William M. (Los Alamos, NM); Fisk, Zachary (Santa Fe, NM)

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  10. Resonances in Positronium Hydride

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Recently, Ho and his colleagues have calculated the positions and widths of a series of resonances in the Ps+H scattering system, using the complex -rotation method and have compared them with estimates that I made many years ago using a quite different technique. I assumed that the resonance mechanism was the existence in the rearrangement channel [e+ + H-] of an infinite series of perturbed Coulomb bound states. Although these must be broadened and shifted by coupling with the open scattering channel, I expected them to lie very close to the actual resonance positions. To verify this, I did a model calculation for S-waves, including the coupling, and found that the first two resonances were not shifted very far from their unperturbed position. The new, detailed calculation agrees with this result, but when the P-wave was examined it was found, surprisingly, that the lowest resonance indeed moved up in energy by a large amount. With the help of Joseph DiRienzi of the College of Notre Dame of Maryland I am now extending the old calculation to P- and D-waves, in an attempt to understand this unexpected energy shift. Results will be presented at the Workshop.

  11. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  12. Extraction processes for bioproduct separation

    SciTech Connect

    Hartl, J.; Marr, R.

    1993-01-01

    The three-phase extraction process, a modification of reactive extraction, was investigated for its applicability in the separation of organic acids from fermentation broth. It was compared with reactive extraction, liquid membrane permeation, and supercritical fluid extraction. These processes are based on the use of amine extractants, which have to be dissolved in nonpolar solvents, for the extraction of carboxylic acids, hydroxycarboxylic acids, and aminocarboxylic acids. This paper considers the comparison of the above-mentioned processes. Furthermore, the extractability of acids from synthetic aqueous solutions and fermented broths was compared. Principal consideration was paid to the extraction of lactic acid, gluconic acid, citric acid, and L-leucine.

  13. Entanglement generation by dissipation in or beyond dark resonances

    NASA Astrophysics Data System (ADS)

    Hu, Xiangming

    2015-08-01

    For dark resonance, one of the most remarkable coherent effects in light-matter interactions, it has commonly been expected that squeezing and entanglement, if existent, are formed via coherent evolutions against dissipation. Contrary to the expectations, here we show that dissipation generates entanglement between two cavity fields and between two dark-state-based spins. The latter correspond also to the atomic ground-state spin squeezing in a limited parameter domain. The dissipation effects, which are hidden deeply behind the coherence-induced nonlinearities, are extracted by probing into the dressed atom-photon interactions, and are widely applicable for the coherently prepared systems in dark resonances or beyond.

  14. Nanoscale magnetic resonance imaging

    PubMed Central

    Degen, C. L.; Poggio, M.; Mamin, H. J.; Rettner, C. T.; Rugar, D.

    2009-01-01

    We have combined ultrasensitive magnetic resonance force microscopy (MRFM) with 3D image reconstruction to achieve magnetic resonance imaging (MRI) with resolution <10 nm. The image reconstruction converts measured magnetic force data into a 3D map of nuclear spin density, taking advantage of the unique characteristics of the “resonant slice” that is projected outward from a nanoscale magnetic tip. The basic principles are demonstrated by imaging the 1H spin density within individual tobacco mosaic virus particles sitting on a nanometer-thick layer of adsorbed hydrocarbons. This result, which represents a 100 million-fold improvement in volume resolution over conventional MRI, demonstrates the potential of MRFM as a tool for 3D, elementally selective imaging on the nanometer scale. PMID:19139397

  15. Collider Signal I :. Resonance

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.

    2010-08-01

    These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.

  16. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B. (Los Alamos, NM); Kuokkala, Veli-Tapani (Tampere, FI)

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  17. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M. (Rustburg, VA)

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  18. Method for resonant measurement

    DOEpatents

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  19. Physics of Sports: Resonances

    NASA Astrophysics Data System (ADS)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  20. Hexagonal quartz resonator

    DOEpatents

    Peters, R.D.M.

    1982-11-02

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively [+-]60[degree] away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency. 3 figs.

  1. Pygmy resonances and nucleosynthesis

    E-print Network

    Nadia Tsoneva; Horst Lenske

    2014-11-14

    A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

  2. Pygmy resonances and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Tsoneva, Nadia; Lenske, Horst

    2015-05-01

    A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

  3. Method for resonant measurement

    DOEpatents

    Rhodes, George W. (5201 Rio Grande Blvd., N.W., Albuquerque, NM 87107); Migliori, Albert (Rte. 4, Box 258 Tano Rd., Sante Fe, NM 87501); Dixon, Raymond D. (396 Connie Ave., White Rock, NM 87544)

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  4. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  5. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  6. Dynamic resonance characteristic analysis of fiber ring resonator

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Ma, Huilian; Jin, Zhonghe

    2009-01-01

    A resonator fiber optic gyro is a high accuracy inertial rotation sensor based on the Sagnac effect. Fiber ring resonator is the core-sensing element in the resonator fiber optic gyro. The dynamic response of the resonator has been studied, and the ringing phenomenon is observed when sweeping the laser frequency. The dynamic characteristics of the resonator, which are related with the frequency sweep rate, have a decisive effect on the dynamic performance of the gyro system. In order to further analyze and better design the gyro system, deep analysis of the dynamic resonance characteristics is in urgent need. This paper gives out the condition for the ringing phenomenon, and analyzes the parameters for the ringing and the dynamic resonance curve through simulation. It is concluded that increasing the sweep rate will lift the ringing and deteriorate the parameters of the resonance curve, and finally have negative effects on the performance of the gyro system.

  7. Continuous-wave intra-cavity singly resonant optical parametric oscillator with resonant wave output coupling.

    PubMed

    Sheng, Quan; Ding, Xin; Shang, Ce; Li, Bin; Fan, Chen; Zhang, Haiyong; Yu, Xuanyi; Wen, Wuqi; Ma, Yila; Yao, Jianquan

    2012-12-01

    We report herein the enhancement in both power and efficiency performance of a continuous-wave intra-cavity singly resonant optical parametric oscillator (ICSRO) by introducing finite resonant wave output coupling. While coupling out the resonant wave to useful output, the output coupling increases the SRO threshold properly thus suppresses the back-conversion under high pump power. Therefore, the down-conversion efficiency is maintained under high pump without having to raise the threshold by defocusing. With a T = 9.6% signal wave output coupler used, the SRO threshold is 2.46 W and the down-conversion efficiency is 72.9% under the maximum pump power of 21.4 W. 1.43 W idler power at 3.66 ?m and 5.03 W signal power at 1.5 ?m are obtained, corresponding to a total extraction efficiency of 30.2%. The resonant wave out coupling significantly levels up the upper limit for the power range where the ICSRO exhibits high efficiency, without impeding its advantage of low threshold. PMID:23262741

  8. Active acoustic classification via transient resonance scattering

    NASA Astrophysics Data System (ADS)

    Gaunaurd, Guillermo C.

    1992-12-01

    The echoes reflected by a sound ping emerging from active sonar when it interacts with a target in its path can be remotely sensed by a receiver. The presented approach capitalizes on an air inverse scattering method that exploits the presence of certain resonance features in these echoes returned by targets to classify them. Classifying underwater objects is important to naval programs such as mine countermeasures (MC) and anti-submarine warfare (ASW) to preclude wasting of ordnance on false targets. Although the classification of complex shapes is still a formidable task, considerable progress has been made in classifying simple shapes such as spheroidal or cylindrical shells. The briefly overviewed methodology has emphasized the extraction, isolation, and labeling of resonance features hidden within the echo, but little has been said about how these could be used to classify a target. A couple of simple examples illustrate exactly how these resonances can be linked to the physical characteristics of the target, allowing for its unambiguous characterization. The procedure, although illustrated with active acoustics (i.e., sonar), can be extended to any active return from any sensor, including radar.

  9. Electromagnetic excitation of the Delta(1232) resonance

    SciTech Connect

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  10. STOCHASTIC RESONANCE IN THALAMIC NEURONS AND RESONANT NEURON MODELS

    E-print Network

    Fournier, John J.F.

    subsystem. We develop a simple linear integrate-and-fire model with subthreshold resonance, which retains demonstrate that preferred stochastic firing in the single neuron model translates into syn- chronizedSTOCHASTIC RESONANCE IN THALAMIC NEURONS AND RESONANT NEURON MODELS by STEFAN REINKER Diplom

  11. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  12. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R. (Albuquerque, NM)

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  13. Micromachined double resonator

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman (Inventor); Tang, Tony K. (Inventor); Shcheglov, Kirill (Inventor)

    2002-01-01

    A micromachined resonator mountable to an external support structure has a proof mass coupled to a base structure by a first spring structure, the base structure having a plurality of electrodes, and a second spring structure coupling the base structure to the external support structure.

  14. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  15. Theories for multiple resonances

    E-print Network

    D. Klakow; M. Weber; P. -G. Reinhard

    1995-02-09

    Two microscopic theories for multiple resonances in nuclei are compared, n-particle-hole RPA and quantized Time-Dependent Hartree-Fock (TDHF). The Lipkin-Meshkov-Glick model is used as test case. We find that quantized TDHF is superior in many respects, except for very small systems.

  16. Highly Stable Microwave Resonator

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Thakoor, Sarita; Dick, G. John; Mercereau, James E.

    1987-01-01

    Superconducting walls on sapphire-filled cavity make low-loss device. Improved microwave resonant cavity consists of sapphire cylinder coated with thin film of superconducting lead. Operated well below superconducting transition temperature at 1.5K, cavity demonstrated superior frequency stability and quality factor. Cavity frequency highly stable and therefore suitable for use in standard frequency generators and filters.

  17. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  18. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  19. Screening Resonances In Plasmas

    SciTech Connect

    Winkler, P.

    1998-12-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion.

  20. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  1. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Numerical model of Electron Cyclotron Resonance Ion Source

    E-print Network

    Mironov, V; Bondarchenko, A; Efremov, A; Loginov, V

    2015-01-01

    Important features of Electron Cyclotron Resonance Ion Source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model a dynamics of ions in ECRIS plasma. It is shown that gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for few sources. Changes in the extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  3. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  4. Magnetic Resonance Imaging (MRI): Brain

    MedlinePLUS

    ... Kids Deal With Bullies Pregnant? What to Expect Magnetic Resonance Imaging (MRI): Brain KidsHealth > Parents > Doctors & Hospitals > Medical Tests & Exams > Magnetic Resonance Imaging (MRI): Brain Print A A A ...

  5. Solvent extraction of the Avgamasya asphaltite of southeastern Turkey

    SciTech Connect

    Tolay, M.; Bartle, K.D.; Ekinci, E.; Erdem-Senatakr, A.; Kadioglu, E.

    1983-12-01

    The Avgamasya asphaltite of southeastern Turkey is geochemically classified as a solid aromatic-asphaltic oil containing mineral matter (mainly carbonates, sulphates, silicates and sulphides) derived from nearby Jurassic-Cretaceous oil deposits by alteration during migration. The asphaltite has been extracted by a variety of methods: Soxhlet at atmospheric pressure; with liquids under moderate pressure; and with supercritical gases. The effects of different extraction methods and solvents along with changes in temperature and pressure as well as prior acid treatment have been studied. The methods were fractionation of the extracts into pentane solubes and asphaltenes, followed by analyses by column chromatography, capillary gas chromatography, size exclusion chromatography and infra-red, (especially) /sup 1/H and /sup 13/C nuclear magnetic resonance spectroscopies. In comparison with Soxhlet extraction, liquid extraction under pressure produces further quantities of asphaltenes, with a more condensed average aromatic skeleton. On the other hand, extraction with supercritical toluene at 350/sup 0/C gives a similar yield to liquid extraction at 215/sup 0/C, but with a preponderance of low molecular mass petane soluble material.

  6. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    NASA Astrophysics Data System (ADS)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  7. White Light Emission from Vegetable Extracts

    PubMed Central

    Singh, Vikram; Mishra, Ashok K.

    2015-01-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380?nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green. PMID:26083264

  8. White Light Emission from Vegetable Extracts.

    PubMed

    Singh, Vikram; Mishra, Ashok K

    2015-01-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d'Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green. PMID:26083264

  9. Vector and scalar charmonium resonances with lattice QCD

    SciTech Connect

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa

    2015-09-15

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ?(3770). For m? = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state ?c0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at ?c0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.

  10. Vector and scalar charmonium resonances with lattice QCD

    DOE PAGESBeta

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa; Univ. of Ljubljana, Ljubljana; Thomas Jefferson National Accelerator Facility, Newport News, VA

    2015-09-15

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ?(3770). For m? = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state ?c0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering inmore »s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at ?c0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less

  11. Simulation and beamline experiments for the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, Damon S.; Leitner, Daniela; Lyneis, Claude M.; Grote, David P.

    2008-02-15

    The particle-in-cell code WARP has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving WARP the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article, we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disk. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS.

  12. Genotoxicity of plant extracts.

    PubMed

    Vargas, V M; Guidobono, R R; Henriques, J A

    1991-01-01

    Aqueous extracts of seven species used in Brazilian popular medicine (Achyrocline satureoides, Iodina rhombifolia, Desmodium incanum, Baccharis anomala, Tibouchina asperior, Luehea divaricata, Maytenus ilicifolia) were screened to the presence of mutagenic activity in the Ames test (Salmonella/microsome). Positive results were obtained for A. satureoides, B. anomala and L. divaricata with microsomal activation. As shown elsewhere (Vargas et al., 1990) the metabolites of A. satureoides extract also show the capacity to induce prophage and/or SOS response in microscreen phage induction assay and SOS spot chromotest. PMID:1842016

  13. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Microwave Resonators Containing Diamond Disks

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Maleki, Lutfollah; Wang, Rabi T.

    1996-01-01

    Synthetic diamond dielectric bodies proposed for use in cylindrical resonators helping to stabilize frequencies of some microwave oscillators. Acting in conjunction with metal resonator cavities in which mounted, such dielectric bodies support "whispering-gallery" waveguide modes characterized by desired frequencies of resonance and by electro-magnetic-field configurations limiting dissipation of power on metal surfaces outside dielectric bodies. Performances at room temperature might exceed those of liquid-nitrogen-cooled sapphire-based resonators.

  15. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  16. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  17. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  18. Eigenproblems in Resonant MEMS Design

    E-print Network

    California at Davis, University of

    Eigenproblems in Resonant MEMS Design David Bindel UC Berkeley, CS Division Eigenproblems inResonant MEMS Design ­ p.1/21 #12;What are MEMS? Eigenproblems inResonant MEMS Design ­ p.2/21 #12;RF MEMSResonant MEMS Design ­ p.3/21 #12;Micromechanical filters Filtered signal Mechanical filter Capacitive sense

  19. Introduction Magnetic Resonance Imaging (MRI)

    E-print Network

    Wirosoetisno, Djoko

    Introduction Statistics Magnetic Resonance Imaging (MRI) Statistics in the UK Statistics at UCL and Beyond #12;Introduction Statistics Magnetic Resonance Imaging (MRI) Statistics in the UK Statistics Magnetic Resonance Imaging (MRI) Statistics in the UK Statistics at UCL Outline Why do Statistics? Some

  20. Multidimensionally Encoded Magnetic Resonance Imaging

    E-print Network

    Multidimensionally Encoded Magnetic Resonance Imaging Fa-Hsuan Lin1,2 * Magnetic resonance imaging-dimensional spatial bases created by linear spa- tial encoding magnetic fields (SEMs). Recently, imaging strat- egies gradients INTRODUCTION The spatial localization of magnetic resonance (MR) sig- nals has been commonly

  1. Resonances in Coupled ?K-?K Scattering from Quantum Chromodynamics

    DOE PAGESBeta

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled ?K, ?K scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  2. Towards T1-limited magnetic resonance imaging using Rabi beats

    E-print Network

    H. Fedder; F. Dolde; F. Rempp; T. Wolf; P. Hemmer; F. Jelezko; J. Wrachtrup

    2010-09-03

    Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NV's 14N can be extracted from the beating oscillations. Second, the Rabi beats under V-type microwave excitation of the three hyperfine manifolds is studied experimentally and described theoretically.

  3. Towards generic relation extraction 

    E-print Network

    Hachey, Benjamin

    2009-01-01

    A vast amount of usable electronic data is in the form of unstructured text. The relation extraction task aims to identify useful information in text (e.g., PersonW works for OrganisationX, GeneY encodes ProteinZ) and ...

  4. Surface-resistance measurements using superconducting stripline resonators

    SciTech Connect

    Hafner, Daniel; Dressel, Martin; Scheffler, Marc

    2014-01-15

    We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1–6 K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.

  5. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  6. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J. (Dublin, CA)

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  7. Extraction of plant secondary metabolites.

    PubMed

    Jones, William P; Kinghorn, A Douglas

    2012-01-01

    This chapter presents an overview of the preparation of extracts from plants using organic solvents, with emphasis on common problems encountered and methods for their reduction or elimination. In addition to generally applicable extraction protocols, methods are suggested for selectively extracting specific classes of plant-derived compounds, and phytochemical procedures are presented for the detection of classes of compounds encountered commonly during extraction, including selected groups of secondary metabolites and interfering compounds. Successful extraction begins with careful selection and preparation of plant samples and thorough review of the appropriate literature for suitable protocols for a particular class of compounds or plant species. During the extraction of plant material, it is important to minimize interference from compounds that may co-extract with the target compounds, and to avoid contamination of the extract, as well as to prevent decomposition of important metabolites or artifact formation as a result of extraction conditions or solvent impurities. PMID:22367903

  8. New recommended ? ? for the Erc .m .=458 keV resonance in 22Ne(p ,? )23Na

    NASA Astrophysics Data System (ADS)

    Kelly, K. J.; Champagne, A. E.; Longland, R.; Buckner, M. Q.

    2015-09-01

    The Erc.m.=458 keV resonance in 22Ne(p ,? )23Na is an ideal reference resonance for measurements of cross sections and resonance strengths in noble gas targets. We report on a new measurement of the strength of this resonance. Data analysis employed the TFractionFitter class of root combined with geant simulations of potential decay cascades from this resonance. This approach allowed us to extract precise primary branching ratios for decays from the resonant state, including a new primary branch to the 7082-keV state in 23Na. Our new resonance strength of ? ? (458 keV) = 0.583(43) eV is more than 1 ? higher than a recent high-precision result that relied on literature branching ratios.

  9. Photorefractivity in WGM resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Ilchenko, Vladimir; Maleki, Lute

    2006-01-01

    We report on observation of photorefractive effects in whispering gallery mode resonators made of as-grown and magnesium doped lithium niobate and lithium tantalate in the near as well as far infrared. The effects manifested themselves as dynamic modification of the spectra as well as quality factors of the resonators coupled to the laser radiation. We have observed a significant (exceeding 10-4) change of the ordinary index of refraction of all the materials exposed with 780 nm light. Photorefractive effects have also been detected at 1550 nm. Our experiments support the conclusion that the photorefractivity does not have a distinct red boundary. We show that the maximum saturated refractive index change in the infrared is of the same order of magnitude as in the visible light.

  10. Quantum Mechanical Reflection Resonances

    E-print Network

    Erica Caden; Robert Gilmore

    2006-10-27

    Resonances in the reflection probability amplitude r(E) can occur in energy ranges in which the reflection probability R(E)=|r(E)|^2 is 1. They occur as the phase phi(E) defined by r(E) = t*(E)/t(E) = 1e^{i 2phi(E)} undergoes a rapid change of pi radians. During this transition the phase angle exhibits a Lorentzian profile in that d(phi(E))/dE ~= 1/[(E-E_0)^2+(hbar*gamma/2)^2]. The energy E_0 identifies the location of a quasi-bound state, gamma measures the lifetime of this state, and t(E) is a matrix element of the transfer operator. Methods for computing and measuring these resonances are proposed.

  11. A mirrorless spinwave resonator

    PubMed Central

    Pinel, Olivier; Everett, Jesse L.; Hosseini, Mahdi; Campbell, Geoff T.; Buchler, Ben C.; Lam, Ping Koy

    2015-01-01

    Optical resonance is central to a wide range of optical devices and techniques. In an optical cavity, the round-trip length and mirror reflectivity can be chosen to optimize the circulating optical power, linewidth, and free-spectral range (FSR) for a given application. In this paper we show how an atomic spinwave system, with no physical mirrors, can behave in a manner that is analogous to an optical cavity. We demonstrate this similarity by characterising the build-up and decay of the resonance in the time domain, and measuring the effective optical linewidth and FSR in the frequency domain. Our spinwave is generated in a 20?cm long Rb gas cell, yet it facilitates an effective FSR of 83?kHz, which would require a round-trip path of 3.6?km in a free-space optical cavity. Furthermore, the spinwave coupling is controllable enabling dynamic tuning of the effective cavity parameters. PMID:26655839

  12. Parallel Magnetic Resonance Imaging

    E-print Network

    Uecker, Martin

    2015-01-01

    The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.

  13. [Cardiovascular magnetic resonance imaging].

    PubMed

    Teraoka, Kunihiko; Suzuki, Yoshinori; Yamashina, Akira

    2014-07-01

    Cardiac magnetic resonance imaging (CMR) evolves and is occupying an important status in cardiovascular diagnostic imaging. In particular, in the estimation of the cause of heart failure, or evaluation of severity-of-illness and prognostic presumption, utility is high clinically. In this chapter, about a selection sequence for taking image according to the purpose, description of findings, and its clinical utility are introduced. And the role which this imaging plays will be discussed in the near future. PMID:25138928

  14. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  15. Effect of three-pion unitarity on resonance poles from heavy meson decays

    SciTech Connect

    Satoshi X. Nakamura

    2011-10-01

    We study the final state interaction in 3-pion decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N* information. The formulation satisfies the 3-pion unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3-pion unitarity on the meson resonance pole positions and Dalitz plot.

  16. Multiple pass unstable resonator for an annular gain CO2 laser

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.; Reshef, H.

    1986-11-01

    The design, construction, and operational characteristics of an optical resonator for an annular gain media are described. The system, developed for laser power extraction investigations in a new type of coaxial discharge geometry, features a folded multipass unstable resonator concept, fabricated from lightweight uncoated diamond-turned aluminum substrates. The resulting CW CO2 device incorporates excitation aspects of the nonself-sustained PIE excitation process in addition to a new magnetic discharge stabilization technique. Laser performance and output beam characteristics are presented.

  17. Effect of three-pion unitarity on resonance poles from heavy meson decays

    SciTech Connect

    Nakamura, Satoshi X.

    2011-10-21

    We study the final state interaction in 3{pi} decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N{sup *} information. The formulation satisfies the 3{pi} unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3{pi} unitarity on the meson resonance pole positions and Dalitz plot.

  18. Multiple resonance and anti-resonance in coupled Duffing oscillators

    E-print Network

    R. Jothimurugan; K. Thamilmaran; S. Rajasekar; M. A. F. Sanjuan

    2015-10-06

    We investigate the resonance behaviour in a system composed by n-coupled Duffing oscillators where only the first oscillator is driven by a periodic force, assuming a nearest neighbour coupling. We have derived the frequency-response equations for a system composed of two-coupled oscillators by using a theoretical approach. Interestingly, the frequency-response curve displays two resonance peaks and one anti-resonance. A theoretical prediction of the response amplitudes of two oscillators closely match with the numerically computed amplitudes. We analyse the effect of the coupling strength on the resonance and anti-resonance frequencies and the response amplitudes at these frequencies. For the n-coupled oscillators system, in general, there are n-resonant peaks and (n-1) anti-resonant peaks. For large values of n, except for the first resonance, other resonant peaks are weak due to linear damping. The resonance behaviours observed in the n-coupled Duffing oscillators are also realized in an electronic analog circuit simulation of the equations. Understanding the role of coupling and system size has the potential applications in music, structural engineering, power systems, biological networks, electrical and electronic systems.

  19. Infrared Extraction Change for the NSLS-II Storage Ring

    SciTech Connect

    Blednykh,A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-05-04

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are {approx}50mrad horizontal and {approx}25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.

  20. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active form of musical consumption and experience. The three pieces draw lines connecting different aspects of persistence, resistance, and resonance.

  1. Resonant tunneling IR detectors

    NASA Astrophysics Data System (ADS)

    Woodall, Jerry M.; Smith, T. P., III

    1990-07-01

    Researchers propose a novel semiconductor heterojunction photodetector which would have a very low dark current and would be voltage tunable. A schematic diagram of the device and its band structure are shown. The two crucial components of the device are a cathode (InGaAs) whose condition band edge is below the conduction band edge of the quantum wells and a resonant tunneling filter (GaAs-AlGaAs). In a standard resonant tunneling device the electrodes are made of the same material as the quantum wells, and this device becomes highly conducting when the quantum levels in the wells are aligned with the Fermi level in the negatively biased electrode. In contrast, the researchers device is essentially non-conducting under the same bias conditions. This is because the Fermi Level of the cathode (InGaAs) is still well below the quantum levels so that no resonant transport occurs and the barriers (AlGaAs) effectively block current flow through the device. However, if light with the same photon energy as the conduction-band discontinuity between the cathode and the quantum wells, E sub c3-E sub c1, is shone on the sample, free carriers will be excited to an energy corresponding to the lowest quantum level in the well closest to the cathode (hv plue E sub c1 = E sub o). These electrons will resonantly tunnel through the quantum wells and be collected as a photocurrent in the anode (GaAs). To improve the quantum efficiency, the cathode (InGaAs) should be very heavily doped and capped with a highly reflective metal ohmic contact. The thickness of the device should be tailored to optimize thin film interference effects and afford the maximum absorption of light. Because the device relies on resonant tunneling, its response should be very fast, and the small voltages needed to change the responsivity should allow for very high frequency modulation of the photocurrent. In addition, the device is tuned to a specific photon energy so that it can be designed to detect a fairly narrow range of wavelengths. This selectivity is important for reducing the photocurrent due to spurious light sources.

  2. Extractable Work from Correlations

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Huber, Marcus; Skrzypczyk, Paul; Brunner, Nicolas; Acín, Antonio

    2015-10-01

    Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work, we study how to use correlations among quantum systems to optimally store work. We analyze this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems that are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems.

  3. Nonlinear wave-particle resonant interaction in the radiation belts: Landau resonance vs. fundamental cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Artemyev, A.; Agapitov, O. V.; Mourenas, D.

    2013-12-01

    We present selected THEMIS observations of highly-oblique and large amplitude chorus waves at medium latitudes. The major part of observed waves propagates at nearly-electrostatic mode with normal angles close to resonance cone. We use test particle simulations and analytical theory to estimate efficiency of nonlinear particle acceleration by these waves via Landau and fundamental cyclotron resonances. We show that trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gain is larger for the trapping due to Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles in comparison with the fundamental resonance.

  4. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  5. Analysis of human muscle extracts by proton NMR

    SciTech Connect

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-03-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in /sup 2/H/sub 2/O to contain 120 O.D. units at 280 nm per 0.5 ml. /sup 1/H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference.

  6. Solid phase extraction membrane

    SciTech Connect

    Carlson, Kurt C; Langer, Roger L

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  7. [Skeleton extractions and applications].

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  8. Probing viscoelastic properties of a thin polymer film sheared between a beads layer and quartz crystal resonator

    E-print Network

    Julien Leopoldes; Xiaoping Jia

    2009-01-06

    We report measurements of viscoelastic properties of thin polymer films of 10-100 nm at the MHz range. These thin films are confined between a quartz crystal resonator and a millimetric bead layer, producing an increase of both resonance frequency and dissipation of the quartz resonator. The shear modulus and dynamic viscosity of thin films extracted from these measurements are consistent with the bulk values of the polymer. This modified quartz resonator provides an easily realizable and effective tool for probing the rheological properties of thin films at ambient environment.

  9. Enhanced quality factor of Fano resonance in optical metamaterials by manipulating configuration of unit cells

    NASA Astrophysics Data System (ADS)

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2015-11-01

    By changing unit cell configurations, we demonstrated enhancement of quality factors (Q-factors) of Fano resonance in optical metamaterials composed of asymmetric double bars. The Q-factors of Fano resonance at wavelengths around 1500 nm were extracted from absorption spectra, and the dependence of the degree of asymmetry was studied. Observed enhancement is qualitatively interpreted by dipole-dipole interactions, and destructive interactions were essential for achieving high Q-factors. These results will be useful for improving performance of potential applications using metamaterial resonators such as light emitting devises and sensors.

  10. Efimov states and their Fano resonances in a neutron-rich nucleus

    E-print Network

    I. Mazumdar; A. R. P. Rau; V. S. Bhasin

    2006-07-27

    Asymmetric resonances in elastic n+$^{19}$C scattering are attributed to Efimov states of such neutron-rich nuclei, that is, three-body bound states of the n+n+$^{18}$C system when none of the pairs is bound or some of them only weakly bound. By fitting to the general resonance shape described by Fano, we extract resonance position, width, and the "Fano profile index". While Efimov states have been discussed extensively in many areas of physics, there is only one very recent experimental observation in trimers of cesium atoms. The conjunction that we present of the Efimov and Fano phenomena may lead to experimental realization in nuclei.

  11. Resonance Analysis in the Region of Unresolved Resonances

    SciTech Connect

    Lukyanov, A.A.; Janeva, N.B.; Koyumdjieva, N.T.; Volev, K.N.; Schillebeeckx, P.

    2005-05-24

    The independent analysis of new experimental data for 232Th cross sections in the unresolved region performed on the basis of the existing scheme and method of evaluation confirm the previously obtained average resonance parameters. The method of statistical modeling of the resonant cross-section structure in the unresolved resonance region, proposed and developed earlier by introducing the characteristic function of R-matrix elements distribution and the presentation of this by a ladder of fixed 'resonances', is used for calculation of the self-shielding factors of 232Th. The results are given in comparison with those of the code NJOY and experimental data.

  12. Resonance Analysis in the Region of Unresolved Resonances

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. A.; Koyumdjieva, N. T.; Janeva, N. B.; Volev, K. N.; Schillebeeckx, P.

    2005-05-01

    The independent analysis of new experimental data for 232Th cross sections in the unresolved region performed on the basis of the existing scheme and method of evaluation confirm the previously obtained average resonance parameters. The method of statistical modeling of the resonant cross-section structure in the unresolved resonance region, proposed and developed earlier by introducing the characteristic function of R-matrix elements distribution and the presentation of this by a ladder of fixed "resonances," is used for calculation of the self-shielding factors of 232Th. The results are given in comparison with those of the code NJOY and experimental data.

  13. Pressure dependent resonant frequency of micromechanical drumhead resonators

    SciTech Connect

    Southworth, D. R.; Craighead, H. G.; Parpia, J. M.

    2009-05-25

    We examine the relationship between squeeze film effects and resonance frequency in drum-type resonators. We find that the resonance frequency increases linearly with pressure as a result of the additional restoring force contribution from compression of gas within the drum cavity. We demonstrate trapping of the gas by squeeze film effects and geometry. The pressure sensitivity is shown to scale inversely with cavity height and sound radiation is found to be the predominant loss mechanism near and above atmospheric pressure. Drum resonators exhibit linearity and sensitivity suitable to barometry from below 10 Torr up to several atmospheres.

  14. Nuclear Resonance Fluorescence Measurements of High Explosives

    SciTech Connect

    Caggiano, Joseph A.; Warren, Glen A.; Korbly, Steve; Hasty, R.; Klimenko, A.; Park, William H.

    2007-12-31

    Pacific Northwest National Laboratory and Passport Systems have collaborated to perform Nuclear Resonance Fluorescence experiments using several high quality high-explosive simulant samples. These measurements were conducted to determine the feasibility of finding and characterizing high explosive material by NRF interrogation. Electron beams of 5.1, 5.3, 8, and 10 MeV were used to produce bremsstrahlung photon beams, which irradiated the samples. The gamma-ray spectra were collected using high-purity germanium detectors. Nitrogen-to-carbon ratios of the high-explosive simulants were extracted from the 5.1 and 5.3 MeV data and compare favorably with accepted values. Analysis of the 8 and 10 MeV data is in progress; preliminary isotopic comparisons within the samples are consistent with the expected results.

  15. Proton Spin Structure in the Resonance Region

    E-print Network

    RSS Collaboration; F. R. Wesselmann; K. Slifer; S. Tajima; A. Aghalaryan; A. Ahmidouch; R. Asaturyan; F. Bloch; W. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; L. Coman; D. Crabb; S. Danagoulian; D. Day; J. Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; L. Gan; D. Gaskell; J. Gomez; B. Hu; M. K. Jones; J. Jourdan; C. Keith; C. E. Keppel; M. Khandaker; A. Klein; L. Kramer; Y. Liang; J. Lichtenstadt; R. Lindgren; D. Mack; P. McKee; D. McNulty; D. Meekins; H. Mkrtchyan; R. Nasseripour; I. Niculescu; K. Normand; B. Norum; D. Pocanic; Y. Prok; B. Raue; J. Reinhold; J. Roche; D. Rohe; O. A. Rondon; N. Savvinov; B. Sawatzky; M. Seely; I. Sick; C. Smith; G. Smith; S. Stepanyan; L. Tang; G. Testa; W. Vulcan; K. Wang; G. Warren; S. Wood; C. Yan; L. Yuan; J. Yun; M. Zeier; H. Zhu

    2007-04-02

    We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q^2 = 1.3 GeV^2. Using the Jefferson Lab polarized electron beam, a spectrometer, and a polarized solid target, we measured the asymmetries A_parallel and A_perp to high precision, and extracted the asymmetries A_1 and A_2, and the spin structure functions g_1 and g_2. We found a notably non-zero A_perp, significant contributions from higher-twist effects, and only weak support for polarized quark--hadron duality.

  16. Proton Spin Structure in the Resonance Region

    SciTech Connect

    F. R. Wesselmann; K. Slifer; S. Tajima; A. Aghalaryan; A. Ahmidouch; R. Asaturyan; F. Bloch; W. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; L. Coman; D. Crabb; S. Danagoulian; D. Day; J. Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; L. Gan; D. Gaskell; J. Gomez; B. Hu; M. K. Jones; J. Jourdan; C. Keith; C. E. Keppel; M. Khandaker; A. Klein; L. Kramer; Y. Liang; J. Lichtenstadt; R. Lindgren; D. Mack; P. McKee; D. McNulty; D. Meekins; H. Mkrtchyan; R. Nasseripour; I. Niculescu; K. Normand; B. Norum; D. Pocanic; Y. Prok; B. Raue; J. Reinhold; J. Roche; D. Rohe; O. A. Rondon; N. Savvinov; B. Sawatzky; M. Seely; I. Sick; C. Smith; G. Smith; S. Stepanyan; L. Tang; G. Testa; W. Vulcan; K. Wang; G. Warren; S. Wood; C. Yan; L. Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-10-11

    The RSS collaboration has measured the spin structure functions g{sub 1} and g{sub 2} of the proton at Jefferson Lab using the lab's polarized electron beam, the Hall C HMS spectrometer and the UVa polarized solid target. The asymmetries A{sub parallel} and A{sub perp} were measured at the elastic peak and in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q{sup 2} = 1.3 GeV{sup 2}. The extracted spin structure functions and their kinematic dependence make a significant contribution in the study of higher-twist effects and polarized duality tests.

  17. Opto-Acoustic Biosensing with Optomechanofluidic Resonators

    E-print Network

    Zhu, Kaiyuan; Carmon, Tal; Fan, Xudong; Bahl, Gaurav

    2014-01-01

    Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. ...

  18. Resonant Wave-Particle Manipulation Techniques

    NASA Astrophysics Data System (ADS)

    Zhmoginov, Andrey I.

    Charged particle dynamics can be altered considerably even by weak electromagnetic waves if some of the particles are in resonance. Depending on the wave parameters, the resonances in the phase space can either be well separated, in which case the particle dynamics is regular almost everywhere, or they can overlap leading to stochastic particle motion in a large volume of the phase space. Although different, both of these regimes allow one to manipulate particle ensembles by arranging resonant interactions with appropriate waves. This thesis is devoted to studying two wave-particle manipulation techniques having potential applications in fusion and laser-plasma interaction research. Specifically, we study the alpha-channeling effect (which relies on stochastic diffusion of resonant particles) and the so-called negative-mass effect (NME) (which involves the conservation of the adiabatic invariant). The alpha-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic alpha particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Recently, the alpha-channeling technique, originally proposed for tokamaks, was shown to be suitable for application in mirror machines as well. In the first part of this thesis, we deepen the understanding of issues and possibilities of the alpha-channeling implementation in open-ended reactors. We verify the feasibility of this technique and identify specific waves and supplementary techniques, which can potentially be used for implementing the alpha-channeling in realistic mirror devices. We also propose a new technique for using the alpha-channeling wave energy to catalyze fusion reaction by employing minority ions as a mediator species. In the second part of this thesis, the NME manifesting itself as an unusual response of a resonant particle to external adiabatic perturbations mimicking the behavior of a particle with a negative mass, is discussed. Using the Hamiltonian perturbation theory, the calculation of the effective parallel mass is extended to the non-vacuum waves and the NME is shown to be robust. Also, the consequences of radiation friction and collisions with the background particles on the NME are studied and new collective phenomena emerging in plasmas with negative-mass particles are considered.

  19. Challenges in Managing Information Extraction

    ERIC Educational Resources Information Center

    Shen, Warren H.

    2009-01-01

    This dissertation studies information extraction (IE), the problem of extracting structured information from unstructured data. Example IE tasks include extracting person names from news articles, product information from e-commerce Web pages, street addresses from emails, and names of emerging music bands from blogs. IE is all increasingly…

  20. A Genetic Algorithm Analysis of N* Resonances in $p(?,K^{+})?$ Reactions

    E-print Network

    D. G. Ireland; S. Janssen; J. Ryckebusch

    2004-05-13

    The problem of extracting information on new and known $N^{*}$ resonances by fitting isobar models to photonuclear data is addressed. A new fitting strategy, incorporating a genetic algorithm, is outlined. As an example, the method is applied to a typical tree-level analysis of published $p(\\gamma,K^{+})\\Lambda$ data. It is shown that, within the limitations of this tree-level analysis, a resonance in addition to the known set is required to obtain a reasonable fit. An additional $P_{11}$ resonance, with a mass of about 1.9 GeV, gives the best agreement with the published data, but additional $S_{11}$ or $D_{13}$ resonances cannot be ruled out. Our genetic algorithm method predicts that photon beam asymmetry and double polarization $p(\\gamma,K^{+})\\Lambda$ measurements should provide the most sensitive information with respect to missing resonances.

  1. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  2. Micromachined magnetoflexoelastic resonator based magnetometer

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Gokhan; Tadigadapa, Srinivas

    2015-11-01

    In this paper, we demonstrate the performance of a magnetoflexoelastic magnetometer consisting of a micromachined ultra-thin (7.5 ?m) quartz bulk acoustic resonator on which 500 nm thick magnetostrictive Metglas® (Fe85B5Si10) film is deposited. The resonance frequency of the unimorph resonator structure is sensitively affected by the magnetostrictively induced flexoelastic effect in quartz and is exploited to detect low frequency (<100 Hz) and nanoTesla magnetic fields. The resonance frequency shift is measured by tracking the at-resonance admittance of the resonator as a function of the applied magnetic field. The frequency shifts are linearly correlated to the magnetic field strength. A minimum detectable magnetic flux density of ˜79 nT has been measured for 10 Hz modulated magnetic field input signals which corresponds to a frequency sensitivity of 0.883 Hz/?T.

  3. Fermi resonance in optical microcavities

    NASA Astrophysics Data System (ADS)

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  4. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  5. Bistability in Feshbach Resonance

    E-print Network

    Hong Y. Ling

    2010-03-11

    A coupled atom-molecule condensate with an intraspecies Feshbach resonance is employed to explore matter wave bistability both in the presence and in the absence of a unidirectional optical ring cavity. In particular, a set of conditions are derived that allow the threshold for bistability, due both to two-body s-wave scatterings and to cavity-mediated two-body interactions, to be determined analytically. The latter bistability is found to support, not only transitions between a mixed (atom-molecule) state and a pure molecular state as in the former bistability, but also transitions between two distinct mixed states.

  6. Resonance test system

    DOEpatents

    Musial, Walter (Boulder, CO); White, Darris (Superior, CO)

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  7. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  8. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  9. Resonance capture and Saturn's rings

    SciTech Connect

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab.

  10. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  11. Superconducting Resonators: Protecting Schrodinger's Cat

    NASA Astrophysics Data System (ADS)

    Chavez, Jose; Mauskopf, Philip

    2015-03-01

    Over the past decade, superconducting resonators have played a fundamental role in various novel astronomical detectors and quantum information processors. One example is the microwave kinetic inductance detector that is able to resolve photon energies by measuring shifts in its resonant frequency. Similar resonators have been integrated with superconducting qubits, specifically the transmon, to substantially improve quantum coherence times. The purpose of this investigation is to survey various resonant structures within the requirements of circuit quantum electrodynamics giving special attention to quality factors, TLS noise, and quasi-particle generation. Specifically, planar and three dimensional cavities with varying geometries and materials are characterized - primarily focusing on NbTiN and Nb.

  12. Electromagnetic production of hyperon resonances

    E-print Network

    K. Hicks; D. Keller; W. Tang

    2010-12-14

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the $\\Lambda(1405)$ resonance; a strong suggestion of meson cloud effects in the structure of the $\\Sigma(1385)$ resonance; data from $K^*$ photoproduction that will test the existence of the purported $K_0(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  13. Hyperon Resonance Photoproduction at CLAS

    SciTech Connect

    K. Hicks, D. Keller, W. Tang

    2011-02-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jeffersonnext term Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the ?(1405) resonance; a strong suggestion of meson cloud effects in the structure of the Sigma (1385) resonance; data from Klow asterisk photoproduction that will test the existence of the purported K0(800) meson. Properties of other hyperon resonances will also be studied in the near future.

  14. Electromagnetic production of hyperon resonances

    SciTech Connect

    K. Hicks, D. Keller, W. Tang

    2011-10-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  15. Properties of resonance wave functions.

    NASA Technical Reports Server (NTRS)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  16. Fano resonances in magnetic metamaterials

    SciTech Connect

    Naether, Uta; Molina, Mario I.

    2011-10-15

    We study the scattering of magnetoinductive plane waves by internal (external) capacitive (inductive) defects coupled to a one-dimensional split-ring resonator array. We examine a number of simple defect configurations where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling to second neighbors is necessary for the occurrence of Fano resonance. For external inductive defects, Fano resonances are commonplace, and they can be tuned by changing the relative orientation or distance between the defect and the SSR array.

  17. Mercury's resonant rotation from secular orbital elements

    E-print Network

    Stark, Alexander; Hussmann, Hauke

    2015-01-01

    We used recently produced Solar System ephemeris, which incorporate two years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance these values constitute an important reference for the planet's measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury's interior structure. In particular, we derive an mean orbital period of 87.96934962 $\\pm$ 0.00000037 days and (assuming the perfect resonance) a spin rate of 6.138506839 $\\pm$ 0.000000028 degree/day. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al, 2011) corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical paramete...

  18. Mercury's resonant rotation from secular orbital elements

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Hussmann, Hauke

    2015-11-01

    We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet's measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury's interior structure. In particular, we derive a mean orbital period of (87.96934962 ± 0.00000037) days and (assuming a perfect resonance) a spin rate of (6.138506839± 0.000000028)°/day. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101-135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury's rotation.

  19. Resonance parameter measurements and analysis of gadolinium

    SciTech Connect

    Leinweber, G.; Barry, D. P.; Trbovich, M. J.; Burke, J. A.; Drindak, N. J.; Knox, H. D.; Ballad, R. V.; Block, R. C.; Danon, Y.; Severnyak, L. I.

    2006-07-01

    The purpose of the present work is to measure the neutron cross sections of gadolinium accurately. Gd has the highest thermal absorption cross section of any natural element. Therefore it is an important element for thermal reactor applications Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Inst. (RPI) LINAC facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either {sup 155}Gd or {sup 157}Gd. The capture measurements were made at the 25-m flight station with a sodium iodide detector, and the transmission measurements were performed at 15- and 25-m flight stations with {sup 6}Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. The results of the thermal region analysis are significant. Resonance parameters for the low energy doublet, at 0.025 and 0.032 eV, are presented. The thermal (2200 m/s) capture cross section of {sup 157}Gd has been measured to be 11% smaller than that calculated from ENDF/B-VI updated through release 8. Thermal capture cross sections and capture resonance integrals for each isotope as well as elemental gadolinium are presented. In the epithermal region, natural metal samples were measured in capture and transmission. Neutron interaction data up to 300 eV have been analyzed. Substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for {sup 155}Gd ends. (authors)

  20. Fission product solvent extraction

    SciTech Connect

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A.

    1998-02-01

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

  1. Extracting tag hierarchies.

    PubMed

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover, recommendation systems could also benefit from a tag hierarchy. PMID:24391901

  2. Extracting Tag Hierarchies

    PubMed Central

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover, recommendation systems could also benefit from a tag hierarchy. PMID:24391901

  3. Resonance Point Interactions

    E-print Network

    C. J. Fewster

    1993-09-01

    A new construction is presented for point interactions (PI) and generalised point interactions (GPI). The construction is an inverse scattering procedure, using integral transforms suggested by the required scattering theory. The usual class of PI in 3 dimensions (i.e. the self adjoint extensions of the Laplacian on the domain of smooth functions compactly supported away from the origin) is reconstructed. In addition a 1-parameter family of GPI models termed resonance point interactions (RPI) is constructed, labelled by $M$. The case $M0$ appears to be new. In both cases, the Hilbert space of states must be extended, for $M0$, the Hilbert space is extended to a Pontryagin space. In the latter case, the space of physical states is identified as a positive definite invariant subspace. Complete M{\\o}ller wave operators are constructed for the models considered, using a two space formalism where necessary, which confirm that the PI and RPI models exhibit the required scattering theory. The physical interpretation of RPI as models for quantum mechanical systems exhibiting zero energy resonances is described.

  4. Magnetic Resonance Elastography

    PubMed Central

    Litwiller, Daniel V.; Mariappan, Yogesh K.; Ehman, Richard L.

    2015-01-01

    Often compared to the practice of manual palpation, magnetic resonance elastography is an emerging technology for quantitatively assessing the mechanical properties of tissue as a basis for characterizing disease. The potential of MRE as a diagnostic tool is rooted in the fact that normal and diseased tissues often differ significantly in terms of their intrinsic mechanical properties. MRE uses magnetic resonance imaging (MRI) in conjunction with the application of mechanical shear waves to probe tissue mechanics. This process can be broken down into three essential steps: inducing shear waves in the tissue,imaging the propagating shear waves with MRI, andanalyzing the wave data to generate quantitative images of tissue stiffness MRE has emerged as a safe, reliable and noninvasive method for staging hepatic liver fibrosis, and is now used in some locations as an alternative to biopsy. MRE is also being used in the ongoing investigations of numerous other organs and tissues, including, for example, the spleen, kidney, pancreas, brain, heart, breast, skeletal muscle, prostate, vasculature, lung, spinal cord, eye, bone, and cartilage. In the article that follows, some fundamental techniques and applications of MRE are summarized. PMID:26361467

  5. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  6. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  7. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  8. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  9. Bayesian Optimization of Magnetic Resonance Imaging Sequences

    E-print Network

    Seeger, Matthias

    Bayesian Optimization of Magnetic Resonance Imaging Sequences Matthias Seeger MMCI Cluster) Bayesian MRI Optimization 28 November 2008 2 / 19 #12;Magnetic Resonance Imaging Magnetic Resonance Imaging) Bayesian MRI Optimization 28 November 2008 3 / 19 #12;Magnetic Resonance Imaging Magnetic Resonance Imaging

  10. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  11. Building a Birdcage Resonator for Magnetic Resonance Imaging Studies of CNS Disorders

    E-print Network

    Martin, Jeff

    Building a Birdcage Resonator for Magnetic Resonance Imaging Studies of CNS Disorders Michael Lang Winnipeg, MB Canada April 20, 2011 #12;Abstract Magnetic resonance imaging (MRI) studies are currently use Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . 1 2 Nuclear Magnetic

  12. Wave Packet with a Resonance I just wanted to tell you how one can study the time evolution of the wave

    E-print Network

    Murayama, Hitoshi

    Wave Packet with a Resonance I just wanted to tell you how one can study the time evolution of the wave packet around the resonance region quite convincingly. This in my mind is the most difficult can extract. The wave function we obtained earlier in the lecture note is (r) rR0(r) = sin(ka+0) sin

  13. Relationship between radical intensity and biological activity of cacao husk extracts.

    PubMed

    Motohashi, N; Kawase, M; Kurihara, T; Shirataki, Y; Kamata, K; Nakashima, H; Premanathan, M; Arakaki, R; Kanbara, K; Satoh, K; Sakagami, H; Saito, S; Nakamura, T

    1999-01-01

    The relationship between radical intensity and biological activity of cacao husk extracts was investigated. Electron spin resonance (ESR) spectroscopy demonstrated that the radical intensity of hexane, acetone, methanol and 70% methanol extracts increased with water-solubility. Several fractions of these husk extracts, separated by different column chromatographies, significantly inhibited the cytopathic effect of human immunodeficiency virus (HIV) infection in parallel with their radical intensity. However, their cytotoxic activity against human leukemic and carcinoma cell lines is not always correlated with their radical intensity. Water-soluble and lipophilic compounds might induce cytotoxic activity by different mechanisms. PMID:10368663

  14. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum.

    PubMed

    Kim, Sang Min; Jung, Yu-Jin; Kwon, Oh-Nam; Cha, Kwang Hyun; Um, Byung-Hun; Chung, Donghwa; Pan, Cheol-Ho

    2012-04-01

    Fucoxanthin, one of the main marine carotenoids, is abundant in macro- and microalgae. Here, fucoxanthin was isolated and structurally identified as the major carotenoid in the diatom Phaeodactylum tricornutum through chromatographic and spectroscopic methods, such as liquid chromatography-positive-ion atmospheric pressure chemical ionization/mass spectroscopy and nuclear magnetic resonance. This pigment was quantified by reverse-phase high-performance liquid chromatography, and a number of extraction procedures were assessed to investigate the effect of solvent type, extraction time, temperature, and extraction method (maceration, ultrasound-assisted extraction, Soxhlet extraction, and pressurized liquid extraction). Among the investigated solvents, ethanol provided the best fucoxanthin extraction yield (15.71 mg/g freeze-dried sample weight). Fucoxanthin content in the extracts produced by the different methods was quite constant (15.42-16.51 mg/g freeze-dried sample weight) but increased steeply based on the percentage of ethanol in water, emphasizing the importance of ethanol in the extraction. The results indicate that P. tricornutum is a rich source of fucoxanthin (at least ten times more abundant than that in macroalgae) that is easily extracted with ethanol, suggesting potential applications in human and animal food, health, and cosmetics. PMID:22371063

  15. Solid-state NMR analysis of soil organic matter fractions from integrated physical-chemical extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (size, density) or chemical (e.g., base, acid) procedures. In this study we used 13C nuclear magnetic resonance (NMR) spectroscopy to chemically characterize the fractions that were obtained by an integrated pr...

  16. Giant resonances in Mg-24 

    E-print Network

    Youngblood, David H.; Lui, YW; Clark, HL.

    1999-01-01

    The giant resonance region in Mg-24 was studied with inelastic scattering of 240 MeV alpha particles at small angles including 0 degrees. The giant resonance peak was found to extend up to E-X = 41 MeV. Isoscalar E0, E1, and E2 strength...

  17. Scattering resonances as viscosity limits

    E-print Network

    Maciej Zworski

    2015-05-04

    Using the method of complex scaling we show that scattering resonances of $ - \\Delta + V $, $ V \\in L^\\infty_{\\rm{c}} ( \\mathbb R^n ) $, are limits of eigenvalues of $ - \\Delta + V - i \\epsilon x^2 $ as $ \\epsilon \\to 0+ $. That justifies a method proposed in computational chemistry and reflects a general principle for resonances in other settings.

  18. Electromagnetic Couplings of Nucleon Resonances

    E-print Network

    T. Feuster; U. Mosel

    1996-07-16

    An effective Lagrangian calculation of pion photoproduction including all nucleon resonances up to $\\sqrt s = 1.7$ GeV is presented. We compare our results to recent calculations and show the influence of different width parametrizations and offshell cutoffs on the photoproduction multipoles. We determine the electromagnetic couplings of the resonances from a new fit to the multipole data.

  19. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  20. Magnetic Resonance Imaging

    PubMed Central

    Fache, J. Stephen

    1986-01-01

    Magnetic resonance imaging (MRI) is an important new imaging modality just arriving on the clinical scene in Canada. MRI uses no ionizing radiation; images are derived from the interaction of hydrogen nuclei, a powerful magnetic field, and radio waves. Images are displayed as tomographic slices, much like CT. Direct transverse, sagittal, coronal or oblique slices can be obtained. Unlike CT, the MRI image does not reflect varying tissue densities. In MRI, tissues are differentiated by variation in the amount of hydrogen they contain and by differences in the magnetic environment at a molecular level. All parts of the body can be examined with MRI, although the CNS is particularly well visualized. In addition to providing high resolution images, MRI has the potential for performing non-invasive angiography and biochemical analysis through spectroscopy. To date, there are no known harmful effects of MRI. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:21267205

  1. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  2. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  3. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng (Knoxville, TN); Peng, Fang Zheng (Oak Ridge, TN); Young, Sr., Robert W. (Oak Ridge, TN); Ott, Jr., George W. (Knoxville, TN)

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  4. Matryoshka Locally Resonant Sonic Crystal

    E-print Network

    Elford, Daniel P; Kusmartsev, Feodor V; Swallowe, Gerry M

    2011-01-01

    The results of numerical modelling of sonic crystals with resonant array elements are reported. The investigated resonant elements include plain slotted cylinders as well as various their combinations, in particular, Russian doll or Matryoshka configurations. The acoustic band structure and transmission characteristics of such systems have been computed with the use of finite element methods. The general concept of a locally resonant sonic crystal is proposed, which utilises acoustic resonances to form additional band gaps that are decoupled from Bragg gaps. An existence of a separate attenuation mechanism associated with the resonant elements, which increases performance in the lower frequency regime has been identified. The results show a formation of broad band gaps positioned significantly below the first Bragg frequency. For low frequency broadband attenuation a most optimal configuration is the Matryoshka sonic crystal, where each scattering unit is composed of multiple concentric slotted cylinders. Thi...

  5. Baryon Spectroscopy and Resonances

    SciTech Connect

    Robert Edwards

    2011-12-01

    A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense effort, notably the ordering of the Roper resonance in the low-lying Nucleon spectrum.

  6. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  7. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 ?A in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  8. Statistical properties of speckle distributions in resonant secondary emission Erich Runge and Roland Zimmermann

    E-print Network

    Zimmermann, Roland

    Statistical properties of speckle distributions in resonant secondary emission Erich Runge, Hausvogteiplatz 5-7, D-10117 Berlin, Germany Received 22 September 1999 Quantitative analysis of speckle be extracted from histograms of the speckle intensity and how it can be corrected for. Using functional

  9. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  10. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  11. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  12. Actinide extraction methods

    DOEpatents

    Peterman, Dean R. (Idaho Falls, ID) [Idaho Falls, ID; Klaehn, John R. (Idaho Falls, ID) [Idaho Falls, ID; Harrup, Mason K. (Idaho Falls, ID) [Idaho Falls, ID; Tillotson, Richard D. (Moore, ID) [Moore, ID; Law, Jack D. (Pocatello, ID) [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  13. The root extraction problem

    NASA Astrophysics Data System (ADS)

    Rousseau, C.

    The Nth root extraction problem for germs of diffeomorphisms f :(C,0)?(C,0) is the problem of finding a germ of diffeomorphism g :(C,0)?(C,0) such that g=f, where g is the Nth iterate of g under composition. Depending on f and on the multiplier of g at the origin there can be formal and analytic obstructions to a solution of the problem. By considering an unfolding of f we explain these obstructions. Indeed each analytic obstruction corresponds to an accumulation of periodic points which, in turn, are an obstruction to taking an Nth root of the unfolding. We apply this to the problem of the section of a curvilinear angle in N equal parts in conformal geometry.

  14. Adaptive feature extraction expert

    SciTech Connect

    Yuschik, M.

    1983-01-01

    The identification of discriminatory features places an upper bound on the recognition rate of any automatic speech recognition (ASR) system. One way to structure the extraction of features is to construct an expert system which applies a set of rules to identify particular properties of the speech patterns. However, these patterns vary for an individual speaker and from speaker to speaker so that another expert is actually needed to learn the new variations. The author investigates the problem by using sets of discriminatory features that are suggested by a feature generation expert, improves the selectivity of these features with a training expert, and finally develops a minimally spanning feature set with a statistical selection expert. 12 references.

  15. An Extended Keyword Extraction Method

    NASA Astrophysics Data System (ADS)

    Hong, Bao; Zhen, Deng

    Among numerous Chinese keyword extraction methods, Chinese characteristics were shortly considered. This phenomenon going against the precision enhancement of the Chinese keyword extraction. An extended term frequency based method(Extended TF) is proposed in this paper which combined Chinese linguistic characteristics with basic TF method. Unary, binary and ternary grammars for the candidate keyword extraction as well as other linguistic features were all taken into account. The method establishes classification model using support vector machine. Tests show that the proposed extraction method improved key words precision and recall rate significantly. We applied the key words extracted by the extended TF method into the text file classification. Results show that the key words extracted by the proposed method contributed greatly to raising the precision of text file classification.

  16. Automated extraction of nested sulcus features from human brain MRI data.

    PubMed

    Bao, Forrest Sheng; Giard, Joachim; Tourville, Jason; Klein, Arno

    2012-01-01

    Extracting objects related to a fold in the cerebral cortex ("sulcus features") from human brain magnetic resonance imaging data has applications in morphometry, landmark-based registration, and anatomical labeling. In prior work, sulcus features such as surfaces, fundi and pits have been extracted separately. Here we define and extract nested sulcus features in a hierarchical manner from a cortical surface mesh having curvature or depth values. Our experimental results show that the nested features are comparable to features extracted separately using other methods, and that they are consistent across subjects and with manual label boundaries. Our open source feature extraction software will be made freely available as part of the Mindboggle project (http://www.mindboggle.info). PMID:23366910

  17. Extraction chromatography: Progress and opportunities

    SciTech Connect

    Dietz, M.L.; Horwitz, E.P.; Bond, A.H.

    1997-10-01

    Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.

  18. Information Extraction in Molecular Biology

    E-print Network

    Theune, Mariët

    0929­0672 trefwoorden: functional genomics, bio-informatics, information extraction, text mining Genomics supports this work by sponsoring workshops and tutorials and by funding exchanges of researchers

  19. Femoral approach to lead extraction.

    PubMed

    Mulpuru, Siva K; Hayes, David L; Osborn, Michael J; Asirvatham, Samuel J

    2015-03-01

    Laser and radiofrequency energy-assisted lead extraction has greatly facilitated this complex procedure. Although success rates are high, in some instances alternate methods of extraction are required. In this review, we discuss techniques for femoral extraction of implanted leads and retained fragments. The major tools available, including commonly used snares and delivery tools, are discussed. We briefly describe combined internal jugular and femoral venous extraction approaches, as well as complimentary utilization of more than one technique via the femoral vein. Animated and procedural sequences are included to help the reader visualize the key components of these techniques. PMID:25311643

  20. Terminology Extraction from Log Files

    NASA Astrophysics Data System (ADS)

    Saneifar, Hassan; Bonniol, Stéphane; Laurent, Anne; Poncelet, Pascal; Roche, Mathieu

    The log files generated by digital systems can be used in management information systems as the source of important information on the condition of systems. However, log files are not exhaustively exploited in order to extract information. The classical methods of information extraction such as terminology extraction methods are irrelevant to this context because of the specific characteristics of log files like their heterogeneous structure, the special vocabulary and the fact that they do not respect a natural language grammar. In this paper, we introduce our approach Exterlog to extract the terminology from log files. We detail how it deals with the particularity of such textual data.

  1. Lyle Ungar, University of Pennsylvania Information ExtractionInformation Extraction

    E-print Network

    Ungar, Lyle H.

    Lyle Ungar, University of Pennsylvania Information ExtractionInformation Extraction from Informal Textsfrom Informal Texts Lyle Ungar University of Pennsylvania What works, what doesn't When are machine learning and NLP useful? #12;2 Lyle H Ungar, University of Pennsylvania IE from Informal Texts:Two Case

  2. Oil shale extraction using super-critical extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (inventor)

    1983-01-01

    Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.

  3. Astrophysics of resonant orbits in the Kerr metric

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-04-01

    This paper gives a complete characterization of the location of resonant orbits in a Kerr spacetime for all possible black hole spins and orbital parameter values. A resonant orbit in this work is defined as a geodesic for which the longitudinal and radial orbital frequencies are commensurate. Our analysis is based on expressing the resonance condition in its most symmetric form using Carlson's elliptic integrals, which enable us to provide exact results together with a number of concise formulas characterizing the explicit dependence on the system parameters. The locations of resonant orbits identify regions where intriguing observable phenomena could occur in astrophysical situations when various sources of perturbation act on the binary system. Resonant effects may have observable implications for the inspirals of compact objects into a supermassive black hole. During a generic inspiral the slowly evolving orbital frequencies will pass through a series of low-order resonances where the ratio of orbital frequencies is equal to the ratio of two small integers. At these locations rapid changes in the orbital parameters could produce a measurable phase shift in the emitted gravitational and electromagnetic radiation. Resonant orbits may also capture gas or larger objects leading to further observable characteristic electromagnetic emission. According to the Kolmogorov-Arnold-Moser theorem, low-order resonant orbits demarcate the regions where the onset of geodesic chaos could occur when the Kerr Hamiltonian is perturbed. Perturbations are induced for example if the spacetime of the central object is non-Kerr, if gravity is modified, if the orbiting particle has large multipole moments, or if additional masses are nearby. We find that the 1 /2 and 2 /3 resonances occur at approximately 4 and 5.4 Schwarzschild radii (Rs) from the black hole's event horizon. For compact object inspirals into supermassive black holes (˜106M? ) this region lies within the sensitivity band of space-based gravitational wave detectors such as eLISA. When interpreted within the context of the supermassive black hole at the Galactic center, Sgr A*, this implies that characteristic length scales of 41 ? as and 55 ? as and time scales of 50 min and 79 min respectively should be associated with resonant effects if Sgr A* is nonspinning, while spin decreases these values by up to ˜32 % and ˜28 %. These length scales are potentially resolvable with radio very-long-baseline interferometry measurements using the Event Horizon Telescope. We find that all low-order resonances are localized to the strong field region. In particular, for distances r >50 Rs from the black hole, the order of the resonances is sufficiently large that resonant effects of generic perturbations are not expected to lead to drastic changes in the dynamics. This fact guarantees the validity of using approximations based on averaging to model the orbital trajectory and frequency evolution of a test object in this region. Observing orbital motion in the intermediate region 50 Rsextracting the multipole moments of the central object by observing the orbit of a pulsar—since the object is close enough to be sensitive to the quadruple moment of the central object but far enough away not to be subjected to resonant effects.

  4. Resonant relaxation in protoplanetary disks

    E-print Network

    Scott Tremaine

    1998-05-27

    Resonant relaxation is a novel form of two-body relaxation that arises in nearly Keplerian disks such as protoplanetary disks. Resonant relaxation does not affect the semimajor axes of the particles, but enhances relaxation of particle eccentricities and inclinations. The equilibrium state after resonant relaxation is a Rayleigh distribution, with the mean-square eccentricity and inclination inversely proportional to mass. The rate of resonant relaxation depends strongly on the precession rate of the disk. If the precession due to the disk's self-gravity is small compared to the total precession, then the relaxation is concentrated near the secular resonance between each pair of interacting bodies; on the other hand if the precession rate is dominated by the disk's self-gravity then relaxation occurs through coupling to the large-scale low-frequency m=1 normal modes of the disk. Depending on the disk properties, resonant relaxation may be either stronger or weaker than the usual non-resonant relaxation.

  5. Lasing from active optomechanical resonators

    PubMed Central

    Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40?GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  6. Tunable Micro- and Nanomechanical Resonators

    PubMed Central

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  7. Tunable Micro- and Nanomechanical Resonators.

    PubMed

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  8. Information filtering in resonant neurons.

    PubMed

    Blankenburg, Sven; Wu, Wei; Lindner, Benjamin; Schreiber, Susanne

    2015-12-01

    Neuronal information transmission is fre- quency specific. In single cells, a band-pass like frequency preference can arise from the subthreshold dynamics of the membrane potential, shaped by properties of the cell's membrane and its ionic channels. In these cases, a cell is termed resonant and its membrane impedance spectrum exhibits a peak at non-vanishing frequencies. Here, we show that this frequency selectivity of neuronal response amplitudes need not translate into a similar frequency selectivity of information transfer. In particular, neurons with resonant but linear subthreshold voltage dynamics (without threshold) do not show a resonance of information transfer at the level of subthreshold voltage; the corresponding coherence has low-pass characteristics. Interestingly, we find that when combined with nonlinearities, subthreshold resonances do shape the frequency dependence of coherence and the peak in the subthreshold impedance translates to a peak in the coherence function. In other words, the nonlinearity inherent to spike generation allows a subthreshold impedance resonance to shape a resonance of voltage-based information transfer. We demonstrate such nonlinearity-mediated band-pass filtering of information at frequencies close to the subthreshold impedance resonance in three different model systems: the resonate-and-fire model, the conductance-based Morris-Lecar model, and linear resonant dynamics combined with a simple static nonlinearity. In the spiking neuron models, the band-pass filtering is most pronounced for low firing rates and a high variability of interspike intervals, similar to the spiking statistics observed in vivo. We show that band-pass filtering is achieved by reducing information transfer over low-frequency components and, consequently, comes along with an overall reduction of information rate. Our work highlights the crucial role of nonlinearities for the frequency dependence of neuronal information transmission. PMID:26546022

  9. Optofluidic ring resonator dye lasers

    NASA Astrophysics Data System (ADS)

    Sun, Yuze; Suter, Jonathan D.; Fan, Xudong

    2010-02-01

    We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall thickness of a few micrometers. The capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. The laser cavity structure is versatile to adapt to the gain medium of any refractive index. Owing to the high Q-factor (>109), the lasing threshold of 25 nJ/mm2 is achieved. Besides directly pump the dye molecules, lasing through fluorescence resonance energy transfer (FRET) between the donor and acceptor dye molecules is also studied in COFRR laser. The energy transfer process can be further controlled by designed DNA scaffold labeled with donor/acceptor molecules. The ICOFRR dye laser is based on a cylindrical ring resonator fused onto the inner surface of a thick walled glass capillary. The structure has robust mechanical strength to sustain rapid gain medium circulation. The CpOFRR utilizes a cylindrical ring resonator fused on the inner surface of the COFRR capillary. Since the capillary wall is thin, the individual WGMs of the cylindrical ring resonator and the COFRR couples strongly and forms Vernier effect, which provides a way to generate a single mode dye laser.

  10. Constructive role of Brownian motion: Brownian motors and Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Hänggi, Peter

    2005-03-01

    Noise is usually thought of as the enemy of order rather as a constructive influence. For the phenomena of Stochastic Resonance [1] and Brownian motors [2], however, stochastic noise can play a beneficial role in enhancing detection and/or facilitating directed transmission of information in absence of biasing forces. Brownian motion assisted Stochastic Resonance finds useful applications in physical, technological, biological and biomedical contexts [1,3]. The basic principles that underpin Stochastic Resonance are elucidated and novel applications for nonlinear classical and quantum systems will be addressed. The presence of non-equilibrium disturbances enables to rectify Brownian motion so that quantum and classical objects can be directed around on a priori designed routes in biological and physical systems (Brownian motors). In doing so, the energy from the haphazard motion of (quantum) Brownian particles is extracted to perform useful work against an external load. This very concept together with first experimental realizations are discussed [2,4,5]. [1] L. Gammaitoni, P. Hä'nggi, P. Jung and F. Marchesoni, Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998).[2] R. D. Astumian and P. Hä'nggi, Brownian motors, Physics Today 55 (11), 33 (2002).[3] P. Hä'nggi, Stochastic Resonace in Physics and Biology, ChemPhysChem 3, 285 (2002).[4] H. Linke, editor, Special Issue on Brownian Motors, Applied Physics A 75, No. 2 (2002).[5] P. Hä'nggi, F. Marchesoni, F. Nori, Brownian motors, Ann. Physik (Leipzig) 14, xxx (2004); cond-mat/0410033.

  11. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  12. Evolution of the pygmy dipole resonance in Sn isotopes

    SciTech Connect

    Toft, H. K.; Larsen, A. C.; Buerger, A.; Guttormsen, M.; Goergen, A.; Nyhus, H. T.; Renstroem, T.; Siem, S.; Tveten, G. M.; Voinov, A.

    2011-04-15

    Nuclear level density and {gamma}-ray strength functions of {sup 121,122}Sn below the neutron separation energy are extracted with the Oslo method using the ({sup 3}He,{sup 3}He{sup '{gamma}}) and ({sup 3}He,{alpha}{gamma}) reactions. The level densities of {sup 121,122}Sn display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for E{sub {gamma}} > or approx. 5.2 MeV. This enhancement is compatible with pygmy resonances centered at {approx_equal}8.4(1) and {approx_equal}8.6(2) MeV, respectively, and with integrated strengths corresponding to {approx_equal}1.8{sub -5}{sup +1}% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in {sup 116-119}Sn. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in {sup 116-122}Sn is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  13. Evolution of the pygmy dipole resonance in Sn isotopes

    E-print Network

    H. K. Toft; A. C. Larsen; A. Bürger; M. Guttormsen; A. Görgen; H. T. Nyhus; T. Renstrøm; S. Siem; G. M. Tveten; A. Voinov

    2011-05-18

    Nuclear level density and $\\gamma$-ray strength functions of $^{121,122}$Sn below the neutron separation energy are extracted with the Oslo method using the ($^3$He,$^3$He$^\\prime\\gamma$) and ($^3$He,$\\alpha \\gamma$) reactions. The level densities of $^{121,122}$Sn display step-like structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for $E_\\gamma \\gtrsim 5.2 $ MeV. This enhancement is compatible with pygmy resonances centered at $\\approx 8.4(1)$ and $\\approx 8.6(2)$ MeV, respectively, and with integrated strengths corresponding to $\\approx1.8^{+1}_{-5}%$ of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in $^{116-119}$Sn. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in $^{116-122}$Sn is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  14. D Pi scattering and D meson resonances from lattice QCD

    E-print Network

    Mohler, Daniel; Woloshyn, R M

    2012-01-01

    The masses and widths of the broad scalar D_0^*(2400) and the axial D_1(2430) charmed-light resonances are extracted by simulating the corresponding D Pi and D* Pi scattering on the lattice. The resonance parameters are obtained using a Breit-Wigner fit of the elastic phase shifts. The resulting D_0^*(2400) mass is 351+/-21 MeV above the spin-average 1/4(m_D+3m_{D*}), in agreement with the experimental value of 347+/-29 MeV above. The resulting D_0^* to D Pi coupling g^{lat}=2.55+/-0.21 GeV is close to the experimental value g^{exp}<=1.92+/-0.14 GeV, where g parametrizes the width $\\Gamma\\equiv g^2p^*/s$. The resonance parameters for the broad D_1(2430) are also found close to the experimental values; these are obtained by appealing to the heavy quark limit, where the neighboring resonance D_1(2420) is narrow. The calculated I=1/2 scattering lengths are a_0=0.81+/-0.14 fm for D Pi and a_0=0.81+/-0.17 fm for D* Pi scattering. The simulation of the scattering in these channels incorporates quark-antiquark as...

  15. Resonant Orbits and the High Velocity Peaks toward the Bulge

    NASA Astrophysics Data System (ADS)

    Molloy, Matthew; Smith, Martin C.; Evans, N. Wyn; Shen, Juntai

    2015-10-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape toward the Galactic center. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the Apache Point Observatory Galactic Evolution Experiment commissioning data. We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range {10}\\circ ? {? }{bar}? 25^\\circ . However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.

  16. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  17. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  18. Multiple resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  19. Multiple resonant railgun power supply

    DOEpatents

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  20. SHARE: Statistical Hadronization with Resonances

    E-print Network

    Giorgio Torrieri; Steve Steinke; Wojciech Broniowski; Wojciech Florkowski; Jean Letessier; Johann Rafelski

    2004-07-22

    SHARE is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. With the physical input of intensive statistical parameters, it generates the ratios of particle abundances. The program includes cascade decays of all confirmed resonances from the Particle Data Tables. The complete treatment of these resonances has been known to be a crucial factor behind the success of the statistical approach. An optional feature implemented is a Breit--Wigner type distribution for strong resonances. An interface for fitting the parameters of the model to the experimental data is provided.

  1. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  2. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  3. COMBINING NEUTRAL AND ACIDIC EXTRACTANTS FOR RECOVERING TRANSURANIC ELEMENTS FROM NUCLEAR FUEL

    SciTech Connect

    Lumetta, Gregg J.; Neiner, Doinita; Sinkov, Sergey I.; Carter, Jennifer C.; Braley, Jenifer C.; Latesky, Stanley; Gelis, Artem V.; Tkac, Peter; Vandegrift, George F.

    2011-10-03

    We have been investigating a solvent extraction system that combines a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO)--with an acidic extractant--bis(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent for separating Am and Cm from the other components of irradiated nuclear fuel. It was originally hypothesized that the extraction chemistry of CMPO would dominate under conditions of high acidity (> 1 M HNO3), resulting in co-extraction of the transuranic and lanthanide elements into the organic phase. Contacting the loaded solvent with a solution of diethylenetriaminepentaacetate (DTPA) buffered with lactic or citric acid at pH {approx}3 to 4 would result in a condition in which the HDEHP chemistry dominates. Although the data somewhat support this hypothesis, it is clear that there are interactions between the two extractants such that they do not act independently in the extraction and stripping regimes. We report here studies directed at determining the nature and extent of interaction between CMPO and HDEHP, the synergistic behavior of CMPO and HDEHP in the extraction of americium and neodymium, and progress towards determining the thermodynamics of this extraction system. Neodymium and americium behave similarly in the combined solvent system, with a significant synergy between CMPO and HDEHP in the extraction of both of these trivalent elements from lactate-buffered DTPA solutions. In contrast, a much weaker synergistic behaviour is observed for europium. Thus, investigations into the fundamental chemistry involved in this system have focused on the neodymium extraction. The extraction of neodymium has been systematically investigated, individually varying the HDEHP concentration, the CMPO concentration, or the aqueous phase composition. Thermodynamic modeling of the neodymium extraction system has been initiated. Interactions between CMPO and HDEHP in the organic phase must be taken into account in the thermodynamic modeling; such interactions have been quantified by nuclear magnetic resonance measurements.

  4. Electroexcitation of the Roper resonance from CLAS data

    E-print Network

    Inna Aznauryan; Volker Burkert

    2007-11-07

    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at 1.7 P11(1440) transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the 3q ground state.

  5. Fano Resonance in an Electrically Driven Plasmonic Device

    E-print Network

    Vardi, Yuval; Shalem, Guy; Bar-Joseph, Israel

    2016-01-01

    We present an electrically driven plasmonic device consisting of a gold nanoparticle trapped in a gap between two electrodes. The tunneling current in the device generates plasmons, which decay radiatively. The emitted spectrum extends up to an energy that depends on the applied voltage. Characterization of the electrical conductance at low temperatures allows us to extract the voltage drop on each tunnel barrier and the corresponding emitted spectrum. In several devices we find a pronounced sharp asymmetrical dip in the spectrum, which we identify as a Fano resonance. Finite-difference time-domain (FDTD) calculations reveal that this resonance is due to interference between the nanoparticle and electrodes dipolar fields, and can be conveniently controlled by the structural parameters.

  6. Modern Michelson-Morley experiment using cryogenic optical resonators.

    PubMed

    Müller, Holger; Herrmann, Sven; Braxmaier, Claus; Schiller, Stephan; Peters, Achim

    2003-07-11

    We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over approximately 1 yr. For a possible anisotropy of the speed of light c, we obtain Delta(theta)c/c(0)=(2.6+/-1.7)x10(-15). Within the Robertson-Mansouri-Sexl (RMS) test theory, this implies an isotropy violation parameter beta-delta-1 / 2=(-2.2+/-1.5)x10(-9), about 3 times lower than the best previous result. Within the general extension of the standard model of particle physics, we extract limits on seven parameters at accuracies down to 10(-15), improving the best previous result by about 2 orders of magnitude. PMID:12906465

  7. Modern Michelson-Morley Experiment using Cryogenic Optical Resonators

    NASA Astrophysics Data System (ADS)

    Müller, Holger; Herrmann, Sven; Braxmaier, Claus; Schiller, Stephan; Peters, Achim

    2003-07-01

    We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over ˜1 yr. For a possible anisotropy of the speed of light c, we obtain ??c/c0=(2.6±1.7)×10-15. Within the Robertson-Mansouri-Sexl (RMS) test theory, this implies an isotropy violation parameter ?-?-1/2=(-2.2±1.5)×10-9, about 3 times lower than the best previous result. Within the general extension of the standard model of particle physics, we extract limits on seven parameters at accuracies down to 10-15, improving the best previous result by about 2 orders of magnitude.

  8. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  9. Resonance ionization mass spectrometry for precise measurements of iostope ratios.

    SciTech Connect

    Levine, J.; Savina, M. R.; Stephan, T.; Dauphas, N.; Davis, A. M.; Knight, K. B.; Pellin, M. J.; Materials Science Division; Chicago Center for Cosmochemistry; Univ.of Chicago; Univ. of California at Berkeley; LLNL

    2009-11-01

    Resonance ionization mass spectrometry offers extremely high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Measured isotope ratios are sensitive to small fluctuations in the pointing, pulse timing, and wavelength of the resonance lasers. We show that, by minimizing these fluctuations using feedback controls and by power-broadening the optical transitions, we are able to measure chromium isotope ratios with statistics-limited precision better than 1%. Small additional improvements in reproducibility come from careful shaping of the electric field in the region where atoms are photoionized and from minimizing pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel. The increased reproducibility of isotopic measurements on standard materials has enabled us to detect anomalous chromium isotopic abundances in presolar SiC grains extracted from primitive meteorites.

  10. Resonance IR: a coherent multidimensional analogue of resonance Raman.

    PubMed

    Boyle, Erin S; Neff-Mallon, Nathan A; Handali, Jonathan D; Wright, John C

    2014-05-01

    This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes. PMID:24707979

  11. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  12. Magnetic resonance cell

    SciTech Connect

    Kwon, T.M.; Volk, C.H.

    1984-05-01

    There is disclosed a nuclear magnetic alignment device for use in a nuclear magnetic resonance gyroscope and the like. One embodiment includes a container for gas having a layer of rubidium hydride on its inner surface. The container comprising a spherical portion and a tip portion, is rotationally symmetric about an axis of symmetry. Enclosed within the container is a nuclear moment gas having a nuclear electric quadrupole moment, such as xenon-131, and an optically pumpable substance, such as rubidium. A portion of the rubidium is a vapor. The remainder is a condensed pellet which is deposited in the tip of the container such that the pellet is also rotationally symmetric about the axis of symmetry of the container. A layer of rubidium hydride is deposited on the inner surface of the container. The device further includes means for orienting the symmetry axis of the container at an angle to an applied magnetic field such that the relaxation time constant of the aligned nuclear moment gas is substantially at a maximum.

  13. Sterilization of Extracted Human Teeth.

    ERIC Educational Resources Information Center

    Pantera, Eugene A., Jr.; Schuster, George S.

    1990-01-01

    At present, there is no specific recommendation for sterilization of extracted human teeth used in dental technique courses. The purpose of this study was to determine whether autoclaving would be effective in the sterilization of extracted teeth without compromising the characteristics that make their use in clinical simulations desirable. (MLW)

  14. Antifungal activity of juniper extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sawdust from three species of Juniperus (i.e., J. virginianna, J. occidentalis, and J. ashei) were extracted with hexane or ethanol and the extracts tested for antifungal activity against four species of wood-rot fungi. These species studied represent the junipers with the greatest potential for co...

  15. Monolayer behavior of hydroxyoxime extractants

    SciTech Connect

    Chaiko, D.J.; Osseo-Asare, K.

    1988-10-01

    Efforts to elucidate solvent extraction mechanisms in hydrometallurgical systems have generally been hindered by a lack of physico-chemical data pertaining to the interfacial properties of organic-soluble extractants and their metal complexes. In an effort to address this situation, a Langmuir film balance was used to characterize the interfacial properties of purified metal extractants spread as monomolecular films at the air/water interface. This interfacial system was used as a model for studying the interactions of the extractant films with the aqueous phase. The metal extractants used in this study were: the anti-isomer of 5,8-diethyl-7-hydroxy-6-dodecanone oxime (DEDO, the active extractant in LIX63, Henkel), and the anti-isomer of 2-hydroxy-5-nonylbenzophenone oxime (HBPO, the active extractant in LIX65N, Henkel). Both equilibrium and dynamic film properties of single component and mixed monolayers were examined. The effects of aqueous phase copper ion on the equilibrium properties of these extractant monolayers were also investigated.

  16. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (inventors)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  17. Successive solvolytic extraction of petrocrops

    SciTech Connect

    Sharma, D.K.; Pradeep, A.K.; Tiwari, M.

    1996-12-31

    Petrocrops may provide a renewable source of petroleum in the future. The use of low boiling nonpolar (hexane) and polar (methanol) solvents may afford nonpolar and polar biocrudes respectively by successive extractions. However, further successive extraction of spent residue obtained in anthracene oil, quinoline, or liquid paraffin may afford recovery of biopolymer biocrude. These biocrudes may be hydro treated to yield liquid fuels.

  18. PHYSIOLOGICALLY BASED EXTRACTION PROCEDURE (PBEP)

    EPA Science Inventory

    The goal of this project is to develop an extraction procedure which mimics the physiological conditions in the human gastrointestinal track. Using this extraction procedure, the mass of contaminants which desorb from hazardous soil will be estimated. This project has focused ...

  19. Nonlocal Intracranial Cavity Extraction

    PubMed Central

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  20. Resonance production in p+p, p+A and A+A collisions measured with HADES

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Agakishiev, G.; Behnke, C.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Blume, C.; Böhmer, M.; Cabanelas, P.; Dritsa, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Gonzáalez-Díaz, D.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Holzmann, R.; Huck, P.; Höhne, C.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Krizek, F.; Kuc, H.; Kugler, A.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Lopes, L.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Siebenson, J.; Sobolev, Yu. G.; Spataroe, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2012-11-01

    The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.

  1. D? scattering and D meson resonances from lattice QCD

    NASA Astrophysics Data System (ADS)

    Mohler, Daniel; Prelovsek, Sasa; Woloshyn, R. M.

    2013-02-01

    A first exploratory lattice QCD simulation is presented, aimed at extracting the masses and widths of the broad scalar D0*(2400) and the axial D1(2430) charm-light resonances. For that purpose D? and D*? scattering are simulated, and the resonance parameters are extracted using a Breit-Wigner fit of the resulting phase shifts. We use a single two-flavor dynamical ensemble with m??266MeV, a?0.124fm and a rather small volume V=163×32. The resulting D0*(2400) mass is 351±21MeV above the spin average (1)/(4)(mD+3mD*), in agreement with the experimental value of 347±29MeV above. The resulting D0*?D? coupling, glat=2.55±0.21GeV, is close to the experimental value gexp??1.92±0.14GeV, where g parametrizes the width ??g2p*/s. The resonance parameters for the broad D1(2430) are also found close to the experimental values; these are obtained by appealing to the heavy quark limit, where the neighboring resonance D1(2420) is narrow. The calculated I=1/2 scattering lengths are a0=0.81±0.14fm for D? and a0=0.81±0.17fm for D*? scattering. The simulation of the scattering in these channels incorporates quark-antiquark as well as multihadron interpolators, and the distillation method is used for contractions. In addition, the ground and several excited charm-light and charmonium states with various JP are calculated using standard quark-antiquark interpolators.

  2. Electron current extraction from a permanent magnet waveguide plasma cathode

    SciTech Connect

    Weatherford, B. R.; Foster, J. E.; Kamhawi, H.

    2011-09-15

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed.

  3. Electron current extraction from a permanent magnet waveguide plasma cathode.

    PubMed

    Weatherford, B R; Foster, J E; Kamhawi, H

    2011-09-01

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. PMID:21974587

  4. A NEMS-based gauge factor extraction method for nanowires

    NASA Astrophysics Data System (ADS)

    Ouerghi, I.; Philippe, J.; Ladner, C.; Scheiblin, P.; Duraffourg, L.; Ernst, T.

    2015-11-01

    We propose a new non-destructive nanowire (NW) gauge factor (GF) extraction method for in-line monitoring or benchmark of this parameter. Unlike destructive conventional techniques, which also suffer from reproducibility issues, this method allows a direct measurement of the GF locally at the nanoscale and at the wafer level. GFs have been reliably measured on a wide range of silicon-based nanoelectromechanical systems (NEMS) resonators with different designs. For monocrystalline devices, the extracted values are in good agreement with typical values obtained for NWs fabricated with well-controlled top-down processes. These values are also compared with different doping levels and polysilicon (poly-Si) NEMS, which look promising for developing low-cost process solutions.

  5. A micro-machined resonator

    SciTech Connect

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1991-12-31

    This invention is comprised of a micro-machined resonator, typically quartz, with upper and lower micromachinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrodes through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  6. Gallium Nitride phononic crystal resonator

    E-print Network

    Wang, Siping, S.M. Massachusetts Institute of Technology

    2015-01-01

    We present a Gallium Nitride (GaN) Lamb Wave resonator using a Phononic Crystal (PnC) to selectively confine elastic vibrations with wide-band spurious mode suppression. A unique feature of the design demonstrated here is ...

  7. Nuclear magnetic resonance readable sensors

    E-print Network

    Ling, Yibo

    2010-01-01

    The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an ...

  8. Finite aperture waveguide laser resonators

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.; Hall, D. R.

    1973-01-01

    A general theory of finite aperture waveguide laser resonators is developed which represents the external reflectors by matrices which couple linearly polarized waveguide modes having the same azimuthal symmetry. The theory allows the determination of resonator efficiency, resonator frequencies, and laser near and far field patterns. Computations of the coupling loss for the fundamental waveguide mode as a function of mirror curvature, separation, and aperture are in agreement with recent infinite aperture calculations in the limit of large apertures and indicate three low-loss configurations: large radius of curvature mirrors close to the guide; large radius of curvature mirrors centered at the guide entrance; and generally smaller curvature mirrors separated by half their curvature from the guide entrance. Design guidelines for construction of high efficiency CO2, CO and He-Ne waveguide laser resonators are summarized in tabular form.

  9. Morphological resonances for multicomponent immunoassays

    NASA Astrophysics Data System (ADS)

    Whitten, W. B.; Shapiro, M. J.; Ramsey, J. M.; Bronk, B. V.

    1995-06-01

    An immunoassay technique capable of detecting and identifying a number of species of microorganisms in a single analysis is described. The method uses optical-resonance size discrimination of microspheres to identify antibodies to which stained microorganisms are bound.

  10. Nested Trampoline Resonators for Optomechanics

    E-print Network

    Matthew J. Weaver; Brian Pepper; Fernando Luna; Frank M. Buters; Hedwig J. Eerkens; Gesa Welker; Blaise Perock; Kier Heeck; Sven de Man; Dirk Bouwmeester

    2016-01-06

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  11. Nested Trampoline Resonators for Optomechanics

    E-print Network

    Matthew J. Weaver; Brian Pepper; Fernando Luna; Frank M. Buters; Hedwig J. Eerkens; Gesa Welker; Blaise Perock; Kier Heeck; Sven de Man; Dirk Bouwmeester

    2015-10-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating novel trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We construct a nested double resonator structure that generates approximately 80 dB of mechanical isolation from the mounting surface, eliminating the strong mounting dependence of the quality factor observed with single resonators. With the consistency provided by this isolation scheme we reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  12. Nested Trampoline Resonators for Optomechanics

    E-print Network

    Weaver, Matthew J; Luna, Fernando; Buters, Frank M; Eerkens, Hedwig J; Welker, Gesa; Perock, Blaise; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    2015-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating novel trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We construct a nested double resonator structure that generates approximately 80 dB of mechanical isolation from the mounting surface, eliminating the strong mounting dependence of the quality factor observed with single resonators. With the consistency provided by this isolation scheme we reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  13. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    NASA Astrophysics Data System (ADS)

    Wisby, I.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindström, T.

    2014-09-01

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd3+ in Al2O3) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 105. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50-65 MHz.

  14. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    E-print Network

    I. Wisby; S. E. de Graaf; R. Gwilliam; A. Adamyan; S. Kubatkin; P. J. Meeson; A. Ya. Tzalenchuk; T. Lindström

    2014-09-10

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd$^{3+}$ in Al$_{2}$O$_{3}$) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above $10^{5}$. Using microwave absorption spectroscopy we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of $1$ MHz and spin linewidths of $50 - 65$ MHz.

  15. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1?MHz and spin linewidths of 50–65?MHz.

  16. Fractal dimension of cerebral surfaces using magnetic resonance images

    SciTech Connect

    Majumdar, S.; Prasad, R.R.

    1988-11-01

    The calculation of the fractal dimension of the surface bounded by the grey matter in the normal human brain using axial, sagittal, and coronal cross-sectional magnetic resonance (MR) images is presented. The fractal dimension in this case is a measure of the convolutedness of this cerebral surface. It is proposed that the fractal dimension, a feature that may be extracted from MR images, may potentially be used for image analysis, quantitative tissue characterization, and as a feature to monitor and identify cerebral abnormalities and developmental changes.

  17. Optical frequency comb generation from aluminum nitride microring resonator.

    PubMed

    Jung, Hojoong; Xiong, Chi; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-08-01

    Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single-wavelength continuous-wave pump laser. Further, the Kerr coefficient (n?) of AlN is extracted from our experimental results. PMID:23903149

  18. Deposition of diamondlike films by electron cyclotron resonance microwave plasmas

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Shing, Y. H.

    1990-01-01

    Hard a-C:H films have been deposited through electron cyclotron resonance (ECR) microwave plasma decomposition of CH4 diluted with H2 gas. It has been found that hard diamondlike films could only be produced under a RF-induced negative self-bias of the substrate stage. Raman spectra indicate the deposition of two distinct film types: one film type exhibiting well-defined bands at 1360 and 1580/cm and another displaying a broad Raman peak centered at approximately 1500/cm. Variation of the mirror magnetic-field profile of the ECR system was examined, demonstrating the manipulation of film morphology through the extraction of different ion energies.

  19. Integrated modeling of electron cyclotron resonance ion sources and charge breeders with GEM, MCBC, and IonEx

    SciTech Connect

    Kim, J. S.; Zhao, L.; Cluggish, B. P.; Galkin, S. A.; Grubert, J. E.; Pardo, R. C.; Vondrasek, R. C.

    2010-02-15

    A numerical toolset to help in understanding physical processes in the electron cyclotron resonance charge breeder (ECRCB) and further to help optimization and design of current and future machines is presented. The toolset consists of three modules (Monte Carlo charge breeding code, generalized electron cyclotron resonance ion source modeling, and ion extraction), each modeling different processes occurring in the ECRCB from beam injection to extraction. The toolset provides qualitative study, such as parameter studies, and scaling of the operation, and physical understanding in the ECRCB. The methodology and a sample integrated modeling are presented.

  20. Lasing from active optomechanical resonators.

    PubMed

    Czerniuk, T; Brüggemann, C; Tepper, J; Brodbeck, S; Schneider, C; Kamp, M; Höfling, S; Glavin, B A; Yakovlev, D R; Akimov, A V; Bayer, M

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator's optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations--photons, phonons and electrons--can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40?GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  1. Resonance behaviors and mirror neurons.

    PubMed

    Rizzolatti, G; Fadiga, L; Fogassi, L; Gallese, V

    1999-05-01

    This article is subdivided into two parts. In the first part we review the properties of a particular class of premotor neurons, the "mirror" neurons. With this term we define neurons that discharge both when the monkey makes a particular action and when it observes another individual (monkey or human) making a similar action. The second part is an attempt to give a neurophysiological account of the mechanisms underlying behaviors where an individual reproduces, overtly or internally, movements or actions made by another individual. We will refer to these behaviors as "resonance behaviors". We distinguish two types of resonance behavior. The first type is characterized by imitation, immediate or with delay, of movements made by other individuals. Examples of resonance behavior of this type are the "imitative" behaviors observed in birds, young infants and patients with frontal lesions. The second type of resonance behavior is characterized by the occurrence, at the observation of an action, of a neural pattern, which, when internally generated, determines the making of the observed action. In this type of resonance behavior the observed action is, typically, not repeated (overtly). We argue that resonance behavior of the second type is at the basis of the understanding of actions made by others. At the end of the article we review evidence of mirror mechanisms in humans and discuss their anatomical localizations. PMID:10349488

  2. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  3. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R. (Albuquerque, NM); Sniegowski, Jeffry J. (Albuquerque, NM); Bivens, Hugh M. (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  4. FIR: An Effective Scheme for Extracting Useful Metadata from Social Media.

    PubMed

    Chen, Long-Sheng; Lin, Zue-Cheng; Chang, Jing-Rong

    2015-11-01

    Recently, the use of social media for health information exchange is expanding among patients, physicians, and other health care professionals. In medical areas, social media allows non-experts to access, interpret, and generate medical information for their own care and the care of others. Researchers paid much attention on social media in medical educations, patient-pharmacist communications, adverse drug reactions detection, impacts of social media on medicine and healthcare, and so on. However, relatively few papers discuss how to extract useful knowledge from a huge amount of textual comments in social media effectively. Therefore, this study aims to propose a Fuzzy adaptive resonance theory network based Information Retrieval (FIR) scheme by combining Fuzzy adaptive resonance theory (ART) network, Latent Semantic Indexing (LSI), and association rules (AR) discovery to extract knowledge from social media. In our FIR scheme, Fuzzy ART network firstly has been employed to segment comments. Next, for each customer segment, we use LSI technique to retrieve important keywords. Then, in order to make the extracted keywords understandable, association rules mining is presented to organize these extracted keywords to build metadata. These extracted useful voices of customers will be transformed into design needs by using Quality Function Deployment (QFD) for further decision making. Unlike conventional information retrieval techniques which acquire too many keywords to get key points, our FIR scheme can extract understandable metadata from social media. PMID:26330225

  5. Graded-index whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor)

    2005-01-01

    Whispering gallery mode optical resonators which have spatially-graded refractive indices. In one implementation, the refractive index spatially increases with a distance from an exterior surface of such a resonator towards an interior of the resonator to produce substantially equal spectral separations for different whispering gallery modes. An optical coupler may be used with such a resonator to provide proper optical coupling.

  6. Pesticide Extraction Efficiency of Two Solid Phase Extraction Disk Types After Extraction and Shipping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An interlaboratory study with 8 locations was conducted to assess the stability of pesticides on solid phase extraction disks (SPE) after incubation at various temperatures and time intervals. Deionized water fortified with selected pesticides was extracted using two types of SPE filtration disks...

  7. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  8. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  9. Microelectromechanical resonator and method for fabrication

    DOEpatents

    Wittwer, Jonathan W. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2010-01-26

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  10. Optimized Brain Extraction for Pathological Brains (optiBET)

    PubMed Central

    Lutkenhoff, Evan S.; Rosenberg, Matthew; Chiang, Jeffrey; Zhang, Kunyu; Pickard, John D.; Owen, Adrian M.; Monti, Martin M.

    2014-01-01

    The study of structural and functional magnetic resonance imaging data has greatly benefitted from the development of sophisticated and efficient algorithms aimed at automating and optimizing the analysis of brain data. We address, in the context of the segmentation of brain from non-brain tissue (i.e., brain extraction, also known as skull-stripping), the tension between the increased theoretical and clinical interest in patient data, and the difficulty of conventional algorithms to function optimally in the presence of gross brain pathology. Indeed, because of the reliance of many algorithms on priors derived from healthy volunteers, images with gross pathology can severely affect their ability to correctly trace the boundaries between brain and non-brain tissue, potentially biasing subsequent analysis. We describe and make available an optimized brain extraction script for the pathological brain (optiBET) robust to the presence of pathology. Rather than attempting to trace the boundary between tissues, optiBET performs brain extraction by (i) calculating an initial approximate brain extraction; (ii) employing linear and non-linear registration to project the approximate extraction into the MNI template space; (iii) back-projecting a standard brain-only mask from template space to the subject’s original space; and (iv) employing the back-projected brain-only mask to mask-out non-brain tissue. The script results in up to 94% improvement of the quality of extractions over those obtained with conventional software across a large set of severely pathological brains. Since optiBET makes use of freely available algorithms included in FSL, it should be readily employable by anyone having access to such tools. PMID:25514672

  11. Extractive condensation: A new separation process

    SciTech Connect

    Zeitsch, K.J.

    1999-10-01

    A new highly selective vapor-phase extraction process is described. Hydrogen bonding between a scavenging extractant and the substance to be extracted results in a high-boiling complex forming fog droplets readily separable from the remaining vapor. The process is exemplified by the extraction of acetic acid from the predominantly aqueous vapor stream of furfural reactors. Triethylamine is used as the extractant.

  12. Method of purifying neutral organophosphorus extractants

    DOEpatents

    Horwitz, E. Philip (Naperville, IL); Gatrone, Ralph C. (Naperville, IL); Chiarizia, Renato (Rome, IT)

    1988-01-01

    A method for removing acidic contaminants from neutral mono and bifunctional organophosphorous extractants by contacting the extractant with a macroporous cation exchange resin in the H.sup.+ state followed by contact with a macroporous anion exchange resin in the OH.sup.- state, whereupon the resins take up the acidic contaminants from the extractant, purifying the extractant and improving its extraction capability.

  13. Nonvolatile dichloromethane extractives of Gmelina arborea

    SciTech Connect

    Ukkonen, K.

    1982-02-01

    In pulping it is important to know how lipophilic extractives will behave and so avoid pitch problems. Experiments on Gmelina wood delivered from Brazil in 1978 are described, using dichloromethane extractives to give sufficient information about the lipophilic extractives. The behavior of Gmelina extracts in kraft pulping was compared to that of birch extracts and was found to be similar. (Refs. 10).

  14. Mass detection using capacitive resonant silicon resonator employing LC resonant circuit technique.

    PubMed

    Kim, Sang-Jin; Ono, Takahito; Esashi, Masayoshi

    2007-08-01

    Capacitive resonant mass sensing using a single-crystalline silicon resonator with an electrical LC oscillator was demonstrated in ambient atmosphere. Using capacitive detection method, the detectable minimum mass of 1 x 10(-14) g was obtained in the self-oscillation of cantilever with a thickness of 250 nm. The noise amplitude of the sensor output corresponds to a vibration amplitude of 0.05 nm(Hz)(0.5) in the frequency domain compared with the actuation signal, which is equivalent to the detectable minimum capacitance variation of 2.4 x 10(-21) F. Using the capacitive detection method, mass/stress induced resonance frequency shift due to the adsorption of ethanol and moist vapor in a pure N(2) gas as a carrier is successfully demonstrated. These results show the high potential of capacitive silicon resonator for high mass/stress-sensitive sensor. PMID:17764351

  15. Dental extractions using improvised equipment.

    PubMed

    Iserson, Kenneth V

    2013-12-01

    Extracting a tooth is the final treatment for multiple dental problems. Persons who are not dentists, however, have little experience with tooth extractions. When a remote setting makes it impossible to send a patient for optimal dental treatment, the clinician may need to extract teeth, sometimes using improvised equipment. The following cases of two patients with three carious, painful molars describe such a situation. The non-dental clinicians had to improvise not only appropriate dental tools, but also personal protective equipment, a functional suction machine, medications for a dental block, a dental chair, and dental consent forms and follow-up instructions in the patients' language. In these cases, they also communicated with their patients through a translator. To prepare to do tooth extractions in remote settings, clinicians should learn and practice dental blocks and review extraction techniques before they deploy. If they must do an extraction, clinicians should use the closest approximation available to the appropriate dental tools. When done correctly, a dental extraction can take some time and should not be rushed. PMID:24076092

  16. Stochastic Resonance: from climate to biology

    E-print Network

    Roberto Benzi

    2007-02-05

    In this paper I will review some basic aspects of the mechanism of stochastic resonance. Stochastic resonance was first introduced as a possible mechanism to explain long term climatic variation. Since then, there have been many applications of stochastic resonance in physical and biological systems. I will show that in complex system, stochastic resonance can substantially change as a function of the ``system complexity''. Also, I will briefly mention how to apply stochastic resonance for the case of Brownian motors.

  17. Extraction of lipids from yeast.

    PubMed

    Sobus, M T; Homlund, C E

    1976-04-01

    Several methods for the extraction of lipids from intact yeast cells have been compared. Extraction of intact cells with methanol followed by methanol: benzene (1:1, v/v) and benzene resulted in the recovery of equal or greater amounts of polar and nonpolar lipids than obtained by other methods. A preparative method involving preincubation of cells with aqueous KOH followed by the treatment of the cellular residue as described above yielded slightly more steryl esters than was extracted from broken cell preparations. PMID:772348

  18. Resonance Effects in the NASA Transonic Flutter Cascade Facility

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Capece, V. R.; Ford, C. T.

    2003-01-01

    Investigations of unsteady pressure loadings on the blades of fans operating near the stall flutter boundary are carried out under simulated conditions in the NASA Transonic Flutter Cascade facility (TFC). It has been observed that for inlet Mach numbers of about 0.8, the cascade flowfield exhibits intense low-frequency pressure oscillations. The origins of these oscillations were not clear. It was speculated that this behavior was either caused by instabilities in the blade separated flow zone or that it was a tunnel resonance phenomenon. It has now been determined that the strong low-frequency oscillations, observed in the TFC facility, are not a cascade phenomenon contributing to blade flutter, but that they are solely caused by the tunnel resonance characteristics. Most likely, the self-induced oscillations originate in the system of exit duct resonators. For sure, the self-induced oscillations can be significantly suppressed for a narrow range of inlet Mach numbers by tuning one of the resonators. A considerable amount of flutter simulation data has been acquired in this facility to date, and therefore it is of interest to know how much this tunnel self-induced flow oscillation influences the experimental data at high subsonic Mach numbers since this facility is being used to simulate flutter in transonic fans. In short, can this body of experimental data still be used reliably to verify computer codes for blade flutter and blade life predictions? To answer this question a study on resonance effects in the NASA TFC facility was carried out. The results, based on spectral and ensemble averaging analysis of the cascade data, showed that the interaction between self-induced oscillations and forced blade motion oscillations is very weak and can generally be neglected. The forced motion data acquired with the mistuned tunnel, when strong self-induced oscillations were present, can be used as reliable forced pressure fluctuations provided that they are extracted from raw data sets by an ensemble averaging procedure.

  19. Molecular magnetic resonance imaging

    PubMed Central

    Hengerer, A; Grimm, J

    2006-01-01

    Molecular MRI (mMRI) is a special implementation of Molecular Imaging for the non-invasive visualisation of biological processes at the cellular and molecular level. More specifically, mMRI comprises the contrast agent-mediated alteration of tissue relaxation times for the detection and localisation of molecular disease markers (such as cell surface receptors, enzymes or signaling molecules), cells (e.g. lymphocytes, stem cells) or therapeutic drugs (e.g. liposomes, viral particles). MRI yields topographical, anatomical maps; functional MRI (fMRI) provides rendering of physiologic functions and magnetic resonance spectroscopy (MRS) reveals the distribution patterns of some specific metabolites. mMRI provides an additional level of information at the molecular or cellular level, thus extending MRI further beyond the anatomical and physiological level. These advances brought by mMRI are mandatory for MRI to be competitive in the age of molecular medicine. mMRI is already today increasingly used for research purposes, e.g. to facilitate the examination of cell migration, angiogenesis, apoptosis or gene expression in living organisms. In medical diagnostics, mMRI will pave the way toward a significant improvement in early detection of disease, therapy planning or monitoring of outcome and will therefore bring significant improvement in the medical treatment for patients. In general, Molecular Imaging demands high sensitivity equipment, capable of quantitative measurements to detect probes that interact with targets at the pico- or nanomolar level. The challenge to detect such sparse targets can be exemplified with cell surface receptors, a common target for molecular imaging. At high expression levels (bigger than 106 per cell) the receptor concentration is approx. 1015 per ml, i.e. the concentration is in the micromole range. Many targets, however, are expressed in even considerably lower concentrations. Therefore the most sensitive modalities, namely nuclear imaging (PET and SPECT) have always been at the forefront of Molecular Imaging, and many nuclear probes in clinical use today are already designed to detect molecular mechanisms (such as FDG, detecting high glucose metabolism). In recent years however, Molecular Imaging has commanded attention from beyond the field of nuclear medicine. Further imaging modalities to be considered for molecular imaging primarily include optical imaging, MRI and ultrasound. PMID:21614236

  20. Coal extraction by aprotic dipolar solvents. Final report. [Tetramethylurea, hexa-methylphosphoramide

    SciTech Connect

    Sears, J T

    1985-12-01

    The overall goals of this project were to examine the rate and amount of extraction of coals at low temperature by a class of solvents with a generic structure to include tetramethylurea (TMU) and hexa-methylphosphoramide (HMPA) and to examine the nature of the extracted coal chemicals. The class of solvents with similar action, however, can be classified as aprotic, base solvents or, somewhat more broadly, specific solvents. The action of solvents by this last classification was then examined to postulate a mechanism of attack. Experimental work was conducted to explain the specific solvent attack including (1) pure solvent extraction, (2) extraction in mixtures with otherwise inert solvents and inhibitors, and (3) extraction with simultaneous catalytic enhancement attempts including water-gas shift conversion. Thus nuclear magnetic resonance (NMR) and gas-chromatograph mass spectrometer (GC-MS) analysis of extract molecules and extraction with high-pressure CO in TMU (plus 2% H2O) was performed. Effects of solvent additives such as cumene and quinone of large amounts of inert solvents such as tetralin, liminone, or carbon disulfide on extraction were also determined. Results are discussed. 82 refs., 36 figs., 37 tabs.

  1. Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV

    E-print Network

    Velotti, F M; Bartmann, W; Carlier, E; Cornelis, K; Efthymiopoulos, I; Goddard, B; Jensen, L K; Kain, V; Kowalska, M; Mertens, V; Steerenberg, R

    2013-01-01

    The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.

  2. 21 CFR 169.175 - Vanilla extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... odorous principles extractable from vanilla beans. In vanilla extract the content of ethyl alcohol is not... less than one unit per gallon. The vanilla constituent may be extracted directly from vanilla beans...

  3. 21 CFR 169.175 - Vanilla extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... odorous principles extractable from vanilla beans. In vanilla extract the content of ethyl alcohol is not... less than one unit per gallon. The vanilla constituent may be extracted directly from vanilla beans...

  4. 21 CFR 169.175 - Vanilla extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... odorous principles extractable from vanilla beans. In vanilla extract the content of ethyl alcohol is not... less than one unit per gallon. The vanilla constituent may be extracted directly from vanilla beans...

  5. Extracting information from informal communication

    E-print Network

    Rennie, Jason D. M. (Jason Daniel Malyutin), 1976-

    2007-01-01

    This thesis focuses on the problem of extracting information from informal communication. Textual informal communication, such as e-mail, bulletin boards and blogs, has become a vast information resource. However, such ...

  6. Managing Information Extraction [Tutorial Outline

    E-print Network

    Doan, AnHai

    Managing Information Extraction [Tutorial Outline] AnHai Doan1 , Raghu Ramakrishnan2 , Shivakumar in bioinformatics at Illinois and Michigan, and (9) Web-based community information man- agement (CIM) at Illinois

  7. Extracting Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  8. DNA Extraction & Staging Laboratory (DESL)

    Cancer.gov

    As part of the Cancer Genomics Research Laboratory (CGR), the DNA Extraction and Staging Laboratory (DESL) located in Frederick, MD, is responsible for the preparation of samples for investigators at NCI's Division of Cancer Epidemiology and Genetics (DCEG).

  9. Information extraction from broadcast news 

    E-print Network

    Gotoh, Yoshihiko; Renals, Steve

    2000-04-15

    This paper discusses the development of trainable statistical models for extracting content from television and radio news broadcasts. In particular, we concentrate on statistical finite-state models for identifying proper ...

  10. Electronic transmittance phase extracted from mesoscopic interferometers

    PubMed Central

    2012-01-01

    The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called ‘open’ interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in ‘closed’ interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the ‘bare’ QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a ? lapse. Therefore, closed mesoscopic interferometers can be used to address the ‘universal phase lapse’ problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. PMID:23061877

  11. Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; Rivière, Jacques; Lake, Colton R.; Le Bas, Pierre-Yves

    2015-07-01

    Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.

  12. Model of quantum dot and resonant states for the Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Vorobiev, A. M.; Popov, I. Yu

    2015-11-01

    The completeness of the system of resonant states for the operator extensions theory model of the Helmholtz resonator was proved. We deal with rectangular resonator with the Neumann boundary condition.

  13. Resonant frequency characteristics of a SAW device attached to resonating micropillars.

    PubMed

    Ramakrishnan, N; Nemade, Harshal B; Palathinkal, Roy Paily

    2012-01-01

    Recently we reported experimental and simulation results on an increase in resonance frequency of a SAW resonator caused by mass loading of micropillars made of SU-8, attached normal to the surface of the resonator. We concluded that SAW resonator and the SU-8 micropillars in unison form a system of coupled resonators. We have now extended this work and performed a finite element method simulation to study the resonance frequency characteristics of the SAW-based coupled resonator. In this paper we report the effect of the resonance frequency of the micropillars on the resonance frequency of the system of coupled resonators, and observe the coupling of micropillar resonance and the propagating SAW as described in the well known Dybwad system of coupled resonators. PMID:22666001

  14. Ant ecdysteroid extraction and radioimmunoassay.

    PubMed

    Brent, Colin; Dolezal, Adam

    2009-07-01

    Ecdysteroids are a group of steroid compounds present in many plant and invertebrate species. In arthropods, they function primarily as hormones involved in the regulation of molting. This protocol describes how to extract ecdysteroid hormones from ant specimens and subsequently quantify circulating levels of the hormone. The hormone can be extracted from hemolymph or from whole-body homogenates of insects and quantified by radioimmunoassay. PMID:20147212

  15. Matryoshka locally resonant sonic crystal.

    PubMed

    Elford, Daniel P; Chalmers, Luke; Kusmartsev, Feodor V; Swallowe, Gerry M

    2011-11-01

    The results of numerical modeling of sonic crystals with resonant array elements are reported. The investigated resonant elements include plain slotted cylinders as well as their various combinations, in particular, Russian doll or Matryoshka configurations. The acoustic band structure and transmission characteristics of such systems have been computed with the use of finite element methods. The general concept of a locally resonant sonic crystal is proposed that utilizes acoustic resonances to form additional band gaps that are decoupled from Bragg gaps. An existence of a separate attenuation mechanism associated with the resonant elements that increases performance in the lower frequency regime has been identified. The results show a formation of broad band gaps positioned significantly below the first Bragg frequency. For low frequency broadband attenuation, a most optimal configuration is the Matryoshka sonic crystal, where each scattering unit is composed of multiple concentric slotted cylinders. This system forms numerous gaps in the lower frequency regime, below Bragg bands, while maintaining a reduced crystal size viable for noise barrier technology. The finding opens alternative perspectives for the construction of sound barriers in the low frequency range usually inaccessible by traditional means including conventional sonic crystals. PMID:22087903

  16. Extraction of N* information from the limited p(gamma,K+)Lambda data set

    E-print Network

    S. Janssen; D. G. Ireland; J. Ryckebusch

    2003-02-18

    Nucleon resonance information is often obtained from fitting hadrodynamical model calculations to data, where model parameters such as resonance coupling constants are the free parameters in the fitting procedure. For reactions with a limited data set, such as p(gamma, K+)Lambda, complications in the extraction of reliable N* information occur not only through theoretical uncertainties, but also due to technical difficulties in the fitting procedure. In this article we outline a fitting strategy based on a genetic algorithm and illustrate the kind of ambiguities which can arise.

  17. Point Source Extraction with MOPEX

    E-print Network

    David Makovoz; Francine R. Marleau

    2005-06-30

    MOPEX (MOsaicking and Point source EXtraction) is a package developed at the Spitzer Science Center for astronomical image processing. We report on the point source extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input images can be performed optionally to increase the signal-to-noise ratio and improve detection of faint point sources. Point Response Function (PRF) fitting of point sources produces the final point source list which includes the fluxes and improved positions of the point sources, along with other parameters characterizing the fit. Passive and active deblending allows for successful fitting of confused point sources. Aperture photometry can also be computed for every extracted point source for an unlimited number of aperture sizes. PRF is estimated directly from the input images. Implementation of efficient methods of background and noise estimation, and modified Simplex algorithm contribute to the computational efficiency of MOPEX. The package is implemented as a loosely connected set of perl scripts, where each script runs a number of modules written in C/C++. Input parameter setting is done through namelists, ASCII configuration files. We present applications of point source extraction to the mosaic images taken at 24 and 70 micron with the Multiband Imaging Photometer (MIPS) as part of the Spitzer extragalactic First Look Survey and to a Digital Sky Survey image. Completeness and reliability of point source extraction is computed using simulated data.

  18. Fractional tunnelling resonance in plasmonic media

    PubMed Central

    Kang, Ji-Hun; -Han Park, Q.

    2013-01-01

    Metals can transmit light by tunnelling when they possess skin-depth thickness. Tunnelling can be resonantly enhanced if resonators are added to each side of a metal film, such as additional dielectric layers or periodic structures on a metal surface. Here we show that, even with no additional resonators, tunnelling resonance can arise if the metal film is confined and fractionally thin. In a slit waveguide filled with a negative permittivity metallic slab of thickness L, resonance is shown to arise at fractional thicknesses (L = Const./m; m = 1,2,3,…) by the excitation of ‘vortex plasmons'. We experimentally demonstrate fractional tunnelling resonance and vortex plasmons using microwave and negative permittivity metamaterials. The measured spectral peaks of the fractional tunnelling resonance and modes of the vortex plasmons agree with theoretical predictions. Fractional tunnelling resonance and vortex plasmons open new perspectives in resonance physics and promise potential applications in nanotechnology. PMID:23939460

  19. INEX modeling of the Boeing ring optical resonator free-electron laser

    SciTech Connect

    Goldstein, J.C.; Tokar, R.L.; McVey, B.D.; Elliott, C.J. ); Dowell, D.H.; Laucks, M.L.; Lowrey, A.R. )

    1990-01-01

    We present new results from the integrated numerical model of the accelerator/beam transport system and ring optical resonator of the Boeing free-electron laser experiment. Modifications of the electron-beam transport have been included in a previously developed PARMELA model and are shown to reduce dramatically emittance growth in the 180{degree} bend. The new numerically generated electron beam is used in the 3-D FEL simulation code FELEX to calculate expected laser characteristics with the ring optical resonator and the 5-m untapered THUNDER wiggler. Gain, extraction efficiency, and optical power are compared with experimental data. Performance sensitivity to optical cavity misalignments is studied.

  20. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    NASA Astrophysics Data System (ADS)

    Kweon, Hyuck-Min; Cho, Hong-Yeon; Cho-Hyoung, ii

    2014-12-01

    To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  1. Optically Detected Magnetic Resonance Imaging

    E-print Network

    Blank, Aharon; Fischer, Ran; London, Paz; Gershoni, David

    2014-01-01

    Optically detected magnetic resonance (ODMR) provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging (MRI) techniques. Here, we demonstrate for the first time how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially-encode the sample. This results in what we denote as an "optically detected magnetic resonance imaging" (ODMRI) technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially-selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importan...

  2. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  3. Photoproduction of Exotic Baryon Resonances

    E-print Network

    Marek Karliner; Jonathan L. Rosner

    2015-11-28

    We point out that the new exotic resonances recently reported by LHCb in the $J/\\psi p$ channel are excellent candidates for photoproduction off a proton target. This test is crucial to confirming the resonant nature of such states, as opposed to their being kinematical effects. We specialize to an interpretation of the heavier narrow state as a molecule composed of $\\Sigma_c$ and $\\bar D^*$, and estimate its production cross section using vector dominance. The relevant photon energies and fluxes are well within the capabilities of the GlueX and CLAS12 detectors at Thomas Jefferson National Accelerator Facility (JLAB). A corresponding calculation is also performed for photoproduction of an analogous resonance which is predicted to exist in the $\\Upsilon p$ channel.

  4. Viscoelastic coupling of nanoelectromechanical resonators.

    SciTech Connect

    Simonson, Robert Joseph; Staton, Alan W.

    2009-09-01

    This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.

  5. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  6. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 ?m) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.

  7. Characterization of proton beam emission from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Jain, S. K.; Tayyab, M.; Bagchi, S.; Chakera, J. A.; Naik, P. A.

    2013-04-01

    We report here characterization of the ions produced in the Electron Cyclotron Resonance Ion Source (ECRIS) at RRCAT, which operates at 2.45 GHz and is aimed to produce a 50 keV, 30 mA proton beam. The plasma in the source was created using microwave power in the range of 150-1200 W. An efficient, single hole, three-electrode ion extraction system was employed to extract the ion beam from the ECRIS, and the extracted ion beam was characterized using a Thomson Parabola Ion Spectrograph, which provides complete information of all the differently charged species present in the plasma. The extracted ion beam current measured up to 8 mA beam current for 25 keV accelerating field and followed the Child-Langmuir law.

  8. Extractant composition including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  9. Resonance in a head massager

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jair Lúcio Prados

    2015-04-01

    Mechanical structures such as pendula, bridges, or buildings always exhibit one (or more) natural oscillation frequency.1 If that structure is subjected to oscillatory forces of this same frequency, resonance occurs, with consequent increase of the structure oscillation amplitude. There is no shortage of simple experiments for demonstrating resonance in high school classes using a variety of materials, such as saw blades,2 guitars,3 pendulums,4 wine glasses,5 bottles,6 Ping-Pong balls,7 and pearl strings.8 We present here an experimental demonstration using only an inexpensive head (or scalp) massager, which can be purchased for less than a dollar.

  10. Resonator coiling in thermoacoustic engines

    SciTech Connect

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  11. New aspect of hadron resonances

    SciTech Connect

    Torres, A. Martinez; Oset, E.; Khemchamdani, K. P.

    2010-08-05

    In this talk we show our recent results for the study of three-hadron systems. The systems which we discuss here are made of two mesons and a baryon to give total strangeness -1, 0 and 1. The motivation for these studies comes from the data on many baryon resonances, especially the ones with J{sup {pi}}= 1/2{sup +}, which show a large branching ratio to two meson-one baryon decay channels. On solving the Faddeev equations with the input two body interactions obtained from the chiral Lagrangians, we find that many resonances couple strongly to three-hadron systems.

  12. Interventional Cardiovascular Magnetic Resonance Imaging

    PubMed Central

    Saikus, Christina E.; Lederman, Robert J.

    2010-01-01

    Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic. PMID:19909937

  13. Gallium nitride nanowire electromechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason Michael

    Nanoscale mechanical resonators are of great interest for high-resolution sensing applications, where the small resonator mass and high quality factor (Q, defined as resonance frequency f0 over full width at half maximum power) lead to unprecedented sensitivity. Here, we investigate gallium nitride (GaN) nanowire (NW) resonators. The single-crystal, c-axis NWs are 5 mum -- 20 mum long, with diameters from 50 nm -- 500 nm, and grow essentially free of defects. Our initial experiments involve measuring the resonances of as-grown NWs in a scanning electron microscope, where we observe exceptionally high Q values of 10 4 -- 105, one to two orders of magnitude higher than most NWs of comparable size. Using a single NW as a mass sensor, we then demonstrate a sub-attogram mass sensitivity. To provide a more flexible measurement technique that avoids electron-microscope detection, we fabricate doubly clamped NWs with an entirely electronic drive and readout scheme using a combination of lithographic patterning and dielectrophoresis. An electrostatic gate induces vibration, while readout utilizes the piezoresistivity of GaN. Observed resonances range from 9--36 MHz with Q values typically around 103 at room temperature and 10 -4 Pa. We use the behavior of f0 and Q to sense the NW's local environment, such as the additional sources of energy dissipation not present in the as-grown NWs. By cooling the device to 8 K, Q increases by an order of magnitude to above 104, with a highest value to date of 26,000 under vacuum. We explore additional NW properties through the thermal noise in the NW's mechanical motion and the exponential decay of mechanical motion in the presence of burst drive. Finally, we investigate the low-frequency 1/f parameter noise displayed by f0. We show that the noise in f0 is consistent with noise in the NW's resistance leading to temperature noise from local Joule heating, which in turn generates resonance frequency noise. For sensor applications, there will be optimal drive conditions that balance the f 0 noise with the signal-to-noise ratio of the system. With these insights, along with the simple drive and readout technique, these GaN-NW doubly clamped resonators have significant potential for high-resolution sensing applications.

  14. Microwave Frequency Discriminator With Sapphire Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John

    1994-01-01

    Cooled sapphire resonator provides ultralow phase noise. Apparatus comprises microwave oscillator operating at nominal frequency of about 8.1 GHz, plus frequency-discriminator circuit measuring phase fluctuations of oscillator output. One outstanding feature of frequency discriminator is sapphire resonator serving as phase reference. Sapphire resonator is dielectric ring resonator operating in "whispering-gallery" mode. Functions at room temperature, but for better performance, typically cooled to operating temperature of about 80 K. Similar resonator described in "Sapphire Ring Resonator for Microwave Oscillator" (NPO-18082).

  15. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  16. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  17. SNAKE DEPLORIZING RESONANCE STUDY IN RHIC

    SciTech Connect

    BAI,M.; CAMERON, P.; LUCCIO, A.; HUANG, H.; PITISYN, V.; ET AL.

    2007-06-25

    Snake depolarizing resonances due to the imperfect cancellation of the accumulated perturbations on the spin precession between snakes were observed at the Relativistic Heavy Ion Collider (RHIC). During the RHIC 2005 and 2006 polarized proton runs, we mapped out the spectrum of odd order snake resonance at Q{sub y} = 7/10. Here, Q, is the beam vertical betatron tune. We also studied the beam polarization after crossing the 7/10th resonance as a function of resonance crossing rate. This paper reports the measured resonance spectrum as well as the results of resonance crossing.

  18. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  19. Resonant Orbits and the High Velocity Peaks Towards the Bulge

    E-print Network

    Molloy, Matthew; Evans, N Wyn; Shen, Juntai

    2015-01-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. (2015). By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape towards the Galactic centre. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the APOGEE commissioning data (Nidever et al. 2012). We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range 10 < theta_bar < 25 (deg). However, some important questions about the nature of the peaks remain...

  20. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to mechanical energy and back. Such an electrostatic tweeter type excitation of a mechanical resonator will be tested at 5 MHz. Finite element calculation will be applied to resonator design for the desired resonator frequency and optimum configuration. The experiment consists of the sapphire resonator sandwiched between parallel electrodes. A DC+AC voltage can be applied to generate a force to act on a sapphire resonator. With the frequency of the AC voltage tuned to the sapphire resonator frequency, a resonant condition occurs and the sapphire Q can be measured with a high-frequency impedance analyzer. To achieve high Q values, many experimental factors such as vacuum seal, gas damping effects, charge buildup on the sapphire surface, heat dissipation, sapphire anchoring, and the sapphire mounting configuration will need attention. The effects of these parameters will be calculated and folded into the resonator design. It is envisioned that the initial test configuration would allow for movable electrodes to check gap spacing dependency and verify the input impedance prediction. Quartz oscillators are key components in nearly all ground- and space-based communication, tracking, and radio science applications. They play a key role as local oscillators for atomic frequency standards and serve as flywheel oscillators or to improve phase noise in high performance frequency and timing distribution systems. With ultra-stable performance from one to three seconds, an Earth-orbit or moon-based MSAR can enhance available performance options for spacecraft due to elimination of atmospheric path degradation.

  1. Infectious Achilles Tendinitis After Local Injection of Human Placental Extracts: A Case Report.

    PubMed

    Kim, Yoon-Chung; Ahn, Jae Hoon; Kim, Man-Soo

    2015-01-01

    Local injections of corticosteroids or human placental extracts are sometimes used for the treatment of resistant tendinitis or fasciitis. We report a case of infectious Achilles tendinitis complicated by calcaneal osteomyelitis after injection of human placental extracts for the Achilles tendinitis. She was treated with excision of the infected bone and tendon, followed by V-Y lengthening of the proximal portion of the Achilles tendon in a single stage. At 2 years postoperative, she remained symptom free without any signs of recurrence, and the follow-up magnetic resonance imaging scan demonstrated a well-maintained Achilles tendon with normal signal intensity. PMID:26213164

  2. NEFI: Network Extraction From Images

    PubMed Central

    Dirnberger, M.; Kehl, T.; Neumann, A.

    2015-01-01

    Networks are amongst the central building blocks of many systems. Given a graph of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to study various types of networks. In some applications, graph acquisition is relatively simple. However, for many networks data collection relies on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool that extracts graphs from images of networks originating in various domains. Regarding previous work on graph extraction, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners to easily extract graphs from images by combining basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to enable time-efficient collection of large datasets. The analysis of these novel datasets may open up the possibility to gain new insights into the structure and function of various networks. NEFI is open source and available at http://nefi.mpi-inf.mpg.de. PMID:26521675

  3. NEFI: Network Extraction From Images.

    PubMed

    Dirnberger, M; Kehl, T; Neumann, A

    2015-01-01

    Networks are amongst the central building blocks of many systems. Given a graph of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to study various types of networks. In some applications, graph acquisition is relatively simple. However, for many networks data collection relies on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool that extracts graphs from images of networks originating in various domains. Regarding previous work on graph extraction, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners to easily extract graphs from images by combining basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to enable time-efficient collection of large datasets. The analysis of these novel datasets may open up the possibility to gain new insights into the structure and function of various networks. NEFI is open source and available at http://nefi.mpi-inf.mpg.de. PMID:26521675

  4. Dual-frequency ferromagnetic resonance

    SciTech Connect

    Guan, Y.; Bailey, W.E.

    2006-05-15

    We describe a new experimental technique to investigate coupling effects between different layers or modes in ferromagnetic resonance (FMR). Dual FMR frequencies are excited (2-8 GHz) simultaneously and detected selectively in a broadband rf circuit using lock-in amplifier detection at separate modulation frequencies.

  5. Duffing's Equation and Nonlinear Resonance

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    The phenomenon of nonlinear resonance (sometimes called the "jump phenomenon") is examined and second-order van der Pol plane analysis is employed to indicate that this phenomenon is not a feature of the equation, but rather the result of accumulated round-off error, truncation error and algorithm error that distorts the true bounded solution onto…

  6. Spectroscopy in Magnetic Resonance Tomography

    SciTech Connect

    Verkhoglazova, E. V.; Kupriyanov, D. A.

    2007-11-26

    The magnetic resonance (MR) tomography is giving general picture of concentration and distribution of nuclei and spectroscopy analysis adds information about metabolites of examined nuclei. Such data enable more detailed diagnosis of diseases and treatment follow-up to be carried out in vivo.

  7. Giant resonances in O-16 

    E-print Network

    Lui, YW; Clark, HL; Youngblood, David H.

    2001-01-01

    Giant resonances in O-16 have been studied with inelastic scattering of 240 MeV alpha particles at small angles, Isoscalar E0, E1, and E2 strength corresponding to 48 +/- 10%, 32 +/- 7%, and 53 +/- 10%, of the respective energy-weighted sum rule...

  8. Stochastic Resonance and Information Processing

    NASA Astrophysics Data System (ADS)

    Nicolis, C.

    2014-12-01

    A dynamical system giving rise to multiple steady states and subjected to noise and a periodic forcing is analyzed from the standpoint of information theory. It is shown that stochastic resonance has a clearcut signature on information entropy, information transfer and other related quantities characterizing information transduction within the system.

  9. Controlling metamaterial resonances with light

    SciTech Connect

    Chakrabarti, Sangeeta; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2010-08-15

    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behavior of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching are implemented by coherently driving the resonant permittivity of the embedding medium with applied optical radiation. The effect of embedding split ring resonators in a frequency-dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetically induced transparency (EIT) is manifested in the splitting of the negative-permeability band, the modified (frequency-dependent) filling fractions, and the dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, and for an embedding medium exhibiting EIT also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures as well as the inhomogeneous broadening due to structural imperfections is demonstrated. Studies on plasmonic metamaterials that consist of metallic nanorods arranged in loops and exhibit a collective magnetic response at optical frequencies are presented. Control and switching in this class of plasmonic nanorod metamaterials is shown to be possible, for example, by embedding these arrays in a Raman-active liquid like CS{sub 2} and utilizing the inverse Raman effect.

  10. Auroral resonance line radiative transfer

    SciTech Connect

    Gladstone, G.R. )

    1992-02-01

    A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.

  11. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  12. From known to undiscovered resonances

    E-print Network

    B. Saghai

    2001-05-02

    Electromagnetic meson production formalisms are reviewed, with emphasise placed on their ability in search for new baryon resonances via gamma p -> K+ Lambda and gamma p -> eta p processes. The relevant studies, aiming to deepen our insights to hadron spectroscopy, constitute strong tests of the QCD inspired theoretical developements.

  13. The Tevatron resonant Schottky detectors

    SciTech Connect

    Marriner, John; /Fermilab

    1995-09-01

    The following is a description of some studies the author made on the resonant Schottky detectors in the Tevatron. The author doubts that this document contains any information that wasn't known previously, but the hope is that this document will serve as a useful self-contained reference for users of the system.

  14. Trends in resonance ionization spectroscopy

    SciTech Connect

    Hurst, G.S.

    1986-01-01

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig.

  15. Spin Motion Near Snake Resonances

    SciTech Connect

    Barber, D. P.; Vogt, M.

    2007-06-13

    We give a brief account of on-going work on the loss of polarisation during acceleration close to so-called snake resonances in proton storage rings. We show that within the model studied here the polarisation can be preserved if the rate of acceleration is low enough.

  16. Microfabricated teeter-totter resonator

    DOEpatents

    Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.

    2004-11-23

    A microfabricated teeter-totter resonator comprises a frame, a paddle pivotably anchored to the frame by pivot arms that define an axis of rotation, a current conductor line on a surface of the paddle, means for applying a static magnetic field substantially perpendicular to the rotational axis and in the plane of the paddle, and means for energizing the current conductor line with an alternating current. A Lorentz force is generated by the interaction of the magnetic field with the current flowing in the conductor line, causing the paddle to oscillate about the axis of rotation. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry. The microfabricated teeter-totter resonator has many varied applications, both as an actuation device and as a sensor. When used as a chemical sensor, a chemically sensitive coating can be disposed on one or both surfaces of the paddle to enhance the absorption of chemical analytes from a fluid stream. The resulting mass change can be detected as a change in the resonant frequency or phase of the oscillatory motion of the paddle.

  17. Magnetic Resonance Imaging of concrete

    E-print Network

    Burgoyne, Chris

    1 Magnetic Resonance Imaging of concrete Dr Chris Burgoyne Department of Engineering University of Cambridge Assessment of Concrete Structures · How can we tell what is going on inside concrete? · We would like to know:- · Has the concrete hardened? · Is there corrosion? · Is there cracking? · Where

  18. Orbital Resonance and Solar Cycles

    E-print Network

    P. A. Semi

    2009-03-29

    We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

  19. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  20. Resonant Association of Feshbach Molecules

    NASA Astrophysics Data System (ADS)

    Hanna, Thomas M.; Köhler, Thorsten; Burnett, Keith

    2007-06-01

    In recent experiments, Feshbach molecules have been associated using resonant modulation of a magnetic field close to a zero-energy resonance [1, 2]. We analyse the dependence of this process upon the duration, amplitude and frequency of the modulation, as well as the temperature and density of the gas. A modulation of angular frequency ?L resonantly couples a pair of atoms with relative kinetic energy p^2/m = h?L + Eb^av to the molecular state, where Eb^av is the molecular bound state energy. The presence of a continuum of modes around this energy has a strong influence on the final conversion efficiency. Shifts in the modulation frequency giving maximum conversion are created by the amplitude of the modulation and the temperature of the gas. We discuss the importance of mean-field effects at short times, and predict that resonant association can be effective for binding energies of order h x1 MHz. [1] S. T. Thompson, E. Hodby and C. E. Wieman, Phys. Rev. Lett. 95, 190404 (2005). [2] S. B. Papp and C. E. Wieman, Phys. Rev. Lett. 97, 180404 (2006).

  1. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  2. Probing free radical processes during storage of extracts from whole roasted coffee beans: impact of O2 exposure during extraction and storage.

    PubMed

    Yeretzian, Chahan; Pascual, Ederlinda C; Goodman, Bernard A

    2013-04-01

    Development of liquid coffee products of good quality with extended shelf lives is hampered by their rapid quality degradation as a result of both physical and flavor instability. One approach that is being considered for extending the shelf lives of liquid coffees is that of supplementing the beverage with a very mild and slow continuous extraction from intact roasted beans that are held within an aluminum can. This paper reports the use of electron paramagnetic resonance (EPR) spectroscopy to examine the effects of key parameters that affect the stability of liquid coffee prepared from aqueous extracts from whole roasted coffee beans, namely, the O2 content of the water and headspace during extraction and the temperature during storage. It was found that the magnitude of the free radical signal was sensitive to the O2 content of the water used for extraction and storage time and temperature, whereas the intensity of the Fe(III) (g = 4.3) signal was affected only by the O2 content of the water and the Mn signal was insensitive to the experimental parameters. The most critical factor was the O2 content of the water used for extraction, and careful control of O2 exposure at the extraction stage could be a crucial factor for generating products with resistance to oxidative processes during storage. PMID:23472600

  3. Automatic classification of magnetic tiles internal defects based on acoustic resonance analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qinyuan; Yin, Ying; Yin, Guofu

    2015-08-01

    A novel signal processing method using wavelet packet transform (WPT), linear discriminant analysis (LDA) and support vector machine (SVM) is presented for detecting internal defects in magnetic tile. In this methodology, the acoustic signal obtained by a mechanical system based on acoustic resonance is analyzed. WPT is applied to extract the normalized features of the signal. The internal defects are identified by SVM based on the extracted features optimized by LDA and a constraint algorithm. The experimental results demonstrate that the presented approach can be employed for a promising application of automatic detection of internal defects in magnetic tile.

  4. Mechanical resonance of individual nanostructures

    NASA Astrophysics Data System (ADS)

    Parker, Thomas C.

    In this thesis the non-contact mode atomic force microscopy (NCM AFM) was used to measure very high frequency (VHF) mechanical resonance (MR) of individual nanostructures. The effect of coupling between the probe and sample on the measured resonant frequency, for both contact mode AFM (CM AFM) and NCM AFM, was analytically evaluated and showed the NCM AFM as superior due to the gentle interaction. The NCM AFM was experimentally validated by first demonstrating a high frequency resonant measurement of a piezo. An electrically driven piezo (with a 1 cm2 Si piece glued on top) was found to have a clear MR of ˜11.8 MHz using the NCM AFM resonant technique. We also showed that the NCM AFM technique was able to detect a 41 MHz vibration. Comparing the optically measured MR of a series of cantilevers with NCM AFM measured MR showed virtually no shift of the resonant frequency of the sample cantilevers. In addition, the sample cantilever was driven at its first harmonic frequency while the vertical displacement along its length was measured and its length dependence matched the expected 1st order mode shape. After having had experimentally validated the NCM AFM technique we went on to measure the VHF (>30 MHz) MR of individual rods and springs. These nanostructures were grown using a newly built oblique angle ebeam deposition (OAED) system. The MR of individual rods showed resonant peaks ranging from ˜30 MHz to ˜160 MHz. The MR of the rods were further confirmed by observing scanning electron microscopy (SEM) image blurring (rod vibration). Nanometer scale spring samples were grown in the OAED system. The MR of the spring samples was measured and found to lie between ˜30 and ˜300 MHz. The measured MR of both rod and spring samples were compared with theoretical values. The comparison took into account variations in sample geometry and had good agreement. This thesis work demonstrates for the first time the validity of the using the NCM AFM technique to measure the mechanical resonance frequency of individual nanostructures.

  5. A tunable electromechanical Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy specific design requirements. The goal of the optimization of the EMHR with inductive loads is to achieve optimal tuning of the three resonant frequencies. The results indicate that it is possible to keep the acoustic reactance of the resonator nearly constant within a given frequency range.

  6. INFORMATION EXTRACTION OVERVIEW Mary Ellen Okurowski

    E-print Network

    INFORMATION EXTRACTION OVERVIEW Mary Ellen Okurowski Department of Defense. 9800 Savage Road, Fort Meade, Md. 20755 meokuro@ afterlife.ncsc.mil 1. DEFINITION OF INFORMATION EXTRACTION The information a new technology called information extraction. Information extraction is a type of document processing

  7. 21 CFR 73.30 - Annatto extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Annatto extract. 73.30 Section 73.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.30 Annatto extract. (a) Identity. (1) The color additive annatto extract is an extract prepared...

  8. 21 CFR 73.30 - Annatto extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Annatto extract. 73.30 Section 73.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.30 Annatto extract. (a) Identity. (1) The color additive annatto extract is an extract prepared...

  9. 21 CFR 73.30 - Annatto extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Annatto extract. 73.30 Section 73.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.30 Annatto extract. (a) Identity. (1) The color additive annatto extract is an extract prepared...

  10. 14 CFR 27.241 - Ground resonance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Ground resonance. 27.241 Section 27.241...STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.241 Ground resonance. The rotorcraft may have...

  11. 14 CFR 29.241 - Ground resonance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Ground resonance. 29.241 Section 29.241...TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.241 Ground resonance. The rotorcraft may have...

  12. 14 CFR 27.241 - Ground resonance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Ground resonance. 27.241 Section 27.241...STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.241 Ground resonance. The rotorcraft may have...

  13. 14 CFR 27.241 - Ground resonance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2014-01-01 false Ground resonance. 27.241 Section 27.241...STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.241 Ground resonance. The rotorcraft may have...

  14. 14 CFR 29.241 - Ground resonance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Ground resonance. 29.241 Section 29.241...TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.241 Ground resonance. The rotorcraft may have...

  15. 14 CFR 27.241 - Ground resonance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Ground resonance. 27.241 Section 27.241...STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.241 Ground resonance. The rotorcraft may have...

  16. 14 CFR 29.241 - Ground resonance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2014-01-01 false Ground resonance. 29.241 Section 29.241...TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.241 Ground resonance. The rotorcraft may have...

  17. 14 CFR 29.241 - Ground resonance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Ground resonance. 29.241 Section 29.241...TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.241 Ground resonance. The rotorcraft may have...

  18. 14 CFR 27.241 - Ground resonance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Ground resonance. 27.241 Section 27.241...STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.241 Ground resonance. The rotorcraft may have...

  19. 14 CFR 29.241 - Ground resonance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Ground resonance. 29.241 Section 29.241...TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.241 Ground resonance. The rotorcraft may have...

  20. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  1. Resonant body transistors in standard CMOS technology

    E-print Network

    Marathe, Radhika A.

    This work presents Si-based electromechanical resonators fabricated at the transistor level of a standard SOI CMOS technology and realized without the need for any postprocessing or packaging. These so-called Resonant Body ...

  2. Solid State MEMS Resonators in Silicon

    E-print Network

    Wang, Wentao, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    Two of the greatest challenges in MEMS are those of packaging and integration with CMOS technology. Development of solid state RF MEMS resonators in silicon, resonators that do not require any release etch step, eliminates ...

  3. Very High Frequency Silicon Nanowire Electromechanical Resonators

    E-print Network

    Roukes, Michael L.

    detec- tion,3 quantum electromechanics,4 electromechanical signal generation and processing,5 and highVery High Frequency Silicon Nanowire Electromechanical Resonators X. L. Feng, Rongrui He, Peidong in resonant sensing, quantum electromechanical systems, and high frequency signal processing

  4. Nonlinear optics via double dark resonances 

    E-print Network

    Yelin, S. F.; Sautenkov, V. A.; Kash, M. M.; Welch, George R.; Lukin, M. D.

    2003-01-01

    Double dark resonances originate from a coherent perturbation of a system displaying electromagnetically induced transparency. We experimentally show and theoretically confirm that this leads to the possibility of extremely sharp resonances...

  5. Giant resonance study by 6li scattering 

    E-print Network

    Chen, Xinfeng

    2009-05-15

    Nuclear incompressibility Knm is an important parameter in the nuclear matter equation of state (EOS). The locations of the isocalar giant monopole resonance (ISGMR) and giant dipole resonance (ISGDR) of nuclei are directly ...

  6. Piezoelectric MEMS resonator characterization and filter design

    E-print Network

    Kang, Joung-Mo, 1978-

    2004-01-01

    This thesis presents modeling and first measurements of a new piezoelectric MEMS resonator developed at Draper Laboratory. In addition, some simple filter designs incorporating the resonator with predicted performance ...

  7. Magnetic Resonance Imaging (MRI) during Pregnancy

    MedlinePLUS

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility ...

  8. Magnetic Resonance Imaging (MRI): Lumbar Spine

    MedlinePLUS

    ... Kids Deal With Bullies Pregnant? What to Expect Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth > Parents > Doctors & Hospitals > Medical Tests & Exams > Magnetic Resonance Imaging (MRI): Lumbar Spine Print A A ...

  9. High quality-factor optical resonators

    NASA Astrophysics Data System (ADS)

    Henriet, Rémi; Salzenstein, Patrice; Ristic, Davor; Coillet, Aurélien; Mortier, Michel; Rasoloniaina, Alphonse; Saleh, Khaldoun; Cibiel, Gilles; Dumeige, Yannick; Ferrari, Maurizio; Chembo, Yanne K.; Llopis, Olivier; Féron, Patrice

    2014-09-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 1010.

  10. Dissociation of chloromethanes upon resonant ?{sup *} excitation studied by x-ray scattering

    SciTech Connect

    Bohinc, R.; Bu?ar, K.; Kav?i?, M.; Žitnik, M.; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana ; Journel, L.; Guillemin, R.; Marchenko, T.; Simon, M.; Cao, W.; Department of Physics, University of Fribourg, Ch-1700 Fribourg; Department of Chemistry, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9

    2013-10-07

    The dissociation process following the Cl K-shell excitation to ?{sup *} resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4} molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with ?{sup *} character above the lowest ?{sup *} unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the K? spectral maps for both ?{sup *} resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second ?{sup *} resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both ?{sup *} resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.

  11. Metabolomics study of Saw palmetto extracts based on 1H NMR spectroscopy.

    PubMed

    de Combarieu, Eric; Martinelli, Ernesto Marco; Pace, Roberto; Sardone, Nicola

    2015-04-01

    Preparations containing Saw palmetto extracts are used in traditional medicine to treat benign prostatic hyperplasia. According to the European and the American Pharmacopoeias, the extract is obtained from comminuted Saw palmetto berries by a suitable extracting procedure using ethanol or supercritical carbon dioxide or a mixture of n-hexane and methylpentanes. In the present study an approach to metabolomics profiling using nuclear magnetic resonance (NMR) has been used as a finger-printing tool to assess the overall composition of the extracts. The phytochemical analysis coupled with principal component analysis (PCA) showed the same composition of the Saw palmetto extracts obtained with carbon dioxide and hexane with minor not significant differences for extracts obtained with ethanol. In fact these differences are anyhow lower than the batch-to-batch variability ascribable to the natural-occurring variability in the Saw palmetto fruits' phytochemical composition. The fingerprinting analysis combined with chemometric method, is a technique, which would provide a tool to comprehensively assess the quality control of Saw palmetto extracts. PMID:25707588

  12. Resonances in nonintegrable open systems

    NASA Astrophysics Data System (ADS)

    Nockel, Jens Uwe

    1997-11-01

    Resonances arising in elastic scattering or emission problems are investigated as a probe of the Kolmogorov- Arnol'd-Moser (KAM) transition to chaos and its wave manifestations. The breaking of symmetries that leads to this transition affects all the intrinsic properties of a resonance, which suggests applications where these properties can be controlled and predicted in parameter ranges beyond the reach of perturbation theory. Convex dielectric optical microcavties are studied which support long-lived 'whispering-gallery' (WG) modes that classically correspond to rays trapped by total internal reflection in orbits close to the interface with the outside lower-index medium. These resonantors with substantial but always convex deformation are termed asymmetric resonant cavities (ARCs). The connection between individual resonances and ray ensembles in an asymmetric billiard is established via a novel application of Einstein-Brillouin-Keller (EBK) quantization, based on the adiabatic approximation of Robnik and Berry which describes WG trajectories even when the deformation exceeds the threshold at which Lazutkin's caustics cease to exist in the relevant regions of phase space. At such strong distortions, resonance lifetimes are determined not by the wavelength as in symmetric cavities, but by the classical diffusion time from the EBK initial condition in phase space to an escape window corresponding to classical violation of the total internal reflection condition. Instead of the isotropic emission from rotationally invariant objects, highly asymmetric resonantors exhibit strongly peaked intensity in directions which can be predicted from the phase space structure near the classical escape window. This creates unambiguous finger- prints of the KAM transition in the emission anisotropy of ARCs, which are universal for all classically chaotic WG modes. Ray calculations are compared to numerical wave solutions as well as to experiments, and good agreement is found especially for the directionality. Ray predictions for the lifetimes fail when wave mechanical corrections such as chaos-assisted tunneling and dynamical localization are important.

  13. Development of an extraction method for mycobacterial metabolome analysis.

    PubMed

    Jaki, B U; Franzblau, S G; Cho, S H; Pauli, G F

    2006-04-11

    As a prerequisite for studying the intracellular metabolome of mycobacteria, several methods were evaluated for efficient breakage of the cell using Mycobacterium bovis (BCG) as a model microorganism. Several pulping methods, treating with an Ultra-Turax, deep-freezing in liquid nitrogen followed by mechanical grinding, sonicating with probe head or cup horn and bead beating prior to solvent extraction were applied and compared. Gravimetry, electron microscopy, and nuclear magnetic resonance spectrometry were used to analyze the extracts. All analytical methods prove that sonicating is superior to mechanical grinding of deep-frozen cells. Two methods indicated that sonicating with a probe head enhances the efficiency of cell disruption compared to sonicating with a cup horn. The highest extract yield and chemical diversity were achieved by a combination of mechanical grinding and sonicating. Within the scope of a metabolomic analysis, the method of choice to treat mycobacterial cells is a combination of deep-freezing in liquid nitrogen and mechanical grinding followed by sonicating with a probe head. PMID:16314064

  14. Brain extraction using the watershed transform from markers

    PubMed Central

    Beare, Richard; Chen, Jian; Adamson, Christopher L.; Silk, Timothy; Thompson, Deanne K.; Yang, Joseph Y. M.; Anderson, Vicki A.; Seal, Marc L.; Wood, Amanda G.

    2013-01-01

    Isolation of the brain from other tissue types in magnetic resonance (MR) images is an important step in many types of neuro-imaging research using both humans and animal subjects. The importance of brain extraction is well appreciated—numerous approaches have been published and the benefits of good extraction methods to subsequent processing are well known. We describe a tool—the marker based watershed scalper (MBWSS)—for isolating the brain in T1-weighted MR images built using filtering and segmentation components from the Insight Toolkit (ITK) framework. The key elements of MBWSS—the watershed transform from markers and aggressive filtering with large kernels—are techniques that have rarely been used in neuroimaging segmentation applications. MBWSS is able to reliably isolate the brain without expensive preprocessing steps, such as registration to an atlas, and is therefore useful as the first stage of processing pipelines. It is an informative example of the level of accuracy achievable without using priors in the form of atlases, shape models or libraries of examples. We validate the MBWSS using a publicly available dataset, a paediatric cohort, an adolescent cohort, intra-surgical scans and demonstrate flexibility of the approach by modifying the method to extract macaque brains. PMID:24367327

  15. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction.

    PubMed

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-10-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is approximately 10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  16. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  17. Nonlinear Thermal Compensators for WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute; Yu, Nan; Iltchenko, Vladimir

    2009-01-01

    In an alternative version of a proposed bimaterial thermal compensator for a whispering-gallery-mode (WGM) optical resonator, a mechanical element having nonlinear stiffness would be added to enable stabilization of a desired resonance frequency at a suitable fixed working temperature. The previous version was described in "Bimaterial Thermal Compensators for WGM Resonators." Both versions are intended to serve as inexpensive means of preventing (to first order) or reducing temperature-related changes in resonance frequencies.

  18. Theory of atomic motion in resonant radiation

    SciTech Connect

    Cook, R.J.

    1980-03-01

    Atomic motion in resonant and near resonant electromagnetic radiation is investigated theoretically. The exposition begins with a study of atomic motion in a resonant standing light wave, with a view toward isotope separation by selective photodeflection, and proceeds to the investigation of more general problems of atomic motion in resonant radiation. The body of the work consists of six chapters, each of which was prepared as a manuscript for publication in the open literature.

  19. Pressurized liquid extraction of mate tea leaves.

    PubMed

    Jacques, Rosângela Assis; Dariva, Cláudio; de Oliveira, José Vladimir; Caramão, Elina Bastos

    2008-09-01

    The objective of this work is to investigate the influence of process parameters on the pressurized liquid extraction (PLE) of Ilex paraguariensis leaves. A factorial 2(6-2) experimental design was employed using responses as the extraction yield and the chromatographic profile of the extracts. The extraction time, polarity of solvent, amount of sample, numbers of PLE cycles, flushing volume and extraction temperature were selected as independent variables (factors). Results obtained indicated that the solvent polarity was the most significant variable in the study, while the amount of sample and extraction temperature also showed significant effect. The other variables did not present significant influence in the yield of extraction. GC/MS analysis of the extract enabled the identification of saturated hydrocarbons, fatty acids, fatty acid methyl esters, phytosterols and theobromine in the extracts. Quantitative analysis of four compounds presented in the extracts (caffeine, phytol, vitamin E and squalene) was performed by the GC/MS in the SIM mode. PMID:18721542

  20. Liquid-Liquid Extraction Processes 

    E-print Network

    Fair, J. R.; Humphrey, J. L.

    1983-01-01

    ., in Chemical Engineers' Handbook (R. H. Perry and C. H. Chilton, eds.), 5th Ed., pp. 15-7 to 15-12. New York: McGraw-Hill, 1973. 10. Scheibel, E. G. Petrol. Refiner 38 (9) 227 (1959). 11. Treybal, R. E. LiaUid Extraction, 2nd Ed. New York: McGraw- ill... of extraction processes has been slow to develop. Ex traction was not included with the original chemi cal engineering unit operations and did not find a place in the first edition of Chemical Engineers' Handbook (1934). In the 1936 edition of Elements...