Science.gov

Sample records for respiratory complex iii

  1. Internal switches modulating electron tunneling currents in respiratory complex III.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex. PMID:26874053

  2. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III

    PubMed Central

    Beaudoin, Jessica N.; Ponnuraj, Nagendraprabhu; DiLiberto, Stephen J.; Hanafin, William P.; Kenis, Paul J. A.; Gaskins, H. Rex

    2015-01-01

    Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration. PMID:25994788

  3. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.

    PubMed

    Kolossov, Vladimir L; Beaudoin, Jessica N; Ponnuraj, Nagendraprabhu; DiLiberto, Stephen J; Hanafin, William P; Kenis, Paul J A; Gaskins, H Rex

    2015-07-15

    Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration. PMID:25994788

  4. Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength.

    PubMed

    Moreno-Beltrán, Blas; Díaz-Moreno, Irene; González-Arzola, Katiuska; Guerra-Castellano, Alejandra; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Quintana, Antonio

    2015-02-13

    The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes. PMID:25595453

  5. Autism associated to a deficiency of complexes III and IV of the mitochondrial respiratory chain.

    PubMed

    Guevara-Campos, José; González-Guevara, Lucía; Briones, Paz; López-Gallardo, Ester; Bulán, Nuria; Ruiz-Pesini, Eduardo; Ramnarine, Denisse; Montoya, Julio

    2010-09-01

    Autism is the prototype of generalized developmental disorders or what today are called autism spectrum disorders. In most cases it is impossible to detect a specific etiology. It is estimated that a causative diagnosis may be shown in approximately 10-37% of the cases, including, congenital rubella, tuberous sclerosis, chromosome abnormalities such as fragile X syndrome and 22q13.3 deletion syndrome, Angelman, Williams, Smith-Magenis, Sotos, Cornelia de Lange, Möbius, Joubert and Goldenhar syndromes, Ito's hypomelanosis, as well as certain cerebral malformations and several inherited metabolic disorders. The case of a 3-year old girl is described, who was considered as autistic according to the criteria established by the DSM-IV manual for psychiatric disorders. She showed a delay in psychomotor development since she was 18 months old; she pronounces very few words (10), points to some objects, does not look up and it is hard to establish eye contact with her. She has paradoxical deafness and therefore, does not respond when called or when she is given orders, she is beginning to walk. She has not convulsions. Laboratory tests showed an anion gap of 31.6 mEq/L, lactate: 2.55: mmol/L, pyruvate: 0.06 mmol/L, and elevated lactate to/pyruvate ratio: 42.5. Under optical microscopy a muscular biopsy showed a reduction of the diameter of muscular fibers. The study of energy metabolism showed a partial deficiency of complexes III and IV of the respiratory chain, which allowed us to conclude that this was a mitochondrial dysfunction with an autistic clinical spectrum. PMID:21302592

  6. The Role of Dihydroorotate Dehydrogenase in Apoptosis Induction in Response to Inhibition of the Mitochondrial Respiratory Chain Complex III

    PubMed Central

    Khutornenko, A. A.; Dalina, A. A.; Chernyak, B. V.; Chumakov, P. M.; Evstafieva, A. G.

    2014-01-01

    A mechanism for the induction of programmed cell death (apoptosis) upon dysfunction of the mitochondrial respiratory chain has been studied. Previously, we had found that inhibition of mitochondrial cytochrome bc1, a component of the electron transport chain complex III, leads to activation of tumor suppressor p53, followed by apoptosis induction. The mitochondrial respiratory chain is coupled to the de novo pyrimidine biosynthesis pathway via the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH). The p53 activation induced in response to the inhibition of the electron transport chain complex III has been shown to be triggered by the impairment of the de novo pyrimidine biosynthesis due to the suppression of DHODH. However, it remained unclear whether the suppression of the DHODH function is the main cause of the observed apoptotic cell death. Here, we show that apoptosis in human colon carcinoma cells induced by the mitochondrial respiratory chain complex III inhibition can be prevented by supplementation with uridine or orotate (products of the reaction catalyzed by DHODH) rather than with dihydroorotate (a DHODH substrate). We conclude that apoptosis is induced in response to the impairment of the de novo pyrimidine biosynthesis caused by the inhibition of DHODH. The conclusion is supported by the experiment showing that downregulation of DHODH by RNA interference leads to accumulation of the p53 tumor suppressor and to apoptotic cell death. PMID:24772329

  7. Copper deficiency decreases the protein expression of Complex IV but not Complex I, II, III and V in mitochondrial respiratory chain in rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary copper (Cu) deficiency impairs mitochondrial respiratory function which is catalyzed by protein complexes. However, there are few reports showing the effect of Cu on the simultaneous expression of the protein subunits for all five respiratory complexes. The present study was undertaken to de...

  8. Copper deficiency decreases the protein expression of Complex IV but not Complex I, II, III, or V in mitochondrial respiratory chain in rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented that dietary copper (Cu) deficiency impairs mitochondrial respiratory function which is catalyzed by five membrane-bound multiple protein complexes. However, there are few reports on the simultaneous analysis of Cu effect on the subunit protein expression on all five protein c...

  9. Supramolecular Organization of Respiratory Complexes.

    PubMed

    Enríquez, José Antonio

    2016-01-01

    Since the discovery of the existence of superassemblies between mitochondrial respiratory complexes, such superassemblies have been the object of a passionate debate. It is accepted that respiratory supercomplexes are structures that occur in vivo, although which superstructures are naturally occurring and what could be their functional role remain open questions. The main difficulty is to make compatible the existence of superassemblies with the corpus of data that drove the field to abandon the early understanding of the physical arrangement of the mitochondrial respiratory chain as a compact physical entity (the solid model). This review provides a nonexhaustive overview of the evolution of our understanding of the structural organization of the electron transport chain from the original idea of a compact organization to a view of freely moving complexes connected by electron carriers. Today supercomplexes are viewed not as a revival of the old solid model but rather as a refined revision of the fluid model, which incorporates a new layer of structural and functional complexity. PMID:26734886

  10. Suppressors of superoxide production from mitochondrial complex III

    PubMed Central

    Orr, Adam L.; Vargas, Leonardo; Turk, Carolina N.; Baaten, Janine E.; Matzen, Jason T.; Dardov, Victoria J.; Attle, Stephen J.; Li, Jing; Quackenbush, Douglas C.; Goncalves, Renata L. S.; Perevoshchikova, Irina V.; Petrassi, H. Michael; Meeusen, Shelly L.; Ainscow, Edward K.; Brand, Martin D.

    2015-01-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species (ROS), which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies but its role remains controversial. Using high-throughput screening we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress. PMID:26368590

  11. Suppressors of superoxide production from mitochondrial complex III.

    PubMed

    Orr, Adam L; Vargas, Leonardo; Turk, Carolina N; Baaten, Janine E; Matzen, Jason T; Dardov, Victoria J; Attle, Stephen J; Li, Jing; Quackenbush, Douglas C; Goncalves, Renata L S; Perevoshchikova, Irina V; Petrassi, H Michael; Meeusen, Shelly L; Ainscow, Edward K; Brand, Martin D

    2015-11-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species, which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies, but its role remains controversial. Using high-throughput screening, we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress. PMID:26368590

  12. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements. PMID:27442286

  13. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  14. Structure of bacterial respiratory complex I.

    PubMed

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26807915

  15. Stoichiometries of arsenazo III-Ca complexes.

    PubMed Central

    Palade, P; Vergara, J

    1983-01-01

    The equilibrium interactions of the metallochromic indicator arsenazo III with calcium at physiological ionic strength and pH were investigated spectrophotometrically and with the aid of a calcium electrode. Evidence suggests the formation of more than one dye-calcium complex. The analysis of data obtained over a 10,000-fold range of dye concentrations concludes that at the concentrations used for in vitro biochemical studies (10--100 microM), arsenazo III absorbance changes in response to calcium binding primarily involve the formation of a complex involving two dye molecules and two calcium ions. At millimolar dye concentrations, typical of physiological calcium transient determinations in situ, a second complex involving two arsenazo III molecules and one calcium ion is additionally formed. A third complex, involving one arsenazo III molecule and one calcium ion, is formed at very low dye concentrations. The results reported here suggest that equilibrium calibration of the dye with calcium cannot be used directly to satisfactorily relate transient absorbance changes in physiological preparations to calcium concentration changes since several stoichiometrically distinct complexes with different absorbances could be formed at different rates. The results of this study do not permit the elucidation of a unique kinetic scheme of arsenazo III complexation with calcium; for this, in vitro kinetic analysis is required. Results of similar analysis of the dye interaction with magnesium are also reported, and these appear compatible with a much simpler model of complexation. PMID:6626673

  16. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4

    PubMed Central

    Evstafieva, A G; Garaeva, A A; Khutornenko, A A; Klepikova, A V; Logacheva, M D; Penin, A A; Novakovsky, G E; Kovaleva, I E; Chumakov, P M

    2014-01-01

    Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13–17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency. PMID:25375376

  17. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes.

    PubMed

    Kim, Hyung J; Khalimonchuk, Oleh; Smith, Pamela M; Winge, Dennis R

    2012-09-01

    The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22554985

  18. Oxidation of NADH and ROS production by respiratory complex I.

    PubMed

    Vinogradov, Andrei D; Grivennikova, Vera G

    2016-07-01

    Kinetic characteristics of the proton-pumping NADH:quinone reductases (respiratory complexes I) are reviewed. Unsolved problems of the redox-linked proton translocation activities are outlined. The parameters of complex I-mediated superoxide/hydrogen peroxide generation are summarized, and the physiological significance of mitochondrial ROS production is discussed. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26571336

  19. Luminescence of europium (III) complexes for visualization

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Pozharov, Mikhail V.; Korolovich, Vladimir F.; Khokhlova, Anastasia R.; Kirdyanova, Anna N.; Burmistrova, Natalia A.; Zakharova, Tamara V.; Goryacheva, Irina Y.

    2016-04-01

    With the purpose to develop bright non-toxic luminescent label for theranostic application we have studied complexation of lanthanide dipicolinates (2,6-pyridinedicarboxylates) by sodium alginate and effect of thermal exposure of synthesized micro-capsules on their luminescent properties. Synthesized micro-capsules are stable in acidic medium but dissolve at pH ~ 4 due to transformation of cationic europium dipicolinate complex to anionic. Luminescence studies have shown that emission spectra of europium(III)-alginate complexes (both chloride and dipicolinate) contain two intensive bands characteristic to Eu3+ ion (5D0 --> 7F1 (590 nm) and 5D0 --> 7F1 (612 nm)). We have also found that at 160ºC europium(III)- alginate micro-capsules decompose to black, soot-like substance, therefore, their thermal treatment must be performed in closed environment (i.e., sealed ampoules).

  20. Is there a genetic solution to bovine respiratory disease complex?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease complex (BRDC) is a complex multi-factor disease, which increases costs and reduces revenue from feedlot cattle. Multiple stressors and pathogens (viral and bacterial) have been implicated in the etiology of BRDC, therefore multiple approaches will be needed to evaluate a...

  1. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation.

    PubMed

    Pérez-Pérez, Rafael; Lobo-Jarne, Teresa; Milenkovic, Dusanka; Mourier, Arnaud; Bratic, Ana; García-Bartolomé, Alberto; Fernández-Vizarra, Erika; Cadenas, Susana; Delmiro, Aitor; García-Consuegra, Inés; Arenas, Joaquín; Martín, Miguel A; Larsson, Nils-Göran; Ugalde, Cristina

    2016-08-30

    Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist. PMID:27545886

  2. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  3. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  4. Genomics of bovine respiratory disease complex at USMARC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection for genetic resistance/resilience bovine respiratory disease complex (BRDC) would significantly increase the efficiency of beef production in the U.S. through decreased treatment costs, productivity, and death loss. Unfortunately, selection for resistance to BRDC is challenging to implemen...

  5. Current topics on inhibitors of respiratory complex I.

    PubMed

    Murai, Masatoshi; Miyoshi, Hideto

    2016-07-01

    There are a variety of chemicals which regulate the functions of bacterial and mitochondrial complex I. Some of them, such as rotenone and piericidin A, have been indispensable molecular tools in mechanistic studies on complex I. A large amount of experimental data characterizing the actions of complex I inhibitors has been accumulated so far. Recent X-ray crystallographic structural models of entire complex I may be helpful to carefully interpret this data. We herein focused on recent hot topics on complex I inhibitors and the subjects closely connected to these inhibitors, which may provide useful information not only on the structural and functional aspects of complex I, but also on drug design targeting this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26625959

  6. Dynamic subcellular localization of a respiratory complex controls bacterial respiration

    PubMed Central

    Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel

    2015-01-01

    Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726

  7. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    SciTech Connect

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna; Kotarsky, Heike; Hansson, Eva; Levéen, Per; Fellman, Vineta

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  8. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed. PMID:27315225

  9. Hexaammine Complexes of Cr(III) and Co(III): A Spectral Study.

    ERIC Educational Resources Information Center

    Brown, D. R.; Pavlis, R. R.

    1985-01-01

    Procedures are provided for experiments containing complex ions with octahedral symmetry, hexaamminecobalt(III) chloride and hexaamminechromium(III) nitrate, so students can interpret fully the ultra violet/visible spectra of the complex cations in terms of the ligand field parameters, 10 "Dq," the Racah interelectron repulsion parameters, "B,"…

  10. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Maydama, Hussein M. A.; Al-Azab, Fathi M.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-07-01

    The metal complexes of Amoxicillin trihydrate with La(III), Ce(III), Sm(III) and Y(III) are synthesized with 1:1 (metal:Amox) molar ratio. The suggested formula structures of the complexes are based on the results of the elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment in Bohr magnetons, as well as the thermal analysis (TG), and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results obtained suggested that Amoxicillin reacted with metal ions as tridentate ligands, coordinating the metal ion through its amino, imino, and β-lactamic carbonyl. The kinetic thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves.

  11. Respiratory complex I: A dual relation with H(+) and Na(+)?

    PubMed

    Castro, Paulo J; Silva, Andreia F; Marreiros, Bruno C; Batista, Ana P; Pereira, Manuela M

    2016-07-01

    Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26711319

  12. Potentiometry: A Chromium (III) -- EDTA Complex

    ERIC Educational Resources Information Center

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  13. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  14. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections.

    PubMed

    Semler, Diana D; Goudie, Amanda D; Finlay, Warren H; Dennis, Jonathan J

    2014-07-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  15. Complexation of N4-Tetradentate Ligands with Nd(III) and Am(III)

    SciTech Connect

    Ogden, Mark D.; Sinkov, Sergey I.; Meier, G. Patrick; Lumetta, Gregg J.; Nash, Kenneth L.

    2012-12-06

    To improve understanding of aza-complexants in trivalent actinide–lanthanide separations, a series of tetradentate N-donor ligands have been synthesized and their complexation of americium(III) and neodymium(III) investigated by UV–visible spectrophotometry in methanolic solutions. The six pyridine/alkyl amine/imine ligands are N,N0-bis(2-methylpyridyl)-1,2-diaminoethane, N,N0-bis(2-methylpyridyl)-1,3-diaminopropane, trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC), N,N’-bis(2-pyridylmethyl)piperazine, N,N’-bis-[pyridin-2-ylmethylene]ethane-1,2-diamine, and trans-N,Nbis-([pyridin-2-ylmethylene]-cyclohexane-1,2-diamine. Each ligand has two pyridine groups and two aliphatic amine/imine N-donor atoms arranged with different degrees of preorganization and structural backbone rigidity. Conditional stability constants for the complexes of Am(III) and Nd(III) by these ligands establish the selectivity patterns. The overall selectivity of Am(III) over Nd(III) is similar to that reported for the terdentate bis(dialkyltriazinyl)pyridine molecules. The cyclohexane amine derivative (BPMDAC) is the strongest complexant and shows the highest selectivity for Am(III) over Nd(III) while the imines appear to prefer a bridging arrangement between two cations. These results suggest that this series of ligands could be employed to develop an enhanced actinide(III)– lanthanide(III) separation system.

  16. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.

    PubMed

    Kong, Linghao; He, Mengchang

    2016-07-01

    Organic Fe(III) complexes are widely distributed in the aqueous environment, which can efficiently generate free radicals under light illumination, playing a significant role in heavy metal speciation. However, the potential importance of the photooxidation of Sb(III) by organic Fe(III) complexes remains unclear. Therefore, the photooxidation mechanisms of Sb(III) were comprehensively investigated in Fe(III)-oxalate, Fe(III)-citrate and Fe(III)-fulvic acid (FA) solutions by kinetic measurements and modeling. Rapid photooxidation of Sb(III) was observed in an Fe(III)-oxalate solution over the pH range of 3 to 7. The addition of tert-butyl alcohol (TBA) as an ·OH scavenger quenched the Sb(III) oxidation, suggesting that ·OH is an important oxidant for Sb(III). However, the incomplete quenching of Sb(III) oxidation indicated the existence of other oxidants, presumably an Fe(IV) species in irradiated Fe(III)-oxalate solution. In acidic solutions, ·OH may be formed by the reaction of Fe(II)(C2O4) with H2O2, but a hypothetical Fe(IV) species may be generated by the reaction of Fe(II)(C2O4)2(2-) with H2O2 at higher pH. Kinetic modeling provides a quantitative explanation of the results. Evidence for the existence of ·OH and hypothetical Fe(IV) was also observed in an irradiated Fe(III)-citrate and Fe(III)-FA system. This study demonstrated an important pathway of Sb(III) oxidation in surface waters. PMID:27267512

  17. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer

    NASA Astrophysics Data System (ADS)

    Zhai, Yinfeng; Xie, Hongde; Cai, Haijun; Cai, Peiqing; Seo, Hyo Jin

    2015-07-01

    Tb(III), Eu(III) and Tb(III)/Eu(III) activated silicone fluorinated acrylate (SFA) have been successfully synthesized using the method of semi-continuous emulsion polymerization. The copolymers are characterized by flourier transform infrared (FT-IR), thermal gravity analysis (TGA), photoluminescence excitation (PLE) and emission (PL) spectroscopy. The copolymer containing Tb(III) and Eu(III) ions display green and red luminescent colors under UV light excitation, respectively. The TGA curves show the thermal decomposition temperatures of the copolymers are up to about 300 °C. The PL spectra show a strong green emission at 546 nm (5D4 → 7F5) of Tb(III) complexed copolymers, and show a prominent red emission at 615 nm (5D0 → 7F2) of Eu(III) complexed copolymers. Different concentrations of Eu(III) and Tb(III) ions are introduced into the copolymer and the energy transfer from Tb(III) to Eu(III) ions in the copolymer was found. Thus, based on the results it can be suggested that SFA:Eu(III), SFA:Tb(III) and SFA:Tb(III)/Eu(III) can be used potentially as luminescent materials.

  18. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues.

    PubMed

    Pettenuzzo, Leticia F; Ferreira, Gustavo da C; Schmidt, Anna Laura; Dutra-Filho, Carlos S; Wyse, Angela T S; Wajner, Moacir

    2006-02-01

    Methylmalonic acidemia is an inherited metabolic disorder biochemically characterized by tissue accumulation of methylmalonic acid (MMA) and clinically by progressive neurological deterioration and kidney failure, whose pathophysiology is so far poorly established. Previous studies have shown that MMA inhibits complex II of the respiratory chain in rat cerebral cortex, although no inhibition of complexes I-V was found in bovine heart. Therefore, in the present study we investigated the in vitro effect of 2.5mM MMA on the activity of complexes I-III, II, II-III and IV in striatum, hippocampus, heart, liver and kidney homogenates from young rats. We observed that MMA caused a significant inhibition of complex II activity in striatum and hippocampus (15-20%) at low concentrations of succinate in the medium, but not in the peripheral tissues. We also verified that the inhibitory property of MMA only occurred after exposing brain homogenates for at least 10 min with the acid, suggesting that this inhibition was mediated by indirect mechanisms. Simultaneous preincubation with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) and catalase (CAT) plus superoxide dismutase (SOD) did not prevent MMA-induced inhibition of complex II, suggesting that common reactive oxygen (superoxide, hydrogen peroxide and hydroxyl radical) and nitric (nitric oxide) species were not involved in this effect. In addition, complex II-III (20-35%) was also inhibited by MMA in all tissues tested, and complex I-III only in the kidney (53%) and liver (38%). In contrast, complex IV activity was not changed by MMA in all tissues studied. These results indicate that MMA differentially affects the activity of the respiratory chain pending on the tissues studied, being striatum and hippocampus more vulnerable to its effect. In case our in vitro data are confirmed in vivo in tissues from methylmalonic acidemic patients, it is feasible that that the present findings may be

  19. Antioxidant property of quercetin-Cr(III) complex: The role of Cr(III) ion

    NASA Astrophysics Data System (ADS)

    Chen, Weijun; Sun, Shaofang; cao, Wei; Liang, Yan; Song, Jirong

    2009-01-01

    Flavonoid-metal complex is reported to exhibit a higher antioxidant activity than parent flavonoid. In this paper, experimental and theoretical methods are applied to study the antioxidant properties of quercetin and quercetin-Cr(III) complex, to find out the antioxidant activity variation and the role of Cr(III) ion on the antioxidant activity of the complex. Bond dissociation energy (BDE) and ionization potential (IP) of quercetin and the complex are calculated at the B3LYP/6-311++G(2d,2p)//B3LYP/LANL2DZ level. The experimental results show that the complex has a higher DPPH radical scavenging activity than quercetin. The calculated results show that the complex displays lower BDE and IP than quercetin. The IP of the complex declines obviously, indicating that the Cr (III) ion has more impact on the electron donating ability than on the hydrogen atom transferring ability of the complex.

  20. Respiratory complex I: 'steam engine' of the cell?

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-01

    Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine. PMID:21831629

  1. Luminescent cyclometallated iridium(III) complexes having acetylide ligands

    SciTech Connect

    Thompson, Mark E.; Bossi, Alberto; Djurovich, Peter Ivan

    2014-09-02

    The present invention relates to phosphorescent (triplet-emitting) organometallic materials. The phosphorescent materials of the present invention comprise Ir(III)cyclometallated alkynyl complexes for use as triplet light-emitting materials. The Ir(III)cyclometallated alkynyl complexes comprise at least one cyclometallating ligand and at least one alkynyl ligand bonded to the iridium. Also provided is an organic light emitting device comprising an anode, a cathode and an emissive layer between the anode and the cathode, wherein the emissive layer comprises a Ir(III)cyclometallated alkynyl complex as a triplet emitting material.

  2. Developmental origin of preBötzinger complex respiratory neurons.

    PubMed

    Gray, Paul A; Hayes, John A; Ling, Guang Y; Llona, Isabel; Tupal, Srinivasan; Picardo, Maria Cristina D; Ross, Sarah E; Hirata, Tsutomu; Corbin, Joshua G; Eugenín, Jaime; Del Negro, Christopher A

    2010-11-01

    A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST)-expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the "core" of preBötC SST(+)/NK1R(+)/SST 2a receptor(+) (SST2aR) neurons, are derived from Dbx1-expressing progenitors. We also show that Dbx1-derived neurons heterogeneously coexpress NK1R and SST2aR within and beyond the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla (VLM) are also Dbx1 derived. PreBötC SST(+) neurons are born between E9.5 and E11.5 in the same proportion as non-SST-expressing neurons. Additionally, preBötC Dbx1 neurons are respiratory modulated and show an early inspiratory phase of firing in rhythmically active slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R(+)/SST(+) neurons. Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate that preBötC core neurons represent a subset of a larger, more heterogeneous population of VLM Dbx1-derived neurons. These data indicate that Dbx1-derived neurons are essential for the expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo. PMID:21048147

  3. Complexation of Cm(III)/Eu(III) with Silicate in Basic Solutions

    SciTech Connect

    Wang, Zheming; Felmy, Andrew R; Xia, Yuanxian; Qafoku, Odeta; Yantasee, Wassana; Cho, Herman M

    2005-12-01

    The complexation of Cm(III) and Eu(III) with dissolved silica was studied by time resolved laser fluorescence spectroscopy (TRLFS) in basic solutions over a range of total silica concentrations and ionic strengths (NaNO3). In highly basic solutions, both the fluorescence spectra and lifetime data indicate the formation of Eu(III)/Cm(III) complexes with oligomeric silicates as well as hydroxide groups and/or nitrate in the presence of concentrated NaNO3. At high silica concentration the inner-sphere complexation caused the shift of the fluorescence spectral maximum for Cm(III)(aq) from 594 nm to up to 607 nm and a significant increase of the hypersensitive 5D0 → 7F2 band around 615 nm relative to the non-hypersensitive 5D0 → 7F1 band at 592 nm for Eu(III). At the same time, the fluorescence lifetime increased from 68 s to up to 202 s for Cm(III) in 0.1 M NaNO3 and from 115 s to 1.8 ms for Eu(III) in 3.0 M and 5.0 M NaNO3, consistent with the removal of 6 or more water molecules upon silicate complexation. Linear correlations between the spectral intensity of Cm(III) complexes and the concentrations of the dissolved silicates suggest that Cm(III) complexation with the silicate dimer, Si2O2(OH)22-, may play a role.

  4. Synthesis and in vitro microbial evaluation of La(III), Ce(III), Sm(III) and Y(III) metal complexes of vitamin B6 drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-06-01

    Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4‧-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.

  5. Molecular magnets based on homometallic hexanuclear lanthanide(III) complexes.

    PubMed

    Das, Sourav; Hossain, Sakiat; Dey, Atanu; Biswas, Sourav; Sutter, Jean-Pascal; Chandrasekhar, Vadapalli

    2014-05-19

    The reaction of lanthanide(III) chloride salts (Gd(III), Dy(III), Tb(III), and Ho(III)) with the hetero donor chelating ligand N'-(2-hydroxy-3-methoxybenzylidene)-6-(hydroxymethyl)picolinohydrazide (LH3) in the presence of triethylamine afforded the hexanuclear Ln(III) complexes [{Ln6(L)2(LH)2}(μ3-OH)4][MeOH]p[H2O]q[Cl]4·xH2O·yCH3OH (1, Ln = Gd(III), p = 4, q = 4, x = 8, y = 2; 2, Ln = Dy(III), p = 2, q = 6, x = 8, y = 4; 3, Ln = Tb(III), p = 2, q = 6, x = 10, y = 4; 4, Ln = Ho(III), p = 2, q = 6, x = 10, y = 2). X-ray diffraction studies revealed that these compounds possess a hexanuclear [Ln6(OH)4](14+) core consisting of four fused [Ln3(OH)](8+) subunits. Both static (dc) and dynamic (ac) magnetic properties of 1-4 have been studied. Single-molecule magnetic behavior has been observed in compound 2 with an effective energy barrier and relaxation time pre-exponential parameters of Δ/kB = 46.2 K and τ0 = 2.85 × 10(-7) s, respectively. PMID:24766539

  6. Unequivocal synthetic pathway to heterodinuclear (4f,4f') complexes: magnetic study of relevant (Ln(III), Gd(III)) and (Gd(III), Ln(III)) complexes.

    PubMed

    Costes, Jean-Pierre; Nicodème, Franck

    2002-08-01

    The tripodal ligand tris[4-(2-hydroxy-3-methoxyphenyl)-3-aza-3-buten]amine (LH(3)) is capable of coordinating to two different lanthanide ions to give complexes formulated as [LLnLn'(NO(3))(3)].x H(2)O. The stepwise synthetic procedure consists of introducing first a Ln(III) ion in the inner N(4)O(3) coordination site. The isolated neutral complex LLn is then allowed to react with a second and different Ln' ion that occupies the outer O(6) site, thus yielding a [LLnLn'(NO(3))(3)].x H(2)O complex. A FAB(+) study has confirmed the existence of (Ln, Ln') entities as genuine, when the Ln' ion in the outer site has a larger ionic radius than the Ln ion in the inner site. The qualitative magnetic study of the (Gd, Ln) and (Ln, Gd) complexes, based on the comparison of the magnetic properties of (Gd, Ln) (or (Ln, Gd)) pairs and (Y, Ln) (or (Ln, La)) pairs, is very informative. Indeed, these former complexes are governed by the thermal population of the Ln(III) Stark levels and the Ln-Gd interaction, while the latter are influenced by the thermal population of the Ln(III) Stark levels. We have been able to show that a ferromagnetic interaction exists at low temperature in the (Gd, Nd), (Gd, Ce), and (Yb, Gd) complexes. In contrast, an antiferromagnetic interaction occurs in the (Dy, Gd) and (Er, Gd) complexes. Although we cannot give a quantitative value to these interactions, we can affirm that their magnitudes are weak since they are only perceptible at very low temperature. PMID:12203324

  7. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency

    PubMed Central

    Morán, María; López-Bernardo, Elia; Cadenas, Susana; Hidalgo, Beatriz; Sánchez, Ricardo; Seneca, Sara; Arenas, Joaquín; Martín, Miguel A.; Ugalde, Cristina

    2014-01-01

    We have analyzed the cellular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in BCS1L, a major genetic cause of mitochondrial complex III enzyme deficiency. Mutant fibroblasts exhibited low oxygen consumption rates and intracellular ATP levels, indicating that the main altered molecular event probably is a limited respiration-coupled ATP production through the OXPHOS system. Two-dimensional DIGE and MALDI-TOF/TOF mass spectrometry analyses unambiguously identified 39 proteins whose expression was significantly altered in complex III-deficient fibroblasts. Extensive statistical and cluster analyses revealed a protein profile characteristic for the BCS1L mutant fibroblasts that included alterations in energy metabolism, cell signaling and gene expression regulation, cytoskeleton formation and maintenance, and intracellular stress responses. The physiological validation of the predicted functional adaptations of human cultured fibroblasts to complex III deficiency confirmed the up-regulation of glycolytic enzyme activities and the accumulation of branched-chain among other amino acids, suggesting the activation of anaerobic glycolysis and cellular catabolic states, in particular protein catabolism, together with autophagy as adaptive responses to mitochondrial respiratory chain dysfunction and ATP deficiency. Our data point to an overall metabolic and genetic reprogramming that could contribute to explain the clinical manifestations of complex III deficiency in patients. PMID:25239759

  8. Modeling the respiratory chain complexes with biothermokinetic equations - the case of complex I.

    PubMed

    Heiske, Margit; Nazaret, Christine; Mazat, Jean-Pierre

    2014-10-01

    The mitochondrial respiratory chain plays a crucial role in energy metabolism and its dysfunction is implicated in a wide range of human diseases. In order to understand the global expression of local mutations in the rate of oxygen consumption or in the production of adenosine triphosphate (ATP) it is useful to have a mathematical model in which the changes in a given respiratory complex are properly modeled. Our aim in this paper is to provide thermodynamics respecting and structurally simple equations to represent the kinetics of each isolated complexes which can, assembled in a dynamical system, also simulate the behavior of the respiratory chain, as a whole, under a large set of different physiological and pathological conditions. On the example of the reduced nicotinamide adenine dinucleotide (NADH)-ubiquinol-oxidoreductase (complex I) we analyze the suitability of different types of rate equations. Based on our kinetic experiments we show that very simple rate laws, as those often used in many respiratory chain models, fail to describe the kinetic behavior when applied to a wide concentration range. This led us to adapt rate equations containing the essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten like-constants (KM and KI) to satisfactorily simulate these data. PMID:25064016

  9. Prototypical phosphine complexes of antimony(III).

    PubMed

    Chitnis, Saurabh S; Burford, Neil; McDonald, Robert; Ferguson, Michael J

    2014-05-19

    Complexes of the generic formula [Cln(PR3)mSb]((3-n)+) (n = 1, 2, 3, or 4 and m = 1 or 2) have been prepared featuring [ClSb](2+), [Cl2Sb](1+), Cl3Sb, or [Cl4Sb](1-) as acceptors with one or two phosphine ligands {PMe3, PPh3, PCy3 (Cy = C6H11)}. The solid-state structures of the complexes reveal foundational features that define the coordination chemistry of a lone pair bearing stibine acceptor site. The experimental observations are interpreted with dispersion-corrected density functional theory calculations to develop an understanding of the bonding and structural diversity. PMID:24773563

  10. Cytotoxicity of mitochondria-targeted resveratrol derivatives: interactions with respiratory chain complexes and ATP synthase.

    PubMed

    Sassi, Nicola; Mattarei, Andrea; Azzolini, Michele; Szabo', Ildiko'; Paradisi, Cristina; Zoratti, Mario; Biasutto, Lucia

    2014-10-01

    We recently reported that mitochondria-targeted derivatives of resveratrol are cytotoxic in vitro, selectively inducing mostly necrotic death of fast-growing and tumoral cells when supplied in the low μM range (N. Sassi et al., Curr. Pharm. Des. 2014). Cytotoxicity is due to H2O2 produced upon accumulation of the compounds into mitochondria. We investigate here the mechanisms underlying ROS generation and mitochondrial depolarization caused by these agents. We find that they interact with the respiratory chain, especially complexes I and III, causing superoxide production. "Capping" free hydroxyls with acetyl or methyl groups increases their effectiveness as respiratory chain inhibitors, promoters of ROS generation and cytotoxic agents. Exposure to the compounds also induces an increase in the occurrence of short transient [Ca(2+)] "spikes" in the cells. This increase is unrelated to ROS production, and it is not the cause of cell death. These molecules furthermore inhibit the F0F1 ATPase. When added to oligomycin-treated cells, the acetylated/methylated ones cause a recovery of the cellular oxygen consumption rates depressed by oligomycin. Since a protonophoric futile cycle which might account for the uncoupling effect is impossible, we speculate that the compounds may cause the transformation of the ATP synthase and/or respiratory chain complex(es) into a conduit for uncoupled proton translocation. Only in the presence of excess oligomycin the most effective derivatives appear to induce the mitochondrial permeability transition (MPT) within the cells. This may be considered to provide circumstantial support for the idea that the ATP synthase is the molecular substrate for the MPT pore. PMID:24997425

  11. Luminescent properties of europium(III) and terbium(III) complexes with para- and ortho-ethoxybenzoic acids

    NASA Astrophysics Data System (ADS)

    Panyushkin, V. T.; Mutuzova, M. Kh.; Shamsutdinova, M. Kh.

    2016-02-01

    The luminescent properties of europium(III) and terbium(III) complexes with para- and ortho-ethoxybenzoic acids are studied. The excitation energies of the triplet states of ligands are determined, a hypothesis is made about the efficient luminescence of europium(III) and terbium(III) complexes, the geometry of the coordination polyhedron of a europium complex is established, and the luminescence quantum yields of the complexes in solution are determined.

  12. Structure of the membrane domain of respiratory complex I.

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-25

    Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements. PMID:21822288

  13. An oxygen-sensitive luminescent Dy(iii) complex.

    PubMed

    Nakai, Hidetaka; Seo, Juncheol; Kitagawa, Kazuhiro; Goto, Takahiro; Matsumoto, Takahiro; Ogo, Seiji

    2016-06-21

    This paper presents the first dysprosium(iii) complex, [{((MeMe)ArO)3tacn}Dy(III)(THF)] (1(Dy)), that shows oxygen-sensitive luminescence. The synthesis, structure and oxygen-sensitive luminescence properties of 1(Dy) are reported (Φ = 0.050 and τ = 17.7 μs under N2, Φ = 0.011 and τ = 4.1 μs under O2 and KSV = 305 M(-1) in THF; KSV = 0.0077%(-1) in polystyrene film). The oxygen sensitive mechanism of 1(Dy) is discussed based on the photophysical properties of the corresponding gadolinium(iii) complex, [{((MeMe)ArO)3tacn}Gd(III)(THF)]. PMID:27191980

  14. Inhibition of respiratory complex I by copper(ii)-bis(thiosemicarbazonato) complexes.

    PubMed

    Djoko, Karrera Y; Donnelly, Paul S; McEwan, Alastair G

    2014-12-01

    Several copper(ii) complexes of bis(thiosemicarbazones) [Cu(btsc)s] show promise as therapeutics for the treatment of neurological diseases, cancers and bacterial infections. These complexes are thought to act primarily as copper ionophores or "copper boosting" agents, whereby the Cu(II) centre is reduced by cytosolic reductants and Cu(I) is released as "free" or "bioavailable" ion. It is then assumed that the dissociated Cu(I) ion is the species responsible for many of the observed biological effects of Cu(btsc)s. We recently showed that Cu(btsc) complexes inhibited NADH dehydrogenases in the bacterial respiratory chain. In this work, we demonstrate that Cu(btsc) complexes also inhibit mitochondrial respiration and that Complex I in the mitochondrial electron transport chain is a specific target of inhibition. However, bioavailable Cu ions do not appear to contribute to the action of Cu(btsc) as a respiratory inhibitor. Instead, an intact Cu(btsc) molecule may bind reversibly and competitively to the site of ubiquinone binding in Complex I. Our results add to the growing body of evidence that the intact complex may be important in the overall cellular activity of Cu(btsc) complexes and further the understanding of their biological effects as a potential therapeutic. PMID:25366244

  15. Sparkle/PM3 Parameters for the Modeling of Neodymium(III), Promethium(III), and Samarium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2007-07-01

    The Sparkle/PM3 model is extended to neodymium(III), promethium(III), and samarium(III) complexes. The unsigned mean error, for all Sparkle/PM3 interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is 0.074 Å for Nd(III); 0.057 Å for Pm(III); and 0.075 Å for Sm(III). These figures are similar to the Sparkle/AM1 ones of 0.076 Å, 0.059 Å, and 0.075 Å, respectively, indicating they are all comparable models. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective potential calculations on such lanthanide complexes. Hence, the choice of which model to utilize will depend on the assessment of the effect of either AM1 or PM3 on the quantum chemical description of the organic ligands. Finally, we present a preliminary attempt to verify the geometry prediction consistency of Sparkle/PM3. Since lanthanide complexes are usually flexible, we randomly generated 200 different input geometries for the samarium complex QIPQOV which were then fully optimized by Sparkle/PM3. A trend appeared in that, on average, the lower the total energy of the local minima found, the lower the unsigned mean errors, and the higher the accuracy of the model. These preliminary results do indicate that attempting to find, with Sparkle/PM3, a global minimum for the geometry of a given complex, with the understanding that it will tend to be closer to the experimental geometry, appears to be warranted. Therefore, the sparkle model is seemingly a trustworthy semiempirical quantum chemical model for the prediction of lanthanide complexes geometries. PMID:26633229

  16. Photoswitchable azobenzene-appended iridium(iii) complexes.

    PubMed

    Pérez-Miqueo, J; Altube, A; García-Lecina, E; Tron, A; McClenaghan, N D; Freixa, Z

    2016-09-21

    Iridium(iii) cyclometalated complexes have been used as models to study the effect that extended conjugation and substitution pattern has on the photochromic behavior of azobenzene-appended 2-phenylpyridyl (ppy) ligands. For this purpose four azobenzene-containing ppy ligands were synthesized. With these ligands, nine iridium(iii) complexes containing up to three appended azobenzenes were synthesized. Analysis of their photochromic behaviour by means of UV-vis and (1)H-NMR spectroscopy permitted us to conclude that the light-induced trans-to-cis isomerization of the azobenzene was strongly inhibited upon coordination to the Ir(iii) cation when the electronic conjugation was extended along the whole ligand. The use of an aliphatic spacer unit (either -CH2- or -OCH2-) between the azobenzene and the ppy fragment of the ligand sufficed to disrupt the electronic communication, and obtain photochromic organometallic complexes. PMID:27460186

  17. A well-defined terminal vanadium(III) oxo complex.

    PubMed

    King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J

    2014-11-01

    The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species. PMID:25097094

  18. Detection of Lungs Status Using Morphological Complexities of Respiratory Sounds

    PubMed Central

    Bhattacharya, Parthasarathi

    2014-01-01

    Traditionally, the clinical diagnosis of a respiratory disease is made from a careful clinical examination including chest auscultation. Objective analysis and automatic interpretation of the lung sound based on its physical characters are strongly warranted to assist clinical practice. In this paper, a new method is proposed to distinguish between the normal and the abnormal subjects using the morphological complexities of the lung sound signals. The morphological embedded complexities used in these experiments have been calculated in terms of texture information (lacunarity), irregularity index (sample entropy), third order moment (skewness), and fourth order moment (Kurtosis). These features are extracted from a mixed data set of 10 normal and 20 abnormal subjects and are analyzed using two different classifiers: extreme learning machine (ELM) and support vector machine (SVM) network. The results are obtained using 5-fold cross-validation. The performance of the proposed method is compared with a wavelet analysis based method. The developed algorithm gives a better accuracy of 92.86% and sensitivity of 86.30% and specificity of 86.90% for a composite feature vector of four morphological indices. PMID:24688364

  19. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L) 2H 2O] (Ln = La(III) or Pr(III); LH 2 = thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 °C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln 2O 3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr 3+ for 4-phenyl thiosemicarbazones have been calculated.

  20. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  1. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  2. Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes?

    PubMed

    Catrouillet, Charlotte; Davranche, Mélanie; Dia, Aline; Bouhnik-Le Coz, Martine; Demangeat, Edwige; Gruau, Gérard

    2016-05-15

    Up until now, only a small number of studies have been dedicated to the binding processes of As(III) with organic matter (OM) via ionic Fe(III) bridges; none was interested in Fe (II). Complexation isotherms were carried out with As(III), Fe(II) or Fe(III) and Leonardite humic acid (HA). Although PHREEQC/Model VI, implemented with OM thiol groups, reproduced the experimental datasets with Fe(III), the poor fit between the experimental and modeled Fe(II) data suggested another binding mechanism for As(III) to OM. PHREEQC/Model VI was modified to take various possible As(III)-Fe(II)-OM ternary complex conformations into account. The complexation of As(III) as a mononuclear bidentate complex to a bidentate Fe(II)-HA complex was evidenced. However, the model needed to be improved since the distribution of the bidentate sites appeared to be unrealistic with regards to the published XAS data. In the presence of Fe(III), As(III) was bound to thiol groups which are more competitive with regards to the low density of formed Fe(III)-HA complexes. Based on the new data and previously published results, we propose a general scheme describing the various As(III)-Fe-MO complexes that are able to form in Fe and OM-rich waters. PMID:26939079

  3. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  4. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    SciTech Connect

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-27

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S{sub 2}CNR’R”]{sub 2} where M = Sb(III), Bi(III); R’ = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R” = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S{sub 2}CN(C{sub 4}H{sub 9})(C{sub 2}H{sub 5})]{sub 2} adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  5. Synthesis and structural characterization of new dithiocarbamate complexes from Sb(III) and Bi(III)

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Nur Amirah; Baba, Ibrahim

    2013-11-01

    Twenty new antimony and bismuth dithiocarbamate complexes which employed ten different type of amines have been successfully synthesized. The synthesized complexes with metal to dithiocarbamate ratio at 1:3. Elemental analysis of the complexes gave the general formula of MCl[S2CNR'R"]2 where M = Sb(III), Bi(III); R' = methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, benzyl; R" = ethanol, methyl, ethyl, propyl, isopropyl, cyclohexyl, benzyl. The complexes were analysed by IR and NMR spectroscopy. The crystal structure of five-coordinated antimony (III) complex have been determined by X-ray single crystal diffraction. Single crystal X-ray diffraction studies on SbCl[S2CN(C4H9)(C2H5)]2 adopted a triclinic system with a space group P1 with a = 10.0141(8) Å, b = 10.1394(7) Å, c = 11.8665(9) Å, α = 67.960°, β =87.616°, γ = 80.172°.

  6. Electrochemistry and spectroscopy of ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Ohsawa, Y.; Sprouse, S.; King, K.A.; DeArmond, M.K.; Hanck, K.W.; Watts, R.J.

    1987-02-26

    The electrochemical and UV-visible spectroscopic properties of Rh(III) and Ir(III) complexes of the ortho-metalating (NC) ligands, 2-phenylpyridine (ppy) and benzo(h)quinone (bzq), have been studied. Cyclic voltammetric studies of several of the dimeric species, (M(NC)/sub 2/Cl)/sub 2/, indicate metal-centered oxidation occurs at moderate potentials. Cationic monomers of the type M(NC)/sub 2/(NN)/sup +/ where (NN) = 2,2'-bipyridine or 1,10-phenanthroline have been prepared by reaction of the chelating ligands with the parent dimers. Cyclic voltammetric studies of these monomers indicate that several reversible ligand-centered reductions are generally observed and that the chelating ligand is more easily reduced than is the ortho-metalating ligand. Spectroscopic studies of the mixed ligand monomers indicate that dual emissions from MLCT states associated with the ortho-metalating and chelating ligands occur in the Ir(III) complexes whereas a single emission from a ligand-localized excited state is observed in the Rh(III) complexes. These results are discussed in terms of electronic and nuclear coupling factors analogous to those encountered in descriptions of bimolecular energy and electron-transfer processes.

  7. Respiratory chain supercomplexes.

    PubMed

    Schägger, H

    2001-01-01

    Respiratory chain supercomplexes have been isolated from mammalian and yeast mitochondria, and bacterial membranes. Functional roles of respiratory chain supercomplexes are catalytic enhancement, substrate channelling, and stabilization of complex I by complex III in mammalian cells. Bacterial supercomplexes are characterized by their relatively high detergent-stability compared to yeast or mammalian supercomplexes that are stable to sonication. The mobility of substrate cytochrome c increases in the order bacterial, yeast, and mammalian respiratory chain. In bacterial supercomplexes, the electron transfer between complexes III and IV involves movement of the mobile head of a tightly bound cytochrome c, whereas the yeast S. cerevisiae seems to use substrate channelling of a mobile cytochrome c, and mammalian respiratory chains have been described to use a cytochrome c pool. Dimeric ATP synthase seems to be specific for mitochondrial OXPHOS systems. Monomeric complex V was found in Acetobacterium woodii and Paracoccus denitrificans. PMID:11798023

  8. Mapping the Escherichia coli transcription elongation complex with exonuclease III

    PubMed Central

    Liu, Zhaokun; Artsimovitch, Irina

    2014-01-01

    Summary RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters; induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template. PMID:25665555

  9. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    SciTech Connect

    Tait, C.D.; Janecky, D.R.; Clark, D.L.; Bennett, P.C.

    1992-05-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  10. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    SciTech Connect

    Tait, C.D.; Janecky, D.R.; Clark, D.L. ); Bennett, P.C. . Dept. of Geological Sciences)

    1992-01-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  11. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents.

    PubMed

    Machado, Ignacio; Marino, Leonardo Biancolino; Demoro, Bruno; Echeverría, Gustavo A; Piro, Oscar E; Leite, Clarice Q F; Pavan, Fernando R; Gambino, Dinorah

    2014-11-24

    In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis. PMID:25261824

  12. The electronic spectra of mu-peroxodicobalt(III) complexes

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.

    1987-01-01

    Problems found in the determination of the electronic spectra of mu-peroxodicobalt(III) complexes are considered, and the common formation of different mu-peroxocomplexes upon oxygenation of Co(II)-ligand solutions is discussed. Three classes of spectra have been identified: (1) planar single bridged complexes; (2) nonplanar single-bridged complexes with a dihedral angle near 145 deg; and (3) dibridged mu-OH(-),O2(2-) complexes with a dihedral angle near 60 deg. All of the peroxide ligand-to-metal charge-transfer spectra are found to be consistent with a simple model that assumes a sinusoidal dependence of pi-asterisk O2(2-) energies and sigma-overlaps upon the dihedral angle.

  13. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2±0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. PMID:26827296

  14. Solvolysis of the Tumor-Inhibiting Ru(III)-Complex trans-Tetrachlorobis(Indazole)Ruthenate(III).

    PubMed

    Pieper, T; Peti, W; Keppler, B K

    2000-01-01

    The ruthenium(III) complex Hlnd trans-[RuCl(4),(ind)(2)], with two trans-standing indazole (ind) ligands bound to ruthenium via nitrogen, shows remarkable activity in different tumor models in vitro and in vivo. The solvolysis of the complex trans-[RuCl(4),(ind)(2)](-) has been investigated by means of spectroscopic techniques (UV/vis, NMR)in different solvents. We investigated the indazolium as well as the sodium salt, the latter showing improved solubility in water. In aqueous acetonitrile and ethanol the solvolysis results in one main solvento complex. The hydrolysis of the complex is more complicated and depends on the pH of the solution as well as on the buffer system. PMID:18475949

  15. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-. PMID:2983613

  16. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction

    PubMed Central

    Fang, JingXian; Uchiumi, Takeshi; Yagi, Mikako; Matsumoto, Shinya; Amamoto, Rie; Takazaki, Shinya; Yamaza, Haruyoshi; Nonaka, Kazuaki; Kang, Dongchon

    2012-01-01

    Some mutations of the DHODH (dihydro-orotate dehydrogenase) gene lead to postaxial acrofacial dysostosis or Miller syndrome. Only DHODH is localized at mitochondria among enzymes of the de novo pyrimidine biosynthesis pathway. Since the pyrimidine biosynthesis pathway is coupled to the mitochondrial RC (respiratory chain) via DHODH, impairment of DHODH should affect the RC function. To investigate this, we used siRNA (small interfering RNA)-mediated knockdown and observed that DHODH knockdown induced cell growth retardation because of G2/M cell-cycle arrest, whereas pyrimidine deficiency usually causes G1/S arrest. Inconsistent with this, the cell retardation was not rescued by exogenous uridine, which should bypass the DHODH reaction for pyrimidine synthesis. DHODH depletion partially inhibited the RC complex III, decreased the mitochondrial membrane potential, and increased the generation of ROS (reactive oxygen species). We observed that DHODH physically interacts with respiratory complexes II and III by IP (immunoprecipitation) and BN (blue native)/SDS/PAGE analysis. Considering that pyrimidine deficiency alone does not induce craniofacial dysmorphism, the DHODH mutations may contribute to the Miller syndrome in part through somehow altered mitochondrial function. PMID:23216091

  17. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    Macrocyclic rhodium(II) complexes LRh(H2O)(2+) (L = L-1 = cyclam and L-2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)(2)OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)(2)(H2O) CoR and (dmgBF(2))(2)(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)(2+). The new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. (C) 2013 Elsevier B.V. All rights reserved.

  18. Complexity measures of the central respiratory networks during wakefulness and sleep

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin; Curran, Aidan K.; Akay, Metin

    2008-06-01

    Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABAA receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.

  19. Reconstitution of respiratory complex I on a biomimetic membrane supported on gold electrodes.

    PubMed

    Gutiérrez-Sanz, Oscar; Olea, David; Pita, Marcos; Batista, Ana P; Alonso, Alvaro; Pereira, Manuela M; Vélez, Marisela; De Lacey, Antonio L

    2014-07-29

    For the first time, respiratory complex I has been reconstituted on an electrode preserving its structure and activity. Respiratory complex I is a membrane-bound enzyme that has an essential function in cellular energy production. It couples NADH:quinone oxidoreduction to translocation of ions across the cellular (in prokaryotes) or mitochondrial membranes. Therefore, complex I contributes to the establishment and maintenance of the transmembrane difference of electrochemical potential required for adenosine triphosphate synthesis, transport, and motility. Our new strategy has been applied for reconstituting the bacterial complex I from Rhodothermus marinus onto a biomimetic membrane supported on gold electrodes modified with a thiol self-assembled monolayer (SAM). Atomic force microscopy and faradaic impedance measurements give evidence of the biomimetic construction, whereas electrochemical measurements show its functionality. Both electron transfer and proton translocation by respiratory complex I were monitored, simulating in vivo conditions. PMID:24988043

  20. STRUCTURAL ANALYSIS OF ALTERNATIVE COMPLEX III IN THE PHOTOSYNTHETIC ELECTRON TRANSFER CHAIN OF CHLOROFLEXUS AURANTIACUS

    PubMed Central

    Gao, Xinliu; Xin, Yueyong; Bell, Patrick D.; Wen, Jianzhong; Blankenship, Robert E.

    2010-01-01

    The green photosynthetic bacterium Chloroflexus aurantiacus, which belongs to the phylum of filamentous anoxygenic phototrophs, does not contain a cytochrome bc or bf type complex as is found in all other known groups of phototrophs. This suggests that a functional replacement exists to link the reaction center photochemistry to cyclic electron transfer as well as respiration. Earlier work identified a potential substitute of the cytochrome bc complex, now named alternative complex III (ACIII), which has been purified, identified and characterized from C. aurantiacus. ACIII functions as a menaquinol:auracyanin oxidoreductase in the photosynthetic electron transfer chain, and a related but distinct complex functions in respiratory electron flow to a terminal oxidase. In this work, we focus on elucidating the structure of the photosynthetic ACIII. We found that AC III is an integral-membrane protein complex of around 300 kDa that consists of 8 subunits of 7 different types. Among them, there are 4 metalloprotein subunits, including a 113 kDa iron-sulfur cluster-containing polypeptide, a 25 kDa penta-heme c-containing subunit and two 20 kDa mono-heme c-containing subunits in the form of a homodimer. A variety of analytical techniques were employed in determining the ACIII substructure, including HPLC combined with ESI-MS, metal analysis, potentiometric titration and intensity analysis of heme-staining SDS-PAGE. A preliminary structural model of the ACIII complex is proposed based on the analytical data and chemical cross-linking in tandem with mass analysis using MALDI-TOF, as well as transmembrane and transit peptide analysis. PMID:20614874

  1. Molecular structure, photophysical and thermal properties of samarium (III) complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Singh, Udai P.

    2008-03-01

    Some 8-coordinated samarium (III) complexes ( 1- 4) having bipy (2,2'-bipyridine), terpy (2,2':6',2″-terpyridine), phen (1,10-phenanthroline) and tp [hydrotris (pyrazol-1-yl) borate] as supporting ligands have been synthesized and structurally characterized by different techniques including X-ray crystallography. The X-ray studies demonstrated that the complexes 1, 2 and 4 crystallized in triclinic space group P1¯ with cell dimensions a = 8.5640(2) Å, b = 8.8696(2) Å, c = 15.8608(4) Å for 1; a = 7.2113(9) Å, b = 11.0737(14) Å, c = 13.6289(18) Å for 2; a = 12.440(3) Å, b = 12.874(3) Å, c = 17.822(4) Å for 4, whereas the complex 3 crystallized in the monoclinic space group P2 1/ c with cell dimensions a = 9.472(3) Å, b = 17.092(5) Å, c = 14.516(5) Å. The IR study suggested that the azide is coordinated in 1, 3-bridging mode in complex 4. The photophysical properties of above complexes have been studied with ultraviolet absorption and emission spectral studies. Thermogravimetric analyses suggested that all these complexes undergo the complete decomposition to form the thermally stable samarium oxide (Sm 2O 3).

  2. Polyamide preparation with pentaamine cobalt (III) complex catalyst

    SciTech Connect

    Wu, M.Y.M.; Ball, L.E.; Coffey, G.P.

    1987-11-17

    A process is described for preparing a polyamide containing amide groups as integral parts of the main polymer chain comprising polymerizing a polyamide forming system, chosen from (1) an alpha, beta-unsaturated carboxylic acid and ammonia, (2) an ammonium salt of an alpha, beta unsaturated carboxylic acid, (3) an alpha, beta-unsaturated nitrile and water, (4) an alpha, beta-unsaturated amine and ammonia, (5) or a beta-amino propionic acid or its alkyl derivatives, in contact with a catalyst comprising a pentaamine cobalt (III) complex.

  3. Exceptional Oxygen Sensing Properties of New Blue Light-Excitable Highly Luminescent Europium(III) and Gadolinium(III) Complexes

    PubMed Central

    Borisov, Sergey M.; Fischer, Roland; Saf, Robert; Klimant, Ingo

    2016-01-01

    New europium(III) and gadolinium(III) complexes bearing 8-hydroxyphenalenone antenna combine efficient absorption in the blue part of the spectrum and strong emission in polymers at room temperature. The Eu(III) complexes show characteristic red luminescence whereas the Gd(III) dyes are strongly phosphorescent. The luminescence quantum yields are about 20% for the Eu(III) complexes and 50% for the Gd(III) dyes. In contrast to most state-of-the-art Eu(III) complexes the new dyes are quenched very efficiently by molecular oxygen. The luminescence decay times of the Gd(III) complexes exceed 1 ms which ensures exceptional sensitivity even in polymers of moderate oxygen permeability. These sensors are particularly suitable for trace oxygen sensing and may be good substitutes for Pd(II) porphyrins. The photophysical and sensing properties can be tuned by varying the nature of the fourth ligand. The narrow-band emission of the Eu(III) allows efficient elimination of the background light and autofluorescence and is also very attractive for use e.g. in multi-analyte sensors. The highly photostable indicators incorporated in nanoparticles are promising for imaging applications. Due to the straightforward preparation and low cost of starting materials the new dyes represent a promising alternative to the state-of-the-art oxygen indicators particularly for such applications as e.g. food packaging. PMID:27158252

  4. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma

    PubMed Central

    Lloyd, Rhiannon E.; Keatley, Kathleen; Littlewood, D. Timothy J.; Meunier, Brigitte; Holt, William V.; An, Qian; Higgins, Samantha C.; Polyzoidis, Stavros; Stephenson, Katie F.; Ashkan, Keyoumars; Fillmore, Helen L.; Pilkington, Geoffrey J.; McGeehan, John E.

    2015-01-01

    Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches. PMID:25731774

  5. Preparation of new fluorophore lanthanide complexes-Cloisite nanohybrids using the tricationic Pr(III), Gd(III) and Dy(III) complexes with 9,10-phenanthrenequinone.

    PubMed

    Mallakpour, Shadpour; Behnamfar, Mohammad Taghi; Dinari, Mohammad; Hadadzadeh, Hassan

    2015-02-25

    New fluorophore lanthanide complexes-Cloisite (LCs-C) nanohybrids have been prepared by the intercalation reaction of Cloisite Na(+) with the tricationic lanthanide complexes (1-3), [M(PQ)3(DMF)2(H2O)2](3+) (M=Pr(III) (1), Gd(III) (2), and Dy(III) (3); PQ=9,10-phenanthrenequinone), in aqueous solutions. The X-ray diffraction analysis of the modified clays (LCs-C) showed an increase in the interlayer distance (d) as compared to the pure Cloisite Na(+). Field-emission scanning electron microscopy (FE-SEM) was used to study the morphology of the modified clays and the results were demonstrated a homogeneous morphology for the nanohybrids. The thermal behavior of the LCs-C nanohybrids was investigated using thermogravimetric analysis. Solid-state fluorescence properties of the LCs-C nanohybrids were also investigated. The results show that all tricationic complexes have a significant fluorescence at room temperature when the complexes are adsorbed onto Cloisite. PMID:25305612

  6. Mitochondrial respiratory chain complex IV deficiency complicated with chronic intestinal pseudo-obstruction in a neonate.

    PubMed

    Hashimura, Yuya; Morioka, Ichiro; Hisamatsu, Chieko; Yokoyama, Naoki; Taniguchi-Ikeda, Mariko; Yokozaki, Hiroshi; Murayama, Kei; Ohtake, Akira; Itoh, Kyoko; Takeshima, Yasuhiro; Iijima, Kazumoto

    2016-07-01

    A female infant born at 36 weeks gestational age with birthweight 2135 g, and who developed respiratory disorder, hyperlactacidemia and hypertrophic cardiomyopathy after birth, was admitted to hospital at 3 days of age. After admission, bilious emesis, abdominal distention, and passage disorder of the gastrointestinal tract were resistant to various drugs. Exploratory laparotomy was performed at 93 days of age, but no organic lesions were identified and normal Meissner/Auerbach nerve plexus was confirmed, which led to a clinical diagnosis of chronic intestinal pseudo-obstruction (CIPO). She was diagnosed with mitochondrial respiratory chain complex IV deficiency on histopathology of the abdominal rectus muscle and enzyme activity measurement. This is the first report of a neonate with mitochondrial respiratory chain complex deficiency with intractable CIPO. CIPO can occur in neonates with mitochondrial respiratory chain disorder, necessitating differential diagnosis from Hirschsprung disease. PMID:27264907

  7. A Homozygous Mutation in LYRM7/MZM1L Associated with Early Onset Encephalopathy, Lactic Acidosis, and Severe Reduction of Mitochondrial Complex III Activity

    PubMed Central

    Invernizzi, Federica; Tigano, Marco; Dallabona, Cristina; Donnini, Claudia; Ferrero, Ileana; Cremonte, Maurizio; Ghezzi, Daniele; Lamperti, Costanza; Zeviani, Massimo

    2013-01-01

    Mutations in nuclear genes associated with defective complex III (cIII) of the mitochondrial respiratory chain are rare, having been found in only two cIII assembly factors and, as private changes in single families, three cIII structural subunits. Recently, human LYRM7/MZM1L, the ortholog of yeast MZM1, has been identified as a new assembly factor for cIII. In a baby patient with early onset, severe encephalopathy, lactic acidosis and profound, isolated cIII deficiency in skeletal muscle, we identified a disease-segregating homozygous mutation (c.73G>A) in LYRM7/MZM1L, predicting a drastic change in a highly conserved amino-acid residue (p.Asp25Asn). In a mzm1Δ yeast strain, the expression of a mzm1D25N mutant allele caused temperature-sensitive respiratory growth defect, decreased oxygen consumption, impaired maturation/stabilization of the Rieske Fe–S protein, and reduced complex III activity and amount. LYRM7/MZM1L is a novel disease gene, causing cIII-defective, early onset, severe mitochondrial encephalopathy. PMID:24014394

  8. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease.

    PubMed

    Nijtmans, L G J; Artal, Sanz M; Grivell, L A; Coates, P J

    2002-01-01

    Although originally identified as putative negative regulators of the cell cycle, recent studies have demonstrated that the PHB proteins act as a chaperone in the assembly of subunits of mitochondrial respiratory chain complexes. The two PHB proteins, Phblp and Phb2p, are located in the mitochondrial inner membrane where they form a large complex that represents a novel type of membrane-bound chaperone. On the basis of its native molecular weight, the PHB-complex should contain 12-14 copies of both Phblp and Phb2p. The PHB complex binds directly to newly synthesised mitochondrial translation products and stabilises them against degradation by membrane-bound metalloproteases belonging to the family of mitochondrial triple-A proteins. Sequence homology assigns Phb1p and Phb2p to a family of proteins which also contains stomatins, HflKC, flotillins and plant defence proteins. However, to date only the bacterial HflKC proteins have been shown to possess a direct functional homology with the PHB complex. Previously assigned actions of the PHB proteins, including roles in tumour suppression, cell cycle regulation, immunoglobulin M receptor binding and apoptosis seem unlikely in view of any hard evidence in their support. Nevertheless, because the proteins are probably indirectly involved in ageing and cancer, we assess their possible role in these processes. Finally, we suggest that the original name for these proteins, the prohibitins, should be amended to reflect their roles as proteins that hold badly formed subunits, thereby keeping the nomenclature already in use but altering its meaning to reflect their true function more accurately. PMID:11852914

  9. 9,10-phenanthrenesemiquinone radical complexes of ruthenium(III), osmium(III) and rhodium(III) and redox series.

    PubMed

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-05-14

    Reactions of 9,10-phenanthrenequinone (PQ) in toluene with [M(II)(PPh3)3X2] at 298 K afford green complexes, trans-[M(PQ)(PPh3)2X2] (M = Ru, X = Cl, 1; M = Os, X = Br, 2) in moderate yields. Reaction of anhydrous RhCl3 with PQ and PPh3 in boiling ethanol affords the dark brown paramagnetic complex, cis-[Rh(PQ)(PPh3)2Cl2] (3) in good yields. Diffusion of iodine solution in n-hexane to the trans-[Os(PQ) (PPh3)2(CO)(Br)] solution in CH2Cl2 generates the crystals of trans-[Os(PQ)(PPh3)2(CO)(Br)](+)I3(-), (4(+))I3(-)), in lower yields. Single crystal X-ray structure determinations of 1·2toluene, 2·CH2Cl2 and 4(+)I3(-), UV-vis/NIR absorption spectra, EPR spectra of 3, electrochemical activities and DFT calculations on 1, 2, trans-[Ru(PQ)(PMe3)2Cl2] (1Me), trans-[Os(PQ)(PMe3)2Br2] (2Me), cis-[Rh(PQ)(PMe3)2Cl2] (3Me) and their oxidized and reduced analogues including trans-[Os(PQ)(PMe3)2(CO)(Br)](+) (4Me(+)) substantiated that 1-3 are the 9,10-phenanthrenesemiquinone radical (PQ(˙-)) complexes of ruthenium(III), osmium(III) and rhodium(III) and are defined as trans/cis-[M(III)(PQ(˙-))(PPh3)2X2] with a minor contribution of the resonance form trans/cis-[M(II)(PQ)(PPh3)2X2]. Two comparatively longer C-O (1.286(4) Å) and the shorter C-C lengths (1.415(7) Å) of the OO-chelate of 1·2toluene and 2·CH2Cl2 and the isotropic fluid solution EPR signal at g = 1.999 of 3 are consistent with the existence of the reduced PQ(˙-) ligand in 1-3 complexes. Anisotropic EPR spectra of the frozen glasses (g11 = g22 = 2.0046 and g33 = 1.9874) and solids (g11 = g22 = 2.005 and g33 = 1.987) instigate the contribution of the resonance form, cis-[Rh(II)(PQ)(PPh3)2Cl2] in 3. DFT calculations established that the closed shell singlet (CSS) solutions of 1Me and 2Me are unstable due to open shell singlet (OSS) perturbation. However, the broken symmetry (BS) (1,1) Ms = 0 solutions of 1Me and 2Me are respectively 22.6 and 24.2 kJ mole(-1) lower in energy and reproduced the experimental bond

  10. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  11. Reactions of a chromium(III)-superoxo complex and nitric oxide that lead to the formation of chromium(IV)-oxo and chromium(III)-nitrito complexes.

    PubMed

    Yokoyama, Atsutoshi; Cho, Kyung-Bin; Karlin, Kenneth D; Nam, Wonwoo

    2013-10-01

    The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [Cr(III)(14-TMC)(O2)(Cl)](+), with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [Cr(IV)(14-TMC)(O)(Cl)](+), via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from electron paramagnetic resonance spectroscopy, computational chemistry and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [Cr(III)(14-TMC)(NO2)(Cl)](+). The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924

  12. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III

    PubMed Central

    Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed

    2015-01-01

    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID

  13. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    ERIC Educational Resources Information Center

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  14. Sparkle/AM1 Parameters for the Modeling of Samarium(III) and Promethium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2006-01-01

    The Sparkle/AM1 model is extended to samarium(III) and promethium(III) complexes. A set of 15 structures of high crystallographic quality (R factor < 0.05 Å), with ligands chosen to be representative of all samarium complexes in the Cambridge Crystallographic Database 2004, CSD, with nitrogen or oxygen directly bonded to the samarium ion, was used as a training set. In the validation procedure, we used a set of 42 other complexes, also of high crystallographic quality. The results show that this parametrization for the Sm(III) ion is similar in accuracy to the previous parametrizations for Eu(III), Gd(III), and Tb(III). On the other hand, promethium is an artificial radioactive element with no stable isotope. So far, there are no promethium complex crystallographic structures in CSD. To circumvent this, we confirmed our previous result that RHF/STO-3G/ECP, with the MWB effective core potential (ECP), appears to be the most efficient ab initio model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. We thus generated a set of 15 RHF/STO-3G/ECP promethium complex structures with ligands chosen to be representative of complexes available in the CSD for all other trivalent lanthanide cations, with nitrogen or oxygen directly bonded to the lanthanide ion. For the 42 samarium(III) complexes and 15 promethium(III) complexes considered, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Ln(III) ion and the ligand atoms of the first sphere of coordination, is 0.07 and 0.06 Å, respectively, a level of accuracy comparable to present day ab initio/ECP geometries, while being hundreds of times faster. PMID:26626380

  15. Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects.

    PubMed

    Iglesias, Darío E; Bombicino, Silvina S; Valdez, Laura B; Boveris, Alberto

    2015-12-01

    The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 μM GSNO and by 48% in the presence of 30 μM SPER-NO, in both cases at ~1.25 μM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 μM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 μM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 μM GSNO or 30 μM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates. PMID:26456055

  16. Synthesis of supramolecular iron (III) complexes by cluster aggregation

    NASA Astrophysics Data System (ADS)

    Seddon, Elisa Joy

    2000-12-01

    Biologically, iron is a ubiquitous and versatile metal, found in the active sites of proteins responsible for both oxygen and electron transport. Multinuclear iron-oxo proteins are either dinuclear, or contain many iron atoms; the [Fe2O] unit occurs in hemerythrin (Hr), ribonucleotide reductase, purple acid phosphatase (POP) and methane monooxygenase (MMO), whereas ferritin (Ft) can store up to 4500 iron atoms. Iron storage and transport are essential for protecting biological organisms from free iron, since free Fe(II) ions, will react with dioxygen to form destructive organic radicals, and free Fe(III) ions form insoluble iron hydroxide aggregates under physiological conditions. The tendency of iron to form molecular aggregates in systems containing water or alcohol, together with the fact that each iron atom possesses a large number of unpaired electrons (5 for high-spin FeIII) often results in products possessing large spin ground states (S). The current record-holder for iron is a Fe19 complex, with at least 33 unpaired electrons in the ground state (S = 33/2). Hence, iron is also important in the rapidly developing field of molecular magnetic materials. For these two reasons, the preparation of iron clusters with new topologies and properties has become a major goal of many synthetic inorganic groups, including our own. In this thesis work, synthetic and spectroscopic methods of inorganic coordination chemistry were used to achieve two different goals: firstly, to synthesize dinuclear iron complexes with the use of tetradentate ligands in order to study the magnetic interactions between the two metal centers; and secondly, to identify reactions and characterize the products whereby pre-formed iron oxide clusters undergo aggregation reactions to produce higher nuclearity products. The tetradentate ligands investigated were a bis-(beta-diketone) ligand L and a bis-bpy ligand L'. The reactions involving L and Fe(III) reagents produced complexes with a triple

  17. The Internal Validation of Level II and Level III Respiratory Therapy Examinations. Final Report.

    ERIC Educational Resources Information Center

    Jouett, Michael L.

    This project began with the delineation of the roles and functions of respiratory therapy personnel by the American Association for Respiratory Therapy. In Phase II, The Psychological Corporation used this delineation to develop six proficiency examinations, three at each of two levels. One exam at each level was designated for the purpose of the…

  18. Pyridinophane platform for stable lanthanide(III) complexation.

    PubMed

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura

    2013-05-20

    A detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the macrocyclic ligand 2,11,20-triaza[3.3.3](2,6)pyridinophane (TPP) is reported. The solid state structures of 14 different Ln(3+) complexes have been determined using X-ray crystallography. The ligand is coordinating to the Ln(3+) ion by using its six nitrogen atoms, while nitrate or triflate anions and water molecules complete the metal coordination environments. The structure of the complexes in solution has been investigated by (1)H and (13)C NMR spectroscopy, as well as by DFT calculations (TPSSh model) performed in aqueous solution. The structures obtained from these calculations for the complexes with the lightest Ln(3+) ions (La-Sm) are in very good agreement with those determined by the analysis of the Ln(3+)-induced paramagnetic shifts. A structural change occurs across the lanthanide series at Sm(3+); the complexes of the large Ln(3+) ions (La-Nd) are chiral due to the nonplanar conformation of the macrocycle, and present effective C3v symmetries in solution as a consequence of a fast interconversion of two enantiomeric forms with C3 symmetry. The activation free energy for this enantiomerization process, as estimated by using DFT calculations, amounts to 33.0 kJ·mol(-1). The TPP ligand in the complexes of the heaviest Ln(3+) ions (Eu-Lu) presents a half-chair conformation, which results in C(s) symmetries in solution. PMID:23627284

  19. The Silver Complexes of Porphyrins, Corroles, and Carbaporphyrins: Silver in the Oxidation States II and III

    ERIC Educational Resources Information Center

    Bruckner, Christian

    2004-01-01

    Studies in relation to the silver complexes of porphyrins, corroles and carbaporphyrins are presented especially with relation to silver in the oxidation states II and III. It is seen that the Ag(sub III) complex was electrochemically readily and reversibly reduced to the corresponding Ag(sub II) complex, thus indicating that the complex could be…

  20. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing.

    PubMed

    Jana, Atanu; Crowston, Bethany J; Shewring, Jonathan R; McKenzie, Luke K; Bryant, Helen E; Botchway, Stanley W; Ward, Andrew D; Amoroso, Angelo J; Baggaley, Elizabeth; Ward, Michael D

    2016-06-01

    Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM). PMID:27219675

  1. Mono- and bis-tolylterpyridine iridium(III) complexes

    SciTech Connect

    Hinkle, Lindsay M.; Young, Jr., Victor G.; Mann, Kent R.

    2012-01-20

    The first structure report of trichlorido[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl{sub 3}(C{sub 22}H{sub 17}N{sub 3})] {center_dot} C{sub 2}H{sub 6}OS, (I), is presented, along with a higher-symmetry setting of previously reported bis[4'-(p-tolyl)-2,2':6',2{double_prime}-terpyridine]iridium(III) tris(hexafluoridophosphate) acetonitrile disolvate, [Ir(C{sub 22}H{sub 17}N{sub 3})2](PF{sub 6}){sub 3} {center_dot} 2C{sub 2}H{sub 3}N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007). Eur. J. Inorg. Chem. pp. 1911-1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent molecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF{sub 6}{sup -} anion lie on twofold axes in this structure, making half of the molecule unique.

  2. Preparation and reactivity of macrocyclic rhodium(III) alkyl complexes

    SciTech Connect

    Carraher, Jack M.; Ellern, Arkady; Bakac, Andreja

    2013-09-21

    We found that the macrocyclic rhodium(II) complexes LRh(H2O)2+ (L = L1 = cyclam and L2 = meso-Me-6-cyclam) react with alkyl hydroperoxides RC(CH3)2OOH to generate the corresponding rhodium(III) alkyls L(H2O)RhR2+ (R = CH3, C2H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgH)2(H2O) CoR and (dmgBF2)2(H2O) CoR (R = CH3, PhCH2) to LRh(H2O)2+. Moreover, the new complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis.

  3. Hydroxo sulfate complexes of iron (III) in solution.

    PubMed

    Ciavatta, Liberato; De Tommaso, Gaetano; Iuliano, Mauro

    2002-01-01

    The ternary Fe (III)-OH(-)-SO4(2-) complexes have been investigated at 25 degrees C in 3 M NaClO4 by potentiometric titration with glass electrode. The metal and sulfate concentrations ranged from 2.5 x 10(-3) to 0.03 M and from 5.10(-3) to 0.060 M, respectively. [H+] was decreased from 0.05 M to incipient precipitation of basic sulfate which occured at log[H+] between -2.3 and -2.5 depending on the concentration of the metal. For the interpretation of the data stability constants of HSO4(-), of binary hydroxo complexes (FeOH2+, Fe(OH)2+, Fe2(OH)2(4+), Fe3(OH)4(5+), Fe3(OH)5(4+)) and of sulfate complexes (FeSO4+, FeHSO4(2+), Fe(SO4)2-) were assumed from independent sources. The data are consistent with the presence of FeOHSO4, log beta 1-11 = -0.49 +/- 0.03. Equilibrium constants are defined as beta pqr for pFe3+ +qH+ +rSO4(2-) [symbol: see text] FepHq(SO4)r3p+q-2r. No substantial better fit could be found by adding a second mixed complex. Only a slightly smaller agreement factor resulted introducing as minor ternary complex Fe3(OH)6(SO4)3(3-) with log beta 3-63 = -5.8 +/- 0.5. Its evidence, however, cannot be considered conclusive. PMID:12185749

  4. Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats.

    PubMed

    Macongonde, Ernesto António; Vilela, Thais Ceresér; Scaini, Giselli; Gonçalves, Cinara Ludvig; Ferreira, Bruna Klippel; Costa, Naithan Ludian Fernandes; de Oliveira, Marcos Roberto; Avila Junior, Silvio; Streck, Emilio Luiz; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2015-01-01

    Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 μmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients. PMID:26770008

  5. Evaluation of the In Vivo and In Vitro Effects of Fructose on Respiratory Chain Complexes in Tissues of Young Rats

    PubMed Central

    Macongonde, Ernesto António; Vilela, Thais Ceresér; Scaini, Giselli; Gonçalves, Cinara Ludvig; Ferreira, Bruna Klippel; Costa, Naithan Ludian Fernandes; de Oliveira, Marcos Roberto; Avila, Silvio; Streck, Emilio Luiz; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2015-01-01

    Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 μmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients. PMID:26770008

  6. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  7. Lipids of Sarcina lutea III. Composition of the Complex Lipids

    PubMed Central

    Huston, Charles K.; Albro, Phillip W.; Grindey, Gerald B.

    1965-01-01

    Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed. PMID:14273659

  8. Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine

    SciTech Connect

    Borkowski, Marian; Richmann, Michael K; Reed, Donald T; Yongliang, Xiong

    2010-01-01

    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

  9. A Triangular Iron(III) Complex Potentially Relevant to Iron(III)-Binding Sites in Ferreascidin.

    PubMed

    Bill, E; Krebs, C; Winter, M; Gerdan, M; Trautwein, A X; Flörke, U; Haupt, H J; Chaudhuri, P

    1997-02-01

    An asymmetric triangular Fe(III) complex has been synthesized by an unusual Fe(II) -promoted activation of salicylaldoxime. Formation of the ligand 2-(bis(salicylideneamino)methyl)phenol in situ is believed to occur through the reductive deoximation of salicylaldoxime by ferrous ions. The trinuclear ferric complex has been characterized on the basis of elemental analysis, IR, variable-temperature magnetic susceptibility, and EPR and Mössbauer spectroscopies. The molecular structure established by X-ray diffraction consists of a trinuclear structure with a [Fe3 (μ3 -O)(μ2 -OPh)](6+) core. Two iron ions are in a distorted octahedral environment having FeN2 O4 coordination spheres, and the five-coordinated third iron ion, with an FeNO4 coordination sphere, is in a trigonal bipyramidal environment. The magnetic susceptibility measurements revealed an St = 5/2 ground state with the antiparallel exchange interactions J = - 34.3 cm(-1) , J' = - 4.7 cm(-1) , and D = - 0.90 cm(-1) . The EPR results are consistent with a ground state of S = 5/2 together with a negative D5/2 value. The Mössbauer isomer shifts together with the quadrupole splitting also provide evidence for the high-spin state of the three ferric sites. Magnetic Mössbauer spectra lead to the conclusion that the internal magnetic fields possibly lie in the plane of the three ferric ions. PMID:24022947

  10. 1,2,4-Diazaphospholide complexes of lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii): synthesis, X-ray structural characterization, and magnetic susceptibility studies.

    PubMed

    Zhao, Minggang; Wang, Lixia; Li, Pangpang; Ma, Jianping; Zheng, Wenjun

    2016-07-01

    A few heteroleptic, charge-separated heterobimetallic, and polymeric alkali metalate complexes of 1,2,4-diazaphospholide lanthanum(iii), cerium(iii), neodymium(iii), praseodymium(iii), and samarium(iii) were simply prepared via the metathesis reaction of MCl3 (THF)m (m = 1-2) and K[3,5-R2dp] ([3,5-R2dp](-) = 3,5-di-substituent-1,2,4-diazaphospholide; R = tBu, Ph) in a varied ratio (1 : 3, 1 : 4, and 1 : 5, respectively) at room temperature in tetrahydrofuran. All the complexes were fully characterized by (1)H, (13)C{(1)H}, (31)P{(1)H}, IR, and X-ray single crystal diffraction analysis despite their paramagnetism (excluding La(iii) complexes). The structures of the complexes were found to feature varied coordination modes. The magnetic properties of several compounds were studied by magnetic susceptibility, and the complexes presented the magnetic moments close to or lower than the theoretical values for the free ions in the trivalent oxidation states (Pr(3+), Nd(3+)). PMID:27326667

  11. Differential inhibition of mitochondrial respiratory complexes by inhalation of combustion smoke and carbon monoxide, in vivo, in the rat brain.

    PubMed

    Lee, Heung M; Hallberg, Lance M; Greeley, George H; Englander, Ella W

    2010-08-01

    Combustion smoke contains gases and particulates, which act via hypoxia and cytotoxicity producing mechanisms to injure cells and tissues. While carbon monoxide (CO) is the major toxicant in smoke, its toxicity is exacerbated in the presence of other compounds. Here, we examined modulations of mitochondrial and cytosolic energy metabolism by inhalation of combustion smoke versus CO, in vivo, in the rat brain. Measurements revealed reduced activities of respiratory chain (RC) complexes, with greater inhibition by smoke than equivalent CO in ambient air. In the case of RC complex IV, inhibition by CO and smoke was similar--suggesting that complex IV inhibition is primarily by the action of CO. In contrast, inhibition of complexes I and III was greater by smoke. Increases in cytosolic lactate dehydrogenase and pyruvate kinase activities accompanied inhibition of RC complexes, likely reflecting compensatory increases in cytosolic energy production. Together, the data provide new insights into the mechanisms of smoke inhalation-induced perturbations of brain energetics, which impact neuronal function and contribute to the development of neuropathologies in survivors of exposures to CO and combustion smoke. PMID:20429857

  12. Synthesis, characterization, molecular docking and DNA binding studies of Al(III), Ga(III) and In(III) water-soluble complexes

    NASA Astrophysics Data System (ADS)

    Shorkaei, Mohammad Ranjkesh; Asadi, Zahra; Asadi, Mozaffar

    2016-04-01

    In this work three new water-soluble aluminum(III), gallium(III) and indium(III) Schiff base complexes; Na2[M(L)NO3]; where L denotes; N,N'-bis(5-sulfosalicyliden)-1,2-phenylendiamin (salsophen) were synthesized and characterized by UV-vis, 1HNMR, FT-IR spectroscopy, thermal gravimetry (TG) and elemental analysis. To study the biological preference with the molecular target DNA, interaction of these complexes with DNA have been explored by employing various biophysical methods including absorption spectra, fluorescence spectra, cyclic voltammetry and viscosity measurement. The Kb values at 298 K were found to be 1.17 × 104 for Al(III), 1.35 × 104 for Ga(III) and 1.64 × 104 M-1 for In(III) complexes, respectively. These results suggesting the greater binding propensity of In(III) complexes. Additionally molecular docking was carried out to ascertain the mode of action towards the molecular target DNA.

  13. [Recommendations for respiratory support in the newborn (iii). Surfactant and nitric oxide].

    PubMed

    Castillo Salinas, F; Elorza Fernández, D; Gutiérrez Laso, A; Moreno Hernando, J; Bustos Lozano, G; Gresa Muñoz, M; López de Heredia Goya, J; Aguar Carrascosa, M; Miracle Echegoyen, X; Fernández Lorenzo, J R; Serrano, M M; Concheiro Guisan, A; Carrasco Carrasco, C; Comuñas Gómez, J J; Moral Pumarega, M T; Sánchez Torres, A M; Franco, M L

    2015-11-01

    The recommendations included in this document will be part a series of updated reviews of the literature on respiratory support in the newborn infant. These recommendations are structured into twelve modules, and in this work module 7 is presented. Each module is the result of a consensus process including all members of the Surfactant and Respiratory Group of the Spanish Society of Neonatology. They represent a summary of the published papers on each specific topic, and of the clinical experience of each one of the members of the group. PMID:25840706

  14. Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands.

    PubMed

    Senthil Kumar, Kuppusamy; Schäfer, Bernhard; Lebedkin, Sergei; Karmazin, Lydia; Kappes, Manfred M; Ruben, Mario

    2015-09-21

    We report on the synthesis of tridentate-nitrogen pyrazole-pyridine-tetrazole (L(1)H) and pyrazole-pyridine-triazole (L(2)H) ligands and their complexation with lanthanides (Ln = Gd(iii), Eu(iii) and Tb(iii)) resulting in stable, charge-neutral complexes Ln(L(1))3 and Ln(L(2))3, respectively. X-ray crystallographic analysis of the complexes with L(1) ligands revealed tricapped trigonal coordination geometry around the lanthanide ions. All complexes show bright photoluminescence (PL) in the solid state, indicating efficient sensitization of the lanthanide emission via the triplet states of the ligands. In particular, the terbium complexes show high PL quantum yields of 65 and 59% for L(1) and L(2), respectively. Lower PL efficiencies of the europium complexes (7.5 and 9%, respectively) are attributed to large energy gaps between the triplet states of the ligands and accepting levels of Eu(iii). The triplet state energy can be reduced by introducing an electron withdrawing (EW) group at the 4 position of the pyridine ring. Such substitution of L(1)H with a carboxylic ester (COOMe) EW group leads to a europium complex with increased PL quantum yield of 31%. A comparatively efficient PL of the complexes dissolved in ethanol indicates that the lanthanide ions are shielded against nonradiative deactivation via solvent molecules. PMID:26245980

  15. Complexation of trivalent cations (Al(III), Cr(III), Fe(III)) with two phosphonic acids in the pH range of fresh waters.

    PubMed

    Lacour, S; Deluchat, V; Bollinger, J C; Bernard Serpaud

    1998-08-01

    The complex formation constants of two phosphonic acids, HEDP and ATMP, with three trivalent metallic cations, Al(III), Cr(III) and Fe(III), have been determined by acid-base titration at 25 degrees C and constant ionic strength (0.1 mol l(-1), KNO(3)), using Martell and Motekaitis' computer programs. Species distribution curves showed that all three cations are in complex form in the pH range of fresh waters (5-9). The study of different cation/ligand ratios proved that both ligands mainly form anionic soluble complexes for systems having an excess of ligand-as protonated and unprotonated forms and especially ternary complexes with HEDP. For higher metal concentrations (excess of cation), weakly soluble species of HEDP and ATMP were formed with Al(III) and Cr(III). Two insoluble complexes with ATMP have been identified by SEM/EDAX as AlH(3)X((s)) and Cr(2)X((s)). Regarding Fe(III) species, Fe(OH)(3(s)) precipitate seems to predominate in solution. PMID:18967224

  16. New yellow-emitting phosphorescent cyclometalated iridium(III) complex

    NASA Astrophysics Data System (ADS)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2012-12-01

    We have synthesized a new yellow iridium complex Iridium(III) bis[2-phenylbenzothiazolato-N,C2']-(1-phenylicosane-1,3-dionate) (bt)2Ir(bsm), based on the benzothiazole derivative. The synthesized molecule was identified by 1H NMR and elemental analysis. The UV-Visible absorption and photoluminescence (PL) spectra of (bt)Ir2(bsm) in CH2Cl2 solution were found at 273 nm and 559 nm, respectively. The complex was used as a dopant into a hole-transporting layer (HTL) in a multilayered organic light emitting device (OLED) structure: ITO/doped-HTL/EL/ETL/M. ITO was a transparent anode of In2O3:SnO2, M- a metallic Al cathode, HTL- 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) incorporated in poly(N-vinylcarbazole) (PVK) matrix, EL- electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylphenoxy)aluminum (BAlq) and ETL- electron-transporting layer of tris(8-hydroxyquinolinato)aluminum (Alq3). The electroluminescent (EL) spectra of OLEDs were basically the sum of the emissions of BAlq at 496 nm and the emission of (bt)2Ir(bsm) at 559 nm. With increasing (bt)2Ir(bsm) concentration, the relative electroluminescent intensity of greenish-blue emission (at 496 nm) decreased, while the yellow (at 559 nm) - increased and CIE coordinates of the device shifted from (0.21, 0.33) at 0 wt % to (0.40, 0.48) at 8 wt % of the dopant. It was found that OLED with 0.5 wt % (bt)2Ir(bsm) had the best performance and stable color chromaticity at various voltages.

  17. Thiocyanato Chromium (III) Complexes: Separation by Paper Electrophoresis and Estimate of Stability Constants

    ERIC Educational Resources Information Center

    Larsen, Erik; Eriksen, J.

    1975-01-01

    Describes an experiment wherein the student can demonstrate the existence of all the thiocyanato chromium complexes, estimate the stepwise formation constants, demonstrate the robustness of chromium III complexes, and show the principles of paper electrophoresis. (GS)

  18. Light induced catalytic intramolecular hydrofunctionalization of allylphenols mediated by porphyrin rhodium(iii) complexes.

    PubMed

    Liu, Xu; Wang, Zikuan; Fu, Xuefeng

    2016-09-14

    Catalytic intramolecular hydrofunctionalization of allylphenols to heterocyclic compounds mediated by rhodium(iii) porphyrin complexes was described. The Wacker-type intermediate β-heterocyclic alkyl rhodium complex was independently synthesized and crystallized. PMID:27482840

  19. 1,2,4-Diazaphospholide complexes of yttrium(iii), dysprosium(iii), erbium(iii), and europium(ii,iii): synthesis, X-ray structural characterization, and EPR analysis.

    PubMed

    Wang, Yongli; Guo, Wenzhen; Liu, Dongling; Yang, Ying; Zheng, Wenjun

    2016-01-21

    Several structurally characterized heteroleptic, charge-separated heterobimetallic, and polymeric alkali metal ate complexes of 1,2,4-diazaphospholide Y(iii), Dy(iii), Er(iii), Eu(iii), and Eu(ii) were prepared via the reaction of MCl3 and K[3,5-R2dp] in varied ratios at 200-220 °C (M = Y, Dy, Er, Eu; R = tBu, Ph). PMID:26666366

  20. Fluorescence enhancement of rare earth Tb(III) by Tm(III) in benzyl benzoylmethyl sulphoxide complexes.

    PubMed

    Li, Wen-Xian; Chai, Wen-Juan; Liu, Yu; Li, Ying-Jie; Ren, Tie; Zhang, Jing; Ao, Bo-Yang

    2012-01-01

    A series of rare earth complexes [(Tb(x) Tm(y))L5 (ClO4)2](ClO4)·3H(2) O (x:y = 1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L = C(6) H5 CH2 SOCH2 COC6 H5) (Tb(III) luminescence ion; Tm(III) doped inert ion) were synthesized and characterized by elemental analysis, infrared spectra (IR) and (1) H-NMR. The photophysical properties of these complexes were studied in detail using ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra of complexes indicated that the fluorescence emission intensity was significantly enhanced by Tm(III). The complexes showed the best luminescence properties when the mole ratio Tb(III):Tm(III) was 0.990:0.010. The fluorescence intensity could be increased to 390%. Additionally, phosphorescence spectra and the luminescence mechanisms are discussed. PMID:22114050

  1. Luminescent and triboluminescent properties of europium(III) complex with cinnamic acid

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Mirochnik, A. G.; Nagornyi, I. G.

    2014-10-01

    An intensely emitting crystalline europium(III) complex with cinnamic acid [Eu(Cin)3] n and exhibiting triboluminescent properties is synthesized. It is established that the measured photo- and triboluminescence spectra are identical for the above polymeric non-centrosymmetric complex and are determined by the characteristic f-f luminescence of the europium(III) ion.

  2. Reversible piezochromic behavior of two new cationic iridium(III) complexes.

    PubMed

    Shan, Guo-Gang; Li, Hai-Bin; Cao, Hong-Tao; Zhu, Dong-Xia; Li, Peng; Su, Zhong-Min; Liao, Yi

    2012-02-14

    We demonstrate that two new cationic Ir(III) complexes exhibit an interesting piezochromism, and their emission color can be smartly switched by grinding and heating. This is the first example that the Ir(III) complexes display piezochromic phosphorescence. PMID:22237981

  3. Phosphorescent Imaging of Living Cells Using a Cyclometalated Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; Zhong, Hai-Jing; Fu, Wai-Chung; Chan, Daniel Shiu-Hin; Kwan, Hiu-Yee; Fong, Wang-Fun; Chung, Lai-Hon; Wong, Chun-Yuen; Leung, Chung-Hang

    2013-01-01

    A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence. PMID:23457478

  4. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

    PubMed Central

    Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  5. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  6. Biological and protein-binding studies of newly synthesized polymer-cobalt(III) complexes.

    PubMed

    Vignesh, G; Pradeep, I; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The polymer-cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2'-bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico-chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer-cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer-cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF-7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer-cobalt(III) complex and for its possible utilization in anticancer therapy. PMID:26278128

  7. Complexation of Am(III) and Nd(III) by 1,10-Phenanthroline-2,9-Dicarboxylic Acid

    SciTech Connect

    Ogden, Mark D.; Sinkov, Sergey I.; Nilsson, Mikael; Lumetta, Gregg J.; Hancock, Robert D.; Nash, Ken L.

    2013-01-01

    The complexant 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) is a planar tetradentate ligand that is more preorganized for metal complexation than its unconstrained analogue ethylendiiminodiacetic acid (EDDA). Furthermore, the backbone nitrogen atoms of PDA are aromatic, hence are softer than the aliphatic amines of EDDA. It has been hypothesized that PDA will selectively bond to trivalent actinides over lanthanides. In this report, the results of spectrophotometric studies of the complexation of Nd(III) and Am(III) by PDA are reported. Because the complexes are moderately stable, it was necessary to conduct these titrations using competitive equilibrium methods, competitive cation omplexing between PDA and diethylenetriaminepentaacetic acid, and competition between ligand protonation and complex formation. Stability constants and ligand protonation constants were determined at 0.1 mol/L ionic strength and at 0.5 mol/L ionic strength nitrate media at 21 ± 1 C. The stability constants are lower than those predicted from first principles and speciation calculations indicate that Am(III) selectivity over Nd(III) is less than that exhibited by 1,10-phenanthroline.

  8. Nuclear gene mutations as the cause of mitochondrial complex III deficiency

    PubMed Central

    Fernández-Vizarra, Erika; Zeviani, Massimo

    2015-01-01

    Complex III (CIII) deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than 10 years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last 3–4 years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided. PMID:25914718

  9. Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction

    PubMed Central

    Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S

    2014-01-01

    Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011

  10. Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses.

    PubMed

    Steffen, Wojtek; Steuber, Julia

    2013-10-01

    The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane. PMID:24059520

  11. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. PMID:27256017

  12. Contribution of Bordetella bronchiseptica Type III secretion system to respiratory disease in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The type III secretion system (TTSS) of gram negative bacteria allows injection of effector proteins directly into the cytosol of eukaryotic cells. Previous studies have demonstrated that the B. bronchiseptica TTSS plays a role in the persistent bacterial colonization of the trachea of m...

  13. In Vitro Antifungal Susceptibility Profiles of Candida albicans Complex Isolated from Patients with Respiratory Infections.

    PubMed

    Sharifynia, Somayeh; Badali, Hamid; Sharifi Sorkherizi, Mina; Shidfar, Mohammad Reza; Hadian, Atefe; Shahrokhi, Shadi; Ghandchi, Ghazale; Rezaie, Sassan

    2016-06-01

    Candidiasis, the main opportunistic fungal infection has been increased over the past decades. This study aimed to characterize C.albicans species complex (C.albicans, C.dubliniensis, and C.africana) isolated from patients with respiratory infections by molecular tools and in vitro antifungal susceptibilities by using broth microdilution method according to CLSI M27-A3 guidelines. Totally, 121 respiratory samples were collected from patients with respiratory infections. Of these, 83 strains were germ tube positive and green colonies on chromogenic media, so initially identified as C.albicans species complex and subsequently were classified as C.albicans (89.15%), C.dubliniensis (9.63%), and C.africana (1.2%) based on PCR-RFLP and amplification of hwp1 gene. Minimum inhibitory concentration (MICs) results showed that all tested isolates of C.albicans complex were highly susceptible to triazole drugs. However, caspofungin had highest activity against C.albicans, C.dubliniensis, and C.africana. Our findings indicated the variety of antifungal resistance of Candida strains in different areas. These results may increase the knowledge about the local distribution of the mentioned strains as well as their antifungal susceptibility pattern which play an important role in appropriate therapy. PMID:27306344

  14. Molecular Gold Wire from Mixed-Valent Au(I/III) Complexes.

    PubMed

    Böge, Matthias; Heck, Jürgen

    2016-05-10

    Crystals of mixed-valent Au complexes have been grown from solutions of cyclohexanecarbonitrile and a stoichiometric amount of gold(I) and gold(III) chloride. The purely obtained compound was characterized as bis(cyclohexanecarbonitrile)gold(I) tetrachloridoaurate(III). The crystal packing of the mixed valent Au(I/III) compound demonstrates a columnar arrangement of the gold(I) and gold(III) atoms. The new structure displays the shortest unsupported gold(I)-gold(III) interactions with the sub-van der Waals distance of 324-325 pm, which is assumed as an aurophilic bonding interaction. PMID:27032070

  15. Ethanol oxidation by imidorhenium(V) complexes: formation of amidorhenium(III) complexes.

    PubMed

    Suing, A L; Dewan, C R; White, P S; Thorp, H H

    2000-12-25

    The reaction of Re(NC6H4R)Cl3(PPh3)2 (R = H, 4-Cl, 4-OMe) with 1,2-bis(diphenylphosphino)ethane (dppe) is investigated in refluxing ethanol. The reaction produces two major products, Re(NC6H4R)Cl(dppe)(2)2+ (R = H, 1-H; R = Cl, 1-Cl; R = OMe, 1-OMe) and the rhenium(III) species Re(NHC6H4R)Cl(dppe)2+ (R = H, 2-H; R = Cl, 2-Cl). Complexes 1-H (orthorhombic, Pcab, a = 22.3075(10) A, b = 23.1271(10) A, c = 23.3584(10) A, Z = 8), 1-Cl (triclinic, P1, a = 11.9403(6) A, b = 14.6673(8) A, c = 17.2664(9) A, alpha = 92.019(1) degrees, beta = 97.379(1) degrees, gamma = 90.134(1) degrees, Z = 2), and 1-OMe (triclinic, P1, a = 11.340(3) A, b = 13.134(4) A, c = 13.3796(25) A, alpha = 102.370(20) degrees, beta = 107.688(17) degrees, gamma = 114.408(20) degrees, Z = 1) are crystallographically characterized and show an average Re-N bond length (1.71 A) typical of imidorhenium(V) complexes. There is a small systematic decrease in the Re-N bond length on going from Cl to H to OMe. Complex 2-Cl (monoclinic, Cc, a = 24.2381(11) A, b = 13.4504(6) A, c = 17.466(8) A, beta = 97.06900(0) degrees, Z = 4) is also crystallographically characterized and shows a Re-N bond length (1.98 A) suggestive of amidorhenium(III). The rhenium(III) complexes exhibit unusual proton NMR spectra where all of the resonances are found at expected locations except those for the amido protons, which are at 37.8 ppm for 2-Cl and 37.3 ppm for 1-H. The phosphorus resonances are also unremarkable, but the 13C spectrum of 2-Cl shows a significantly shifted resonance at 177.3 ppm, which is assigned to the ipso carbon of the phenylamido ligand. The extraordinary shifts of the amido hydrogen and ipso carbon are attributed to second-order magnetism that is strongly focused along the axially compressed amido axis. The reducing equivalents for the formation of the Re(III) product are provided by oxidation of the ethanol solvent, which produces acetal and acetaldehyde in amounts as much as 30 equiv based on the quantity of

  16. Morphological characterization of respiratory neurons in the pre-Bötzinger complex.

    PubMed

    Zavala-Tecuapetla, Cecilia; Tapia, Dagoberto; Rivera-Angulo, Ana Julia; Galarraga, Elvira; Peña-Ortega, Fernando

    2014-01-01

    Although the pre-Bötzinger complex (preBötC) was defined as the inspiratory rhythm generator long ago, the functional-anatomical characterization of its neuronal components is still being achieved. Recent advances have identified the expression of molecular markers in the preBötC neurons that, however, are not exclusive to specific respiratory neuron subtypes and have not always been related to specific cell morphologies. Here, we evaluated the morphology and the axonal projections of electrophysiologically defined respiratory neurons in the preBötC using whole-cell recordings and intracellular biocytin labeling. We found that respiratory pacemaker neurons are larger than expiratory neurons and that inspiratory neurons are smaller than pacemaker and expiratory neurons. Other morphological features such as somata shapes or dendritic branching patterns were not found to be significantly different among the preBötC neurons sampled. We also found that both pacemaker and inspiratory nonpacemaker neurons, but not expiratory neurons, show extensive axonal projections to the contralateral preBötC and show signs of electrical coupling. Overall, our data suggest that there are morphological differences between subtypes of preBötC respiratory neurons. It will be important to take such differences in consideration since morphological differences would influence synaptic responses and action potential propagation. PMID:24746042

  17. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  18. Evidence of iron(III)-oxalato complex formation in aqueous solution from x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Magini, Mauro

    1981-02-01

    An aqueous solution of ferric ammonium oxalate has been examined to provide direct experimental evidence of complex formation between iron(III) and a typical organic complexing ligand. The radial distribution function as well as analysis of the structure function lead to the conclusion that the dominant species present in solution is the trioxalato-iron(III) complex in which each oxalate ion occupies two corners of a distorted octahedron around the Fe 3+ ions.

  19. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  20. Interaction of Pseudomonas fluorescens with Eu(III) and Ce(IV) - Desferrioxamine Complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Ozaki, T.; Ohnuki, T.; Francis, A.

    2002-12-01

    Naturally occurring chelating agents-, such as siderophores, are able to form complexes with actinides and enhance their solubility and mobility in the environment. Adsorption and/or biodegradation of chelated actinides by microorganisms are important processes which regulate their mobility in the natural environment. In this study, association of Eu(III), Ce(IV), and Fe(III) - desferrioxamine B (DFO) complexes with aerobic bacterium, Pseudomonas fluorescens (ATCC 55241), was investigated-, Eu(III) and Ce(IV) were used as analogues to trivalent and tetravalent actinides, respectively. When 20 μM of 1:1 Eu(III) - and Ce(IV) - DFO complexes were incubated with P. fluorescens in 0.1 M Tris-HCl buffer (pH = 7.3), the metals were removed from solution, with no change in DFO in solution. With decreasing metal/DFO molar ratio from 1 to 0.01, the accumulation of Eu(III) and Ce(IV) by P. fluorescens decreased. Kinetics study showed that accumulation of Eu(III) reached the maximum within 30 minutes, and then it decreased slightly with time. On the other hand, Ce(IV) accumulation proceeded in a parabolic process where the kinetics was slower than that of Eu(III) accumulation. In comparison to Eu(III) and Ce(IV), the removal of Fe(III) added as a DFO complex by P. fluorescens was not observed. The formation constants (log K) of Eu(III) - DFO and Fe(III) - DFO are reported to be 15 and 30.6, respectively. These results suggest that Eu(III) - DFO complex was dissociated in the presence of bacteria cells and was readily biosorbed.

  1. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  2. Synthesis of tyrosine-involved corrole Cu(III), Mn(IV), and Mn(III) complexes as biomimetic models of oxygen evolving complex in photosystem II

    NASA Astrophysics Data System (ADS)

    Xia, M.; Gao, Y.

    2014-12-01

    Boc-protected tyrosine-attached corrole ligand on the " ortho" position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group.

  3. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy.

    PubMed

    Fernandez-Vizarra, Erika; Bugiani, Marianna; Goffrini, Paola; Carrara, Franco; Farina, Laura; Procopio, Elena; Donati, Alice; Uziel, Graziella; Ferrero, Iliana; Zeviani, Massimo

    2007-05-15

    We investigated two unrelated children with an isolated defect of mitochondrial complex III activity. The clinical picture was characterized by a progressive encephalopathy featuring early-onset developmental delay, spasticity, seizures, lactic acidosis, brain atrophy and MRI signal changes in the basal ganglia. Both children were compound heterozygotes for novel mutations in the human bc1 synthesis like (BCS1L) gene, which encodes an AAA mitochondrial protein putatively involved in both iron homeostasis and complex III assembly. The pathogenic role of the mutations was confirmed by complementation assays, using a DeltaBcs1 strain of Saccharomyces cerevisiae. By investigating complex III assembly and the structural features of the BCS1L gene product in skeletal muscle, cultured fibroblasts and lymphoblastoid cell lines from our patients, we have demonstrated, for the first time in a mammalian system, that a major function of BCS1L is to promote the maturation of complex III and, more specifically, the incorporation of the Rieske iron-sulfur protein into the nascent complex. Defective BCS1L leads to the formation of a catalytically inactive, structurally unstable complex III. We have also shown that BCS1L is contained within a high-molecular-weight supramolecular complex which is clearly distinct from complex III intermediates. PMID:17403714

  4. Neodymium(III) Complexation by Amino-Carbohydrates via a Ligand-Controlled Hydrolysis Mechanism

    SciTech Connect

    Levitskaia, Tatiana G.; Chen, Yongsheng; Fulton, John L.; Sinkov, Sergey I.

    2011-07-28

    Chelation of neodymium-III Nd(III) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. It was demonstrated that DGA and chitosan suppressed formation of polynuclear Nd(III) species at elevated pH.

  5. Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane☆

    PubMed Central

    Gusev, Alexey N.; Hasegawa, Miki; Shimizu, Tomohito; Fukawa, Tomonori; Sakurai, Shoya; Nishchymenko, Galyna A.; Shul’gin, Victor F.; Meshkova, Svetlana B.; Linert, Wolfgang

    2013-01-01

    Studies concerning synthesis, structure and luminescence of eight-coordinate Eu, Tb, Sm and Dy complexes of the type [Ln(acac)2(L)]Cl (Hacac = pentanedione-2,4 and L = bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane) are reported in detail. The obtained complexes were investigated by various means including elemental- and thermogravimetric analysis, IR- and electron transition spectroscopy. The structure of the Tb complex was determined by single-crystal X-ray crystallography: Tb is eight-coordinate, and L acting only as a tetradentate chelate together with two bidentate acac ligands. Photophysical studies of the complexes were carried out. The Tb(III) and Eu(III) complexes show strong emissions both in solid state and solution. The intensity of the luminescence of Dy(III) and Sm(III) are relatively weak. The factors determining the intensity of the photoluminescence are discussed. PMID:24068839

  6. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  7. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  8. Complexation of Curium(III) with DTPA at 10–70 °C: Comparison with Eu(III)–DTPA in Thermodynamics, Luminescence, and Coordination Modes

    SciTech Connect

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R.; Rao, Linfeng

    2015-02-16

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of their nearly identical chemical properties. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 ºC was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy of complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data have demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.

  9. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  10. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  11. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III).

    PubMed

    Baral, Minati; Gupta, Amit; Kanungo, B K

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; MFe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238nm in acidic pH and with the increase of pH, a new peak appeared at 270nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor. PMID:26970809

  12. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  13. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chromium (Cr III) complex of N-ethyl-N... Substances for Use Only as Components of Paper and Paperboard § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium (Cr III) complex of N-ethyl -...

  14. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  15. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex

    PubMed Central

    Garcia, Alfredo J.; Zanella, Sebastien; Dashevskiy, Tatiana; Khan, Shakil A.; Khuu, Maggie A.; Prabhakar, Nanduri R.; Ramirez, Jan-Marino

    2016-01-01

    Chronic intermittent hypoxia (CIH) is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA) and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC) is a pre-motor respiratory network critical for inspiratory rhythm generation. Here, we test the hypothesis that CIH increases irregular output from the isolated preBötC, which can be mitigated by antioxidant treatment. Electrophysiological recordings from brainstem slices revealed that CIH enhanced burst-to-burst irregularity in period and/or amplitude. Irregularities represented a change in individual fidelity among preBötC neurons, and changed transmission from preBötC to the hypoglossal motor nucleus (XIIn), which resulted in increased transmission failure to XIIn. CIH increased the degree of lipid peroxidation in the preBötC and treatment with the antioxidant, 5,10,15,20-Tetrakis (1-methylpyridinium-4-yl)-21H,23H-porphyrin manganese(III) pentachloride (MnTMPyP), reduced CIH-mediated irregularities on the network rhythm and improved transmission of preBötC to the XIIn. These findings suggest that CIH promotes a pro-oxidant state that destabilizes rhythmogenesis originating from the preBötC and changes the local rhythm generating circuit which in turn, can lead to intermittent transmission failure to the XIIn. We propose that these CIH-mediated effects represent a part of the central mechanism that may perpetuate apneas and respiratory instability, which are hallmark traits in several dysautonomic conditions. PMID:26869872

  16. Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator.

    PubMed

    Imada, Katsumi; Minamino, Tohru; Uchida, Yumiko; Kinoshita, Miki; Namba, Keiichi

    2016-03-29

    FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3β3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases. PMID:26984495

  17. Rhinovirus infection induces major histocompatibility complex class I and costimulatory molecule upregulation on respiratory epithelial cells.

    PubMed

    Papi, A; Stanciu, L A; Papadopoulos, N G; Teran, L M; Holgate, S T; Johnston, S L

    2000-05-01

    Human respiratory epithelial cells may act as antigen-presenting cells during respiratory viral infections. In addition to major histocompatibility complex (MHC) molecules, antigen presentation requires participation of costimulatory molecules. Here the authors investigated class I and class II antigens and B7-1 and B7-2 costimulatory molecule expression in human A549 pulmonary epithelial cells and primary bronchial epithelial cells (HBECs) at baseline and after rhinovirus infection. Constitutive expression of MHC class I and B7-1 molecules was observed on both cell types. MHC class I molecules were up-regulated by rhinovirus infection, while B7-1 was up-regulated only on A549 cells. B7-2 molecules were constitutively expressed at a low level and were up-regulated by rhinovirus only on HBECs. Rhinovirus induction of antigen-presenting molecule expression on A549 cells was accompanied by cellular activation in terms of induction of release of the chemokines RANTES and Groalpha. These data show that respiratory epithelium expresses full antigen-presentation machinery and that rhinovirus infection up-regulates this expression. PMID:10823784

  18. Simultaneous detection of Mycobacterium tuberculosis complex and nontuberculous mycobacteria in respiratory specimens.

    PubMed

    Hwang, Sang Mee; Lim, Mi Suk; Hong, Yun Ji; Kim, Taek Soo; Park, Kyoung Un; Song, Junghan; Lee, Jae Ho; Kim, Eui Chong

    2013-11-01

    Many nontuberculous mycobacteria (NTM) species have clinical significance, and the rapid and reliable identification of Mycobacterium tuberculosis complex (MTBC) and NTM species is important. We evaluated the simultaneous detection of MTBC and NTM in respiratory specimens. MTBC and NTM were simultaneously detected and identified by laboratory-developed (LDT) real-time PCR, multiplex real-time PCR/melting curve analysis, rpoB PCR restriction fragment length polymorphisms and the AdvanSure Mycobacteria GenoBlot assay (LG Life Sciences). Eighty-five respiratory specimens from 69 patients showed simultaneous detection of MTBC and NTM. A line probe assay showed 70.6% concordance with LDT. Ten patients (14.5%) had a history of tuberculosis, and eight patients (11.6%) had been previously diagnosed with bronchiectasis. Mixed cultures were present one time in 57 patients (82.6%) and repeatedly in 12 patients (17.4%). MTBC was more frequent in 44 patients (63.8%), and NTM was isolated in seven patients (10.1%). The commonly detected NTM species in the mixed cultures were Mycobacterium intracellulare (29.0%) and Mycobacterium abscessus (29.0%). Co-isolation caused a failure of antitubercular drug susceptibility testing in 2 patients (2.9%). Molecular methods allow MTBC and NTM species to be simultaneously identified in respiratory specimens. NTM isolated with MTBC has clinical significance in some patients and should not be ignored. PMID:23988279

  19. Respiratory calcium fluctuations in low-frequency oscillating astrocytes in the pre-Bötzinger complex.

    PubMed

    Oku, Yoshitaka; Fresemann, Jens; Miwakeichi, Fumikazu; Hülsmann, Swen

    2016-06-01

    Astrocytes have been found to modulate neuronal activity through calcium-dependent signaling in various brain regions. However, whether astrocytes of the pre-Bötzinger complex (preBötC) exhibit respiratory rhythmic fluctuations is still controversial. Here we evaluated calcium-imaging experiments within preBötC in rhythmically active medullary slices from TgN(hGFAP-EGFP) mice using advanced analyses. 13.8% of EGFP-negative cells, putative neurons, showed rhythmic fluorescent changes that were highly correlated to the respiratory rhythmic fluctuation (cross-correlation coefficient>0.5 and dF/F>0.2%). In contrast, a considerable number of astrocyte somata exhibited synchronized low-frequency (<0.03Hz) calcium oscillations. After band-pass filtering, signals that irregularly preceded the calcium signal of EGFP-negative cells were observed in 10.2% of astrocytes, indicating a functional coupling between astrocytes and neurons in preBötC. A model simulation confirmed that such preinspiratory astrocytic signals can arise from coupled neuronal and astrocytic oscillators, supporting a concept that slow oscillatory changes of astrocytic functions modulate neighboring neuronal activity to add variability in respiratory rhythm. PMID:25747384

  20. The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.

    PubMed

    Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D

    2015-09-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. PMID:26330043

  1. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide(III) Schiff base complexes containing N, O donor atoms

    NASA Astrophysics Data System (ADS)

    Lekha, L.; Raja, K. Kanmani; Rajagopal, G.; Easwaramoorthy, D.

    2014-01-01

    A series of six Ln(III) Schiff base complexes, Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III), were synthesized using sodium salt of Schiff base, 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-3-hydroxy-propionic acid, derived from L-serine and 5-bromosalicylaldehyde. These complexes having general formula [Ln(L)(NO3)2(H2O)]·NO3 were characterized by elemental analysis, conductivity measurements, UV-Vis, FT-IR, mass spectrometry and fluorescence studies. Elemental analysis and conductivity measurements suggest the complexes have a 1:1 stoichiometry. From the spectral studies it has been concluded that Ln(III) complexes display eight coordination. The Schiff base and its Ln(III) metal complexes have also been screened for their antibacterial activities by Agar diffusion method.

  2. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia.

    PubMed

    Koroleva, O A; Calder, G; Pendle, A F; Kim, S H; Lewandowska, D; Simpson, C G; Jones, I M; Brown, J W S; Shaw, P J

    2009-05-01

    Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell. PMID:19435936

  3. Effects of partial inhibition of respiratory complex I on H2O 2 production by isolated brain mitochondria in different respiratory states.

    PubMed

    Michelini, Luiz G B; Benevento, Carlos E; Rossato, Franco A; Siqueira-Santos, Edilene S; Castilho, Roger F

    2014-12-01

    The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg(-1) min(-1) and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg(-1) min(-1) in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg(-1) min(-1) and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg(-1) min(-1) in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP(+)) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions. PMID:25287903

  4. Study of holmium (III) and yttrium(III) with DOTA complexes as candidates for radiopharmaceutical use

    NASA Astrophysics Data System (ADS)

    Ernestová, M.; Jedináková-Křížová, V.

    2003-01-01

    Reaction conditions for complexation of radionuclides with DOTA were studied using thinlayer chromatography (TLC), paper chromatography (PC) and potentiometry. It was found that all of the studied complexes can reach very high radiochemical yield about 95%. Optimal conditions for obtaining such high radiochemical yields are as follows: pH higher than 4 and the excess of chelating agent must be minimally 3∶1. Potentiometric study showed that the formation of complexes is characterised by very slow kinetics.

  5. Novel Luminescent Probe Based on a Terbium(III) Complex for Hemoglobin Determination

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Ukrainets, I. V.

    2014-09-01

    We have studied the spectral luminescent properties of Tb(III) and Eu(III) complexes with a number of novel derivatives of oxoquinoline-3-carboxylic acid amides (L1-L5 ). We have observed quenching of the luminescence of 1:1 Tb(III)-L1-5 complexes by hemoglobin (Hb), which is explained by resonance energy transfer of electronic excitation from the donor (Tb(III)-L1-5 ) to the acceptor (Hb). Using the novel luminescent probe Tb(III)-L1, we have developed a method for determining Hb in human blood. The calibration Stern-Volmer plot is linear in the Hb concentration range 0.6-36.0 μg/mL, detection limit 0.2 μg/mL (3·10-9 mol/L).

  6. Dipyrrinphenol-Mn(III) complex: synthesis, electrochemistry, spectroscopic characterisation and reactivity.

    PubMed

    El Ghachtouli, Sanae; Wójcik, Karolina; Copey, Laurent; Szydlo, Florence; Framery, Eric; Goux-Henry, Catherine; Billon, Laurianne; Charlot, Marie-France; Guillot, Régis; Andrioletti, Bruno; Aukauloo, Ally

    2011-09-28

    Herein, we report the manganese complex with a novel trianionic ligand, the pentafluorophenyldipyrrinphenol ligand DPPH(3). The X-ray crystal structure reveals that the Mn(III) complex exists in a dimeric form in the solid state. Electrochemical studies indicate two quasi-reversible one electron oxidation processes. EPR data on the one electron oxidised species in solution support the formation of a monuclear Mn complex with an S = 3/2 spin system. Preliminary studies towards epoxidation reactions were tested in the presence of iodosylbenzene (PhIO) and are in favour of an oxygen-atom-transfer (OAT) reaction catalyzed by the Mn(III) complex. PMID:21842061

  7. Testing the role of preBötzinger complex somatostatin neurons in respiratory and vocal behaviors

    PubMed Central

    Tupal, Srinivasan; Rieger, Michael A.; Ling, Guang-Yi; Park, Thomas J.; Dougherty, Joseph D.; Goodchild, Ann K.; Gray, Paul A.

    2015-01-01

    Identifying neurons essential for the generation of breathing and related behaviors such as vocalization is an important question for human health. The targeted loss of preBötzinger complex (preBötC) glutamatergic neurons, including those that express high levels of somatostatin protein (SST neurons), eliminates normal breathing in adult rats. Whether preBötC SST neurons represent a functionally specialized population is unknown. We tested the effects on respiratory and vocal behaviors of eliminating SST neuron glutamate release by Cre-Lox-mediated genetic ablation of the vesicular glutamate transporter 2 (VGlut2). We found the targeted loss of VGlut2 in SST neurons had no effect on viability in vivo, or on respiratory period or responses to neurokinin 1 or µ-opioid receptor agonists in vitro. We then compared medullary SST peptide expression in mice with that of two species that share extreme respiratory environments but produce either high or low frequency vocalizations. In the Mexican free-tailed bat, SST peptide-expressing neurons extended beyond the preBötC to the caudal pole of the VII motor nucleus. In the naked mole-rat, however, SST-positive neurons were absent from the ventrolateral medulla. We then analyzed isolation vocalizations from SST-Cre;VGlut2F/F mice and found a significant prolongation of the pauses between syllables during vocalization but no change in vocalization number. These data suggest that glutamate release from preBötC SST neurons is not essential for breathing but play a species- and behavior-dependent role in modulating respiratory networks. They further suggest that the neural network generating respiration is capable of extensive plasticity given sufficient time. PMID:25040660

  8. A mononuclear nonheme iron(III)-superoxo complex: Crystallographic and spectroscopic characterization and reactivities

    PubMed Central

    Hong, Seungwoo; Sutherlin, Kyle D.; Park, Jiyoung; Kwon, Eunji; Siegler, Maxime A.; Solomon, Edward I.; Nam, Wonwoo

    2016-01-01

    Mononuclear nonheme iron(III)-superoxo species (FeIII-O2−•) have been implicated as key intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes. Although nonheme iron(III)-superoxo species have been trapped and characterized spectroscopically in enzymatic and biomimetic reactions, no structural information has yet been obtained. Here we report for the first time the isolation, spectroscopic characterization, and crystal structure of a mononuclear side-on (η2) iron(III)-superoxo complex with a tetraamido macrocyclic ligand (TAML), [FeIII (TAML) (O2)]2− (1). The nonheme iron(III)-superoxo species undergoes both electrophilic and nucleophilic oxidation reactions as well as O2-transfer between metal complexes. In the O2-transfer reaction, 1 transfers the bound O2 unit to a manganese(III) analogue, resulting in the formation of a manganese(IV)-peroxo complex, [MnIV(TAML)(O2)]2− (2); 2 is characterized structurally and spectroscopically as a mononuclear side-on (η2) manganese(IV)-peroxo complex. The difference in the redox distribution between the metal ions and O2 in 1 and 2 is rationalized using density functional theory calculations. PMID:25510711

  9. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  10. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  11. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments.

    PubMed

    Zhu, Jiapeng; King, Martin S; Yu, Minmin; Klipcan, Liron; Leslie, Andrew G W; Hirst, Judy

    2015-09-29

    Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation. PMID:26371297

  12. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    PubMed

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux. PMID:26682761

  13. Spectral characterization of iron(III) complexes of 2-benzoylpyridine N(4)-substituted thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Joseph, Marthakutty; Sreekanth, Anandaram; Suni, V.; Kurup, M. R. Prathapachandra

    2006-06-01

    Three iron(III) complexes (1-3) of 2-benzoylpyridine N(4)-phenyl thiosemicarbazone (HL 1) and one iron(III) complex (4) of 2-benzoylpyridine N(4)-cyclohexyl thiosemicarbazone (HL 2) were synthesized and characterized by means of different physicochemical techniques viz., molar conductivity measurements, magnetic susceptibility studies and electronic, infrared and EPR spectral studies. The analytical data and the molar conductance measurements of the complexes reveal that two molecules of the ligand and the anion are coordinated to the metal atom in all the four complexes. The magnetic moments of the complexes suggest that they are of low spin. From the infrared spectra of the ligands and the complexes it is confirmed that the ligands coordinate to iron(III) as an anion coordinating via the azomethine nitrogen, pyridyl nitrogen, and the thiolate sulphur. The EPR spectra of the complexes in the polycrystalline state at 298 and 110 K and in DMF solution at 110 K were recorded and all the spectra show three g values indicating that these complexes have rhombic distortion. All the iron(III) complexes in DMF solution at 110 K have similar anisotropic spectra with almost the same gav values, indicating that the bonding in all the complexes is similar and is unaffected by the coordination of the anion.

  14. Preparation and characterization of a microcrystalline non-heme FeIII(OOH) complex powder: EPR reinvestigation of FeIII(OOH) complexes-improvement of the perturbation equations for the g tensor of low-spin FeIII.

    PubMed

    Martinho, Marlène; Dorlet, Pierre; Rivière, Eric; Thibon, Aurore; Ribal, Caroline; Banse, Frédéric; Girerd, Jean-Jacques

    2008-01-01

    The first example of a microcrystalline powder of a synthetic low-spin (LS) mononuclear Fe(III)(OOH) intermediate has been obtained by the precipitation of the [Fe(III)(L(5) (2))(OOH)](2+) complex at low temperature. The high purity of this thermally unstable powder is revealed by magnetic susceptibility measurements. EPR studies on this complex, in the solid state and also in frozen solution, are reported and reveal the coexistence of two related Fe(III)(OOH) species in both states. We also present a theoretical analysis of the g tensor for LS Fe(III) complexes, based on new perturbation equations. These simple equations provide distortion-energy parameters that are in good agreement with those obtained by a full-diagonalization calculation. PMID:18240118

  15. The pH dependence of Am(III) complexation with acetate: an EXAFS study.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Bauer, Nicole; Rossberg, André; Panak, Petra J

    2015-01-01

    The complexation of acetate with Am(III) is studied as a function of the pH (1-6) by extended X-ray absorption fine-structure (EXAFS) spectroscopy. The molecular structure of the Am(III)-acetate complexes (coordination numbers, oxygen and carbon distances) is determined from the raw k(3)-weighted Am LIII-edge EXAFS spectra. The results show a continuous shift of Am(III) speciation with increasing pH value towards the complexed species. Furthermore, it is verified that acetate coordinates in a bidentate coordination mode to Am(III) (Am-C distance: 2.82 ± 0.03 Å). The EXAFS data are analyzed by iterative transformation factor analysis to further verify the chemical speciation, which is calculated on the basis of thermodynamic constants, and the used structural model. The experimental results are in very good agreement with the thermodynamic modelling. PMID:25537594

  16. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    The coordination states of trivalent praseodymium, neodymium, and dysprosium complexes in the ionic liquid, triethyl-n-pentylphosphonium bis(trifluoromethyl-sulfonyl) amide ([P2225][TFSA]) were investigated by Raman spectroscopy. The effect of the concentration of rare earth ions on the Raman spectra was investigated, ranging from 0.23 to 0.45 mol kg-1 of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA]. Based on a conventional analysis, the solvation numbers, n, of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA] were determined to be 4.99, 5.01, and 5.00 at 298 K and 5.04, 5.06, and 5.07 at 373 K, respectively. Thermodynamic properties such as ΔisoG, ΔisoH, and ΔisoS for the isomerism of [TFSA]- from trans- to cis-coordinated isomer in the bulk and the first solvation sphere of the central RE3+ (RE = Pr, Nd, and Dy) cation in [P2225][TFSA] were evaluated from the temperature dependence of the Raman bands, measured at temperatures ranging from 298 to 398 K. Regarding the bulk properties, ΔisoG(bulk), ΔisoH(bulk), and TΔisoS(bulk) at 298 K were found to be -1.06, 6.86, and 7.92 kJ mol-1, respectively. The trans-[TFSA]- was a dominant contributor to the enthalpy, as shown by the positive value of ΔisoH(bulk). The value of TΔisoS(bulk) was slightly larger than that of ΔisoH(bulk), and cis-[TFSA]- was, therefore, entropy-controlled in [P2225][TFSA]. In contrast, in the first solvation sphere of the RE3+ cation, ΔisoH(RE) became remarkably negative, suggesting that cis-[TFSA]- isomers were stabilized by enthalpic contributions. Furthermore, ΔisoH(RE) contributed to the remarkable decrease in ΔisoG(RE), and this result clearly indicates that cis-[TFSA]- conformers bound to RE3+ cations are the preferred coordination state of [RE(III)(cis-TFSA)5]2- in [P2225][TFSA]. Moreover, optimized geometries and binding energies of [Pr(III)(cis-TFSA)5]2-, [Nd(III)(cis-TFSA)5]2-, and [Dy(III)(cis-TFSA)5]2- clusters were also investigated by DFT calculations using the ADF

  17. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities.

    PubMed

    Subissi, Lorenzo; Posthuma, Clara C; Collet, Axelle; Zevenhoven-Dobbe, Jessika C; Gorbalenya, Alexander E; Decroly, Etienne; Snijder, Eric J; Canard, Bruno; Imbert, Isabelle

    2014-09-16

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  18. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities

    PubMed Central

    Subissi, Lorenzo; Posthuma, Clara C.; Collet, Axelle; Zevenhoven-Dobbe, Jessika C.; Gorbalenya, Alexander E.; Decroly, Etienne; Snijder, Eric J.; Canard, Bruno; Imbert, Isabelle

    2014-01-01

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3′-5′ exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5′-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  19. Auditing of Monitoring and Respiratory Support Equipment in a Level III-C Neonatal Intensive Care Unit

    PubMed Central

    Bergon-Sendin, Elena; Perez-Grande, Carmen; Lora-Pablos, David; De la Cruz Bertolo, Javier; Moral-Pumarega, María Teresa; Bustos-Lozano, Gerardo; Pallas-Alonso, Carmen Rosa

    2015-01-01

    Background. Random safety audits (RSAs) are a safety tool but have not been widely used in hospitals. Objectives. To determine the frequency of proper use of equipment safety mechanisms in relation to monitoring and mechanical ventilation by performing RSAs. The study also determined whether factors related to the patient, time period, or characteristics of the area of admission influenced how the device safety systems were used. Methods. A prospective observational study was conducted in a level III-C Neonatal Intensive Care Unit (NICU) during 2012. 87 days were randomly selected. Appropriate overall use was defined when all evaluated variables were correctly programmed in the audited device. Results. A total of 383 monitor and ventilator audits were performed. The Kappa coefficient of interobserver agreement was 0.93. The rate of appropriate overall use of the monitors and respiratory support equipment was 33.68%. Significant differences were found with improved usage during weekends, OR 1.85 (1.12–3.06, p = 0.01), and during the late shift (3 pm to 10 pm), OR 1.59 (1.03–2.4, p = 0.03). Conclusions. Equipment safety systems of monitors and ventilators are not properly used. To improve patient safety, we should identify which alarms are really needed and where the difficulties lie for the correct alarm programming. PMID:26558277

  20. The multitude of iron-sulfur clusters in respiratory complex I.

    PubMed

    Gnandt, Emmanuel; Dörner, Katerina; Strampraad, Marc F J; de Vries, Simon; Friedrich, Thorsten

    2016-08-01

    Respiratory complex I couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. Complex I contains one non-covalently bound flavin mononucleotide and, depending on the species, up to ten iron-sulfur (Fe/S) clusters as cofactors. The reason for the presence of the multitude of Fe/S clusters in complex I remained enigmatic for a long time. The question was partly answered by investigations on the evolution of the complex revealing the stepwise construction of the electron transfer domain from several modules. Extension of the ancestral to the modern electron input domain was associated with the acquisition of several Fe/S-proteins. The X-ray structure of the complex showed that the NADH oxidation-site is connected with the quinone-reduction site by a chain of seven Fe/S-clusters. Fast enzyme kinetics revealed that this chain of Fe/S-clusters is used to regulate electron-tunneling rates within the complex. A possible function of the off-pathway cluster N1a is discussed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26944855

  1. Genome Analysis of Structure–Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni–Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure–function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function. PMID:26615219

  2. Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications

    PubMed Central

    Wikström, Mårten; Hummer, Gerhard

    2012-01-01

    Complex I (NADH-ubiquinone oxidoreductase) in the respiratory chain of mitochondria and several bacteria functions as a redox-driven proton pump that contributes to the generation of the protonmotive force across the inner mitochondrial or bacterial membrane and thus to the aerobic synthesis of ATP. The stoichiometry of proton translocation is thought to be 4 H+ per NADH oxidized (2 e-). Here we show that a H+/2 e- ratio of 3 appears more likely on the basis of the recently determined H+/ATP ratio of the mitochondrial F1Fo-ATP synthase of animal mitochondria and of a set of carefully determined ATP/2 e- ratios for different segments of the mitochondrial respiratory chain. This lower H+/2 e- ratio of 3 is independently supported by thermodynamic analyses of experiments with both mitochondria and submitochondrial particles. A reduced H+/2 e- stoichiometry of 3 has important mechanistic implications for this proton pump. In a rough mechanistic model, we suggest a concerted proton translocation mechanism in the three homologous and tightly packed antiporter-like subunits L, M, and N of the proton-translocating membrane domain of complex I. PMID:22392981

  3. Electrical properties of nanofibers and structural characterization of DNA-Au(III) complexes.

    PubMed

    Kwon, Young-Wan; Lee, Chang Hoon; Jin, Jung-Il; Hwang, Jong Seung; Hwang, Sung Woo

    2014-05-23

    In order to realize deoxyribonucleic acid (DNA)-based molecular electronics, chemical modifications of DNA are needed to improve electrical conductivity. We developed a novel method utilizing the incorporation of Au(III) ions into DNA bases to alter their electronic properties. When Au(III) ions were incorporated proportionally into DNA bases, conductance increased up to an Au(III) content of 0.42 Au(III) ion/nucleotide. Surprisingly, electron paramagnetic resonance signals of Au(II) ions were detected at g ∼1.98, and the calculated spin number of Au(II) ions ranged from ∼10(13) to ∼10(15). The structural deformation of the DNA helix occurred when complexed with Au(III); simultaneously, the conductance of DNA-Au(III) complexes decreased when the content of Au(III) was higher than 0.42 atom/nucleotide. This observation implies that the maintenance of helical structure in the Au(III) doped state of DNA molecules is very important to the enhancement of the carrier mobility of DNA. PMID:24786616

  4. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2014-12-01

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).

  5. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks.

    PubMed

    Refat, Moamen S

    2014-12-10

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3⋅nH2O where n=6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM). PMID:24952090

  6. Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands.

    PubMed

    Pettinari, Riccardo; Marchetti, Fabio; Pettinari, Claudio; Condello, Francesca; Petrini, Agnese; Scopelliti, Rosario; Riedel, Tina; Dyson, Paul J

    2015-12-21

    A series of half-sandwich cyclopentadienyl rhodium(III) and iridium(III) complexes of the type [Cp*M(curc/bdcurc)Cl] and [Cp*M(curc/bdcurc)(PTA)][SO3CF3], in which Cp* = pentamethylcyclopentadienyl, curcH = curcumin and bdcurcH = bisdemethoxycurcumin as O^O-chelating ligands, and PTA = 1,3,5-triaza-7-phosphaadamantane, is described. The X-ray crystal structures of three of the complexes, i.e. [Cp*Rh(curc)(PTA)][SO3CF3] (5), [Cp*Rh(bdcurc)(PTA)][SO3CF3] (6) and [Cp*Ir(bdcurc)(PTA)][SO3CF3] (8), confirm the expected "piano-stool" geometry. With the exception of 5, the complexes are stable under pseudo-physiological conditions and are moderately cytotoxic to human ovarian carcinoma (A2780 and A2780cisR) cells and also to non-tumorigenic human embryonic kidney (HEK293) cells, but lack the cancer cell selectivity observed for related arene ruthenium(II) complexes. PMID:26548708

  7. Complexation Studies of Bidentate Heterocyclic N-Donor Ligands with Nd(III) and Am(III)

    SciTech Connect

    Ogden, Mark; Hoch, Courtney L.; Sinkov, Sergey I.; Meier, Patrick; Lumetta, Gregg J.; Nash, Kenneth L.

    2011-11-28

    A new bidentate nitrogen donor complexing agent that combines pyridine and triazole functional groups, 2-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)pyridine (PTMP), has been synthesized. The strength of its complexes with trivalent americium (Am3+) and neodymium (Nd3+) in anhydrous methanol has been evaluated using spectrophotometric techniques. The purpose of this investigation is to assess this ligand (as representative of a class of similarly structured species) as a possible model compound for the challenging separation of trivalent actinides from lanthanides. This separation, important in the development of advanced nuclear fuel cycles, is best achieved through the agency of multidentate chelating agents containing some number of nitrogen or sulfur donor groups. To evaluate the relative strength of the bidentate complexes, the derived constants are compared to those of the same metal ions with 2,2*-bipyridyl (bipy), 1,10-phenanthroline (phen), and 2-pyridin-2-yl-1H-benzimidazole (PBIm). At issue is the relative affinity of the triazole moiety for trivalent f element ions. For all ligands, the derived stability constants are higher for Am3+ than Nd3+. In the case of Am3+ complexes with phen and PBIm, the presence of 1:2 (AmL2) species is indicated. Possible separations are suggested based on the relative stability and stoichiometry of the Am3+ and Nd3+ complexes. It can be noted that the 1,2,3-triazolyl group imparts a potentially useful selectivity for trivalent actinides (An(III)) over trivalent lanthanides (Ln(III)), though the attainment of higher complex stoichiometries in actinide compared with lanthanide complexes may be an important driver for developing successful separations.

  8. Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole.

    PubMed

    Ahmed, Zubair; Iftikhar, K

    2013-11-01

    A series of highly volatile eight-coordinate air and moisture stable lanthanide complexes of the type [Ln(hfaa)3(L)2] (Ln = Pr (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Tm (9), and Yb (10); hfaa = anion of hexafluoroacetylacetone and L = pyrazole) have been synthesized and characterized by elemental analysis, IR, ESI-MS(+), and NMR studies. Single-crystal X-ray structures have been determined for the Eu(III) and Dy(III) complexes. These complexes crystallize in the monoclinic space group P2(1)/c. The lanthanide ion in each of these complexes is eight-coordinate with six oxygen atoms from three hfaa and two N-atoms from two pyrazole units, forming a coordination polyhedron best describable as a distorted square antiprism. The NMR spectra reveal that both the pyrazole units remain attached to the metal in solution and the β-diketonate and pyrazole protons are shifted in opposite directions in the case of paramagnetic complexes. The lanthanide-induced chemical shifts are dipolar in nature. The hypersensitive transitions of Nd(III), Ho(III), and Er(III) are sensitive to the environment (solvent), which is reflected by the oscillator strength and band shape of these transitions. The band shape due to the hypersensitive transition of Nd(III) in noncoordinating chloroform and dichloromethane is similar to those of the typical eight-coordinate Nd(III) β-diketonate complexes. The quantum yield and lifetime of Pr(III), Eu(III), Tb(III), Dy(III), and Tm(III) in visible and Pr(III), Nd(III), Dy(III), Ho(III), Er(III) Tm(III), and Yb(III) in the NIR region are sizable. The environment around these metal ions is asymmetric, which leads to increased radiative rates and luminescence efficiencies. The quantum yield of the complexes reveal that ligand-to-metal energy transfer follows the order Eu(III) > Tb(III) ≫ Pr(III) > Dy(III) > Tm(III). Both ligands (hfaa and pyrazole) are good sensitizers for all the visible and NIR emitters effectively, except for Tb(III

  9. EXAFS studies of americium (III)-benzimidazole complex in ethanol.

    PubMed

    Yaita, T; Tachimori, S; Edelstein, N M; Bucher, J J; Rao, L; Shuh, D K; Allen, P G

    2001-03-01

    The local structures of Am, Nd and Er-Benzimidazole (Biz) in solution were determined by EXAFS. The BIZ molecule coordinated to Am and Nd through two nitrogen atoms in a bidentate fashion. Two nitrogen atoms of BIZ ligated to Am and Nd with the bond distances R(Am-n) N=2.63A and R(Nd-N) = 2.65 A, respectively. The total coordination number of the Am BIZ complexes (at a molar ratio of metal ion to ligand of 1:20) was approximately 10 but that of Nd BIZ complex was approximately 9. PMID:11512888

  10. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.

    PubMed

    Wang, Jia; Chen, Haixia; Wang, Yanwei; Xing, Lisha

    2015-04-01

    A new Inonotus obliquus polysaccharide-iron(III) complex (IOPS-iron) was synthesized and characterized. The preparation conditions of IOPS-iron(III) were optimized and the physicochemical properties were characterized by physicochemical methods, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) spectroscopy, fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, respectively. The highest iron content of IOPS-iron(III) complex (19.40%) was obtained at the conditions: the ratio of IOPS and FeCl3 • 6H2O was 3:5 (w/w), the pH value of alkali solution was 10, the reaction temperature was 30 °C and the reaction time was 6h. The iron(III) was shown to be bound through the binding sites of the polysaccharide IOPS and it could form spatially separated iron centers on the polysaccharide backbone. IOPS-iron(III) complex was found to have good digestive availability and antioxidant activities in the in vitro assays, which suggested the IOPS-iron(III) complex might be used as a new iron supplement candidate. PMID:25643995

  11. NIR-FT-Raman spectroscopic studies of hexammine and pentammine chromium(III) complexes

    NASA Astrophysics Data System (ADS)

    Chen, Yuying; Christensen, Daniel H.; Sørensen, Georg O.; Nielsen, Ole Faurskov; Jacobsen, Claus J. H.; Hyldtoft, Jens

    1994-03-01

    The NIR-FT-Raman spectra are presented for the hexammine [Cr(NH 3) 6]X 3 (where X = Br -, NO -3), pentamminechloro [Cr(NH 3) 5Cl]X 2 (where X = Cl -, ClO -4), and pentammineaqua [Cr(NH 3) 5(H 2O)]X 3 (where X = ClO -4, CF 3SO -3) chromium(III) complexes. The NIR-FT-Raman spectra, with an excitation wavelength of 1064 nm, were obtained at room temperature without problems from the strongly colored samples, which often cause problems with excitation by lasers in the visible region. All the Raman frequencies observed from the complexes have been assigned to the skeleton vibrational region from 100 to 600 cm -1. The symmetry and the general valence force constants for the bonds chromium(III)nitrogen, chromium(III)oxygen and chromium(III)chloro have been obtained. The nature of the metalligand bond between chromium(III) ammine complexes has been compared with recent results obtained for similar cobalt(III) ammine complexes.

  12. A novel photo-responsive europium(iii) complex for advanced anti-counterfeiting and encryption.

    PubMed

    Mei, Jin-Feng; Lv, Zhong-Peng; Lai, Jian-Cheng; Jia, Xiao-Yong; Li, Cheng-Hui; Zuo, Jing-Lin; You, Xiao-Zeng

    2016-04-01

    A novel europium(iii) complex simultaneously exhibiting photocolorimetric and photofluorometric behavior was obtained. Multiple distinguishable identities can be obtained and reversibly modulated using light as external stimuli. With this novel photo-responsive complex, double encryption and advanced anti-counterfeiting were realized. PMID:26961725

  13. Characterization of lanthanide(III) DOTP complexes: Thermodynamics, protonation, and coordination to alkali metal ions

    SciTech Connect

    Sherry, A.D.; Ren, J.; Huskens, J.

    1996-07-31

    The chemical and thermodynamic characterization of Lanthanide(III) DOTP complexes was performed. Spectrophotometry, potentiometry, osmometry, and NMR spectroscopy were used in this characterization. Stability constants, protonation equilibria, and interactions of the complexes with alkali metal ions were measured and summarized.

  14. Luminescent characteristics of some mesogenic tris(β-diketonate) europium(III) complexes with Lewis bases

    NASA Astrophysics Data System (ADS)

    Romanova, K. A.; Datskevich, N. P.; Taidakov, I. V.; Vitukhnovskii, A. G.; Galyametdinov, Yu. G.

    2013-12-01

    Luminescent properties of liquid-crystalline tris(β-diketonate) europium(III) complexes with Lewis bases (substituted 2,2'-bipyridine and 1,10-phenantroline) are investigated. Absolute and relative quantum yields and lifetimes are determined. Absorption, excitation, and emission spectra of the complexes are investigated.

  15. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  16. Plane Transformations in a Complex Setting III: Similarities

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  17. A general access to organogold(iii) complexes by oxidative addition of diazonium salts.

    PubMed

    Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-05-11

    At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed. PMID:27094217

  18. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.

    PubMed

    Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W

    2016-07-01

    Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26808919

  19. Formation of Soluble Organo-Chromium(III) Complexes after Chromate Reduction in the Presence of Cellular Organics

    SciTech Connect

    Puzon, Geoffrey J.; Roberts, Arthur G.; Kramer, David M.; Xun, Luying

    2005-04-01

    Microbial reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] has been investigated as a method for bioremediation of Cr(VI) contaminated environments. The produced Cr(III) is thought to be insoluble Cr(OH)3; however, recent reports suggested a more complex fate of Cr(III). A bacterial enzyme system, using NADH as the reductant, converts Cr(VI) to a soluble NAD+-Cr(III) complex, and cytochrome c-mediated Cr(VI) reduction produces cytochrome c-Cr(III) adducts. In this study, Cr(VI) reduction in the presence of cellular organic metabolites formed both soluble and insoluble organo-Cr(III) end-products. Several soluble end-products were characterized by absorbance spectroscopy and electron paramagnetic resonance spectrometry as organo-Cr(III) complexes, similar to the known ascorbate-Cr(III) complex. The complexes remained soluble and stable upon dialysis against distilled H2O and over a broad pH range. The ready formation of stable organo-Cr(III) complexes suggests that organo-Cr(III) complexes are rather common, likely representing an integral part of the natural cycling of chromium. Finally, thus, organo-Cr(III) complexes may account for the mobile form of Cr(III) detected in the environment.

  20. A long road towards the structure of respiratory complex I, a giant molecular proton pump.

    PubMed

    Sazanov, Leonid A; Baradaran, Rozbeh; Efremov, Rouslan G; Berrisford, John M; Minhas, Gurdeep

    2013-10-01

    Complex I (NADH:ubiquinone oxidoreductase) is central to cellular energy production, being the first and largest enzyme of the respiratory chain in mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the inner mitochondrial membrane and is involved in a wide range of human neurodegenerative disorders. Mammalian complex I is composed of 44 different subunits, whereas the 'minimal' bacterial version contains 14 highly conserved 'core' subunits. The L-shaped assembly consists of hydrophilic and membrane domains. We have determined all known atomic structures of complex I, starting from the hydrophilic domain of Thermus thermophilus enzyme (eight subunits, nine Fe-S clusters), followed by the membrane domains of the Escherichia coli (six subunits, 55 transmembrane helices) and T. thermophilus (seven subunits, 64 transmembrane helices) enzymes, and finally culminating in a recent crystal structure of the entire intact complex I from T. thermophilus (536 kDa, 16 subunits, nine Fe-S clusters, 64 transmembrane helices). The structure suggests an unusual and unique coupling mechanism via long-range conformational changes. Determination of the structure of the entire complex was possible only through this step-by-step approach, building on from smaller subcomplexes towards the entire assembly. Large membrane proteins are notoriously difficult to crystallize, and so various non-standard and sometimes counterintuitive approaches were employed in order to achieve crystal diffraction to high resolution and solve the structures. These steps, as well as the implications from the final structure, are discussed in the present review. PMID:24059518

  1. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.

    PubMed

    Hirst, Judy; Roessler, Maxie M

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron-sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26721206

  2. Photorelease and Cellular Delivery of Mitocurcumin from Its Cytotoxic Cobalt(III) Complex in Visible Light.

    PubMed

    Garai, Aditya; Pant, Ila; Banerjee, Samya; Banik, Bhabatosh; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-06-20

    Ternary cobalt(III) complexes of curcumin (Hcur) and mitocurcumin [Hmitocur, a dicationic bis(triphenylphosphonium) derivative of curcumin] having a tetradentate phenolate-based ligand (H2L), namely, [Co(cur)(L)] (1) and [Co(mitocur)(L)]Cl2 (2), were prepared and structurally characterized, and their photoinduced cytotoxicity was studied. The diamagnetic cobalt(III) complexes show an irreversible Co(III)-Co(II) redox response and a quasireversible curcuminoid-based reduction near -1.45 and -1.74 V SCE, respectively, in DMF/0.1 M [(n)Bu4N](ClO4). The complexes exhibit a curcumin/mitocurcumin-based absorption band near 420 nm. Complex 1 was structurally characterized by X-ray crystallography. The structure contains the metal in a CoN2O4 distorted octahedral coordination arrangement with curcumin binding to the metal in its enolic form. Binding to cobalt(III) increases the hydrolytic stability of curcumin. Complex 2, having a dicationic curcuminoid, shows significant cellular uptake and photoinduced cytotoxicity compared to its curcumin analogue 1. The dicationic cobalt(III) complex 2 has significantly better cellular uptake and bioactivity than the neutral species 1. Complex 2 with mitochondrial localization releases the mitocurcumin dye upon exposure to visible light (400-700 nm) in human breast cancer MCF-7 cells through photoreduction of cobalt(III) to cobalt(II). Complex 2 displays a remarkable photodynamic therapy (PDT) effect, giving an IC50 value of ∼3.9 μM in visible light (400-700 nm) in MCF-7 cells while being much less toxic in the dark (>50 μM). The released mitocurcumin acts as a phototoxin, generating intracellular reactive oxygen species (ROSs). The overall process leads to light-controlled delivery of a curcuminoid (mitocur) into the tumor cells while the dye alone suffers from hydrolytic instability and poor bioavailability. PMID:27244480

  3. Synthesis, characterization and DNA-binding studies on La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide

    NASA Astrophysics Data System (ADS)

    He, Xin-Qian; Lin, Qiu-Yue; Hu, Rui-Ding; Lu, Xiao-Hong

    2007-09-01

    La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide (HL) were synthesized and characterized by elemental analyses, conductivity measurement, IR spectra and thermal analysis. The general formulas of the complexes were [Ln(HL) 3(H 2O) 2](NO 3) 3·2H 2O [Ln = La(III), Ce(III)]. The results indicated that the oxygen of carbonyl and the nitrogen of pyridyl coordinated to Ln(III), and there were also two water molecules taking part in coordination. Ln(III) and HL formed 1:3 chelate complexes and the coordination number was eight. The interaction between the complexes and DNA was studied by means of UV-vis spectra, fluorescence spectra, SERS spectra and agarose gel electrophoresis. The results showed that complexes can bind to DNA. The binding ability decreased in following order: La(III) complex, Ce(III) complex, and HL. The interaction modes between DNA and the three compounds were found to be mainly intercalative.

  4. (Porphyrinato)bis(phthalocyaninato)dilanthanide(III) complexes presenting a sandwich triple-decker-like structure

    SciTech Connect

    Moussavi, M.; De Cian, A.; Fischer, J.; Weiss, R.

    1986-06-18

    Bis(phthalocyaninato)lanthanide(III) derivatives presenting a sandwich-type structure have been known for many years. These complexes are still intensively studied due to their semi-conductor and electrochromic properties. The synthesis and properties of bis(porphyrinato) and tris(porphyrinato)lanthanide(III) derivatives have also been reported. X-ray structural studies have shown that bis(porphyrinato) complexes have geometries that are similar to those displayed by the LnPc/sub 2/ complexes (Ln = lanthanide; Pc = phthalocyanine) whereas the tris(porphyrinato) derivatives present structures in which two lanthanide(III) metal cations are sandwiched between three macrocyclic rings in triple-decker-like geometry. Structural, magnetic, and spectroscopic properties of the green form of lutetium(III) bis(phthalocyanate) have shown that this complex is in a nonprotonated, one-electron-oxidized ligand form, Ln (Pc/sup 2 -/) (Pc..pi..). In such a molecule, the unpaired spin could be either located on one phthalocyanine ring or delocalized over both rings. In order to force the localization of the unpaired spin on one ring, the authors have tried to synthesize a dissymmetric mixed-ligand, porphyrin (Por) phthalocyanine (Pc), lanthanide sandwich Ln(Por)(Pc). However, under the conditions used, the authors obtained dilanthanide sandwich-triple-decker-like complexes. (Por(Ln)Pc(Ln)Pc) in which the two metal cations are sandwiched between three macrocyclic rings. They report the synthesis and spectral properties of such derivatives obtained with Ln = Nd(III), Eu(III), and Gd(III) and with meso-tetrakis(4-methoxyphenyl) porphyrin (H/sub 2/T(4-OCH/sub 3/)PP) and phthalocyanine (H/sub 2/Pc). The X-ray structure of the neodymim complex is also reported.

  5. A spectrophotometric study of Am(III) complexation with nitrate in aqueous solution at elevated temperatures.

    PubMed

    Tian, Guoxin; Shuh, David K

    2014-10-21

    The complexation of americium(iii) with nitrate was studied at temperatures from 10 to 85 °C in 1 M HNO3-HClO4 by spectrophotometry. The 1 : 1 complex species, AmNO3(2+), was identified and the stability constants were calculated from the absorption spectra recorded for titrations at several temperatures. Specific ion interaction theory (SIT) was used for ionic strength corrections to obtain the stability constants of AmNO3(2+) at infinite dilution and variable temperatures. The absorption spectra of Am(iii) in diluted HClO4 were also reviewed, and the molar absorptivity of Am(iii) at around 503 nm and 813 nm was re-calibrated by titrations with standardized DTPA solutions to determine the concentration of Am(iii). PMID:24999760

  6. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  7. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging.

    PubMed

    Reddy, M L P; Divya, V; Pavithran, Rani

    2013-11-21

    Visible-light sensitized luminescent europium(III) molecular materials are of considerable importance because their outstanding photophysical properties make them well suited as labels in fluorescence-based bioassays and low-voltage driven pure red-emitters in optoelectronic technology. One challenge in this field is development of visible-light sensitizing ligands that can form highly emissive europium(III) complexes with sufficient stability and aqueous solubility for practical applications. Indeed, some of the recent reports have demonstrated that the excitation-window can be shifted to longer-wavelengths in europium(III)-β-diketonate complexes by appropriate molecular engineering and suitably expanded π-conjugation in the complex molecules. In this review, attention is focused on the latest innovations in the syntheses and photophysical properties of visible-light sensitized europium(III)-β-diketonate complexes and their application as bioprobes for cellular imaging. Furthermore, luminescent nanomaterials derived from long-wavelength sensitized europium(III)-β-diketonate complexes and their application in life sciences are also highlighted. PMID:24076753

  8. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-01

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area. PMID:26753824

  9. Toxic variability and radiation potentiation by Rh(III) complexes in Salmonella typhimurium cells

    SciTech Connect

    Richmond, R.C.; O'Hara, J.; Picker, D.H.; Douple, E.B.

    1986-12-01

    Stationary-phase cells of Salmonella typhimurium were irradiated in phosphate-buffered saline in the presence of rhodium complexes to test for the potentiation of radiation-induced cell killing. Eleven Rh complexes, two Rh(I) and nine Rh(III), were tested. Seven Rh(III) complexes were found to be radiation potentiators; six potentiate only under hypoxic conditions, and one potentiates under both hypoxic and oxic conditions. Four of these seven Rh(III) complexes demonstrate potentiation that is 2 to 13 times greater than the sensitization caused by oxygen. Irradiating cells in Ham's F-12 culture medium rather than in phosphate-buffered saline eliminates this latter hypoxic radiation potentiation. None of the seven Rh(III) radiation potentiators are directly toxic to cells. However, four complexes were tested for hypoxic radiation-induced cytocidal toxicity, and three were found to be toxic after irradiation. The efficiency of this toxicity is not sufficient to account for the observed radiation potentiation. It is suggested that both reductive and oxidative free radical events are involved in the spectrum of Rh(III) potentiation observed.

  10. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand.

    PubMed

    Kanchana Devi, A; Ramesh, R

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E=P or As; X=Cl or Br; L=binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx≠gy≠gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (Ru(III)-Ru(III)/Ru(III)-Ru(IV); Ru(III)-Ru(IV)/Ru(IV)-Ru(IV)) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl. PMID:23988528

  11. [Tl(III)(dota)](-): An Extraordinarily Robust Macrocyclic Complex.

    PubMed

    Fodor, Tamás; Bányai, István; Bényei, Attila; Platas-Iglesias, Carlos; Purgel, Mihály; Horváth, Gábor L; Zékány, László; Tircsó, Gyula; Tóth, Imre

    2015-06-01

    The X-ray structure of {C(NH2)3}[Tl(dota)]·H2O shows that the Tl(3+) ion is deeply buried in the macrocyclic cavity of the dota(4-) ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) with average Tl-N and Tl-O distances of 2.464 and 2.365 Å, respectively. The metal ion is directly coordinated to the eight donor atoms of the ligand, which results in a twisted square antiprismatic (TSAP') coordination around Tl(3+). A multinuclear (1)H, (13)C, and (205)Tl NMR study combined with DFT calculations confirmed the TSAP' structure of the complex in aqueous solution, which exists as the Λ(λλλλ)/Δ(δδδδ) enantiomeric pair. (205)Tl NMR spectroscopy allowed the protonation constant associated with the protonation of the complex according to [Tl(dota)](-) + H(+) ⇆ [Tl(Hdota)] to be determined, which turned out to be pK(H)Tl(dota) = 1.4 ± 0.1. [Tl(dota)](-) does not react with Br(-), even when using an excess of the anion, but it forms a weak mixed complex with cyanide, [Tl(dota)](-) + CN(-) ⇆ [Tl(dota)(CN)](2-), with an equilibrium constant of Kmix = 6.0 ± 0.8. The dissociation of the [Tl(dota)](-) complex was determined by UV-vis spectrophotometry under acidic conditions using a large excess of Br(-), and it was found to follow proton-assisted kinetics and to take place very slowly (∼10 days), even in 1 M HClO4, with the estimated half-life of the process being in the 10(9) h range at neutral pH. The solution dynamics of [Tl(dota)](-) were investigated using (13)C NMR spectroscopy and DFT calculations. The (13)C NMR spectra recorded at low temperature (272 K) point to C4 symmetry of the complex in solution, which averages to C4v as the temperature increases. This dynamic behavior was attributed to the Λ(λλλλ) ↔ Δ(δδδδ) enantiomerization process, which involves both the inversion of the macrocyclic unit and the rotation of the pendant arms. According to our calculations, the arm-rotation process limits the Λ(λλλλ) ↔

  12. Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III)

    NASA Astrophysics Data System (ADS)

    Kuke, S.; Marmodée, B.; Eidner, S.; Schilde, U.; Kumke, M. U.

    2010-04-01

    The complexation of Eu(III) by 2-hydroxy benzoic acid (2HB) or glycolic acid (GL) was investigated using steady-state and time-resolved laser spectroscopy. Experiments were carried out in H 2O as well as in D 2O in the temperature range of 80KIII) luminescence spectra and luminescence decay times were evaluated with respect to the temperature dependence of (i) the luminescence decay time τ, (ii) the energy of the D→F transition, (iii) the width of the D→F transition, and (iv) the asymmetry ratio calculated from the luminescence intensities of the D→F and D→F transition, respectively. The differences in ligand-related luminescence quenching are discussed. Based on the temperature dependence of the luminescence decay times an activation energy for the ligand-specific non-radiative deactivation in Eu(III)-2HB or Eu(III)-GL complexes was determined. It is stressed that ligand-specific quenching processes (other than OH quenching induced by water molecules) need to be determined and considered in detail, in order to extract speciation-relevant information from luminescence data (e.g., estimation of the number of water molecules nO in the first coordination sphere of Eu(III)). In case of 2HB, conclusions drawn from the evaluation of the Eu(III) luminescence are compared with results of a X-ray structure analysis.

  13. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions

    PubMed Central

    Diaz, Francisca; Garcia, Sofia; Padgett, Kyle R.; Moraes, Carlos T.

    2012-01-01

    We have created two neuron-specific mouse models of mitochondrial electron transport chain deficiencies involving defects in complex III (CIII) or complex IV (CIV). These conditional knockouts (cKOs) were created by ablation of the genes coding for the Rieske iron–sulfur protein (RISP) and COX10, respectively. RISP is one of the catalytic subunits of CIII and COX10 is an assembly factor indispensable for the maturation of Cox1, one of the catalytic subunits of CIV. Although the rates of gene deletion, protein loss and complex dysfunction were similar, the RISP cKO survived 3.5 months of age, whereas the COX10 cKO survived for 10–12 months. The RISP cKO had a sudden death, with minimal behavioral changes. In contrast, the COX10 cKO showed a distinctive behavioral phenotype with onset at 4 months of age followed by a slower but progressive neurodegeneration. Curiously, the piriform and somatosensory cortices were more vulnerable to the CIII defect whereas cingulate cortex and to a less extent piriform cortex were affected preferentially by the CIV defect. In addition, the CIII model showed severe and early reactive oxygen species damage, a feature not observed until very late in the pathology of the CIV model. These findings illustrate how specific respiratory chain defects have distinct molecular mechanisms, leading to distinct pathologies, akin to the clinical heterogeneity observed in patients with mitochondrial diseases. PMID:22914734

  14. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    PubMed

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour. PMID:26282265

  15. Aqueous complexation of citrate with neodymium(III) and americium(III): a study by potentiometry, absorption spectrophotometry, microcalorimetry, and XAFS.

    PubMed

    Brown, M Alex; Kropf, A Jeremy; Paulenova, Alena; Gelis, Artem V

    2014-05-01

    The aqueous complexation of Nd(III) and Am(III) with anions of citrate was studied by potentiometry, absorption spectrophotometry, microcalorimetry, and X-ray absorption fine structure (XAFS). Using potentiometric titration data fitting the metal-ligand (L) complexes that were identified for Nd(III) were NdHL, NdL, NdHL2, and NdL2; a review of trivalent metal-citrate complexes is also included. Stability constants for these complexes were calculated from potentiometric and spectrophotometric titrations. Microcalorimetric results concluded that the entropy term of complex formation is much more dominant than the enthalpy. XAFS results showed a dependence in the Debye-Waller factor that indicated Nd(iii)-citrate complexation over the pH range of 1.56-6.12. PMID:24619154

  16. Thermodynamic and Spectroscopic Studies of Lanthanides(III) Complexation with Polyamines in Dimethyl Sulfoxide

    SciTech Connect

    Di Bernardo, Plinio; Zanonato, Pier Luigi; Melchior, Andrea; Portanova, Roberto; Tolazzi, Marilena; Choppin, Gregory R.; Wang, Zheming

    2008-01-01

    The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands bound to the lanthanides except in the case of tren, in which only pendant N bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen in order to follow the changes in the primary solvation sphere of lanthanide(III) due to complexation of amine ligands. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from ~8 to ~10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of ΔGj°, ΔHj° and TΔSj° for the complexation of ethylenediamine (en), dien, trien, tren and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed.

  17. Characterization of the apoLp-III/LPS complex: insight in the mode of binding interaction

    PubMed Central

    Oztug, Merve; Martinon, Daisy; Weers, Paul M.M.

    2012-01-01

    Apolipoproteins are able to associate with lipopolysaccharides (LPS), potentially providing protection against septic shock. To gain insight in the molecular details of this binding interaction, apolipophorin III (apoLp-III) from Galleria mellonella was used as a model. The binding of apoLp-III to LPS was optimal around 37–40 °C, close to the LPS phase transition temperature. ApoLp-III formed complexes with LPS from E. coli (serotype O55:B5) with a diameter of 24 nm, a molecular weight of ~390 kDa, containing four molecules of apoLp-III and 24 molecules of LPS. The LPS-bound form of the protein was substantially more resistant to guanidine-induced denaturation compared to unbound protein. The denaturation profile displayed a multiphase character with a steep drop in secondary structure between 0–1 M guanidine, and a slower decrease above 1 M guanidine HCl. In contrast, apoLp-III bound to detoxified LPS was only slightly more resistant to guanidine HCl induced denaturation compared to unbound protein. Analysis of size-exclusion FPLC elution profiles of mixtures of apoLp-III with LPS or detoxified LPS indicated a much weaker binding interaction with detoxified LPS compared to intact LPS. These results indicate that apoLp-III initially interacts with exposed carbohydrate regions, but that the lipid A region is required for a more stable LPS binding interaction. PMID:22779761

  18. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I.

    PubMed

    Sazanov, Leonid A

    2014-08-01

    NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved "core" subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine. PMID:24943718

  19. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression

    PubMed Central

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-01-01

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma. PMID:26484566

  20. Localizing Perturbations of the Racemic Equilibria Involving Dipicolinate-Derived Lanthanide(III) Complexes.

    PubMed

    Nguyen, Brian T; Ingram, Andrew J; Muller, Gilles

    2016-04-01

    Helical D3 tris(4-amino-2,6-pyridine-dicarboxylate)terbium(III) and europium(III) complexes, which form a racemic equilibrium in aqueous solution, were prepared to study their secondary coordination sphere interactions with chiral amino acids. These interactions were probed using a combination of circularly polarized luminescence (CPL) and 13C NMR spectroscopy. The results indicate that, regardless of the interaction between the chiral molecule and the complex, without an accessible hydrogen-bond donor on the associating molecule, perturbation of the racemic equilibrium cannot occur. A generalized conclusion is established that indicates that the mechanism of chiral recognition by tris(dipicolinate)lanthanide(III) complexes is similar across a variety of analogous ligands. PMID:26935003

  1. Cellulose derivatives modified by sodium tellurate and a chromium(III) tellurate complex.

    PubMed

    Butler, Ian S; El-Sherbeny, Heba Allah M; Kenawy, Ibrahim; Mostafa, Sahar I

    2016-07-01

    A novel cellulose (Cell) derivative, sodium-tellurato (Cell-TeO(OH)4(ONa)/Cell-Cl), has been synthesized from the reaction of 6-chloro-6-deoxycellulose (Cell-Cl) with telluric acid in the presence of sodium hydroxide. The subsequent reaction of this polymeric material with chromium(III) in aqueous solution yields the [Cr(Cell-TeO3(OH)3/Cell-Cl)(Cell-TeO2(OH)4/Cell-Cl)(H2O)3] complex. The molecular structures and morphology of the new polymer and the Cr(III) complex have been examined using elemental analysis, solid-state (13)C NMR, UV-vis, XRD and FTIR spectroscopy, and SEM-EDX, TGA and magnetic measurements. The results are considered to be consistent with the formulations proposed. The deprotonation constants of the modified cellulose and the stability constant of the Cr(III) complex have been determined by pH-metric measurements. PMID:27037053

  2. Mössbauer study of peroxynitrito complex formation with FeIII-chelates

    NASA Astrophysics Data System (ADS)

    Homonnay, Zoltan; Buszlai, Peter; Nádor, Judit; Sharma, Virender K.; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    The reaction of the μ-oxo-diiron(III)-L complex (L = EDTA, ethylene diamine tetraacetate, HEDTA, hydroxyethyl ethylene diamine triacetate, and CyDTA, cyclohexane diamine tetraacetate) with peroxynitrite in alkaline solution was studied by Mössbauer spectroscopy using rapid-freezing technique. These complexes yield an (L)FeIII( η 2-O2)^{3-} complex ion when they react with hydrogen peroxide and the formation of the peroxide adduct results in a deep purple coloration of the solution. The same color appears when the reaction occurs with peroxinitrite. Although spectrophotometry indicated some difference between the molar extinction coefficients of the peroxo and the peroxinitrito adducts, the Mössbauer parameters proved to be the same within experimental error. It is concluded that the peroxynitrite ion decomposes when reacting with FeIII(L) and the peroxo adduct forms.

  3. Long-lived luminescent soft materials of hexanitratosamarate(III) complexes with orange visible emission.

    PubMed

    Tang, Ning; Zhao, Ying; He, Ling; Yuan, Wen-Li; Tao, Guo-Hong

    2015-05-21

    Sm(III)-based ionic liquids incorporating hexanitratosamarate(III) anions were obtained and fully characterized as novel Sm(III)-containing organic complexes. The structure of the ionic liquids was determined by single-crystal X-ray diffraction (1: monoclinic system C2/c space group with cell parameters: a = 19.5624(4) Å, b = 10.11895(18) Å, c = 33.2256(6) Å, β = 101.2912(18)°, Z = 8). The central Sm(III) ion is 12-coordinated by six bidentate nitrate ligands with twelve oxygen donors to form a [Sm(NO3)6](3-) anion. The low melting point, high thermostability and wide liquid range of these ionic liquids were determined in detail. All the complexes 1-5 display orange luminescence, rather than red luminescence as in most Sm(III)-containing organic complexes. Three characteristic monochromatic bands and an intense emission, derived from (4)G5/2→(6)HJ (J = 5/2, 7/2, and 9/2) intraconfigurational f-f transitions, were revealed. All these complexes exhibit long luminescence lifetimes. PMID:25860117

  4. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics

    PubMed Central

    Joffe, Daniel J.; Lelewski, Roxana; Weese, J. Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09). PMID:26740697

  5. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics.

    PubMed

    Joffe, Daniel J; Lelewski, Roxana; Weese, J Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09). PMID:26740697

  6. Synthesis and properties of polynitrophenyltetrazolatocobalt(III) complexes

    SciTech Connect

    Fronabarger, J.; Johnson, R.; Fleming, W.

    1986-01-01

    The explosive 3,5-dinitrophenyltetrazolato complex (3,5-DNP) tends to propagate in the deflagration mode which suggests its use as a pressure cartridge charge. However, the existence of 3,5-DNP as a hydrate appears to result in variations of thermomechanical properties thus rendering it undesirable for component use. The 2,4-DNP and 2,4,6-TNP analogs were synthesized. These exist in the anhydrous form under normal conditions and underwent DDT in component configuration. This negated their use in pressure cartridge applications. Synthetic procedures have been developed for 5-(2,4-dinitrophenyl)tetrazole and 5-picryltetrazole as well as for the precursor 2,4-dinitro- and 2,4,6-trinitrobenzonitriles. 6 refs.

  7. Spectrophotometric studies of holmium(III) chloride-aluminum(III) chloride vapor complexes

    SciTech Connect

    Williams, C.W.; Hessler, J.P.; Peterson, E.J.

    1980-01-01

    The gas complexation reactions between LnCl/sub 3/ and Al/sub 2/Cl/sub 6/ to yield molecular species of the form LnCl/sub 3/ (Al/sub 2/Cl/sub 6/)/sub x/ have been studied for a number of years. The spectrophotometric technique has been used to deduce the thermodynamic properties of the molecular species. We have studied the HoCl/sub 3/ (Al/sub 2/Cl/sub 6/)/sub x/ system from 600 to 900/sup 0/K and at Al/sub 2/Cl/sub 6/ pressures between 1 and 7 atm. The Ho/sup 3 +/ hypersensitive transition between /sup 5/I/sub 8/ and /sup 5/G/sub 6/ at 456 nm has been used to measure the complex vapor densities as a function of pressure and temperature. A temperature-dependence of the optical absorption spectrum was observed in samples with a constant Ho/sup 3 +/ ion density. These data cannot be understood in terms of the generally used treatment of molar absorptivity, but requires the introduction of an effective oscillator strength. A temperature-dependent oscillator effect is also observed and this is interpeted as evidence for the presence of multiple species with differing oscillator strengths. The consequence of these observations for the determination of equilibrium constants for the different species will be discussed.

  8. Mechanism of oxidation of alkyl and superoxo complexes of chromium (III) by aquamanganese(III) ions

    SciTech Connect

    Jee, Joo-Eun; Pestovsky, Oleg; Hidayat, Irene; Szajna-Fuller; Bakac, Andreja

    2010-07-01

    The reaction between aqueous manganese(III) ions, Mn(H{sub 2}O){sub 6}{sup 3+}, and (H{sub 2}O){sub 5}CrOO{sup 2+} has a 1:1 stoichiometry and generates Cr(H{sub 2}O){sub 6}{sup 3+} and O{sub 2} as products. The mixed second-order rate constant exhibits an [H{sup +}] dependence that identifies the hexaaquamanganese ion as the reactive form at 0.5 {le} [H{sup +}] {le} 3.0 mol L{sup -1}, k{sub H} = 350 {+-} 10 (mol L{sup -1}){sup -1} s{sup -1}. The reactivity of (H{sub 2}O)5MnOH{sup 2+} is negligible under these conditions, most likely because the much lower reduction potential of this hydrolytic form results in unfavorable thermodynamics for the overall reaction. Mn(H{sub 2}O){sub 6}{sup 3+} also oxidizes a benzylchromium ion, (H{sub 2}O)5CrCH{sub 2}Ph{sup 2+}, with a rate constant k = 273 {+-} 13 (mol L{sup -1}){sup -1} s{sup -1} in 3.0 mol L{sup -1} HClO{sub 4}. The reaction has a 2:1 [Mn(H{sub 2}O){sub 6}{sup 3+}]/[(H{sub 2}O){sub 5}CrCH{sub 2}Ph{sup 2+}] stoichiometry and generates benzyl alcohol as the sole organic product. The data are consistent with oxidative homolysis which generates benzyl radicals followed by rapid oxidation of the radicals with the second equivalent of Mn(H{sub 2}O){sub 6}{sup 3+}. The unexpected similarity between the rate constants for the Mn(H{sub 2}O){sub 6}{sup 3+} oxidation of (H{sub 2}O){sub 5}CrOO{sup 2+} and (H{sub 2}O){sub 5}CrCH{sub 2}Ph{sup 2+} is discussed.

  9. Direct evidence of arsenic(III)-carbonate complexes obtained using electrochemical scanning tunneling microscopy.

    PubMed

    Han, Mei-Juan; Hao, Jumin; Christodoulatos, Christos; Korfiatis, George P; Wan, Li-Jun; Meng, Xiaoguang

    2007-05-15

    Electrochemical scanning tunneling microscopy (ECSTM), ion chromatography (IC), and electrospray ionization-mass spectrometry/mass spectrometry were applied to investigate the interactions between arsenite [As(III)] and carbonate and arsenate [As(V)] and carbonate. The chemical species in the single and binary component solutions of As(III), As(V), and carbonate were attached to a Au(111) surface and then imaged in a 0.1 M NaClO4 solution at the molecular level by ECSTM. The molecules formed highly ordered adlayers on the Au(111) surface. High-resolution STM images revealed the orientation and packing arrangement of the molecular adlayers. Matching the STM images with the molecular models constructed using the Hyperchem software package indicated that As(III) formed two types of complexes with carbonate, including As(OH)2CO3- and As(OH)3(HCO3-)2. No complexes were formed between As(V) and carbonate. IC chromatograms of the solutions revealed the emergence of the new peak only in the aged As(III)-carbonate solution. MS spectra showed the presence of a new peak at m/z 187 in the aged As(III)-carbonate solution. The results obtained with the three independent methods confirmed the formation of As(OH)2CO3-. The results also indicated that As(OH)3 could be associated with HCO3- through a hydrogen bond. The knowledge of the formation of the As(III) and carbonate complexes will improve the understanding of As(III) mobility in the environment and removal of As(III) in water treatment systems. PMID:17441685

  10. The antioxidant function of Bcl-2 preserves cytoskeletal stability of cells with defective respiratory complex I.

    PubMed

    Porcelli, A M; Ghelli, A; Iommarini, L; Mariani, E; Hoque, M; Zanna, C; Gasparre, G; Rugolo, M

    2008-09-01

    Human thyroid carcinoma XTC.UC1 cells harbor a homoplasmic frameshift mutation in the MT-ND1 subunit of respiratory complex I. When forced to use exclusively oxidative phosphorylation for energy production by inhibiting glycolysis, these cells triggered a caspase-independent cell death pathway, which was associated to a significant imbalance in glutathione homeostasis and a cleavage of the actin cytoskeleton. Overexpression of the anti-apoptotic Bcl-2 protein significantly increased the level of endogenous reduced glutathione, thus preventing its oxidation after the metabolic stress. Furthermore, Bcl-2 completely inhibited actin cleavage and increased cell adhesion, but was unable to improve cellular viability. Similar effects were obtained when XTC.UC1 cells were incubated with exogenous glutathione. We hence propose that Bcl-2 can safeguard cytoskeletal stability through an antioxidant function. PMID:18695940

  11. RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex.

    PubMed

    Estrella, Michael A; Kuo, Fang-Ting; Bailey, Scott

    2016-02-15

    The CRISPR (clustered regularly interspaced short palindromic repeat) system is an RNA-guided immune system that protects prokaryotes from invading genetic elements. This system represents an inheritable and adaptable immune system that is mediated by multisubunit effector complexes. In the Type III-B system, the Cmr effector complex has been found to cleave ssRNA in vitro. However, in vivo, it has been implicated in transcription-dependent DNA targeting. We show here that the Cmr complex from Thermotoga maritima can cleave an ssRNA target that is complementary to the CRISPR RNA. We also show that binding of a complementary ssRNA target activates an ssDNA-specific nuclease activity in the histidine-aspartate (HD) domain of the Cmr2 subunit of the complex. These data suggest a mechanism for transcription-coupled DNA targeting by the Cmr complex and provide a unifying mechanism for all Type III systems. PMID:26848046

  12. Challenges in assignment of orbital populations in a high spin manganese(iii) complex.

    PubMed

    Fitzpatrick, A J; Stepanovic, S; Müller-Bunz, H; Gruden-Pavlović, M A; García-Fernández, P; Morgan, G G

    2016-04-12

    Magnetic, structural and computational data of four complex salts with the same mononuclear high spin octahedral Mn(iii) complex cation are reported. The manifestation of Jahn-Teller-like distortions in the Mn(iii) cation is dependent on the nature of the charge-balancing anion, with small anions yielding a planar elongation and large anions freezing out a preferential axial elongation along one of the amine-Mn-imine directions within that same plane. Modulation of the lattice by changing the charge balancing anion results in mixing of the orbital symmetry due to vibrational perturbation. PMID:26974518

  13. Cysteine scanning reveals minor local rearrangements of the horizontal helix of respiratory complex I.

    PubMed

    Steimle, Stefan; Schnick, Christian; Burger, Eva-Maria; Nuber, Franziska; Krämer, Dorothée; Dawitz, Hannah; Brander, Sofia; Matlosz, Bartlomiej; Schäfer, Jacob; Maurer, Katharina; Glessner, Udo; Friedrich, Thorsten

    2015-10-01

    The NADH:ubiquinone oxidoreductase, respiratory complex I, couples electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the redox reaction and a membrane arm catalyzing proton translocation. The membrane arm is almost completely aligned by a 110 Å unique horizontal helix that is discussed to transmit conformational changes induced by the redox reaction in a piston-like movement to the membrane arm driving proton translocation. Here, we analyzed such a proposed movement by cysteine-scanning of the helix of the Escherichia coli complex I. The accessibility of engineered cysteine residues and the flexibility of individual positions were determined by labeling the preparations with a fluorescent marker and a spin-probe, respectively, in the oxidized and reduced states. The differences in fluorescence labeling and the rotational flexibility of the spin probe between both redox states indicate only slight conformational changes at distinct positions of the helix but not a large movement. PMID:26115017

  14. An EXAFS spectroscopic study of Am(III) complexation with lactate.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Kaplan, Ugras; Koke, Carsten; Rossberg, André; Panak, Petra J

    2015-11-01

    The pH dependence (1-7) of Am(III) complexation with lactate in aqueous solution is studied using extended X-ray absorption fine-structure (EXAFS) spectroscopy. Structural data (coordination numbers, Am--O and Am--C distances) of the formed Am(III)-lactate species are determined from the raw k(3)-weighted Am LIII-edge EXAFS spectra. Between pH 1 and pH 6, Am(III) speciation shifts continuously towards complexed species with increasing pH. At higher pH, the amount of complexed species decreases due to formation of hydroxo species. The coordination numbers and distances (3.41-3.43 Å) of the coordinating carbon atoms clearly point out that lactate is bound `side-on' to Am(III) through both the carboxylic and the α-hydroxy function of lactate. The experimentally determined coordination numbers are compared with speciation calculations on the basis of tabulated thermodynamic stability constants. Both EXAFS data and thermodynamic modelling are in very good agreement. The EXAFS spectra are also analyzed by iterative transformation factor analysis to further verify the determined Am(III) speciation and the used structural model. PMID:26524312

  15. [U(III) {N(SiMe2 tBu)2 }3 ]: a structurally authenticated trigonal planar actinide complex.

    PubMed

    Goodwin, Conrad A P; Tuna, Floriana; McInnes, Eric J L; Liddle, Stephen T; McMaster, Jonathan; Vitorica-Yrezabal, Inigo J; Mills, David P

    2014-11-01

    We report the synthesis and characterization of the uranium(III) triamide complex [U(III) (N**)3 ] [1, N**=N(SiMe2 tBu)2 (-) ]. Surprisingly, complex 1 exhibits a trigonal planar geometry in the solid state, which is unprecedented for three-coordinate actinide complexes that have exclusively adopted trigonal pyramidal geometries to date. The characterization data for [U(III) (N**)3 ] were compared with the prototypical trigonal pyramidal uranium(III) triamide complex [U(III) (N")3 ] (N"=N(SiMe3 )2 (-) ), and taken together with theoretical calculations it was concluded that pyramidalization results in net stabilization for [U(III) (N")3 ], but this can be overcome with very sterically demanding ligands, such as N**. The planarity of 1 leads to favorable magnetic dynamics, which may be considered in the future design of U(III) single-molecule magnets. PMID:25241882

  16. Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation

    PubMed Central

    Cowley, Ryan E.; DeYonker, Nathan J.; Eckert, Nathan A.; Cundari, Thomas R.; DeBeer, Serena; Bill, Eckhard; Ottenwaelder, Xavier; Flaschenriem, Christine; Holland, Patrick L.

    2010-01-01

    Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky β-diketiminate ligand; Ad = 1-adamantyl). This paper addresses: (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by 1H NMR and EPR spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or X-ray absorption (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 ± 0.01 Å) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron–RN3 intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an RN3 radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N2 loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide. PMID:20524625

  17. The globular cluster system of NGC 1316. III. Kinematic complexity

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Hilker, M.; Kumar, B.; Bassino, L. P.; Gómez, M.; Dirsch, B.

    2014-09-01

    discernable out to 3' radius. The kinematic major axis of NGC 1316 is misaligned by about 10° with the photometric major axis, which might indicate a triaxial symmetry. A simple spherical model like that suggested by dynamical analyses of planetary nebulae also reproduces the velocity dispersions of the faint globular clusters. Conclusions: The central dark matter density of the present model resembles a giant elliptical galaxy. This contradicts population properties which indicate spiral galaxies as pre-merger components. Modified Newtonian dynamics (MOND) would provide a solution, but the kinematical complexity of NGC 1316 does not allow a really firm conclusion. However, NGC 1316 might anyway be a problem for a cold dark matter scenario, if the high dark matter density in the inner region is confirmed in future studies. Based on observations obtained with the VLT at ESO, Cerro Paranal, Chile under the programme 078.B-0856.Appendices are available in electronic form at http://www.aanda.org

  18. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  19. Luminescent Alkyne-Bearing Terbium(III) Complexes and Their Application to Bioorthogonal Protein Labeling.

    PubMed

    O'Malley, William I; Abdelkader, Elwy H; Aulsebrook, Margaret L; Rubbiani, Riccardo; Loh, Choy-Theng; Grace, Michael R; Spiccia, Leone; Gasser, Gilles; Otting, Gottfried; Tuck, Kellie L; Graham, Bim

    2016-02-15

    Two new bifunctional macrocyclic chelate ligands that form luminescent terbium(III) complexes featuring an alkyne group for conjugation to (bio)molecules via the Cu(I)-catalyzed "click" reaction were synthesized. Upon ligation, the complexes exhibit a significant luminescent enhancement when excited at the λ(max) of the "clicked" products. To demonstrate the utility of the complexes for luminescent labeling, they were conjugated in vitro to E. coli aspartate/glutamate-binding protein incorporating a genetically encoded p-azido-L-phenylalanine or p-(azidomethyl)-L-phenylalanine residue. The complexes may prove useful for time-gated assay applications. PMID:26821062

  20. Theoretical studies on the photophysical properties of some Iridium (III) complexes used for OLED

    NASA Astrophysics Data System (ADS)

    Urinda, Sharmistha; Das, Goutam; Pramanik, Anup; Sarkar, Pranab

    2016-09-01

    The structural and photophysical properties of four heteroleptic Iridium (III) complexes, based on 1-phenylpyrazole ligand, have been investigated theoretically. The effect of chemical substitution on the absorption and the emission spectra of the complexes has been studied and compared with the experimental data. We observe a significant structural change in the lowest triplet excited state as compared to the ground singlet state. We compute the emission wavelength of the complexes by considering the spin-orbit coupling. Using these understandings, we predict two new complexes having deeper blue emission which are supposed to be better efficient OLED materials.

  1. Reactions of Co(III)-nitrosyl complexes with superoxide and their mechanistic insights.

    PubMed

    Kumar, Pankaj; Lee, Yong-Min; Park, Young Jun; Siegler, Maxime A; Karlin, Kenneth D; Nam, Wonwoo

    2015-04-01

    New Co(III)-nitrosyl complexes bearing N-tetramethylated cyclam (TMC) ligands, [(12-TMC)Co(III)(NO)](2+) (1) and [(13-TMC)Co(III)(NO)](2+) (2), were synthesized via [(TMC)Co(II)(CH3CN)](2+) + NO(g) reactions. Spectroscopic and structural characterization showed that these compounds bind the nitrosyl moiety in a bent end-on fashion. Complexes 1 and 2 reacted with KO2/2.2.2-cryptand to produce [(12-TMC)Co(II)(NO2)](+) (3) and [(13-TMC)Co(II)(NO2)](+) (4), respectively; these possess O,O'-chelated nitrito ligands. Mechanistic studies using (18)O-labeled superoxide ((18)O2(•-)) showed that one O atom in the nitrito ligand is derived from superoxide and the O2 produced comes from the other superoxide O atom. Evidence supporting the formation of a Co-peroxynitrite intermediate is also presented. PMID:25793706

  2. Anticancer Activity of Organogallium(III) Complexes in Colon Cancer Cells.

    PubMed

    Kaluđerović, Milena R; Mojić, Marija; Gómez-Ruiz, Santiago; Mijatović, Sanja; Maksimović-Ivanić, Danijela

    2016-01-01

    In vitro antitumor activity of various organogallium(III) complexes (1-8) has been tested against CT26CL25, HCT116, SW480 colon cancer cell lines. CV and MTT assays were used to assess on the antiproliferative effect of investigated organogallium(III) complexes. From the investigated complexes, the most active was found to be tetranuclear compound 8 against CT26CL25 cells. Flow cytometric analysis of the CT26CL25 cells upon the treatment with 8 was performed in order to determine the role of apoptosis, caspase activation, autophagy and proliferation rate on the cell death caused with this compound. Results indicate cytotoxic potential of the tetranuclear complex 8 by inducing caspase independent apoptosis and blocking most of the cells before first division. PMID:26443026

  3. Synthesis and characterization of Mn(II), Au(III) and Zr(IV) hippurates complexes.

    PubMed

    Refat, Moamen S; El-Korashy, Sabry A; Ahmed, Ahmed S

    2008-09-01

    Mn(II), Au(III) and Zr(III) complexes with N-benzoylglycine (hippuric acid) (abbreviation hipH) were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid-infrared, 1H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all hippuric acid complexes are non-electrolytes. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligand and its complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The free ligand and its complexes have been studied for their possible biological antifungal activity. PMID:17981497

  4. Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands.

    PubMed

    Maurya, Yogesh Kumar; Ishikawa, Takahiro; Kawabe, Yasunori; Ishida, Masatoshi; Toganoh, Motoki; Mori, Shigeki; Yasutake, Yuhsuke; Fukatsu, Susumu; Furuta, Hiroyuki

    2016-06-20

    Novel near-infrared phosphorescent iridium(III) complexes based on benzo-annulated N-linked corrole analogue (termed as benzonorrole) were synthesized. The structures of the complexes revealed octahedral coordination geometries involving an organometallic iridium-carbon bond with two external axial ligands. Interestingly, the iridium(III) complex exhibits near-infrared phosphorescence at room temperature at wavelengths beyond 900 nm. The significant redshift of the emission, as compared to the corrole congener, is originated from the ligand-centered triplet character. The fine-tuning of the photophysical properties of the complexes was achieved by introducing electron-donating and electron-withdrawing substituents on the axial pyridine ligands. PMID:27249778

  5. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  6. X-ray Absorption Spectroscopy and Reactivity of Thiolate-Ligated FeIII-OOR Complexes

    PubMed Central

    Stasser, Jay; Namuswe, Frances; Kasper, Gary D.; Jiang, Yunbo; Krest, Courtney M.; Green, Michael T.; Penner-Hahn, James; Goldberg, David P.

    2010-01-01

    The reaction of a series of thiolate-ligated iron(II) complexes [FeII([15]aneN4)(SC6H5)]BF4 (1), [FeII([15]aneN4)(SC6H4-p-Cl)]BF4 (2), and [FeII([15]aneN4)(SC6H4-p-NO2)]BF4 (3) with alkylhydroperoxides at low temperature (−78 °C or −40 °C) leads to the metastable alkylperoxo-iron(III) species [FeIII([15]aneN4)(SC6H5)(OOtBu)]BF4 (1a), [FeIII([15]aneN4)(SC6H4-p-Cl)(OOtBu)]BF4 (2a), and [FeIII([15]aneN4)(SC6H4-p-NO2)(OOtBu)]BF4 (3a), respectively. X-ray absorption spectroscopic studies (XAS) were conducted on the FeIII-OOR complexes and their iron(II) precursors. The edge energy for the iron(II) complexes (~7118 eV) shifts to higher energy upon oxidation by ROOH, and the resulting edge energies for the FeIII-OOR species range from 7121 – 7125 eV and correlate with the nature of the thiolate donor. EXAFS analysis of the iron(II) complexes 1 – 3 in CH2Cl2 show that their solid state structures remain intact in solution. The EXAFS data on 1a – 3a confirm their proposed structures as mononuclear, 6-coordinate FeIII-OOR complexes with 4N and 1S donors completing the coordination sphere. The Fe-O bond distances obtained from EXAFS for 1a – 3a are 1.82 – 1.85 Å, significantly longer than other low-spin FeIII-OOR complexes. The Fe-O distances correlate with the nature of the thiolate donor, in agreement with the previous trends observed for ν(Fe-O) from resonance Raman (RR) spectroscopy, and supported by optimized geometries obtained from density functional theory (DFT) calculations. Reactivity and kinetic studies on 1a – 3a show an important influence of the thiolate donor. PMID:20839847

  7. First structurally characterized mixed-halogen nickel(III) NCN-pincer complex

    NASA Astrophysics Data System (ADS)

    Kozhanov, Konstantin A.; Bubnov, Michael P.; Cherkasov, Vladimir K.; Fukin, Georgy K.; Vavilina, Nina N.; Efremova, Larisa Yu.; Abakumov, Gleb A.

    2009-03-01

    A square-pyramidal mixed-halogen nickel(III) NCN-pincer complex (PipeNCN)NiClBr (where PipeNCN = 2,6-bis(piperidinomethyl)phenyl) was structurally characterized. Bromine occupies apical position; pincer ligand and chlorine atom are in the basal plane. EPR detects that complex in solution exists as a mixture of two structural isomers with bromine or chlorine atoms in the top of pyramid.

  8. Enhanced photophysics from self-assembled cyclometalated Ir(iii) complexes in water.

    PubMed

    McGoorty, Michelle M; Khnayzer, Rony S; Castellano, Felix N

    2016-06-14

    Two water-soluble anionic cyclometalated Ir(iii) complexes, Ir(ppy)2BPS [] and Ir(F-mppy)2BPS [] have been synthesized and display clear evidence of self-assembly in water. Concentration-induced aggregation enhances the excited-state properties of both complexes, blue-shifting the photoluminescence emission energies as well as increasing the corresponding excited state lifetimes and quantum yields up to a factor of 5. PMID:27240481

  9. Synthesis and spectroscopic studies of iron (III) complex with a quinolone family member (pipemidic acid)

    NASA Astrophysics Data System (ADS)

    Skrzypek, D.; Szymanska, B.; Kovala-Demertzi, Dimitra; Wiecek, Joanna; Talik, E.; Demertzis, Mavroudis A.

    2006-12-01

    The interaction of iron (III) with pipemidic acid, Hpipem, afforded the complex [Fe (pipem) (HO)2 (H2O)]2. The new complex has been characterised by elemental analyses, infra-red, EPR and XPS spectroscopies. The monoanion, pipem, exhibits O, O ligation through the carbonyl and carboxylato oxygen atoms. Six coordinate dimer distorted octahedral configuration has been proposed for [Fe (pipem) (HO)2 (H2O)]2.

  10. Luminescent and triboluminescent properties of europium(III) hexafluoroacetylacetonate and trifluoroacetate complexes with triphenylphosphine oxide

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Mirochnik, A. G.

    2014-03-01

    Crystalline and strongly luminescent complexes of europium hexafluoroacetylacetonate and trifluoroacetate with triphenylphosphine oxide of Eu(HFAA)3 · 2TPPO and [Eu(TFA)3 · 2TPPO(H2O)]2 composition are synthesized that demonstrating triboluminescent properties. It is established that the measured photoluminescence and triboluminescence spectra of these noncentrosymmetric complex compounds are identical, due to the characteristic f- f-luminescence of the europium(III) ion.

  11. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  12. A spin-crossover ionic liquid from the cationic iron(III) Schiff base complex.

    PubMed

    Okuhata, Megumi; Funasako, Yusuke; Takahashi, Kazuyuki; Mochida, Tomoyuki

    2013-09-01

    A thermochromic magnetic ionic liquid containing a cationic iron(III) Schiff-base complex has been developed, whose color and magnetic moment change with temperature because of spin crossover in the liquid state. This spin-crossover behavior closely resembles that of a solid having the same cation. PMID:23872624

  13. Future Development Of The Flerov Laboratory Accelerator Complex (Project DRIBs-III)

    NASA Astrophysics Data System (ADS)

    Gulbekian, G. G.; Dmitriev, S. N.; Itkis, M. G.; Oganessian, Yu. Ts.; Popeko, A. G.

    2010-04-01

    Future development of the FLNR accelerator complex (project DRIBs-III) includes modernization of existing cyclotrons, construction of a new experimental hall, creation of a new high current cyclotron and of next generation experimental set-ups. Realization of the project is planned for 2010-2016.

  14. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance

    SciTech Connect

    Moore, Evan G.; D'Aleo, Anthony; Xu, Jide; Raymond, Kenneth N.

    2009-05-29

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV-visible and then efficiently transfer the energy to the lanthanoid centre. The synthesis and the complexation of Ln{sup III} cations (Ln = Eu, Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu{sup III} complex ([Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}) has been evaluated in terms of its thermodynamic stability, UV-visible absorption and luminescence properties. For this complex, the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid at pH = 7.4. This Eu{sup III} complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH = 7.4) when compared with other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)]{sup -}. This overall improvement was achieved by saturating the coordination sphere of the Eu{sup III} cation, yielding an increased metal-centred efficiency by excluding solvent water molecules from the metal's inner sphere.

  15. Negative results in phase III trials of complex interventions: cause for concern or just good science?

    PubMed

    Crawford, Mike J; Barnicot, Kirsten; Patterson, Sue; Gold, Christian

    2016-07-01

    Not all interventions that show promise in exploratory trials will be supported in phase III studies. But the high failure rate in recent trials of complex mental health interventions is a concern. Proper consideration of trial processes and greater use of adaptive trial designs could ensure better use of available resources. PMID:27369475

  16. Vibrational spectra of the Ga(III) complexes with oxine and clioquinol

    NASA Astrophysics Data System (ADS)

    Wagner, Claudia C.; González-Baró, Ana C.; Baran, Enrique J.

    2011-09-01

    The FTIR and FT-Raman spectra of the gallium(III) complexes of 8-hydroxyquinoline (oxine) and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol), were recorded and briefly discussed by comparison with the spectra of the uncoordinated ligands and with some related species.

  17. A gadolinium(iii) complex that shows room-temperature phosphorescence in the crystalline state.

    PubMed

    Nakai, Hidetaka; Kitagawa, Kazuhiro; Seo, Juncheol; Matsumoto, Takahiro; Ogo, Seiji

    2016-07-19

    This paper presents a gadolinium(iii) complex that shows blue phosphorescence in the crystalline state at room temperature under air atmosphere; color of the crystals can be changed to pale-green from blue by doping of 1-naphthol. PMID:27221814

  18. Synthesis and luminescence modulation of pyrazine-based gold(III) pincer complexes.

    PubMed

    Fernandez-Cestau, Julio; Bertrand, Benoît; Blaya, Maria; Jones, Garth A; Penfold, Thomas J; Bochmann, Manfred

    2015-12-01

    The first examples of pyrazine-based gold(III) pincer complexes are reported; their intense photoemissions can be modified by protonation, N-alkylation or metal ions, without the need for altering the ligand framework. Emissions shift from red (77 K) to blue (298 K) due to thermally activated delayed fluorescence (TADF). PMID:26425736

  19. NMDA receptors in preBötzinger complex neurons can drive respiratory rhythm independent of AMPA receptors

    PubMed Central

    Morgado-Valle, Consuelo; Feldman, Jack L

    2007-01-01

    The role of AMPA receptors (AMPARs) in generation and propagation of respiratory rhythm is well documented both in vivo and in vitro, whereas the functional significance of NMDA receptors (NMDARs) in preBötzinger complex (preBötC) neurons has not been explored. Here we examined the interactions between AMPARs and NMDARs during spontaneous respiratory rhythm generation in slices from neonatal rats in vitro. We tested the hypothesis that activation of NMDARs can drive respiratory rhythm in the absence of other excitatory drives. Blockade of NMDARs with dizocilpine hydrogen maleate (MK-801, 20 μm) had a negligible effect on respiratory rhythm and pattern under standard conditions in vitro, whereas blockade of AMPARs with NBQX (0.5 μm) completely abolished respiratory activity. Removal of extracellular Mg2+ to relieve the voltage-dependent block of NMDARs maintained respiratory rhythm without a significant effect on period, even in the presence of high NBQX concentrations (≤ 100 μm). Removal of Mg2+ increased inspiratory-modulated inward current peak (II) and charge (QI) in preBötC neurons voltage-clamped at −60 mV by 245% and 309%, respectively, with respect to basal values. We conclude that the normal AMPAR-mediated postsynaptic current underlying respiratory drive can be replaced by NMDAR-mediated postsynaptic current when the voltage-dependent Mg2+ block is removed. Under this condition, respiratory-related frequency is unaffected by changes in II, suggesting that the two can be independently regulated. PMID:17446224

  20. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology. PMID:24498631

  1. The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana.

    PubMed

    Córdoba, Juan Pablo; Marchetti, Fernanda; Soto, Débora; Martin, María Victoria; Pagnussat, Gabriela Carolina; Zabaleta, Eduardo

    2016-03-01

    The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed. PMID:26721503

  2. Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands

    PubMed Central

    Rios, Andrew; Frias, Elma; Eichler, Jack F.

    2014-01-01

    It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-Vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions. PMID:25379358

  3. Mononuclear ruthenium(III) complexes containing chelating thiosemicarbazones: Synthesis, characterization and catalytic property

    NASA Astrophysics Data System (ADS)

    Raja, N.; Ramesh, R.

    2010-02-01

    Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.

  4. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I.

    PubMed

    Kühn, Kristina; Obata, Toshihiro; Feher, Kristen; Bock, Ralph; Fernie, Alisdair R; Meyer, Etienne H

    2015-08-01

    Complex I (NADH:ubiquinone oxidoreductase) is central to cellular NAD(+) recycling and accounts for approximately 40% of mitochondrial ATP production. To understand how complex I function impacts respiration and plant development, we isolated Arabidopsis (Arabidopsis thaliana) lines that lack complex I activity due to the absence of the catalytic subunit NDUFV1 (for NADH:ubiquinone oxidoreductase flavoprotein1) and compared these plants with ndufs4 (for NADH:ubiquinone oxidoreductase Fe-S protein4) mutants possessing trace amounts of complex I. Unlike ndufs4 plants, ndufv1 lines were largely unable to establish seedlings in the absence of externally supplied sucrose. Measurements of mitochondrial respiration and ATP synthesis revealed that compared with ndufv1, the complex I amounts retained by ndufs4 did not increase mitochondrial respiration and oxidative phosphorylation capacities. No major differences were seen in the mitochondrial proteomes, cellular metabolomes, or transcriptomes between ndufv1 and ndufs4. The analysis of fluxes through the respiratory pathway revealed that in ndufv1, fluxes through glycolysis and the tricarboxylic acid cycle were dramatically increased compared with ndufs4, which showed near wild-type-like fluxes. This indicates that the strong growth defects seen for plants lacking complex I originate from a switch in the metabolic mode of mitochondria and an up-regulation of respiratory fluxes. Partial reversion of these phenotypes when traces of active complex I are present suggests that complex I is essential for plant development and likely acts as a negative regulator of respiratory fluxes. PMID:26134164

  5. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I1[OPEN

    PubMed Central

    Kühn, Kristina; Obata, Toshihiro; Feher, Kristen; Bock, Ralph; Fernie, Alisdair R.; Meyer, Etienne H.

    2015-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is central to cellular NAD+ recycling and accounts for approximately 40% of mitochondrial ATP production. To understand how complex I function impacts respiration and plant development, we isolated Arabidopsis (Arabidopsis thaliana) lines that lack complex I activity due to the absence of the catalytic subunit NDUFV1 (for NADH:ubiquinone oxidoreductase flavoprotein1) and compared these plants with ndufs4 (for NADH:ubiquinone oxidoreductase Fe-S protein4) mutants possessing trace amounts of complex I. Unlike ndufs4 plants, ndufv1 lines were largely unable to establish seedlings in the absence of externally supplied sucrose. Measurements of mitochondrial respiration and ATP synthesis revealed that compared with ndufv1, the complex I amounts retained by ndufs4 did not increase mitochondrial respiration and oxidative phosphorylation capacities. No major differences were seen in the mitochondrial proteomes, cellular metabolomes, or transcriptomes between ndufv1 and ndufs4. The analysis of fluxes through the respiratory pathway revealed that in ndufv1, fluxes through glycolysis and the tricarboxylic acid cycle were dramatically increased compared with ndufs4, which showed near wild-type-like fluxes. This indicates that the strong growth defects seen for plants lacking complex I originate from a switch in the metabolic mode of mitochondria and an up-regulation of respiratory fluxes. Partial reversion of these phenotypes when traces of active complex I are present suggests that complex I is essential for plant development and likely acts as a negative regulator of respiratory fluxes. PMID:26134164

  6. Redox-induced activation of the proton pump in the respiratory complex I

    PubMed Central

    Sharma, Vivek; Belevich, Galina; Gamiz-Hernandez, Ana P.; Róg, Tomasz; Vattulainen, Ilpo; Verkhovskaya, Marina L.; Wikström, Mårten; Hummer, Gerhard; Kaila, Ville R. I.

    2015-01-01

    Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions. PMID:26330610

  7. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances.

    PubMed

    Djebbar, Reda; Rzigui, Touhami; Pétriacq, Pierre; Mauve, Caroline; Priault, Pierrick; Fresneau, Chantal; De Paepe, Marianne; Florez-Sarasa, Igor; Benhassaine-Kesri, Ghouziel; Streb, Peter; Gakière, Bertrand; Cornic, Gabriel; De Paepe, Rosine

    2012-03-01

    To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances. PMID:22002624

  8. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III) Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    PubMed Central

    Ajali, Uzoechi; Ukoha, Pius O.

    2014-01-01

    Iron (III) complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job's method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex. PMID:25505991

  9. The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments

    NASA Astrophysics Data System (ADS)

    Beckler, Jordon S.; Jones, Morris E.; Taillefert, Martial

    2015-03-01

    The redox chemistry and speciation of Fe in both solid and dissolved phases were characterized in the organic- and Fe-rich sediments of the Satilla River estuary in South-East Georgia (USA) on a series of four cruises between July 2007 and January 2008. Results indicate that dissolved Fe is present in relatively high concentration in the overlying waters at the freshwater end of the estuary and flocculates along the river as the salinity increases downstream. Soluble organic-Fe(III) complexes comprise the majority of dissolved Fe (<0.2 μm) in the suboxic pore waters of the upriver stations that are characterized by high concentrations of poorly crystalline Fe(III) (oxy)hydroxides. In contrast, SO42--reducing conditions downstream prevent the accumulation of organic-Fe(III) in the pore waters by titrating Fe from the sediment. Separation of dissolved Fe by size exclusion chromatography revealed that Fe(II) is complexed by organic ligands in the pore waters while the organic-Fe(III) complexes are either small or highly reactive with the column matrix. Finally, dissimilatory Fe(III) reduction, stimulated by inoculating anaerobic sediments with a Fe(III)-reducing bacterium (FeRB), Shewanella putrefaciens strain 200, increased production of soluble organic-Fe(III) complexes, and addition of reactive Fe(III) hydroxides accelerated the non-reductive dissolution of Fe(III) (oxy)hydroxides irrespective of the presence of exogenous FeRB. These findings suggest soluble organic-Fe(III) complexes in suboxic pore waters may be produced both as intermediates during the dissimilatory reduction of Fe(III) (oxy)hydroxides by Fe(III)-reducing microorganisms and during the oxidation of organic-Fe(II) complexes by Fe(III) (oxy)hydroxides. These soluble organic-Fe(III) complexes are stable in pore waters and may flux from the sediments to the continental shelf.

  10. Investigation of Dipodal oxy-Schiff base and its salen and salophen Fe(III)/Cr(III)/Mn(III) Schiff bases (N2O2) caped complexes and their magnetic and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Çelikbilek, Şeyma; Koç, Ziya Erdem

    2014-05-01

    Six new dinuclear Fe(III)/Cr(III)/Mn(III) complexes have been involved tetradentate (N2O2) Schiff bases (salenH2) and (salophenH2) with 2,4-bis(4-hydroxyphenylimino-4‧-formylphenoxy)-6-methoxy-1,3,5-triazine have been synthesized. The complexes were characterized as high-spin (S = 5/2) distorted trigonal bipyramidal salen/salophenFe(III) bridged, distorted trigonal bipyramidal (S = 3/2) salen/salophenCr(III) and high-spin distorted trigonal bipyramidal (S = 2) salen/salophenMn(III) by OH- groups. The structures of ligand and complexes were identified by using elemental analysis, thermal analysis, magnetic susceptibility, LC-MS, ICP-AES, 1H NMR and FT-IR spectral data.

  11. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  12. Spectrophotometric determination of trace amounts of iron(III) with norfloxacin as complexing reagent.

    PubMed

    Issopoulos, P B

    1989-05-01

    The complexation of iron(III) with norfloxacin in acidic solution at 25 degrees C, at an ionic strength of about 0.3 M and a pH of 3.0 has been studied. The water-soluble complex formed, which exhibits an absorption maximum at 377 nm, was used for the spectrophotometric determination of trace amounts of iron(III). The molar absorptivity was 9.05 x 10(3) I mol-1 cm-1 and the Sandell sensitivity 6.2 ng cm-2 of iron(III) per 0.001 A. The formation constant (Kf) was determined spectrophotometrically and was found to be 4.0 x 10(8) at 25 degrees C. The calibration graph was rectilinear over the range 0.25-12.0 p.p.m. of iron(III) and the regression line equation was A = 0.163c - 0.00042 with a correlation coefficient of 0.9998 (n = 9). Common cations, except cerium (IV), did not interfere with the determination. The results obtained for the determination of iron(III) using the described procedure and the thiocyanate method were compared statistically by means of the Student t-test and no significant difference was found. PMID:2757232

  13. Heterometallic trinuclear {CoLn(III)} (Ln = Gd, Tb, Ho and Er) complexes in a bent geometry. Field-induced single-ion magnetic behavior of the Er(III) and Tb(III) analogues.

    PubMed

    Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli

    2016-05-31

    Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud. PMID:27180723

  14. Thermodynamic Features of the Complexation of Neodymium(III) and Americium(III) by Lactate in Trifluoromethanesulfonate Media.

    SciTech Connect

    Peter R. Zalupski; Leigh R. Martin; Kenneth L. Nash

    2010-10-01

    The protonation of lactate has been studied in a variety of electrolyte solutions using microcalorimetry to reveal a distinct medium influence imposed on the thermochemistry of the investigated equilibrium. The thermochemistry of lactate protonation, when studied directly in 1.0 M sodium lactate, agreed well with the studies performed in trifluoromethanesulfonate (triflate). This thermodynamic agreement suggests that the physical chemistry of lactate in the solutions applicable to the TALSPEAK process – a solvent extraction method for separating trivalent actinides from trivalent lanthanides within the scope of used nuclear fuel processing efforts – may be simulated in triflate solutions. Potentiometry, spectrophotometry and microcalorimetry have been subsequently used to study the thermodynamic features of neodymium and americium complexation by lactate using triflate as a strong background electrolyte. Three successive mononuclear lactate complexes were identified for Nd(III) and Am(III). The stability constants for neodymium, log ß1 = 2.60 ± 0.01, log ß2 = 4.66 ± 0.02 and log ß3 = 5.6 ± 0.1, and for americium, log ß1 = 2.60 ± 0.06, log ß2 = 4.7 ± 0.1 and log ß3 = 6.2 ± 0.2, were found to closely agree with the thermodynamic studies reported in sodium perchlorate solutions. Consequently, the thermodynamic medium effect, imposed on the TALSPEAK-related solution equilibria by the presence of strong background electrolytes such as NaClO4 and NaNO3, do not significantly impact the speciation in solution.

  15. The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy

    PubMed Central

    Milacic, Vesna; Dou, Q. Ping

    2009-01-01

    Although cisplatin plays a vital role in the treatment of several types of human cancer, its wide use is limited by the development of drug resistance and associated toxic side effects. Gold and gold complexes have been used to treat a wide range of ailments for many centuries. In recent years, the use of gold(III) complexes as an alternative to cisplatin treatment was proposed due to the similarities of gold and platinum. Gold(III) is isoelectronic with platinum(II) and gold(III) complexes have the same square-planar geometries as platinum(II) complexes, such as cisplatin. Although it was originally thought that gold(III) complexes might have the same molecular target as cisplatin, several lines of data indicated that proteins, rather than DNA, are targeted by gold complexes. We have recently evaluated cytotoxic and anti-cancer effects of several gold(III) dithiocarbamates against human breast cancer cells in vitro and in vivo. We have identified the tumor proteasome as an important target for gold(III) complexes and have shown that proteasome inhibition by gold(III) complexes is associated with apoptosis induction in breast cancer cells in vitro and in vivo. Furthermore, treatment of human breast tumor-bearing nude mice with a gold(III) dithiocarbamate complex was associated with tumor growth inhibition, supporting the significance of its potential development for breast cancer treatment. PMID:20047011

  16. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes

    NASA Astrophysics Data System (ADS)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2016-09-01

    Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

  17. Anion Effects on Lanthanide(III) Tetrazole-1-acetate Dinuclear Complexes Showing Slow Magnetic Relaxation and Photofluorescent Emission.

    PubMed

    Lu, Ying-Bing; Jiang, Xiao-Ming; Zhu, Shui-Dong; Du, Zi-Yi; Liu, Cai-Ming; Xie, Yong-Rong; Liu, Liang-Xian

    2016-04-18

    Three types of lanthanide complexes based on the tetrazole-1-acetic acid ligand and the 2,2'-bipyridine coligand were prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analyses; the formulas of these complexes are [Ln2(1-tza)4(NO3)2(2,2'-bipy)2] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Dy2(1-tza)4Cl2(2,2'-bipy)2] (6), and [Yb2(1-tza)4(NO3)2(2,2'-bipy)2] (7) (1-tza = tetrazole-1-acetate and 2,2'-bipy = 2,2'-bipyridine). They are dinuclear complexes possessing similar structures but different lanthanide(III) ion coordination geometries because of the distinction of peripheral anions (such as NO3(-) and Cl(-)) and the effect of lanthanide contraction. The variable-temperature magnetic susceptibilities of 1-6 were measured. Both Dy(III) complexes (5 and 6) display field-induced single-molecule magnet behaviors. Ab initio calculations revealed that the Dy(III) complex 6 possesses a more anisotropic Dy(III) ion in comparison to that in 5. The room-temperature photoluminescence spectra of Sm(III) (1), Eu(III) (2), Tb(III) (4), and Dy(III) (5 and 6) complexes exhibit strong characteristic emissions in the visible region, whereas the Yb(III) (7) complex shows near-infrared (NIR) luminescence. PMID:27023680

  18. Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity.

    PubMed

    Camargo, Tiago P; Maia, Fernanda F; Chaves, Cláudia; de Souza, Bernardo; Bortoluzzi, Adailton J; Castilho, Nathalia; Bortolotto, Tiago; Terenzi, Hernán; Castellano, Eduardo E; Haase, Wolfgang; Tomkowicz, Zbigniew; Peralta, Rosely A; Neves, Ademir

    2015-05-01

    Herein, we report the synthesis and characterization of the new di-iron(III) complex [(bbpmp)(H2O)(Cl)Fe(III)(μ-Ophenoxo)Fe(III)(H2O)Cl)]Cl (1), with the symmetrical ligand 2,6-bis{[(2-hydroxybenzyl)(pyridin-2-yl)methylamino]methyl}-4-methylphenol (H3bbpmp). Complexes 2 with the unsymmetrical ligand H2bpbpmp - {2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl) aminomethyl}-4-methylphenol and 3 with the ligand L(1)=4,11-dimethyl-1,8-bis{2-[N-(di-2-pyridylmethyl)amino]ethyl}cyclam were included for comparison purposes. Complex 1 was characterized through elemental analysis, X-ray crystallography, magnetochemistry, electronic spectroscopy, electrochemistry, mass spectrometry and potentiometric titration. The magnetic data show a very weak antiferromagnetic coupling between the two iron centers of the dinuclear complex 1 (J=-0.29cm(-1)). Due to the presence of labile coordination sites in both iron centers the hydrolysis of both the diester model substrate 2,4-BDNPP and DNA was studied in detail. Complex 1 was also able to catalyze the oxidation of the substrate 3,5-di-tert-butylcatechol (3,5-DTBC) to give the corresponding quinone, and thus it can be considered as a catalytically promiscuous system. PMID:25792035

  19. Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I

    PubMed Central

    Kaila, Ville R. I.; Wikström, Mårten; Hummer, Gerhard

    2014-01-01

    Complex I serves as the primary electron entry point into the mitochondrial and bacterial respiratory chains. It catalyzes the reduction of quinones by electron transfer from NADH, and couples this exergonic reaction to the translocation of protons against an electrochemical proton gradient. The membrane domain of the enzyme extends ∼180 Å from the site of quinone reduction to the most distant proton pathway. To elucidate possible mechanisms of the long-range proton-coupled electron transfer process, we perform large-scale atomistic molecular dynamics simulations of the membrane domain of complex I from Escherichia coli. We observe spontaneous hydration of a putative proton entry channel at the NuoN/K interface, which is sensitive to the protonation state of buried glutamic acid residues. In hybrid quantum mechanics/classical mechanics simulations, we find that the observed water wires support rapid proton transfer from the protein surface to the center of the membrane domain. To explore the functional relevance of the pseudosymmetric inverted-repeat structures of the antiporter-like subunits NuoL/M/N, we constructed a symmetry-related structure of a possible alternate-access state. In molecular dynamics simulations, we find the resulting structural changes to be metastable and reversible at the protein backbone level. However, the increased hydration induced by the conformational change persists, with water molecules establishing enhanced lateral connectivity and pathways for proton transfer between conserved ionizable residues along the center of the membrane domain. Overall, the observed water-gated transitions establish conduits for the unidirectional proton translocation processes, and provide a possible coupling mechanism for the energy transduction in complex I. PMID:24778264

  20. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  1. Synthesis of Cr(III)-Morin Complex: Characterization and Antioxidant Study

    PubMed Central

    Panhwar, Qadeer K.; Memon, Shahabuddin

    2014-01-01

    The complex formation between Cr(III) and morin was carried out in methanol and confirmed by analytical characterization using UV-Vis, IR, 1H NMR, and TG-DTA. UV-Vis shows significant bathochromic shift in benzoyl upon coordination as well as IR well illustrates the peak shift of C=O group and formation of a O–Cr(III) bond. Likewise, 1H NMR studies clarify that Cr(III) metal ion replaces the 5OH proton hence; 5-hydroxy-4-keto site is employed by morin in chelation to form six-membered stable ring system out of three available chelating sites. In addition, TG-DTA denotes the presence of coordinated and crystalline water molecules. The melting point of the complex was found to be 389°C by DSC. In addition, Cr(III)-morin complex was found to be a more potent antioxidant than morin as evaluated by DPPH• and FRAP methods. PMID:24688439

  2. Promising anticancer mono- and dinuclear ruthenium(III) dithiocarbamato complexes: systematic solution studies.

    PubMed

    Nagy, Eszter Márta; Nardon, Chiara; Giovagnini, Lorena; Marchiò, Luciano; Trevisan, Andrea; Fregona, Dolores

    2011-11-28

    During the last decade, our research group has prepared a number of metal dithiocarbamato derivatives of Pt, Pd and Au that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. Furthermore, we have already published the synthesis, characterization and in vitro cytotoxicity studies of novel ruthenium(III) dithiocarbamato complexes such as [RuL(3)] monomers (11) and α-[Ru(2)L(5)]Cl dimers (12) with five different dithiocarbamate ligands. As both the monomer and the dinuclear complexes have shown significant antitumor activity in different human tumor cell lines, we decided to widen the characterization studies and to analyse thoroughly their behavior in physiological-like medium by UV-visible and CD spectroscopy. In the present paper we report on the crystal structure of [Ru(DMDT)(3)], [Ru(PDT)(3)] and [Ru(ESDT)(3)] complexes and we determine the spin state of the paramagnetic Ru(III) by means of Evans' method. Then, we discuss in detail the UV-visible spectral data of the complexes in different medium. All the studied complexes are stable in dimethyl sulfoxide, and show low solubility in phosphate buffered saline solution, particularly the monomer species, even at low concentration, while increased solubility for both types of complexes have been found in the presence of bovine serum albumin (BSA). Moreover, no changes on the coordination sphere of the metal, as well as no direct interaction between the BSA protein and the complex have been identified by UV-visible spectroscopy. However, some conformational changes on the BSA structure, induced by the ruthenium(III) complexes have been confirmed by CD spectroscopy, indicating a probable secondary electrostatic interaction between the metal complex and the peptide. In addition, no significant interaction has been demonstrated with the components of Dulbecco's Modified Eagle's Medium, used for the in vitro assays

  3. Microwave-Assisted Synthesis of Heteroleptic Ir(III)(+) Polypyridyl Complexes.

    PubMed

    Monos, Timothy M; Sun, Alexandra C; McAtee, Rory C; Devery, James J; Stephenson, Corey R J

    2016-08-19

    We report a rapid, one-pot, operationally simple, and scalable preparation of valuable cationic heteroleptic iridium(III) polypyridyl photosensitizers. This method takes advantage of two consecutive microwave irradiation steps in the same reactor vial, avoiding the need for additional reaction purifications. A number of known heteroleptic iridium(III) complexes are prepared in up to 96% yield. Notably, this method is demonstrated to provide the synthetically versatile photosensitizer [Ir(ppy)2(dtbbpy)]PF6 in >1 g quantities in less than 5 h of bench time. We envision this method will help accelerate future developments in visible-light-dependent chemistry. PMID:27301646

  4. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    SciTech Connect

    Tian, Guoxin; Martin, Leigh R.; Rao, Linfeng

    2010-10-01

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML{sup 2+}, ML{sup 2+} and ML{sub 3}(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated {alpha}-hydroxyl group of lactate participates in the complexation.

  5. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    SciTech Connect

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  6. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex.

    PubMed

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Liu, Shejiang

    2015-03-21

    The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution. PMID:25528232

  7. Antitumor properties of five-coordinate gold(III) complexes bearing substituted polypyridyl ligands.

    PubMed

    Sanghvi, Chinar D; Olsen, Pauline M; Elix, Catherine; Peng, Shifang Bruce; Wang, Dongsheng; Chen, Zhuo Georgia; Shin, Dong M; Hardcastle, Kenneth I; MacBeth, Cora E; Eichler, Jack F

    2013-11-01

    In an on-going effort to discover metallotherapeutic alternatives to the chemotherapy drug cisplatin, neutral distorted square pyramidal gold(III) coordination complexes possessing 2,9-disubstituted-1,10-phenanthroline ligands {[((R)phen)AuCl3]; R = n-butyl, sec-butyl} have been previously synthesized and characterized. A structurally analogous gold(III) complex bearing a 6,6'-di-methylbipyridine ligand ([((methyl)bipy)AuCl3]) has been synthesized and fully characterized to probe the effect of differing aromatic character of the ligand on solution stability and tumor cell cytotoxicity. The two compounds [((sec-butyl)phen)AuCl3] and [((methyl)bipy)AuCl3]) were subsequently assessed for their stability against the biological reductant glutathione, and it was found that the [((sec-butyl)phen)AuCl3] complex exhibits slightly enhanced stability compared to the [((methyl)bipy)AuCl3] complex and significantly higher stability than previously reported square planar gold(III) complex ions. Furthermore, these complexes were tested for cytotoxic effects against existing lung and head and neck cancer cell lines in vitro. The [((sec-butyl)phen)AuCl3] complex was found to be more cytotoxic than cisplatin against five different tumor cell lines, whereas [((methyl)bipy)AuCl3] had more limited in vitro antitumor activity. Given that [((sec-butyl)phen)AuCl3] had significantly higher antitumor activity, it was tested against an in vivo tumor model. It was found that this complex did not significantly reduce the growth of xenograft tumors in mice and initial model binding studies with bovine serum albumin indicate that interactions with serum albumin proteins may be the cause for the limited in vivo activity of this potential metallotherapeutic. PMID:23948576

  8. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  9. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  10. Optogenetic perturbation of preBötzinger Complex inhibitory neurons modulates respiratory pattern

    PubMed Central

    Sherman, David; Worrell, Jason W.; Cui, Yan; Feldman, Jack L.

    2015-01-01

    Inhibitory neurons make up a significant fraction of the neurons within the preBötzinger Complex (preBötC), a site critical for mammalian eupneic breathing. The role of glycinergic preBötC neurons in respiratory rhythmogenesis in mice was investigated by optogenetically-targeted excitation or inhibition. Channelrhodopsin-2 (ChR2) or Archaerhodopsin (Arch) was expressed in glycinergic preBötC neurons of glycine transporter 2 (GlyT2)-Cre mice. In ChR2-transfected mice, brief inspiratory-phase bilateral photostimulation targeting the preBötC prematurely terminated inspiration, whereas expiratory-phase photostimulation delayed the onset of the next inspiration. Prolonged photostimulation produced apneas lasting as long as the light pulse. Inspiratory-phase photoinhibition in Arch-transfected mice during inspiration increased tidal volume without altering inspiratory duration, whereas expiratory-phase photoinhibition shortened the latency until the next inspiration. During persistent apneas, prolonged photoinhibition restored rhythmic breathing. We conclude that glycinergic preBötC neurons modulate inspiratory pattern and are important for reflex apneas but that the rhythm can persist after significant dampening of their activity. PMID:25643296

  11. AtFtsH4 perturbs the mitochondrial respiratory chain complexes and auxin homeostasis in Arabidopsis.

    PubMed

    Zhang, Shengchun; ZHang, Daowei; Yang, Chengwei

    2014-07-25

    Mitochondrial AtFtsH4 protease is one of four inner membrane-bound FtsH proteases in Arabidopsis. We found that the loss of AtFtsH4 regulates Arabidopsis development and architecture by mediating the peroxidase-dependent interplay between hydrogen peroxide (H 2O 2) and auxin homeostasis. These morphological changes were correlated with elevated levels of both hydrogen peroxide and peroxidases, which suggested that ftsh4-4 plant was related to the oxidative stress, and that the architecture was caused by the auxin homeostasis perturbation. This view was supported by the expression levels of several auxin signaling genes and auxin binding and transport genes were decreased significantly in ftsh4-4 plants. Taken together, our data published in the May issue of Molecular Plant suggests a link between the lack of AtFtsH4 protease, oxidative stress,s and auxin homeostasis to regulate plant growth and development. However, the detail molecular mechanisms of AtFtSH4 regulating oxidation stress and auxin homeostasis is unclear. Here, we present evidence that the high level accumulated of H 2O 2 in ftsh4-4 may correlates with the decreased mitochondrial respiration genes. We also showed that the decreased auxin level and auxin transport may caused by the inhibition of mitochondrial respiratory chain complexes. PMID:25061946

  12. Chlorogenic acid ameliorates intestinal mitochondrial injury by increasing antioxidant effects and activity of respiratory complexes.

    PubMed

    Zhou, Yan; Zhou, Lili; Ruan, Zheng; Mi, Shumei; Jiang, Min; Li, Xiaolan; Wu, Xin; Deng, Zeyuan; Yin, Yulong

    2016-05-01

    Dietary polyphenols are thought to be beneficial for human health by acting as antioxidants. Chlorogenic acid (CGA) is abundant in plant-based foods as an ester of caffeic acid and quinic acid. In this study, we investigated the effects of CGA on mitochondrial protection. Our results demonstrated that pretreatment with CGA ameliorated the intestinal mitochondrial injury induced by H2O2; membrane potential was increased, mitochondrial swelling, levels of reactive oxygen species, contents of 8-hydroxy-2-deoxyguanosine, and cytochrome c released were decreased. The beneficial effects of CGA were accompanied by an increase in antioxidant and respiratory-chain complex I, IV, and V activities. In trinitrobenzene-sulfonic acid-induced colitic rats indicated that CGA supplementation improved mitochondria ultrastructure and decreased mitochondrial injury. Our results suggest a promising role for CGA as a mitochondria-targeted antioxidant in combating intestinal oxidative injury. Daily intake of diets containing CGA, such as coffee and honeysuckle, may be useful for prevention of intestinal diseases. PMID:26824685

  13. Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies

    NASA Astrophysics Data System (ADS)

    Priya, N. Padma; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C.

    2009-04-01

    An octahedral ruthenium(III) Schiff base complexes of the type [RuX(EPh 3)(L)] (where, X = Cl/Br; E = As/P; L = dianion of the Schiff bases derived from acetoacetanilide with o-phenylenediamine and salicylaldehyde/ o-hydroxyacetophenone/ o-vanillin/2-hydroxy-1-naphthaldehyde) have been synthesized from the reactions of equimolar reactions of [RuX 3(EPh 3) 3] and Schiff bases in benzene. The new Ru(III) Schiff base complexes have been characterized by elemental analyses, FT-IR, electronic, 1H NMR and 13C NMR spectra, EPR spectral studies, powder X-ray diffraction (XRD) and electrochemical studies. The new complexes were found to be effective catalysts for aryl-aryl coupling and the oxidation of alcohols into their corresponding carbonyl compounds, respectively, using molecular oxygen atmosphere at ambient temperature. Further, the new Ru(III) Schiff base complexes were screened for their antibacterial activity against Pseudomonas aeruginosa, Vibrio cholera, Salomonella typhi and Staphylococcus aureaus.

  14. Aerobic Oxidation of an Osmium(III) N-Hydroxyguanidine Complex To Give Nitric Oxide.

    PubMed

    Xiang, Jing; Wang, Qian; Yiu, Shek-Man; Man, Wai-Lun; Kwong, Hoi-Ki; Lau, Tai-Chu

    2016-05-16

    The aerobic oxidation of the N-hydroxyguanidinum moiety of N-hydroxyarginine to NO is a key step in the biosynthesis of NO by the enzyme nitric oxide synthase (NOS). So far, there is no chemical system that can efficiently carry out similar aerobic oxidation to give NO. We report here the synthesis and X-ray crystal structure of an osmium(III) N-hydroxyguanidine complex, mer-[Os(III){NH═C(NH2)(NHOH)}(L)(CN)3](-) (OsGOH, HL = 2-(2-hydroxyphenyl)benzoxazole), which to the best of our knowledge is the first example of a transition metal N-hydroxyguanidine complex. More significantly, this complex readily undergoes aerobic oxidation at ambient conditions to generate NO. The oxidation is pH-dependent; at pH 6.8, fac-[Os(NO)(L)(CN)3](-) is formed in which the NO produced is bound to the osmium center. On the other hand, at pH 12, aerobic oxidation of OsGOH results in the formation of the ureato complex [Os(III)(NHCONH2)(L)(CN)3](2-) and free NO. Mechanisms for this aerobic oxidation at different pH values are proposed. PMID:27135258

  15. Axial Imidazole Binding Strengths in Porphyrinoid Cobalt(III) Complexes as Studied by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mishra, Ekta; Worlinsky, Jill L.; Gilbert, Thomas M.; Brückner, Christian; Ryzhov, Victor

    2012-06-01

    The Co(II) complexes of twelve meso-tetraaryl-porphyrins, -chlorins, and chlorin analogues containing non-pyrrolic heterocycles were synthesized and converted in situ to the corresponding Co(III) complexes coordinated to one or two imidazoles. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) in conjunction with the energy-variable collision-induced dissociation (CID) technique was used to compare the relative gas-phase binding strength of the axially coordinated imidazoles to the octahedral and square planar Co(III) porphyrinoid complex ions. The observed binding energies of these ligands were rationalized in terms of the effects of porphyrinoid core structure and meso-substitution on the electron density on the central Co(III) centers. Some of these trends were supported by DFT-based computational studies. The study highlights to which extend porphyrins vary from chlorins and chlorin analogues in their coordination abilities and to which extraordinary degree meso-thienyl-substituents influence the electronic structure of porphyrins. The study also defines further the scope and limits CID experiments can be used to interrogate the electronic structures of metalloporphyrin complexes.

  16. Synthesis and evaluation of gold(III) complexes as efficient DNA binders and cytotoxic agents

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Bhatt, Bhupesh S.; Dosi, Promise A.

    2013-06-01

    In recent years, great interest has been focused on gold(III) complexes as cytotoxic and antitumor drugs. Recent studies demonstrated that simple bidentate or polydentate ligands containing nitrogen donor atoms may offer sufficient redox stabilization to produce viable Au(III) anticancer drug targets under physiologic conditions. So, we have synthesized square planer Au(III) complexes of type [Au(An)Clx]·Cly and characterized them using UV-Vis absorption, C, H, N elemental analysis, FT-IR, LC-MS, 1H and 13C NMR spectroscopy. These compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV-Vis absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis-Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the non-catalyzed DNA cleavage.

  17. Synthesis, reaction and structure of a series of chromium(III) complexes containing oxalate ligand

    NASA Astrophysics Data System (ADS)

    Chen, Xu-Fang; Liu, Li; Ma, Jian-Gong; Yi, Long; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping; Jiang, Zong-Hui

    2005-08-01

    A series of chromium(III) complexes [Cr(bipy)(HC2O4)2]Cl·3H2O (1), [Cr(phen)(HC2O4)2]Cl·3H2O (2), [Cr(phen)2(C2O4)]ClO4 (3), [Cr2(bipy)4(C2O4)](SO4)·(bipy)0.5·H2O (4) and [Mn(phen)2(H2O)2]2[Cr(phen)(C2O4)2]3ClO4·14H2O (5) were synthesized (bipy=4,4‧-bipyridine, phen=1,10-phenanthroline), while the crystal structures of 1 and 3-5 have been determined by X-ray analysis. 1 and 3 are mononuclear complexes, 4 contains binuclear chromium(III) ions and 5 is a 3D supromolecule formed by complicated hydrogen bonding. 1-3 are potential molecular bricks of chromium(III) building blocks for synthesis heterometallic complexes. When we use these molecular bricks as ligands to react with other metal salts, unexpected complexes 4 and 5 are isolated in water solution. The synthesis conditions and reaction results are also discussed.

  18. Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co(III)-Pyridylmethylamine Complex.

    PubMed

    Ishizuka, Tomoya; Watanabe, Atsuko; Kotani, Hiroaki; Hong, Dachao; Satonaka, Kenta; Wada, Tohru; Shiota, Yoshihito; Yoshizawa, Kazunari; Ohara, Kazuaki; Yamaguchi, Kentaro; Kato, Satoshi; Fukuzumi, Shunichi; Kojima, Takahiko

    2016-02-01

    A bis-hydroxo-bridged dinuclear Co(III)-pyridylmethylamine complex (1) was synthesized and the crystal structure was determined by X-ray crystallography. Complex 1 acts as a homogeneous catalyst for visible-light-driven water oxidation by persulfate (S2O8(2-)) as an oxidant with [Ru(II)(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer affording a high quantum yield (44%) with a large turnover number (TON = 742) for O2 formation without forming catalytically active Co-oxide (CoOx) nanoparticles. In the water-oxidation process, complex 1 undergoes proton-coupled electron-transfer (PCET) oxidation as a rate-determining step to form a putative dinuclear bis-μ-oxyl Co(III) complex (2), which has been suggested by DFT calculations. Catalytic water oxidation by 1 using [Ru(III)(bpy)3](3+) as an oxidant in a H2(16)O and H2(18)O mixture was examined to reveal an intramolecular O-O bond formation in the two-electron-oxidized bis-μ-oxyl intermediate, prior to the O2 evolution. PMID:26810593

  19. Neodymium(III) Complexes of Dialkylphosphoric and Dialkylphosphonic Acids Relevant to Liquid-Liquid Extraction Systems.

    PubMed

    Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E

    2016-02-15

    The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions. PMID:26815878

  20. Mixed Boron(III) and Phosphorous(V) Complexes of meso-Triaryl 25-Oxasmaragdyrins.

    PubMed

    Ganapathi, Emandi; Kalita, Hemanta; Theophall, Gregory G; Lakshmi, K V; Ravikanth, Mangalampalli

    2016-07-01

    Two unprecedented mixed B(III) /P(V) complexes of meso-triaryl 25-oxasmaragdyrins were synthesized in appreciable yields under mild reaction conditions. These unusual 25-oxasmaragdyrin complexes containing one or two seven-membered heterocyclic rings comprised of five different atoms (B, C, N, O, and P) were prepared by reacting B(OH)(Ph)-smaragdyrin and B(OH)2 -smaragdyrin complexes, respectively, with POCl3 in toluene at reflux temperature. The products were characterized by HRMS and 1D- and 2D-NMR spectroscopy. X-ray crystallography of one of the mixed B(III) /P(V) smaragdyrin complexes indicated that the macrocycle is significantly distorted and contains a stable seven-membered heterocyclic ring within the macrocycle. The bands in the absorption and emission spectra were bathochromically shifted with reduced quantum yields and singlet-state lifetimes relative to the free base, meso-triaryl 25-oxasmaragdyrin. The mixed B(III) /P(V) complexes were difficult to oxidize but easier to reduce than the free base. The DFT-optimized structure of the 25-oxasmaragdyrin complex with two seven-membered heterocycles indicated that it was a bicyclic spiro compound with two half-chair-like conformers. This was in contrast to the chair-like conformation of the complex with a single seven-membered heterocyclic ring. Moreover, incorporation of a second phosphate group in the former case stabilized the bonding geometry and resulted in higher stability, which was reflected in the bathochromic shift of the absorption spectra, more-positive oxidation potential, and less-negative reduction potential. PMID:27245271

  1. Complexation behavior of Eu(III), Tb(III), Tm(III), and Am(III) with three 1,10-phenanthroline-type ligands: insights from density functional theory.

    PubMed

    Yang, Yanqiu; Fang, Yu; Liu, Jun; Hu, Shiyuan; Hu, Sheng; Yang, Liang; Wang, Dawei; Zhang, Huabei; Luo, Shunzhong

    2015-07-01

    Extraction complexes of Eu(III), Tb(III), Tm(III), and Am(III) with three 1,10-phenanthroline-type ligands have been studied, primarily using density functional theory (DFT). The same accuracies and optimized structural geometries were obtained whether optimization of the [ML2(NO3)](2+) complexes was performed at the B3LYP/6-31G(d)/RECP or the MP2/6-31G(d)/RECP level of theory. Calculations carried out at the B3LYP/6-311G(d, p)/RECP level of theory indicated that solvation does not favor the formation of these complexes. Moreover, the ΔGg and ΔGsolv values for the reactions leading to the formation of [LnL2(NO3)](2+) complexes were seen to decrease with increasing atomic number of the lanthanide (from Eu to Tb to Tm). In addition, when a strongly hydrophobic benzo[e][1,2,4]triazine group was created in each ligand, ligand selectivity for actinides/lanthanides in acidic media improved. Even greater ligand selectivity for actinides/lanthanides in acidic media was obtained when a 5,6-diphenyl-1,2,4-triazine group was created in each ligand instead of a benzo[e][1,2,4]triazine group. Vibrational analysis and NMR spectroscopic analysis were also performed on all of the studied ligands and the metal complexes that included them. Further in-depth investigations should be undertaken in this field. PMID:26141789

  2. Membrane-Permeable Mn(III) Complexes for Molecular Magnetic Resonance Imaging of Intracellular Targets.

    PubMed

    Barandov, Ali; Bartelle, Benjamin B; Gonzalez, Beatriz A; White, William L; Lippard, Stephen J; Jasanoff, Alan

    2016-05-01

    Intracellular compartments make up roughly two-thirds of the body, but delivery of molecular imaging probes to these spaces can be challenging. This situation is particularly true for probes designed for detection by magnetic resonance imaging (MRI), a high-resolution but relatively insensitive modality. Most MRI contrast agents are polar and membrane impermeant, making it difficult to deliver them in sufficient quantities for measurement of intracellular analytes. Here we address this problem by introducing a new class of planar tetradentate Mn(III) chelates assembled from a 1,2-phenylenediamido (PDA) backbone. Mn(III)-PDA complexes display T1 relaxivity comparable to that of Gd(III)-based contrast agents and undergo spontaneous cytosolic localization via defined mechanisms. Probe variants incorporating enzyme-cleavable acetomethoxy ester groups are processed by intracellular esterases and accumulate in cells. Probes modified with ethyl esters preferentially label genetically modified cells that express a substrate-selective esterase. In each case, the contrast agents gives rise to robust T1-weighted MRI enhancements, providing precedents for the detection of intracellular targets by Mn(III)-PDA complexes. These compounds therefore constitute a platform from which to develop reagents for molecular MRI of diverse processes inside cells. PMID:27088782

  3. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    NASA Astrophysics Data System (ADS)

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-06-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131-τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation.

  4. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

    PubMed Central

    Male, Gary; von Appen, Alexander; Glatt, Sebastian; Taylor, Nicholas M. I.; Cristovao, Michele; Groetsch, Helga; Beck, Martin; Müller, Christoph W.

    2015-01-01

    In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131–τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation. PMID:26060179

  5. Halogen impact into new oxonium benzo-crown ether complexes with tetrachloro- and tetrabromoaurates(III).

    PubMed

    Pluzhnik-Gladyr, Sergei M; Kravtsov, Victor Ch; Fonari, Marina S; Kamalov, Gerbert L

    2014-05-21

    Five oxonium tetrahalogenaurate(III) (Hal = Cl, Br) benzo-crown ether (BCE) complexes are prepared and reported. The new compounds are [(H3O)(B18C6)(0.58)(4'-Cl-B18C6)0.42][AuCl4] 1, [(H3O)(B18C6)][AuCl4] 2, [(H3O)(4'-Br-B18C6)][AuCl4] 3, [(H3O)(4'-Br-B18C6)][AuBr4] 4, and [(H3O)(B18C6)][AuBr4] 5. The reaction medium, distinctive from the previously used aqua regia, allowed avoiding the unwanted nitration of initial macrocycles. The compositions and structures for 1, 3, 4, and 5 were proved by single crystal X-ray crystallography. The complete conversion of tetrachloroaurate(III) to the tetrabromoaurate(III) salts resulted in complex 4 isomorphous and isostructural to 3. All compounds form the laminated structures with alternation of cationic and anionic layers. The robustness of the anionic sheets is sustained by the halogen-halogen interactions and makes crucial impact on extraction of stoichiometric products in the case of tetrabromoaurate(III) salts. PMID:24671258

  6. The interaction of Eu(III) with organoborates – a further approach to understand the complexation in the An/Ln(III)-borate system.

    PubMed

    Schott, Juliane; Kretzschmar, Jerome; Tsushima, Satoru; Drobot, Björn; Acker, Margret; Barkleit, Astrid; Taut, Steffen; Brendler, Vinzenz; Stumpf, Thorsten

    2015-06-28

    The formation equilibria of salicylatoborate, lactatoborate and 3-hydroxybutyratoborate were studied by means of (11)B NMR spectroscopy. The smaller the pKa of the respective organic acid, the higher is the formation constant of the organoborate. The complexation of Eu(III) with salicylatoborate and lactatoborate was investigated by means of TRLFS (time-resolved laser-induced fluorescence spectroscopy) and (11)B NMR spectroscopy, yielding complexation constants lg β₁₁⁰ = 2.6-3.2. A Eu(III)-3-hydroxybutyrate complex was characterized by TRLFS and (1)H NMR spectroscopy (lg β₁₁⁰ = 2.89). DFT calculations of the investigated Eu(III)-organoborates and inorganic Eu(III)-(poly)borates provided information about the Eu(III) coordination (most likely chelate). They support the hypothesis that the complexation of Eu(III) with organic as well as inorganic borate structures containing the binding site "B(OR)4(-)" (R = H, threefold coordinated boron center(s), organic moiety) is comparable. PMID:25998686

  7. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Wang, Long; Zhang, Sui; Sun, Ping-Chuan; Ding, Chuan-Fan; Chu, Yan-Qiu; Zhou, Ping

    2011-10-01

    Curcumin has been recognized as a potential natural drug to treat the Alzheimer's disease (AD) by chelating baleful metal ions, scavenging radicals and preventing the amyloid β (Aβ) peptides from the aggregation. In this paper, Al(III)-curcumin complexes with Al(III) were synthesized and characterized by liquid-state 1H, 13C and 27Al nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet spectroscopy (UV) and generalized 2D UV-UV correlation spectroscopy. In addition, the density functional theory (DFT)-based UV and chemical shift calculations were also performed to view insight into the structures and properties of curcumin and its complexes. It was revealed that curcumin could interact strongly with Al(III) ion, and form three types of complexes under different molar ratios of [Al(III)]/[curcumin], which would restrain the interaction of Al(III) with the Aβ peptide, reducing the toxicity effect of Al(III) on the peptide.

  8. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    PubMed

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications. PMID:26562551

  9. Luminescent Iridium(III) Cyclometalated Complexes with 1,2,3-Triazole "Click" Ligands.

    PubMed

    Connell, Timothy U; White, Jonathan M; Smith, Trevor A; Donnelly, Paul S

    2016-03-21

    A series of cyclometalated iridium(III) complexes with either 4-(2-pyridyl)-1,2,3-triazole or 1-(2-picolyl)-1,2,3-triazole ancillary ligands to give complexes with either 5- or 6-membered chelate rings were synthesized and characterized by a combination of X-ray crystallography, electron spin ionization-high-resolution mass spectroscopy (ESI-HRMS), and nuclear magnetic resonance (NMR) spectroscopy. The electronic properties of the complexes were probed using absorption and emission spectroscopy, as well as cyclic voltammetry. The relative stability of the complexes formed from each ligand class was measured, and their excited-state properties were compared. The emissive properties are, with the exception of complexes that contain a nitroaromatic substituent, insensitive to functionalization of the ancillary pyridyl-1,2,3-triazole ligand but tuning of the emission maxima was possible by modification of the cyclometalating ligands. It is possible to prepare a wide range of optimally substituted pyridyl-1,2,3-triazoles using copper Cu(I)-catalyzed azide alkyne cycloaddition, which is a commonly used "click" reaction, and this family of ligands represent an useful alternative to bipyridine ligands for the preparation of luminescent iridium(III) complexes. PMID:26938838

  10. Experimental and computational evidence for the mechanism of intradiol catechol dioxygenation by non-heme iron(III) complexes.

    PubMed

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-11-24

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step. PMID:25322920

  11. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    SciTech Connect

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  12. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  13. Complexation of Am(III) by oxalate in NaClO{sub 4} media

    SciTech Connect

    Choppin, G.R.; Chen, J.F.

    1995-09-01

    The complexation of Am(III) by oxalate has been investigated in solutions of NaClO{sub 4} up to 9.0 M ionic strength at 25{degrees}C. The dissociation constants of oxalic acid were determined by potentiometric titration, while the stability constants of the Am(III)-oxalate complexation were measured by the solvent extraction technique. A thermodynamic model was constructed to predict the apparent equilibrium constants at different ionic strengths by applying the Pitzer equation using parameters for the Na{sup +}-HOx{sup -}, Na{sup +}-Ox{sup -}, AmOx{sup +}-ClO{sub 4}{sup -}, and Na{sup +}-Am(Ox){sub 2}{sup -} interactions obtained by fitting the data.

  14. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  15. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    SciTech Connect

    Mishra, Ashutosh; Dwivedi, Jagrati Shukla, Kritika

    2015-06-24

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  16. Facile synthesis of bismuth(III) and antimony(III) complexes supported by silylated calix[5]arenes.

    PubMed

    Mendoza-Espinosa, Daniel; Hanna, Tracy A

    2009-11-01

    A series of bismuth(III) and antimony(III) complexes supported by silicon-containing calix[5]arene ligands were synthesized and fully characterized by NMR, X-ray, IR, mp, UV/vis, and elemental analysis. Reaction of the para-tert-butylcalix[5]arene [(t)BuC5(H)(5)] disodium salt, Na(2) x (t)BuC5(H)(3), with 1 equiv of R(2)SiCl(2) (R = Me, (i)Pr, Ph, CH=CH(2)) or treatment of the (t)BuC5(H)(5) lower rim monobenzyl ether [(t)BuC5(Bn)(H)(4)] in a 1:1 ratio with Me(2)Si(NMe(2))(2) yields the (t)BuC5(SiRR')(H)(3) (1-5) and (t)BuC5(Bn)(SiMe(2))(H)(2) (6) ligands, respectively. The (1)H NMR spectra of the (t)BuC5(SiRR')(H)(3) (1-5) ligands show three pairs of doublets and three singlets for the (t)Bu peaks, consistent with a C(s) symmetry. In the case of the (t)BuC5(Bn)(SiMe(2))(H)(2) (6) ligand, the presence of the monobenzyl group changes the (1)H NMR patterns to indicate a C(1) symmetry. Treatment of (t)BuC5(SiRR')(H)(3) (1-5) or (t)BuC5(Bn)(SiMe(2))(H)(2) (6) with 1 equiv of M(O(t)Bu)(3) (M = Bi, Sb) or Sb(NMe(2))(2) readily yields metalated products of the type [M{(t)BuC5(SiRR')}] (7-16) and [MX{(t)BuC5(Bn)(SiMe(2))}] (X = O(t)Bu, (NMe(2))(2)) (17-19), respectively. All monometallic complexes [M{(t)BuC5(SiRR')}] (7-19) display excellent solubility in organic solvents including pentane and hexane. The (1)H NMR patterns for complexes 7-16 are consistent with a 1,2- or 1,3-alternate conformation while complexes [MX{(t)BuC5(Bn)(SiMe(2))}] (17-19) display patterns for a C(1) symmetry. All crystals show monomeric structures. Ligand (t)BuC5(SiPh(2))(H)(3) (3) displays a distorted cone conformation while the presence of the monobenzyl ether in (t)BuC5(Bn)(SiMe(2))(H)(2) (6) forces a partial cone conformation. Complexes 7-19 all display a distorted 1,2-alternate conformation with the metal centers displaying coordination numbers of three, four or five. No Si...M interactions were observed. PMID:19785468

  17. Water-soluble Co(III) complexes of substituted phenanthrolines with cell selective anticancer activity.

    PubMed

    Jagadeesan, Sivaraman; Balasubramanian, Vimalkumar; Baumann, Patric; Neuburger, Markus; Häussinger, Daniel; Palivan, Cornelia G

    2013-11-01

    Transition metal complexes with substituted phenanthrolines as ligands represent potential anticancer products without the drawbacks of platinum complexes that are currently marketed. Here, we report the synthesis and cell selective anticancer activity of five new water-soluble Co(III) complexes with methyl substituted phenanthroline ligands. The complexes were characterized by elemental analysis, NMR, FAB-mass spectrometry, FTIR, electronic spectroscopy, and single crystal X-ray diffraction. Possible interaction of these complexes with DNA was assessed by a combination of circular dichroism, UV-vis spectroscopy titration, and ethidium bromide displacement assay, and the results indicated that DNA interaction is weak for these complexes. Cellular uptake and cytotoxicity of complexes at low concentrations were assessed by flow cytometry on PC-3 cells, while their effect on intracellular mitochondrial function was measured by MTS assay on HeLa and PC-3 cell lines. These complexes showed selective cytotoxicity with a significantly higher effect on intracellular mitochondrial function in PC-3 cells than in HeLa cells. At low concentrations, complex 2 had the highest cytotoxic effect on PC-3 cells, inducing around 38% cell death, and the correlation of cytotoxicity of these complexes to their hydrophobicity indicates that an appropriate value of the hydrophobicity is essential for high antitumor activity. PMID:24127683

  18. Synthesis of new heteroscorpionate iridium(I) and iridium(III) complexes.

    PubMed

    Roa, A E; Campos, J; Paneque, M; Salazar, V; Otero, A; Lara-Sánchez, A; Rodríguez, A M; López-Solera, I; Gómez, M V

    2015-04-21

    The reactivity of different heteroscorpionate ligands based on bis(pyrazol-1-yl)methane, with different iridium-(i) and -(iii) precursors is reported. The reaction of the heteroscorpionate lithium salts "Li(bdmpza)", [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], "Li(bdmpzdta)" [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] and "Li(S)-mbpam" [(S)-mbpam = (S)-(-)-N-α-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate] with 1 equivalent of [IrCl3(THF)3] in THF for 18 h affords high yields of neutral and anionic heteroscorpionate chloride iridium complexes [IrCl2(bdmpza)(THF)] (), [Li(THF)4][IrCl3(bdmpzdta)] () and [IrCl2{(S)-mbpam})(THF)] (). Solution of complex in acetonitrile at room temperature leads to complex [IrCl2{(S)-mbpam})(NCCH3)] (). Complexes and were isolated as enantiopure compounds. The reaction of the lithium salt "Li(bdmpza)" with [IrCl(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)]2 in THF for 18 h gave the Ir(i) complex [Ir(bdmpza)(η(4)-CH2[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]CH2)] (). The reaction of complex with CO (2 atm) at room temperature leads to a new complex of Ir(iii), [Ir(bdmpza)(k(2)-CH2C(Me)[double bond, length as m-dash]C(Me)CH2)(CO)] (). Treatment of heteroscorpionate ligand precursors "Li(bdmpza)" and "Li(bdmpzdta)" with [IrCp*Cl2]2 in THF yielded the iridium(iii) complexes [Ir2Cp*2Cl2(bdmpzx)] (x = a , x = dta ). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR spectroscopy and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers were obtained. Complex undergoes a decarboxylation process initiated by the HCl generated in the previous step leading to the known ionic complex [IrClCp*(bdmpm)][IrCl3Cp*] [bdmpm = bis(3,5-dimethylpyrazol-1-yl)methane] (). The

  19. An ytterbium(III) complex of duanomycin, a model metal complex of anthracycline antibiotics

    SciTech Connect

    Ming, Li-June; Wei, Xiangdong

    1994-10-12

    Here, the authors report on structural studies of a daunomycin -Yb{sup 3+} complex. Daunomycin is a prospective anthracycline antibiotic. Both optical and NMR spectroscopy are used in the structural investigation.

  20. Kinetic studies of nitrate removal from aqueous solution using granular chitosan-Fe(III) complex.

    PubMed

    Hu, Qili; Chen, Nan; Feng, Chuanping; Zhang, Jing; Hu, Weiwu; Lv, Long

    2016-01-01

    In the present study, a granular chitosan-Fe(III) complex was prepared as a feasible adsorbent for the removal of nitrate from an aqueous solution. There was no significant change in terms of nitrate removal efficiency over a wide pH range of 3-11. Nitrate adsorption on the chitosan-Fe(III) complex followed the Langmuir-Freundlich isotherm model. In order to more accurately reflect adsorption and desorption behaviors at the solid/solution interface, kinetic model I and kinetic model II were proposed to simulate the interfacial process in a batch system. Nitrate adsorption on the chitosan-Fe(III) complex followed the pseudo-first-order kinetic model and kinetic model I. The proposed half-time could provide useful information for optimizing process design. Adsorption and desorption rate constants obtained from kinetic model I and kinetic model II were beneficial to understanding the interfacial process and the extent of adsorption reaction. Kinetic model I and kinetic model II implied that nitrate uptake exponentially approaches a limiting value. PMID:26942545

  1. Shedding light on the single-molecule magnet behavior of mononuclear Dy(III) complexes.

    PubMed

    Aravena, Daniel; Ruiz, Eliseo

    2013-12-01

    General requirements for obtaining Dy(III) single-molecule magnets (SMM) were studied by CASSCF+RASSI calculations on both real and model systems. A set of 20 Dy(III) complexes was considered using their X-ray crystal structure for our calculations. Theoretical results were compared with their experimental slow relaxation data, and general conclusions about the calculated key parameters related with SMM behavior are presented. The effect of the coordination geometry and nature of ligands is discussed based on calculations on real and model systems. We found two different patterns to exhibit SMM behavior: the first one leads to the largest axial anisotropy in complexes showing heterolepticity of the ligand environment (more important than symmetric requirements), while the second one corresponds to sandwich-shaped complexes with a smaller anisotropy. Thus, most existing mononuclear zero-field SMMs adopting a heteroleptic coordination mode mixing neutral and anionic ligands present the same pattern in the electrostatic potential induced by their ligands, with a lower potential island related to the presence of neutral ligands inside a high potential background related with anionic groups. The existence of different electrostatic regions caused by the ligands induces a preferential orientation to reduce the electron repulsion for the electron density of the Dy(III) cations, resulting in the magnetic anisotropy. PMID:24237385

  2. Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Garain, Samiran; Barman, Koushik; Sinha, Tridib Kumar; Jasimuddin, Sk; Haeberle, Jörg; Henkel, Karsten; Schmeisser, Dieter; Mandal, Dipankar

    2016-08-24

    Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce(III)(DMF) (HSO4)3] complex was synthesized and characterized by UV-vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce(III)(DMF) (HSO4)3] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce(III)(DMF) (HSO4)3]-l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light. PMID:27490440

  3. Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications.

    PubMed

    Nam, Jung Seung; Kang, Myeong-Gyun; Kang, Juhye; Park, Sun-Young; Lee, Shin Jung C; Kim, Hyun-Tak; Seo, Jeong Kon; Kwon, Oh-Hoon; Lim, Mi Hee; Rhee, Hyun-Woo; Kwon, Tae-Hyuk

    2016-08-31

    Protein inactivation by reactive oxygen species (ROS) such as singlet oxygen ((1)O2) and superoxide radical (O2(•-)) is considered to trigger cell death pathways associated with protein dysfunction; however, the detailed mechanisms and direct involvement in photodynamic therapy (PDT) have not been revealed. Herein, we report Ir(III) complexes designed for ROS generation through a rational strategy to investigate protein modifications by ROS. The Ir(III) complexes are effective as PDT agents at low concentrations with low-energy irradiation (≤ 1 J cm(-2)) because of the relatively high (1)O2 quantum yield (> 0.78), even with two-photon activation. Furthermore, two types of protein modifications (protein oxidation and photo-cross-linking) involved in PDT were characterized by mass spectrometry. These modifications were generated primarily in the endoplasmic reticulum and mitochondria, producing a significant effect for cancer cell death. Consequently, we present a plausible biologically applicable PDT modality that utilizes rationally designed photoactivatable Ir(III) complexes. PMID:27494510

  4. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    SciTech Connect

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D'Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  5. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    PubMed Central

    Moore, Evan G.; Xu, Jide; Dodani, Sheel C.; Jocher, Christoph J.; D'Aléo, Anthony; Seitz, Michael; Raymond, Kenneth N.

    2011-01-01

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution (ΦtotYb~0.09−0.22%). Furthermore, the complexes demonstrate very high stability (pYb ~ 18.8 – 21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G++(d,p) level of theory for a simplified model monovalent sodium complex. PMID:20364838

  6. Mycoplasma hyorhinis is a potential pathogen of porcine respiratory disease complex that aggravates pneumonia caused by porcine reproductive and respiratory syndrome virus.

    PubMed

    Lee, Jung-Ah; Oh, Yu-Ri; Hwang, Min-A; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Sang-Won

    2016-09-01

    The porcine respiratory disease complex (PRDC) caused by numerous bacterial and viral agents has a great impact on pig industry worldwide. Although Mycoplasma hyorhinis (Mhr) has been frequently isolated from lung lesions from pigs with PRDC, the pathological importance of Mhr may have been underestimated. In this study, 383 serum samples obtained from seven herds with a history of PRDC were tested for specific antibodies to Mhr, Mycoplasma hyopneumoniae (Mhp), and porcine reproductive and respiratory syndrome virus (PRRSV). Seropositive rates of PRRSV were significantly correlated with those of Mhr (correlation coefficient, 0.862; P-value, 0.013), but not with those of Mhp (correlation coefficient, -0.555; P-value, 0.196). In vivo experiments demonstrated that pigs co-infected with Mhr and PRRSV induced more severe lung lesions than pigs infected with Mhr or PRRSV alone. These findings suggest that Mhr is closely associated with pneumonia caused by PRRSV and provide important information on Mhr pathogenesis within PRDC. Therefore, effective PRDC control strategies should also consider the potential impact of Mhr in the pathogenesis of PRDC. PMID:27436444

  7. Unexpected formation of a novel pyridinium-containing catecholate ligand and its manganese(III) complex.

    PubMed

    Sheriff, Tippu S; Watkinson, Michael; Motevalli, Majid; Lesin, Jocelyne F

    2010-01-01

    Nucleophilic aromatic substitution of tetrachloro-o-benzoquinone by pyridine and reduction of the o-quinone to the catechol by hydroxylamine forms 1,2-dihydroxy-3,5,6-trichlorobenzene-4-pyridinium chloride. This compound reacts with manganese(II) acetate in air to form chlorobis(3,5,6-trichlorobenzene 4-pyridinium catecholate)manganese(III), which represents the first complex of this ligand class to be structurally characterized by X-ray diffraction; this complex is active in the catalytic reduction of dioxygen to hydrogen peroxide under ambient conditions and turnover frequencies (TOFs) >10,000 h(-1) can be obtained. PMID:20023930

  8. A colorimetric chemosensor for Cu2+ ion detection based on an iridium(III) complex

    PubMed Central

    Wang, Modi; Leung, Ka-Ho; Lin, Sheng; Chan, Daniel Shiu-Hin; Kwong, Daniel W. J.; Leung, Chung-Hang; Ma, Dik-Lung

    2014-01-01

    We report herein the synthesis and application of a series of novel cyclometalated iridium(III) complexes 1−3 bearing a rhodamine-linked NˆN ligand for the detection of Cu2+ ions. Under the optimised conditions, the complexes exhibited high sensitivity and selectivity for Cu2+ ions over a panel of other metal ions, and showed consistent performance in a pH value range of 6 to 8. Furthermore, the potential application of this system for the monitoring of Cu2+ ions in tap water or natural river water samples was demonstrated. PMID:25348724

  9. Trap-Free Halogen Photoelimination from Mononuclear Ni(III) Complexes.

    PubMed

    Hwang, Seung Jun; Powers, David C; Maher, Andrew G; Anderson, Bryce L; Hadt, Ryan G; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2015-05-27

    Halogen photoelimination reactions constitute the oxidative half-reaction of closed HX-splitting energy storage cycles. Here, we report high-yielding, endothermic Cl2 photoelimination chemistry from mononuclear Ni(III) complexes. On the basis of time-resolved spectroscopy and steady-state photocrystallography experiments, a mechanism involving ligand-assisted halogen elimination is proposed. Employing ancillary ligands to promote elimination offers a strategy to circumvent the inherently short-lived excited states of 3d metal complexes for the activation of thermodynamically challenging bonds. PMID:25950146

  10. Photophysical effects of metal-carbon sigma bonds in ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Sprouse, S.; King, K.A.; Spellane, P.J.; Watts, R.J.

    1984-10-31

    Dichloro-bridged dimers of the type (M(L)/sub 2/Cl)/sub 2/, where L is 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and M is Rh(III) or Ir(III), have been characterized by /sup 13/C and /sup 1/H NMR spectroscopies and by absorption and emission spectroscopies. The NMR results confirm previous formulations of the complexes as dichloro-bridged ortho-metalated dimers in halocarbon solvents but indicate that they are cleaved to monomeric species of the type M(L)/sub 2/CIS in ligating solvents such as dimethylformamide (S = solvent). The absorption spectra of each of the complexes contain several low-energy bands which are assigned as metal-to-ligand charge-transfer (MLCT) transitions. All four of the dimers emit light following photoexcitation of their glassy solutions at 77 K. Their emission spectra and lifetimes lead to assignments of their emitting states as intraligand for the Rh(III) dimers and MLCT for the Ir(III) dimers. The Ir(III) dimers are also found to emit light following excitation at 295 K in deaerated dichloromethane. No emission is seen from the Rh(III) dimers under these conditions. Comparison of these results with previous results from studies of similar Rh(III) and Ir(III) complexes of 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) indicates that the ortho-metalated ligands are considerably higher than bpy and phen in the spectrochemical series. In addition to raising the energy of ligand field excited states in their complexes, relative to similar bpy and phen species, they induce lower energy charge-transfer transitions. These effects are consistent with the synergistic function of the ortho-metalated ligands as both strong sigma donors and ..pi.. acceptors.

  11. Synthesis, characterization, and reactivity of a side-on manganese(iii)-peroxo complex bearing a pentadentate aminopyridine ligand.

    PubMed

    Du, Junyi; Xu, Daqian; Zhang, Chunxi; Xia, Chungu; Wang, Yong; Sun, Wei

    2016-06-21

    A manganese(ii) complex has been prepared with a proline-derived pentadentate ligand (Pro3Py), and it can be converted to a peroxomanganese(iii) complex in the presence of H2O2 and triethylamine. The resulting peroxomanganese(iii) complex was well characterised by UV-vis, EPR and ESI-MS techniques, and the geometric structure was discussed based on DFT calculations. PMID:27240634

  12. Acceptorless Dehydrogenative Oxidation of Secondary Alcohols Catalysed by Cp*Ir(III) -NHC Complexes.

    PubMed

    Gülcemal, Süleyman; Gülcemal, Derya; Whitehead, George F S; Xiao, Jianliang

    2016-07-18

    A series of new Ir(III) complexes with carbene ligands that contain a range of benzyl wingtip groups have been prepared and fully characterised by NMR spectroscopy, HRMS, elemental analysis and X-ray diffraction. All the complexes were active in the acceptorless dehydrogenation of alcohol substrates in 2,2,2-trifluoroethanol to give the corresponding carbonyl compounds. The most active complex bore an electron-rich carbene ligand; this complex was used to catalyse the highly efficient and chemoselective dehydrogenation of a wide range of secondary alcohols to their respective ketones, with turnover numbers up to 1660. Mechanistic studies suggested that the turnover of the dehydrogenation reaction is limited by the H2 -formation step. PMID:27321021

  13. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    PubMed

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells. PMID:27043378

  14. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms.

    PubMed

    Phillips, Wiktor S; Herly, Mikkel; Del Negro, Christopher A; Rekling, Jens C

    2016-02-01

    Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7-43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels. PMID:26655824

  15. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting.

    PubMed

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions. PMID:26342680

  16. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting

    NASA Astrophysics Data System (ADS)

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions.

  17. Efficacy of ketoprofen administered in drinking water at a low dose for the treatment of porcine respiratory disease complex.

    PubMed

    Salichs, M; Sabaté, D; Homedes, J

    2013-09-01

    The purpose of this study was to evaluate the efficacy of an oral solution of ketoprofen administered in drinking water at a lower dose as a complement to antimicrobial therapy in a mild outbreak of porcine respiratory disease complex. The study was performed with 120 pigs with rectal temperature between 39.9 and 41°C and at least 1 sign indicating porcine respiratory disease complex (dyspnea, cough, nasal discharge, or depression). Animals were randomly allocated in 2 groups (treated and control group). Animals in both groups received etiological therapy with doxycycline at 10 mg · kg(-1) in drinking water for 5 d. The animals in the treated group also received 1.5 mg · kg(-1) of ketoprofen during the first 3 d. The reduction in rectal temperature in the treated group was significantly greater during the days of ketoprofen administration and up to 1 d after the end of treatment (P < 0.05). The percentage of dyspneic animals was significantly less (P < 0.05) in the treated group from d 2 to 5 of the study. Also, a significant improvement regarding depression and cough was seen in the animals of the treated group. No statistically significant (P > 0.05) differences were evidenced in productive variables. In conclusion, oral treatment with ketoprofen at 1.5 mg · kg(-1) in combination with antimicrobial therapy was found to be a clinically effective approach in outbreaks of mild porcine respiratory disease complex. PMID:23825328

  18. Integrated Investigation on the Production and Fate of Organo-Cr(III) Complexes from Microbial Reduction of Chromate

    SciTech Connect

    Xun, Luying

    2005-06-01

    Our objective is to investigate the complexity of chromium biogeocycling. Our results clearly support more complexity. In short, the chromium cycle is not as simple as the conversion between Cr(III) and Cr(VI) in inorganic forms. We have obtained more evidence to prove the formation of soluble organo-Cr(III) complexes from microbial reduction of Cr(VI). The complexes are relatively stable due to the slow ligand exchange of Cr(III). However, some microorganisms can consume the organic ligands and release Cr(III), which then precipitates. Efforts are being made to characterize the organo-Cr(III) complexes and investigate their behavior in soil. Progress and efforts are summarized for each task. Task 1. Production of soluble organo-Cr(III) complexes by selected microorganisms A total of eight organisms were screened for production of soluble organo-Cr(III) complexes by culturing in both growth and non growth media containing 4 mg/L of Cr(VI); three were Gram positive and five were Gram negative. The Gram-positive bacteria were Cellulomonas sp. ES 6, Rhodococcus sp., and Leafsonia sp., while Shewanella oneidensis MR 1, Desulfovibrio desulfuricans G20, D. vulgaris Hildenborough, Pseudomonas putida MK 1 and Ps. aeruginosa PAO 1 were Gram negative. Purifications of the soluble organo-Cr(III) complexes produced by Cellulomonas sp. ES 6, Shewanella. oneidensis MR 1, Rhodococcus sp., and D. vulgaris Hildenborough were carried out. The culture supernatants were lyophilized and extracted first with methanol followed by water. The extracts were then analyzed for soluble Cr. The majority of the Cr(III) was present in the water-soluble fraction for all of the bacteria tested (data not shown), revealing a general phenomenon of soluble Cr(III) production. Cellulomonas sp. ES6 produced the highest amount of soluble Cr(III) (364 ppm) and D. vulgaris Hildenborough produced the least (143 ppm). Seventy eight percent of the soluble Cr(III) produced by Shewanella. oneidensis MR 1 was

  19. Asymmetric Synthesis of Enantiomerically Pure Mono- and Binuclear Bis(cyclometalated) Iridium(III) Complexes.

    PubMed

    Yao, Su-Yang; Ou, Yan-Ling; Ye, Bao-Hui

    2016-06-20

    Chiral precursors Λ-[Ir(ppy)2(l-pro)] (Λ-L, where ppy is 2-phenylpyridine; pro is proline), Λ-[Ir(ppy)2(MeCN)2](PF6) (Λ-1), Δ-[Ir(ppy)2(d-pro)] (Δ-D), and Δ-[Ir(ppy)2(MeCN)2](PF6) (Δ-1) were synthesized from rac-[(Ir(ppy)2)2Cl2] and l-pro or d-pro by means of the auxiliary ligand strategy with 99% de values. The enantiopure mono complexes Λ/Δ-[Ir(ppy)2(L)](PF6) (L is 2,2'-bipyridine, Λ/Δ-2; L is 2,2'-dipyrimidine (dpm), Λ/Δ-3; L is 2,2'-bibenzimidazole (H2bbim), Λ/Δ-4) with 99% ee values and binuclear complexes ΛΛ/ΔΔ-[(Ir(ppy)2)2(dpm)](PF6)2 (ΛΛ-5 and ΔΔ-5) and ΛΛ/ΔΔ-[(Ir(ppy)2)2(bbim)] (ΛΛ-6 and ΔΔ-6) with 99% de values were synthesized in one step using the corresponding chiral precursors. The absolute configurations at Ir(III) centers of precursor Δ-1, mononuclear Λ-3, and binuclear ΔΔ-6 were confirmed by single-crystal structural analysis and characterized by circular dichroism (CD) spectroscopy. The correlation between the absolute configuration at Ir(III) center and CD spectra was established. The configurations at Ir(III) centers are stable during the reactions, and the chiral precursors can be used for the asymmetric synthesis of enantiomerically pure mono- and polynuclear Ir(III) complexes. Moreover, meso ΛΔ-[(Ir(ppy)2)2(dpm)](PF6)2 (meso-5) and ΛΔ-[(Ir(ppy)2)2(bbim)] (meso-6) were also synthesized using these precursors. PMID:27280959

  20. Mutations in NDUFB11, Encoding a Complex I Component of the Mitochondrial Respiratory Chain, Cause Microphthalmia with Linear Skin Defects Syndrome

    PubMed Central

    van Rahden, Vanessa A.; Fernandez-Vizarra, Erika; Alawi, Malik; Brand, Kristina; Fellmann, Florence; Horn, Denise; Zeviani, Massimo; Kutsche, Kerstin

    2015-01-01

    Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject’s mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations. PMID:25772934

  1. The structures of CyMe4-BTBP complexes of americium(iii) and europium(iii) in solvents used in solvent extraction, explaining their separation properties.

    PubMed

    Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma; Foreman, Mark R StJ; Geist, Andreas; Lundberg, Daniel; Denecke, Melissa; Persson, Ingmar

    2015-11-14

    Separation of trivalent actinoid (An(iii)) and lanthanoid (Ln(iii)) ions is extremely challenging due to their similar ionic radii and chemical properties. Poly-aromatic nitrogen compounds acting as tetradentate chelating ligands to the metal ions in the extraction, have the ability to sufficiently separate An(iii) from Ln(iii). One of these compounds, 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzol[1,2,4]triazin-3-yl)[2,2]bipyridine, CyMe4-BTBP, has proven to be resistant towards acidic environments and strong radiation from radioactive decomposition. EXAFS studies of the dicomplexes of CyMe4-BTBP with americium(iii) and europium(iii) in nitrobenzene, cyclohexanone, 1-hexanol, 1-octanol and malonamide (DMDOHEMA) in 1-octanol have been carried out to get a deeper understanding of the parameters responsible for the separation. The predominating complexes independent of solvent used are [Am(CyMe4-BTBP)2(NO3)](2+) and [Eu(CyMe4-BTBP)2](3+), respectively, which are present as outer-sphere ion-pairs with nitrate ions in the studied solvents with low relative permittivity. The presence of a nitrate ion in the first coordination sphere of the americium(iii) complex compensates the charge density of the complex considerably in comparison when only outer-sphere ion-pairs are formed as for the [Eu(CyMe4-BTBP)2](3+) complex. The stability and solubility of a complex in a solvent with low relative permittivity increase with decreasing charge density. The [Am(CyMe4-BTBP)2(NO3)](2+) complex will therefore be increasingly soluble and stabilized over the [Eu(CyMe4-BTBP)2](3+) complex in solvents with decreasing relative permittivity of the solvent. The separation of americium(iii) from europium(iii) with CyMe4-BTBP as extraction agent will increase with decreasing relative permittivity of the solvent, and thereby also with decreasing solubility of CyMe4-BTBP. The choice of solvent is therefore a balance of a high separation factor and sufficient solubility of the CyMe4-BTBP

  2. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly

    PubMed Central

    Hornig-Do, Hue-Tran; Tatsuta, Takashi; Buckermann, Angela; Bust, Maria; Kollberg, Gittan; Rötig, Agnes; Hellmich, Martin; Nijtmans, Leo; Wiesner, Rudolf J

    2012-01-01

    Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. PMID:22252130

  3. Single-molecule magnetism in a family of {Co(III)2Dy(III)2} butterfly complexes: effects of ligand replacement on the dynamics of magnetic relaxation.

    PubMed

    Langley, Stuart K; Ungur, Liviu; Chilton, Nicholas F; Moubaraki, Boujemaa; Chibotaru, Liviu F; Murray, Keith S

    2014-05-01

    The synthesis and structural characterization of four related heterometallic complexes of formulas [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)4](NO3)2·MeOH·H2O (1a) and [Dy(III)2Co(III)2(OMe)2(teaH)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·H2O (1b), [Dy(III)2Co(III)2(OMe)2(dea)2(O2CPh)4(MeOH)4](NO3)2 (2), [Dy(III)2Co(III)2(OMe)2(mdea)2(O2CPh)4(NO3)2] (3), and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)4](NO3)2·0.5MeOH·H2O (4a) and [Dy(III)2Co(III)2(OMe)2(bdea)2(O2CPh)4(MeOH)2(NO3)2]·MeOH·1.5H2O (4b) are reported (teaH3 = triethanolamine, deaH2 = diethanolamine, mdeaH2 = N-methyldiethanolamine, and bdeaH2 = N-n-butyldiethanolamine). Compounds 1 (≡ 1a and 1b) and 4 (≡ 4a and 4b) both display two unique molecules within the same crystal and all compounds display a butterfly type core, with the Dy(III) ions occupying the central body positions and the diamagnetic Co(III) ions the outer wing-tip sites. Compounds 1-4 were investigated via direct current and alternating current magnetic susceptibility measurements, and it was found that each complex displayed single-molecule magnet (SMM) behavior. All four compounds display unique coordination and geometric environments around the Dy(III) ions and it was found that each displays a different anisotropy barrier. Ab initio calculations were performed on 1-4 and these determined the low lying electronic structure of each Dy(III) ion and the magnetic interactions for each cluster. It was found that there was a strong correlation between the calculated energy gap between the ground and first excited states of the single-ion ligand-field split Dy(III) levels and the experimentally observed anisotropy barrier. Furthermore, the transverse g factors found for the Dy(III) ions, defining the tunnelling rates within the ground Kramers doublets, are largest for 1, which agrees with the experimental observation of the shortest relaxation time in the high-temperature domain for this complex. The magnetic exchange between the Dy(III

  4. Synthesis, spectroscopic analysis and photolabilization of water-soluble ruthenium(III)-nitrosyl complexes.

    PubMed

    Merkle, Anna C; McQuarters, Ashley B; Lehnert, Nicolai

    2012-07-14

    In this paper, the synthesis, structural and spectroscopic characterization of a series of new Ru(III)-nitrosyls of {RuNO}(6) type with the coligand TPA (tris(2-pyridylmethyl)amine) are presented. The complex [Ru(TPA)Cl(2)(NO)]ClO(4) (2) was prepared from the Ru(III) precursor [Ru(TPA)Cl(2)]ClO(4) (1) by simple reaction with NO gas. This led to the surprising displacement of one of the pyridine (py) arms of TPA by NO (instead of the substitution of a chloride anion by NO), as confirmed by X-ray crystallography. NO complexes where TPA serves as a tetradentate ligand were obtained by reacting the new Ru(II) precursor [Ru(TPA)(NO(2))(2)] (3) with a strong acid. This leads to the dehydration of nitrite to NO(+), and the formation of the {RuNO}(6) complex [Ru(TPA)(ONO)(NO)](PF(6))(2) (4), which was also structurally characterized. Derivatives of 4 where nitrite is replaced by urea (5) or water (6) were also obtained. The nitrosyl complexes obtained this way were then further investigated using IR and FT-Raman spectroscopy. Complex 2 with the two anionic chloride coligands shows the lowest N-O and highest Ru-NO stretching frequencies of 1903 and 619 cm(-1) of all the complexes investigated here. Complexes 5 and 6 where TPA serves as a tetradentate ligand show ν(N-O) at higher energy, 1930 and 1917 cm(-1), respectively, and ν(Ru-NO) at lower energy, 577 and 579 cm(-1), respectively, compared to 2. These vibrational energies, as well as the inverse correlation of ν(N-O) and ν(Ru-NO) observed along this series of complexes, again support the Ru(II)-NO(+) type electronic structure previously proposed for {RuNO}(6) complexes. Finally, we investigated the photolability of the Ru-NO bond upon irradiation with UV light to determine the quantum yields (φ) for NO photorelease in complexes 2, 4, 5, and additional water-soluble complexes [Ru(H(2)edta)(Cl)(NO)] (7) and [Ru(Hedta)(NO)] (8). Although {RuNO}(6) complexes are frequently proposed as NO delivery agents in vivo

  5. Photostable ester-substituted bis-cyclometalated cationic iridium(III) complexes for continuous monitoring of oxygen.

    PubMed

    Liu, Chun; Yu, Hongcui; Xing, Yang; Gao, Zhanming; Jin, Zilin

    2016-01-14

    Three bis-cyclometalated cationic Ir(iii) complexes , and with an ester substituent at the 4-position of the phenyl ring on the 2-phenylpyridine (ppy) have been synthesized and fully characterized. The emission maxima of ester-substituted Ir(iii) complexes show a notable blue-shift compared to the parent complex [Ir(ppy)2(phen)](+)PF6(-) (phen = 1,10-phenanthroline). The influence of an ester group on the photoelectric properties of the Ir(iii) complexes has been investigated systematically. The oxygen sensing films prepared from ethyl cellulose immobilized with Ir(iii) complexes exhibit excellent operational stability, high photostability and a quick response to oxygen. show extended luminescence lifetimes relative to , and display better sensitivity to changes in oxygen partial pressure. PMID:26630292

  6. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes.

    PubMed

    Sumaoka, Jun; Akiba, Hiroki; Komiyama, Makoto

    2016-01-01

    Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear Tb(III) complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the Tb(III) ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these Tb(III) complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates. PMID:27375742

  7. Ambient Stable Trigonal Bipyramidal Copper(III) Complexes Equipped with an Exchangeable Axial Ligand.

    PubMed

    Chang, Hao-Ching; Lo, Feng-Chun; Liu, Wen-Chi; Lin, Tsung-Han; Liaw, Wen-Feng; Kuo, Ting-Shen; Lee, Way-Zen

    2015-06-01

    A stable trigonal bipyramidal copper(III) complex, [PPN][Cu((TMS)PS3)Cl] (1, wherein PPN represents bis(triphenylphosphine)iminium), was synthesized from CuCl2/PPNCl via intramolecular copper(II) disproportionation. Under ambient conditions, the axial chloride of 1 is exchangeable in solution thus making 1 serve as an intermediate to prepare trigonal bipyramidal copper(III) derivatives, e.g., [PPN][Cu((TMS)PS3)(N3)] (2) and [Cu((TMS)PS3)(DABCO)] (3). Diamagnetic complexes 1-3 were fully characterized by X-ray crystallography, NMR, UV-vis, and Cu K-edge absorption spectroscopy. A series of UV-vis titrations were performed to investigate the relative ligand affinity toward the [Cu((TMS)PS3)] moiety, verifying the 1:1 binding equilibrium between various ligands. Compared to known copper(III) compounds, Cu K-edge absorptions of 1-3 possess lower pre-edge energy and higher shakedown transition energy, which, respectively, attribute to the electron donation from (TMS)PS3(3-) ligand and their trigonal ligand field. PMID:25993313

  8. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  9. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes

    PubMed Central

    Sumaoka, Jun; Akiba, Hiroki; Komiyama, Makoto

    2016-01-01

    Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear TbIII complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the TbIII ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these TbIII complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates. PMID:27375742

  10. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms. PMID:27250314

  11. Iridium(III) amine complexes as high-stability structure-directing agents for the synthesis of metal phosphates

    SciTech Connect

    Williams, D.J.; Kruger, J.S.; McLeroy, A.F.; Wilkinson, A.P.; Hanson, J.C.

    1999-08-01

    Structure-directing agents based on iridium(III) complexes provide a hydrothermally robust alternative to the corresponding cobalt compounds. The slight size difference between Co(III) and Ir(III) does not dramatically influence the nature of the AlPO products that are obtained from hydrothermal synthesis using complexes based upon the ligands 1,2-diaminoethane and trans-1,2-diaminocyclohexane (chxn). However, the very slow ligand exchange kinetics of the Ir(III) complexes facilitate the use of increased hydrothermal synthesis temperatures when compared to the corresponding Co(III) complexes. For the two systems that they have examined, the use of Ir(III) allows the synthesis temperatures to be increased by {approximately} 40 C over the maximum that is viable for the corresponding cobalt complexes. This increase allowed us to prepare AlPO single crystals using Ir({+-}chxn){sub 3}{sup 3+}, whereas they authors could only obtain powders using the corresponding cobalt complexes. The use of iridium in place of cobalt increases the range of ligands that can be considered in constructing chelate complexes for use as structure-directing agents and may facilitate the preparation of different AlPO products from those found using cobalt complexes, as higher hydrothermal synthesis temperatures can be employed.

  12. From Mononuclear to Dinuclear Iridium(III) Complex: Effective Tuning of the Optoelectronic Characteristics for Organic Light-Emitting Diodes.

    PubMed

    Yang, Xiaolong; Xu, Xianbin; Dang, Jing-shuang; Zhou, Guijiang; Ho, Cheuk-Lam; Wong, Wai-Yeung

    2016-02-15

    Phosphorescent dinuclear iridium(III) complexes that can show high luminescent efficiencies and good electroluminescent abilities are very rare. In this paper, highly phosphorescent 2-phenylpyrimidine-based dinuclear iridium(III) complexes have been synthesized and fully characterized. Significant differences of the photophysical and electrochemical properties between the mono- and dinuclear complexes are observed. The theoretical calculation results show that the dinuclear complexes adopt a unique molecular orbital spatial distribution pattern, which plays the key role of determining their photophysical and electrochemical properties. More importantly, the solution-processed organic light-emitting diode (OLED) based on the new dinuclear iridium(III) complex achieves a peak external quantum efficiency (η(ext)) of 14.4%, which is the highest η(ext) for OLEDs using dinuclear iridium(III) complexes as emitters. Besides, the efficiencies of the OLED based on the dinuclear iridium(III) complex are much higher that those of the OLED based on the corresponding mononuclear iridium(III) complex. PMID:26814683

  13. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes.

    PubMed

    Dougherty, Gerard W; Loges, Niki T; Klinkenbusch, Judith A; Olbrich, Heike; Pennekamp, Petra; Menchen, Tabea; Raidt, Johanna; Wallmeier, Julia; Werner, Claudius; Westermann, Cordula; Ruckert, Christian; Mirra, Virginia; Hjeij, Rim; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Praveen, Kavita; Kashef, Mohammad A; Kashef, Sara; Eghtedari, Fardin; Häffner, Karsten; Valmari, Pekka; Baktai, György; Aviram, Micha; Bentur, Lea; Amirav, Israel; Davis, Erica E; Katsanis, Nicholas; Brueckner, Martina; Shaposhnykov, Artem; Pigino, Gaia; Dworniczak, Bernd; Omran, Heymut

    2016-08-01

    Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography. PMID:26909801

  14. 3,2-HOPO Complexes of Near-Infra-Red (NIR) Emitting Lanthanides: Sensitization of Ho(III) and Pr(III) in Aqueous Solution

    SciTech Connect

    Moore, Evan G.; Szigethy, Geza; Xu, Jide; Palsson, Lars-Olof; Beeby, Andrew; Raymond, Kenneth N.

    2008-05-19

    There is a growing interest in Near Infra-Red (NIR) emission originating from organic complexes of Ln{sup III} cations. As a major impetus, biological tissues are considerably more transparent at these low energy wavelengths when compared to visible radiation, which facilitates deeper penetration of incident and emitted light. Furthermore, the long luminescence lifetimes of Ln{sup III} complexes (eg. Yb{sup III}, {tau}{sub rad} {approx} 1 ms) when compared to typical organic molecules can be utilized to vastly improve signal to noise ratios by employing time-gating techniques. While the improved quantum yield of Yb{sub III} complexes when compared to other NIR emitters favors their use for bioimaging applications, there has also been significant interest in the sensitized emission from other 4f metals such as Ln = Nd, Ho, Pr and Er which have well recognized applications as solid state laser materials (eg. Nd {approx} 1.06 {micro}m, Ho {approx} 2.09 {micro}m), and in telecommunications (eg. Er {approx} 1.54 {micro}m) where they can be used for amplification of optical signals. As a result of their weak (Laporte forbidden) f-f absorptions, the direct excitation of Ln{sup III} cations is inefficient, and sensitization of the metal emission is more effectively achieved using the so-called antenna effect. We have previously examined the properties of several Eu{sup III} complexes which feature 1-hydroxypyridin-2-one (Fig. 1) as the light harvesting chromophore. While the 1,2-HOPO isomer was found to strongly sensitize Eu{sup III}, we noted the analogous Me-3,2-HOPO isomer does not, which prompted further investigation of the properties of this chromophore with other metals.

  15. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    PubMed

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead. PMID:27099221

  16. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  17. Fluorescence and Ir studies on the hydration state of lanthanides(III) and curium(III) in the complexes extracted with purified Cyanex301, Cyanex302 and Cyanex272

    SciTech Connect

    Tian, Guoxin; Kimura, Takaumi; Yoshida, Zenko; Zhu, Yongjun; Rao, Linfeng

    2004-03-22

    The hydration number of lanthanides, Ln(III) (Ln = Sm, Eu, Tb, Dy), and Cm(III) in the extracted complexes with purified Cyanex301, Cyanex302 and Cyanex272 was investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS) and FT-IR spectroscopy. The results, in conjunction with the previous results on the Ln(III) and Am(III) complexes, provide insight into the composition of the extracted complexes. No difference has been observed in the hydration number or the composition between the Ln(III) and Cm(III) complexes with Cyanex302 or Cyanex272. The extracted complexes of Ln(III) and Cm(III) with Cyanex302 have the formula, ML(HL2)2 cdot nH2O, where L stands for the anion of Cyanex302 and n = 3 - 5. No water molecules are found in the first coordination shell of Ln(III) or Cm(III) complexes with Cyanex272. In contrast to the extraction with Cyanex302 or Cyanex272, the composition of the Ln(III) complexes is different from that of the Cm(III) complex in the extraction wi th Cyanex301. The Ln(III) complex with Cyanex301 has one or two H2O molecules with a molecular formula of LnL3 cdot 2H2O or HLnL4 cdot H2O, where L stands for the anion of Cyanex301. However, the Cm(III) complex with Cyanex301 does not contain H2O with the molecular formula of HCmL4, in which only the 8 sulfur atoms from Cyanex301 coordinate to Cm(III). The results for Cm(III) agree with the previous data for Am(III) from EXAFS and IR measurements.

  18. Malfunctioning of the Iron–Sulfur Cluster Assembly Machinery in Saccharomyces cerevisiae Produces Oxidative Stress via an Iron-Dependent Mechanism, Causing Dysfunction in Respiratory Complexes

    PubMed Central

    Gomez, Mauricio; Pérez-Gallardo, Rocío V.; Sánchez, Luis A.; Díaz-Pérez, Alma L.; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S.; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain. PMID:25356756

  19. A [Cyclentetrakis(methylene)]tetrakis[2-hydroxybenzamide] Ligand That Complexes and Sensitizes Lanthanide(III) Ions

    PubMed Central

    D'Aléo, Anthony; Xu, Jide; Do, King; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    The synthesis of the cyclen derivative H4L1·2 HBr containing four 2-hydroxybenzamide groups is described. The spectroscopic properties of the LnIII conplexes of L1 (Ln=Gd, Tb, Yb, and Eu) reveal changes of the UV/VIS-absorption, circular-dichroism-absorption, luminescence, and circularly polarized luminescence spectra. It is shown that at least two metal-complex species are present in solution, whose relative amounts are pH dependent. At pH > 8.0, an intense long-lived emission is observed (for [TbL1] and [YbL1]), while at pH < 8.0, a weaker, shorter-lived species predominates. Unconventional LnIII emitters (Pr, Nd, Sm, Dy, and Tm) were sensitized in basic solution, both in the VIS and in the near-IR, to measure the emission of these ions. PMID:20161476

  20. Theoretical and experimental investigations on the nonlinear optical properties of gold(III) dithiolene complexes

    NASA Astrophysics Data System (ADS)

    Guezguez, I.; Karakas, A.; Iliopoulos, K.; Derkowska-Zielinska, B.; El-Ghayoury, A.; Ranganathan, A.; Batail, P.; Migalska-Zalas, A.; Sahraoui, B.; Karakaya, M.

    2013-11-01

    Degenerate four-wave mixing (DFWM) experiments have been performed to determine the third-order nonlinear optical (NLO) susceptibilities (χ(3)) of gold(III) maleimide dithiolate tetraphenylphosphonium, (PPh4)[Au(midt)2], (Au-P) and gold(III) maleimide dithiolate melamine melaminium hybrid solvate, (C3N6H6)(CNH7+)[Au(midt)2]-·2DMF·2H2O, (Au-Mel). Ab-initio quantum mechanical calculations (time-dependent Hartree-Fock (TDHF) method) of Au-P and Au-Mel have been carried out to compute the electric dipole moment (μ), the dispersion-free and frequency-dependent dipole polarizability (α) and the second hyperpolarizability (γ) values. These theoretical calculations are in good agreement with the experimentally obtained results by the DFWM technique. All the investigations show clearly the effect played by the counter ion on the resulting NLO properties of the two gold complexes.

  1. Complexities in complex posttraumatic stress disorder in inpatient women: evidence from cluster analysis of MCMI-III Personality Disorder Scales.

    PubMed

    Allen, J G; Huntoon, J; Evans, R B

    1999-12-01

    Herman's (1992a) clinical formulation of complex posttraumatic stress disorder (PTSD) captures the extensive diagnostic comorbidity seen in patients with a history of repeated interpersonal trauma and severe psychiatric disorders. Yet the sheer breadth of symptoms and personality disturbance encompassed by complex PTSD limits its descriptive usefulness. This study employed cluster analysis of the MCMI-III (Millon, 1994) personality disorder scales to determine whether there is meaningful heterogeneity within a group of 227 severely traumatized women who were treated in a specialized inpatient program. The analysis distinguishes 5 clinically meaningful clusters, which we label alienated, withdrawn, aggressive, suffering, and adaptive. The study examined differences among these 5 personality disorder clusters on the MCMI-III clinical syndrome scales, as well as on the Brief Symptom Inventory (Derogatis, 1993), Dissociative Experiences Scale (E. M. Bernstein & Putnam, 1986), Adult Attachment Scale (Collins & Read, 1990), and Childhood Trauma Questionnaire (D.P. Bernstein, 1995). We present a classification-tree method for determining the cluster membership of new cases and discuss the implications of the findings for diagnostic assessment, treatment, and research. PMID:10689654

  2. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  3. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    PubMed

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. PMID:26712097

  4. Sensing of phosphates by using luminescent Eu(III) and Tb(III) complexes: application to the microalgal cell Chlorella vulgaris.

    PubMed

    Nadella, Sandeep; Sahoo, Jashobanta; Subramanian, Palani S; Sahu, Abhishek; Mishra, Sandhya; Albrecht, Markus

    2014-05-12

    Phenanthroline-based chiral ligands L(1) and L(2) as well as the corresponding Eu(III) and Tb(III) complexes were synthesized and characterized. The coordination compounds show red and green emission, which was explored for the sensing of a series of anions such as F(-), Cl(-), Br(-), I(-), NO3(-), NO2(-), HPO4(2-), HSO4(-), CH3COO(-), and HCO3(-). Among the anions, HPO4(2-) exhibited a strong response in the emission property of both europium(III) and terbium(III) complexes. The complexes showed interactions with the nucleoside phosphates adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). Owing to this recognition, these complexes have been applied as staining agents in the microalgal cell Chlorella vulgaris. The stained microalgal cells were monitored through fluorescence microscopy and scanning electron microscopy. Initially, the complexes bind to the outer cell wall and then enter the cell wall through holes in which they probably bind to phospholipids. This leads to a quenching of the luminescence properties. PMID:24692292

  5. Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)-Porphyrin Complex.

    PubMed

    Pascual-Álvarez, Alejandro; Vallejo, Julia; Pardo, Emilio; Julve, Miguel; Lloret, Francesc; Krzystek, J; Armentano, Donatella; Wernsdorfer, Wolfgang; Cano, Joan

    2015-11-23

    We report on a novel manganese(III)-porphyrin complex with the formula [Mn(III) (TPP)(3,5-Me2 pyNO)2 ]ClO4 ⋅CH3 CN (2; 3,5-Me2 pyNO=3,5-dimethylpyridine N-oxide, H2 TPP=5,10,15,20-tetraphenylporphyrin), in which the Mn(III) ion is six-coordinate with two monodentate 3,5-Me2 pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero-field splitting (D=-3.8 cm(-1) ), low rhombicity (E/|D|=0.04) of the high-spin Mn(III) ion, and, ultimately, for the observation of slow magnetic-relaxation effects (Ea =15.5 cm(-1) at H=1000 G) in this rare example of a manganese-based single-ion magnet (SIM). Structural, magnetic, and electronic characterizations were carried out by means of single-crystal diffraction studies, variable-temperature direct- and alternating-current measurements and high-frequency and -field EPR spectroscopic analysis followed by quantum-chemical calculations. Slow magnetic-relaxation effects were also observed in the already known analogous compound [Mn(III) (TPP)Cl] (1; Ea =10.5 cm(-1) at H=1000 G). The results obtained for 1 and 2 are compared and discussed herein. PMID:26481722

  6. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  7. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4

    PubMed Central

    Webster, Brant M.; Colombi, Paolo; Jäger, Jens; Lusk, C. Patrick

    2014-01-01

    SUMMARY The maintenance of nuclear compartmentalization by the nuclear envelope and nuclear pore complexes (NPCs) is essential for cell function; loss of compartmentalization is associated with cancers, laminopathies and aging. We uncovered a pathway that surveils NPC assembly intermediates to promote the formation of functional NPCs. Surveillance is mediated by Heh2, a member of the LEM (Lap2-emerin-MAN1) family of integral inner nuclear membrane proteins, which binds to an early NPC assembly intermediate, but not to mature NPCs. Heh2 recruits the Endosomal Sorting Complex Required for Transport (ESCRT) – III subunit Snf7 and the AAA-ATPase Vps4 to destabilize and clear defective NPC assembly intermediates. When surveillance or clearance is compromised, malformed NPCs accumulate in a Storage of Improperly assembled Nuclear Pore Complexes compartment, or SINC. The SINC is retained in old mothers to prevent loss of daughter lifespan, highlighting a continuum of mechanisms to ensure nuclear compartmentalization. PMID:25303532

  8. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  9. Synthesis, characterization, X-ray structure and photoluminescence properties of two Ce(III) complexes derived from pentadentate ligands

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Akgün, Eyup; Ceyhan, Gökhan

    2015-12-01

    In this study, two new Ce(III) complexes [Ce(L1)(NO3)3]•H2O and [Ce(L2)(NO3)3]•H2O were synthesized and characterized by spectroscopic and analytical methods where L1 and L2 are pentadentate diimine ligands. Molecular structure of [Ce(L1)(NO3)3]•H2O was determined by single crystal X-ray diffraction study. The complex was found to crystallize as [Ce(L1)(NO3)3] H2O. In the complex, the ligand L1 coordinates to the Ce(III) ion with the N3O2 donor set and the Ce(III) ion sits within the cavity of acyclic ligand. The Ce(III) ion is 11-coordinated by three nitrogen atoms from the ligand and eight O atoms, six of which come from three nitrate ions, two from the ligand. In the structure of the complex, water molecules link molecules together to form a 3D hydrogen bond network. Thermal behavior of the Schiff base ligands and their Ce(III) complexes metal complexes were studied under nitrogen atmosphere in the temperature range of 20-800 °C. Thermal stability of the ligands increased upon complexation with Ce(III) ion. In the UV-Vis spectra of Ce(III) complexes, new absorption bands appeared at 340-450 nm and these new bands were attributed to metal-ligand (M-L) charge transitions. Photoluminescence properties of the ligands and their Ce(III) complexes were examined.

  10. Increasing the bioavailability of Ru(III) anticancer complexes through hydrophobic albumin interactions.

    PubMed

    Webb, Michael I; Wu, Boris; Jang, Thalia; Chard, Ryan A; Wong, Edwin W Y; Wong, May Q; Yapp, Donald T T; Walsby, Charles J

    2013-12-01

    A series of pyridine-based derivatives of the clinically successful Ru(III)-based complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (KP1339) have been synthesized to probe the effect of hydrophobic interactions with human serum albumin (hsA) on anticancer activity. The solution behavior and protein interactions of the new compounds were characterized by using electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. These studies have revealed that incorporation of hydrophobic substituents at the 4'-position of the axial pyridine ligand stabilizes non-coordinate interactions with hsA. As a consequence, direct coordination to the protein is inhibited, which is expected to increase the bioavailability of the complexes, thus potentially leading to improved anticancer activity. By using this approach, the lifetimes of hydrophobic protein interactions were extended from 2 h for the unsubstituted pyridine complex, to more than 24 h for several derivatives. Free complexes were tested for their anticancer activity against the SW480 human colon carcinoma cell line, exhibiting low cytotoxicity. Pre-treatment with hsA improved the solubility of every compound and led to some changes in activity. Particularly notable was the difference in activity between the methyl- and dibenzyl-functionalized complexes. The former shows reduced activity after incubation with hsA, indicating reduced bioavailability due to protein coordination. The latter exhibits little activity on its own but, following treatment with hsA, exhibited significant cytotoxicity, which is consistent with its ability to form non-coordinate interactions with the protein. Overall, our studies demonstrate that non-coordinate interactions with hsA are a viable target for enhancing the activity of Ru(III)-based complexes in vivo. PMID:24203647

  11. Synthesis, characterization and biological studies of new antimony(III) halide complexes with ω-thiocaprolactam.

    PubMed

    Ozturk, Ibrahim I; Banti, Christina N; Manos, Manos J; Tasiopoulos, Anastasios J; Kourkoumelis, Nikolaos; Charalabopoulos, Konstantinos; Hadjikakou, Sotiris K

    2012-04-01

    Three new antimony(III) halide complexes (SbX(3), X=Cl, Br and I) with the heterocyclic thione ω-thiocaprolactam (1-azacycloheptane-2-thione, (Hthcl)) of formulae {[SbCl(2)(μ(2)-Cl)(Hthcl)(2)](n)} (1), {[(SbBr(2)(μ(2)-Br)(Hthcl)(2))(2)]} (2) and {[(SbI(2)(μ(2)-I)(Hthcl)(2))(2)]} (3) were synthesized from the reaction of antimony(III) halides with ω-thiocaprolactam in 1:2 stoichiometry. The complexes were characterized by elemental analysis, FT-IR spectroscopy, (1)H, (13)C NMR spectroscopy and Thermal Gravimetry-Differential Thermal Analysis (TG-DTA). Crystal structures of the ligand ω-thiocaprolactam and its complexes 1-3 were determined with single crystal X-ray diffraction analysis. Complexes 1-3 and ω-thiocaprolactam were evaluated for their in vitro cytotoxic activity against leiomyosarcoma (LMS) and human breast adenocarcinoma (MCF-7) tumor cell lines. Antimony complexes 1-3 exhibit strong antiproliferative activity against both cell lines tested. The higher such activity was found for 3 with IC(50) values of 0.12±0.04 μM (LMS) and 0.76±0.16 μM (MCF-7) which are 60 and 10 times respectively, stronger than that of cisplatin. The influence of these complexes 1-3 and ω-thiocaprolactam upon the catalytic peroxidation of linoleic acid to hyperoxolinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. The results were shown negligible inhibitory activity of 1-3 against LOX. PMID:22377717

  12. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction.

    PubMed

    Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Morris, James; Wright, Joseph A; Bochmann, Manfred

    2015-10-01

    The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)-CO is inactive and gold(III)-CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d (8) ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)-CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M-CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism. PMID:26601313

  13. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction

    PubMed Central

    Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Morris, James; Wright, Joseph A.; Bochmann, Manfred

    2015-01-01

    The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)–CO is inactive and gold(III)–CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d8 ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)–CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M–CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism. PMID:26601313

  14. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-01

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. PMID:26086996

  15. Synthesis and characterization of Fe (III) complex of an azo dye derived from (2-amino-5-chlorophenyl) phenyl methanone

    NASA Astrophysics Data System (ADS)

    Mini, S.; Meena, S. S.; Bhatt, Pramod; Sadasivan, V.; Vidya, V. G.

    2013-06-01

    The synthesis of Fe (III) complex with an azo dye derived from (2-Amino-5-Chlorophenyl) phenyl methanone is presented. The newly prepared ligand and complex are characterized by elemental analysis, IR, UV-Visible and Mössbauer spectral studies, Molar conductance, and magnetic susceptibility measurements. The thermal stability of the complex is determined from the thermo gravimetric analysis.

  16. Synthesis, characterization, DNA binding and catalytic applications of Ru(III) complexes.

    PubMed

    Shoair, A F; El-Shobaky, A R; Azab, E A

    2015-12-01

    A new series of azodye ligands 5-chloro-3-hydroxy-4-(aryldiazenyl)pyridin-2(1H)-one (HLn) were synthesized by coupling of 5-chloro-3-hydroxypyridin-2(1H)-one with aniline and its p-derivatives. These ligands and their Ru(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl were characterized by elemental analyses, IR, (1)H NMR and UV-Visible spectra as well as magnetic and thermal measurements. The molar conductance measurements proved that all the complexes are electrolytes. IR spectra show that the ligands (HLn) acts as a monobasic bidentate ligand by coordinating via the nitrogen atom of the azo group (NN) and oxygen atom of the deprotonated phenolic OH group, thereby forming a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. The calf thymus DNA binding activity of the ligands (HLn) and their Ru(III) complexes were studied by absorption spectra and viscosity measurements. The mechanism and the catalytic oxidation of benzyl alcohol by trans-[Ru(Ln)2(AsPh3)2]Cl with hydrogen peroxide as co-oxidant were described. PMID:26143325

  17. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1

    PubMed Central

    Althoff, Thorsten; Mills, Deryck J; Popot, Jean-Luc; Kühlbrandt, Werner

    2011-01-01

    The respiratory chain in the inner mitochondrial membrane contains three large multi-enzyme complexes that together establish the proton gradient for ATP synthesis, and assemble into a supercomplex. A 19-Å 3D map of the 1.7-MDa amphipol-solubilized supercomplex I1III2IV1 from bovine heart obtained by single-particle electron cryo-microscopy reveals an amphipol belt replacing the membrane lipid bilayer. A precise fit of the X-ray structures of complex I, the complex III dimer, and monomeric complex IV indicates distances of 13 nm between the ubiquinol-binding sites of complexes I and III, and of 10–11 nm between the cytochrome c binding sites of complexes III and IV. The arrangement of respiratory chain complexes suggests two possible pathways for efficient electron transfer through the supercomplex, of which the shorter branch through the complex III monomer proximal to complex I may be preferred. PMID:21909073

  18. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.

    PubMed

    Lippold, H; Evans, N D M; Warwick, P; Kupsch, H

    2007-03-01

    Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio. PMID:17140629

  19. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level. PMID:25576940

  20. Synthesis, structures and stability of amido gold(iii) complexes with 2,2':6',2''-terpyridine.

    PubMed

    Iwashita, Satoshi; Saito, Yoshiaki; Ohtsu, Hideki; Tsuge, Kiyoshi

    2014-11-14

    Three gold(iii) complexes with terminal amido ligands were prepared by the reaction of [Au(III)(trpy)(OH)](ClO4)2 and primary amines having electron-withdrawing groups such as 2-amino-4-chloropyrimidine, 2-amino-5-chloro-pyridine, and 2-aminopyrimidine. Conversion of the amido ligands into the imido or amine ligands resulted in the decomposition of the complexes by intramolecular redox reaction or the release of amine ligands, respectively. PMID:25247831

  1. Complex III deficiency due to an in-frame MT-CYB deletion presenting as ketotic hypoglycemia and lactic acidosis☆

    PubMed Central

    Mori, Mari; Goldstein, Jennifer; Young, Sarah P.; Bossen, Edward H.; Shoffner, John; Koeberl, Dwight D.

    2015-01-01

    Complex III deficiency due to a MT-CYB mutation has been reported in patients with myopathy. Here, we describe a 15-year-old boy who presented with metabolic acidosis, ketotic hypoglycemia and carnitine deficiency. Electron transport chain analysis and mitochondrial DNA sequencing on muscle tissue lead to the eventual diagnosis of complex III deficiency. This case demonstrates the critical role of muscle biopsies in a myopathy work-up, and the clinical efficacy of supplement therapy. PMID:26937408

  2. Complex III deficiency due to an in-frame MT-CYB deletion presenting as ketotic hypoglycemia and lactic acidosis.

    PubMed

    Mori, Mari; Goldstein, Jennifer; Young, Sarah P; Bossen, Edward H; Shoffner, John; Koeberl, Dwight D

    2015-09-01

    Complex III deficiency due to a MT-CYB mutation has been reported in patients with myopathy. Here, we describe a 15-year-old boy who presented with metabolic acidosis, ketotic hypoglycemia and carnitine deficiency. Electron transport chain analysis and mitochondrial DNA sequencing on muscle tissue lead to the eventual diagnosis of complex III deficiency. This case demonstrates the critical role of muscle biopsies in a myopathy work-up, and the clinical efficacy of supplement therapy. PMID:26937408

  3. Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    PubMed Central

    Ewais, Hassan A; Dahman, Faris D; Abdel-Khalek, Ahmed A

    2009-01-01

    Background In this paper, the kinetics of oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ (HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [CrIII(HIDA)(IDA)(H2O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study. Results The results have shown that the reaction is first order with respect to both [IO4-] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [CrIII(IDA)(Val)(H2O)2] and [CrIII(IDA)(Arg)(H2O)2] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3 (1.82 × 10-3 s-1), is greater than the value of k1 (1.22 × 10-3 s-1) for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+ at 45.0°C and I = 0.20 mol dm-3. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4- to chromium(III). Conclusion The oxidation of [CrIII(HIDA)(Val)(H2O)2]+ and [CrIII(HIDA)(Arg)(H2O)2]+ by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [CrIII(HIDA)(Arg)(H2O)2]+, k3, is greater than the value of k1 for the oxidation of [CrIII(HIDA)(Val)(H2O)2]+. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent

  4. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  5. Characterization of the RNA polymerase II and III complexes in Leishmania major.

    PubMed

    Martínez-Calvillo, Santiago; Saxena, Alka; Green, Amanda; Leland, Aaron; Myler, Peter J

    2007-04-01

    Transcription of protein-coding genes in Leishmania major and other trypanosomatids differs from that in most eukaryotes and bioinformatic analyses have failed to identify several components of the RNA polymerase (RNAP) complexes. To increase our knowledge about this basic cellular process, we used tandem affinity purification (TAP) to identify subunits of RNAP II and III. Mass spectrometric analysis of the complexes co-purified with TAP-tagged LmRPB2 (encoded by LmjF31.0160) identified seven RNAP II subunits: RPB1, RPB2, RPB3, RPB5, RPB7, RPB10 and RPB11. With the exception of RPB10 and RPB11, and the addition of RPB8, these were also identified using TAP-tagged constructs of one (encoded by LmjF34.0890) of the two LmRPB6 orthologues. The latter experiments also identified the RNAP III subunits RPC1 (C160), RPC2 (C128), RPC3 (C82), RPC4 (C53), RPC5 (C37), RPC6 (C34), RPC9 (C17), RPAC1 (AC40) and RPAC2 (AC19). Significantly, the complexes precipitated by TAP-tagged LmRPB6 did not contain any RNAP I-specific subunits, suggesting that, unlike in other eukaryotes, LmRPB6 is not shared by all three polymerases but is restricted to RNAP II and III, while the LmRPB6z (encoded by LmjF25.0140) isoform is limited to RNAP I. Similarly, we identified peptides from only one (encoded by LmjF18.0780) of the two RPB5 orthologues and one (LmjF13.1120) of the two RPB10 orthologues, suggesting that LmRPB5z (LmjF18.0790) and LmRPB10z (LmjF13.1120) are also restricted to RNAP I. In addition to these RNAP subunits, we also identified a number of other proteins that co-purified with the RNAP II and III complexes, including a potential transcription factor, several histones, an ATPase involved in chromosome segregation, an endonuclease, four helicases, RNA splicing factor PTSR-1, at least two RNA binding proteins and several proteins of unknown function. PMID:17275824

  6. Structural, spectral, DFT, pH-metric and biological studies on Cr(III), Mn(II) and Fe(III) complexes of dithione heterocyclic thiosemicarbazide ligand

    NASA Astrophysics Data System (ADS)

    Abu El-Reash, Gaber M.; El-Gammal, Ola A.; El-Gamil, Mohammed M.

    2013-03-01

    Cr(III), Mn(II) and Fe(III) complexes derived from the quadruple potential dithione heterocyclic thiosemicarbazide ligand (H2PET) have been prepared and characterized by conventional techniques. The isolated complexes were assigned the formulae, [Cr(HPET)(H2O)2Cl2]·3H2O, [Mn(HPET)(H2O)Cl]2 and [Fe(HPET)(H2O)2Cl2]·H2O, respectively. IR data revealed that the ligand behaves as monobasic bidentate through (Cdbnd N)py and (Csbnd S) groups in both Cr(III) and Fe(III) complexes. In the binuclear Mn(II) complex, H2PET acts as NSNS monobasic tetradente via (Cdbnd N)py, (Csbnd S), (Cdbnd S) and the new azomethine, (Ndbnd C)* groups. An octahedral geometry for all complexes was proposed. The bond lengths, bond angles, HOMO, LUMO and dipole moment have been calculated by DFT using materials studio program to confirm the geometry of H2PET and its metal complexes. The ligand association constant and the stability constants of its complexes in addition to the thermodynamic parameters were calculated from pH metrically at 298, 308 and 318°K in 50% dioxane-water mixture, respectively. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. Moreover, the anti-oxidant (using ABTS and DPPH methods), anti-hemolytic, and cytotoxic activities of the compounds have been tested.

  7. Paramagnetic titanium(III) and zirconium(III) metallocene complexes as precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes.

    PubMed

    Helten, Holger; Dutta, Barnali; Vance, James R; Sloan, Matthew E; Haddow, Mairi F; Sproules, Stephen; Collison, David; Whittell, George R; Lloyd-Jones, Guy C; Manners, Ian

    2013-01-01

    Complexes of Group 4 metallocenes in the +3 oxidation state and amidoborane or phosphidoborane function as efficient precatalysts for the dehydrocoupling/dehydrogenation of amine-boranes, such as Me(2) NH⋅BH(3). Such Ti(III) -amidoborane complexes are generated in [Cp(2)Ti]-catalyzed amine-borane dehydrocoupling reactions, for which diamagnetic M(II) and M(IV) species have been previously postulated as precatalysts and intermediates. PMID:23197391

  8. New insights into structure and luminescence of Eu(III) and Sm(III) complexes of the 3,4,3-LI(1,2-HOPO) ligand.

    PubMed

    Daumann, Lena J; Tatum, David S; Snyder, Benjamin E R; Ni, Chengbao; Law, Ga-lai; Solomon, Edward I; Raymond, Kenneth N

    2015-03-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M(III)L](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu(III) as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu(III) and Sm(III) complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  9. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.

    PubMed

    Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S

    2016-09-14

    Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. PMID:27191616

  10. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  11. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere.

    PubMed

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-12

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found. PMID:25399782

  12. Iridium(III) complexes with phenyl-tetrazoles as cyclometalating ligands.

    PubMed

    Monti, Filippo; Baschieri, Andrea; Gualandi, Isacco; Serrano-Pérez, Juan J; Junquera-Hernández, José M; Tonelli, Domenica; Mazzanti, Andrea; Muzzioli, Sara; Stagni, Stefano; Roldan-Carmona, Cristina; Pertegás, Antonio; Bolink, Henk J; Ortí, Enrique; Sambri, Letizia; Armaroli, Nicola

    2014-07-21

    Ir(III) cationic complexes with cyclometalating tetrazolate ligands were prepared for the first time, following a two-step strategy based on (i) a silver-assisted cyclometalation reaction of a tetrazole derivative with IrCl3 affording a bis-cyclometalated solvato-complex P ([Ir(ptrz)2(CH3CN)2](+), Hptrz = 2-methyl-5-phenyl-2H-tetrazole); (ii) a substitution reaction with five neutral ancillary ligands to get [Ir(ptrz)2L](+), with L = 2,2'-bypiridine (1), 4,4'-di-tert-butyl-2,2'-bipyridine (2), 1,10-phenanthroline (3), and 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (4), and [Ir(ptrz)2L2](+), with L = tert-butyl isocyanide (5). X-ray crystal structures of P, 2, and 3 were solved. Electrochemical and photophysical studies, along with density functional theory calculations, allowed a comprehensive rationalization of the electronic properties of 1-5. In acetonitrile at 298 K, complexes equipped with bipyridine or phenanthroline ancillary ligands (1-3) exhibit intense and structureless emission bands centered at around 540 nm, with metal-to-ligand and ligand-to-ligand charge transfer (MLCT/LLCT) character; their photoluminescence quantum yields (PLQYs) are in the range of 55-70%. By contrast, the luminescence band of 5 is weak, structured, and blue-shifted and is attributed to a ligand-centered (LC) triplet state of the tetrazolate cyclometalated ligand. The PLQY of 4 is extremely low (<0.1%) since its lowest level is a nonemissive triplet metal-centered ((3)MC) state. In rigid matrix at 77 K, all of the complexes exhibit intense luminescence. Ligands 1-3 are also strong emitters in solid matrices at room temperature (1% poly(methyl methacrylate) matrix and neat films), with PLQYs in the range of 27-70%. Good quality films of 2 could be obtained to make light-emitting electrochemical cells that emit bright green light and exhibit a maximum luminance of 310 cd m(-2). Tetrazolate cyclometalated ligands push the emission of Ir(III) complexes to the blue, when compared to

  13. A comparative study of the biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus and Chlorella vulgaris

    SciTech Connect

    Aksu, Z.; Calik, A.

    1999-03-01

    In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/L initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.

  14. Dynamic Behavior of Arabidopsis eIF4A-III, Putative Core Protein of Exon Junction Complex: Fast Relocation to Nucleolus and Splicing Speckles under Hypoxia[W

    PubMed Central

    Koroleva, O.A.; Calder, G.; Pendle, A.F.; Kim, S.H.; Lewandowska, D.; Simpson, C.G.; Jones, I.M.; Brown, J.W.S.; Shaw, P.J.

    2009-01-01

    Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell. PMID:19435936

  15. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II).

    PubMed

    Abdel-Latif, S A; Hassib, H B; Issa, Y M

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the pK(a) values spectrophotometrically. PMID:17084104

  16. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, S. A.; Hassib, H. B.; Issa, Y. M.

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the p Ka values spectrophotometrically.

  17. A TRLFS study on the complexation of novel BTP type ligands with Cm(III).

    PubMed

    Beele, Björn B; Rüdiger, Elias; Schwörer, Felicitas; Müllich, Udo; Geist, Andreas; Panak, Petra J

    2013-09-14

    Two BTP-type N-donor ligands with different numbers of aromatic nitrogen atoms (2,6-bis(4-ethyl-pyridazin-1-yl)pyridine, Et-BDP and 2,6-bis(4-(n)propyl-2,3,5,6-tetrazine-1-yl)pyridine, (n)Pr-Tetrazine) have been synthesized and characterized by NMR and MS techniques. The complexation with Cm(III) in 2-propanol-water (1 : 1, vol.) is studied for both ligands using time resolved laser-induced fluorescence spectroscopy (TRLFS) and the complexation properties are compared to (n)Pr-BTP. With increasing the ligand concentration three different species, the 1 : 1-, 1 : 2- and 1 : 3-complex, were found. Log β3 values of 7.6 for the formation of Cm(Et-BDP)3 and 9.2 for the formation of Cm((n)Pr-Tetrazine)3 are determined. The complexation with (n)Pr-Tetrazine shows slow kinetics. Thermodynamic data of the complexation reactions are determined in a temperature range of 25 °C-60 °C. The complexation with Et-BDP is exothermic (ΔH = -16.3 ± 1.2 kJ mol(-1)) and exergonic (ΔG = -43.8 ± 2.6 kJ mol(-1)) whereas the complexation with (n)Pr-Tetrazine is endothermic (ΔH = 43.9 ± 3.1 kJ mol(-1)) and exergonic (ΔG = -51.7 ± 2.2 kJ mol(-1)). In the case of the latter the complexation is driven by a highly positive reaction entropy change (ΔS = 320.6 ± 15.4 J mol(-1) K(-1)). In comparison to (n)Pr-BTP, less negative ΔG values were found for the complexation of Cm(III) with both ligands. PMID:23552476

  18. Dual Emissive-Reflective Display Materials with Large Emission Switching Using Highly Luminescent Lanthanide(III) Complex and Electrochromic Material

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kenji; Nakamura, Kazuki; Kobayashi, Norihisa

    2013-05-01

    Electroswitching of emission and coloration was achieved by a combination of a luminescent Eu(III) complex and an electrochromic molecule of diheptyl viologen (HV2+), in order to utilize them as novel display devices with dual emissive-reflective modes. The coloration was associated with the HV2+ electrochromism. Emission control was also achieved by the HV2+ electrochromism via intermolecular energy transfer from the excited state of the Eu(III) ion to the HV+. In order to improve ON-OFF contrast in emission, the emission quantum yield of Eu(III) complex were considerably improved using low vibrational phosphine oxide ligands, resulting in the large control of emission switching.

  19. Synthesis, Characterization, and Reactions of Isolable (β-Diketiminato)Nb(III) Imido Complexes.

    PubMed

    Tomson, Neil C; Arnold, John; Bergman, Robert G

    2010-11-01

    We have investigated both the chemical reduction of (BDI)Nb(V) imido complexes (BDI = HC[C(Me)NAr](2); Ar = 2,6-(i)Pr(2)-C(6)H(3)) to the formal Nb(III) oxidation state and the ability of these Nb(III) complexes to behave as two-electron reductants. The reduction of the Nb(V) species was found to depend heavily on the nature of available supporting ligands, but the chemistry of the reduced compounds proceeded cleanly with a number of unsaturated organic reagents. Accordingly, the novel Nb(V) bis(imido) complexes supported by the monoazabutadiene (mad) ligand (mad)Nb(N(t)Bu)(NAr)(L') (L' = py, thf) were formed by either KC(8) reduction of (BDI)Nb(N(t)Bu)Cl(2)(py) in the absence of strong π-acids or by H(2) reduction of the Nb(V) dimethyl complex (BDI)Nb(N(t)Bu)Me(2) in THF. These products are likely formed though an intramolecular, 2 e(-) reductive C-N bond cleavage, as has been observed previously for related Group 4 systems, suggesting that transient Nb(III) intermediates were present in both cases. In the presence of 1,2-bis(dimethylphosphino)ethane (dmpe), KC(8) reduction of (BDI)Nb(N(t)Bu)Cl(2)(py) was arrested at the Nb(IV) oxidation state to give (BDI)Nb(N(t)Bu)Cl(dmpe), which was characterized by solution-state EPR spectroscopy as a Nb-centered paramagnet with strong coupling to the two equivalent phosphorus nuclei (A(iso){(93)Nb} = 120.5×10(-4) cm(-1), A(iso){(31)P} = 31.0×10(-4) cm(-1), g(iso) = 1.9815). When strong π-acids were used to intercept the thermally unstable Nb(III) complex (BDI)Nb(N(t)Bu)(py) prior to reductive cleavage of the ligand C-N bond, the thermally stable Nb(III) species (BDI)Nb(N(t)Bu)(CX)(2)(L″) (X = O, L″ = py; X = NXyl, L″ = CNXyl; Xyl = 2,6-Me(2)-C(6)H(3)) were obtained in good yields. The Nb(III) complexes (BDI)Nb(N(t)Bu)py, (BDI)Nb(N(t)Bu)(CO)(2)(py) and (BDI)Nb(N(t)Bu)(CO)(2) were subsequently investigated for their ability to serve as two-electron reducing reagents for both metal-ligand multiple bond formation and

  20. Synthesis, Characterization, and Reactions of Isolable (β-Diketiminato)Nb(III) Imido Complexes*

    PubMed Central

    Tomson, Neil C.; Arnold, John; Bergman, Robert G.

    2010-01-01

    We have investigated both the chemical reduction of (BDI)Nb(V) imido complexes (BDI = HC[C(Me)NAr]2; Ar = 2,6-iPr2-C6H3) to the formal Nb(III) oxidation state and the ability of these Nb(III) complexes to behave as two-electron reductants. The reduction of the Nb(V) species was found to depend heavily on the nature of available supporting ligands, but the chemistry of the reduced compounds proceeded cleanly with a number of unsaturated organic reagents. Accordingly, the novel Nb(V) bis(imido) complexes supported by the monoazabutadiene (mad) ligand (mad)Nb(NtBu)(NAr)(L′) (L′ = py, thf) were formed by either KC8 reduction of (BDI)Nb(NtBu)Cl2(py) in the absence of strong π-acids or by H2 reduction of the Nb(V) dimethyl complex (BDI)Nb(NtBu)Me2 in THF. These products are likely formed though an intramolecular, 2 e− reductive C–N bond cleavage, as has been observed previously for related Group 4 systems, suggesting that transient Nb(III) intermediates were present in both cases. In the presence of 1,2-bis(dimethylphosphino)ethane (dmpe), KC8 reduction of (BDI)Nb(NtBu)Cl2(py) was arrested at the Nb(IV) oxidation state to give (BDI)Nb(NtBu)Cl(dmpe), which was characterized by solution-state EPR spectroscopy as a Nb-centered paramagnet with strong coupling to the two equivalent phosphorus nuclei (Aiso{93Nb} = 120.5×10−4 cm−1, Aiso{31P} = 31.0×10−4 cm−1, giso = 1.9815). When strong π-acids were used to intercept the thermally unstable Nb(III) complex (BDI)Nb(NtBu)(py) prior to reductive cleavage of the ligand C–N bond, the thermally stable Nb(III) species (BDI)Nb(NtBu)(CX)2(L″) (X = O, L″ = py; X = NXyl, L″ = CNXyl; Xyl = 2,6-Me2-C6H3) were obtained in good yields. The Nb(III) complexes (BDI)Nb(NtBu)py, (BDI)Nb(NtBu)(CO)2(py) and (BDI)Nb(NtBu)(CO)2 were subsequently investigated for their ability to serve as two-electron reducing reagents for both metal-ligand multiple bond formation and for the reduction of organic π-systems. The reduction of

  1. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal. PMID:22738207

  2. Antioxidant, tautomerism and antibacterial studies of Fe(III)-1,2,4-triazole based complexes

    NASA Astrophysics Data System (ADS)

    Kharadi, G. J.

    2013-06-01

    New Fe(III) complexes have been synthesized by the reactions of ferric nitrate with Schiff base derived from 3-substituted phenyl-4-amino-5-hydrazino-1,2,4-triazole and indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [FeLn(H2O)(OH)]·xH2O. Structural and spectroscopic properties have been studied on the basis of elemental analyses, infrared spectra, 1H and 13H NMR spectra, electronic spectra, magnetic measurements and FAB mass spectra. FT-IR, 1H and 13H NMR studies reveal that the ligand (Ln) exists in the tautomeric enol form in both the states with intramolecular hydrogen bonding. Magnetic moment and reflectance spectral studies reveal that an octahedral geometry has been assigned to all the prepared complexes. FRAP values indicate that all the compounds have a ferric reducing antioxidant power. The compounds 2 and 3 showed relatively high antioxidant activity while compound 1 and 4 shows poor antioxidant power. Also good antimicrobial activities of the complexes against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli have been found compared to its free ligands.

  3. QSPR prediction of the stability constants of gadolinium(III) complexes for magnetic resonance imaging.

    PubMed

    Dioury, Fabienne; Duprat, Arthur; Dreyfus, Gérard; Ferroud, Clotilde; Cossy, Janine

    2014-10-27

    Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources). PMID:25181704

  4. Eu(III) and UO{sub 2}{sup 2+} complexation by o-silicic acid

    SciTech Connect

    Choppin, G.R.; Jensen, M.P.

    1995-12-01

    Solvent extraction and fluorescent intensity measurements have been used to obtain stability constant for the complexation of Eu(III) and UO{sub 2}{sup 2+} by o-Si(OH){sub 4} in 0.1 M(NaClO{sub 4}) solution. The values were: for Eu{sup 3+} + OSi(OH){sub 3}{sup -}, log {Beta}{sub 1} = 7.25 {plus_minus} 0.34, log {Beta}{sub 2} = 11.7{plus_minus}0.4; for UO{sub 2}{sup 2+} + OSi(OH){sub 3}{sup -}, log {Beta}{sub 1} = 6.70{plus_minus}0.05. These values fit well in a linear free energy correlation of the log {Beta}{sub i} values of hydrolysis and o-silicate complexation of di- and tri- valent cations. Speciation calculations indicated that Eu-OSi(OH){sub 3} complexes are significant species for natural waters of pH 6 - 7.5 in equilibrium with atmospheric CO{sub 2} and with [o-Si(OH){sub 4}] {>=} 0.03 mM. Silicate complexation of UO{sub 2}{sup 2+} does not compete with hydrolysis and carbonate complexation under these conditions.

  5. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid.

    PubMed

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO4) and room temperature. The fluorescence lifetimes were determined to be 23.2±2.2 ns for Am3+(aq) and 27.2±1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D1-(7)F1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be logβ110=5.42±0.16. PMID:20943431

  6. Synthesis, crystal structure, and biological activities of two chiral mononuclear Mn((III)) complexes.

    PubMed

    Wang, Bi-Wei; Jiang, Lin; Shu, Si-Sheng; Li, Bo-Wen; Dong, Zhang; Gu, Wen; Liu, Xin; Tian, Jin-Lei

    2015-02-01

    Two new chiral mononuclear Mn((III)) complexes, [MnL((R)) Cl (C2 H5 OH)]•C2 H5 OH () and [MnL((S)) (CH3 OH)2 ]Cl•CH3 OH (), {H2 L = (R,R)-or (S,S)-N,N'-bis-(2-hydroxy-1-naphthalidehydene)-cyclohexanediamine} were synthesized and characterized by various physicochemical techniques. Bond valence sum (BVS) calculations and the Jahn-Teller effect indicate that the Mn centers are in a +3 oxidation state. The statuses of the two complexes in the solution were confirmed as a pair of enantiomers by electrospray ionization, mass spectrometry (ESI-MS) spectrum. The binding ability of the complexes with calf thymus CT-DNA was investigated by spectroscopic and viscosity measurements. Both of the complexes could interact with CT-DNA via an intercalative mode with the order of (R-enantiomer) > (S-enantiomer). Under the physiological conditions, the two compounds exhibit efficient DNA cleavage activities without any external agent, which also follows the order of R-enantiomer > S-enantiomer. Interestingly, the concentration-dependent DNA cleavage experiments indicate an optimal concentration of 17.5 μM. In addition, the interaction of the compounds with bovine serum albumin (BSA) was also investigated, which indicated that the complexes could quench the intrinsic fluorescence of BSA by a static quenching mechanism. PMID:25403736

  7. A multi-step solvent-free mechanochemical route to indium(iii) complexes.

    PubMed

    Wang, Jingyi; Ganguly, Rakesh; Yongxin, Li; Díaz, Jesus; Soo, Han Sen; García, Felipe

    2016-05-10

    Mechanochemistry is well-established in the solid-phase synthesis of inorganic materials but has rarely been employed for molecular syntheses. In recent years, there has been nascent interest in 'greener' synthetic methods with less solvent, higher yields, and shorter reaction times being especially appealing to the fine chemicals and inorganic catalyst industries. Herein, we demonstrate that main-group indium(iii) complexes featuring bis(imino)acenaphthene (BIAN) ligands are readily accessible through a mechanochemical milling approach. The synthetic methodology reported herein not only bypasses the use of large solvent quantities and transition metal reagents for ligand synthesis, but also reduces reaction times dramatically. These new main-group complexes exhibit the potential to be reduced to indium(i) compounds, which may be employed as photosensitizers in organic catalyses and functional materials. PMID:27112317

  8. Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony

    NASA Astrophysics Data System (ADS)

    Scala, A.; Auconi, P.; Scazzocchio, M.; Caldarelli, G.; McNamara, JA; Franchi, L.

    2014-11-01

    In the last decade, the availability of innovative algorithms derived from complexity theory has inspired the development of highly detailed models in various fields, including physics, biology, ecology, economy, and medicine. Due to the availability of novel and ever more sophisticated diagnostic procedures, all biomedical disciplines face the problem of using the increasing amount of information concerning each patient to improve diagnosis and prevention. In particular, in the discipline of orthodontics the current diagnostic approach based on clinical and radiographic data is problematic due to the complexity of craniofacial features and to the numerous interacting co-dependent skeletal and dentoalveolar components. In this study, we demonstrate the capability of computational methods such as network analysis and module detection to extract organizing principles in 70 patients with excessive mandibular skeletal protrusion with underbite, a condition known in orthodontics as Class III malocclusion. Our results could possibly constitute a template framework for organising the increasing amount of medical data available for patients’ diagnosis.

  9. A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS.

    PubMed

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-01-01

    A new ruthenium ion imprinted polymer was prepared from the Ru(III) 2-thiobarbituric acid complex (the template), methacrylic acid or acrylamide (the functional monomers), and ethylene glycol dimethacrylate (the cross-linking agent) using 2,2'-azobisisobutyronitrile as the radical initiator. The ion imprinted polymer was characterized and used as a selective sorbent for the solid phase extraction of Ru(III) ions. The effects of type of functional monomer, sample volume, solution pH and flow rate on the extraction efficiency were studied in the dynamic mode. Ru(III) ion was quantitatively retained on the sorbents in the pH range from 3.5 to 10, and can be eluted with 4 mol L(-1) aqueous ammonia. The affinity of Ru(III) for the ion imprinted polymer based on the acrylamide monomer is weaker than that for the polymer based on the methacrylic acid monomer, which therefore was used in interference studies and in analytical applications. Following extraction of Ru(III) ions with the imprint and their subsequent elution from the polymer with aqueous ammonia, Ru(III) was detected by electrothermal atomic absorption spectrometry with a detection limit of 0.21 ng mL(-1). The method was successfully applied to the determination of trace amounts of Ru(III) in water, waste, road dust and platinum ore (CRM SARM 76) with a reproducibility (expressed as RSD) below 6.4 %. FigureThe new ion imprinted polymer was prepared and used for the separation of ruthenium from water and most complex environmental samples, such as road dust and platinum ore (CRM SARM 76) prior ETAAS determination. PMID:24966442

  10. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone

    PubMed Central

    Gawande, Pranita U.; Mandlik, P. R.; Aswar, A. S.

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70° and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  11. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    PubMed

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region. PMID:27230817

  12. Mutations in the UQCC1-Interacting Protein, UQCC2, Cause Human Complex III Deficiency Associated with Perturbed Cytochrome b Protein Expression

    PubMed Central

    Wijeyeratne, Xiaonan W.; van den Brand, Mariël A. M.; Leenders, Anne M.; Rodenburg, Richard J.; Reljić, Boris; Compton, Alison G.; Frazier, Ann E.; Bruno, Damien L.; Christodoulou, John; Endo, Hitoshi; Ryan, Michael T.; Nijtmans, Leo G.; Huynen, Martijn A.; Thorburn, David R.

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1

  13. Stable Blue Phosphorescence Iridium(III) Cyclometalated Complexes Prompted by Intramolecular Hydrogen Bond in Ancillary Ligand.

    PubMed

    Yi, Seungjun; Kim, Jin-Hyoung; Cho, Yang-Jin; Lee, Jiwon; Choi, Tae-Sup; Cho, Dae Won; Pac, Chyongjin; Han, Won-Sik; Son, Ho-Jin; Kang, Sang Ook

    2016-04-01

    Improvement of the stability of blue phosphorescent dopant material is one of the key factors for real application of organic light-emitting diodes (OLEDs). In this study, we found that the intramolecular hydrogen bonding in an ancillary ligand from a heteroleptic Ir(III) complex can play an important role in the stability of blue phosphorescence. To rationalize the role of intramolecular hydrogen bonding, a series of Ir(III) complexes is designed and prepared: Ir(dfppy)2(pic-OH) (1a), Ir(dfppy)2(pic-OMe) (1b), Ir(ppy)2(pic-OH) (2a), and Ir(ppy)2(pic-OMe) (2b). The emission lifetime of Ir(dfppy)2(pic-OH) (1a) (τem = 3.19 μs) in dichloromethane solution was found to be significantly longer than that of Ir(dfppy)2(pic-OMe) (1b) (τem = 0.94 μs), because of a substantial difference in the nonradiative decay rate (knr = 0.28 × 10(5) s(-1) for (1a) vs 2.99 × 10(5) s(-1) for (1b)). These results were attributed to the intramolecular OH···O═C hydrogen bond of the 3-hydroxy-picolinato ligand. Finally, device lifetime was significantly improved when 1a was used as the dopant compared to FIrpic, a well-known blue dopant. Device III (1a as dopant) achieved an operational lifetime of 34.3 h for an initial luminance of 400 nits compared to that of device IV (FIrpic as dopant), a value of 20.1 h, indicating that the intramolecular hydrogen bond in ancillary ligand is playing an important role in device stability. PMID:26991672

  14. A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes.

    PubMed

    Baschieri, Andrea; Monti, Filippo; Matteucci, Elia; Mazzanti, Andrea; Barbieri, Andrea; Armaroli, Nicola; Sambri, Letizia

    2016-08-15

    Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes. PMID:27483041

  15. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases

    PubMed Central

    Ejidike, Ikechukwu P.

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N′-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  16. Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    Mononuclear Ru(III) complexes of the type [Ru(LL)Cl2(H2O)] (LL = monobasic tridentate Schiff base anion: (1Z)-N'-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)-N-phenylethanimidamide [DAE], 4-[(1E)-N-{2-[(Z)-(4-hydroxy-3-methoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [HME], 4-[(1E)-N-{2-[(Z)-(3,4-dimethoxybenzylidene)amino]ethyl}ethanimidoyl]benzene-1,3-diol [MBE], and N-(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)benzenecarboximidoyl chloride [DEE]) were synthesized and characterized using the microanalytical, conductivity measurements, electronic spectra, and FTIR spectroscopy. IR spectral studies confirmed that the ligands act as tridentate chelate coordinating the metal ion through the azomethine nitrogen and phenolic oxygen atom. An octahedral geometry has been proposed for all Ru(III)-Schiff base complexes. In vitro anticancer studies of the synthesized complexes against renal cancer cells (TK-10), melanoma cancer cells (UACC-62), and breast cancer cells (MCF-7) was investigated using the Sulforhodamine B assay. [Ru(DAE)Cl2(H2O)] showed the highest activity with IC50 valves of 3.57 ± 1.09, 6.44 ± 0.38, and 9.06 ± 1.18 μM against MCF-7, UACC-62, and TK-10, respectively, order of activity being TK-10 < UACC-62 < MCF-7. The antioxidant activity by DPPH and ABTS inhibition assay was also examined. Scavenging ability of the complexes on DPPH radical can be ranked in the following order: [Ru(DEE)Cl2(H2O)] > [Ru(HME)Cl2(H2O)] > [Ru(DAE)Cl2(H2O)] > [Ru(MBE)Cl2(H2O)]. PMID:27597814

  17. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium(II)–Cobalt(III) Bimetallic Complex

    PubMed Central

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; Weiss, Emily A.; Meade, Thomas J.

    2015-01-01

    We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers. PMID:25671465

  18. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes.

    PubMed

    Huang, Huaiyi; Yang, Liang; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Diao, JiaJie; Liu, Jiankang; Ji, Liangnian; Long, Jiangang; Chao, Hui

    2016-03-01

    Mitochondrial fission and fusion control the shape, size, number, and function of mitochondria in the cells of organisms from yeast to mammals. The disruption of mitochondrial fission and fusion is involved in severe human diseases such as Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Agents that can real-time track the mitochondrial dynamics are of great importance. However, the short excitation wavelengths and rapidly photo-bleaching properties of commercial mitochondrial dyes render them unsuitable for tracking mitochondrial dynamics. Thus, mitochondrial targeting agents that exhibit superior photo-stability under continual light irradiation, deep tissue penetration and at intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds employ low-energy near-infrared light and have emerged as a non-invasive tool for real-time cell imaging. Here, cyclometalated Ir(III) complexes (Ir1-Ir5) are demonstrated as one- and two-photon phosphorescent probes for the real-time imaging and tracking of mitochondrial fission and fusion. The results indicate that Ir2 is well suited for two-photon phosphorescent tracking of mitochondrial fission and fusion in living cells and in Caenorhabditis elegans (C. elegans). This study provides a practical use for mitochondrial targeting two-photon phosphorescent Ir(III) complexes. PMID:26796044

  19. Relaxation Dynamics and Magnetic Anisotropy in a Low-Symmetry Dy(III) Complex.

    PubMed

    Lucaccini, Eva; Briganti, Matteo; Perfetti, Mauro; Vendier, Laure; Costes, Jean-Pierre; Totti, Federico; Sessoli, Roberta; Sorace, Lorenzo

    2016-04-11

    The magnetic behaviour of a Dy(LH)3 complex (LH(-) is the anion of 2-hydroxy-N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]benzhydrazide) was analysed in depth from both theoretical and experimental points of view. Cantilever torque magnetometry indicated that the complex has Ising-type anisotropy, and provided two possible directions for the easy axis of anisotropy due to the presence of two magnetically non-equivalent molecules in the crystal. Ab initio calculations confirmed the strong Ising-type anisotropy and disentangled the two possible orientations. The computed results obtained by using ab initio calculations were then used to rationalise the composite dynamic behaviour observed for both pure Dy(III) phase and Y(III) diluted phase, which showed two different relaxation channels in zero and non-zero static magnetic fields. In particular, we showed that the relaxation behaviour at the higher temperature range can be correctly reproduced by using a master matrix approach, which suggests that Orbach relaxation is occurring through a second excited doublet. PMID:26960531

  20. A spectroscopic study on the formation of Cm(III) acetate complexes at elevated temperatures.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Panak, Petra J

    2014-03-14

    The complexation of Cm(III) with acetate is studied by time resolved laser fluorescence spectroscopy (TRLFS) as a function of ionic strength, ligand concentration, temperature and background electrolyte (NaClO4, NaCl and CaCl2 solution). The speciation of Cm(III) is determined by peak deconvolution of the emission spectra. To obtain the thermodynamic stability constants (log K) for the formation of [Cm(Ac)n](3-n) (n = 1-3), the experimental data are extrapolated to zero ionic strength according to the specific ion interaction theory (SIT). The results show a continuous increase of the stability constants with increasing temperature (20-90 °C). The standard reaction enthalpies and entropies (ΔrH, ΔrS) of the respective reactions are derived from the integrated Van't Hoff equation. The results show that all complexation steps are endothermic and thus entropy driven (ΔrH and ΔrS > 0). PMID:24448229

  1. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms.

    PubMed

    Ain, Qurratul; Pandey, S K; Pandey, O P; Sengupta, S K

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln=Nd(III) or Sm(III) and LH2=Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici. PMID:25579799

  2. Synthesis, spectroscopic, thermal and antimicrobial studies of neodymium(III) and samarium(III) complexes derived from tetradentate ligands containing N and S donor atoms

    NASA Astrophysics Data System (ADS)

    Ain, Qurratul; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.

    2015-04-01

    Trivalent lanthanide complexes of the type [Ln(L)Cl(H2O)2] (where Ln = Nd(III) or Sm(III) and LH2 = Schiff bases derived by the condensation of 3-(phenyl/substitutedphenyl)-4-amino-5-mercapto-1,2,4-triazole with diacetyl/benzil) have been synthesized by the reactions of anhydrous lanthanide(III) chloride with Schiff bases in methanol. The structures of the complexes have been proposed on the basis of elemental analysis, electrical conductance, magnetic moment, spectroscopic measurements (IR, 1H, 13C NMR and UV-vis spectra) and X-ray diffraction studies. The spectral data reveal that the Schiff base ligands behave as dibasic tetradentate chelating agents having coordination sites at two thiol sulfur atoms and two azomethine nitrogen atoms. The presence of coordinated water in metal complexes was confirmed by thermal and IR data of the complexes. All the Schiff bases and their metal complexes have also been screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus and antifungal activities against Aspergillus niger, Curvularia pallescens and Colletotrichum capsici.

  3. Enriched HLA-DQ3 phenotype and decreased class I major histocompatibility complex antigen expression in recurrent respiratory papillomatosis.

    PubMed Central

    Bonagura, V R; Siegal, F P; Abramson, A L; Santiago-Schwarz, F; O'Reilly, M E; Shah, K; Drake, D; Steinberg, B M

    1994-01-01

    Respiratory papillomas, caused by human papillomaviruses, are benign tumors that recur following removal. We evaluated immune function and major histocompatibility complex (MHC) phenotype and expression in these patients. MHC-independent immune function appeared normal. The frequency of peripheral blood MHC class II phenotypes was highly enriched for DQ3 and DR11, one split of DR5. Class I MHC antigen expression on papilloma tissue was markedly reduced. Together, these phenomena may facilitate papillomavirus evasion of the cellular immune response. Images PMID:7496977

  4. Experimental and theoretical approach of photophysical properties of lanthanum(III) and erbium(III) complexes of tris(methoxymethyl)-5-oxine podant

    NASA Astrophysics Data System (ADS)

    Akbar, Rifat; Baral, Minati; Kanungo, B. K.

    2014-08-01

    With the aim of evaluating the coordination behavior of a novel polydentate tripodal ligand, 5-[[3-[(8-hydroxy-5-quinolyl)methoxy]-2-[(8-hydroxy-5-quinolyl)methoxymethyl]-2-methyl propoxy]methyl]quinolin-8-ol (TMOM5OX), towards La(III) and Er(III) metal ions, the detailed investigations of photophysical properties by theoritical and experimental (potentiometric, UV-visible and fluorescence spectrophotometry) methods were carried out. TMOM5OX has been found to form protonated complex [Ln(H4L)]4+ (Ln = La or Er) below pH 3.8, which consecutively deprotonates through one-proton processes with rise of pH. The formation constants (log β) of neutral complexes have been determined to be 36.42 (LaL) and 35.76, 37.62 (for ErL and ErL2, respectively) and the pLn (pLn = -log[Ln3+]) values of 24.6 and 27.1 for La(III) and Er(III) ions, respectively, calculated at pH 7.4, indicating TMOM5OX is a good lanthanide synthetic chelator. The absorption spectroscopy of these complexes show marked spectral variations due to characteristic lanthanide transitions, which support the use of TMOM5OX as a sensitive optical pH based sensor to detect Ln(III) metal ions in biological systems. In addition, these complexes have also been shown to exhibit strong green fluorescence allowing simultaneous sensing within the visible region under physiological pH in competitive medium for both La(III) and Er(III) ions. The intense fluorescence from these compounds were revealed to intermittently get quenched under acidic and basic conditions due to the photoinduced intramolecular electron transfer from excited 8-hydroxyquinoline (8-HQ) moiety to metal ion, just an opposite process. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensors. The complexes coordination geometries were optimized using the sparkle/PM6 model and the theoretical spectrophotometric studies were carried out in order to validate the experimental findings, based on ZINDO/S methodology at configuration

  5. Tuning of spin crossover behaviour in iron(III) complexes involving pentadentate Schiff bases and pseudohalides.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Boča, Roman; Trávníček, Zdeněk; Svoboda, Ingrid; Fuess, Hartmut; Linert, Wolfgang

    2011-10-21

    Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)↑ = 122 K, T(1/2)↓ = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied. PMID:21904754

  6. Differences in protein binding and excretion of Triapine and its Fe(III) complex.

    PubMed

    Pelivan, Karla; Miklos, Walter; van Schoonhoven, Sushilla; Koellensperger, Gunda; Gille, Lars; Berger, Walter; Heffeter, Petra; Kowol, Christian R; Keppler, Bernhard K

    2016-07-01

    Triapine has been investigated as anticancer drug in multiple clinical phase I/II trials. Although promising anti-leukemic activity was observed, Triapine was ineffective against solid tumors. The reasons are currently widely unknown. The biological activity of Triapine is strongly connected to its iron complex (Fe-Triapine) which is pharmacologically not investigated. Here, novel analytical tools for Triapine and Fe-Triapine were developed and applied for cell extracts and body fluids of treated mice. Triapine and its iron complex showed a completely different behavior: for Triapine, low protein binding was observed in contrast to fast protein adduct formation of Fe-Triapine. Notably, both drugs were rapidly cleared from the body (serum half-life time <1h). Remarkably, in contrast to Triapine, where (in accordance to clinical data) basically no renal excretion was found, the iron complex was effectively excreted via urine. Moreover, no Fe-Triapine was detected in serum or cytosolic extracts after Triapine treatment. Taken together, our study will help to further understand the biological behavior of Triapine and its Fe-complex and allow the development of novel thiosemicarbazones with pronounced activity against solid tumor types. PMID:26507768

  7. Complexation of the sodium cation with sodium ionophore III: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Makrlík, Emanuel; Kvíčala, Jaroslav; Vaňura, Petr

    2014-06-01

    By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Na+(aq) + A-(aq) + 1(nb) ⇄ 1·Na+(nb) + A-(nb) occurring in the two-phase water - nitrobenzene system (A- = picrate, 1 = sodium ionophore III; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (1·Na+, A-) = 1.5 ± 0.1. Further, the stability constant of the 1·Na+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Na+) = 6.7 ± 0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the nonhydrated 1·Na+ and hydrated 1·Na+·2H2O cationic complex species were derived. In both of these complexes, the “central” cation Na+ is bound by four bonding interactions to the corresponding four oxygen atoms of the parent ligand 1. Besides, in the case of 1·Na+·2H2O complex, the considered hydrated structure is stabilized by two water molecules bound to the “central” sodium cation.

  8. Coumarin-appended phosphorescent cyclometalated iridium(iii) complexes as mitochondria-targeted theranostic anticancer agents.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-08-16

    Theranostic anticancer agents incorporating anticancer properties with capabilities for real-time treatment assessment are appealing candidates for chemotherapy. The design of mitochondria-targeted cytotoxic drugs represents a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three coumarin-appended phosphorescent cyclometalated iridium(iii) complexes 1-3 have been explored as mitochondria-targeted theranostic anticancer agents. These complexes display rich photophysical properties, which facilitate the study of their intracellular fate. All three complexes can specifically target mitochondria and show much higher antiproliferative activities than cisplatin against various cancer cells including cisplatin-resistant cells. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that 1-3 exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Genome-wide transcriptional and Connectivity Map analyses reveal that the cytotoxicity of complex 3 is associated with pathways involved in mitochondrial dysfunction and apoptosis. PMID:27139504

  9. Complexes of IrIII-Octaethylporphyrin with Peptides as Probes for Sensing Cellular O2

    PubMed Central

    Koren, Klaus; Dmitriev, Ruslan I; Borisov, Sergey M; Papkovsky, Dmitri B; Klimant, Ingo

    2012-01-01

    IrIII–porphyrins are a relatively new group of phosphorescent dyes that have potential for oxygen sensing and labeling of biomolecules. The requirement of two axial ligands for the IrIII ion permits simple linkage of biomolecules by a one-step ligand-exchange reaction, for example, using precursor carbonyl chloride complexes and peptides containing histidine residue(s). Using this approach, we produced three complexes of IrIII–octaethylporphyrin with cell-penetrating (Ir1 and Ir2) and tumor-targeting (Ir3) peptides and studied their photophysical properties. All of the complexes were stable and possessed bright, long-decay (unquenched lifetimes exceeding 45 μs) phosphorescence at around 650 nm, with moderate sensitivity to oxygen. The Ir1 and Ir2 complexes showed positive staining of a number of mammalian cell types, thus demonstrating localization similar to endoplasmic reticulum and ATP- and temperature-independent intracellular accumulation (direct translocation mechanism). Their low photo- and cytotoxicity allows intracellular oxygen to be probed. PMID:22532338

  10. New cyanide-bridged Mn(III)-M(III) heterometallic dinuclear complexes constructed from [M(III)(AA)(CN)4]- building blocks (M = Cr and Fe): synthesis, crystal structures and magnetic properties.

    PubMed

    Nastase, Silviu; Maxim, Catalin; Andruh, Marius; Cano, Joan; Ruiz-Pérez, Catalina; Faus, Juan; Lloret, Francesc; Julve, Miguel

    2011-05-14

    Three Mn(III)-M(III) (M = Cr and Fe) dinuclear complexes have been obtained by assembling [Mn(III)(SB)(H(2)O)](+) and [M(III)(AA)(CN)(4)](-) ions, where SB is the dianion of the Schiff-base resulting from the condensation of 3-methoxysalicylaldehyde with ethylenediamine (3-MeOsalen(2-)) or 1,2-cyclohexanediamine (3-MeOsalcyen(2-)): [Mn(3-MeOsalen)(H(2)O)(µ-NC)Cr(bipy)(CN)(3)]·2H(2)O (1), [Mn(3-MeOsalen)(H(2)O)(µ-NC)Cr(ampy)(CN)(3)][Mn(3-MeOsalen)(H(2)O)(2)]ClO(4)·2H(2)O (2) and [Mn(3-MeOsalcyen)(H(2)O)(µ-NC)Fe(bpym)(CN)(3)]·3H(2)O (3) (bipy = 2,2'-bipyridine, ampy = 2-aminomethylpyridine and bpym = 2,2'-bipyrimidine). The [M(AA)(CN)(4)](-) unit in 1-3 acts as a monodentate ligand towards the manganese(III) ion through one of its four cyanide groups. The manganese(III) ion in 1-3 exhibits an elongated octahedral stereochemistry with the tetradentate SB building the equatorial plane and a water molecule and a cyanide-nitrogen atom filling the axial positions. Remarkably, the neutral mononuclear complex [Mn(3-MeOsalen)(H(2)O)(2)]ClO(4) co-crystallizes with the heterobimetallic unit in 2. The values of the Mn(III)-M(III) distance across the bridging cyanide are 5.228 (1), 5.505 (2) and 5.265 Å (3). The packing of the neutral heterobimetallic units in the crystal is governed by the self-complementarity of the [Mn(SB)(H(2)O)](+) moieties, which interact each other through hydrogen bonds established between the aqua ligand from one fragment with the set of phenolate- and methoxy-oxygens from the adjacent one. The magnetic properties of the three complexes have been investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Mn(III) and M(III) ions across the cyanido bridge were found: J(MnM) = -5.6 (1), -0.63 (2) and -2.4 cm(-1) (3) the Hamiltonian being defined as H = -JS(Mn)·S(M). Theoretical calculations based on density functional theory (DFT) have been used to substantiate both the nature and magnitude of the exchange

  11. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    NASA Astrophysics Data System (ADS)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical

  12. Mn(II/III) complexes as promising redox mediators in quantum-dot-sensitized solar cells.

    PubMed

    Haring, Andrew J; Pomatto, Michelle E; Thornton, Miranda R; Morris, Amanda J

    2014-09-10

    The advancement of quantum dot sensitized solar cell (QDSSC) technology depends on optimizing directional charge transfer between light absorbing quantum dots, TiO2, and a redox mediator. The nature of the redox mediator plays a pivotal role in determining the photocurrent and photovoltage from the solar cell. Kinetically, reduction of oxidized quantum dots by the redox mediator should be rapid and faster than the back electron transfer between TiO2 and oxidized quantum dots to maintain photocurrent. Thermodynamically, the reduction potential of the redox mediator should be sufficiently positive to provide high photovoltages. To satisfy both criteria and enhance power conversion efficiencies, we introduced charge transfer spin-crossover Mn(II/III) complexes as promising redox mediator alternatives in QDSSCs. High photovoltages ∼ 1 V were achieved by a series of Mn poly(pyrazolyl)borates, with reduction potentials ∼ 0.51 V vs Ag/AgCl. Back electron transfer (recombination) rates were slower than Co(bpy)3, where bpy = 2,2'-bipyridine, evidenced by electron lifetimes up to 4 orders of magnitude longer. This is indicative of a large barrier to electron transport imposed by spin-crossover in these complexes. Low solubility prevented the redox mediators from sustaining high photocurrent due to mass transport limits. However, with high fill factors (∼ 0.6) and photovoltages, they demonstrate competitive efficiencies with Co(bpy)3 redox mediator at the same concentration. More positive reduction potentials and slower recombination rates compared to current redox mediators establish the viability of Mn poly(pyrazolyl)borates as promising redox mediators. By capitalizing on these characteristics, efficient Mn(II/III)-based QDSSCs can be achieved with more soluble Mn-complexes. PMID:25137595

  13. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.

    PubMed

    Wang, Bin; Lee, Yong-Min; Clémancey, Martin; Seo, Mi Sook; Sarangi, Ritimukta; Latour, Jean-Marc; Nam, Wonwoo

    2016-02-24

    Mononuclear nonheme high-spin iron(III)-acylperoxo complexes bearing an N-methylated cyclam ligand were synthesized, spectroscopically characterized, and investigated in olefin epoxidation and alkane hydroxylation reactions. In the epoxidation of olefins, epoxides were yielded as the major products with high stereo-, chemo-, and enantioselectivities; cis- and trans-stilbenes were oxidized to cis- and trans-stilbene oxides, respectively. In the epoxidation of cyclohexene, cyclohexene oxide was formed as the major product with a kinetic isotope effect (KIE) value of 1.0, indicating that nonheme iron(III)-acylperoxo complexes prefer C═C epoxidation to allylic C-H bond activation. Olefin epoxidation by chiral iron(III)-acylperoxo complexes afforded epoxides with high enantioselectivity, suggesting that iron(III)-acylperoxo species, not high-valent iron-oxo species, are the epoxidizing agent. In alkane hydroxylation reactions, iron(III)-acylperoxo complexes hydroxylated C-H bonds as strong as those in cyclohexane at -40 °C, wherein (a) alcohols were yielded as the major products with high regio- and stereoselectivities, (b) activation of C-H bonds by the iron(III)-acylperoxo species was the rate-determining step with a large KIE value and good correlation between reaction rates and bond dissociation energies of alkanes, and (c) the oxygen atom in the alcohol product was from the iron(III)-acylperoxo species, not from molecular oxygen. In isotopically labeled water (H2(18)O) experiments, incorporation of (18)O from H2(18)O into oxygenated products was not observed in the epoxidation and hydroxylation reactions. On the basis of mechanistic studies, we conclude that mononuclear nonheme high-spin iron(III)-acylperoxo complexes are strong oxidants capable of oxygenating hydrocarbons prior to their conversion into iron-oxo species via O-O bond cleavage. PMID:26816269

  14. Analytically useful blue chemiluminescence from a water-soluble iridium(III) complex containing a tetraethylene glycol functionalised triazolylpyridine ligand.

    PubMed

    Smith, Zoe M; Kerr, Emily; Doeven, Egan H; Connell, Timothy U; Barnett, Neil W; Donnelly, Paul S; Haswell, Stephen J; Francis, Paul S

    2016-04-01

    We examine [Ir(df-ppy)2(pt-TEG)](+) as the first highly water soluble, blue-luminescent iridium(III) complex for chemiluminescence detection. Marked differences in selectivity were observed between the new complex and the conventional [Ru(bpy)3](2+) reagent, which will enable this mode of detection to be extended to new areas of application. PMID:26915962

  15. Dinuclear Ruthenium(III)-Ruthenium(IV) Complexes, Having a Doubly Oxido-Bridged and Acetato- or Nitrato-Capped Framework.

    PubMed

    Suzuki, Tomoyo; Suzuki, Yutaka; Kawamoto, Tatsuya; Miyamoto, Ryo; Nanbu, Shinkoh; Nagao, Hirotaka

    2016-07-18

    Dinuclear ruthenium complexes in a mixed-valence state of Ru(III)-Ru(IV), having a doubly oxido-bridged and acetato- or nitrato-capped framework, [{Ru(III,IV)(ebpma)}2(μ-O)2(μ-L)](PF6)2 [ebpma = ethylbis(2-pyridylmethyl)amine; L = CH3COO(-) (1), NO3(-) (2)], were synthesized. In aqueous solutions, the diruthenium complex 1 showed multiple redox processes accompanied by proton transfers depending on the pH. The protonated complex of 1, which is described as 1H+, was obtained. PMID:27341408

  16. Complexation of uranium(VI) and samarium(III) with oxydiacetic acid: temperature effect and coordination modes.

    PubMed

    Rao, Linfeng; Garnov, Alexander Yu; Jiang, Jun; Di Bernardo, Plinio; Zanonato, PierLuigi; Bismondo, Arturo

    2003-06-01

    The complexation of uranium(VI) and samarium(III) with oxydiacetate (ODA) in 1.05 mol kg(-1) NaClO(4) is studied at variable temperatures (25-70 degrees C). Three U(VI)/ODA complexes (UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-)) and three Sm(III)/ODA complexes (SmL(j)((3-2)(j)+) with j = 1, 2, 3) are identified in this temperature range. The formation constants and the molar enthalpies of complexation are determined by potentiometry and calorimetry. The complexation of uranium(VI) and samarium(III) with oxydiacetate becomes more endothermic at higher temperatures. However, the complexes become stronger due to increasingly more positive entropy of complexation at higher temperatures that exceeds the increase in the enthalpy of complexation. The values of the heat capacity of complexation (Delta C(p) degrees in J K(-1) mol(-1)) are 95 +/- 6, 297 +/- 14, and 162 +/- 19 for UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-), and 142 +/- 6, 198 +/- 14, and 157 +/- 19 for SmL(+), SmL(2)(-), and SmL(3)(3-), respectively. The thermodynamic parameters, in conjunction with the structural information from spectroscopy, help to identify the coordination modes in the uranium oxydiacetate complexes. The effect of temperature on the thermodynamics of the complexation is discussed in terms of the electrostatic model and the change in the solvent structure. PMID:12767209

  17. New Insights into Structure and Luminescence of EuIII and SmIII Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    PubMed Central

    2016-01-01

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [MIIIL]− (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the EuIII and SmIII complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements. PMID:25607882

  18. Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation.

    PubMed

    Wang, Hui; Yao, Hong; Sun, Peizhe; Li, Desheng; Huang, Ching-Hua

    2016-01-01

    Tetracycline antibiotics (TCs) are frequently detected micropollutants and are known to have a strong tendency to complex with metal ions such as Fe(II) and Fe(III) in aquatic environments. Experiments with Fe(II) and TCs showed that the complexation of Fe(II) with tetracycline (TTC), oxytetracycline (OTC), or chlorotetracycline (CTC) could lead to the accelerated oxidation of Fe(II) and the promoted degradation of TCs simultaneously. The reaction started with complexation of Fe(II) with TC followed by oxidation of the Fe(II)-TC complex by dissolved oxygen to generate a Fe(III)-TC complex and reactive oxygen species (ROS). The ROS (primarily ·OH) then degraded TC. The oxidation rate constants of Fe(II) in the Fe(II)-H2L and Fe(II)-HL complexes were 0.269 and 1.511 min(-1), respectively, at ambient conditions (pH 7, 22 °C, and PO2 of 0.21 atm), which were about 60 and 350 times of the oxidation rate of uncomplexed Fe(II). Humic acids (HA) compete with TCs for Fe(II), but the effect was negligible at moderate HA concentrations (≤10 mg·L(-1)). Experiments with Fe(III) and TCs showed that the complexation of Fe(III) with TC could generate oxidized TC and Fe(II) without the need of oxygen at a relatively slower rate compared to the reaction involving Fe(II), O2, and TCs. These findings indicate the mutually influenced environmental transformation of TCs and Fe(II) and Fe(III) induced by their complexation. These newly identified reactions could play an important role in affecting the environmental fate of TCs and cycling of Fe(II) and Fe(III) in TCs-contaminated water and soil systems. PMID:26618388

  19. NMR paramagnetic relaxation of the spin 2 complex Mn(III)TSPP: a unique mechanism.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2005-04-21

    The S = 2 complex, manganese(III) meso-tetra(4-sulfonatophenyl)porphine chloride (Mn(III)TSPP) is a highly efficient relaxation agent with respect to water protons and has been studied extensively as a possible MRI contrast agent. The NMR relaxation mechanism has several unique aspects, key among which is the unusual role of zero-field splitting (zfs) interactions and the effect of these interactions on the electron spin dynamics. The principal determinant of the shape of the R1 magnetic relaxation dispersion (MRD) profile is the tetragonal 4th-order zfs tensor component, B4(4), which splits the levels of the m(S) = +/-2 non-Kramers doublet. When the splitting due to B4(4) exceeds the Zeeman splitting, the matrix elements of (S(z)) are driven into coherent oscillation, with the result that the NMR paramagnetic relaxation enhancement is suppressed. To confirm the fundamental aspects of this mechanism, proton R1 MRD data have been collected on polyacrylamide gel samples in which Mn(III)TSPP is reorientationally immobilized. Solute immobilization suppresses time-dependence in the electron spin Hamiltonian that is caused by Brownian motion, simplifying the theoretical analysis. Simultaneous fits of both gel and solution data were achieved using a single set of parameters, all of which were known or tightly constrained from prior experiments except the 4th-order zfs parameter, B4(4), and the electron spin relaxation times, which were found to differ in the m(S) = +/-1 and m(S) = +/-2 doublet manifolds. In liquid samples, but not in the gels, the B4(4)-induced splitting of the m(S) = +/-2 non-Kramers doublet is partially collapsed due to Brownian motion. This phenomenon affects the magnitudes of both B4(4) and electron spin relaxation times in the liquid samples. PMID:16833659

  20. Control of the axial coordination of a surface-confined manganese(III) porphyrin complex

    NASA Astrophysics Data System (ADS)

    Beggan, J. P.; Krasnikov, S. A.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A.

    2012-06-01

    The organization and thermal lability of chloro(5,10,15,20-tetraphenylporphyrinato)manganese(III) (Cl-MnTPP) molecules on the Ag(111) surface have been investigated under ultra-high vacuum conditions, using scanning tunnelling microscopy, low energy electron diffraction and x-ray photoelectron spectroscopy. The findings reveal the epitaxial nature of the molecule-substrate interface, and moreover, offer a valuable insight into the latent coordination properties of surface-confined metalloporphyrins. The Cl-MnTPP molecules are found to self-assemble on the Ag(111) surface at room temperature, forming an ordered molecular overlayer described by a square unit cell. In accordance with the threefold symmetry of the Ag(111) surface, three rotationally equivalent domains of the molecular overlayer are observed. The primitive lattice vectors of the Cl-MnTPP overlayer show an azimuthal rotation of ±15° relative to those of the Ag(111) surface, while the principal molecular axes of the individual molecules are found to be aligned with the substrate \\langle 0\\bar {1}1\\rangle and \\langle \\bar {2}1 1\\rangle crystallographic directions. The axial chloride (Cl) ligand is found to be orientated away from the Ag(111) surface, whereby the average plane of the porphyrin macrocycle lies parallel to that of the substrate. When adsorbed on the Ag(111) surface, the Cl-MnTPP molecules display a latent thermal lability resulting in the dissociation of the axial Cl ligand at ˜423 K. The thermally induced dissociation of the Cl ligand leaves the porphyrin complex otherwise intact, giving rise to the coordinatively unsaturated Mn(III) derivative. Consistent with the surface conformation of the Cl-MnTPP precursor, the resulting (5,10,15,20-tetraphenylporphyrinato)manganese(III) (MnTPP) molecules display the same lattice structure and registry with the Ag(111) surface.

  1. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex.

    PubMed

    Fachinger, Vicky; Bischoff, Ralf; Jedidia, Samir Ben; Saalmüller, Armin; Elbers, Knut

    2008-03-10

    A field study was conducted to investigate the effect of vaccination against porcine circovirus type 2 (PCV2) in pigs suffering from porcine respiratory disease complex (PRDC). A total of 1542 pigs were allocated randomly into two treatment groups at approximately 20 days of age. Groups received either a Baculovirus-expressed recombinant PCV2 Open Reading Frame (ORF) 2 vaccine or placebo by single intramuscular injection. Median onset of PCV2 viraemia and respiratory signs occurred when animals were 18 weeks old. Vaccination reduced the mean PCV2 viral load by 55-83% (p < 0.0001) and the mean duration of viraemia by 50% (p < 0.0001). During the period of study (from 3 to 25 weeks of age) vaccinated animals exhibited a reduced mortality rate (6.63% vs. 8.67%, difference -2.04%; p = 0.1507), an improved average daily weight gain (649 g/day vs. 667 g/day; difference +18 g/day; p < 0.0001) and a reduced time to market (164.8 days vs. 170.4 days; difference -5.6 days; p < 0.0001). The effects on performance were greatest in the 8-week period between the onset of PCV2 viraemia and the end of finishing. These data demonstrate that vaccination against PCV2 alone can significantly improve the overall growth performance of pigs in a multi-factorial, late occurring disease complex such as PRDC. PMID:18304705

  2. {sup 35}Mn ESE-ENDOR of a mixed valence Mn(III)Mn(IV) complex: Comparison with the Mn cluster of the photosynthetic oxygen-evolving complex

    SciTech Connect

    Randall, D.W.; Sturgeon, B.E.; Ball, J.A.; Lorigan, G.A.; Chan, M.K.; Britt, R.D.; Klein, M.P. |; Armstrong, W.H.

    1995-11-29

    Analysis of {sup 55}Mn electron spin echo-electron nuclear double resonance (ESE-ENDOR) spectra obtained on a dinuclear mixed valence Mn(III)Mn(IV) complex [di-{mu}-oxotetrakis(2, 2`-bipyridine)dimanganese(III,IV)] (1) reveals the hyperfine and nuclear quadrupolar parameters for the spin I=5/2 {sup 55}Mn nucleus of both Mn(III) and Mn(IV) ions. The {sup 55}Mn ESE-ENDOR data obtained on the g = 2 Mn multiline EPR signal of the S{sub 2} state of the photosystem II oxygen-evolving complex demonstrate that this EPR signal cannot arise from a dinuclear Mn(III)-Mn(IV) center. The ENDOR spectra are consistent with a tetranuclear Mn cluster origin for the photosystem II multiline EPR signal. 75 refs., 7 figs., 2 tabs.

  3. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    PubMed Central

    Forkink, Marleen; Basit, Farhan; Teixeira, José; Swarts, Herman G.; Koopman, Werner J.H.; Willems, Peter H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24 h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY581/591 and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling. PMID:26516986

  4. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed Central

    Repessé, Xavier; Aubry, Alix

    2016-01-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in ARDS and at deeply describing the most recently published one in order to highlight their main pitfall, which is to forget the hemodynamics. PMID:27618840

  5. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  6. Mono- and bis-tolyl­terpyridine iridium(III) complexes

    PubMed Central

    Hinkle, Lindsay M.; Young, Victor G.; Mann, Kent R.

    2010-01-01

    The first structure report of trichlorido[4′-(p-tolyl)-2,2′:6′,2′′-terpyridine]iridium(III) dimethyl sulfoxide solvate, [IrCl3(C22H17N3)]·C2H6OS, (I), is presented, along with a higher-symmetry setting of previously reported bis­[4′-(p-tolyl)-2,2′:6′,2′′-terpyridine]iridium(III) tris­(hexa­fluorido­phosphate) acetonitrile disolvate, [Ir(C22H17N3)2](PF6)3·2C2H3N, (II) [Yoshikawa, Yamabe, Kanehisa, Kai, Takashima & Tsukahara (2007 ▶). Eur. J. Inorg. Chem. pp. 1911–1919]. For (I), the data were collected with synchrotron radiation and the dimethyl sulfoxide solvent mol­ecule is disordered over three positions, one of which is an inversion center. The previously reported structure of (II) is presented in the more appropriate C2/c space group. The iridium complex and one PF6 − anion lie on twofold axes in this structure, making half of the mol­ecule unique. PMID:20203396

  7. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly.

    PubMed

    Lee, Il-Hyung; Kai, Hiroyuki; Carlson, Lars-Anders; Groves, Jay T; Hurley, James H

    2015-12-29

    The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding. PMID:26668364

  8. PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex.

    PubMed

    Woiwode, Annette; Johnson, Sandra A S; Zhong, Shuping; Zhang, Cheng; Roeder, Robert G; Teichmann, Martin; Johnson, Deborah L

    2008-06-01

    PTEN, a tumor suppressor whose function is frequently lost in human cancers, possesses a lipid phosphatase activity that represses phosphatidylinositol 3-kinase (PI3K) signaling, controlling cell growth, proliferation, and survival. The potential for PTEN to regulate the synthesis of RNA polymerase (Pol) III transcription products, including tRNAs and 5S rRNAs, was evaluated. The expression of PTEN in PTEN-deficient cells repressed RNA Pol III transcription, whereas decreased PTEN expression enhanced transcription. Transcription repression by PTEN was uncoupled from PTEN-mediated effects on the cell cycle and was independent of p53. PTEN acts through its lipid phosphatase activity, inhibiting the PI3K/Akt/mTOR/S6K pathway to decrease transcription. PTEN, through the inactivation of mTOR, targets the TFIIIB complex, disrupting the association between TATA-binding protein and Brf1. Kinetic analysis revealed that PTEN initially induces a decrease in the serine phosphorylation of Brf1, leading to a selective reduction in the occupancy of all TFIIIB subunits on tRNA(Leu) genes, whereas prolonged PTEN expression results in the enhanced serine phosphorylation of Bdp1. Together, these results demonstrate a new class of genes regulated by PTEN through its ability to repress the activation of PI3K/Akt/mTOR/S6K signaling. PMID:18391023

  9. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  10. The gallium(III)-salicylidene acylhydrazide complex shows synergistic anti-biofilm effect and inhibits toxin production by Pseudomonas aeruginosa.

    PubMed

    Rzhepishevska, Olena; Hakobyan, Shoghik; Ekstrand-Hammarström, Barbro; Nygren, Yvonne; Karlsson, Torbjörn; Bucht, Anders; Elofsson, Mikael; Boily, Jean-François; Ramstedt, Madeleine

    2014-09-01

    Bacterial biofilms cause a range of problems in many areas and especially in health care. Biofilms are difficult to eradicate with traditional antibiotics and consequently there is a need for alternative ways to prevent and/or remove bacterial biofilms. Furthermore, the emergence of antibiotic resistance in bacteria creates a challenge to find new types of antibiotics with a lower evolutionary pressure for resistance development. One route to develop such drugs is to target the so called virulence factors, i.e. bacterial systems used when bacteria infect a host cell. This study investigates synergy effects between Ga(III) ions, previously reported to suppress biofilm formation and growth in bacteria, and salicylidene acylhydrazides (hydrazones) that have been proposed as antivirulence drugs targeting the type three secretion system used by several Gram-negative pathogens, including Pseudomonas aerugionosa, during bacterial infection of host cells. A library of hydrazones was screened for: Fe(III) binding, enhanced anti-biofilm effect with Ga(III) on P. aeruginosa, and low cytotoxicity to mammalian cells. The metal coordination for the most promising ligand, 2-Oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (ME0163) with Ga(III) was investigated using extended X-ray absorption fine structure spectroscopy as well as density functional theory. The results showed that Ga(III) chelates the hydrazone with 5- and 6-membered chelating rings, and that the Ga(III)-ME0163 complex enhanced the antibiofilm effect of Ga(III) while suppressing the type three secretion system in P. aeruginosa. The latter effect was not observed for the hydrazone alone and was similar for Ga(III)-citrate and Ga(III)-ME0163 complexes, indicating that the inhibition of virulence was caused by Ga(III). PMID:24837331

  11. Highly Efficient Triplet Photosensitizers: A Systematic Approach to the Application of Ir(III) Complexes containing Extended Phenanthrolines.

    PubMed

    Lu, Yue; McGoldrick, Niamh; Murphy, Frances; Twamley, Brendan; Cui, Xiaoneng; Delaney, Colm; Máille, Gearóid M Ó; Wang, Junsi; Zhao, Jianzhang; Draper, Sylvia M

    2016-08-01

    A series of Ir(III) complexes, based on 1,10-phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross-coupling reactions using a "chemistry-on-the-complex" method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light-harvesting group. Intense UV/Vis absorption was observed for the Ir(III) complexes with two light-harvesting groups at the 3- and 8-positions of the phenanthroline. The asymmetric Ir(III) complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time-resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet-oxygen ((1) O2 ) sensitization and triplet-triplet annihilation (TTA)-based upconversion were explored. Highly efficient TTA upconversion (ΦUC =28.1 %) and (1) O2 sensitization (ΦΔ =97.0 %) were achieved for the asymmetric Ir(III) complex, which showed intense absorption in the visible region (λabs =482 nm, ϵ=50900 m(-1)  cm(-1) ) and had a long-lived triplet excited state (53.3 μs at RT). PMID:27374317

  12. Raman spectroscopy and DFT calculations of As(III) complexation with a cysteine-rich biomaterial.

    PubMed

    Teixeira, Mônica C; Ciminelli, Virgínia S T; Dantas, Maria Sylvia Silva; Diniz, Sirlaine F; Duarte, Hélio A

    2007-11-01

    Arsenite adsorption onto a protein-rich biomass and, more specifically, the chemical groups involved in the uptake were investigated using Raman spectroscopy and DFT calculations. The study was based on spectroscopic analyses of raw and arsenic-loaded biomass as well as standard samples of amino acids and arsenic salts. The predominant secondary structure of the protein was identified as the beta-sheet type, with some contribution from alpha-helix structures. The participation of sulphydryl groups from cystine/cysteine molecules during the adsorption of arsenite was demonstrated. Only the gauche-gauche-gauche (g-g-g) conformation type of the disulfide bonds was involved in arsenic complexation. The formation of a pyramidal trigonal As(HCys)(3) complex was modeled according to the density functional theory (DFT). The agreement of the DFT harmonic frequencies with the RAMAN spectra of the As(HCys)(3) complex demonstrated the relevant features of the cysteine-rich biomaterial regarding arsenic uptake as well as of the mechanism involved in the As(III)/biomass interaction at a molecular level. The results also illustrate that Raman spectroscopy can be successfully applied to investigate the mechanism of metal adsorption onto amorphous biomaterials. PMID:17707392

  13. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  14. Neutral, seven-coordinate dioxime complexes of technetium(III): Synthesis and characterization

    SciTech Connect

    Linder, K.E.; Malley, M.F.; Gougoutas, J.Z.; Unger, S.E.; Nunn, A.D. )

    1990-06-27

    The tin-capped complexes {sup 99}Tc(oxime){sub 3}({mu}-OH)SnCl{sub 3} (oxime = dimethylglyoxime (DMG) or cyclohexanedione dioxime (CDO)) can be prepared by the reduction of NH{sub 4}TcO{sub 4} with 2 equiv of SnCl{sub 2} in the presence of dioxime and HCl. These tin-capped complexes can be readily converted into a new class of uncapped Tc-dioxime compounds, TcCl(oxime){sub 3}, by treatment with HCl. This reaction is reversible. Both the tin-capped and uncapped tris(dioxime) complexes can be converted to the previously reported boron-capped Tc-dioxime complexes TcCl(oxime){sub 3}BR (R = alkyl, OH) by reaction with boronic acids or with boric acid at low pH. All of these complexes (Tc(oxime){sub 3}({mu}-OH)SnCl{sub 3}, TcCl(oxime){sub 3}, and TcCl(oxime){sub 3}BR) appear to be neutral, seven-coordinate compounds of technetium(III). They have been characterized by elemental analysis, {sup 1}H NMR and UV/visible spectroscopy, conductivity, and fast atom bombardment mass spectrometry. The synthesis, characterization, and reactivity of these compounds is discussed. The x-ray crystal structure analysis of TcCl(DMG){sub 3} and an abbreviated structure report on TcCl(DMG){sub 3}MeB are described. Crystal data for TcCl(DMG){sub 3} are reported. 23 refs., 6 figs., 5 tabs.

  15. Synthesis and characterization of a tris(2-hydroxyphenyl)methane-based cryptand and its triiron(III) complex.

    PubMed

    Guillet, Gary L; Sloane, Forrest T; Dumont, Matthieu F; Abboud, Khalil A; Murray, Leslie J

    2012-07-14

    Reaction of tris(5-amino-2-ethoxy-3-isopropylphenyl)methane and pyridine-2,6-dicarbonyl-dichloride affords a multi-dentate cryptand in 48% yield. Metallation with iron(III) chloride results in a substantial conformational change of this ligand to give a trianionic triiron(III) complex. Ferric cations line the periphery of the internal cavity with each adopting a square pyramidal N(3)Cl(2) coordination environment. PMID:22562046

  16. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  17. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes.

    PubMed

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  18. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    PubMed Central

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  19. A Nonribosomal Peptide Synthetase-derived Iron(III) Complex from the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Yin, Wen-Bing; Baccile, Joshua A.; Bok, Jin Woo; Chen, Yiming; Keller, Nancy P.; Schroeder, Frank C.

    2013-01-01

    Small molecules (SMs) play central roles as virulence factors of pathogenic fungi and bacteria; however, genomic analyses suggest that the majority of microbial SMs have remained uncharacterized. Based on microarray analysis followed by comparative metabolomics of overexpression/knockout mutants we identified a tryptophan-derived iron(III)-complex, hexadehydroastechrome (HAS), as the major product of the cryptic has non-ribosomal peptide synthetase (NRPS) gene cluster in the human pathogen Aspergillus fumigatus. Activation of the has cluster created a highly virulent A. fumigatus strain that increased mortality of infected mice. Comparative metabolomics of different mutant strains allowed to propose a pathway for HAS biosynthesis and further revealed cross-talk with another NRPS pathway producing the anti-cancer fumitremorgins. PMID:23360537

  20. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    PubMed

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed. PMID:27039888

  1. Luminescent Silica Core / Silver Shell Encapsulated with Eu(III) Complex.

    PubMed

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R

    2009-11-12

    In this paper we studied the metal-enhanced emission from long-lifetime lanthanide dyes that were encapsulated in the silver nanoshells. The metal nanoshells were synthesized with the silica spherical cores of 50 nm diameters and the silver shells of 5 - 60 nm. The optical properties of luminescent metal shells were performed on the either ensemble fluorescence spectroscopy or single particle imaging. The emission intensity from the encapsulated lanthanides was observed to enhance significantly by the metal nanoshell. The enhancement efficiency initially increased with the metal shell thickness and then decreased. The maximal enhancement occurred at the 20 - 30 nm thickness. The lifetime of encapsulated Eu(III) complexes was shorten dramatically indicating that they were coupled efficiently with the metal shells. The increased brightness and reduced lifetime of this core-shell structure demonstrate that the lanthanides are favorable for the single target molecule detections after encapsulating into the metal nanoshells. PMID:20514146

  2. Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties.

    PubMed

    Ruiz, José; Lorusso, Giulia; Evangelisti, Marco; Brechin, Euan K; Pope, Simon J A; Colacio, Enrique

    2014-04-01

    The reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L) with Zn(NO3)2·6H2O and subsequently with Ln(NO3)3·5H2O (Ln(III) = Gd and Yb) and triethylamine in MeOH using a 1:1:1:1 molar ratio leads to the formation of the tetranuclear complexes {(μ3-CO3)2[Zn(μ-L)Gd(NO3)]2}·4CH3OH (1) and{(μ3-CO3)2[Zn(μ-L)Yb(H2O)]2}(NO3)2·4CH3OH (2). When the reaction was performed in the absence of triethylamine, the dinuclear compound [Zn(μ-L)(μ-NO3)Yb(NO3)2] (3) is obtained. The structures of 1 and 2 consist of two diphenoxo-bridged Zn(II)-Ln(III) units connected by two carbonate bridging ligands. Within the dinuclear units, Zn(II) and Ln(III) ions occupy the N3O2 inner and the O4 outer sites of the compartmental ligand, respectively. The remaining positions on the Ln(III) ions are occupied by oxygen atoms belonging to the carbonate bridging groups, by a bidentate nitrate ion in 1, and by a coordinated water molecule in 2, leading to rather asymmetric GdO9 and trigonal dodecahedron YbO8 coordination spheres, respectively. Complex 3 is made of acetate-diphenoxo triply bridged Zn(II)Yb(III) dinuclear units, where the Yb(III) exhibits a YbO9 coordination environment. Variable-temperature magnetization measurements and heat capacity data demonstrate that 1 has a significant magneto-caloric effect, with a maximum value of -ΔSm = 18.5 J kg(-1) K(-1) at T = 1.9 K and B = 7 T. Complexes 2 and 3 show slow relaxation of the magnetization and single-molecule magnet (SMM) behavior under an applied direct-current field of 1000 Oe. The fit of the high-temperature data to the Arrhenius equation affords an effective energy barrier for the reversal of the magnetization of 19.4(7) K with τo = 3.1 × 10(-6) s and 27.0(9) K with τo = 8.8 × 10(-7) s for 2 and 3, respectively. However, the fit of the full range of temperature data indicates that the relaxation process could take place through a Raman-like process

  3. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-01

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  4. Chloride-Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins.

    PubMed

    Kita, Yusuke; Hida, Shoji; Higashihara, Kenya; Jena, Himanshu Sekhar; Higashida, Kosuke; Mashima, Kazushi

    2016-07-11

    Efficient rhodium(III) catalysts were developed for asymmetric hydrogenation of simple olefins. A new series of chloride-bridged dinuclear rhodium(III) complexes 1 were synthesized from the rhodium(I) precursor [RhCl(cod)]2 , chiral diphosphine ligands, and hydrochloric acid. Complexes from the series acted as efficient catalysts for asymmetric hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene and its derivatives without any directing groups, in sharp contrast to widely used rhodium(I) catalytic systems that require a directing group for high enantioselectivity. The catalytic system was applied to asymmetric hydrogenation of allylic alcohols, alkenylboranes, and unsaturated cyclic sulfones. Control experiments support the superiority of dinuclear rhodium(III) complexes 1 over typical rhodium(I) catalytic systems. PMID:27088539

  5. Activation of dioxygen by a mononuclear non-heme iron complex: characterization of a Fe(III)(OOH) intermediate.

    PubMed

    Martinho, Marlène; Blain, Guillaume; Banse, Frédéric

    2010-02-14

    The reaction of the iron(ii) complex supported by the ligand L(5)(2)aH (2,2-dimethyl-N-[6-({[2-(methyl-pyridin-2-ylmethyl-amino)-ethyl]-pyridin-2-ylmethyl-amino}-methyl)-pyridin-2-yl]-propionamide) with dioxygen, in the presence of HClO(4) and NaBPh(4) yields the corresponding low spin (S = 1/2) Fe(III)(OOH) complex. This reaction, where the anion BPh(4)(-) acts as an electron donor, is reminiscent of the reductive activation of O(2) by enzymatic systems. Under these specific experimental conditions, the hydroperoxoiron(iii) complex evolves in an unexpected way to yield a high spin (S = 5/2) green species. This transformation is shown to arise from the reaction between the hydroperoxoiron(iii) intermediate and BPh(3), a side product of BPh(4)(-). PMID:20104327

  6. New luminescent probe based on a terbium(III) complex for studying DNA affinity of aminoalkoxy fluorenones

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Malzev, G. V.; Ukrainets, I. V.; Aleksandrova, D. I.

    2013-07-01

    We have studied the spectral luminescent properties of complexes of Tb(III) ions with a series of new derivatives of 2-oxo-4-hydroxyquinoline-3-carboxylic acid amides (L1-L4). We have established that DNA significantly enhances the 4f luminescence of terbium(III) in these complex compounds. We show satisfactory agreement between the logarithms of the DNA binding constants for a series of aminoalkoxy fluorenones (R1-R6), obtained using ethidium bromide and the complex Tb(III)-L1, which we propose using as a new luminescent probe for studying the affinity of drugs (prodrugs) for DNA molecules in a series of structurally similar biologically active substances.

  7. Development and evaluation of a spectrophotometric assay for complex III in isolated mitochondria, tissues and fibroblasts from rats and humans.

    PubMed

    Krähenbühl, S; Talos, C; Wiesmann, U; Hoppel, C L

    1994-10-31

    A spectrophotometric method to assay the activity of complex III in isolated mitochondria, tissues and fibroblasts from patients and rats has been developed and validated. Decylubiquinol was shown to be a suitable substrate with a saturating concentration between 100 and 200 mumol/l. The optimal pH was found to range from 7.4 to 8.0. The enzyme reaction was linear for incubations containing up to 15 micrograms/ml mitochondrial protein, 250 micrograms/ml liver tissue, 375 micrograms/ml skeletal muscle or 100 micrograms/ml fibroblast protein. Intraday and interday variability of the assay for different enzyme sources was below 15% and 10%, respectively. Assessment of complex III activity in liver and fibroblasts from patients with signs of mitochondrial dysfunction revealed the usefulness of the newly developed assay in the diagnosis of complex III deficiency. PMID:7834868

  8. Cellular selectivity and biological impact of cytotoxic rhodium(III) and iridium(III) complexes containing methyl-substituted phenanthroline ligands.

    PubMed

    Geldmacher, Yvonne; Kitanovic, Igor; Alborzinia, Hamed; Bergerhoff, Katharina; Rubbiani, Riccardo; Wefelmeier, Pascal; Prokop, Aram; Gust, Ronald; Ott, Ingo; Wölfl, Stefan; Sheldrick, William S

    2011-03-01

    The antiproliferative properties and biological impact of octahedral iridium(III) complexes of the type fac-[IrCl3 (DMSO)(pp)] containing pp=phenanthroline (1) and its 4- and 5-methyl (2, 3) and 4,7- and 5,6-dimethyl derivatives (4, 5) were investigated for both adherent and non-adherent cells. A series of similar rhodium(III) complexes were studied for comparison purposes. The antiproliferative activity toward MCF-7 cancer cells increases eightfold from IC50=4.6 for 1 to IC50=0.60 μM for 5, and an even more pronounced 18-fold improvement was established for the analogous rhodium complexes 6 and 8, the respective IC50 values for which are 1.1 and 0.06 μM. Annexin V/propidium iodide assays demonstrated that the 5,6-dimethylphenanthroline complexes 5 and 8 both cause significant inhibition of Jurkat leukemia cell proliferation and invoke extensive apoptosis but negligible necrosis. The percentages of Jurkat cells exhibiting high levels of reactive oxygen species correlate with the percentages of cells undergoing apoptosis. The antiproliferative activity of 5 and 8 is strongly selective toward MCF-7 and HT-29 cancer cells over normal HFF-1 and immortalized HEK-293 cells. Complex 5 also exhibits high selectivity toward BJAB lymphoma cells relative to healthy leukocytes. Both 5 and 8 invoke permanent decreases in the adhesion and respiration of MCF-7 cells. PMID:21337523

  9. Highly efficient phosphorescent materials based on Ir(iii) complexes-grafted on a polyhedral oligomeric silsesquioxane core.

    PubMed

    Yu, Tianzhi; Xu, Zixuan; Su, Wenming; Zhao, Yuling; Zhang, Hui; Bao, Yanjun

    2016-09-14

    A new iridium(iii) complex containing a coumarin derivative as the cyclometalated ligand (L) and a carbazole-functionalized β-diketonate (Cz-acac-allyl) as the ancillary ligand, namely, Ir(iii) bis(3-(pyridin-2-yl)coumarinato-N,C(4))(1-(9-butyl-9H-carbazol-3-yl)hept-6-ene-1,3-dionato-O,O) [Ir(L)2(Cz-acac-allyl)], was firstly synthesized as the emissive iridium(iii) complex. Then three new phosphorescent polyhedral oligomeric silsesquioxane (POSS) materials, consisting of the emissive Ir(iii) complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core were successfully synthesized by hydrosilylation reaction in the presence of platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane (Pt-dvs) as the catalyst. These phosphorescent POSS materials offer many advantages including amorphous properties, good thermal stabilities, and good solubility in common solvents, and high purity via column chromatography. The photoluminescence spectra of the POSS materials in solution and in the solid state indicate a reduction in the degrees of interactions among the Ir(iii) complex units and concentration quenching due to the bulky POSS core. Solution processed light-emitting devices based on these phosphorescent POSS materials exhibit a maximum external quantum efficiency (EQE) of 9.77%. PMID:27501335

  10. Bond Fission and Non-Radiative Decay in Iridium(III) Complexes.

    PubMed

    Zhou, Xiuwen; Burn, Paul L; Powell, Benjamin J

    2016-06-01

    We investigate the role of metal-ligand bond fission in the nonradiative decay of excited states in iridium(III) complexes with applications in blue organic light-emitting diodes (OLEDs). We report density functional theory (DFT) calculations of the potential energy surfaces upon lengthening an iridium-nitrogen (Ir-N) bond. In all cases we find that for bond lengths comparable to those of the ground state the lowest energy state is a triplet with significant metal-to-ligand change transfer character ((3)MLCT). But, as the Ir-N bond is lengthened there is a sudden transition to a regime where the lowest excited state is a triplet with significant metal centered character ((3)MC). Time-dependent DFT relativistic calculations including spin-orbit coupling perturbatively show that the radiative decay rate from the (3)MC state is orders of magnitude slower than that from the (3)MLCT state. The calculated barrier height between the (3)MLCT and (3)MC regimes is clearly correlated with previously measured nonradiative decay rates, suggesting that thermal population of the (3)MC state is the dominant nonradiative decay process at ambient temperature. In particular, fluorination both drives the emission of these complexes to a deeper blue color and lowers the (3)MLCT-(3)MC barrier. If the Ir-N bond is shortened in the (3)MC state another N atom is pushed away from the Ir, resulting in the breaking of this bond, suggesting that once the Ir-N bond breaks the damage to the complex is permanent-this will have important implications for the lifetimes of devices using this type of complex as the active material. The consequences of these results for the design of more efficient blue phosphors for OLED applications are discussed. PMID:27175618

  11. Metal-ligand interaction of lanthanides with coumarin derivatives. Part I. Complexation of 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione with La(III), Ce(III), Nd(III) and Ho(III).

    PubMed

    Swiatek, Mirosława; Kufelnicki, Aleksander

    2012-01-01

    Solutions of lanthanum(III), cerium(III), neodymium(III) and holmium(III) nitrates with 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione (1) in 10% v/v dioxane-water medium were used. Coordination modes of 1 with the selected lanthanides have been examined. Hydroxo-complexes with deprotonated water molecules from the inner coordination sphere have been stated in basic medium. Stability constants of the forming complex species were determined by potentiometric titrations using Superquad and Hyperquad2003 programs. The most stable complexes are formed with La(III). The UV-Vis spectra of the Nd(III)-1 system confirmed the L:M = 1:1 stoichiometry evaluated potentiometrically. PMID:23285658

  12. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. PMID:24860091

  13. Respiratory chain supercomplexes of mitochondria and bacteria.

    PubMed

    Schägger, Hermann

    2002-09-10

    Respiratory chain complexes are fragments of larger structural and functional units, the respiratory chain supercomplexes or "respirasomes", which exist in bacterial and mitochondrial membranes. Supercomplexes of mitochondria and bacteria contain complexes III, IV, and complex I, with the notable exception of Saccharomyces cerevisiae, which does not possess complex I. These supercomplexes often are stable to sonication but sensitive to most detergents except digitonin. In S. cerevisiae, a major component linking complexes III and IV together is cardiolipin.In Paracoccus denitrificans, complex I itself is rather detergent-sensitive and thus could not be obtained in detergent-solubilized form so far. However, it can be isolated as part of a supercomplex. Stabilization of complex I by binding to complex III was also found in human mitochondria. Further functional roles of the organization in a supercomplex are catalytic enhancement by reducing diffusion distances of substrates or, depending on the organism, channelling of the substrates quinone and cytochrome c. This makes redox reactions less dependent of midpoint potentials of substrates, and permits electron flow at low degree of substrate reduction.A dimeric state of ATP synthase seems to be specific for mitochondria. Exclusively, monomeric ATP synthase was found in Acetobacterium woodii, in P. denitrificans, and in spinach chloroplasts. PMID:12206908

  14. Gaining mass: the structure of respiratory complex I-from bacterial towards mitochondrial versions.

    PubMed

    Letts, James A; Sazanov, Leonid A

    2015-08-01

    The 1MDa, 45-subunit proton-pumping NADH-ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial electron transport chain. The molecular mechanism of complex I is central to the metabolism of cells, but has yet to be fully characterized. The last two years have seen steady progress towards this goal with the first atomic-resolution structure of the entire bacterial complex I, a 5Å cryo-electron microscopy map of bovine mitochondrial complex I and a ∼3.8Å resolution X-ray crystallographic study of mitochondrial complex I from yeast Yarrowia lipotytica. In this review we will discuss what we have learned from these studies and what remains to be elucidated. PMID:26387075

  15. A Colorimetric and Luminescent Dual-Modal Assay for Cu(II) Ion Detection Using an Iridium(III) Complex

    PubMed Central

    Ma, Dik-Lung; He, Hong-Zhang; Chan, Daniel Shiu-Hin; Wong, Chun-Yuen; Leung, Chung-Hang

    2014-01-01

    A novel iridium(III) complex-based chemosensor bearing the 5,6-bis(salicylideneimino)-1,10-phenanthroline ligand receptor was developed, which exhibited a highly sensitive and selective color change from colorless to yellow and a visible turn-off luminescence response upon the addition of Cu(II) ions. The interactions of this iridium(III) complex with Cu2+ ions and thirteen other cations have been investigated by UV-Vis absorption titration, emission titration, and 1H NMR titration. PMID:24927177

  16. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes.

    PubMed

    Latouche, Camille; Skouteris, Dimitrios; Palazzetti, Federico; Barone, Vincenzo

    2015-07-14

    We report in the present paper a comprehensive investigation of representative Pt(II) and Ir(III) complexes with special reference to their one-photon absorption spectra employing methods rooted in density functional theory and its time dependent extension. We have compared nine different functionals ranging from generalized gradient approximation (GGA) to global or range-separated hybrids, and two different basis sets, including pseudopotentials for 4 iridium and 7 platinum complexes. It turns out that hybrid functionals with the same exchange part give comparable results irrespective of the specific correlation functional (i.e., B3LYP is very close to B3PW91 and PBE0 is very close to MPW1PW91). More recent functionals, such as CAM-B3LYP and M06-2X, overestimate excitation energies, whereas local functionals (BP86 -GGA-, M06-L -Meta GGA-) strongly underestimate transition energies with respect to experimental results. As expected, basis set effects are weak, and the use of a triple-ζ polarized (def2-TZVP) basis set does not significantly improve the computed excitation energies with respect to a classical double-ζ basis set (LANL2DZ) augmented by polarization functions, but it significantly raises the computational effort. PMID:26575764

  17. Investigation of penbutolol-iron (III) complex and its spectrophotometric determination in tablets.

    PubMed

    Radulović, D; Pećanac, D; Zivanović, L; Agatonović-Kustrin, S

    1990-01-01

    It has been established that penbutolol reacts with iron(III) chloride in the presence of ammonium thiocyanate to form a pink complex (2:1) that is soluble in chloroform with a maximum absorbance at 478 nm. By application of the methods of Sommer and Job involving non-equimolar solutions, the conditional stability constant (log k') of the complex at the optimum pH of 1.5 +/- 0.02 and an ionic strength of (mu) 0.14 M, was found to be 5.769. The molar absorptivity at 478 nm was 136 1 mol-1 cm-1 at pH 1.5 +/- 0.02. The validity of Beer's law has been tested in the concentration range 3-18 x 10(-4) M; the relative standard deviation (n = 8) was 1.52-3.21%. The proposed method was found to be suitable for the accurate, simple and rapid analysis of penbutolol in the bulk drug and in tablets. PMID:2100616

  18. Synthesis and structure of dinuclear complexes of terbium(III) with 4-acetalbispyrazolone

    SciTech Connect

    Luqin Yang; Rudong Yang

    1994-12-01

    Two novel dinuclear complexes of terbium(III) with 1,5-bis(1`-phenyl-3`-methyl-5`-pyrazolone-4`)-1,5- pentanedione (H{sub 2}L), Tb{sub 2}L{sub 3}{center_dot}6H{sub 2}, Tb{sub 2}L{sub 3}{center_dot}5DMF, have been synthesized. The crystal structure of Tb{sub 2}L{sub 3}{center_dot}5DMF was determined by X-ray diffraction methods. Crystals are triclinic, space group P{rvec 1} with a = 16.957(5), b = 17.877(7), c = 18.269(2){Angstrom}, a = 110.35(2), {beta} = 101.29(2), {gamma} = 111.02(2){degrees}, V = 4511(6){Angstrom}{sup 3}, Mr = 2010.76 Z = 2, Dx = 1.48 g cm{sup -3}, {mu} = 16.45 cm{sub -1} F(000) = 2,052, R = 0.058 with 6574 reflections used in refinement. In the complex, L acts as a bridging ligand and bonds two terbium atoms with its two {beta}-diketone groups. Each terbium ion bonds to two DMF solvent molecules. The coordination number of the two terbium ions is eight. The eight oxygen atoms around the terbium make a distorted square antiprismatic coordination polyhedron.

  19. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    SciTech Connect

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay time is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.

  20. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties

    DOE PAGESBeta

    Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.

    2015-11-02

    In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh3 or P(OPh)3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy)2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ± 0.5 μs decay timemore » is measured. For L = P(OPh)3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less

  1. Harvesting light energy by iridium(III) complexes on a clay surface.

    PubMed

    Tamura, Kenji; Yamagishi, Akihiko; Kitazawa, Takafumi; Sato, Hisako

    2015-07-28

    Energy transfer was investigated between two types of iridium(III) complexes, [Ir(dfppy)2(Cn-bpy)](+) (dfppyH = 2-(2',4'-difluorophenyl)pyridine; Cn-bpy = 4,4'-dialkyl-2,2'-bipyridine; dialkyl = dimethyl (C1), didodecyl (C12), and dinonyldecyl (C19)) and [Ir(piq)2(Cn-bpy)](+) (piqH = 1-phenylisoquinoline) as a donor and an acceptor, respectively. The complexes were co-adsorbed by colloidally dispersed synthetic saponite. The efficiency of energy transfer (η(ET)) was obtained from emission spectra at various donor-to-acceptor ratios (D/A) on the basis of the Förster-type energy transfer mechanism. For C1-bpy, η(ET) was as high as 0.5 with a D/A of ca. 20. The results implied that the photon energy captured by several donor molecules was collected by a single acceptor molecule (i.e. the harvesting of light energy). Enantioselectivity was observed, which indicates the participation of a contact pair of donor and acceptor molecules. For C12-bpy and C19-bpy, η(ET) was low and exhibited no enantioselectivity, because their long alkyl chains inhibited close contact between the donor and acceptor molecules. PMID:26107642

  2. Fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum(III) and the fluorometry of nucleic acids

    SciTech Connect

    Cheng Zhi Huang; Ke An Li; Shen Yang Tong

    1996-07-01

    The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of PH 8.0-8.4 (controlled by NH{sub 3}-NH{sub 4}Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4 --3.6 {mu}g{sup .}ml{sup -1} for calf thymus DNA, 0.4 -- 4.0 {mu}g{sup .}ml{sup -1} for fish sperm DNA and 0.4 --4.0{mu}g{sup .}ml{sup -1} for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  3. Chemometrics-assisted spectrophotometric methods for simultaneous determination and complexation study of Fe(III), Al(III) and V(V) with morin in micellar media.

    PubMed

    Ghavami, Raoof; Najafi, Amir; Hemmateenejad, Bahram

    2008-09-01

    Evolutionary factor analysis (EFA) and rank annihilation factor analysis (RAFA) were applied to resolve the two-way equilibrium spectrophotometric data belonging to the complexes of Fe(III), Al(III) and V(V) with morin (3,5,7,20,40-penta hydroxy flavone) as chelating agent in triton X-100 micellar media. Then, partial least square regression combined with genetic algorithm for wavelength selection (GA-PLS) was used for simultaneous determination of the metal ions. The parameters controlling behavior of the system were investigated and optimum conditions were selected. The predictive abilities of partial least squares regression (PLS) and genetic algorithm-partial least squares regression (GA-PLS) were examined in simultaneous determination of ternary mixtures of metal ions over the concentration range of 17.0-170.0ngml(-1), 25.0-180.0ngml(-1) and 40.0-325.0ngml(-1) for Fe(III), Al(III) and V(V), respectively. The relative standard errors for prediction of the ions in synthetic mixtures were lower than 5% and the mean recoveries in the tap water spiked samples were 104.2 and 101.7% for PLS and GA-PLS, respectively. PMID:18055249

  4. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Chakkaravarthi, G

    2016-09-01

    Cobalt(III) complexes (1-3) such as [Co(acac)(bpy)(N3)2·H2O] 1, [Co(acac)(en)(N3)2] 2, and [Co(acac)(2-pic)(N3)2] 3 (where, acac=acetylacetone, bpy=2.2'-bipyridine, en=ethylenediamine, 2-pic=2-picolylamine and NaN3=sodium azide) were synthesized and characterized. The structure of complexes (1-3) has been determined by single crystal X-ray diffraction studies and the configuration around cobalt(III) ion was distorted octahedral coordination geometry. Density functional theory calculations were performed to examine the molecular geometry and frontier molecular orbital properties of complexes (1-3). DNA binding properties of the cobalt(III) complexes with calf thymus DNA (CT-DNA) were investigated by UV-visible absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The docking studies showed the preferred orientation of sterically acceptable Co(III) complexes (1, 2) inside the DNA through the mode of intercalation, whereas complex 3 exhibited minor groove binding modes. The intrinsic binding constants Kb of complexes (1-3) with CT-DNA were in the following order 1>3>2. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) and gel electrophoresis assay demonstrated that the complexes (1-3) promote the cleavage of the pBR322 DNA in the presence of 3-mercaptopropionic acid (MPA) and cleavage process was found to proceed by singlet oxygen cleavage mechanism. Further, the in vitro cytotoxicity studies of complexes (1-3) were tested on human breast cancer cell line (MCF-7). PMID:27475779

  5. A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I.

    PubMed

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2016-06-01

    A limiting factor in agriculture is the availability of nitrogen in the soil, which may be compensated by biological N2 fixation catalysed by bacteria. Most biological N2 fixation occurs in root nodules of plants that respond to bacterial infection by establishing symbiosis with selected prokaryotes. The plants provide energy metabolites and a microoxic environment to the bacterial symbionts to facilitate their capacity of N2 fixation. Despite enormous advances in the molecular genetics of this symbiosis between plants and nodulating bacteria, we still do not understand fundamental aspects which determine the efficiency of N2 fixation in the nodules, and therefore the capacity to biologically enrich agricultural soils. Here we provide an overview of the central features of the energy metabolism that sustains N2 fixation, with emphasis on the bacterial respiratory chain supplying the electrons and ATP required for the nitrogenase reaction. We discuss common trends and specific variations in the integrated process of respiratory electron transport and N2 fixation. Among such variations we introduce green complex I, an ancient version of NADH:ubiquinone oxidoreductase that is present in several Rhizobiaceae and may facilitate N2 fixation. PMID:27106049

  6. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana.

    PubMed

    Soto, Débora; Córdoba, Juan Pablo; Villarreal, Fernando; Bartoli, Carlos; Schmitz, Jessica; Maurino, Veronica G; Braun, Hans Peter; Pagnussat, Gabriela C; Zabaleta, Eduardo

    2015-09-01

    The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions. PMID:26148112

  7. Tunable Design of Gold(III)-Doxorubicin Complex-PEGylated Nanocarrier. The Golden Doxorubicin for Oncological Applications.

    PubMed

    Moustaoui, Hanane; Movia, Dania; Dupont, Nathalie; Bouchemal, Nadia; Casale, Sandra; Djaker, Nadia; Savarin, Philippe; Prina-Mello, Adriele; de la Chapelle, Marc Lamy; Spadavecchia, Jolanda

    2016-08-10

    To date, the translation of Au (III) complexes into chemotherapeutic agents has been hindered by their low stability under physiological conditions, a crucial parameter in drug development. In this study, we report an innovative four-step synthesis of a stable Au (III)-doxorubicin (DOX) complex, acting as a key constitutive component of doxorubicin-loaded PEG-coated nanoparticles (DOX IN-PEG-AuNPs). For therapeutic purposes, such AuNPs were then functionalized with the anti-Kv11.1 polyclonal antibody (pAb), which specifically recognizes the hERG1 channel that is overexpressed on the membrane of human pancreatic cancer cells. The nature of the interactions between DOX and Au (III) ions was probed by various analytical techniques (Raman spectroscopy, UV-vis, and (1)H NMR), which enabled studying the Au (III)-DOX interactions during AuNPs formation. The theoretical characterization of the vibrational bands and the electronic transitions of the Au (III)-DOX complex calculated through computational studies showed significant qualitative agreement with the experimental observations on AuNPs samples. Stability in physiological conditions and efficient drug loading (up to to 85 w/w %) were achieved, while drug release was strongly dependent on the structure of DOX IN-PEG-AuNPs and on the pH. Furthermore, the interactions among DOX, PEG, and Au (III) ions in DOX IN-PEG-AuNPs differed significantly from those found in polymer-modified AuNPs loaded with DOX by covalent linkage, referred to as DOX ON-PEG-AuNPs. In vitro experiments indeed demonstrated that such differences strongly influenced the therapeutic potential of AuNPs in pancreatic cancer treatment, with a significant increase of the DOX therapeutic index when complexed to Au (III) ions. Collectively, our study demonstrated that Au (III)-DOX complexes as building blocks of PEGylated AuNPs constitutes a promising approach to transform promising Au (III) complexes into real chemotherapeutic drugs for the treatment of

  8. Dual emission from an ortho-metalated Ir(III) complex

    SciTech Connect

    King, K.A.; Watts, R.J.

    1987-03-04

    Several complexes of Ir(III) containing both the bidentate N-coordinating ligand 2,2'-bipyridine (bpy) and the N,C-orthometalating ligand 2-phenylpyridine (ppy) have recently been prepared; these include the two species Ir(ppy)/sub 2/(bpy)/sup +/ (A) and Ir(ppy)(bpy)/sub 2//sup 2 +/ (B). The former was prepared from the dichloro-bridged dimer, (Ir(ppy)/sub 2/Cl)/sub 2/, by modification of the procedure of Nonoyama while the latter was obtained by reaction of cis-(Ir(bpy)/sub 2/(OSO/sub 2/CF/sub 3/)/sub 2/) (CF/sub 3/SO/sub 3/) with ppy in refluxing 2-ethoxyethanol. The purity of the complexes was monitored with thin-layer chromatography using silica gel plates and 1:1:1 acetone/methanol/water mixtures for elution. Samples of the complexes used in these studies showed only one component in thin-layer chromatography. While only one isomer of B is possible, there are three possible isomers of A. Data from /sup 1/H and /sup 13/C NMR experiments indicate that A has C/sub 2/ symmetry. The NMR spectrum indicates, as does thin-layer chromatography, that only a single isomer of A is present with no detectable impurities due to a mixture of isomers. While X-ray structural data for A are lacking, structural data for related complexes suggest that A is the isomer with cisoid metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds. These species were prepared in order to probe further the effects of metal-carbon bonding on energy-transfer processes and electron-transfer reactions of metal complexes. Emission spectroscopic studies reported here reveal unusual and distinct intramolecular energy-transfer behavior in these complexes. Whereas dual emission from the former is observed in glasses at 77 K, a single emission is observed in the latter.

  9. Iron(III) complex of N-phenylethylenediamine derivative of amine bis(phenol) ligand as model for catechol dioxygenase: Synthesis, characterization and complexation studies

    NASA Astrophysics Data System (ADS)

    Poureskandari, Maryam; Safaei, Elham; Maryam Sajjadi, S.; Karimpour, Touraj; Jaglicic, Zvonko; Lee, Yong-Ill

    2015-08-01

    A new amine bis(phenol) ligand (HLPEA), was synthesized and characterized by IR, 1H NMR spectroscopic techniques and elemental analyses. The mononuclear iron(III) complex (FeLPEA) of this ligand has been prepared and characterized by IR and UV-Vis spectroscopic techniques, ESI-MS, elemental analyses and magnetic susceptibility studies. The molecular mass of complex was determined by ESI-MS which is corresponding to a mononuclear iron(III) complex consist of amine bis(phenolate) ligand coordinated to Fe(III) including chlorine atoms and solvent molecule. The variable temperature magnetic susceptibility indicates paramagnetic character of complex. To determine the formation constant of the complex, multivariate hard modeling method was applied on spectral data collected throughout the titration of Fe(III) with ligand. FeLPEA shows good catalytic activity in cleavage oxygenation of 3,5-di-tert-butyl catechol in the presence of dioxygen at room temperature with a nearly complete conversion and particularly extradiol cleavage mechanism.

  10. Tetranuclear lanthanide (III) complexes containing dimeric subunits: single-molecule magnet behavior for the Dy4 analogue.

    PubMed

    Chandrasekhar, Vadapalli; Das, Sourav; Dey, Atanu; Hossain, Sakiat; Sutter, Jean-Pascal

    2013-10-21

    The reaction of the lanthanide(III) salts [Dy(III), Tb(III), and Gd (III)] with a hetero donor chelating ligand N'-(2-hydroxy-3-methoxybenzylidene)-6-(hydroxymethyl) picolinohydrazide (LH3) and pivalic acid (PivH) in the presence of tetra-n-butylammonium hydroxide (TBAH) afforded the tetranuclear Ln(III) coordination compounds, [Ln4(LH)2(LH2)2(μ2-η(1)η(1)Piv)2(η(1)Piv)4]·2CHCl3 [Ln = Dy(1), Tb(2), and Gd(3)]. The molecular structure of these complexes reveals that the tetranuclear derivatives are composed of two dinuclear subunits which are interconnected through the coordination action of the picolinoyl hydrazine ligand. Within each subunit two different types of Ln(III) ions are present. One of these is eight-coordinate in a distorted triangular dodecahedral geometry while the other is nine-coordinate in a distorted spherical capped square antiprism geometry. Alternating current (ac) susceptibility measurements of complex 1 reveal a frequency- and temperature-dependent two step out-of-phase signals under 1kOe DC field which is characteristic of a single-molecule magnet (SMM) behavior. Analysis of the magnetic data afforded the anisotropic barriers and relaxation times: Δ/kB = 62.6 K, τ0 = 8.7 × 10(-7) s; Δ/kB = 26.3 K, τ0 = 1.26 × 10(-6) s for the slow and fast relaxations respectively. PMID:24111517

  11. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  12. Cyclometalated gold(III) trioxadiborrin complexes: studies of the bonding and excited states.

    PubMed

    Ayoub, Nicholas A; Browne, Amberle R; Anderson, Bryce L; Gray, Thomas G

    2016-03-01

    Trioxadiborrins are chelating ligands that assemble in dehydration reactions of boronic acids. They are structurally related to β-diketonate ligands, but have a 2-charge. Little is known of the bonding properties of trioxadiborrin ligands. Presented here are density-functional theory (DFT) studies of cyclometalated gold(III) trioxadiborrins. Substituent effects are evaluated, and comparison is made to the cyclometalating 2-(4-tolyl)pyridine (tpy) ligand on gold. The tpy ligand binds more strongly than any trioxadiborrin ligand considered here, and the two ligands bind competitively to gold. The 1,3-diphenyl trioxadiborrin ligand of 1 has a larger absolute binding enthalpy to gold than its β-diketonate analogue. Conjugation between boron and aryl substituents delocalizes charge and attenuates the trioxadiborrin's binding capacity. Steric effects that disrupt conjugation between boron and aryl substituents cause the trioxadiborrin to chelate more tightly. Fragment bond orders are divided into in-plane and out-of-plane contributions for square planar 1. In-plane bonding accounts for 88% of bond order between (tpy)Au2+ and the trioxadiborrin ligand. Cyclometalated gold(III) trioxadiborrin complexes were previously shown to be phosphorescent. Spin-unrestricted triplet-state geometry optimizations find that the ten largest excited-state distortions all occur on the tpy ligand. A plot of spin density in triplet 1 shows spin to reside predominantly on tpy. The 77 K luminescence spectrum of 1 is reported here. Time-dependent DFT and configuration interaction singles calculations (corrected for doubles excitations) overestimate the emission energy by ∼ 0.12 eV. PMID:26821088

  13. TD-DFT study of the light-induced spin crossover of Fe(III) complexes.

    PubMed

    Saureu, Sergi; de Graaf, Coen

    2016-01-14

    Two light-induced spin-crossover Fe(III) compounds have been studied with time-dependent density functional theory (TD-DFT) to investigate the deactivation mechanism and the role of the ligand-field states as intermediates in this process. The B3LYP* functional has previously shown its ability to accurately describe (light-induced) spin-crossover in Fe(II) complexes. Here, we establish its performance for Fe(III) systems using [Fe(qsal)2](+) (Hqsal = 2-[(8-quinolinylimino)methyl]phenol) and [Fe(pap)2](+) (Hpap = 2-(2-pyridylmethyleneamino)phenol) as test cases comparing the B3LYP* results to experimental information and to multiconfigurational wave function results. In addition to rather accurate high spin (HS) and low spin (LS) state geometries, B3LYP* also predicts ligand-to-metal charge transfer (LMCT) states with large oscillator strength in the energy range where the UV-VIS spectrum shows an intense absorption band, whereas optically allowed π-π* excitations on the ligands were calculated at higher energy. Subsequently, we have generated a two-dimensional potential energy surface of the HS and