Science.gov

Sample records for respiratory correlated image

  1. Incorporating electromagnetic tracking into respiratory correlated imaging for high precision radiation therapy

    NASA Astrophysics Data System (ADS)

    Smith, Ryan L.; Lechleiter, Kristen; Malinowski, Kathleen; Parikh, Parag

    2008-03-01

    It is well established that respiratory motion has significant effects on lung tumor position, and incorporation of this uncertainty increases the normal lung tissue irradiated. Respiratory correlated CT, which provides three dimensional image sets for different phases of the breathing cycle, is increasingly being used for radiation therapy planning. Cone beam CT is being used to obtain cross sectional imaging at the time of therapy for accurate patient set-up. However, it is not possible to obtain cross sectional respiratory correlated imaging throughout the course of radiation, leaving residual uncertainties. Recently, implantable passive transponders (Calypso Medical Technologies) have been developed which are currently FDA-cleared for prostate use only and can be tracked via an external electromagnetic array in real-time, without the use of ionizing radiation. A visualization system needs to be developed to quickly and efficiently utilize both the dynamic real-time point measurements with the previously acquired volumetric data. We have created such a visualization system by incorporating the respiratory correlated imaging and the individual transponder locations into the Image Guided Surgery Toolkit (IGSTK.org). The tool already allows quick, qualitative verification of the differences between the measured transponder position and the imaged position at planning and will support quantitative measurements displaying uncertainty in positioning.

  2. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  3. SU-E-J-226: Propagation of Pancreas Target Contours On Respiratory Correlated CT Images Using Deformable Image Registration

    SciTech Connect

    Liu, F

    2014-06-01

    Purpose: Respiratory Correlated CT (RCCT) scans to assess intra-fraction motion among pancreatic cancer patients undergoing radiotherapy allow for dose sparing of normal tissues, in particular for the duodenum. Contour propagation of the gross tumor volume (GTV) from one reference respiratory phase to 9 other phases is time consuming. Deformable image registration (DIR) has been successfully used for high contrast disease sites but lower contrast for pancreatic tumors may compromise accuracy. This study evaluates the accuracy of Fast Free Form (FFF) registration-based contour propagation of the GTV on RCCT scans of pancreas cancer patients. Methods: Twenty-four pancreatic cancer patients were retrospectively studied; 20 had tumors in the pancreatic head/neck, 4 in the body/tail. Patients were simulated with RCCT and images were sorted into 10 respiratory phases. A radiation oncologist manually delineated the GTV for 5 phases (0%, 30%, 50%, 70% and 90%). The FFF algorithm was used to map deformations between the EE (50%) phase and each of the other 4 phases. The resultant deformation fields served to propagate GTV contours from EE to the other phases. The Dice Similarity Coefficient (DSC), which measures agreement between the DIR-propagated and manually-delineated GTVs, was used to quantitatively examine DIR accuracy. Results: Average DSC over all scans and patients is 0.82 and standard deviation is 0.09 (DSC range 0.97–0.57). For GTV volumes above and below the median volume of 20.2 cc, a Wilcoxon rank-sum test shows significantly different DSC (p=0.0000002). For the GTVs above the median volume, average +/− SD is 0.85 +/− 0.07; and for the GTVs below, the average +/− SD is 0.75 +/−0.08. Conclusion: For pancreatic tumors, the FFF DIR algorithm accurately propagated the GTV between the images in different phases of RCCT, with improved performance for larger tumors.

  4. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging

    SciTech Connect

    Nyflot, Matthew J.; Lee, Tzu-Cheng; Alessio, Adam M.; Kinahan, Paul E.; Wollenweber, Scott D.; Stearns, Charles W.; Bowen, Stephen R.

    2015-01-15

    Purpose: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. Methods: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV{sub max}, SUV{sub mean}, SUV{sub peak}, and segmented tumor volume was evaluated as RC{sub max}, RC{sub mean}, RC{sub peak}, and RC{sub vol}, representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal–Wallis ANOVA were used to test for significant differences. Results: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, −1.8 ± 6.5, −3.2 ± 5.0, and 3.0 ± 5.9 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. In comparison, recovery coefficients for phase-matched CTAC were −8.4 ± 5.3, −10.5 ± 6.2, −7.6 ± 5.0, and −13.0 ± 7.7 for RC{sub max}, RC{sub peak}, RC{sub mean}, and RC{sub vol}. When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by

  5. Image-Guided Radiotherapy for Liver Cancer Using Respiratory-Correlated Computed Tomography and Cone-Beam Computed Tomography

    SciTech Connect

    Guckenberger, Matthias Sweeney, Reinhart A.; Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Mueller, Gerd; Sauer, Otto; Flentje, Michael

    2008-05-01

    Purpose: To evaluate a novel four-dimensional (4D) image-guided radiotherapy (IGRT) technique in stereotactic body RT for liver tumors. Methods and Materials: For 11 patients with 13 intrahepatic tumors, a respiratory-correlated 4D computed tomography (CT) scan was acquired at treatment planning. The target was defined using CT series reconstructed at end-inhalation and end-exhalation. The liver was delineated on these two CT series and served as a reference for image guidance. A cone-beam CT scan was acquired after patient positioning; the blurred diaphragm dome was interpreted as a probability density function showing the motion range of the liver. Manual contour matching of the liver structures from the planning 4D CT scan with the cone-beam CT scan was performed. Inter- and intrafractional uncertainties of target position and motion range were evaluated, and interobserver variability of the 4D-IGRT technique was tested. Results: The workflow of 4D-IGRT was successfully practiced in all patients. The absolute error in the liver position and error in relation to the bony anatomy was 8 {+-} 4 mm and 5 {+-} 2 mm (three-dimensional vector), respectively. Margins of 4-6 mm were calculated for compensation of the intrafractional drifts of the liver. The motion range of the diaphragm dome was reproducible within 5 mm for 11 of 13 lesions, and the interobserver variability of the 4D-IGRT technique was small (standard deviation, 1.5 mm). In 4 patients, the position of the intrahepatic lesion was directly verified using a mobile in-room CT scanner after application of intravenous contrast. Conclusion: The results of our study have shown that 4D image guidance using liver contour matching between respiratory-correlated CT and cone-beam CT scans increased the accuracy compared with stereotactic positioning and compared with IGRT without consideration of breathing motion.

  6. Upper respiratory tract (image)

    MedlinePlus

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  7. Ultrasound image-based respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkyoo; Kim, Jung-Bae; Kim, Yong Sun; Bang, Won-Chul; Kim, James D. K.; Kim, ChangYeong

    2012-03-01

    Respiratory motion tracking has been issues for MR/CT imaging and noninvasive surgery such as HIFU and radiotherapy treatment when we apply these imaging or therapy technologies to moving organs such as liver, kidney or pancreas. Currently, some bulky and burdensome devices are placed externally on skin to estimate respiratory motion of an organ. It estimates organ motion indirectly using skin motion, not directly using organ itself. In this paper, we propose a system that measures directly the motion of organ itself only using ultrasound image. Our system has automatically selected a window in image sequences, called feature window, which is able to measure respiratory motion robustly even to noisy ultrasound images. The organ's displacement on each ultrasound image has been directly calculated through the feature window. It is very convenient to use since it exploits a conventional ultrasound probe. In this paper, we show that our proposed method can robustly extract respiratory motion signal with regardless of reference frame. It is superior to other image based method such as Mutual Information (MI) or Correlation Coefficient (CC). They are sensitive to what the reference frame is selected. Furthermore, our proposed method gives us clear information of the phase of respiratory cycle such as during inspiration or expiration and so on since it calculate not similarity measurement like MI or CC but actual organ's displacement.

  8. A comparison of lung motion measured using implanted electromagnetic transponders and motion algorithmically predicted using external surrogates as an alternative to respiratory correlated CT imaging

    NASA Astrophysics Data System (ADS)

    Lechleiter, Kristen M.; Low, Daniel A.; Chaudhari, Amir; Lu, Wei; Hubenschmidt, James P.; Mayse, Martin L.; Dimmer, Steven C.; Bradley, Jeffrey D.; Parikh, Parag J.

    2007-03-01

    Three-dimensional volumetric imaging correlated with respiration (4DCT) typically utilizes external breathing surrogates and phase-based models to determine lung tissue motion. However, 4DCT requires time consuming post-processing and the relationship between external breathing surrogates and lung tissue motion is not clearly defined. This study compares algorithms using external respiratory motion surrogates as predictors of internal lung motion tracked in real-time by electromagnetic transponders (Calypso® Medical Technologies) implanted in a canine model. Simultaneous spirometry, bellows, and transponder positions measurements were acquired during free breathing and variable ventilation respiratory patterns. Functions of phase, amplitude, tidal volume, and airflow were examined by least-squares regression analysis to determine which algorithm provided the best estimate of internal motion. The cosine phase model performed the worst of all models analyzed (R2 = 31.6%, free breathing, and R2 = 14.9%, variable ventilation). All algorithms performed better during free breathing than during variable ventilation measurements. The 5D model of tidal volume and airflow predicted transponder location better than amplitude or either of the two phasebased models analyzed, with correlation coefficients of 66.1% and 64.4% for free breathing and variable ventilation respectively. Real-time implanted transponder based measurements provide a direct method for determining lung tissue location. Current phase-based or amplitude-based respiratory motion algorithms cannot as accurately predict lung tissue motion in an irregularly breathing subject as a model including tidal volume and airflow. Further work is necessary to quantify the long term stability of prediction capabilities using amplitude and phase based algorithms for multiple lung tumor positions over time.

  9. SU-E-J-253: Evaluation of 4DCT Images with Correlation of RPM Signals to Tumor Motion for Respiratory-Gated Radiotherapy

    SciTech Connect

    Lee, TK; Ewald, A; Schultz, T; Park, SY

    2014-06-01

    Purpose: The amplitudes of lung tumor target motion and RPM signals are different from each other. Also, RPM system does not have in-depth RPM signal analysis tool. We have developed an algorithm that analyzes RPM signals for its stability as well as correlativity to the tumor motion. Methods: We used a Philips Big Bore CT scanner with a Varian Real-Time Position Management™ (RPM) system attached. 4DCT images were reviewed and tumor motion amplitudes of full breathing in superior-inferior, anterior-posterior, and left-right directions were measured. RPM signals were analyzed with the algorithm developed with Matlab. Average signal period, amplitude and statistical stability of the full breathing pattern as well as the pattern around full expiration were calculated. RPM signal amplitudes were normalized to measured tumor motion amplitudes so that selected gating phases (30%–70% or 40%–60%) allow tumor motion under 5.0mm. Results: Twelve patient cases were analyzed in this study with GTV sizes ranged from 1.0cm to 3.0cm diameter. The periods and amplitudes of RPM signal ranged from 3.1seconds to 6.5seconds and from 0.2cm to 1.7cm, respectively. RPM signals were most stable at full expiration. The standard deviation of the RPM signal peaks at full expiration was <0.11cm, and that of gated amplitudes was <0.25cm. Tumor motion amplitudes were primary in superior-inferior direction and minor (<=0.2cm) in other directions on all analyzed cases, ranged from 0.2cm to 2.5cm. The amplitudes increases with the tumor located toward the diaphragm. The gated phases were selected so that the average gated tumor motion amplitude as well as that plus deviation became under 0.5cm in superior-inferior direction. Conclusion: We were able to determine the respiratory-gated phases in RPM signals employing measured tumor motion amplitudes as well as developed RPM signal analyzer through correlation process. The RPM signal amplitudes do not represent tumor motion because of its

  10. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging. PMID:27314718

  11. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  12. Respiratory rate assessment from photoplethysmographic imaging.

    PubMed

    Karlen, Walter; Garde, Ainara; Myers, Dorothy; Scheffer, Cornie; Ansermino, J Mark; Dumont, Guy A

    2014-01-01

    We present a study investigating the suitability of a respiratory rate estimation algorithm applied to photoplethysmographic imaging on a mobile phone. The algorithm consists of a cascade of previously developed signal processing methods to detect features and extract respiratory induced variations in photoplethysmogram signals to estimate respiratory rate. With custom-built software on an Android phone (Camera Oximeter), contact photoplethysmographic imaging videos were recorded using the integrated camera from 19 healthy adults breathing spontaneously at respiratory rates between 6 and 40 breaths/min. Capnometry was simultaneously recorded to obtain reference respiratory rates. Two hundred and ninety-eight Camera Oximeter recordings were available for analysis. The algorithm detected 22 recordings with poor photoplethysmogram quality and 46 recordings with insufficient respiratory information. Of the 232 remaining recordings, a root mean square error of 5.9 breaths/min and a median absolute error of 2.3 breaths/min was obtained. The study showed that it is feasible to estimate respiratory rates by placing a finger on a mobile phone camera, but that it becomes increasingly challenging at respiratory rates higher than 20 breaths/min. PMID:25571214

  13. Statistical analysis and correlation discovery of tumor respiratory motion.

    PubMed

    Wu, Huanmei; Sharp, Gregory C; Zhao, Qingya; Shirato, Hiroki; Jiang, Steve B

    2007-08-21

    Tumors, especially in the thorax and abdomen, are subject to respiratory motion, and understanding the structure of respiratory motion is a key component to the management and control of disease in these sites. We have applied statistical analysis and correlation discovery methods to analyze and mine tumor respiratory motion based on a finite state model of tumor motion. Aggregates (such as minimum, maximum, average and mean), histograms, percentages, linear regression and multi-round statistical analysis have been explored. The results have been represented in various formats, including tables, graphs and text description. Different graphs, for example scatter plots, clustered column figures, 100% stacked column figures and box-whisker plots, have been applied to highlight different aspects of the results. The internal tumor motion from 42 lung tumors, 30 of which have motion larger than 5 mm, has been analyzed. Results for both inter-patient and intra-patient motion characteristics, such as duration and travel distance patterns, are reported. New knowledge of patient-specific tumor motion characteristics have been discovered, such as expected correlations between properties. The discovered tumor motion characteristics will be utilized in different aspects of image-guided radiation treatment, including treatment planning, online tumor motion prediction and real-time radiation dose delivery. PMID:17671334

  14. Statistical analysis and correlation discovery of tumor respiratory motion

    NASA Astrophysics Data System (ADS)

    Wu, Huanmei; Sharp, Gregory C.; Zhao, Qingya; Shirato, Hiroki; Jiang, Steve B.

    2007-08-01

    Tumors, especially in the thorax and abdomen, are subject to respiratory motion, and understanding the structure of respiratory motion is a key component to the management and control of disease in these sites. We have applied statistical analysis and correlation discovery methods to analyze and mine tumor respiratory motion based on a finite state model of tumor motion. Aggregates (such as minimum, maximum, average and mean), histograms, percentages, linear regression and multi-round statistical analysis have been explored. The results have been represented in various formats, including tables, graphs and text description. Different graphs, for example scatter plots, clustered column figures, 100% stacked column figures and box-whisker plots, have been applied to highlight different aspects of the results. The internal tumor motion from 42 lung tumors, 30 of which have motion larger than 5 mm, has been analyzed. Results for both inter-patient and intra-patient motion characteristics, such as duration and travel distance patterns, are reported. New knowledge of patient-specific tumor motion characteristics have been discovered, such as expected correlations between properties. The discovered tumor motion characteristics will be utilized in different aspects of image-guided radiation treatment, including treatment planning, online tumor motion prediction and real-time radiation dose delivery.

  15. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  16. Correlative pediatric imaging

    SciTech Connect

    Garty, I.; Delbeke, D.; Sandler, M.P.

    1989-01-01

    Nuclear medicine, ultrasound, and magnetic resonance imaging (MRI) are considered ideal imaging modalities for pediatric patients. The future is even more promising for pediatric imaging with the development of newer and improved radiopharmaceuticals, instrumentation and diagnostic modalities such as positron emission tomography, labeled monoclonal antibodies, and faster dynamic and contrast enhanced MRI methods. However, correlation of more conventional imaging modalities with nuclear medicine, ultrasound and MRI remain essential for optimal patient care. 43 references.

  17. Feasibility of using respiratory correlated mega voltage cone beam computed tomography to measure tumor motion.

    PubMed

    Chen, Mingqing; Siochi, R Alfredo

    2011-01-01

    The purpose of this study was to test the feasibility of using respiratory correlated mega voltage cone-beam computed tomography (MVCBCT), taken during patient localization, to quantify the size and motion of lung tumors. An imaging phantom was constructed of a basswood frame embedded with six different-sized spherical pieces of paraffin wax. The Quasar respiratory motion phantom was programmed to move the imaging phantom using typical respiratory motion. The moving imaging phantom was scanned using various MVCBCT imaging parameters, including two beam line types, two protocols with different ranges of rotation and different imaging doses. A static phantom was also imaged as a control. For all the 3D volumetric images, the contours of the six spherical inserts were measured manually. Compared with the nominal sphere diameter, the average relative error in the size of the respiratory correlated MVCBCT spheres ranged from 5.3% to 12.6% for the four largest spheres, ranging in size from 3.6 cc to 29 cc. Larger errors were recorded for the two smallest inserts. The average relative error in motion was 5.1% smaller than the programmed amplitude of 3.0 cm. We are able to conclude that it is feasible to use respiratory correlated MVCBCT to quantify tumor motion for lung cancer patients. PMID:21587196

  18. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  19. Digital Image Correlation Engine

    Energy Science and Technology Software Center (ESTSC)

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and canmore » be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.« less

  20. SU-E-J-235: Audiovisual Biofeedback Improves the Correlation Between Internal and External Respiratory Motion

    SciTech Connect

    Lee, D; Pollock, S; Keall, P; Greer, P; Ludbrook, J; Paganelli, C; Kim, T

    2015-06-15

    Purpose: External respiratory surrogates are often used to predict internal lung tumor motion for beam gating but the assumption of correlation between external and internal surrogates is not always verified resulting in amplitude mismatch and time shift. To test the hypothesis that audiovisual (AV) biofeedback improves the correlation between internal and external respiratory motion, in order to improve the accuracy of respiratory-gated treatments for lung cancer radiotherapy. Methods: In nine lung cancer patients, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with (1) free breathing (FB) and (2) AV biofeedback. External anterior-posterior (AP) respiratory motions of (a) chest and (b) abdomen were simultaneously acquired with physiological measurement unit (PMU, 3T Skyra, Siemens Healthcare Erlangen, Germany) and real-time position management (RPM) system (Varian, Palo Alto, USA), respectively. Internal superior-inferior (SI) respiratory motions of (c) lung tumor (i.e. centroid of auto-segmented lung tumor) and (d) diaphragm (i.e. upper liver dome) were measured from individual cine-MR images across 32 dataset. The four respiratory motions were then synchronized with the cine-MR image acquisition time. Correlation coefficients were calculated in the time variation of two nominated respiratory motions: (1) chest-abdomen, (2) abdomen-diaphragm and (3) diaphragm-lung tumor. The three combinations were compared between FB and AV biofeedback. Results: Compared to FB, AV biofeedback improved chest-abdomen correlation by 17% (p=0.005) from 0.75±0.23 to 0.90±0.05 and abdomen-diaphragm correlation by 4% (p=0.058) from 0.91±0.11 to 0.95±0.05. Compared to FB, AV biofeedback improved diaphragm-lung tumor correlation by 12% (p=0.023) from 0.65±0.21 to 0.74±0.16. Conclusions: Our results demonstrated that AV biofeedback significantly improved the correlation of internal and external respiratory motion, thus

  1. A manifold learning method to detect respiratory signal from liver ultrasound images.

    PubMed

    Wu, Jiaze; Gogna, Apoorva; Tan, Bien Soo; Ooi, London Lucien; Tian, Qi; Liu, Feng; Liu, Jimin

    2015-03-01

    Respiratory gating has been widely applied for respiratory correction or compensation in image acquisition and image-guided interventions. A novel image-based method is proposed to extract respiratory signal directly from 2D ultrasound liver images. The proposed method utilizes a typical manifold learning method, based on local tangent space alignment based technique, to detect principal respiratory motion from a sequence of ultrasound images. This technique assumes all the images lying on a low-dimensional manifold embedding into the high-dimensional image space, constructs an approximate tangent space of each point to represent its local geometry on the manifold, and then aligns the local tangent spaces to form the global coordinate system, where the respiratory signal is extracted. The experimental results show that the proposed method can detect relatively accurate respiratory signal with high correlation coefficient (0.9775) with respect to the ground-truth signal by tracking external markers, and achieve satisfactory computing performance (2.3s for an image sequence of 256 frames). The proposed method is also used to create breathing-corrected 3D ultrasound images to demonstrate its potential application values. PMID:25499961

  2. A simple method for labeling CT images with respiratory states

    SciTech Connect

    Berlinger, Kajetan; Sauer, Otto; Vences, Lucia; Roth, Michael

    2006-09-15

    A method is described for labeling CT images with their respiratory state by a needle, connected to the patient's chest/abdomen. By means of a leverage the needle follows the abdominal respiratory motion. The needle is visible as a blurred spot in every CT slice. The method was tested with nine patients. A series of volume scans during free breathing was performed. The detected positions of the moving needle in every single slice were compared to each other thus enabling respiratory state assignment. The tool is an inexpensive alternative to complex respiratory measuring tools for four dimensional (4D) CT and was greatly accepted in the clinic due to its simplicity.

  3. Respiratory Amplitude Guided 4-Dimensional Magnetic Resonance Imaging

    SciTech Connect

    Hu, Yanle; Caruthers, Shelton D.; Low, Daniel A.; Parikh, Parag J.; Mutic, Sasa

    2013-05-01

    Purpose: To evaluate the feasibility of prospectively guiding 4-dimensional (4D) magnetic resonance imaging (MRI) image acquisition using triggers at preselected respiratory amplitudes to achieve T{sub 2} weighting for abdominal motion tracking. Methods and Materials: A respiratory amplitude-based triggering system was developed and integrated into a commercial turbo spin echo MRI sequence. Initial feasibility tests were performed on healthy human study participants. Four respiratory states, the middle and the end of inhalation and exhalation, were used to trigger 4D MRI image acquisition of the liver. To achieve T{sub 2} weighting, the echo time and repetition time were set to 75 milliseconds and 4108 milliseconds, respectively. Single-shot acquisition, together with parallel imaging and partial k-space imaging techniques, was used to improve image acquisition efficiency. 4D MRI image sets composed of axial or sagittal slices were acquired. Results: Respiratory data measured and logged by the MRI scanner showed that the triggers occurred at the appropriate respiratory levels. Liver motion could be easily observed on both 4D MRI image datasets by sensing either the change of liver in size and shape (axial) or diaphragm motion (sagittal). Both 4D MRI image datasets were T{sub 2}-weighted as expected. Conclusions: This study demonstrated the feasibility of achieving T{sub 2}-weighted 4D MRI images using amplitude-based respiratory triggers. With the aid of the respiratory amplitude-based triggering system, the proposed method is compatible with most MRI sequences and therefore has the potential to improve tumor-tissue contrast in abdominal tumor motion imaging.

  4. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie; Smith, Randy J.; Warren, John B.; Elliott, Donald

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  5. Respiratory gating of endoscopic OCT images of the upper airway

    NASA Astrophysics Data System (ADS)

    McLaughlin, Robert A.; Armstrong, Julian J.; Becker, Sven; Walsh, Jennifer H.; Kirkness, Jason; Jain, Arpit; Leigh, Matthew S.; Williamson, Jonathan; Hillman, David R.; Eastwood, Peter R.; Sampson, David D.

    2008-04-01

    Anatomical optical coherence tomography (aOCT) is an endoscopic imaging modality that can be used to quantify size and shape of the upper airway. We report the application of respiratory gating to aOCT images. Our results show that respiratory gating can reduce motion artefact in upper airway images. Using an error metric based on distance to the dominant reflection in each A-scan, we found notable improvements when the breath cycle was partitioned into approximately four gates, but only minor improvements as the number of gates was further increased.

  6. 4D MR imaging using robust internal respiratory signal

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  7. Scanning Electrochemical Microscopy Imaging during Respiratory Burst in Human Cell

    PubMed Central

    Kikuchi, Hiroyuki; Prasad, Ankush; Matsuoka, Ryo; Aoyagi, Shigeo; Matsue, Tomokazu; Kasai, Shigenobu

    2016-01-01

    Phagocytic cells, such as neutrophils and monocytes, consume oxygen and generate reactive oxygen species (ROS) in response to external stimuli. Among the various ROS, the superoxide anion radical is known to be primarily produced by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase. In the current study, we attempt to evaluate the respiratory burst by monitoring the rapid consumption of oxygen by using scanning electrochemical microscopy (SECM) imaging. The respiratory burst was measured in a human monocytic cell line (THP-1 cells) derived from an acute monocytic leukemia patient under the effect of the exogenous addition of phorbol 12-myristate 13-acetate, which acts as a differentiation inducer. SECM imaging composed of a microelectrode was used to compare oxygen consumption between normal cellular respiration and during respiratory burst in THP-1 cells. Two-dimensional respiratory activity imaging was performed using XY-scan. In addition, the quantitative evaluation of oxygen consumption in THP-1 cells was performed using a Z-scan. The results obtained show higher consumption of oxygen in cells undergoing respiratory burst. SECM imaging is thus claimed to be a highly sensitive and appropriate technique compared to other existing techniques available for evaluating oxidative stress in human cells, making it potentially useful for widespread applications in biomedical research and clinical trials. PMID:26903876

  8. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  9. Minimum Bayes risk image correlation

    NASA Technical Reports Server (NTRS)

    Minter, T. C., Jr.

    1980-01-01

    In this paper, the problem of designing a matched filter for image correlation will be treated as a statistical pattern recognition problem. It is shown that, by minimizing a suitable criterion, a matched filter can be estimated which approximates the optimum Bayes discriminant function in a least-squares sense. It is well known that the use of the Bayes discriminant function in target classification minimizes the Bayes risk, which in turn directly minimizes the probability of a false fix. A fast Fourier implementation of the minimum Bayes risk correlation procedure is described.

  10. Molecular Imaging of Influenza and Other Emerging Respiratory Viral Infections

    PubMed Central

    Lawler, James; Paragas, Jason; Jahrling, Peter B.; Mollura, Daniel J.

    2011-01-01

    Research on the pathogenesis and therapy of influenza and other emerging respiratory viral infections would be aided by methods that directly visualize pathophysiologic processes in patients and laboratory animals. At present, imaging of diseases, such as swine-origin H1N1 influenza, is largely restricted to chest radiograph and computed tomography (CT), which can detect pulmonary structural changes in severely ill patients but are more limited in characterizing the early stages of illness, differentiating inflammation from infection or tracking immune responses. In contrast, imaging modalities, such as positron emission tomography, single photon emission CT, magnetic resonance imaging, and bioluminescence imaging, which have become useful tools for investigating the pathogenesis of a range of disease processes, could be used to advance in vivo studies of respiratory viral infections in patients and animals. Molecular techniques might also be used to identify novel biomarkers of disease progression and to evaluate new therapies. PMID:21422476

  11. Image-based respiratory motion compensation for fluoroscopic coronary roadmapping.

    PubMed

    Zhu, Ying; Tsin, Yanghai; Sundar, Hari; Sauer, Frank

    2010-01-01

    We present a new image-based respiratory motion compensation method for coronary roadmapping in fluoroscopic images. A temporal analysis scheme is proposed to identify static structures in the image gradient domain. An extended Lucas-Kanade algorithm involving a weighted sum-of-squared-difference (WSSD) measure is proposed to estimate the soft tissue motion in the presence of static structures. A temporally compositional motion model is used to deal with large image motion incurred by deep breathing. Promising results have been shown in the experiments conducted on clinical data. PMID:20879411

  12. SU-E-J-48: Development of An Abdominal Compression Device for Respiratory Correlated Radiation Therapy

    SciTech Connect

    Kim, T; Kang, S; Kim, D; Suh, T; Kim, S

    2014-06-01

    Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure level of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated

  13. Imaging the Respiratory Effects of Opioids in the Human Brain.

    PubMed

    Pattinson, Kyle T S; Wise, Richard G

    2016-01-01

    Opioid analgesia is limited by the potentially fatal side effect of respiratory depression. In humans the brain mechanisms of opioid-induced respiratory depression are poorly understood. Investigating pharmacological influences upon breathing helps us to understand better the brain's respiratory control networks. Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (FMRI) maps neuronal activity in the brain, and is therefore a potentially useful, noninvasive technique to investigate the functional neuroanatomy of respiratory control in humans. Contrast in FMRI is derived from the vascular response to brain activity (neurovascular coupling). Therefore, FMRI studies of the neuronal effects of opioids are rendered more complex by the nonneuronal effects of opioids including those on systemic physiology, cerebral blood flow, and direct effects on the cerebral vasculature such as altered vascular reactivity. Here we review our series of studies that dissect the vascular and neuronal breathing-related effects of opioids in the brain. These methodological considerations have enabled successful FMRI studies revealing the brain networks responsible for opioid effects upon respiratory awareness. Similar considerations would be necessary for FMRI studies in hypoxia or in disease states that affect the physiological state of the brain. PMID:27343094

  14. The influence of respiratory motion on CT image volume definition

    SciTech Connect

    Rodríguez-Romero, Ruth Castro-Tejero, Pablo

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  15. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation

    SciTech Connect

    Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David

    2012-05-15

    Purpose: Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D{sub vol}) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). Methods: 4D{sub vol} CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological ''tumor'' objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Results: Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D{sub vol} CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D{sub vol} CT. Under irregular breathing, the 4D{sub vol} CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a

  16. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  17. EPIC: E-field Parallel Imaging Correlator

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2015-11-01

    E-field Parallel Imaging Correlator (EPIC), a highly parallelized Object Oriented Python package, implements the Modular Optimal Frequency Fourier (MOFF) imaging technique. It also includes visibility-based imaging using the software holography technique and a simulator for generating electric fields from a sky model. EPIC can accept dual-polarization inputs and produce images of all four instrumental cross-polarizations.

  18. Detection of respiratory motion in fluoroscopic images for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Moser, T.; Biederer, J.; Nill, S.; Remmert, G.; Bendl, R.

    2008-06-01

    Respiratory motion limits the potential of modern high-precision radiotherapy techniques such as IMRT and particle therapy. Due to the uncertainty of tumour localization, the ability of achieving dose conformation often cannot be exploited sufficiently, especially in the case of lung tumours. Various methods have been proposed to track the position of tumours using external signals, e.g. with the help of a respiratory belt or by observing external markers. Retrospectively gated time-resolved x-ray computed tomography (4D CT) studies prior to therapy can be used to register the external signals with the tumour motion. However, during treatment the actual motion of internal structures may be different. Direct control of tissue motion by online imaging during treatment promises more precise information. On the other hand, it is more complex, since a larger amount of data must be processed in order to determine the motion. Three major questions arise from this issue. Firstly, can the motion that has occurred be precisely determined in the images? Secondly, how large must, respectively how small can, the observed region be chosen to get a reliable signal? Finally, is it possible to predict the proximate tumour location within sufficiently short acquisition times to make this information available for gating irradiation? Based on multiple studies on a porcine lung phantom, we have tried to examine these questions carefully. We found a basic characteristic of the breathing cycle in images using the image similarity method normalized mutual information. Moreover, we examined the performance of the calculations and proposed an image-based gating technique. In this paper, we present the results and validation performed with a real patient data set. This allows for the conclusion that it is possible to build up a gating system based on image data, solely, or (at least in avoidance of an exceeding exposure dose) to verify gates proposed by the various external systems.

  19. Nature of light correlations in ghost imaging

    PubMed Central

    Ragy, Sammy; Adesso, Gerardo

    2012-01-01

    We investigate the nature of correlations in Gaussian light sources used for ghost imaging. We adopt methods from quantum information theory to distinguish genuinely quantum from classical correlations. Combining a microscopic analysis of speckle-speckle correlations with an effective coarse-grained description of the beams, we show that quantum correlations exist even in ‘classical'-like thermal light sources, and appear relevant for the implementation of ghost imaging in the regime of low illumination. We further demonstrate that the total correlations in the thermal source beams effectively determine the quality of the imaging, as quantified by the signal-to-noise ratio. PMID:22973501

  20. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR

    PubMed Central

    Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges

    2015-01-01

    Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by

  1. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    NASA Astrophysics Data System (ADS)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  2. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder.

    PubMed

    Whelan, Jillian N; Reddy, Krishna D; Uversky, Vladimir N; Teng, Michael N

    2016-04-26

    Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication. PMID:27062995

  3. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  4. Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer

    PubMed Central

    Oliver, Jasmine A.; Budzevich, Mikalai; Zhang, Geoffrey G.; Dilling, Thomas J.; Latifi, Kujtim; Moros, Eduardo G.

    2015-01-01

    Radiomics is being explored for potential applications in radiation therapy. How various imaging protocols affect quantitative image features is currently a highly active area of research. To assess the variability of image features derived from conventional [three-dimensional (3D)] and respiratory-gated (RG) positron emission tomography (PET)/computed tomography (CT) images of lung cancer patients, image features were computed from 23 lung cancer patients. Both protocols for each patient were acquired during the same imaging session. PET tumor volumes were segmented using an adaptive technique which accounted for background. CT tumor volumes were delineated with a commercial segmentation tool. Using RG PET images, the tumor center of mass motion, length, and rotation were calculated. Fifty-six image features were extracted from all images consisting of shape descriptors, first-order features, and second-order texture features. Overall, 26.6% and 26.2% of total features demonstrated less than 5% difference between 3D and RG protocols for CT and PET, respectively. Between 10 RG phases in PET, 53.4% of features demonstrated percent differences less than 5%. The features with least variability for PET were sphericity, spherical disproportion, entropy (first and second order), sum entropy, information measure of correlation 2, Short Run Emphasis (SRE), Long Run Emphasis (LRE), and Run Percentage (RPC); and those for CT were minimum intensity, mean intensity, Root Mean Square (RMS), Short Run Emphasis (SRE), and RPC. Quantitative analysis using a 3D acquisition versus RG acquisition (to reduce the effects of motion) provided notably different image feature values. This study suggests that the variability between 3D and RG features is mainly due to the impact of respiratory motion. PMID:26692535

  5. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  6. Correlative imaging in gallbladder carcinoma.

    PubMed

    Willekens, I; Goethals, L R; Brussaard, C; Verdries, D; de Mey, J

    2014-01-01

    Gallbladder carcinoma is a relatively rare malignant epithelial neoplasm, arising from gallbladder mucosa. It is the fifth most common gastrointestinal malignancy and the most common biliary tract cancer. Early diagnosis remains difficult, because clinical symptoms are sparse and non-specific, often resulting in advanced stage disease at the time of diagnosis. The most common feature of gallbladder carcinoma on different imaging modalities is focal wall thickening, associated with a large eccentric tumor mass. In this case we report the imaging characteristics of gallbladder carcinoma on ultrasound, MDCT and 18F-FDG PET/CT. PMID:25597210

  7. Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure

    PubMed Central

    Pan, Chun; Chen, Lu; Zhang, Yun-Hang; Liu, Wei; Urbino, Rosario; Ranieri, V Marco; Qiu, Hai-Bo; Yang, Yi

    2016-01-01

    Background: Stress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Paw stress index on lung mechanics and the correlation between Paw stress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients. Methods: Twenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio <30%. Respiratory elastance, gas-exchange, Paw stress index, and PL stress index were measured. Student's t-test, regression analysis, and Bland–Altman analysis were used for statistical analysis. Results: Pneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Paw stress index and the PL stress index in H group (R2= 0.56, P < 0.01) and L group (R2= 0.85, P < 0.01). Conclusion: In the ARF patients with MV, Paw stress index can substitute for PL to guide ventilator settings. Trial Registration: ClinicalTrials.gov NCT02196870 (https

  8. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    PubMed Central

    Pänkäälä, Mikko; Paasio, Ari

    2014-01-01

    Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563

  9. Respiratory motion blur identification and reduction in ungated thoracic PET imaging.

    PubMed

    Xu, Quansheng; Yuan, Kehong; Ye, Datian

    2011-07-21

    Respiratory motion results in significant motion blur in thoracic positron emission tomography (PET) imaging. Existing approaches to correct the blurring artifact involve acquiring the images in gated mode and using complicated reconstruction algorithms. In this paper, we propose a post-reconstruction framework to estimate respiratory motion and reduce the motion blur of PET images acquired in ungated mode. Our method includes two steps: one is to use minmax directional derivative analysis and local auto-correlation analysis to identify the two parameters blur direction and blur extent, respectively, and another is to employ WRL, à trous wavelet-denoising modified Richardson-Lucy (RL) deconvolution, to reduce the motion blur based on identified parameters. The mobile phantom data were first used to test the method before it was applied to 32 cases of clinical lung tumor PET data. Results showed that the blur extent of phantom images in different directions was accurately identified, and WRL can remove the majority of motion blur within ten iterations. The blur extent of clinical images was estimated to be 12.1 ± 3.7 mm in the direction of 74 ± 3° relative to the image horizontal axis. The quality of clinical images was significantly improved, both from visual inspection and quantitative evaluation after deconvolution. It was demonstrated that WRL outperforms RL and a Wiener filter in reducing the motion blur with one to two more iterations. The proposed method is easy to implement and thus could be a useful tool to reduce the effect of respiration in ungated thoracic PET imaging. PMID:21719945

  10. Respiratory motion blur identification and reduction in ungated thoracic PET imaging

    NASA Astrophysics Data System (ADS)

    Xu, Quansheng; Yuan, Kehong; Ye, Datian

    2011-07-01

    Respiratory motion results in significant motion blur in thoracic positron emission tomography (PET) imaging. Existing approaches to correct the blurring artifact involve acquiring the images in gated mode and using complicated reconstruction algorithms. In this paper, we propose a post-reconstruction framework to estimate respiratory motion and reduce the motion blur of PET images acquired in ungated mode. Our method includes two steps: one is to use minmax directional derivative analysis and local auto-correlation analysis to identify the two parameters blur direction and blur extent, respectively, and another is to employ WRL, à trous wavelet-denoising modified Richardson-Lucy (RL) deconvolution, to reduce the motion blur based on identified parameters. The mobile phantom data were first used to test the method before it was applied to 32 cases of clinical lung tumor PET data. Results showed that the blur extent of phantom images in different directions was accurately identified, and WRL can remove the majority of motion blur within ten iterations. The blur extent of clinical images was estimated to be 12.1 ± 3.7 mm in the direction of 74 ± 3° relative to the image horizontal axis. The quality of clinical images was significantly improved, both from visual inspection and quantitative evaluation after deconvolution. It was demonstrated that WRL outperforms RL and a Wiener filter in reducing the motion blur with one to two more iterations. The proposed method is easy to implement and thus could be a useful tool to reduce the effect of respiration in ungated thoracic PET imaging.

  11. Real-time tumor tracking in B-mode images using respiratory signal and deformed liver models

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkyoo; Oh, Young-Taek; Kim, Jung-Bae; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    Tumor tracking is very important to deal with a cancer in a moving organ in clinical applications such as radiotherapy, HIFU etc. Respiratory monitoring systems are widely used to find location of the cancers in the organs because respiratory signal is highly correlated with the movement of organs such as the lungs and liver. However the conventional respiratory system doesn't have enough accuracy to track the location of a tumor as well as they need additional effort or devices to use. In this paper, we propose a novel method to track a liver tumor in real time by extracting respiratory signals directly from B-mode images and using a deformed liver model generated from CT images of the patient. Our method has several advantages. 1) There is no additional radiation dose and is cost effective due to use of an ultrasound device. 2) A high quality respiratory signal can be directly extracted from 2D images of the diaphragm. 3) Using a deformed liver model to track a tumor's 3D position, our method has an accuracy of 3.79mm in tracking error.

  12. Factor Analysis of the Image Correlation Matrix.

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Cerny, Barbara A.

    1979-01-01

    Whether to factor the image correlation matrix or to use a new model with an alpha factor analysis of it is mentioned, with particular reference to the determinacy problem. It is pointed out that the distribution of the images is sensibly multivariate normal, making for "better" factor analyses. (Author/CTM)

  13. Temporal correlations imaging fixed targets through turbulence.

    PubMed

    Gulich, Damián

    2016-06-15

    We study the temporal correlations from dynamic imaging through turbulence using incoherent light from fixed high-contrast targets. We conduct our experiment in controlled laboratory conditions using several values of the Cn2 constant from the weak to strong fluctuation regime. We employ detrended fluctuation analysis to measure long-range correlations while considering scintillation information for every recorded pixel. We find that turbulence strength generally increases temporal correlations in time series from pixels in high-contrast regions of the image. PMID:27304306

  14. Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants

    PubMed Central

    2013-01-01

    Background Respiratory Syncytial Virus (RSV) is the most important cause of severe respiratory infections in infants with seasonal epidemics. Environmental factors (temperature, humidity, air pollution) could influence RSV epidemics through their effects on virus activity and diffusion. Methods We conducted a retrospective study on a paediatric population who referred to our Paediatric Emergency Unit in order to analyze the correlation between weekly incidence of RSV positive cases during winter season in Bologna and meteorological factors and air pollutants concentration. Results We observed a significant correlation between the incidence of RSV infections and the mean minimum temperature registered during the same week and the previous weeks. The weekly number of RSV positive cases was also correlated to the mean PM10 concentration of the week before. Conclusions RSV epidemic trend in Bologna (Italy) is related to the mean minimum temperature, and the mean PM10 concentration. PMID:23311474

  15. Internal-external correlation investigations of respiratory induced motion of lung tumors

    SciTech Connect

    Ionascu, Dan; Jiang, Steve B.; Nishioka, Seiko; Shirato, Hiroki; Berbeco, Ross I.

    2007-10-15

    In gated radiation therapy procedures, the lung tumor position is used directly (by implanted radiopaque markers) or indirectly (by external surrogate methods) to decrease the volume of irradiated healthy tissue. Due to a risk of pneumothorax, many clinics do not implant fiducials, and the gated treatment is primarily based on a respiratory induced external signal. The external surrogate method relies upon the assumption that the internal tumor motion is well correlated with the external respiratory induced motion, and that this correlation is constant in time. Using a set of data that contains synchronous internal and external motion traces, we have developed a dynamic data analysis technique to study the internal-external correlation, and to quantitatively estimate its underlying time behavior. The work presented here quantifies the time dependent behavior of the correlation between external respiratory signals and lung implanted fiducial motion. The corresponding amplitude mismatch is also reported for the lung patients studied. The information obtained can be used to improve the accuracy of tumor tracking. For the ten patients in this study, the SI internal-external motion is well correlated, with small time shifts and corresponding amplitude mismatches. Although the AP internal-external motion reveals larger time shifts than along the SI direction, the corresponding amplitude mismatches are below 5 mm.

  16. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    SciTech Connect

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  17. Image Correlation Microscopy for Uniform Illumination

    PubMed Central

    Gaborski, Thomas R.; Sealander, Michael N.; Ehrenberg, Morton; Waugh, Richard E.; McGrath, James L.

    2011-01-01

    Image cross-correlation microscopy (ICM) is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. ICM has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy (FCS). In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy (UI-ICM). Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning ICM, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function (SACF). Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function (TACF) depends strongly on particle size and not particle shape. In this report, we establish the relationships between the SACF feature size, TACF characteristic time and the diffusion coefficient for UI-ICM using analytical, Monte-Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate UI-ICM analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils. PMID:20055917

  18. Ghost imaging with thermal light by third-order correlation

    SciTech Connect

    Bai Yanfeng; Han Shensheng

    2007-10-15

    Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.

  19. Real-time tumor tracking using sequential kV imaging combined with respiratory monitoring: a general framework applicable to commonly used IGRT systems

    PubMed Central

    Cho, Byungchul; Poulsen, Per Rugaard; Keall, Paul J

    2010-01-01

    Clinical image guided radiotherapy (IGRT) systems have kV imagers and respiratory monitors, the combination of which provides an ‘internal–external’ correlation for respiratory-induced tumor motion tracking. We developed a general framework of correlation-based position estimation that is applicable to various imaging configurations, particularly alternate stereoscopic (ExacTrac) or rotational monoscopic (linacs) imaging, where instant 3D target positions cannot be measured. By reformulating the least-squares estimation equation for the correlation model, the necessity to measure 3D target positions from synchronous stereoscopic images can be avoided. The performance of this sequential image-based estimation was evaluated in comparison with a synchronous image-based estimation. Both methods were tested in simulation studies using 160 abdominal/thoracic tumor trajectories and an external respiratory signal dataset. The sequential image-based estimation method (1) had mean 3D errors less than 1 mm at all the imaging intervals studied (0.2, 1, 2, 5 and 10 s), (2) showed minimal dependencies of the accuracy on the geometry and (3) was equal in accuracy to the synchronous image-based estimation method when using the same image input. In conclusion, the sequential image-based estimation method can achieve sub-mm accuracy for commonly used IGRT systems, and is equally accurate and more broadly applicable than the synchronous image-based estimation method. PMID:20484777

  20. Verification and compensation of respiratory motion using an ultrasound imaging system

    SciTech Connect

    Chuang, Ho-Chiao Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-15

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  1. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  2. Subclinical respiratory dysfunction in chronic cervical cord compression: a pulmonary function test correlation.

    PubMed

    Bhagavatula, Indira Devi; Bhat, Dhananjaya I; Sasidharan, Gopalakrishnan M; Mishra, Rakesh Kumar; Maste, Praful Suresh; Vilanilam, George C; Sathyaprabha, Talakkad N

    2016-06-01

    OBJECTIVE Respiratory abnormalities are well documented in acute spinal cord injury; however, the literature available for respiratory dysfunction in chronic compressive myelopathy (CCM) is limited. Respiratory dysfunction in CCM is often subtle and subclinical. The authors studied the pattern of respiratory dysfunction in patients with chronic cord compression by using spirometry, and the clinical and surgical implications of this dysfunction. In this study they also attempted to address the postoperative respiratory function in these patients. METHODS A prospective study was done in 30 patients in whom cervical CCM due to either cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) was diagnosed. Thirty age-matched healthy volunteers were recruited as controls. None of the patients included in the study had any symptoms or signs of respiratory dysfunction. After clinical and radiological diagnosis, all patients underwent pulmonary function tests (PFTs) performed using a standardized Spirometry Kit Micro before and after surgery. The data were analyzed using Statistical Software SPSS version 13.0. Comparison between the 2 groups was done using the Student t-test. The Pearson correlation coefficient was used for PFT results and Nurick classification scores. A p value < 0.05 was considered significant. RESULTS Cervical spondylotic myelopathy (prolapsed intervertebral disc) was the predominant cause of compression (n = 21, 70%) followed by OPLL (n = 9, 30%). The average patient age was 45.06 years. Degenerative cervical spine disease has a relatively younger onset in the Indian population. The majority of the patients (n = 28, 93.3%) had compression at or above the C-5 level. Ten patients (33.3%) underwent an anterior approach and discectomy, 11 patients (36.7%) underwent decompressive laminectomy, and the remaining 9 underwent either corpectomy with fusion or laminoplasty. The mean preoperative forced vital capacity (FVC) (65%) of the

  3. Hierarchical Image Segmentation Using Correlation Clustering.

    PubMed

    Alush, Amir; Goldberger, Jacob

    2016-06-01

    In this paper, we apply efficient implementations of integer linear programming to the problem of image segmentation. The image is first grouped into superpixels and then local information is extracted for each pair of spatially adjacent superpixels. Given local scores on a map of several hundred superpixels, we use correlation clustering to find the global segmentation that is most consistent with the local evidence. We show that, although correlation clustering is known to be NP-hard, finding the exact global solution is still feasible by breaking the segmentation problem down into subproblems. Each such sub-problem can be viewed as an automatically detected image part. We can further accelerate the process by using the cutting-plane method, which provides a hierarchical structure of the segmentations. The efficiency and improved performance of the proposed method is compared to several state-of-the-art methods and demonstrated on several standard segmentation data sets. PMID:26701901

  4. Use of Respiratory-Correlated Four-Dimensional Computed Tomography to Determine Acceptable Treatment Margins for Locally Advanced Pancreatic Adenocarcinoma

    SciTech Connect

    Goldstein, Seth D.; Ford, Eric C.; Duhon, Mario; McNutt, Todd; Wong, John; Herman, Joseph M.

    2010-02-01

    Purpose: Respiratory-induced excursions of locally advanced pancreatic adenocarcinoma could affect dose delivery. This study quantified tumor motion and evaluated standard treatment margins. Methods and Materials: Respiratory-correlated four-dimensional computed tomography images were obtained on 30 patients with locally advanced pancreatic adenocarcinoma; 15 of whom underwent repeat scanning before cone-down treatment. Treatment planning software was used to contour the gross tumor volume (GTV), bilateral kidneys, and biliary stent. Excursions were calculated according to the centroid of the contoured volumes. Results: The mean +- standard deviation GTV excursion in the superoinferior (SI) direction was 0.55 +- 0.23 cm; an expansion of 1.0 cm adequately accounted for the GTV motion in 97% of locally advanced pancreatic adenocarcinoma patients. Motion GTVs were generated and resulted in a 25% average volume increase compared with the static GTV. Of the 30 patients, 17 had biliary stents. The mean SI stent excursion was 0.84 +- 0.32 cm, significantly greater than the GTV motion. The xiphoid process moved an average of 0.35 +- 0.12 cm, significantly less than the GTV. The mean SI motion of the left and right kidneys was 0.65 +- 0.27 cm and 0.77 +- 0.30 cm, respectively. At repeat scanning, no significant changes were seen in the mean GTV size (p = .8) or excursion (p = .3). Conclusion: These data suggest that an asymmetric expansion of 1.0, 0.7, and 0.6 cm along the respective SI, anteroposterior, and medial-lateral directions is recommended if a respiratory-correlated four-dimensional computed tomography scan is not available to evaluate the tumor motion during treatment planning. Surrogates of tumor motion, such as biliary stents or external markers, should be used with caution.

  5. Digital Image Correlation with Dynamic Subset Selection

    NASA Astrophysics Data System (ADS)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  6. Evaluation of Tumor Position and PTV Margins Using Image Guidance and Respiratory Gating

    SciTech Connect

    Nelson, Christopher; Balter, Peter; Morice, Rodolfo C.; Bucci, Kara; Dong Lei; Tucker, Susan; Vedam, Sastry; Chang, Joe Y.; Starkschall, George

    2010-04-15

    Purpose: To evaluate the margins currently used to generate the planning target volume for lung tumors and to determine whether image-guided patient setup or respiratory gating is more effective in reducing uncertainties in tumor position. Methods and Materials: Lung tumors in 7 patients were contoured on serial four-dimensional computed tomography (4DCT) data sets (4-8 4DCTs/patient; 50 total) obtained throughout the course of treatment. Simulations were performed to determine the tumor position when the patient was aligned using skin marks, image-guided setup based on vertebral bodies, fiducials implanted near the tumor, and the actual tumor volume under various scenarios of respiratory gating. Results: Because of the presence of setup uncertainties, the reduction in overall margin needed to completely encompass the tumor was observed to be larger for imaged-guided patient setup than for a simple respiratory-gated treatment. Without respiratory gating and image-guided patient setup, margins ranged from 0.9 cm to 3.1 cm to completely encompass the tumor. These were reduced to 0.7-1.7 cm when image-guided patient setup was simulated and further reduced with respiratory gating. Conclusions: Our results indicate that if respiratory motion management is used, it should be used in conjunction with image-guided patient setup in order to reduce the overall treatment margin effectively.

  7. Pixel-level robust digital image correlation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2013-12-01

    Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from

  8. Motion correction for synthesis and analysis of respiratory-gated lung SPECT image

    NASA Astrophysics Data System (ADS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2005-04-01

    A conventional SPECT image of lung is obtained by accumulating the detected count of gamma rays over long acquisition time that contains many respiratory cycles. The lung motion due to respiration during the acquisition makes reconstructed image blurred and may lead to a misdiagnosis. If a respiratory-gated SPECT is used, reconstructed images at various phase of respiration are obtained and the blur in a image can be avoided. However, the respiratory-gated SPECT requires long time to accumulate sufficient number of counts at each phase. If the acquisition time is not long enough, the detected count becomes inadequately small and hence the reconstructed image becomes noisy. We propose a method for correcting the motion between different phase images obtained with the respiratory-gated SPECT. In this method, an objective function consisting of both the degree of similarity between a reference and a deformed image and the smoothness of deformation is defined and optimized. The expansion ratio defined as a ratio of the change of the local volume due to the deformation is introduced to preserve the total activity during the motion correction process. By summing each phase images corrected by this method, a less noisy and less blurred SPECT image can be obtained. Furthermore, this method allows us to analyze the local movement of lung. This method was applied to the computer phantom, the real phantom and some clinical data and the motion correction and visualization of local movements between inspiration and expiration phase images were successfully achieved.

  9. Ghost imaging based on Pearson correlation coefficients

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Kai; Yao, Xu-Ri; Liu, Xue-Feng; Li, Long-Zhen; Zhai, Guang-Jie

    2015-05-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ030595) and the National High Technology Research and Development Program of China (Grant No. 2013AA122902).

  10. Functional phase-correlated micro-CT imaging of small rodents with low dose

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Bergner, Frank; Hess, Andreas; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Kachelriess, Marc

    2011-03-01

    Functional imaging of an animals thoracic region requires cardiac and respiratory gating. The information on respiratory motion and ECG required for double-gating are extracted from the rawdata and used to select the projections appropriate for a given motion phase. A conventional phase-correlated reconstruction (PC) therefore uses only a small amount of the total projections acquired. Thus the resulting images comprise a high noise level unless acquired with very high dose, and streak artifacts may occur due to the sparse angular sampling. Here, we are aiming at getting high fidelity images even for relatively low dose values. To overcome these issues we implemented an iterative reconstruction method encompassing a five-dimensional (spatial, cardiac-temporal, respiratory-temporal) edge-preserving filter. This new phase-correlated low-dose (LDPC) reconstruction method is evaluated using retrospectively-gated, contrast-enhanced micro CT data of mice. The scans performed comprise 7200 projections within 10 rotations over 5 minutes. A tube voltage of 65 kV was used resulting in an administered dose of about 500 mGy. 20 respiratory phases and 10 cardiac phases are reconstructed. Using LDPC reconstruction the image noise is typically reduced by a factor of about six and artifacts are almost removed. Reducing the number of projections available for reconstruction shows that we can get comparable image quality with only 200 mGy. LDPC enables high fidelity low-dose double-gated imaging of free breathing rodents without compromises in image quality. Compared to PC image noise is significantly reduced with LDPC and the administered dose can be reduced accordingly.

  11. Raster image correlation spectroscopy in live cells.

    PubMed

    Rossow, Molly J; Sasaki, Jennifer M; Digman, Michelle A; Gratton, Enrico

    2010-11-01

    Raster image correlation spectroscopy (RICS) is a noninvasive technique to detect and quantify events in a live cell, including concentration of molecules and diffusion coefficients of molecules; in addition, by measuring changes in diffusion coefficients, RICS can indirectly detect binding. Any specimen containing fluorophores that can be imaged with a laser scanning microscope can be analyzed using RICS. There are other techniques to measure diffusion coefficients and binding; however, RICS fills a unique niche. It provides spatial information and can be performed in live cells using a conventional confocal microscope. It can measure a range of diffusion coefficients that is not accessible with any other single optical correlation-based technique. In this article we describe a protocol to obtain raster scanned images with an Olympus FluoView FV1000 confocal laser scanning microscope using Olympus FluoView software to acquire data and SimFCS software to perform RICS analysis. Each RICS measurement takes several minutes. The entire procedure can be completed in ∼2 h. This procedure includes focal volume calibration using a solution of fluorophores with a known diffusion coefficient and measurement of the diffusion coefficients of cytosolic enhanced green fluorescent protein (EGFP) and EGFP-paxillin. PMID:21030952

  12. Correlation and Imaging of Space VLBI Observations

    NASA Astrophysics Data System (ADS)

    Romney, J. D.

    1995-05-01

    Space VLBI observations challenge conventional VLBI data-analysis systems and techniques in several areas. The correlator must obtain and evaluate an ephemeris for an orbiting ``station'' which is not fixed on the surface of the earth. The geometric delay, and its derivatives, for this element can exceed those for terrestrial stations by an order of magnitude. Imperfect knowledge of the orbit requires that the output data flow be sufficient to preserve unusually wide windows in residual delay and fringe rate. And, at least for the current generation of Space VLBI missions, the spacecraft have no on-board precision frequency standard; the phase-transfer process from a frequency standard on the ground is accompanied by errors which must be corrected in the correlator. Imaging of observations involving an orbiting element must contend with gaps in the (u,v) plane coverage for many cases of the orbit and source geometry. Projected baselines to the orbiting element change significantly more rapidly than terrestrial baselines during perigee passage of the spacecraft. Self-calibration techniques are complicated by the facts that all measurements in many regions of the (u,v) plane involve baselines to the single orbiting antenna, and that their residual delay and fringe rate may be subject to short-term variations. Since the current generation of Space VLBI missions have relatively small antennas, observations of weaker sources will be limited to sparse arrays comprising only the largest available radio telescopes on the ground, and interpretation of the results may require sophisticated image model-fitting software. NRAO's participation in the VSOP and Radioastron missions includes programs to modify the VLBA correlator and the AIPS imaging system to meet these requirements. Also included is a user-support program, to provide expert assistance in data analysis to Space VLBI observers, at a level similar to the support NRAO currently provides for ground-based VLBI

  13. SU-E-J-73: Generation of Volumetric Images with a Respiratory Motion Model Based On An External Surrogate Signal

    SciTech Connect

    Hurwitz, M; Williams, C; Mishra, P; Dhou, S; Lewis, J

    2014-06-01

    Purpose: Respiratory motion during radiotherapy treatment can differ significantly from motion observed during imaging for treatment planning. Our goal is to use an initial 4DCT scan and the trace of an external surrogate marker to generate 3D images of patient anatomy during treatment. Methods: Deformable image registration is performed on images from an initial 4DCT scan. The deformation vectors are used to develop a patient-specific linear relationship between the motion of each voxel and the trajectory of an external surrogate signal. Correlations in motion are taken into account with principal component analysis, reducing the number of free parameters. This model is tested with digital phantoms reproducing the breathing patterns of ten measured patient tumor trajectories, using five seconds of data to develop the model and the subsequent thirty seconds to test its predictions. The model is also tested with a breathing physical anthropomorphic phantom programmed to reproduce a patient breathing pattern. Results: The error (mean absolute, 95th percentile) over 30 seconds in the predicted tumor centroid position ranged from (0.8, 1.3) mm to (2.2, 4.3) mm for the ten patient breathing patterns. The model reproduced changes in both phase and amplitude of the breathing pattern. Agreement between prediction and truth over the entire image was confirmed by assessing the global voxel intensity RMS error. In the physical phantom, the error in the tumor centroid position was less than 1 mm for all images. Conclusion: We are able to reconstruct 3D images of patient anatomy with a model correlating internal respiratory motion with motion of an external surrogate marker, reproducing the expected tumor centroid position with an average accuracy of 1.4 mm. The images generated by this model could be used to improve dose calculations for treatment planning and delivered dose estimates. This work was partially funded by a research grant from Varian Medical Systems.

  14. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  15. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging.

    PubMed

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-21

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  16. The use of a generalized reconstruction by inversion of coupled systems (GRICS) approach for generic respiratory motion correction in PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Fayad, Hadi; Odille, Freddy; Schmidt, Holger; Würslin, Christian; Küstner, Thomas; Feblinger, Jacques; Visvikis, Dimitris

    2015-03-01

    Respiratory motion is a source of artifacts in multimodality imaging such as PET/MR. Solutions include retrospective or prospective gating. They have however found limited use in clinical practice, since their increased overall acquisition duration to maintain overall image quality. More elaborate methods consist of using 4D MR datasets to extract spatial deformations in order to correct for the respiratory motion in PET. The main drawbacks of such approaches is the relatively long acquisition times associated with 4D MR imaging which is often incompatible with clinical PET/MR protocols. The objective of this work was to overcome these limitations by exploiting a generalized reconstruction by inversion of coupled systems (GRICS) approach. The methodology is based on a joint estimation of motion during the MR image reconstruction process, providing internal structure motion and associated deformation matrices for retrospective use in PET respiratory motion correction. This method was first validated on four MR volunteers and two PET/MR patient datasets by comparing GRICS generated MR images to 4D MR series obtained by retrospective gating. In a second step 4D PET datasets corresponding to acquired 4D MR images were simulated using the GATE Monte Carlo simulation platform. GRICS generated deformation matrices were subsequently used to correct respiratory motion in comparison to the 4D MR image based deformations both for the simulated and the two 4D PET/MR patient datasets. Results confirm that GRICS synchronized MR images correlate well with the acquired 4D MR series. Similarly, the use of GRICS for respiratory motion correction allows an equivalent percentage improvement on lesion contrast, position and size, considering the PET simulated tumors as well as PET real tumors. This work demonstrates the potential interest of using GRICS for PET respiratory motion correction in combined PET/MR using shorter duration acquisitions without the need for 4D MRI and

  17. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    NASA Astrophysics Data System (ADS)

    Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  18. Phase correlation imaging of unlabeled cell dynamics.

    PubMed

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  19. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea.

    PubMed

    Shin, Soo-Yong; Seo, Dong-Woo; An, Jisun; Kwak, Haewoon; Kim, Sung-Han; Gwack, Jin; Jo, Min-Woo

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was exported to Korea in 2015, resulting in a threat to neighboring nations. We evaluated the possibility of using a digital surveillance system based on web searches and social media data to monitor this MERS outbreak. We collected the number of daily laboratory-confirmed MERS cases and quarantined cases from May 11, 2015 to June 26, 2015 using the Korean government MERS portal. The daily trends observed via Google search and Twitter during the same time period were also ascertained using Google Trends and Topsy. Correlations among the data were then examined using Spearman correlation analysis. We found high correlations (>0.7) between Google search and Twitter results and the number of confirmed MERS cases for the previous three days using only four simple keywords: "MERS", " ("MERS (in Korean)"), " ("MERS symptoms (in Korean)"), and " ("MERS hospital (in Korean)"). Additionally, we found high correlations between the Google search and Twitter results and the number of quarantined cases using the above keywords. This study demonstrates the possibility of using a digital surveillance system to monitor the outbreak of MERS. PMID:27595921

  20. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea

    PubMed Central

    Shin, Soo-Yong; Seo, Dong-Woo; An, Jisun; Kwak, Haewoon; Kim, Sung-Han; Gwack, Jin; Jo, Min-Woo

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was exported to Korea in 2015, resulting in a threat to neighboring nations. We evaluated the possibility of using a digital surveillance system based on web searches and social media data to monitor this MERS outbreak. We collected the number of daily laboratory-confirmed MERS cases and quarantined cases from May 11, 2015 to June 26, 2015 using the Korean government MERS portal. The daily trends observed via Google search and Twitter during the same time period were also ascertained using Google Trends and Topsy. Correlations among the data were then examined using Spearman correlation analysis. We found high correlations (>0.7) between Google search and Twitter results and the number of confirmed MERS cases for the previous three days using only four simple keywords: “MERS”, “” (“MERS (in Korean)”), “” (“MERS symptoms (in Korean)”), and “” (“MERS hospital (in Korean)”). Additionally, we found high correlations between the Google search and Twitter results and the number of quarantined cases using the above keywords. This study demonstrates the possibility of using a digital surveillance system to monitor the outbreak of MERS. PMID:27595921

  1. Optimal control problem in correlation between smoking and epidemic of respiratory diseases

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Apri, M.

    2014-02-01

    Smoking appears to be a risk factor that may increase the number of different pulmonary infections. This link is likely to be mediated by smoking adverse effects on the respiratory defenses. A mathematical model to describe correlation between the number of smokers and its effect on the number of infected people suffer from respiratory disease like influenza is constructed in this paper. Promotion of healthy life is accounted in the model as an optimal control problem to reduce the number of smokers. In this work, the transition rates from smokers to non-smokers and from non-smokers to smokers are regarded as the control variables. Assuming the control variables are constant, equilibrium points of the model can be obtained analytically. The basic reproductive ratio as the endemic threshold is taken from the spectral radius of the next-generation matrix. Using numerical simulation, we show that the healthy life promotion can reduce the number of infected person significantly by reducing the number of smokers. Furthermore, different initial conditions to show different situations in the field are also simulated. It is shown that a large effort to increase the transition rate from smokers to non-smokers and to reduce the transition from non-smokers to smokers should be applied in the endemic reduction scenario.

  2. Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA

    PubMed Central

    Vos, Wim; Hajian, Bita; De Backer, Jan; Van Holsbeke, Cedric; Vinchurkar, Samir; Claes, Rita; Hufkens, Annemie; Parizel, Paul M; Bedert, Lieven; De Backer, Wilfried

    2016-01-01

    Background Patients with COPD show a significant reduction of the lobar hyperinflation at the functional residual capacity level in the patients who improved >120 mL in forced expiratory volume in 1 second (FEV1) after 6 months of treatment with roflumilast in addition to inhaled corticosteroids (ICSs)/long-acting beta-2 agonists (LABAs)/long-acting muscarinic antagonists (LAMAs). Methods Functional respiratory imaging was used to quantify lobar hyperinflation, blood vessel density, ventilation, aerosol deposition, and bronchodilation. To investigate the exact mode of action of roflumilast, correlations between lobar and global measures have been tested using a mixed-model approach with nested random factors and Pearson correlation, respectively. Results The reduction in lobar hyperinflation appears to be associated with a larger blood vessel density in the respective lobes (t=−2.154, P=0.040); lobes with a higher percentage of blood vessels reduce more in hyperinflation in the responder group. Subsequently, it can be observed that lobes that reduce in hyperinflation after treatment are better ventilated (t=−5.368, P<0.001). Functional respiratory imaging (FRI)-based aerosol deposition showed that enhanced ventilation leads to more peripheral particle deposition of ICS/LABA/LAMA in the better-ventilated areas (t=2.407, P=0.024). Finally, the study showed that areas receiving more particles have increased FRI-based bronchodilation (t=2.564, P=0.017), leading to an increase in FEV1 (R=0.348, P=0.029). Conclusion The study demonstrated that orally administered roflumilast supports the reduction of regional hyperinflation in areas previously undertreated by inhalation medication. The local reduction in hyperinflation induces a redistribution of ventilation and aerosol deposition, leading to enhanced efficacy of the concomitant ICS/LABA/LAMA therapy. FRI appears to be a sensitive tool to describe the mode of action of novel compounds in chronic obstructive pulmonary

  3. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    SciTech Connect

    Lamare, F. Fernandez, P.; Le Maitre, A.; Visvikis, D.; Dawood, M.; Schäfers, K. P.; Rimoldi, O. E.

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  4. A computer-controlled pump and realistic anthropomorphic respiratory phantom for validating image-guided systems

    NASA Astrophysics Data System (ADS)

    Lin, Ralph; Wilson, Emmanuel; Tang, Jonathan; Stoianovici, Dan; Cleary, Kevin

    2007-03-01

    The development of image-guided interventions requires validation studies to evaluate new protocols. So far, these validation studies have been limited to animal models and to software and physical phantoms that simulate respiratory motion but cannot accommodate needle punctures in a realistic manner. We have built a computer-controlled pump that drives an anthropomorphic respiratory phantom for simulating natural breathing patterns. This pump consists of a power supply, a motion controller with servo amplifier, linear actuator, and custom fabricated pump assembly. By generating several sample waveforms, we were able to simulate typical breathing patterns. Using this pump, we were able to produce chest wall movements similar to typical chest wall movements observed in humans. This system has potential applications for evaluating new respiratory compensation algorithms and may facilitate improved testing of image-guided protocols under realistic interventional conditions.

  5. Mucosal IgG Levels Correlate Better with Respiratory Syncytial Virus Load and Inflammation than Plasma IgG Levels

    PubMed Central

    Vissers, Marloes; Ahout, Inge M. L.; de Jonge, Marien I.

    2015-01-01

    Maternal vaccination is currently considered a strategy against respiratory syncytial virus (RSV) infections. In RSV-infected infants, high mucosal IgG levels correlated better with reduced RSV load and lower mucosal CXCL10 levels than plasma IgG levels. For future vaccination strategies against RSV, more focus should be on the mucosal humoral immune response. PMID:26656116

  6. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  7. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  8. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  9. Temporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    NASA Astrophysics Data System (ADS)

    Kang, DongYel; Wang, Alex; Tjoa, Tjoson; Volgger, Veronika; Hamamoto, Ashley; Su, Erica; Jing, Joseph; Chen, Zhongping; Wong, Brian J. F.

    2014-03-01

    Recently, full-range optical coherence tomography (OCT) systems have been developed to image the human airway. These novel systems utilize a fiber-based OCT probe which acquires three-dimensional (3-D) images with micrometer resolution. Following an airway injury, mucosal edema is the first step in the body's inflammatory response, which occasionally leads to airway stenosis, a life-threatening condition for critically ill newborns. Therefore, early detection of edema is vital for airway management and prevention of stenosis. In order to examine the potential of the full-range OCT to diagnose edema, we investigated temporal correlation of OCT images obtained from the subglottic airway of live rabbits. Temporally correlated OCT images were acquired at fixed locations in the rabbit subglottis of either artificially induced edema or normal tissues. Edematous tissue was experimentally modeled by injecting saline beneath the epithelial layer of the subglottic mucosa. The calculated cross temporal correlations between OCT images of normal airway regions show periodicity that correlates with the respiratory motion of the airway. However, the temporal correlation functions calculated from OCT images of the edematous regions show randomness without the periodic characteristic. These in-vivo experimental results of temporal correlations between OCT images show the potential of a computer-based or -aided diagnosis of edema in the human respiratory mucosa with a full-range OCT system.

  10. Usefulness of Colored 3D Imaging of Respiratory Impedance in Asthma

    PubMed Central

    Mori, Kazutaka; Mikamo, Masashi; Shishido, Yuichiro; Akita, Takefumi; Morita, Satoru; Asada, Kazuhiro; Fujii, Masato; Suda, Takafumi; Chida, Kingo

    2013-01-01

    Purpose Recently, the clinical application of the forced oscillation technique (FOT) has progressed with the spread of commercially available FOT devices, including the impulse oscillation system and MostGraph. We investigated the usefulness of color 3D imaging of respiratory impedance in asthma using MostGraph. Methods Whole-breath and within-breath respiratory system resistance (Rrs) and reactance (Xrs) were measured in 78 patients with asthma. Color 3D images were classified into three patterns: the chronic obstructive pulmonary disease (COPD)-like pattern (high values of Rrs and Xrs with a marked respiratory cycle and frequency dependence), the asthma pattern (moderately high Rrs over the entire frequency and a respiratory cycle with slight Xrs changes), and a normal-like pattern (low Rrs and Xrs with few within-breath changes). The classification was performed by three researchers, who were unaware of the clinical information, and the clinical characteristics were compared among the three groups. Results Color 3D imaging provided a COPD-like pattern in 25 patients, an asthma pattern in 39 patients, and a normal-like pattern in 14 patients. Patients with the COPD-like pattern were predominantly female with a higher body mass index, lower forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), and higher Rrs and Xrs values (whole-breath and within-breath variation). Those with the normal pattern had higher FEV1 and FVC, and a lower single-breath nitrogen washout slope. There were no differences in asthma control or exhaled nitric oxide levels among the three groups. Conclusions These results suggest that color 3D imaging of respiratory impedance may show asthma phenotypes. PMID:24003390

  11. Digital Image Correlation for Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  12. Hybrid Utrasound and MRI Acquisitions for High-Speed Imaging of Respiratory Organ Motion

    PubMed Central

    Preiswerk, Frank; Toews, Matthew; Hoge, W. Scott; Chiou, Jr-yuan George; Panych, Lawrence P.; Wells, William M.; Madore, Bruno

    2016-01-01

    Magnetic Resonance (MR) imaging provides excellent image quality at a high cost and low frame rate. Ultrasound (US) provides poor image quality at a low cost and high frame rate. We propose an instance-based learning system to obtain the best of both worlds: high quality MR images at high frame rates from a low cost single-element US sensor. Concurrent US and MRI pairs are acquired during a relatively brief offine learning phase involving the US transducer and MR scanner. High frame rate, high quality MR imaging of respiratory organ motion is then predicted from US measurements, even after stopping MRI acquisition, using a probabilistic kernel regression framework. Experimental results show predicted MR images to be highly representative of actual MR images. PMID:27135063

  13. A finite state model for respiratory motion analysis in image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Wu, Huanmei; Sharp, Gregory C.; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B.

    2004-12-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  14. Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results

    SciTech Connect

    Yang, Juan; Cai, Jing; Wang, Hongjun; Chang, Zheng; Czito, Brian G.; Bashir, Mustafa R.; Yin, Fang-Fang

    2014-03-15

    Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquired across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its

  15. Daily targeting of liver tumors: Screening patients with a mock treatment and using a combination of internal and external fiducials for image-guided respiratory-gated radiotherapy

    SciTech Connect

    Krishnan, Sunil; Briere, Tina Marie; Dong Lei; Murthy, Ravi; Ng, Chaan; Balter, Peter; Mohan, Radhe; Gillin, Michael T.; Beddar, A. Sam

    2007-12-15

    The feasibility and accuracy of using a mock treatment to screen suitable patients for respiratory-gated image-guided radiotherapy was investigated. Radio-opaque fiducials implanted adjacent to the liver tumor were used for online positioning to minimize the systematic error in patient positioning. The consistency in the degree of correlation between the external and internal fiducials was analyzed during a mock treatment. This technique could screen patients for gated therapy, reduce setup inaccuracy, and possibly individualize treatment margins.

  16. Real-Time Target Position Estimation Using Stereoscopic Kilovoltage/Megavoltage Imaging and External Respiratory Monitoring for Dynamic Multileaf Collimator Tracking

    SciTech Connect

    Cho, Byungchul; Poulsen, Per Rugaard; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2011-01-01

    Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motion platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.

  17. Gravity correlation imaging with a moving data window

    NASA Astrophysics Data System (ADS)

    Xiao, Feng

    2015-01-01

    As a kind of imaging technique, correlation imaging of potential data can be used to determine the shape and position of sources approximately. In order to improve the resolution of correlation imaging results, I adopted a strategy similar to Euler deconvolution method. This method includes three steps. First, calculate the vertical gradient of gravity anomaly. Then add a moving data window to the correlation imaging procedure. At last, search the local maximum or minimum of the results and output the extreme points that meet the acceptance criterion. In the synthetic model tests, the resolution of correlation imaging is improved. Compared with the Euler deconvolution, the results are closer to the centers of the models. In a case study of a sylvite mine gravity survey in Yunnan Province, China, the positions of extreme points of correlation imaging are in the range of the ore zone defined by drills.

  18. Magnetic Resonance Imaging of Cerebral Aspergillosis: Imaging and Pathological Correlations

    PubMed Central

    Sabou, Marcela; Lannes, Béatrice; Cotton, François; Meyronet, David; Galanaud, Damien; Cottier, Jean-Philippe; Grand, Sylvie; Desal, Hubert; Kreutz, Julie; Schenck, Maleka; Meyer, Nicolas; Schneider, Francis; Dietemann, Jean-Louis; Koob, Meriam

    2016-01-01

    Cerebral aspergillosis is associated with a significant morbidity and mortality rate. The imaging data present different patterns and no full consensus exists on typical imaging characteristics of the cerebral lesions. We reviewed MRI findings in 21 patients with cerebral aspergillosis and correlated them to the immune status of the patients and to neuropathological findings when tissue was available. The lesions were characterized by their number, topography, and MRI signal. Dissemination to the brain resulted from direct spread from paranasal sinuses in 8 patients, 6 of them being immunocompetent. Hematogenous dissemination was observed in 13 patients, all were immunosuppressed. In this later group we identified a total of 329 parenchymal abscesses involving the whole brain with a predilection for the corticomedullary junction. More than half the patients had a corpus callosum lesion. Hemorrhagic lesions accounted for 13% and contrast enhancement was observed in 61% of the lesions. Patients with hematogenous dissemination were younger (p = 0.003), had more intracranial lesions (p = 0.0004) and had a higher 12-week mortality rate (p = 0.046) than patients with direct spread from paranasal sinuses. Analysis of 12 aneurysms allowed us to highlight two distinct situations. In case of direct spread from the paranasal sinuses, aneurysms are saccular and located on the proximal artery portions, while the hematogenous dissemination in immunocompromised patients is more frequently associated with distal and fusiform aneurysms. MRI is the exam of choice for cerebral aspergillosis. Number and type of lesions are different according to the mode of dissemination of the infection. PMID:27097323

  19. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Blackall, J. M.; Ahmad, S.; Miquel, M. E.; McClelland, J. R.; Landau, D. B.; Hawkes, D. J.

    2006-09-01

    Respiratory organ motion has a significant impact on the planning and delivery of radiotherapy (RT) treatment for lung cancer. Currently widespread techniques, such as 4D-computed tomography (4DCT), cannot be used to measure variability of this motion from one cycle to the next. In this paper, we describe the use of fast magnetic resonance imaging (MRI) techniques to investigate the intra- and inter-cycle reproducibility of respiratory motion and also to estimate the level of errors that may be introduced into treatment delivery by using various breath-hold imaging strategies during lung RT planning. A reference model of respiratory motion is formed to enable comparison of different breathing cycles at any arbitrary position in the respiratory cycle. This is constructed by using free-breathing images from the inhale phase of a single breathing cycle, then co-registering the images, and thereby tracking landmarks. This reference model is then compared to alternative models constructed from images acquired during the exhale phase of the same cycle and the inhale phase of a subsequent cycle, to assess intra- and inter-cycle variability ('hysteresis' and 'reproducibility') of organ motion. The reference model is also compared to a series of models formed from breath-hold data at exhale and inhale. Evaluation of these models is carried out on data from ten healthy volunteers and five lung cancer patients. Free-breathing models show good levels of intra- and inter-cycle reproducibility across the tidal breathing range. Mean intra-cycle errors in the position of organ surface landmarks of 1.5(1.4)-3.5(3.3) mm for volunteers and 2.8(1.8)-5.2(5.2) mm for patients. Equivalent measures of inter-cycle variability across this range are 1.7(1.0)-3.9(3.3) mm for volunteers and 2.8(1.8)-3.3(2.2) mm for patients. As expected, models based on breath-hold sequences do not represent normal tidal motion as well as those based on free-breathing data, with mean errors of 4

  20. Bioimpedance-based respiratory gating method for oncologic positron emission tomography (PET) imaging with first clinical results

    NASA Astrophysics Data System (ADS)

    Koivumäki, T.; Vauhkonen, M.; Teuho, J.; Teräs, M.; Hakulinen, M. A.

    2013-04-01

    Respiratory motion may cause significant image artefacts in positron emission tomography/computed tomography (PET/CT) imaging. This study introduces a new bioimpedance-based gating method for minimizing respiratory artefacts. The method was studied in 12 oncologic patients by evaluating the following three parameters: maximum metabolic activity of radiopharmaceutical accumulations, the size of these targets as well as their target-to-background ratio. The bioimpedance-gated images were compared with non-gated images and images that were gated with a reference method, chest wall motion monitoring by infrared camera. The bioimpedance method showed clear improvement as increased metabolic activity and decreased target volume compared to non-gated images and produced consistent results with the reference method. Thus, the method may have great potential in the future of respiratory gating in nuclear medicine imaging.

  1. Severe bronchospasm followed by respiratory arrest during thallium-dipyridamole imaging

    SciTech Connect

    Lette, J.; Cerino, M.; Laverdiere, M.; Tremblay, J.; Prenovault, J.

    1989-06-01

    We describe the occurrence of sudden severe bronchospasm and respiratory arrest following dipyridamole infusion in a patient with chronic obstructive pulmonary disease predominantly of the emphysematous type. The severe reaction was unexpected because the patient had tolerated well withdrawal of aminophylline derivatives for 48 hours and was receiving chronic prednisone 20 mg qd. Although the diagnostic and prognostic gains from dipyridamole imaging far outweigh the small risk associated with the test, patients with chronic pulmonary obstructive disease must be closely monitored during thallium-dipyridamole imaging.

  2. Correlation model for a class of medical images

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Qin; Loew, Murray H.; Pickholtz, Raymond L.

    1991-06-01

    In this paper, correlation properties of a class of chest X-ray medical images are examined and different 1-D and 2-D correlation models are applied to this class of image sources. Correlation structures for different scanning methods including row-by-row, column-by- column, diagonal and Peano are compared. It is suggested that the Peano scanning best reserves the inter-pixel correlation, which coincides with an earlier observation made by Lempel and Ziv. The rate-distortion properties are also discussed in terms of different 1-D and 2-D correlation models.

  3. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.

    PubMed

    Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-08-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115

  4. Adaptive 4D MR Imaging Using Navigator-Based Respiratory Signal for MRI-Guided Therapy

    PubMed Central

    Tokuda, Junichi; Morikawa, Shigehiro; Haque, Hasnine A.; Tsukamoto, Tetsuji; Matsumiya, Kiyoshi; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi

    2010-01-01

    For real-time 3D visualization of respiratory organ motion for MRI-guided therapy, a new adaptive 4D MR imaging method based on navigator echo and multiple gating windows was developed. This method was designed to acquire a time series of volumetric 3D images of a cyclically moving organ, enabling therapy to be guided by synchronizing the 4D image with the actual organ motion in real time. The proposed method was implemented in an open-configuration 0.5T clinical MR scanner. To evaluate the feasibility and determine optimal imaging conditions, studies were conducted with a phantom, volunteers, and a patient. In the phantom study the root mean square (RMS) position error in the 4D image of the cyclically moving phantom was 1.9 mm and the imaging time was ≈10 min when the 4D image had six frames. In the patient study, 4D images were successfully acquired under clinical conditions and a liver tumor was discriminated in the series of frames. The image quality was affected by the relations among the encoding direction, the slice orientation, and the direction of motion of the target organ. In conclusion, this study has shown that the proposed method is feasible and capable of providing a real-time dynamic 3D atlas for surgical navigation with sufficient accuracy and image quality. PMID:18429011

  5. Partially correlated azimuthal vortex illumination: coherence and correlation measurements and effects in imaging.

    PubMed

    Brown, Dean P; Brown, Thomas G

    2008-12-01

    Correlations in the illumination field have a profound impact on the image contrast for features near the resolution limit. The pupil polarization affects these correlations. We show that a polarization vortex has a particularly dramatic effect. A theoretical model is given for the correlation matrix of a partially correlated source created by placing an azimuthal polarization vortex mode converter in the pupil plane of a critical illumination system. We then validate this model experimentally using a reversed-wavefront Young interferometer, directly show the impact that the phase of the correlation function has on image contrast. PMID:19065180

  6. Correlation mapping: rapid method for retrieving microcirculation morphology from optical coherence tomography intensity images

    NASA Astrophysics Data System (ADS)

    Jonathan, E.; Enfield, J.; Leahy, M. J.

    2011-03-01

    The microcirculation plays a critical role is maintaining organ health and function by serving as a vascular are where trophic metabolism exchanges between blood and tissue takes place. To facilitate regular assessment in vivo, noninvasive microcirculation imagers are required in clinics. Among this group of clinical devices, are those that render microcirculation morphology such as nailfold capillaroscopy, a common device for early diagnosis and monitoring of microangiopathies. However, depth ambiguity disqualify this and other similar techniques in medical tomography where due to the 3-D nature of biological organs, imagers that support depth-resolved 2-D imaging and 3-D image reconstruction are required. Here, we introduce correlation map OCT (cmOCT), a promising technique for microcirculation morphology imaging that combines standard optical coherence tomography and an agile imaging analysis software based on correlation statistic. Promising results are presented of the microcirculation morphology images of the brain region of a small animal model as well as measurements of vessel geometry at bifurcations, such as vessel diameters, branch angles. These data will be useful for obtaining cardiovascular related characteristics such as volumetric flow, velocity profile and vessel-wall shear stress for circulatory and respiratory system.

  7. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    SciTech Connect

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  8. Digital image correlation of bone sequential microscopic observations.

    PubMed

    Budyn, Elisa; Jonvaux, Julien; Hoc, Thierry

    2012-08-01

    A method of image correlation is presented to study sequential microscopic observations of human Haversian cortical bone. Imaging biological tissues is sometimes challenging owing to their complex microstructures in particular when microcracks appear. Bone microfractures can be studied in micro compression tests where the progressive growth of small cracks is imaged by light microscopy. The two-dimensional displacement field on the sample surface is then tracked by various digital image correlation methods based on cross-correlation formulation. Because of the potential high number of sequential observations, the method calculates the displacements at given growth steps obtained either by direct comparison of the studied step and the undeformed initial state, called 'direct correlation', or by iterative comparisons of successive pairs of observations, called 'gradual correlation'. In the gradual procedure, two cases are studied, referred to as 'invariant gradual correlation' and 'varying gradual correlation', when the correlation domain is transferred till the last observation or reinitialised for each image pairs. As bone is highly heterogeneous, two types of correlation procedures are considered with or without domain partition (WDP or WODP) delimiting material and strong discontinuities. The precision of the methods is specifically evaluated for experimental observations. PMID:25099565

  9. Two-Photon Imaging within the Murine Thorax without Respiratory and Cardiac Motion Artifact

    PubMed Central

    Presson, Robert G.; Brown, Mary Beth; Fisher, Amanda J.; Sandoval, Ruben M.; Dunn, Kenneth W.; Lorenz, Kevin S.; Delp, Edward J.; Salama, Paul; Molitoris, Bruce A.; Petrache, Irina

    2011-01-01

    Intravital microscopy has been recognized for its ability to make physiological measurements at cellular and subcellular levels while maintaining the complex natural microenvironment. Two-photon microscopy (TPM), using longer wavelengths than single-photon excitation, has extended intravital imaging deeper into tissues, with minimal phototoxicity. However, due to a relatively slow acquisition rate, TPM is especially sensitive to motion artifact, which presents a challenge when imaging tissues subject to respiratory and cardiac movement. Thoracoabdominal organs that cannot be exteriorized or immobilized during TPM have generally required the use of isolated, pump-perfused preparations. However, this approach entails significant alteration of normal physiology, such as a lack of neural inputs, increased vascular resistance, and leukocyte activation. We adapted techniques of intravital microscopy that permitted TPM of organs maintained within the thoracoabdominal cavity of living, breathing rats or mice. We obtained extended intravital TPM imaging of the intact lung, arguably the organ most susceptible to both respiratory and cardiac motion. Intravital TPM detected the development of lung microvascular endothelial activation manifested as increased leukocyte adhesion and plasma extravasation in response to oxidative stress inducers PMA or soluble cigarette smoke extract. The pulmonary microvasculature and alveoli in the intact animal were imaged with comparable detail and fidelity to those in pump-perfused animals, opening the possibility for TPM of other thoracoabdominal organs under physiological and pathophysiological conditions. PMID:21703395

  10. Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT

    SciTech Connect

    Beddar, A. Sam . E-mail: abeddar@mdanderson.org; Kainz, Kristofer; Briere, Tina Marie; Tsunashima, Yoshikazu; Pan Tinsu; Prado, Karl; Mohan, Radhe; Gillin, Michael; Krishnan, Sunil

    2007-02-01

    Purpose: We investigated the correlation between the motions of an external marker and internal fiducials implanted in the liver for 8 patients undergoing respiratory-based computed tomography (four-dimensional CT [4D-CT]) procedures. Methods and Materials: The internal fiducials were gold seeds, 3 mm in length and 1.2 mm in diameter. Four patients each had one implanted fiducial, and the other four had three implanted fiducials. The external marker was a plastic box, which is part of the Real-Time Position Management System (RPM) used to track the patient's respiration. Each patient received a standard helical CT scan followed by a time-correlated CT-image acquisition (4D-CT). The 4D-CT images were reconstructed in 10 separate phases covering the entire respiratory cycle. Results: The internal fiducial motion is predominant in the superior-inferior direction, with a range of 7.5-17.5 mm. The correlation between external respiration and internal fiducial motion is best during expiration. For 2 patients with their three fiducials separated by a maximum of 3.2 cm, the motions of the fiducials were well correlated, whereas for 2 patients with more widely spaced fiducials, there was less correlation. Conclusions: In general, there is a good correlation between internal fiducial motion imaged by 4D-CT and external marker motion. We have demonstrated that gating may be best performed at the end of the respiratory cycle. Special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct respiratory amplitude alone would not guarantee that the entire tumor volume is within the treatment field.

  11. Changing image of correlation optics: introduction.

    PubMed

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. PMID:27140140

  12. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    NASA Astrophysics Data System (ADS)

    Nam, Woo Hyun; Ahn, Il Jun; Kim, Kyeong Min; Kim, Byung Il; Ra, Jong Beom

    2013-10-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images.

  13. Exploring underwater target detection by imaging polarimetry and correlation techniques.

    PubMed

    Dubreuil, M; Delrot, P; Leonard, I; Alfalou, A; Brosseau, C; Dogariu, A

    2013-02-10

    Underwater target detection is investigated by combining active polarization imaging and optical correlation-based approaches. Experiments were conducted in a glass tank filled with tap water with diluted milk or seawater and containing targets of arbitrary polarimetric responses. We found that target estimation obtained by imaging with two orthogonal polarization states always improves detection performances when correlation is used as detection criterion. This experimental study illustrates the potential of polarization imaging for underwater target detection and opens interesting perspectives for the development of underwater imaging systems. PMID:23400061

  14. Four Dimensional Digital Tomosynthesis Using on-Board Imager for the Verification of Respiratory Motion

    PubMed Central

    Park, Justin C.; Kim, Jin Sung; Park, Sung Ho; Webster, Matthew J.; Lee, Soyoung; Song, William Y.; Han, Youngyih

    2014-01-01

    Purpose To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS), extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. Methods and Materials Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650–670 projections) was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal “half-fan” 4D DTS, and 90° and 270° for sagittal “half-fan” 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. Results The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. Conclusion We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment. PMID:25541710

  15. Analysis on correlation imaging based on fractal interpolation

    NASA Astrophysics Data System (ADS)

    Li, Bailing; Zhang, Wenwen; Chen, Qian; Gu, Guohua

    2015-10-01

    One fractal interpolation algorithm has been discussed in detail and the statistical self-similarity characteristics of light field have been analized in correlated experiment. For the correlation imaging experiment in condition of low sampling frequent, an image analysis approach based on fractal interpolation algorithm is proposed. This approach aims to improve the resolution of original image which contains a fewer number of pixels and highlight the image contour feature which is fuzzy. By using this method, a new model for the light field has been established. For the case of different moments of the intensity in the receiving plane, the local field division also has been established and then the iterated function system based on the experimental data set can be obtained by choosing the appropriate compression ratio under a scientific error estimate. On the basis of the iterative function, an explicit fractal interpolation function expression is given out in this paper. The simulation results show that the correlation image reconstructed by fractal interpolation has good approximations to the original image. The number of pixels of image after interpolation is significantly increased. This method will effectively solve the difficulty of image pixel deficiency and significantly improved the outline of objects in the image. The rate of deviation as the parameter has been adopted in the paper in order to evaluate objectively the effect of the algorithm. To sum up, fractal interpolation method proposed in this paper not only keeps the overall image but also increases the local information of the original image.

  16. Severity Quantification of Pediatric Viral Respiratory Illnesses in Chest X-ray Images

    PubMed Central

    Okada, Kazunori; Golbaz, Marzieh; Mansoor, Awais; Perez, Geovanny F; Pancham, Krishna; Khan, Abia; Nino, Gustavo; Linguraru, Marius George

    2015-01-01

    Accurate assessment of severity of viral respiratory illnesses (VRIs) allows early interventions to prevent morbidity and mortality in young children. This paper proposes a novel imaging biomarker framework with chest X-ray image for assessing VRI’s severity in infants, developed specifically to meet the distinct challenges for pediatric population. The proposed framework integrates three novel technical contributions: a) lung segmentation using weighted partitioned active shape model, b) obtrusive object removal using graph cut segmentation with asymmetry constraint, and c) severity quantification using information-theoretic heterogeneity measures. This paper presents our pilot experimental results with a dataset of 148 images and the ground-truth severity scores given by a board-certified pediatric pulmonologist, demonstrating the effectiveness and clinical relevance of the presented framework. PMID:26736226

  17. Correlation modeling for compression of computed tomography images.

    PubMed

    Munoz-Gomez, Juan; Bartrina-Rapesta, Joan; Marcellin, Michael W; Serra-Sagristà, Joan

    2013-09-01

    Computed tomography (CT) is a noninvasive medical test obtained via a series of X-ray exposures resulting in 3-D images that aid medical diagnosis. Previous approaches for coding such 3-D images propose to employ multicomponent transforms to exploit correlation among CT slices, but these approaches do not always improve coding performance with respect to a simpler slice-by-slice coding approach. In this paper, we propose a novel analysis which accurately predicts when the use of a multicomponent transform is profitable. This analysis models the correlation coefficient r based on image acquisition parameters readily available at acquisition time. Extensive experimental results from multiple image sensors suggest that multicomponent transforms are appropriate for images with correlation coefficient r in excess of 0.87. PMID:25055372

  18. Do gastrointestinal and respiratory signs and symptoms correlate with the severity of gastroesophageal reflux?

    PubMed Central

    2012-01-01

    Background Gastroesophageal reflux (GER) is a disorder that is common by seen in childhood and may lead to severe complications. In this study, we ascertained the incidence of GER among the children who had typical and atypical complaints of GER and whether there was a difference between two groups comparing the findings of 24-hour pH-meter. Methods 39 out of 70 patients with typical and atypical GER symptoms were diagnosed as GER by 24-hour pH-meter monitoring. The patients were divided into three groups, those having gastrointestinal complaints, those having respiratory complaints and those having both gastrointestinal and respiratory symptoms. Results Evaluated the GER prevalence in these groups, it was found to be 60% in the gastrointestinal group, 48.6% in the respiratory group and 75% in the mixed group. When pH-meter measurements of GER positive patients were compared within the clinical groups, the fraction of time that pH was lower than 4 was found to be significantly higher in the mixed group (p = 0.004). Conclusions The coexistence of gastrointestinal and respiratory symptoms in the patients with GER may be related to the severe reflux. PMID:22436080

  19. Optical coherence tomography imaging of structural components of the respiratory tract

    NASA Astrophysics Data System (ADS)

    Whiteman, Suzanne C.; Yang, Ying; Gey van Pittius, D.; He, Yonghong; Spiteri, M. A.; Wang, Ruikang K.

    2004-07-01

    For optimal curative treatment and the prevention of metastasis, it is critical that premalignant lesions are detected as early as possible. However, current diagnostic methods for human airways do not possess sufficient resolution and tissue penetration depth to detect these aberrations. Therefore it is necessary to develop safe, reproducible imaging techniques with high spatial resolution. In this study, optical coherence tomography (OCT) was used to obtain cross sectional images of porcine respiratory tract tissue. OCT images were compared to parallel conventional histological sections. Our objective was to establish whether OCT differentiates the microstructural layers of the respiratory tract. These data demonstrate that OCT can characterize the multilayered structure of the airways, with a depth of up to 2 mm and a 10 μm spatial resolution. The subtle structural differences between trachea, main bronchus and tertiary bronchus were clearly identifiable. The epithelium, sub-epithelial tissues and cartilage were individually defined. In addition, the relative thickness of the structural components was comparable to histological sections. These data suggest that OCT is a highly feasible diagnostic tool, which requires further exploration for early detection of human airway pathology.

  20. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    SciTech Connect

    Stemkens, Bjorn; Tijssen, Rob H.N.; Senneville, Baudouin D. de

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  1. Effects of Incentive Spirometry on Respiratory Motion in Healthy Subjects Using Cine Breathing Magnetic Resonance Imaging

    PubMed Central

    Akazawa, Tsutomu; Sakuma, Tsuyoshi; Nagaya, Shigeyuki; Sonoda, Masaru; Tanaka, Yuji; Katogi, Takehide; Nemoto, Tetsuharu; Minami, Shohei

    2015-01-01

    Objective To investigate the effectiveness of incentive spirometry on respiratory motion in healthy subjects using cine breathing magnetic resonance imaging (MRI). Methods Ten non-smoking healthy subjects without any history of respiratory disease were studied. Subjects were asked to perform pulmonary training using incentive spirometry every day for two weeks. To assess the effectiveness of this training, pulmonary function tests and cine breathing MRI were performed before starting pulmonary training and two weeks after its completion. Results After training, there were significant improvements in vital capacity (VC) from 3.58±0.8 L to 3.74±0.8 L and in %VC from 107.4±10.8 to 112.1±8.2. Significant changes were observed in the right diaphragm motion, right chest wall motion, and left chest wall motion, which were increased from 55.7±9.6 mm to 63.4±10.2 mm, from 15.6±6.1 mm to 23.4±10.4 mm, and from 16.3±7.6 mm to 22.0±9.8 mm, respectively. Conclusion Two weeks of training using incentive spirometry provided improvements in pulmonary function and respiratory motion, which suggested that incentive spirometry may be a useful preoperative modality for improving pulmonary function during the perioperative period. PMID:26161341

  2. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  3. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    SciTech Connect

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka

    2014-04-15

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  4. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system.

    PubMed

    Inoue, Mitsuhiro; Shiomi, Hiroya; Iwata, Hiromitsu; Taguchi, Junichi; Okawa, Kohei; Kikuchi, Chie; Inada, Kosaku; Iwabuchi, Michio; Murai, Taro; Koike, Izumi; Tatewaki, Koshi; Ohta, Seiji; Inoue, Tomio

    2015-01-01

    The accuracy of the CyberKnife Synchrony Respiratory Tracking System (SRTS) is considered to be patient-dependent because the SRTS relies on an individual correlation between the internal tumor position (ITP) and the external marker position (EMP), as well as a prediction method to compensate for the delay incurred to adjust the position of the linear accelerator (linac). We aimed to develop a system for obtaining pretreatment statistical measurements of the SRTS tracking error by using beam's eye view (BEV) images, to enable the prediction of the patient-specific accuracy. The respiratory motion data for the ITP and the EMP were derived from cine MR images obtained from 23 patients. The dynamic motion phantom was used to reproduce both the ITP and EMP motions. The CyberKnife was subsequently operated with the SRTS, with a CCD camera mounted on the head of the linac. BEV images from the CCD camera were recorded during the tracking of a ball target by the linac. The tracking error was measured at 15 Hz using in-house software. To assess the precision of the position detection using an MR image, the positions of test tubes (determined from MR images) were compared with their actual positions. To assess the precision of the position detection of the ball, ball positions measured from BEV images were compared with values measured using a Vernier caliper. The SRTS accuracy was evaluated by determining the tracking error that could be identified with a probability of more than 95% (Ep95). The detection precision of the tumor position (determined from cine MR images) was < 0.2 mm. The detection precision of the tracking error when using the BEV images was < 0.2mm. These two detection precisions were derived from our measurement system and were not obtained from the SRTS. The median of Ep95 was found to be 1.5 (range, 1.0-3.5) mm. The difference between the minimum and maximum Ep95 was 2.5mm, indicating that this provides a better means of evaluating patient-specific SRTS

  5. Experimental quantum imaging exploiting multimode spatial correlation of twin beams

    SciTech Connect

    Brida, Giorgio; Genovese, Marco; Meda, Alice; Berchera, Ivano Ruo

    2011-03-15

    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is intended to overcome the limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed schemes exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of weakly absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal-to-noise ratio with respect to classical imaging methods and therefore its potential for future practical applications.

  6. Intensity correlation of ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Costa, Antonio A.; Vaz de Carvalho, Carlos; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    The purpose of this study is to develop a method to create new images, based on lung verification and perfusion raw nuclear medicine images obtained from a gamma camera, that may help the correlation of their intrinsic information. Another major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  7. Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator.

    PubMed

    Tavassoli, Abtine; Becker, Michael F

    2004-03-10

    The optical cross correlation of an image with another image that was spatial-frequency shifted in one dimension was demonstrated in a photorefractive VanderLugt correlator. The first image was stored as a Fourier-transform hologram in a photorefractive Bi12SiO20 crystal (BSO) and was successively correlated with different spatial-frequency-shifted versions of a second image. We implemented the spatial-frequency shift by rotating a galvanometer mirror in an image plane, causing the Fourier transform to be shifted laterally in the BSO. We verified that the resulting operation in the BSO was an accurate complex multiplication of the shifted and the stored Fourier transforms. As many as 20 successive readouts were conducted without measurable erasure of the stored hologram. The dynamic range, saturation behavior, and other performance parameters were measured and are discussed. PMID:15046173

  8. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.

    PubMed

    D'Erchia, Anna Maria; Atlante, Anna; Gadaleta, Gemma; Pavesi, Giulio; Chiara, Matteo; De Virgilio, Caterina; Manzari, Caterina; Mastropasqua, Francesca; Prazzoli, Gian Marco; Picardi, Ernesto; Gissi, Carmela; Horner, David; Reyes, Aurelio; Sbisà, Elisabetta; Tullo, Apollonia; Pesole, Graziano

    2015-01-01

    Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments. PMID:25446395

  9. Prenatal Imaging of the Gastrointestinal Tract with Postnatal Imaging Correlation.

    PubMed

    Blask, Anna Nussbaum; Fagen, Kimberly

    2016-03-01

    Prenatal detection of a wide variety of anomalies and masses of the gastrointestinal tract is now possible. Prenatal imaging with ultrasonography and in selected cases magnetic resonance imaging provides invaluable information to the referring obstetrician, the maternal fetal medicine specialist, the neonatologist and pediatrician who will care for the child after birth, the surgeons and pediatric specialists who will repair or manage a prenatally detected anomaly, and of course to the parents, allowing them to prepare psychologically and financially for the specific interventions that may be needed for their child. Additional screening for associated anomalies can take place, route of delivery can be decided, and arrangements for delivery in an appropriate setting can be made. Prenatal detection also allows for consideration for pregnancy termination. This article will give a broad overview of anomalies of the gastrointestinal tract that can be detected prenatally and their imaging appearance postnatally. PMID:26086457

  10. Respiratory kinematics by optoelectronic analysis of chest-wall motion and ultrasonic imaging of the diaphragm

    NASA Astrophysics Data System (ADS)

    Aliverti, Andrea; Pedotti, Antonio; Ferrigno, Giancarlo; Macklem, P. T.

    1998-07-01

    Although from a respiratory point of view, compartmental volume change or lack of it is the most crucial variable, it has not been possible to measure the volume of chest wall compartments directly. Recently we developed a new method based on a optoelectronic motion analyzer that can give the three-dimensional location of many markers with the temporal and spatial accuracy required for respiratory measurements. Marker's configuration has been designed specifically to measure the volume of three chest wall compartments, the pulmonary and abdominal rib cage compartments and the abdomen, directly. However, it can not track the exact border between the two rib cage compartments (pulmonary and abdominal) which is determined by the cephalic extremity of the area of apposition of the diaphragm to the inner surface of the rib cage, and which can change systematically as a result of disease processes. The diaphragm displacement can be detected by ultrasonography. In the present study, we propose an integrated system able to investigate the relationships between external (chest wall) and internal (diaphragm) movements of the different respiratory structures by simultaneous external imaging with the optoelectronic system combined with internal kinematic imaging using ultrasounds. 2D digitized points belonging to the lower lung margin, taken from ultrasonographic views, are mapped into the 3D space, where chest wall markers are acquired. Results are shown in terms of accuracy of 3D probe location, relative movement between the probe and the body landmarks, dynamic relationships between chest wall volume and position of the diaphragm during quiet breathing, slow inspirations, relaxations and exercise.

  11. [Respiratory behavior].

    PubMed

    Gallego, J; Gaultier, C

    2000-02-01

    The notion of respiratory behaviour is grounded, among other approaches, on studies of neuronal mechanisms of voluntary breathing, clinical data, conditioning experiments and respiratory sensations. The interactions between cortical centres of voluntary breathing and respiratory neurones in the brain stem are poorly understood: voluntary control operates through the direct action of corticomotor centres on respiratory motoneurones; however these cortical structures may directly act on bulbopontine centres, and therefore indirectly on respiratory motoneurones. Recordings in animals of brain stem neuronal activity, brain imaging in humans, and transcortical stimulation of the diaphragm in humans and in animal models support either one or the other hypothesis. The mutual independence of the automatic and the voluntary controls of breathing appears in patients with impaired bulbopontine automatism and operational voluntary control (Central Congenital Hypoventilation Syndrome), and in patients with the reverse impairment (locked-in syndrome). Finally, recent studies in humans and animals show that classical conditioning affects respiratory control and sensations. PMID:10756555

  12. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    SciTech Connect

    Bernatowicz, K. Knopf, A.; Lomax, A.; Keall, P.; Kipritidis, J.; Mishra, P.

    2015-01-15

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results

  13. Prevalence and Correlation of Infectious Agents in Hospitalized Children with Acute Respiratory Tract Infections in Central China

    PubMed Central

    Li, Fu; Wen, Zhou; Liu, Weiyong; Li, Tongya; Qin, Kai; Wu, Jianguo; Liu, Yingle

    2015-01-01

    Acute respiratory tract infections (ARTIs) are associated with significant morbidity and mortality worldwide, especially in children under the age of 5 years. Almost 2 million children die from ARTIs each year, and most of them are from developing countries. The prevalence and correlation of pathogens in ARTIs are poorly understood, but are critical for improving case prevention, treatment, and management. In this study, we investigated the prevalence and correlation of infectious agents in children with ARTIs. A total of 39,756 children with one or more symptoms, including fever, cough, sore throat, tonsillitis, pharyngitis, herpangina, pneumonia, and bronchiolitis, were enrolled in the study. All patients were hospitalized in Wuhan Children’s Hospital between October 1, 2010 and September 30, 2012, and were evaluated for infectious agents. Pathogens, including Mycoplasma pneumoniae, influenza A virus, influenza B virus, adenoviruses, respiratory syncytial virus, parainfluenza virus, Legionella pneumophila, Chlamydophila pneumoniae, and Coxiella burnetii, were screened simultaneously in patient blood samples using anti-pathogen IgM tests. Regression analysis was used to reveal correlations among the pathogens. Our results showed that one or more pathogens were identified in 10,206 patients, and that Mycoplasma pneumoniae, adenoviruses, and influenza B virus were the leading infectious agents. Mixed-infections of pathogens were detected in 2,391 cases, with Mycoplasma pneumoniae as the most frequent pathogen. The most common agents in the co-infections were Mycoplasma pneumoniae and influenza B virus. Regression analysis revealed a linear correlation between the proportion of mixed infections and the incidence of multi-pathogen infections. The prevalence of infectious agents in children with ARTIs was determined. Equations were established to estimate multiple infections by single-pathogen detection. This revealed a linear correlation for pathogens in children

  14. Prevalence and correlation of infectious agents in hospitalized children with acute respiratory tract infections in Central China.

    PubMed

    Liu, Jia; Ai, Hongwu; Xiong, Ying; Li, Fu; Wen, Zhou; Liu, Weiyong; Li, Tongya; Qin, Kai; Wu, Jianguo; Liu, Yingle

    2015-01-01

    Acute respiratory tract infections (ARTIs) are associated with significant morbidity and mortality worldwide, especially in children under the age of 5 years. Almost 2 million children die from ARTIs each year, and most of them are from developing countries. The prevalence and correlation of pathogens in ARTIs are poorly understood, but are critical for improving case prevention, treatment, and management. In this study, we investigated the prevalence and correlation of infectious agents in children with ARTIs. A total of 39,756 children with one or more symptoms, including fever, cough, sore throat, tonsillitis, pharyngitis, herpangina, pneumonia, and bronchiolitis, were enrolled in the study. All patients were hospitalized in Wuhan Children's Hospital between October 1, 2010 and September 30, 2012, and were evaluated for infectious agents. Pathogens, including Mycoplasma pneumoniae, influenza A virus, influenza B virus, adenoviruses, respiratory syncytial virus, parainfluenza virus, Legionella pneumophila, Chlamydophila pneumoniae, and Coxiella burnetii, were screened simultaneously in patient blood samples using anti-pathogen IgM tests. Regression analysis was used to reveal correlations among the pathogens. Our results showed that one or more pathogens were identified in 10,206 patients, and that Mycoplasma pneumoniae, adenoviruses, and influenza B virus were the leading infectious agents. Mixed-infections of pathogens were detected in 2,391 cases, with Mycoplasma pneumoniae as the most frequent pathogen. The most common agents in the co-infections were Mycoplasma pneumoniae and influenza B virus. Regression analysis revealed a linear correlation between the proportion of mixed infections and the incidence of multi-pathogen infections. The prevalence of infectious agents in children with ARTIs was determined. Equations were established to estimate multiple infections by single-pathogen detection. This revealed a linear correlation for pathogens in children with

  15. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  16. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    SciTech Connect

    Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  17. The relative importance of respiratory water loss in scorpions is correlated with species habitat type and activity pattern.

    PubMed

    Gefen, Eran

    2011-01-01

    Scorpions exhibit some of the lowest recorded water loss rates compared with those of other terrestrial arthropods of similar body size. Evaporative water loss (EWL) includes cuticular transpiration and respiratory water loss (RWL) from gas exchange surfaces, that is, book lung lamellae. Estimated fractions of cuticular and respiratory losses currently available from the literature show considerable variation, at least partly as a result of differences in methodology. This study reports RWL rates and their relative importance in scorpions from two families (Buthidae and Scorpionidae), including both xeric and mesic species (or subspecies). Two of the included Buthidae were surface-dwelling species, and another inhabits empty burrows of other terrestrial arthropods. This experimental design enabled correlating RWL importance with scorpion phylogeny, habitat type, and/or homing behavior. Buthidae species exhibited significantly lower EWL rates compared with those of Scorpionidae, whereas effects of habitat type and homing behavior were not significant. Resting RWL rates were not significantly affected by scorpion phylogeny, but rates for the xeric species (totaling ~10% of EWL rates at 30°C) were significantly lower compared with those of mesic species. These lower RWL values were correlated with significantly lower H(2)O/CO(2) emission rates in xeric species. The experimental setup and ~24-h duration of each individual recording allowed estimating the effect of interspecific variation in activity on RWL proportions. The high respiratory losses in active hydrated Scorpio maurus fuscus, totaling 30% of EWL, suggest that behavioral discretion in this species is a more likely mechanism for body water conservation under stressful conditions when compared with the responses of other studied species. PMID:21133796

  18. 3D cine magnetic resonance imaging of rat lung ARDS using gradient-modulated SWIFT with retrospective respiratory gating

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoharu; Lei, Jianxun; Utecht, Lynn; Garwood, Michael; Ingbar, David H.; Bhargava, Maneesh

    2015-03-01

    SWeep Imaging with Fourier Transformation (SWIFT) with gradient modulation and DC navigator retrospective gating is introduced as a 3D cine magnetic resonance imaging (MRI) method for the lung. In anesthetized normal rats, the quasi-simultaneous excitation and acquisition in SWIFT enabled extremely high sensitivity to the fast-decaying parenchymal signals (TE=~4 μs), which are invisible with conventional MRI techniques. Respiratory motion information was extracted from DC navigator signals and the SWIFT data were reconstructed to 3D cine images with 16 respiratory phases. To test this technique's capabilities, rats exposed to > 95% O2 for 60 hours for induction of acute respiratory distress syndrome (ARDS), were imaged and compared with normal rat lungs (N=7 and 5 for ARDS and normal groups, respectively). SWIFT images showed lung tissue density differences along the gravity direction. In the cine SWIFT images, a parenchymal signal drop at the inhalation phase was consistently observed for both normal and ARDS rats due to lung inflation (i.e. decrease of the proton density), but the drop was less for ARDS rats. Depending on the respiratory phase and lung region, the lungs from the ARDS rats showed 1-24% higher parenchymal signal intensities relative to the normal rat lungs, likely due to accumulated extravascular water (EVLW). Those results demonstrate that SWIFT has high enough sensitivity for detecting the lung proton density changes due to gravity, different phases of respiration and accumulation of EVLW in the rat ARDS lungs.

  19. Widefield lensless imaging through a fiber bundle via speckle correlations.

    PubMed

    Porat, Amir; Andresen, Esben Ravn; Rigneault, Hervé; Oron, Dan; Gigan, Sylvain; Katz, Ori

    2016-07-25

    Flexible fiber-optic endoscopes provide a solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization, frame-rate, and field of view. Alternative wavefront-shaping based lensless solutions are extremely sensitive to fiber-bending. We present a lensless, bend-insensitive, single-shot imaging approach based on speckle-correlations in fiber bundles that does not require wavefront shaping. Our approach computationally retrieves the target image by analyzing a single camera frame, exploiting phase information that is inherently preserved in propagation through convnetional fiber bundles. Unlike conventional fiber-based imaging, planar objects can be imaged at variable working distances, the resulting image is unpixelated and diffraction-limited, and miniaturization is limited only by the fiber diameter. PMID:27464136

  20. Dynamic keyhole: A novel method to improve MR images in the presence of respiratory motion for real-time MRI

    SciTech Connect

    Lee, Danny; Pollock, Sean; Whelan, Brendan; Keall, Paul; Kim, Taeho

    2014-07-15

    Purpose: In this work, the authors present a novel magnetic resonance imaging reconstruction method to improve the quality of MR images in the presence of respiratory motion for real-time thoracic image-guided radiotherapy. Methods: This new reconstruction method is called dynamic keyhole and utilizes a library of previously acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space acquisition (ground truth) for 60 coronal datasets acquired from 15 healthy human subjects. Results: For the same image-quality difference from the ground-truth image, the dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time imaging applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of five compared with full k-space methods.

  1. Correlated Statistical Uncertainties in Coded-Aperture Imaging

    SciTech Connect

    Fleenor, Matthew C; Blackston, Matthew A; Ziock, Klaus-Peter

    2014-01-01

    In nuclear security applications, coded-aperture imagers provide the opportu- nity for a wealth of information regarding the attributes of both the radioac- tive and non-radioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be deter- mined in a quantitative and statistically meaningful manner. To address the deficiency of quantifiable errors in coded-aperture imaging, we present uncer- tainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti- mask data are included. Utilizing simulated point source data, we found that correlations (and inverse correlations) arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations (and their inverses) was heightened by the process of over-sampling, while correla- tions were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explore how statistics-based alarming in nuclear security is impacted.

  2. Correlated statistical uncertainties in coded-aperture imaging

    NASA Astrophysics Data System (ADS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-06-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario.

  3. High-speed image matching with coaxial holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  4. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model.

    PubMed

    Fodah, Ramy A; Scott, Jacob B; Tam, Hok-Hei; Yan, Pearlly; Pfeffer, Tia L; Bundschuh, Ralf; Warawa, Jonathan M

    2014-01-01

    Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent. PMID:25203254

  5. Review of image correlation systems - Hybrid and optical

    NASA Technical Reports Server (NTRS)

    Breckinridge, James B.

    1989-01-01

    The operating principles, design, and development histories of three image correlation systems, the Portable Correlator Unit (PCU), the Miniature Correlator Unit (MCU), and the Coherence Interferometer (CI) are reviewed. The PCU and MCU are compact versions of the classical Vander Lught filter optical correlator, essentially parallel optical processors by light valve; the CI is a white-light correlator which functions entirely by interfering light waves, with electronic detection only at the final output, and thus represents a parallel optical processor by rotational-shear interferometer. Details of the design and construction are discussed and illustrated with drawings and photographs. Also considered are applications of the MCU to NASA tasks such as rendezvous and docking on the Mars Rover and Sample Return mission, autonomous robotic exploration of planetary surfaces, and compression and pattern-recognition of remote-sensing data.

  6. Review of image correlation systems - Hybrid and optical

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.

    1989-08-01

    The operating principles, design, and development histories of three image correlation systems, the Portable Correlator Unit (PCU), the Miniature Correlator Unit (MCU), and the Coherence Interferometer (CI) are reviewed. The PCU and MCU are compact versions of the classical Vander Lught filter optical correlator, essentially parallel optical processors by light valve; the CI is a white-light correlator which functions entirely by interfering light waves, with electronic detection only at the final output, and thus represents a parallel optical processor by rotational-shear interferometer. Details of the design and construction are discussed and illustrated with drawings and photographs. Also considered are applications of the MCU to NASA tasks such as rendezvous and docking on the Mars Rover and Sample Return mission, autonomous robotic exploration of planetary surfaces, and compression and pattern-recognition of remote-sensing data.

  7. Imaged Document Optical Correlation and Conversion System (IDOCCS)

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-03-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). In addition, many organizations are converting their paper archives to electronic images, which are stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources. The Imaged Document Optical Correlation and Conversion System (IDOCCS) provides a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provides the search and retrieval capability of document images. The IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and can even determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo, or documents with a particular individual's signature block, can be singled out. With this dual capability, IDOCCS outperforms systems that rely on optical character recognition as a basis for indexing and storing only the textual content of documents for later retrieval.

  8. Holographic security system based on image domain joint transform correlator

    NASA Astrophysics Data System (ADS)

    Borisov, Michael; Odinokov, Sergey B.; Bondarev, Leonid A.; Kurakin, Sergey V.; Matveyev, Sergey V.; Belyaev, V. S.

    2002-04-01

    We describe holographic security system providing machine reading of the holographic information and matching it with the reference one by optical means. The security holographic mark includes several test holograms and should be applied to a carrier: ID-card, paper seal etc. Each of the holograms stores a part of entire image, stored in the reference hologram. Image domain JTC is used to match the images retrieved from the holograms. Being recorded and retrieved, the images provides correlation peaks with special positions, with a strict dependence on the tested and reference holograms mutual shifts. The system proposed works like usual JTC with a few useful differences. The image domain recognizing is a result of Fresnel holographic technique of the images recording. It provides more effective usage of the light addressed SLM (LASLM) work pupil and resolution in more simple and compact device. Few correlation peaks enhances the device recognizing probability. We describe the real-time experimental arrangement based on LASLM. The experimental results are in a good correspondence with computer simulations. We also show in practice that good results may be obtained while using the image domain JTC technique in despite of the low LASLM resolution and the device compact size.

  9. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    SciTech Connect

    Liu, Y; Campbell, J

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  10. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  11. Value of brain magnetic resonance imaging in mitochondrial respiratory chain disorders.

    PubMed

    Diogo, Luísa; Cordeiro, Miguel; Garcia, Paula; Fineza, Isabel; Moura, Cristina; Oliveira, Catarina Resende; Veiga, Margarida; Garcia, Teresa; Grazina, Manuela

    2010-03-01

    Mitochondrial respiratory chain (MRC) disorders have variable clinical manifestations which are mainly neurologic. Diagnosis in children is more complex than in adults because the classic phenotype, ragged red fibers, and mtDNA mutations are rarely seen in children. Moreover, clinical manifestations of disease in developing brains are less explicit. Although not specific, neuroimaging may be contributory to the diagnosis of these disorders in pediatric patients. Brain magnetic resonance images were reviewed for 133 pediatric patients investigated for a MRC disorder at a single center over a period of 10 years (1997-2006), in an attempt to identify distinctive neuroimaging features of MRC defects. Patients fit into four groups, according to the Bernier criteria: definite (63 cases), probable (53 cases), possible (7 cases) and unlikely diagnosis (10 cases). Brain atrophy (41 cases), supratentorial white matter lesions (14 cases), basal ganglia involvement (9 cases), and delayed myelination (9 cases) were the most frequent anomalies in the definite group, and 8 patients presented Leigh syndrome. Neuroimaging findings of the 63 children in the definite group were compared with the remainder and with those in the possible and unlikely groups. There were no significant differences in brain images between the groups analyzed, and therefore no distinctive brain imaging features were identified specific for MRC disorders. PMID:20159429

  12. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2012-11-01

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) - P(θi) · (aR(ti) + bR(ti - τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been

  13. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  14. Imaging in scattering media using correlation image sensors and sparse convolutional coding.

    PubMed

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B; Heidrich, Wolfgang

    2014-10-20

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity. PMID:25401666

  15. A random motility assay based on image correlation spectroscopy.

    PubMed

    Prummer, Michael; Kling, Dorothee; Trefzer, Vanessa; Enderle, Thilo; Zoffmann, Sannah; Prunotto, Marco

    2013-06-01

    We demonstrate the random motility (RAMOT) assay based on image correlation spectroscopy for the automated, label-free, high-throughput characterization of random cell migration. The approach is complementary to traditional migration assays, which determine only the collective net motility in a particular direction. The RAMOT assay is less demanding on image quality compared to single-cell tracking, does not require cell identification or trajectory reconstruction, and performs well on live-cell, time-lapse, phase contrast video microscopy of hundreds of cells in parallel. Effective diffusion coefficients derived from the RAMOT analysis are in quantitative agreement with Monte Carlo simulations and allowed for the detection of pharmacological effects on macrophage-like cells migrating on a planar collagen matrix. These results expand the application range of image correlation spectroscopy to multicellular systems and demonstrate a novel, to our knowledge, migration assay with little preparative effort. PMID:23746508

  16. Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration

    PubMed Central

    Li, Baojun; Christensen, Gary E.; Hoffman, Eric A.; McLennan, Geoffrey; Reinhardt, Joseph M.

    2008-01-01

    Tracking lung tissues during the respiratory cycle has been a challenging task for diagnostic CT and CT-guided radiotherapy. We propose an intensity- and landmark-based image registration algorithm to perform image registration and warping of 3D pulmonary CT image data sets, based on consistency constraints and matching corresponding airway branchpoints. In this paper, we demonstrate the effectivenss and accuracy of this algorithm in tracking lung tissues by both animal and human data sets. In the animal study, the result showed a tracking accuracy of 1.9 mm between 50% functional residual capacity (FRC) and 85% total lung capacity (TLC) for 12 metal seeds implanted in the lungs of a breathing sheep under precise volume control using a pulmonary ventilator. Visual inspection of the human subject results revealed the algorithm’s potential not only in matching the global shapes, but also in registering the internal structures (e.g., oblique lobe fissures, pulmonary artery branches, etc.). These results suggest that our algorithm has significant potential for warping and tracking lung tissue deformation with applications in diagnostic CT, CT-guided radiotherapy treatment planning, and therapeutic effect evaluation. PMID:19175115

  17. Cyclic adenosine monophosphate phosphodiesterase activity in peripheral blood mononuclear leucocytes from patients with atopic dermatitis: correlation with respiratory atopy.

    PubMed

    Sawai, T; Ikai, K; Uehara, M

    1998-05-01

    We determined the cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) activity in peripheral blood mononuclear leucocytes from 100 patients with atopic dermatitis (AD) aged 13-57 years (mean +/- SD, 29.8 +/- 17.7 years). The correlation between cAMP-PDE activity and clinical parameters such as the severity of eczema and a personal or family predisposition to atopic respiratory diseases (ARD) (asthma or allergic rhinitis) was examined. Although the enzymic activity varied from normal to very high in the AD patients, cAMP-PDE activity was significantly (P < 0.005) elevated in AD patients (42.1 +/- 22.0 units) as compared with the normal controls (12.4 +/- 5.6) and clinical control subjects (13.4 +/- 9.5). In contrast, we found no correlation between cAMP-PDE activity and the severity of eczema when AD patients were classified into four categories (remission, mild, moderate and severe) according to the extent of their skin involvement. Furthermore, we found that systemic corticosteroid therapy in severe AD patients did not alter the cAMP-PDE activity. cAMP-PDE activity was significantly (P < 0.01) higher in those AD patients who had a personal history of ARD (47.2 +/- 11.2) than in AD patients with a family history of ARD (37.2 +/- 17.4) and those without a personal or family history ('pure' AD) (34.4 +/- 19.8). Nevertheless, the cAMP-PDE activity was significantly higher even in 'pure' AD patients than in the controls. These results suggest that an elevation of cAMP-PDE activity is closely related to a predisposition to respiratory atopy, and does not follow inflammation in AD patients. PMID:9666832

  18. Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application

    NASA Astrophysics Data System (ADS)

    Wiseman, Paul W.; Squier, Jeffrey A.; Wilson, Kent R.

    2000-05-01

    The interaction of macromolecules in space and time are known to be important for the regulation of many biochemical reactions. Image correlation spectroscopy (ICS) was recently introduced as an imaging analog of fluorescence correlation spectroscopy optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. We present two novel developments of dynamic ICS that will greatly enhance our abilities to measure molecular interactions as a function of time and space in living cells. We illustrate the use of a rapid scan two-photon microscope system to collect image series at high time resolution (30 frames/s) for dynamic ICS analysis. Secondly, we demonstrate the implementation of two-color image cross-correlation spectroscopy (ICCS) with a CLSM using multiple wavelength excitation, and with two-photon excitation of samples containing two different fluorescent species. Cross-correlation analysis allows the degree of co- localization of two different fluorophores to be measured directly. By performing two-color ICCS, we can monitor the interactions of non-identical labeled macromolecules as a function of time and space. We describe the experimental setup for both methods and illustrate the application for measurements of the diffusion coefficients of singly and doubly labeled fluorescent microspheres in aqueous solutions.

  19. Measurement of cell surface protein dynamics by two-photon image correlation spectroscopy and image cross-correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiseman, Paul W.; Squier, Jeffrey A.

    2002-04-01

    Advances in laser-scanning microscopy and the advent of confocal microscopy permitted the development of image correlation spectroscopy (ICS). ICS is an imaging analog of fluorescence correlation spectroscopy (FCS) optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. The ICS method entails spatial autocorrelation analysis of fluorescence fluctuations within an image sampled from an area of the sample as well as temporal autocorrelation analysis of fluorescence fluctuations through a time series of images. Together, the spatial/temporal autocorrelation analysis enables measurement of fluorophore concentration, aggregation state and transport properties. ICS was first implemented on a confocal laser-scanning microscope (CLSM) using single photon excitation. More recently we have extended the method for two-photon ICS as well as image cross-correlation spectroscopy (ICCS). ICCS allows measurement of co-localization of non-identical molecules labeled with fluorophores of different emission wavelengths. We present a variety of applications of the ICS and ICCS methods in cellular systems. We will discuss the measurement of the transport and clustering properties of membrane receptors by single photon ICS and two-photon ICCS. As well, we will describe how spatial ICS may be used to quantify the distribution of fluorescently labeled dendritic spines in neurons.

  20. Correlation and image compression for limited-bandwidth CCD.

    SciTech Connect

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  1. Imaged document information location and extraction using an optical correlator

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-12-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). Many of these organizations are converting their paper archives to electronic images, which are then stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources and provide for rapid access to the information contained within these imaged documents. To meet this need, Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provide a means for the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and has the potential to determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.

  2. Development and validation of real-time simulation of X-ray imaging with respiratory motion.

    PubMed

    Vidal, Franck P; Villard, Pierre-Frédéric

    2016-04-01

    We present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: (i) the respiration against anatomical data, and (ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools. PMID:26773644

  3. Image Cross-Correlation Analysis of Time Varying Flows.

    PubMed

    Marquezin, Cassia A; Ceffa, Nicolò G; Cotelli, Franco; Collini, Maddalena; Sironi, Laura; Chirico, Giuseppe

    2016-07-19

    In vivo studies of blood circulation pathologies have great medical relevance and need methods for the characterization of time varying flows at high spatial and time resolution in small animal models. We test here the efficacy of the combination of image correlation techniques and single plane illumination microscopy (SPIM) in characterizing time varying flows in vitro and in vivo. As indicated by numerical simulations and by in vitro experiments on straight capillaries, the complex analytical form of the cross-correlation function for SPIM detection can be simplified, in conditions of interest for hemodynamics, to a superposition of Gaussian components, easily amenable to the analysis of variable flows. The possibility to select a wide field of view with a good spatial resolution along the collection optical axis and to compute the cross-correlation between regions of interest at varying distances on a single time stack of images allows one to single out periodic flow components from spurious peaks on the cross-correlation functions and to infer the duration of each flow component. We apply this cross-correlation analysis to the blood flow in Zebrafish embryos at 4 days after fertilization, measuring the average speed and the duration of the systolic and diastolic phases. PMID:27348197

  4. Image Segmentation Using Higher-Order Correlation Clustering.

    PubMed

    Kim, Sungwoong; Yoo, Chang D; Nowozin, Sebastian; Kohli, Pushmeet

    2014-09-01

    In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework. Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured loss function. Experimental results on various data sets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework. PMID:26352230

  5. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    SciTech Connect

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  6. Digital image correlation techniques applied to LANDSAT multispectral imagery

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O. (Principal Investigator); Miller, W. J.

    1976-01-01

    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates.

  7. Extracting flat-field images from scene-based image sequences using phase correlation

    NASA Astrophysics Data System (ADS)

    Caron, James N.; Montes, Marcos J.; Obermark, Jerome L.

    2016-06-01

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  8. Measurement of electrostriction in bone using digital image correlation

    NASA Astrophysics Data System (ADS)

    Xu, Lianyun; Hou, Zhende; Fu, Donghui; Yang, Lei; Yi, Weitian; Kang, Huimin

    2015-02-01

    The electromechanical properties of bone may play roles in the growth of bone tissue. The electrostriction effect of bone, which is one of the electromechanical properties of bone, was investigated using the digital image correlation technique (DIC). The advantage of using DIC is that the light beam used for the displacement measurement does not interfere with the electric field exerted on the bone specimen. To measure the bending deflections of a bone cantilever in an electric field, the displacement of the free end surface of the cantilever was measured using the image correlation technique. The experimental results show that the bending direction of the bone cantilevers is independent of the electric field direction and that the bending deflections are proportional to the square of the applied voltages. The attractive force between the charges on the electrode and the unlike charges in the specimen can be equivalent to a uniform distribution load regardless of the thickness of the bone specimen.

  9. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  10. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains.

    PubMed

    Pollard, Benjamin; Raschke, Markus B

    2016-01-01

    Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force-distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  11. Mental tasks classification for BCI using image correlation.

    PubMed

    Úbeda, Andrés; Iáñez, Eduardo; Azorin, José M

    2011-01-01

    This paper describes a classifier based on image correlation of EEG maps to distinguish between three mental tasks in a Brain-Computer Interface (BCI). The data set V of BCI Competition 2003 has been used to test the classifier. To that end, the EEG maps obtained from this data set have been studied to find the ideal parameters of processing time and frequency. The classifier designed is based on a normalized cross-correlation of images which makes possible to obtain a proper similarity index to perform the classification. The success percentage of the classifier has been shown for different combinations of data. The results obtained are very successful, showing that this kind of techniques may be able to classify between three mental tasks with good results in a future online testing. PMID:22255779

  12. Middle cerebellar peduncles: Magnetic resonance imaging and pathophysiologic correlate

    PubMed Central

    Morales, Humberto; Tomsick, Thomas

    2015-01-01

    We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles (MCP), offering a systematic approach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities (e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases. PMID:26751508

  13. Online correction for respiratory motion: evaluation of two different imaging geometries

    NASA Astrophysics Data System (ADS)

    Nill, Simeon; Unkelbach, Jan; Dietrich, Lars; Oelfke, Uwe

    2005-09-01

    One aim of adaptive radiotherapy (ART) is the observation of organ motion followed by a subsequent adaptation of the treatment plan. One way of achieving this goal is a kV x-ray source mounted at a linear accelerator in combination with a flat-panel imager. Two imaging hardware configurations were evaluated for their potential for online tracking and the subsequent correction of organ motion by using fluoroscopic images: x-ray tube positioned with (A) 90° and (B) 180° offset to the MV beam. For one lung case two IMRT plans with five coplanar beams and the table positioned at 0° were optimized for two multileaf collimators (MLCs) with 10 mm and 2.75 mm leaf width. Respiratory motion, modelled by rigid transformation in the lungs, was investigated for different amplitudes. The 3D dose distributions for different cases (no movement, uncorrected movement, correction for the movement perpendicular to the respective kV beam) were evaluated with the help of dose volume histograms (DVHs) and a modified conformity (Baltas et al 1998 Int. J. Radiat. Oncol. Biol. Phys. 40 515-24) and coverage index using the 90% isodose. For the corrected treatment plans the influence of the observed displacement vector caused by organ movement was accounted for by a respective displacement of the target point. For the simulated movement with a small amplitude (3 mm) in the anterior-posterior (AP) direction the dose distributions resulting from the correction of the displacement vector using imaging system A or B showed similar results for both systems and were in good agreement with the dose distribution of the static (not moving) patient. Increasing the amplitude in the AP direction to 6 mm or even 9 mm leads for both amplitudes and both MLCs to almost the same conformity and coverage index as the static dose distribution if imaging system B is used for the online correction. For the dose distribution obtained with correction based on imaging system A the deviation between the optimal

  14. Digital image correlation utilization in pipeline oriented residual stress estimation

    NASA Astrophysics Data System (ADS)

    Brynk, Tomasz; Mezyk, Dariusz; Kukla, Dominik

    2014-10-01

    The aim of the paper is to present an idea of the utilization of Digital Image Correlation (DIC) method for industrial pipelines residual stress oriented investigation. For this purpose results of tests performed in laboratory and industrial conditions are presented. Obtained results showed that DIC method gives reliable near drilled hole strain/displacement distribution maps which may be used for accurate residual stress calculations.

  15. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  16. Camera system resolution and its influence on digital image correlation

    SciTech Connect

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss of spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.

  17. Camera system resolution and its influence on digital image correlation

    DOE PAGESBeta

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  18. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  19. Application of optical correlation techniques to particle imaging

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields noninstrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usuallay MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the particle image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  20. Cross-correlation analysis for live-cell image trajectory

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Ming; Chang, Yu-Fen; Wu, Chien-ming

    2013-08-01

    In cell motility, researchers are usually used fluorescence microscopy, confocal microscopy, or total internal reflection microscopy to track a fluorescent labeled particle and reveal the dynamic trajectory in living. Because all fluorescent dyes have cell toxicity, quantum dots and gold nanoparticles can influence the structures and physical properties of biomolecules which they have labeled, to develop another label-free image approach becomes an important issue. We present here a Fourier-based cross-correlation process to analyze images of adhering living cell, including cell motility and single vesicle trajectory. We treated adhering MG-63 cell with 66 nM Epidermal growth factor (EGF) and observed its dynamic effect on cell motility based on the velocity fields of consecutive cell images. We also used crosscorrelation to track single vesicles in living cells. We found that EGF could rapidly activate the motility of adhering MG- 63 cell, and the vesicle exhibits either directed or diffusive motion.

  1. Color image encryption based on joint fractional Fourier transform correlator

    NASA Astrophysics Data System (ADS)

    Lu, Ding; Jin, Weimin

    2011-06-01

    In this paper, an optical color image encryption/decryption technology based on joint fractional Fourier transform correlator and double random phase encoding (DRPE) is developed. In this method, the joint fractional power spectrum of the image to be encrypted and the key codes is recorded as the encrypted data. Different from the case with classical DRPE, the same key code was used both in the encryption and decryption. The security of the system is enhanced because of the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system, and could optically realize single-channel color image encryption. The experimental results indicate that the new method is feasible.

  2. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    SciTech Connect

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  3. Live cell studies of adhesion receptors by two-photon image correlation spectroscopy and image cross-correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiseman, Paul W.; Squier, Jeffrey A.

    2002-06-01

    Our ability to study the complex interactions between macromolecules within living cells has been greatly enhanced by the development of biophysical techniques such as fluorescence correlation spectroscopy (FCS) and multiphoton microscopy. One area of great interest to cell biologists is the molecular mechanism that governs cellular adhesion. Direct physical and chemical measurements on intact living cells will be important for obtaining a better understanding of how cells control their adhesive properties at the molecular level in order to control tissue development, maintain tissue integrity, and regulate cellular migration. Cells dynamically regulate the formation and disassembly of macromolecules in focal adhesions within the basal membrane so it would be advantageous to be able to measure such phenomena in situ. By combining two-photon microscopy imaging of living cells expressing fusion proteins of adhesion molecules and mutants of the green fluorescent protein, and image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) analysis, we have been able to perform direct studies of the molecular transport and clustering. We report on the characterization of flow, diffusion, aggregation, and co-localization of adhesion macromolecules/fluorescent protein constructs in living cells by two-photon ICS and ICCS experiments at 37 degree(s)C.

  4. Extended digital image correlation method for analysis of discrete discontinuity

    NASA Astrophysics Data System (ADS)

    Deb, Debasis; Bhattacharjee, Sudipta

    2015-11-01

    Finite element based multilevel extended digital image correlation (X-DIC) method is applied to obtain displacement distribution of an object having a discrete discontinuity. The principle of multilevel X-DIC method is described in the paper and results are verified using numerically generated images. The deformed images are developed with a pre-existing discontinuity surface across the image for tensile or shear displacements or rotations. Several cubical rock samples are also compressed under uniaxial loading conditions until fractures are developed in the post-failure region. Images of a speckled face of this experiment are analyzed using the proposed X-DIC method with increment of loading for determination of displacement before and after cracks are developed in the sample. The results of this study show that X-DIC technique is capable of capturing damaged zone(s) and displacement jump across the discontinuity plane as well as indicating the onset of failure of rock sample. This method demonstrates the applicability to investigate object failure mechanism for the entire surface of the sample in a non-contact manner.

  5. Measuring Black Smoker Fluid Flow Rates Using Image Correlation Velocimetry

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Wilcock, W. S.; McDuff, R. E.

    2006-12-01

    Motivated by a desire to find non-invasive methods for obtaining time-series measurements of fluid flow rates through mid-ocean ridge black smokers, we are developing an image-based velocimetry technique that will provide this information through the analysis of video sequences showing the turbulent structures of black smoker effluent jets. Our ultimate goal is to develop an autonomous seafloor instrument suitable for use with a cabled seafloor observatory that can provide extended time-series measurements of black smoker discharge rates with little user intervention. The method we are developing is based on the two-dimensional cross-correlation of an array of overlapping subimages from two sequential image frames within a sequence. For each pair of images this yields a two- dimensional representation of the instantaneous velocity field in the imaged flow. For each video sequence, the set of these "image velocity fields" from all image pairs is temporally averaged to yield a smoothed representation of the time-averaged image flow field. A transformation is then applied to convert the image flow fields into a relative discharge rate. We have developed a computational algorithm to implement this technique and have successfully applied it to video sequences collected in the late 1980s and early 1990s showing the discharge of black smokers in the Main Endeavour field of the Juan de Fuca Ridge over the course of weeks and months. We are able to resolve velocity fields that are qualitatively consistent with those predicted by plume theory from 5 seconds of video (150 image pairs), but it is difficult to calibrate or assess the precision of the technique with field data alone. In order to address these issues, as well as refine the computational algorithm, we have conducted laboratory simulations of black smoker jets with known discharge rates over a range of Reynolds numbers. We have recorded these simulations to obtain video image sequences that are similar to those

  6. Evolutionary pattern of human respiratory syncytial virus (subgroup A): cocirculating lineages and correlation of genetic and antigenic changes in the G glycoprotein.

    PubMed Central

    García, O; Martín, M; Dopazo, J; Arbiza, J; Frabasile, S; Russi, J; Hortal, M; Perez-Breña, P; Martínez, I; García-Barreno, B

    1994-01-01

    The genetic and antigenic variability of the G glycoproteins from 76 human respiratory syncytial (RS) viruses (subgroup A) isolated during six consecutive epidemics in either Montevideo, Uruguay, or Madrid, Spain, have been analyzed. Genetic diversity was evaluated for all viruses by the RNase A mismatch cleavage method and for selected strains by dideoxy sequencing. The sequences reported here were added to those published for six isolates from Birmingham, United Kingdom, and for two reference strains (A2 and Long), to derive a phylogenetic tree of subgroup A viruses that contained two main branches and several subbranches. During the same epidemic, viruses from different branches were isolated. In addition, closely related viruses were isolated in distant places and in different years. These results illustrate the capacity of the virus to spread worldwide, influencing its mode of evolution. The antigenic analysis of all isolates was carried out with a panel of anti-G monoclonal antibodies that recognized strain-specific (or variable) epitopes. A close correlation between genetic relatedness and antigenic relatedness in the G protein was observed. These results, together with an accumulation of amino acid changes in a major antigenic area of the G glycoprotein, suggest that immune selection may be a factor influencing the generation of RS virus diversity. The pattern of RS virus evolution is thus similar to that described for influenza type B viruses, expect that the level of genetic divergence among the G glycoproteins of RS virus isolates is the highest reported for an RNA virus gene product. Images PMID:8057427

  7. Correlation of Diffusion Tensor Imaging Parameters in the Canine Brain

    PubMed Central

    Leong, Dalun; Calabrese, Evan; White, Leonard E; Wei, Peter; Chen, Steven; Platt, Simon R

    2015-01-01

    The goal of this study was to determine the degree to which ex vivo diffusion tensor imaging (DTI) parameters correlate to one another in white matter regions on very high resolution MR scans. Specifically, we hypothesized that radial diffusivity (RD) and apparent diffusion coefficient (ADC) would correlate more closely than either would correlate with fractional anisotropy (FA). We performed post mortem DTI imaging on three canine brains on a 7 T MR scanner (TR = 100 ms, NEX = 1, gradient amplitude = 600 mT/m, b = 1492–1,565 s/mm2) and generated maps of FA, RD, and ADC. We measured RD, FA and ADC within 14 regions of interest representative of various portions of white matter. We compared the three combinations of values, i.e., FA vs ADC, FA vs RD and ADC vs RD, using linear regression models. Linear regression demonstrated that RD was significantly correlated with FA (p << 0.01; R2 = 0.3053) and also with ADC (p << 0.01; R2 = 0.6755), but to a much greater degree. However, ADC was not significantly correlated with FA (p = 0.526; R2 = 0.101). Our findings suggest that both RD and ADC reflect similar cytoarchitectural features, most likely that of myelination, whereas FA values likely reflect both myelination and additional microstructural features that constrain the diffusion of water in white matter. PMID:25924167

  8. Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image Guidance

    SciTech Connect

    Wu, Q. Jackie; Meyer, Jeffrey; Fuller, Jessica; Godfrey, Devon; Wang Zhiheng; Zhang Junan; Yin Fangfang

    2011-01-01

    Purpose: Breath-hold (BH) treatment minimizes internal target volumes (ITV) when treating sites prone to motion. Digital tomosynthesis (DTS) imaging has advantages over cone-beam CT (CBCT) for BH imaging: BH-DTS scan can be completed during a single breath-hold, whereas BH-CBCT is usually acquired by parsing the gantry rotation into multiple BH segments. This study evaluates the localization accuracy of DTS for BH treatment of liver tumors. Methods: Both planning CT and on-board DTS/CBCT images were acquired under BH, using the planning CT BH window as reference. Onboard imaging data sets included two independent DTS orientations (coronal and sagittal), and CBCT images. Soft tissue target positioning was measured by each imaging modality and translated into couch shifts. Performance of the two DTS orientations was evaluated by comparing target positioning with the CBCT benchmark, determined by two observers. Results: Image data sets were collected from thirty-eight treatment fractions (14 patients). Mean differences between the two DTS methods and the CBCT method were <1 mm in all directions (except the lateral direction with sagittal-DTS: 1.2 mm); the standard deviation was in the range of 2.1-3.5 mm for all techniques. The Pearson correlation showed good interobserver agreement for the coronal-DTS (0.72-0.78). The interobserver agreement for the sagittal-DTS was good for the in-plane directions (0.70-0.82), but poor in the out-of-plane direction (lateral, 0.26). Conclusions: BH-DTS may be a simpler alternative to BH-CBCT for onboard soft tissue localization of the liver, although the precision of DTS localization appears to be somewhat lower because of the presence of subtle out-of-plane blur.

  9. Optimal Correlation Filters for Images with Signal-Dependent Noise

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Walkup, John F.

    1994-01-01

    We address the design of optimal correlation filters for pattern detection and recognition in the presence of signal-dependent image noise sources. The particular examples considered are film-grain noise and speckle. Two basic approaches are investigated: (1) deriving the optimal matched filters for the signal-dependent noise models and comparing their performances with those derived for traditional signal-independent noise models and (2) first nonlinearly transforming the signal-dependent noise to signal-independent noise followed by the use of a classical filter matched to the transformed signal. We present both theoretical and computer simulation results that demonstrate the generally superior performance of the second approach in terms of the correlation peak signal-to-noise ratio.

  10. Target localization accuracy in a respiratory phantom using BrainLAB ExacTrac and 4DCT imaging.

    PubMed

    Matney, Jason E; Parker, Brent C; Neck, Daniel W; Henkelmann, Greg; Rosen, Isaac I

    2011-01-01

    This study evaluated the accuracy of measuring the motion of an internal target using four-dimensional computed tomography (4DCT) scanning and the BrainLAB ExacTrac X-ray imaging system. Displacements of a metal coil implanted in a commercial respiratory phantom were measured in each system and compared to the known motion. A commercial respiratory motion phantom containing a metal coil as a surrogate target was used. Phantom longitudinal motions were sinusoidal with a 4.0 second period and amplitudes ranging from 5-25 mm. We acquired 4DCT and ExacTrac images of the coil at specified respiratory phases and recorded the coordinates of the coil ends. Coil displacement relative to the 0% phase (full-inhale) position were computed for the ExacTrac and 4DCT imaging systems. Coil displacements were compared to known displacements based on the phantom's sinusoidal motion. Coil length distortion due to 4DCT phase binning was compared to the known physical length of the coil (31 mm). The maximum localization error for both coil endpoints for all motion settings was 3.5 mm for the 4DCT and 0.8 mm for the ExacTrac gating system. Coil length errors measured on the 4DCT were less than 0.8 mm at end inhale/exhale phases, but up to 8.3 mm at mid-inhalation phases at the largest motion amplitude (25 mm). Due to the fast image acquisition time (100 ms), no coil distortion was observable in the ExacTrac system. 4DCT showed problems imaging the coil during mid-respiratory phases of higher velocity (phases 20%-30% and 70%-80%) due to distortion caused by residual motion within the 4DCT phase bin. The ExacTrac imaging system was able to accurately localize the coil in the respiratory phantom over all phases of respiration. For our clinic, where end-respiration phases from 4DCT may be used for treatment planning calculations, the ExacTrac system is used to measure internal target motion. With the ExacTrac system, planning target size and motion uncertainties are minimized, potentially

  11. Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system

    SciTech Connect

    Pepin, Eric W.; Wu, Huanmei; Zhang, Yuenian; Lord, Bryce

    2011-07-15

    Purpose: The CyberKnife uses an online prediction model to improve radiation delivery when treating lung tumors. This study evaluates the prediction model used by the CyberKnife radiation therapy system in terms of treatment margins about the gross tumor volume (GTV). Methods: From the data log files produced by the CyberKnife synchrony model, the uncertainty in radiation delivery can be calculated. Modeler points indicate the tracked position of the tumor and Predictor points predict the position about 115 ms in the future. The discrepancy between Predictor points and their corresponding Modeler points was analyzed for 100 treatment model data sets from 23 de-identified lung patients. The treatment margins were determined in each anatomic direction to cover an arbitrary volume of the GTV, derived from the Modeler points, when the radiation is targeted at the Predictor points. Each treatment model had about 30 min of motion data, of which about 10 min constituted treatment time; only these 10 min were used in the analysis. The frequencies of margin sizes were analyzed and truncated Gaussian normal functions were fit to each direction's distribution. The standard deviation of each Gaussian distribution was then used to describe the necessary margin expansions in each signed dimension in order to achieve the desired coverage. In this study, 95% modeler point coverage was compared to 99% modeler coverage. Two other error sources were investigated: the correlation error and the targeting error. These were added to the prediction error to give an aggregate error for the CyberKnife during treatment of lung tumors. Results: Considering the magnitude of 2{sigma} from the mean of the Gaussian in each signed dimension, the margin expansions needed for 95% modeler point coverage were 1.2 mm in the lateral (LAT) direction and 1.7 mm in the anterior-posterior (AP) direction. For the superior-inferior (SI) direction, the fit was poor; but empirically, the expansions were 3.5 mm

  12. Precision Improvement of Photogrammetry by Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Shih, Ming-Hsiang; Sung, Wen-Pei; Tung, Shih-Heng; Hsiao, Hanwei

    2016-04-01

    The combination of aerial triangulation technology and unmanned aerial vehicle greatly reduces the cost and application threshold of the digital surface model technique. Based on the report in the literatures, the measurement error in the x-y coordinate and in the elevation lies between 8cm~15cm and 10cm~20cm respectively. The measurement accuracy for the geological structure survey already has sufficient value, but for the slope and structures in terms of deformation monitoring is inadequate. The main factors affecting the accuracy of the aerial triangulation are image quality, measurement accuracy of control point and image matching accuracy. In terms of image matching, the commonly used techniques are Harris Corner Detection and Scale Invariant Feature Transform (SIFT). Their pairing error is in scale of pixels, usually lies between 1 to 2 pixels. This study suggests that the error on the pairing is the main factor causing the aerial triangulation errors. Therefore, this study proposes the application of Digital Image Correlation (DIC) method instead of the pairing method mentioned above. DIC method can provide a pairing accuracy of less than 0.01 pixel, indeed can greatly enhance the accuracy of the aerial triangulation, to have sub-centimeter level accuracy. In this study, the effects of image pairing error on the measurement error of the 3-dimensional coordinate of the ground points are explored by numerical simulation method. It was confirmed that when the image matching error is reduced to 0.01 pixels, the ground three-dimensional coordinate measurement error can be controlled in mm level. A combination of DIC technique and the traditional aerial triangulation provides the potential of application on the deformation monitoring of slope and structures, and achieve an early warning of natural disaster.

  13. Superfast robust digital image correlation analysis with parallel computing

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Tian, Long

    2015-03-01

    Existing digital image correlation (DIC) using the robust reliability-guided displacement tracking (RGDT) strategy for full-field displacement measurement is a path-dependent process that can only be executed sequentially. This path-dependent tracking strategy not only limits the potential of DIC for further improvement of its computational efficiency but also wastes the parallel computing power of modern computers with multicore processors. To maintain the robustness of the existing RGDT strategy and to overcome its deficiency, an improved RGDT strategy using a two-section tracking scheme is proposed. In the improved RGDT strategy, the calculated points with correlation coefficients higher than a preset threshold are all taken as reliably computed points and given the same priority to extend the correlation analysis to their neighbors. Thus, DIC calculation is first executed in parallel at multiple points by separate independent threads. Then for the few calculated points with correlation coefficients smaller than the threshold, DIC analysis using existing RGDT strategy is adopted. Benefiting from the improved RGDT strategy and the multithread computing, superfast DIC analysis can be accomplished without sacrificing its robustness and accuracy. Experimental results show that the presented parallel DIC method performed on a common eight-core laptop can achieve about a 7 times speedup.

  14. Evaluation of Fiber Reinforced Cement Using Digital Image Correlation

    PubMed Central

    Melenka, Garrett W.; Carey, Jason P.

    2015-01-01

    The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590

  15. Evaluation of fiber reinforced cement using digital image correlation.

    PubMed

    Melenka, Garrett W; Carey, Jason P

    2015-01-01

    The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile - digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590

  16. Experimental epiphysiodesis: magnetic resonance imaging evaluation with histopathologic correlation.

    PubMed

    Synder, M; Harcke, H T; Conard, K; Bowen, J R

    2001-01-01

    We performed an experimental epiphysiodesis on the tibia in 16 immature New Zealand white rabbits. The purpose was to study the process of trauma-induced growth plate closure. The animals were killed at weekly intervals over 8 weeks. We correlated the histological findings with serial magnetic resonance images. The undamaged, central part of the growth plate became histologically abnormal within 1 week. Mature bone bridge formation in the area of the epiphysiodesis was seen after 3 to 4 weeks. The study suggests that growth arrest starts before the bone bridge formation. Factors regulating cartilage growth may also play a role. PMID:11820437

  17. Digital image correlation-based optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Standish, Beau; Vuong, Barry; Wen, Xiao-Yan; Yang, Victor

    2013-12-01

    Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm with optical coherence tomography (OCT). System calibration and measurement error evaluation demonstrated that this DIC-based OCE technique had a resolution of ˜0.6 μm displacement and <0.5% strain measurement in the axial scan direction. The measured displacement ranged from 0.6 to 150 μm, obtained via phantom imaging. The capability of the DIC-based OCE technique, for differentiation of stiffness, was evaluated by imaging a candle gel phantom with an irregularly shaped stiff inclusion. OCE imaging of a chicken breast sample differentiated the fat, membrane, and muscle layers. Strain elastograms of an aneurysm sample showed heterogeneity of the tissue and clear contrast between the adventitia and media. These promising results demonstrated the capability of the DIC-based OCE for the characterization of the various components of the tissue sample. Further improvement of the system will be conducted to make this OCE technique a practical tool for measuring and differentiating material properties of soft tissue.

  18. Digital image correlation-based optical coherence elastography.

    PubMed

    Sun, Cuiru; Standish, Beau; Vuong, Barry; Wen, Xiao-Yan; Yang, Victor

    2013-12-01

    Optical coherence elastography (OCE) provides deformation or material properties, mapping of soft tissue. We aim to develop a robust speckle tracking OCE technique with improved resolution and accuracy. A digital image correlation (DIC)-based OCE technique was developed by combining an advanced DIC algorithm with optical coherence tomography (OCT). System calibration and measurement error evaluation demonstrated that this DIC-based OCE technique had a resolution of ~0.6 μm displacement and <0.5% strain measurement in the axial scan direction. The measured displacement ranged from 0.6 to 150 μm, obtained via phantom imaging. The capability of the DIC-based OCE technique, for differentiation of stiffness, was evaluated by imaging a candle gel phantom with an irregularly shaped stiff inclusion. OCE imaging of a chicken breast sample differentiated the fat, membrane, and muscle layers. Strain elastograms of an aneurysm sample showed heterogeneity of the tissue and clear contrast between the adventitia and media. These promising results demonstrated the capability of the DIC-based OCE for the characterization of the various components of the tissue sample. Further improvement of the system will be conducted to make this OCE technique a practical tool for measuring and differentiating material properties of soft tissue. PMID:24346855

  19. Design and performance of a respiratory amplitude gating device for PET/CT imaging

    SciTech Connect

    Chang Guoping; Chang Tingting; Clark, John W. Jr.; Mawlawi, Osama R.

    2010-04-15

    Purpose: Recently, the authors proposed a free-breathing amplitude gating (FBAG) technique for PET/CT scanners. The implementation of this technique required specialized hardware and software components that were specifically designed to interface with commercial respiratory gating devices to generate the necessary triggers required for the FBAG technique. The objective of this technical note is to introduce an in-house device that integrates all the necessary hardware and software components as well as tracks the patient's respiratory motion to realize amplitude gating on PET/CT scanners. Methods: The in-house device is composed of a piezoelectric transducer coupled to a data-acquisition system in order to monitor the respiratory waveform. A LABVIEW program was designed to control the data-acquisition device and inject triggers into the PET list stream whenever the detected respiratory amplitude crossed a predetermined amplitude range. A timer was also programmed to stop the scan when the accumulated time within the selected amplitude range reached a user-set interval. This device was tested using a volunteer and a phantom study. Results: The results from the volunteer and phantom studies showed that the in-house device can detect similar respiratory signals as commercially available respiratory gating systems and is able to generate the necessary triggers to suppress respiratory motion artifacts. Conclusions: The proposed in-house device can be used to implement the FBAG technique in current PET/CT scanners.

  20. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

    PubMed

    Shou, H; Eloyan, A; Lee, S; Zipunnikov, V; Crainiceanu, A N; Nebel, N B; Caffo, B; Lindquist, M A; Crainiceanu, C M

    2013-12-01

    This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods. PMID:24022791

  1. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Zhang, Xue; Zhang, Xiaoqun; Zhao, Hongkai; Gao, Yu; Thomas, David; Low, Daniel A.; Gao, Hao

    2015-11-01

    4D cone-beam computed tomography (4DCBCT) reconstructs a temporal sequence of CBCT images for the purpose of motion management or 4D treatment in radiotherapy. However the image reconstruction often involves the binning of projection data to each temporal phase, and therefore suffers from deteriorated image quality due to inaccurate or uneven binning in phase, e.g., under the non-periodic breathing. A 5D model has been developed as an accurate model of (periodic and non-periodic) respiratory motion. That is, given the measurements of breathing amplitude and its time derivative, the 5D model parametrizes the respiratory motion by three time-independent variables, i.e., one reference image and two vector fields. In this work we aim to develop a new 4DCBCT reconstruction method based on 5D model. Instead of reconstructing a temporal sequence of images after the projection binning, the new method reconstructs time-independent reference image and vector fields with no requirement of binning. The image reconstruction is formulated as a optimization problem with total-variation regularization on both reference image and vector fields, and the problem is solved by the proximal alternating minimization algorithm, during which the split Bregman method is used to reconstruct the reference image, and the Chambolle's duality-based algorithm is used to reconstruct the vector fields. The convergence analysis of the proposed algorithm is provided for this nonconvex problem. Validated by the simulation studies, the new method has significantly improved image reconstruction accuracy due to no binning and reduced number of unknowns via the use of the 5D model.

  2. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  3. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus

    PubMed Central

    Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu

    2016-01-01

    Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522

  4. SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI

    SciTech Connect

    Li, G; Tyagi, N; Deasy, J; Wei, J; Hunt, M

    2015-06-15

    Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated from reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lung volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for

  5. Experimental analysis of image noise and interpolation bias in digital image correlation

    NASA Astrophysics Data System (ADS)

    Gao, Zeren; Xu, Xiaohai; Su, Yong; Zhang, Qingchuan

    2016-06-01

    The popularization of the digital image correlation (DIC) method has raised urgent needs to evaluate the accuracy of this method. However, there are still some problems to be solved. Among the problems, the effects of various factors, such as the image noise caused by the camera sensors, the employed interpolation algorithm, and the structure of the speckle patterns, have become a major concern. To experimentally measure the position-dependent systematic error (i.e. interpolation bias) caused by non-ideal interpolation algorithm is an important way to evaluate the quality of the speckle patterns in the correlation method, and remains unsolved. In this work, a novel, simple and convenient method is proposed to measure the interpolation bias. In the new method which can avoid the out-of-plane displacements and the mechanical errors of translation stages, integral-pixel shifts are applied to the image shown on the screen so that sub-pixel displacements can be realized in the images captured by the camera via proper experimental settings. Besides, the fluctuations of the image noise and the sub-pixel displacement errors caused by the image noise are experimentally analyzed by employing three types of cameras commonly used in the DIC measurements. Experimental results indicate that the fluctuations of the image noise are not only proportional to the image gray value, but also dependent on the type of the employed camera. On the basis of eliminating the image noise via the image averaging technique, high-precision interpolation bias curves more than one period are experimentally obtained by the proposed method.

  6. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    SciTech Connect

    Liu Yingchuan; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  7. SU-E-J-74: Impact of Respiration-Correlated Image Quality On Tumor Motion Reconstruction in 4D-CBCT: A Phantom Study

    SciTech Connect

    Lee, S; Lu, B; Samant, S

    2014-06-01

    Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500, The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall

  8. Digital Anthropomorphic Phantoms of Non-Rigid Human Respiratory and Voluntary Body Motion for Investigating Motion Correction in Emission Imaging

    PubMed Central

    Könik, Arda; Connolly, Caitlin M; Johnson, Karen L; Dasari, Paul; Segars, Paul W; Pretorius, P H; Lindsay, Clifford; Dey, Joyoni; King, Michael A

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used XCAT phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain more realistic representation of motion, we developed a series of individual-specific XCAT phantoms modeling non-rigid respiratory and non-rigid body motions derived from the MRI acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, MRI was acquired during free/regular breathing. The MR slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a GUI. Thus far we have created 5 body motion and 5 respiratory motion XCAT phantoms from MRI acquisitions of 6 healthy volunteers (3 males and 3 females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we

  9. Bovine coronavirus antibody titers at weaning negatively correlate with incidence of bovine respiratory disease in the feed yard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease complex (BRDC) is a multifactorial disease caused by complex interactions among viral and bacterial pathogens, stressful management practices and host genetic variability. Although vaccines and antibiotic treatments are readily available to prevent and treat infection caus...

  10. A study on quality improvement of x-ray imaging of the respiratory-system based on a new image processing technique

    NASA Astrophysics Data System (ADS)

    Torii, Jun; Nagai, Yuichi; Horita, Tatsuya; Matsumoto, Yuuji; Izumo, Takehiro; Kitagawa, Mayumi; Ihara, Kanyu; Nakamura, Tadashi; Mukoyoshi, Wataru; Tennmei, Kounosuke; Suzuki, Katsumi; Hara, Akio; Sasada, Shinji; Aso, Tomohiko

    2015-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. New noise reduction processing, Adaptive Noise Reduction [ANR], was announced in SPIE last year.[8] ANR is a new image processing technique which is capable of extracting and reducing noise components regardless of moving objects in fluoroscopy images. However, for further enhancement of noise reduction effect in clinical use, it was used in combination with a recursive filter, which is a time axis direction filter. Due to this, the recursive filter generated image lags when there are moving objects in the fluoroscopic images, and these image lags sometimes became hindrance in performing smooth bronchoscopy. This is because recursive filters reduce noise by adding multiple fluoroscopy images. Therefore, we have developed new image processing technique, Motion Tracking Noise Reduction [MTNR] for decreasing image lags as well as noise. This ground-breaking image processing technique detects global motion in images with high accuracy, determines the pixels to track the motion, and applies a motion tracking-type time filter. With this, image lags are removed remarkably while realizing the effective noise reduction. In this report, we will explain the effect of MTNR by comparing the performance of MTNR images [MTNR] and ANR + Recursive filter-applied images [ANR + Recursive filter].

  11. A breath of fresh air: images of respiratory illness in novels, poems, films, music, and paintings.

    PubMed

    Kaptein, Ad A; Meulenberg, Frans; Smyth, Joshua M

    2015-03-01

    The nature and severity of respiratory disease are typically expressed with biomedical measures such as pulmonary function, X-rays, blood tests, and other physiological characteristics. The impact of respiratory illness on the sufferer, however, is reflected in the stories patients tell: to themselves, their social environment, and their health care providers. Behavioral research often applies standardized questionnaires to assess this subjective impact. Additional approaches to sampling patients' experience of respiratory illness may, however, provide important and clinically useful information that is not captured by other methods. Herein, we assert that novels, poems, movies, music, and paintings may represent a rich, experiential understanding of the patient's point of view of asthma, cystic fibrosis, lung cancer, and tuberculosis. Examination of these works illustrates the broad range and major impact of respiratory illness on patients' quality of life. We suggest that examining how illness is represented in various art forms may help patients, their social environment, and their health care providers in coping with the illness and in humanizing medical care. Medical students' clinical skills may benefit when illness experiences as expressed in art are incorporated in the medical curriculum. More generally, Narrative Health Psychology, Narrative Medicine, and Medical Humanities deserve more attention in education, training, and clinical care of (respiratory) physicians, medical students, and other health care professionals. PMID:25762381

  12. TH-C-12A-11: Target Correlation of a 3D Surface Surrogate for Left Breast Irradiation Using the Respiratory-Gated Deep-Inspiration Breath-Hold Technique

    SciTech Connect

    Rong, Y; Walston, S

    2014-06-15

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.

  13. Human identification using correlation metrics of iris images

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Brown, Michael; Luo, Yi; Kaufman, Jason; Ma, Limin; Zhou, Qiang

    2005-01-01

    This paper presents work done based on second order statistical features including cross- and auto-correlations as well as co-occurrence matrices of iris images in an attempt to extract a simple, yet powerful, set of features of an iris as a biometric. Prior to our work, the most prevalent methods for iris identification include the frontier work based on the use of quadrature 2-D Gabor wavelets with the Hamming Distance-based classification [1,2], circular Gabor filters with a nearest feature line (NFL) classifier [3], dyadic wavelet transform with the zero-cross detectors [4], texture analysis [9] and transient signal [11], and independent component analysis (ICA) [7], and boundary localization [10]. Our method differs significantly from the earlier approaches to iris recognition in that it relies on the wide-sense stationary approximation to the texture and gray-level characteristics of irises, and aims to lend itself for a single-chip hardware implementation. Our preliminary results show that cross- and auto-correlators along with co-occurrence matrix features are highly likely to be prominent iris discriminators.

  14. Human identification using correlation metrics of iris images

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Brown, Michael; Luo, Yi; Kaufman, Jason; Ma, Limin; Zhou, Qiang

    2004-12-01

    This paper presents work done based on second order statistical features including cross- and auto-correlations as well as co-occurrence matrices of iris images in an attempt to extract a simple, yet powerful, set of features of an iris as a biometric. Prior to our work, the most prevalent methods for iris identification include the frontier work based on the use of quadrature 2-D Gabor wavelets with the Hamming Distance-based classification [1,2], circular Gabor filters with a nearest feature line (NFL) classifier [3], dyadic wavelet transform with the zero-cross detectors [4], texture analysis [9] and transient signal [11], and independent component analysis (ICA) [7], and boundary localization [10]. Our method differs significantly from the earlier approaches to iris recognition in that it relies on the wide-sense stationary approximation to the texture and gray-level characteristics of irises, and aims to lend itself for a single-chip hardware implementation. Our preliminary results show that cross- and auto-correlators along with co-occurrence matrix features are highly likely to be prominent iris discriminators.

  15. Imaging correlates of neural control of ocular movements.

    PubMed

    Agarwal, Mohit; Ulmer, John L; Chandra, Tushar; Klein, Andrew P; Mark, Leighton P; Mohan, Suyash

    2016-07-01

    The purpose of oculomotor movements is maintenance of clear images on the retina. Beyond this oversimplification, it requires several different types of ocular movements and reflexes to focus objects of interest to the fovea-the only portion of retina capable of sharp and clear vision. The different movements and reflexes that execute this task are the saccades, smooth pursuit movements, fixation, accommodation, and the optokinetic and vestibulo-ocular reflexes. Many different centres in the cerebrum, cerebellum, brainstem and thalami, control these movements via different pathways. At the outset, these mechanisms appear dauntingly complex to a radiologist. However, only a little effort could make it possible to understand these neural controls and empower the reading session. The following review on ocular movements and their neural control will enable radiologists and clinicians to correlate lesions with clinical deficits effectively without being swamped by exhaustive detail. Key Points • Knowledge of cortical and subcortical areas controlling ocular movements is important. • Understanding of neural control of ocular movements makes a good foundation. • Awareness of anatomic areas controlling ocular movements helps in clinico-radiologic correlation. PMID:26396109

  16. Respiratory acidosis

    MedlinePlus

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and chronic obstructive lung disease ) Diseases of the chest ( ...

  17. Performance of simultaneous cardiac-respiratory self-gated three-dimensional MR imaging of the heart: initial experience.

    PubMed

    Manka, Robert; Buehrer, Martin; Boesiger, Peter; Fleck, Eckart; Kozerke, Sebastian

    2010-06-01

    This study was approved by the local institutional ethics committee, and informed consent was obtained from all volunteers and patients. The objective of the present study was to assess the performance of high-spatial-resolution three-dimensional prospective cardiac-respiratory self-gated (CRSG) magnetic resonance (MR) imaging for determining left ventricular (LV) volumes and mass, as well as right ventricular (RV) volumes, in comparison with standard electrocardiography (ECG)-triggered, two-dimensional multisection, multiple-breath-hold cine imaging. The self-gated method derives cardiac triggering and respiratory gating information prospectively on the basis of additional MR imaging signals acquired in every repetition time and, thereby, eliminates the need for ECG triggering and multiple-breath-hold procedures. Data were acquired in 15 healthy volunteers (mean age, 27.2 years +/- 7.2 [standard deviation]) and 11 patients (mean age, 60.7 years +/- 11.3). The bias between the self-gating and the reference imaging techniques was minimal for all LV and RV parameters (mean values: LV end-diastolic volume, 2.0 mL; LV end-systolic volume, 0.6 mL; RV end-diastolic volume, 2.2 mL; and RV end-systolic volume, 0.8 mL). Prospective CRSG is a valuable alternative to ECG-triggered, multisection, multiple-breath-hold cine imaging of the heart and holds considerable promise for simplifying functional imaging of the heart, particularly in patients who are unable to hold their breath for a long period and patients who show ECG signal disturbances. PMID:20501728

  18. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  19. Imaging Phenotypes of Major Depressive Disorder: Genetic Correlates

    PubMed Central

    Savitz, Jonathan B; Drevets, Wayne C

    2009-01-01

    Imaging techniques are a potentially powerful method of identifying phenotypes that are associated with, or are indicative of a vulnerability to developing major depressive disorder (MDD). Here we identify seven promising MDD-associated traits identified by magnetic resonance imaging (MRI) or positron emission tomography (PET). We evaluate whether these traits are state-independent, heritable endophenotypes, or state-dependent phenotypes that may be useful markers of treatment efficacy. In MDD, increased activity of the amygdala in response to negative stimuli appears to be a mood-congruent phenomenon, and is likely moderated by the serotonin transporter gene (SLC6A4) promoter polymorphism (5-HTTLPR). Hippocampal volume loss is characteristic of elderly or chronically-ill samples and may be impacted by the val66met brain-derived neurotrophic factor (BDNF) gene variant and the 5-HTTLPR SLC6A4 polymorphism. White matter pathology is salient in elderly MDD cohorts but is associated with cerebrovascular disease, and is unlikely to be a useful marker of a latent MDD diathesis. Increased blood flow or metabolism of the subgenual anterior cingulate cortex (sgACC), together with gray matter volume loss in this region, is a well-replicated finding in MDD. An attenuation of the usual pattern of fronto-limbic connectivity, particularly a decreased temporal correlation in amygdala-anterior cingulate cortex (ACC) activity, is another MDD-associated trait. Concerning neuroreceptor PET imaging, decreased 5-HT1A binding potential in the raphe, medial temporal lobe, and medial prefrontal cortex (mPFC) has been strongly associated with MDD, and may be impacted by a functional single nucleotide polymorphism in the promoter region of the 5-HT1A gene (HTR1A: –1019C/G; rs6295). Potentially indicative of inter-study variation in MDD etiology or mood state, both increased and decreased binding potential of the serotonin transporter has been reported. Challenges facing the field include

  20. Dynamic Multileaf Collimator Tracking of Respiratory Target Motion Based on a Single Kilovoltage Imager During Arc Radiotherapy

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2010-06-01

    Purpose: To demonstrate and characterize dynamic multileaf collimator (DMLC) tracking of respiratory moving targets that are spatially localized with a single kV X-ray imager during arc radiotherapy. Methods and Materials: During delivery of an arc field (358 deg. gantry rotation, 72-sec duration, circular field shape), the three-dimensional (3D) position of a fiducial marker in a phantom was estimated in real time from fluoroscopic kV X-ray images acquired orthogonally to the treatment beam axis. A prediction algorithm was applied to account for system latency (570 ms) before the estimated marker position was used for DMLC aperture adaptation. Experiments were performed with 12 patient-measured tumor trajectories that were selected from 160 trajectories (46 patients) and reproduced by a programmable phantom. Offline, the 3D deviation of the estimated phantom position from the actual position was quantified. The two-dimensional (2D) beam-target deviation was quantified as the positional difference between the MLC aperture center and the marker in portal images acquired continuously during experiments. Simulations of imaging and treatment delivery extended the study to all 160 tumor trajectories and to arc treatments of 3-min and 5-min duration. Results: In the experiments, the mean root-mean-square deviation was 1.8 mm for the 3D target position and 1.5 mm for the 2D aperture position. Simulations agreed with this to within 0.1 mm and resulted in mean 2D root-mean-square beam-target deviations of 1.1 mm for all 160 trajectories for all treatment durations. The deviations were mainly caused by system latency (570 ms). Conclusions: Single-imager DMLC tracking of respiratory target motion during arc radiotherapy was implemented, providing less than 2-mm geometric uncertainty for most trajectories.

  1. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    PubMed

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping. PMID:21263506

  2. Damage Assessment of Composite Structures Using Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Caminero, M. A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C.

    2014-02-01

    The steady increase of Carbon-Fiber Reinforced Polymer (CFRP) Structures in modern aircraft will reach a new dimension with the entry into service of the Boeing 787 and Airbus 350. Replacement of damaged parts will not be a preferable solution due to the high level of integration and the large size of the components involved. Consequently the need to develop repair techniques and processes for composite components is readily apparent. Bonded patch repair technologies provide an alternative to mechanically fastened repairs with significantly higher performance, especially for relatively thin skins. Carefully designed adhesively bonded patches can lead to cost effective and highly efficient repairs in comparison with conventional riveted patch repairs that cut fibers and introduce highly strained regions. In this work, the assessment of the damage process taking place in notched (open-hole) specimens under uniaxial tensile loading was studied. Two-dimensional (2D) and three-dimensional (3D) Digital Image Correlation (DIC) techniques were employed to obtain full-field surface strain measurements in carbon-fiber/epoxy T700/M21 composite plates with different stacking sequences in the presence of an open circular hole. Penetrant enhanced X-ray radiographs were taken to identify damage location and extent after loading around the hole. DIC strain fields were compared to finite element predictions. In addition, DIC techniques were used to characterise damage and performance of adhesively bonded patch repairs in composite panels under tensile loading. This part of work relates to strength/stiffness restoration of damaged composite aircraft that becomes more important as composites are used more extensively in the construction of modern jet airliners. The behaviour of bonded patches under loading was monitored using DIC full-field strain measurements. Location and extent of damage identified by X-ray radiography correlates well with DIC strain results giving confidence to

  3. Correlation of Magnetic Resonance Imaging With Knee Anterolateral Ligament Anatomy

    PubMed Central

    Helito, Camilo Partezani; Helito, Paulo Victor Partezani; Bonadio, Marcelo Batista; Pécora, José Ricardo; Bordalo-Rodrigues, Marcelo; Camanho, Gilberto Luis; Demange, Marco Kawamura

    2015-01-01

    Background: Anatomic and magnetic resonance imaging (MRI) studies have recently characterized the knee anterolateral ligament (ALL). So far, no study has focused on confirming whether the evaluated MRI parameters truly correspond with ALL anatomy. Purpose: To assess the validity of MRI in detecting the ALL using an anatomic evaluation as reference. Study Design: Descriptive laboratory study. Methods: A total of 13 cadaveric knees were subjected to MRI and then to anatomic dissection. Dissection was performed according to previous anatomic study methodology. MRIs were performed with a 0.6- to 1.5-mm slice thickness and prior saline injection. The following variables were analyzed: distance from the origin of the ALL to the origin of the lateral collateral ligament (LCL), distance from the origin of the ALL to its bifurcation point, maximum length of the ALL, distance from the tibial insertion of the ALL to the articular surface of the tibia, ALL thickness, and ALL width. The 2 sets of measurements were analyzed using the Spearman correlation coefficient (ρ) and Bland-Altman plots. Results: The ALL was clearly observed in all dissected knees and MRI scans. It originated anterior and distal to the LCL, close to the lateral epycondile center, and showed an anteroinferior path toward the tibia, inserting between the Gerdy tubercle and the fibular head, around 5 mm under the lateral plateau. The ρ values tended to increase together for all studied variables between the 2 methods, and all were statistically significant, except for thickness (P = .077). Bland-Altman plots showed a tendency toward a reduction of ALL thickness and width by MRI compared with anatomic dissection. Conclusion: MRI scanning as described can accurately assess the ALL and demonstrates characteristics similar to those seen under anatomic dissection. Clinical Relevance: MRI can accurately characterize the ALL in the anterolateral region of the knee, despite the presence of structures that might

  4. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    NASA Astrophysics Data System (ADS)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  5. Bovine Respiratory Disease in Feedlot Cattle: Phenotypic, Environmental, and Genetic Correlations with Growth, Carcass, and Palatability Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease (BRD) is the most costly feedlot disease in the United States. Selection for disease resistance is one of several possible interventions to prevent or reduce economic loss associated with animal disease and to improve animal welfare. Undesirable genetic relationships, how...

  6. A retrospective analysis of factors correlated to chimpanzee (Pan troglodytes schweinfurthii) respiratory health at Gombe National Park, Tanzania.

    PubMed

    Lonsdorf, Elizabeth V; Murray, Carson M; Lonsdorf, Eric V; Travis, Dominic A; Gilby, Ian C; Chosy, Julia; Goodall, Jane; Pusey, Anne E

    2011-03-01

    Infectious disease and other health hazards have been hypothesized to pose serious threats to the persistence of wild ape populations. Respiratory disease outbreaks have been shown to be of particular concern for several wild chimpanzee study sites, leading managers, and researchers to hypothesize that diseases originating from and/or spread by humans pose a substantial risk to the long-term survival of chimpanzee populations. The total chimpanzee population in Gombe National Park, Tanzania, has declined from 120-150 in the 1960s to about 100 by the end of 2007, with death associated with observable signs of disease as the leading cause of mortality. We used a historical data set collected from 1979 to 1987 to investigate the baseline rates of respiratory illness in chimpanzees at Gombe National Park, Tanzania, and to analyze the impact of human-related factors (e.g., banana feeding, visits to staff quarters) and non-human-related factors (e.g., sociality, season) on chimpanzee respiratory illness rates. We found that season and banana feeding were the most significant predictors of respiratory health clinical signs during this time period. We discuss these results in the context of management options for the reduction of disease risk and the importance of long-term observational data for conservation. PMID:21562902

  7. Experiential, autonomic, and respiratory correlates of CO2 reactivity in individuals with high and low anxiety sensitivity.

    PubMed

    Blechert, Jens; Wilhelm, Frank H; Meuret, Alicia E; Wilhelm, Eva M; Roth, Walton T

    2013-10-30

    Psychometric studies indicate that anxiety sensitivity (AS) is a risk factor for anxiety disorders such as panic disorder (PD). To better understand the psychophysiological basis of AS and its relation to clinical anxiety, we examined whether high-AS individuals show similarly elevated reactivity to inhalations of carbon dioxide (CO2) as previously reported for PD and social phobia in this task. Healthy individuals with high and low AS were exposed to eight standardized inhalations of 20% CO2-enriched air, preceded and followed by inhalations of room air. Anxiety and dyspnea, in addition to autonomic and respiratory responses were measured every 15 s. Throughout the task, high AS participants showed a respiratory pattern of faster, shallower breathing and reduced inhalation of CO2 indicative of anticipatory or contextual anxiety. In addition, they showed elevated dyspnea responses to the second set of air inhalations accompanied by elevated heart rate, which could be due to sensitization or conditioning. Respiratory abnormalities seem to be common to high AS individuals and PD patients when considering previous findings with this task. Similarly, sensitization or conditioning of anxious and dyspneic symptoms might be common to high AS and clinical anxiety. Respiratory conditionability deserves greater attention in anxiety disorder research. PMID:23489596

  8. An iterative particle filter approach for respiratory motion estimation in nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Abd. Rahni, Ashrani Aizzuddin; Wells, Kevin; Lewis, Emma; Guy, Matthew; Goswami, Budhaditya

    2011-03-01

    The continual improvement in spatial resolution of Nuclear Medicine (NM) scanners has made accurate compensation of patient motion increasingly important. A major source of corrupting motion in NM acquisition is due to respiration. Therefore a particle filter (PF) approach has been proposed as a powerful method for motion correction in NM. The probabilistic view of the system in the PF is seen as an advantage that considers the complexity and uncertainties in estimating respiratory motion. Previous tests using XCAT has shown the possibility of estimating unseen organ configuration using training data that only consist of a single respiratory cycle. This paper augments application specific adaptation methods that have been implemented for better PF estimates with an iterative model update step. Results show that errors are further reduced to an extent up to a small number of iterations and such improvements will be advantageous for the PF to cope with more realistic and complex applications.

  9. A method to transfer speckle patterns for digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  10. Stereo digital image correlation for characterization of fresh biomaterials

    NASA Astrophysics Data System (ADS)

    Bland, Megan E.; Cortes, Marisol; Solt, Kristin J.; Siadat, Mohammad; Yang, Lianxiang

    2010-02-01

    In this study a whole field, non-contact optical method, Stereo Digital Image Correlation (SDIC), was used to determine the strain distribution and mechanical properties of fresh bone in Phosphate Buffered Saline (PBS) solution. Knowing the whole-surface strain distribution of bone is useful for understanding the effects of normal physiological loading, disease, drugs and aging. In addition, knowing the mechanical properties of bone will aid in the design of new biomaterials. Although there currently are methods for measuring the mechanical properties of bone, these methods have some limitations. Many miss areas of strain concentration, especially because of the inhomogeneous nature of bone. SDIC overcomes these limitations by being able to precisely measure whole-surface 3D contour and strain of samples in solution over a wide range of deformations. In this study, SDIC was used to measure the axial strain of fresh chicken tibia. A setup which has the capability to apply force axially was designed. This paper describes the methodology of SDIC for measuring fresh bone in a PBS solution. The effect of drying time on strain distribution was investigated. The usefulness of the SDIC system is demonstrated by examples of deformation and strain measurements for different chicken tibia in PBS solution.

  11. Atlas-based diffusion tensor imaging correlates of executive function

    PubMed Central

    Nowrangi, Milap A.; Okonkwo, Ozioma; Lyketsos, Constantine; Oishi, Kenichi; Mori, Susumu; Albert, Marilyn; Mielke, Michelle M.

    2015-01-01

    Impairment in executive function (EF) is commonly found in Alzheimer’s Dementia (AD) and Mild Cognitive Impairment (MCI). Atlas-based Diffusion Tensor Imaging (DTI) methods may be useful in relating regional integrity to EF measures in MCI and AD. 66 participants (25 NC, 22 MCI, and 19 AD) received DTI scans and clinical evaluation. DTI scans were applied to a pre-segmented atlas and fractional anisotropy (FA) and mean diffusivity (MD) were calculated. ANOVA was used to assess group differences in frontal, parietal, and cerebellar regions. For regions differing between groups (p<0.01), linear regression examined the relationship between EF scores and regional FA and MD. Anisotropy and diffusivity in frontal and parietal lobe white matter (WM) structures were associated with EF scores in MCI and only frontal lobe structures in AD. EF was more strongly associated with FA than MD. The relationship between EF and anisotropy and diffusivity was strongest in MCI. These results suggest that regional WM integrity is compromised in MCI and AD and that FA may be a better correlate of EF than MD. PMID:25318544

  12. Analytical modeling of PET imaging with correlated functional and structural images

    SciTech Connect

    Ma, Y.; Evans, A.C.

    1996-12-31

    Objective evaluation of dynamic imaging protocols needs a realistic simulation tool to model the data acquisition and image reconstruction of a PET system. Availability of correlated functional and anatomical images in many centers allows the creation of highly realistic objects to represent brain activity and attenuation distribution for each study. We have developed an analytical model incorporating key physical factors inherent in coincidence detection along with spatially variant 3-D detector response and detection efficiency. In this paper we use MR and PET data of a 3-D Hoffman brain phantom to demonstrate and validate our simulation methods. The simulated total projection, attenuation factor, and scatter profiles are in excellent agreement with the experimental measurements. Regional analysis shows a discrepancy of {le} 8.5 % in the gray matter and white matter activity concentrations between the real and simulated images. Our results also reveal quantitative distortions due to partial volume effects with the same magnitude as in clinical PET scans. This tool is particularly useful in evaluating projection data processing and image reconstruction algorithms.

  13. Cross-correlation and image alignment for multi-band IR sensors

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Chao, Tien-Hsin; Chen, Kang (Frank); Luong, Andrew; Dewees, Mallory; Yan, Xinyi; Chow, Edward; Torres, Gilbert

    2016-04-01

    We present the development of a cross-correlation algorithm for correlating objects in the long wave, mid wave and short wave Infrared sensor arrays. The goal is to align the images in the multisensor suite by correlating multiple key features in the images. Due to the wavelength differences, the object appears very differently in the sensor images even the sensors focus on the same object. In order to perform accurate correlation of the same object in the multi-band images, we perform image processing on the images so that the features of the object become similar to each other. Fourier domain band pass filters are used to enhance the images. Mexican Hat and Gaussian Derivative Wavelets are used to further enhance the features of the object. A Python based QT graphical user interface has been implemented to carry out the process. We show reliable results of the cross-correlation of the objects in multiple band videos.

  14. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  15. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  16. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    PubMed

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26891126

  17. Snapping Sharks, Maddening Mindreaders, and Interactive Images: Teaching Correlation.

    ERIC Educational Resources Information Center

    Mitchell, Mark L.

    Understanding correlation coefficients is difficult for students. A free computer program that helps introductory psychology students distinguish between positive and negative correlation, and which also teaches them to understand the differences between correlation coefficients of different size is described in this paper. The program is…

  18. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context.

    PubMed

    Westbury, Chris F; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  19. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context

    PubMed Central

    Westbury, Chris F.; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  20. Elevated plasma-soluble CD16 levels in porcine reproductive and respiratory syndrome virus-infected pigs: correlation with ADAM17-mediated shedding.

    PubMed

    Gu, Weihong; Guo, Longjun; Li, Ren; Niu, Junwei; Luo, Xiaolei; Zhang, Jian; Xu, Yunfei; Tian, Zhijun; Feng, Li; Wang, Yue

    2016-03-01

    Soluble CD16 (sCD16) is closely correlated with chronic diseases in humans. Here, plasma sCD16 levels in pigs were increased by infection with porcine reproductive and respiratory syndrome virus (PRRSV) but not with porcine epidemic diarrhea virus, porcine circovirus type 2 and pseudorabies virus. Of interest, PRRSV attached to blood neutrophils and reduced surface CD16 expression on neutrophils. In vitro data confirmed that PRRSV caused CD16 shedding in neutrophils. Further analyses revealed that ADAM17 was involved in porcine CD16 shedding. Thus, our findings suggest that increase in sCD16 levels may be an indicator of PRRSV infection. PMID:26653711

  1. On the possible high +Gz tolerance increase by multimodal brain imaging controlled respiratory AFTE biofeedback training exercise

    NASA Astrophysics Data System (ADS)

    Smietanowski, Maciej; Achimowicz, Jerzy; Lorenc, Kamil; Nowicki, Grzegorz; Zalewska, Ewa; Truszczynski, Olaf

    The experimental data related to Valsalva manouvers and short term voluntary apnea, available in the literature, suggest that the cerebral blood flow increase and reduction of the peripheral one may be expected if the specific AFTE based respiratory training is performed. The authors had verified this hypothesis by studying the relations between EEG measured subject relaxation combined with voluntary apnea by multimodal brain imaging technique (EEG mapping, Neuroscan and fMRI) in a group of healthy volunteers. The SPM analysis of respiratory related changes in cortical and subcortical BOLD signal has partially confirmed the hypothesis. The mechanism of this effect is probably based on the simultaneous blood pressure increase and total peripheral resistance increase. However the question is still open for further experimental verification if AFTE can be treated as the tool which can increase pilot/astronaut situation awareness in the extreme environment typical for aerospace operations where highly variable accelerations due to liftoff, rapid maneuvers, and vibrations can be expected in the critical phases of the mission.

  2. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  3. Characterization of microcracks by application of digital image correlation to SPM images

    NASA Astrophysics Data System (ADS)

    Keller, Juergen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2004-07-01

    With the development of micro- and nanotechnological products such as sensors, MEMS/NEMS and their broad application in a variety of market segments new reliability issues will arise. The increasing interface-to-volume ratio in highly integrated systems and nanoparticle filled materials and unsolved questions of size effect of nanomaterials are challenges for experimental reliability evaluation. To fulfill this needs the authors developed the nanoDAC method (nano Deformation Analysis by Correlation), which allows the determination and evaluation of 2D displacement fields based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object are carried out at different thermo-mechanical load states. The obtained topography-, phase- or error-images are compared utilizing grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results of the nanoDAC method are full-field displacement and strain fields. Due to the application of SPM equipment deformations in the micro-, nanometer range can be easily detected. The method can be performed on bulk materials, thin films and on devices i.e microelectronic components, sensors or MEMS/NEMS. Furthermore, the characterization and evaluation of micro- and nanocracks or defects in bulk materials, thin layers and at material interfaces can be carried out.

  4. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  5. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  6. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system

    PubMed Central

    Wood, T J; Beavis, A W; Saunderson, J R

    2013-01-01

    Objective: The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. Methods: The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson’s correlation coefficient. Results: Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Conclusion: Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. Advances in knowledge: A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography. PMID:23568362

  7. Biopolymer-based material used in optical image correlation

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Kochalska, Anna; Miniewicz, Andrzej

    2008-04-01

    We investigate the possible application of a modified deoxyribonucleic acid (DNA)-dye system for dynamic processing of optical information, e.g., optical correlation. The system consists of a biopolymeric matrix made of DNA substituted with the cationic surfactant molecule cetyltrimethyl-ammonium chloride (CTMA) and doped with a photochromic Disperse Red 1 dye. Fast dynamics (millisecond range of rise and fall times) of output correlation signal formation was measured in a joint Fourier transform optical correlator experimental setup. Full reversibility of the correlation signal and reproducibility were observed even after long-time exposures.

  8. PHASE CORRELATION METHOD FOR THE ALIGNMENT OF TOTAL SOLAR ECLIPSE IMAGES

    SciTech Connect

    Druckmueller, M.

    2009-12-01

    A modified phase correlation method, based on Fourier transform, which enables the alignment of solar coronal images taken during the total solar eclipses, is presented. The method enables the measurement of translation, rotation, and scaling factor between two images. With the application of this technique, pairs of images with different exposure times, different brightness scale, such as linear for CCD and nonlinear for images taken with photographic film, and even images from different emission lines can be aligned with sub-pixel precision.

  9. A 360-deg Digital Image Correlation system for materials testing

    NASA Astrophysics Data System (ADS)

    Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D.

    2016-07-01

    The increasing research interest toward natural and advanced engineered materials demands new experimental protocols capable of retrieving highly dense sets of experimental data on the full-surface of samples under multiple loading conditions. Such information, in fact, would allow to capture the possible heterogeneity and anisotropy of the material by using up-to-date inverse characterization methods. Although the development of object-specific test protocols could represent the optimal choice to address this need, it is unquestionable that universal testing machines (UTM) remain the most widespread and versatile option to test materials and components in both academic and industrial contexts. A major limitation of performing standard material tests with UTM, however, consists in the scarce information obtainable with the commonly associated sensors since they provide only global (LVDTs, extensometers, 2D-video analyzers) or local (strain gages) measures of displacement and strain. This paper presents a 3D Digital Image Correlation (DIC) system developed to perform highly accurate full-surface 360-deg measurements on either standard or custom-shaped samples under complex loading within universal testing machines. To this aim, a low cost and easy to setup video rig was specifically designed to overcome the practical limitations entailed with the integration of a multi-camera system within an already existing loading frame. In particular, the proposed system features a single SLR digital camera moved through multiple positions around the specimen by means of a large rotation stage. A proper calibration and data-processing procedure allows to automatically merge the experimental data obtained from the multiple views with an accuracy of 10-2 m m . The results of a full benchmarking of the metrological performances of the system are here reported and discussed together with illustrative examples of full-360-deg shape and deformation measurements on a Grade X65 steel

  10. Image preprocessing based on spatial statistics for the optical correlation recognition of aviation photographs

    NASA Astrophysics Data System (ADS)

    Sun, Yifan; Tan, Qiaofeng; Cao, Liangcai; Ni, Kai; He, Qingsheng; Jin, Guofan

    2008-03-01

    A new method of digital image processing is developed for the correlation recognition of aviation photographs under volume holographic correlator. The physical characteristics of semivariogram of the image are analyzed according to spatial statistics, which suggests the principle of the image segmentation, including the dimension of the templates, the space between each template and the image restoration. Then the residual space of each template is calculated directly based on the 2D-images to enlarge and to scatter the differences between the correlativity. After that, the residual spaces are reconstructed to form the final set of templates. Finally the proposed method is tested on a series of aviation photographs. The experimental results come with rather higher precision as well as rather lower computational complexity, which supports the real-time capability of the optical correlation recognition of aviation photographs under volume holographic correlator.

  11. The pulsatility volume index: an indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Polimeni, Jonathan R; Evans, Karleyton C; Bhat, Himanshu; Keil, Boris; Rosen, Bruce R; Boas, David A; Wald, Lawrence L

    2016-05-13

    The influence of cardiac activity on the viscoelastic properties of intracranial tissue is one of the mechanisms through which brain-heart interactions take place, and is implicated in cerebrovascular disease. Cerebrovascular disease risk is not fully explained by current risk factors, including arterial compliance. Cerebrovascular compliance is currently estimated indirectly through Doppler sonography and magnetic resonance imaging (MRI) measures of blood velocity changes. In order to meet the need for novel cerebrovascular disease risk factors, we aimed to design and validate an MRI indicator of cerebrovascular compliance based on direct endogenous measures of blood volume changes. We implemented a fast non-gated two-dimensional MRI pulse sequence based on echo-planar imaging (EPI) with ultra-short repetition time (approx. 30-50 ms), which stepped through slices every approximately 20 s. We constrained the solution of the Bloch equations for spins moving faster than a critical speed to produce an endogenous contrast primarily dependent on spin volume changes, and an approximately sixfold signal gain compared with Ernst angle acquisitions achieved by the use of a 90° flip angle. Using cardiac and respiratory peaks detected on physiological recordings, average cardiac and respiratory MRI pulse waveforms in several brain compartments were obtained at 7 Tesla, and used to derive a compliance indicator, the pulsatility volume index (pVI). The pVI, evaluated in larger cerebral arteries, displayed significant variation within and across vessels. Multi-echo EPI showed the presence of significant pulsatility effects in both S0 and [Formula: see text] signals, compatible with blood volume changes. Lastly, the pVI dynamically varied during breath-holding compared with normal breathing, as expected for a compliance indicator. In summary, we characterized and performed an initial validation of a novel MRI indicator of cerebrovascular compliance, which might prove useful

  12. Respiratory alkalosis

    MedlinePlus

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  13. Intraclass and between-class training-image registration for correlation-filter synthesis.

    PubMed

    Mahalanobis, A; Vijaya Kumar, B V; Frankot, R T

    2000-06-10

    Correlation filters have traditionally been designed without much attention given to the issue of the training images within a class or the relative spatial position between classes. We examine the impact of training-set registration on correlation-filter performance and develop techniques for centering the training images from a class that result in improved performance. We also show that it is beneficial to adjust the spatial position of the classes relative to one another. Although the proposed techniques are relevant for many types of correlation filter, we limit our discussion to algorithms for the maximum average correlation height filter and the distance classifier correlation filter. PMID:18345217

  14. Classical correlated imaging from the perspective of coherent-mode representation

    SciTech Connect

    Cheng Jing; Han Shensheng

    2007-08-15

    We use coherent-mode representation of partially coherent fields to analyze correlated imaging with classical light sources. This formalism is very useful to study the imaging quality. By decomposing the unknown object as the superposition of different coherent modes, the components corresponding to small eigenvalues cannot be well imaged. The generated images depend crucially on the distribution of the eigenvalues of the coherent-mode representation of the source and the decomposition coefficients of the objects. Three kinds of correlated imaging schemes are analyzed numerically.

  15. Post-acquisition small-animal respiratory gated imaging using micro cone-beam CT

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.

    2004-04-01

    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function.

  16. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  17. A comparison of image registration techniques for the correlation of radiolabelled antibody distribution with tumour morphology.

    PubMed

    Flynn, A A; Green, A J; Boxer, G; Pedley, R B; Begent, R H

    1999-07-01

    Image registration is a powerful tool for correlating functional images with images of anatomical structure. This facilitates more accurate quantitation of regional radiopharmaceutical uptake. Similarly, registration of images of radiolabelled antibody distribution, in tissue sections, with the equivalent histological images allows the comparison and measurement of radiopharmaceutical distribution with morphological structure. The images used were obtained by storage phosphor plate technology, for the radiopharmaceutical distribution, and by digitization of the stained histological sections. Here we compare four fully automatic registration techniques and one manual technique in terms of their spatial accuracy. We have found that there was no difference in accuracy between cross-correlation, minimization of variance and mutual information. These techniques were more accurate than principal axes and the manual technique. However, minimization of variance and mutual information were more time-consuming than the other methods. Consequently, cross-correlation is the method of choice for automatic registration of large numbers of these image pairs. PMID:10442718

  18. Image pre-filtering for measurement error reduction in digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  19. SU-D-9A-01: Listmode-Driven Optimal Gating (OG) Respiratory Motion Management: Potential Impact On Quantitative PET Imaging

    SciTech Connect

    Lee, K; Hristov, D

    2014-06-01

    Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratory motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.

  20. Method and apparatus for the simultaneous display and correlation of independently generated images

    DOEpatents

    Vaitekunas, Jeffrey J.; Roberts, Ronald A.

    1991-01-01

    An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.

  1. Correlative imaging of the liver and hepatobiliary system.

    PubMed

    Davis, L P; McCarroll, K

    1994-07-01

    Many imaging techniques can be used to assess the liver and hepatobiliary system. Each modality has individual strengths and limitations, which usually vary depending on the specific clinical situation. This review discusses several specific common clinical situations where imaging of the liver and biliary system is necessary and describes the various imaging options. Space-occupying liver lesions are discussed, and particular attention is paid to the assessment of liver metastasis, hepatoma, and incidentally discovered liver lesions such as hemangioma, adenoma, and focal nodular hyperplasia. The value of ultrasound, computed tomography, magnetic resonance imaging, and scintigraphic techniques in this patient population is described. Isolated sulfur colloid hepatic scintigraphy is not of great value in the evaluation of these patients. Therefore, this review describes in some detail the value of physiological liver scintigraphy, including gallium and iminodiacetic acid (IDA) scanning as well as dynamic flow imaging of the liver such as hepatic artery perfusion scintigraphy and tagged red cell scintigraphy. Imaging of the biliary tree also is described. The roles of ultrasound and scintigraphy are compared and contrasted as related to the diagnosis of acute cholecystitis, common duct obstruction, and postoperative complications. PMID:7973757

  2. Hepatic cancer: Correlative imaging with radioimmunodetection, NMR, and TCT

    SciTech Connect

    De Lund, F.H.; Lieber, A.; Ram, M.D.; Goldenberg, D.M.

    1984-01-01

    The purpose of this study was to compare the sensitivity of radioimmunodetection (RAID) imaging and nuclear magnetic resonance imaging in the detection of hepatic tumors. Twelve consecutive patients with metastatic (11) or primary (1) carcinoma of the liver were imaged concurrently with labeled antibodies-to-tumor antigens and by nuclear magnetic resonance. Evidence of hepatic tumors was corrected with other diagnostic procedures including TCT. Eleven patients were imaged with I-131 labeled antibodies to CEA, CSAP and one with I-131 labeled antibodies to AFP. Polyclonal, monoclonal, and Fab'/sub 2/ antibodies were used. The preparation and labeling of the antibodies have been described previously. Each patient received 2-3 mCi of labeled antibodies and was imaged at 24 to 48 hrs. Nontarget radioactivity was diminished by other radionuclides simulating nontumor distribution using a computer subtraction technique. NMR images were obtained with a 0.15T resistive instrument. In all twelve patients hepatic tumor was diagnosed by RAID. Nine of the hepatic tumors were confirmed by other methods. NMR demonstrated four positive findings in these nine. Computerized tomography detected tumors in three of the nine patients at the time of the first RAID examination, and subsequently in one more patient when RAID and NMR examinations were performed concurrently. In this series of patients the detection of hepatic cancer by RAID showed twice the sensitivity of NMR or TCT.

  3. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  4. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  5. Correlation between subjective and objective assessment of magnetic resonance (MR) images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini; Paramesran, Raveendran

    2016-07-01

    Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We have performed a quantitative analysis of the correlation between subjective and objective Full Reference - IQA (FR-IQA) on Magnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have created a MR image database that consists of 25 original reference images and 750 distorted images. The reference images were distorted with six types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion. Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations. The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation between the subjective and objective assessment of the MR images. The Noise Quality Measurement (NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are 0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images, Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images, Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images. PMID:26969762

  6. Measuring strain using digital image correlation of second harmonic generation images.

    PubMed

    Wentzell, Scott; Sterling Nesbitt, Robert; Macione, James; Kotha, Shiva

    2013-08-01

    The micromechanical environment of bone is crucial to understanding both bone fracture and mechanobiological responses of osteocytes, yet few techniques exist that are capable of measuring strains on the micrometer scale. A method for measuring micrometer level strains has been developed based on digital image correlation (DIC) of second harmonic generation microscopy (SHGM) images. Bovine tibias milled into thin sections were imaged using SHGM under loads of 0 and 15 MPa. Strains were measured using DIC and compared to applied strain values. First and second principal strains decreased in magnitude as the analysis region area increased from 1750 µm(2) to 60,920 µm(2), converging to 1.23 ± 0.74 and -0.745 ± 0.9816 times the applied strain respectively. A representative sample histogram revealed regions of pure tensile and compressive strain, and that strains were highly heterogeneous ranging from 8410 to -8840 microstrain for an applied 2870 microstrain. Comparison with applied strain measures suggested that analysis sizes of 1750 µm(2) and greater were measuring strains on the tissue scale, and higher resolution is required for collagen fibrillar strains. Regions of low SHGM intensity ("dark" regions) were seen which are believed to be lacunar and perilacunar regions of low collagen density. However, no significant differences in strain magnitude were present in dark regions versus regions of high signal intensity. The proposed technique is effective for strains on the size order of bone microarchitecture, and would be useful for studies into the mechanical microenvironment during loading. The technique also has potential for in vivo studies in small animal models. PMID:23845730

  7. Imaging of atypical hemangiomas of the liver with pathologic correlation.

    PubMed

    Vilgrain, V; Boulos, L; Vullierme, M P; Denys, A; Terris, B; Menu, Y

    2000-01-01

    Compared with the imaging features of typical hepatic hemangiomas, the imaging features of atypical hepatic hemangiomas have not been well studied or well described. Knowledge of the entire spectrum of atypical hepatic hemangiomas is important and can help one avoid most diagnostic errors. A frequent type of atypical hepatic hemangioma is a lesion with an echoic border at ultrasonography. Less frequent types are large, heterogeneous hemangiomas; rapidly filling hemangiomas; calcified hemangiomas; hyalinized hemangiomas; cystic or multilocular hemangiomas; hemangiomas with fluid-fluid levels; and pedunculated hemangiomas. Adjacent abnormalities consist of arterial-portal venous shunt, capsular retraction, and surrounding nodular hyperplasia; hemangiomas can also develop in cases of fatty liver infiltration. Associated lesions include multiple hemangiomas, hemangiomatosis, focal nodular hyperplasia, and angiosarcoma. Types of atypical evolution are hemangiomas enlarging over time and hemangiomas appearing during pregnancy. Complications consist of inflammation, Kasabach-Merritt syndrome, intratumoral hemorrhage, hemoperitoneum, volvulus, and compression of adjacent structures. In some cases, such as large heterogeneous hemangiomas, calcified hemangiomas, pedunculated hemangiomas, or hemangiomas developing in diffuse fatty liver, a specific diagnosis can be established with imaging, especially magnetic resonance imaging. However, in other atypical cases, the diagnosis will remain uncertain at imaging, and these cases will require histopathologic examination. PMID:10715338

  8. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  9. Correlation Analysis of TEM Images of Nanocrystal Molecules

    SciTech Connect

    Micheel, Christine; Zanchet, Daniele; Alivisatos, A. Paul

    2008-05-21

    Quantitative characterizataion of images of naocrystals and nanostructures is a challenging but important task. The development and optimization of methods for the construction of complex nanostructures rely on imaging techniques. Computer programs were developed to quantify TEM images of nanocrystal/DNA nanostructures, and results are presented for heterodimers annd trimers of gold nanocrystals. The programs presented here have also been used to analyze more complex trimers and tetramers linked by branched DNA, as well as for structures made from attaching gold nanocrystals to CdSe/ZnS core-shell quantum dots. This work has the additional goal of enabling others to quickly and easily adapt the methods for their own use.

  10. Characterization of serum platelet-activating factor (PAF) acetylhydrolase. Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children.

    PubMed Central

    Miwa, M; Miyake, T; Yamanaka, T; Sugatani, J; Suzuki, Y; Sakata, S; Araki, Y; Matsumoto, M

    1988-01-01

    Platelet-activating factor (PAF) acetylhydrolase has been recognized as an enzyme that inactivates PAF. We developed a convenient and reproducible method for determining human serum PAF acetylhydrolase activity. The assay was based on measurement of [14C]acetate produced from 1-O-alkyl-2-[14C]-acetyl-sn-glycero-3-phosphocholine upon precipitation of the complex of radioactive substrate and albumin with TCA. The apparent Km value of PAF acetylhydrolase (near the physiological concentration of serum protein) was 1.5 X 10(-4) M PAF. 32 subjects with serum PAF acetylhydrolase deficiency were found among 816 healthy Japanese adults. The low PAF acetylhydrolase activity in the deficient serum might not be due to the presence of enzyme inhibitor. Both the sensitivity to PAF and the metabolism of PAF in platelets from PAF acetylhydrolase-deficient subjects were almost the same as those of normal subjects. Deficiency in serum PAF acetylhydrolase appeared to be transmitted by autosomal recessive heredity among five Japanese families. Among healthy adults, healthy children, and asthmatic children, who were grouped into five classes on the basis of respiratory symptoms (remission, wheezy, mild, moderate, and severe groups), the probability of PAF acetylhydrolase deficiency was significantly higher in groups with severe symptoms (moderate and severe) (P less than 0.01). These results suggest that deficiency of serum PAF acetylhydrolase might be one of the factors leading to severe respiratory symptoms in asthmatic children. Images PMID:3198761

  11. Imaging strain localization in porous limestone by X-ray Computed Tomography and Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Baud, P.; Hall, S.; Wong, T.-f.

    2012-04-01

    The brittle-ductile transition in porous sandstones has now been studied extensively. Microstructural studies combining various techniques on samples deformed in the laboratory documented the development of a wide variety on strain localization patterns and failure modes in overall agreement with the field observations in various sandstone formations. In contrast, there is a paucity of mechanical and microstructural laboratory data on the brittle-ductile transition in porous carbonates, particularly for the high porosity end-members. The question of strain localization is in particular hard to tackle as conventional microstructural analyses cannot as in sandstone be guided by acoustic emission statistics. In this context, X-ray Computed Tomography (CT) imaging provides a promising technique to accurately describe the various failure modes associated with the brittle-ductile transition in porous limestone. In this study, we focused on a grainstone from the Majella Mountain, central Italy. Detailed field observations performed in this formation by Tondi et al. (2006) have revealed some complex interplay between deformation/compaction bands and stylolites. Our samples of Majella grainstone had a nominal porosity of 31% and were primarily composed of calcite. A series of hydrostatic and conventional triaxial experiments were performed in dry conditions at room temperature, constant strain rate and at confining pressures ranging from 5 to 50 MPa. Several sets of CT images at a resolution of 25 microns were acquired before and after deformation. Digital Image Correlation (DIC) was performed on images of the intact and deformed samples. The full 3D strain tensor field was derived. Results for the two strain invariants corresponding to the volumetric and shear components were obtained for grid steps of 500 and 250 microns. Our new results showed that deformation was compactant in Majella grainstone over the wide range of pressures investigated. Strain localization was

  12. Hip arthropathy in a patient with primary hemochromatosis: MR imaging findings with pathologic correlation.

    PubMed

    Papakonstantinou, Olympia; Mohana-Borges, Aurea V R; Campell, Loretta; Trudell, Debra; Haghighi, Parviz; Resnick, Donald

    2005-03-01

    Arthropathy is a major clinical manifestation in primary hemochromatosis, typically affecting the metacarpophalangeal joints. Hip arthropathy is not uncommon, with radiologic features resembling osteoarthritis or calcium pyrophosphate dihydrate (CPPD) crystal deposition disease. We describe the MR imaging findings of the hip in a patient with severe hip arthropathy and primary hemochromatosis and correlate them with the histopathologic findings. MR imaging showed severe degenerative changes, with large subchondral cysts and subchondral sclerosis in the femoral head and acetabulum. There was conspicuous correlation between MR imaging and pathologic findings of the resected femoral head. However, MR imaging failed to reveal intra-articular iron. PMID:15316682

  13. Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position

    NASA Astrophysics Data System (ADS)

    Newman, Jason A.; Luo, Qiaoen; Webb, Kevin J.

    2016-02-01

    We present a coherent optical method for wavelength-resolution imaging of moving objects hidden within thick randomly scattering media. Spatial speckle intensity correlations as a function of object position are shown to provide access to the spatially dependent dielectric constant of the moving object. This speckle correlation imaging method yields field-based information previously inaccessible in heavily scattering environments. Proof of concept experimental results show excellent agreement with the theory. This new imaging approach will be valuable in high resolution imaging in tissue and other scattering environments where natural motion occurs or the object position can be controlled.

  14. Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position.

    PubMed

    Newman, Jason A; Luo, Qiaoen; Webb, Kevin J

    2016-02-19

    We present a coherent optical method for wavelength-resolution imaging of moving objects hidden within thick randomly scattering media. Spatial speckle intensity correlations as a function of object position are shown to provide access to the spatially dependent dielectric constant of the moving object. This speckle correlation imaging method yields field-based information previously inaccessible in heavily scattering environments. Proof of concept experimental results show excellent agreement with the theory. This new imaging approach will be valuable in high resolution imaging in tissue and other scattering environments where natural motion occurs or the object position can be controlled. PMID:26943537

  15. Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-10-01

    We present a method for optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation. In ghost imaging, multiple series of photons recorded at the object beam arm can be arbitrarily controlled for the generation of synthesized objects. Ghost imaging with sparse reference intensity patterns provides a channel to effectively modulate the noise-like synthesized objects during the recovery, and the reconstructed (noise-like) objects, i.e., added or subtracted information, can be further authenticated by optical nonlinear correlation algorithm. It is expected that the proposed method can provide an effective and promising alternative for ghost-imaging-based optical processing.

  16. Host Proteome Correlates of Vaccine-Mediated Enhanced Disease in a Mouse Model of Respiratory Syncytial Virus Infection

    PubMed Central

    van Diepen, Angela; Brand, H. Kim; de Waal, Leon; Bijl, Maarten; Jong, Victor L.; Kuiken, Thijs; van Amerongen, Geert; van den Ham, Henk-Jan; Eijkemans, Marinus J.; Osterhaus, Albert D. M. E.; Hermans, Peter W. M.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for

  17. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules.

    PubMed

    Durisic, Nela; Bachir, Alexia I; Kolin, David L; Hebert, Benedict; Lagerholm, B Christoffer; Grutter, Peter; Wiseman, Paul W

    2007-08-15

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic errors caused by fluorescence blinking of the nanoparticles. Temporal correlation analysis of fluorescence microscopy image time series of streptavidin-functionalized (CdSe)ZnS QDs freely diffusing in two dimensions shows that the correlation functions are fit well to a commonly used diffusion decay model, but the transport coefficients can have significant systematic errors in the measurements due to blinking. Image correlation measurements of the diffusing QD samples measured at different laser excitation powers and analysis of computer simulated image time series verified that the effect we observe is caused by fluorescence intermittency. We show that reciprocal space image correlation analysis can be used for mobility measurements in the presence of blinking emission because it separates the contributions of fluctuations due to photophysics from those due to transport. We also demonstrate application of the image correlation methods for measurement of the diffusion coefficient of glycosyl phosphatidylinositol-anchored proteins tagged with QDs as imaged on living fibroblasts. PMID:17526586

  18. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  19. Two cases of diabetic mastopathy: MR imaging and pathological correlation.

    PubMed

    Nasu, Hatsuko; Ikeda, Akiko; Ogura, Hiroyuki; Teruya, Chikako; Koizumi, Kei; Kinoshita, Mana; Tsuchida, Takashi; Baba, Satoshi; Miura, Katsutoshi; Takehara, Yasuo; Sakahara, Harumi

    2015-09-01

    Diabetic mastopathy is a rare benign condition associated with long-standing diabetes mellitus and presents with breast lumps. This report describes two cases in which diffusion-weighted images (DWI) on magnetic resonance imaging were quite different from each other. In case 1, there were hyperintense lesions on DWI, and surgically removed specimens revealed ductitis with marked lymphocytic infiltration. In case 2, no abnormal intensity was depicted on DWI, and biopsy specimens showed dense stromal fibrosis with mild perivascular lymphocytic infiltration that corresponded to previous reports. Although it is reported that diabetic mastopathy is composed of dense fibrous tissue with low cellularity that results in no hyperintense lesion on DWI, in cases with marked lymphocytic infiltration, strong hyperintensity can be seen on DWI mimicking malignant breast tumors. PMID:22976289

  20. Imaging the evolution of metallic states in a correlated iridate

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori; Walkup, Daniel; Lin, Hsin; Dhital, Chetan; Chang, Tay-Rong; Khadka, Sovit; Zhou, Wenwen; Jeng, Horng-Tay; Paranjape, Mandar; Bansil, Arun; Wang, Ziqiang; Wilson, Stephen D.; Madhavan, Vidya

    2013-08-01

    The Ruddlesden-Popper series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent phenomena arising from the cooperative action of spin-orbit-driven band splitting and Coulomb interactions. However, an ongoing debate over the role of correlations in the formation of the charge gap and a lack of understanding of the effects of doping on the low-energy electronic structure have hindered experimental progress in realizing many of the predicted states. Using scanning tunnelling spectroscopy we map out the spatially resolved density of states in Sr3Ir2O7 (Ir327). We show that its parent compound, argued to exist only as a weakly correlated band insulator, in fact possesses a substantial ~ 130 meV charge excitation gap driven by an interplay between structure, spin-orbit coupling and correlations. We find that single-atom defects are associated with a strong electronic inhomogeneity, creating an important distinction between the intrinsic and spatially averaged electronic structure. Combined with first-principles calculations, our measurements reveal how defects at specific atomic sites transfer spectral weight from higher energies to the gap energies, providing a possible route to obtaining metallic electronic states from the parent insulating states in the iridates.

  1. On the loss-of-correlation due to PIV image noise

    NASA Astrophysics Data System (ADS)

    Scharnowski, Sven; Kähler, Christian J.

    2016-07-01

    The effect of image noise on the uncertainty of velocity fields measured with particle image velocimetry (PIV) is still an unsolved problem. Image noise reduces the correlation signal and thus affects the estimation of the particle image displacement. However, a systematic quantification of the effect of the noise level on the loss-of-correlation is missing. In this work, a new method is proposed to estimate the loss-of-correlation due to image noise F_{σ } from the autocorrelation function of PIV images. Furthermore, a new definition of the signal-to-noise ratio (SNR) for PIV images is suggested, which results in a bijective relation between F_{σ } and SNR. Based on the newly defined SNR, it becomes possible to estimate the signal level and the noise level itself. The presented method is very general because the estimation of F_{σ } and SNR works independently of various parameters, including the particle image intensity, the particle image density, the particle image size, the image noise distributions and the laser light-sheet profile. The findings lead to an extension of the fundamental PIV equation N=NI FI FO F_{Δ } and enable PIV users to optimize their measurement setup with respect to the image noise and not only based on the loss-of-correlation due to in-plane motion, out-of-plane motion and displacement gradients. Furthermore, the new definition of SNR allows for a characterization and comparison of PIV images. The new approaches are validated by using synthetic images, and the predictions are confirmed by using experimental data.

  2. Respiratory Motion Changes of Lung Tumors Over the Course of Radiation Therapy Based on Respiration-Correlated Four-Dimensional Computed Tomography Scans

    SciTech Connect

    Redmond, Kristin J.; Song, Danny Y.; Fox, Jana L.; Zhou, Jessica; Rosenzweig, C. Nicole; Ford, Eric

    2009-12-01

    Purpose: To determine whether lung tumor respiratory excursion at simulation is predictive of excursion during radiation and whether phase offsets between tumor and surrogate markers are constant throughout treatment. Methods and Materials: Respiration-correlated CT scans and two rescans (using a Brilliance Big Bore spiral CT simulator; Philips, Inc.) were obtained from 20 patients at simulation. Gross tumor volume (GTV) was contoured on 10 phases of the respiratory cycle, and excursions were calculated. Diaphragm and xyphoid motion were quantified. Phase offsets, DELTAPHI, were calculated for patients with a GTV motion of >3 mm. Interfraction differences in excursions between simulation and rescans and magnitudes of variation in phase offset between fractions were evaluated. Results: Mean GTV excursions at simulation in superior-inferior, anterior-posterior, and medial-lateral directions were 0.67, 0.29, and 0.21 cm, respectively. The magnitude of superior-inferior GTV excursion correlated with tumor location (upper vs. lower lobe, p = 0.011). GTV excursions between simulation and rescan 1 (p = 0.115) and between simulation and rescan 2 (p = 0.071) were stable. Fourteen patients were analyzed for variations in phase offsets. GTV-xyphoid phase offset changed significantly between simulation and rescan 1 (p = 0.007) and simulation and rescan 2 (p = 0.008), with mean DELTAPHI values of 13.2% (rescan 1) and 14.3% (rescan 2). Xyphoid-diaphragm offset changed between simulation and rescan 1 (p = 0.004) and between simulation and rescan 2 (p = 0.012), with mean DELTAPHI values of 14.5% (rescan 1) and 7.6% (rescan 2). Conclusions: Interfraction consistency in tumor excursion suggests tumor excursion at simulation may direct therapy. Significant variations in phase lag between GTV and other anatomic structures throughout treatment have important implications for techniques that rely on surrogate structures to predict tumor motion

  3. Optical correlator method and apparatus for particle image velocimetry processing

    NASA Technical Reports Server (NTRS)

    Farrell, Patrick V. (Inventor)

    1991-01-01

    Young's fringes are produced from a double exposure image of particles in a flowing fluid by passing laser light through the film and projecting the light onto a screen. A video camera receives the image from the screen and controls a spatial light modulator. The spatial modulator has a two dimensional array of cells the transmissiveness of which are controlled in relation to the brightness of the corresponding pixel of the video camera image of the screen. A collimated beam of laser light is passed through the spatial light modulator to produce a diffraction pattern which is focused onto another video camera, with the output of the camera being digitized and provided to a microcomputer. The diffraction pattern formed when the laser light is passed through the spatial light modulator and is focused to a point corresponds to the two dimensional Fourier transform of the Young's fringe pattern projected onto the screen. The data obtained fro This invention was made with U.S. Government support awarded by the Department of the Army (DOD) and NASA grand number(s): DOD #DAAL03-86-K0174 and NASA #NAG3-718. The U.S. Government has certain rights in this invention.

  4. Holographic particle image velocimetry: a comparison of digital shearing and 3D correlation analysis methods

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Alcock, Rob D.; Halliwell, Neil A.; Coupland, Jeremy M.

    2003-11-01

    In the past, the use of optical and digital three-dimensional correlation methods have been demonstrated to extract velocity data from the complex amplitude distribution of particle images in holographic particle image velocimetry (HPIV). Recently we have proposed a digital shearing method to extract three-component particle displacement data throughout a complete image field. In contrast to full three-dimensional correlation, it has been shown that all three components of particle image displacement can be retrieved using just four two-dimensional fast Fourier transform (FFT) operations and appropriate coordinate transformations. In this paper we describe three-dimensional correlation and digital shearing methods and compare their performance in terms of computational efficiency and measurement accuracy. The simulated results show that the digital shearing method has comparable accuracy to three-dimensional correlation but is significantly faster.

  5. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  6. Speckle-correlation imaging through highly scattering turbid media with LED illumination

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Dai, Weijia; Wu, Tengfei; Li, Huijuan; Wang, Lin

    2015-05-01

    We address an optical imaging method that allows imaging, which owing to the "memory-effect" for speckle correlations, through highly scattering turbid media with "Error Reduction - Hybid Input Ouput (ER-HIO)" algorithm. When light propagates through the opaque materials, such as white paint, paper or biological tissues, it will be scattered away due to the inhomogeneity of the refractive index. Multiple scattering of light in highly scattering media forms speckle field, which will greatly reduce the imaging depth and degrade the imaging quality. Some methods have been developed to solve this problem in recent years, including wavefront modulation method (WMM), transmission matrix method (TMM) and speckle correlations method (SCM). A novel approach is proposed to image through a highly scattering turbid medium, which combines speckle correlations method (SCM) with phase retrieval algorithm (PRA). Here, we show that, owing to the "optical memory effect" for speckle correlations, a single frame image of the speckle field, captured with a high performance detector, encodes sufficient information to image through highly scattering turbid media. Theoretical and experimental results show that, neither the light source, nor wave-front shaping is required in this method, and that the imaging can be easily realized here using just a simple optical system with the help of optical memory effect. Our method does not require coherent light source, which can be achieved with LED illumination, unlike previous approaches, and therefore is potentially suitable for more and more areas. Consequently, it will be beneficial to achieve imaging in currently inaccessible scenarios.

  7. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    NASA Technical Reports Server (NTRS)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  8. The human respiratory gate

    PubMed Central

    Eckberg, Dwain L

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this ‘respiratory gating’ is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R–R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R–R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms. PMID:12626671

  9. The human respiratory gate

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.

    2003-01-01

    Respiratory activity phasically alters membrane potentials of preganglionic vagal and sympathetic motoneurones and continuously modulates their responsiveness to stimulatory inputs. The most obvious manifestation of this 'respiratory gating' is respiratory sinus arrhythmia, the rhythmic fluctuations of electrocardiographic R-R intervals observed in healthy resting humans. Phasic autonomic motoneurone firing, reflecting the throughput of the system, depends importantly on the intensity of stimulatory inputs, such that when levels of stimulation are low (as with high arterial pressure and sympathetic activity, or low arterial pressure and vagal activity), respiratory fluctuations of sympathetic or vagal firing are also low. The respiratory gate has a finite capacity, and high levels of stimulation override the ability of respiration to gate autonomic responsiveness. Autonomic throughput also depends importantly on other factors, including especially, the frequency of breathing, the rate at which the gate opens and closes. Respiratory sinus arrhythmia is small at rapid, and large at slow breathing rates. The strong correlation between systolic pressure and R-R intervals at respiratory frequencies reflects the influence of respiration on these two measures, rather than arterial baroreflex physiology. A wide range of evidence suggests that respiratory activity gates the timing of autonomic motoneurone firing, but does not influence its tonic level. I propose that the most enduring significance of respiratory gating is its use as a precisely controlled experimental tool to tease out and better understand otherwise inaccessible human autonomic neurophysiological mechanisms.

  10. In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation

    PubMed Central

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G.; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-01-01

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution. PMID:25475129

  11. In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation

    NASA Astrophysics Data System (ADS)

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G.; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-12-01

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.

  12. Improving signal-to-noise ratio performance of compressive imaging based on spatial correlation

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Zou, Yunhao; Dai, Huidong; Gu, Guohua

    2016-07-01

    In this paper, compressive imaging based on spatial correlation (CISC), which uses second-order correlation with the measurement matrix, is introduced to improve the signal-to-noise ratio performance of compressive imaging (CI). Numerical simulations and experiments are performed as well. Referred to the results, it can be seen that CISC performs much better than CI in three common noise environments. This provides the great opportunity to pave the way for real applications.

  13. Improving signal-to-noise ratio performance of compressive imaging based on spatial correlation

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Zou, Yunhao; Dai, Huidong; Gu, Guohua

    2016-08-01

    In this paper, compressive imaging based on spatial correlation (CISC), which uses second-order correlation with the measurement matrix, is introduced to improve the signal-to-noise ratio performance of compressive imaging (CI). Numerical simulations and experiments are performed as well. Referred to the results, it can be seen that CISC performs much better than CI in three common noise environments. This provides the great opportunity to pave the way for real applications.

  14. Image correlation nondestructive evaluation of impact damage in a glass fiber composite

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    1990-01-01

    Presented in viewgraph format, digital image correlation, damage in fibrous composites, and damaged coupons (cross-ply scotchply GI-Ep laminate) are outlined. It was concluded that the image correlation accuracy was 0.03 percent; strains can be processed through Tsai-Hill failure criteria to qualify the damage; the statistical data base must be generated to evaluate certainty of the damage estimate; size effects need consideration; and better numerical techniques are needed.

  15. Application of Digital Image Correlation Method to Improve the Accuracy of Aerial Photo Stitching

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Heng; Jhou, You-Liang; Shih, Ming-Hsiang; Hsiao, Han-Wei; Sung, Wen-Pei

    2016-04-01

    Satellite images and traditional aerial photos have been used in remote sensing for a long time. However, there are some problems with these images. For example, the resolution of satellite image is insufficient, the cost to obtain traditional images is relatively high and there is also human safety risk in traditional flight. These result in the application limitation of these images. In recent years, the control technology of unmanned aerial vehicle (UAV) is rapidly developed. This makes unmanned aerial vehicle widely used in obtaining aerial photos. Compared to satellite images and traditional aerial photos, these aerial photos obtained using UAV have the advantages of higher resolution, low cost. Because there is no crew in UAV, it is still possible to take aerial photos using UAV under unstable weather conditions. Images have to be orthorectified and their distortion must be corrected at first. Then, with the help of image matching technique and control points, these images can be stitched or used to establish DEM of ground surface. These images or DEM data can be used to monitor the landslide or estimate the volume of landslide. For the image matching, we can use such as Harris corner method, SIFT or SURF to extract and match feature points. However, the accuracy of these methods for matching is about pixel or sub-pixel level. The accuracy of digital image correlation method (DIC) during image matching can reach about 0.01pixel. Therefore, this study applies digital image correlation method to match extracted feature points. Then the stitched images are observed to judge the improvement situation. This study takes the aerial photos of a reservoir area. These images are stitched under the situations with and without the help of DIC. The results show that the misplacement situation in the stitched image using DIC to match feature points has been significantly improved. This shows that the use of DIC to match feature points can actually improve the accuracy of

  16. [Wolfram's syndrome: correlation of clinical signs and neurological images].

    PubMed

    Saiz, A; Vila, N; Muñoz, J E; Martí, M J; Graus, F; Tolosa, E

    1995-02-01

    Wolfram's syndrome is defined by the association of diabetes mellitus, diabetes insipidus, optic atrophy and nerve deafness. Other neurological anomalies, such as ataxia, nystagmus, tonic pupil, dizziness, dysarthria, dysphagia and epilepsy are rarely described and tend to appear later than the primary manifestations. We describe a patient with Wolfram's syndrome whose magnetic resonance image (MRI) of the head showed brainstem and cerebellar atrophy years before the appearance of clinical signs of brainstem disfunction. We conclude that alterations in MRI precede neurological symptoms by several years in Wolfram's syndrome. PMID:7695938

  17. Color night vision method based on the correlation between natural color and dual band night image

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Bai, Lian-fa; Zhang, Chuang; Chen, Qian; Gu, Guo-hua

    2009-07-01

    Color night vision technology can effectively improve the detection and identification probability. Current color night vision method based on gray scale modulation fusion, spectrum field fusion, special component fusion and world famous NRL method, TNO method will bring about serious color distortion, and the observers will be visual tired after long time observation. Alexander Toet of TNO Human Factors presents a method to fuse multiband night image a natural day time color appearance, but it need the true color image of the scene to be observed. In this paper we put forward a color night vision method based on the correlation between natural color image and dual band night image. Color display is attained through dual-band low light level images and their fusion image. Actual color image of the similar scene is needed to obtain color night vision image, the actual color image is decomposed to three gray-scale images of RGB color module, and the short wave LLL image, long wave LLL image and their fusion image are compared to them through gray-scale spatial correlation method, and the color space mapping scheme is confirmed by correlation. Gray-scale LLL images and their fusion image are adjusted through the variation of HSI color space coefficient, and the coefficient matrix is built. Color display coefficient matrix of LLL night vision system is obtained by multiplying the above coefficient matrix and RGB color space mapping matrix. Emulation experiments on general scene dual-band color night vision indicate that the color display effect is approving. This method was experimented on dual channel dual spectrum LLL color night vision experimental apparatus based on Texas Instruments digital video processing device DM642.

  18. Large deformation measurement scheme for 3D digital image correlation method

    NASA Astrophysics Data System (ADS)

    Tang, Zhengzong; Liang, Jin; Xiao, Zhenzhong; Guo, Cheng

    2012-02-01

    Difficulties often arise for digital image correlation (DIC) technique when serious de-correlation occurs between the reference image and the deformed image due to large deformation. An updating reference image scheme could be employed to deal with large deformation situation, however that will introduce accumulated errors. A large deformation measurement scheme, combining improved coarse search method and updating reference image scheme, is proposed in this paper. For a series of deformation images, the correlation calculation begins with a seed point and spreads out. An improved coarse search method is developed to calculate the initial correlation parameters for the seed point, which guarantees that the correlation calculation can be carried out successfully even in large deformation situation. Only for extremely large deformation, the reference image is updated. Using this method, not only extremely large deformation can be measured successfully but also the accumulated error could be controlled. A polymer material tensile test and a foam compression test are used to verify the proposed scheme. Experimental results show that up to 450% tensile deformation and 83% compression deformation can be measured successfully.

  19. A vehicle threat detection system using correlation analysis and synthesized x-ray images

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Elmaghraby, Adel

    2013-06-01

    The goal of the proposed research is to automate the vehicle threat detection with X-ray images when a vehicle crosses the country border or the gateway of a secured facility (military base). The proposed detection system requires two inputs: probe images (from X-ray machine) and gallery images (from database). For each vehicle, the gallery images include the X-ray images of fully-loaded (with typical cargo) and unloaded (empty) vehicle. The proposed system produces two types of outputs for threat detection: the detected anomalies and the synthesized images (e.g., grayscale fusion, color fusion, and differential images). The anomalies are automatically detected with the block-wise correlation analysis between two temporally aligned images (probe versus gallery). The locations of detected anomalies can be marked with small rectangles on the probe X-ray images. The several side-view images can be combined into one fused image in gray scale and in colors (color fusion) that provides more comprehensive information to the operator. The fused images are suitable for human analysis and decision. We analyzed a set of vehicle X-ray images, which consists of 4 images generated from AS and E OmniView Gantry™. The preliminary results of detected anomalies and synthesized images are very promising; meanwhile the processing speed is very fast.

  20. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  1. NOTE: An algorithm for automatic determination of the respiratory phases in four-dimensional computed tomography

    NASA Astrophysics Data System (ADS)

    Kleshneva, T.; Muzik, J.; Alber, M.

    2006-08-01

    Recently, several techniques have been developed to improve the quality of computed tomography (CT) images of the thoracic and abdominal region that are degraded by the interference of the scanning process and respiration. Several devices for respiratory-correlated CT are available for clinical usage. They are based on the synchronization of the acquired CT image data with the respiratory motion using a signal from an external respiratory monitoring system. In this work, some practical aspects of clinical implementation of the multi-slice 4D CT scanner Somatom Sensation Open (Siemens Medical Solutions, Erlangen, Germany) equipped with a respiratory gating system (RGS) AZ-733V (Anzai Medical, Tokyo, Japan) are discussed. A new algorithm developed for automatic respiratory phase determination needed for the reconstruction of the 4D CT images is presented.

  2. Onboard utilization of ground control points for image correction. Volume 4: Correlation analysis software design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software utilized for image correction accuracy measurement is described. The correlation analysis program is written to allow the user various tools to analyze different correlation algorithms. The algorithms were tested using LANDSAT imagery in two different spectral bands. Three classification algorithms are implemented.

  3. A registration algorithm of improved correlation coefficient for image of rotation and scaling

    NASA Astrophysics Data System (ADS)

    Wei, Chun-tao; Hu, Tao; Yuan, Kai-min

    2015-12-01

    In stereo vision technology, image matching is one of the most important parts, and the coefficient of correlation matching is recognized to be more mature and stable matching algorithm. Correlation coefficient method has high sensitivity to image rotation, but do not have rotation invariance, and require a large computational complexity. Because of this it cannot be widely applied in the field of real-time image matching. This paper is aimed at this drawback to make its computational complexity greatly reduced, posses the scale and rotation invariance, so as to meet the requirements of real-time image matching system, this paper proposes a image registration algorithm of accurate registration combined with Fourier-Mellin transform and Radon transform of image. After the introduction of Fourier transform and correlation coefficient method to detect the correct rotation factor and scale factor, it is provided a reliable basis for correlation coefficient method of image registration to achieve both rotation and scaling invariance, image using this method is verified by the experiments on the feasibility of the registration, the registration accuracy is improved.

  4. Radionuclide lung imaging in respiratory decompression sickness: potential role in the diagnosis and evaluation of hyperbaric therapy.

    PubMed

    Radaideh, M M; Lamki, L M; Barron, B J; Elshazly, S M

    2001-04-01

    Of the more than 3.5 million trained divers in the United States, many will experience various illnesses specific to divers. Most of these illnesses are related to the changes in absolute pressure that divers experience while diving. During and after ascent, a diver is at risk for decompression sickness and pulmonary barotrauma. A very rare casualty is pulmonary decompression sickness from immersion. This is a literature review and case report of a young woman with acute respiratory decompression sickness who had defects on perfusion lung imaging after a diving accident and after hyperbaric oxygen therapy. However, the perfusion defects reverted to normal in less than 24 hours. Possible explanations for the changes in the appearances of the scans are offered and discussed. This case report shows the potential utility of lung scanning in the diagnostic examination of these patients and the evaluation of the adequacy of treatment with hyperbaric oxygen therapy. A greater use of ventilation-perfusion lung scans in the treatment of such patients may establish its role more definitely. PMID:11290892

  5. OFSETH: optical technologies embedded in smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Narbonneau, F.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Witt, J.; Krebber, K.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-04-01

    The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging (MRI) is now proved. We report how two pure optical technologies can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. Investigating influence of different patients' morphology as well as textile integration issues to let free all vitals organs for medical staff actions, the OFSETH harness allows a continuous measurement of respiration movements. For example, anaesthesia for MRI examination uses the same drugs as for any surgical procedure. Even if spontaneous respiration can be preserved most of the time, spontaneous respiration is constantly at risk of being impaired by anaesthetic drugs or by upper airway obstruction. Monitoring of the breathing activity is needed to assess adequate ventilation or to detect specific obstruction patterns. Moreover artefacts due to physiological motions induce a blooming effect on the MRI result. The use of synchronisation devices allows reducing these effects. Positioned at certain strategic places according to the investigated organ, the presented sensors could constitute an efficient and adapted solution for respiratory synchronisation of the MRI acquisition.

  6. Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis.

    PubMed

    Posch, T; Pernthaler, J; Alfreider, A; Psenner, R

    1997-03-01

    We present an improvement of the INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride)] reduction method using Cyto-Clear slides, the fluorochrome DAPI (4(prm1),6(prm1)-diamidino-2 phenylindole), and an image analysis system. With this method we were able to simultaneously measure cell dimensions and formazan crystals as indicators of the respiratory activity of single bacteria. The method was tested on a natural bacterioplankton community of an oligotrophic high mountain lake (Gossenkollesee, Tyrolean Alps, Austria, 2,417 m above sea level) in midwinter ((symbl)1-m-thick ice and snow layer; dissolved organic carbon, 0.51 mg liter(sup-1); water temperature, 2(deg)C). About 25% of planktonic bacteria were respiratorily active, and a complex pattern of bacterial morphologies and specific respiratory activities was observed during a time series of INT incubation. Rod-shaped bacteria with cell lengths of between 1.6 and 4.8 (mu)m already showed visible activity after 0.5 h of INT incubation. Small cells (rods and cocci) in the size fraction <1.6 (mu)m and long filamentous bacteria (up to 120 (mu)m) were visibly active only after a 2-h incubation period. After 8 h of incubation, more than 90% of all cells between 3.2 and 6.4 (mu)m in cell length were respiratorily active, whereas only 5% of cells <1.6 (mu)m and 50% of filamentous bacteria contained formazan grains. We could distinguish five major bacterial phenotypes that showed distinct activity patterns with respect to incubation period and numbers and sizes of formazan crystals. There was no correlation between the total formazan volume per active cell and bacterial cell volume, and for any size class of active bacteria, total formazan volumes varied by about 2 orders of magnitude after 8 h of incubation. This indicates that cell-specific activity is extremely variable and is not related to size and that a small portion of all cells may account for the overall activity. PMID:16535553

  7. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  8. Respiratory papillomas

    PubMed Central

    Alagusundaramoorthy, Sayee Sundar; Agrawal, Abhinav

    2016-01-01

    Papillomas are known to occur in the lower respiratory tract. They are however, rare compared to their occurrence in the upper respiratory tract. These are generally exophytic tumors in the more proximal upper airways however cases with more distal location with an inverted growth pattern have also been described in the literature. These can be solitary or multiple and multifocality associated with multiple papillomas in the upper respiratory/aerodigestive tract. The four major types of respiratory papillomas are (1) Recurrent respiratory papillomas, (2) solitary squamous papillomas, (3) solitary glandular papillomas, (4) mixed papillomas. We review the incidence, etiopathology, diagnosis, and possible treatment modalities and algorithms for these respiratory papillomas. PMID:27625447

  9. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  10. Personality and individual difference correlates of positive body image.

    PubMed

    Swami, Viren; Hadji-Michael, Maria; Furnham, Adrian

    2008-09-01

    In the present study, 101 women and 106 men from a community sample of British adults completed the Body Appreciation Scale (BAS), along with a battery of individual difference measures and demographics. Contrary to previous findings, there were no sex differences in BAS scores, either before or after controlling for individual differences in other measures. The results also showed that, moderating for participants' sex, self-assessed attractiveness, educational qualifications, neuroticism, extraversion, and BMI were all significant predictors of body appreciation. In addition, higher media consumption and higher (male-stereotypic) instrumentality were associated with, but did not predict, higher body appreciation. These results are discussed in relation to the extant work on body image. PMID:18585107

  11. Comparison of correlation peaks characteristics for scaled images recognition using MACE, GMACE and MINACE filters

    NASA Astrophysics Data System (ADS)

    Ivanov, Petr A.

    2013-03-01

    The paper presents the results of computer modeling of scaled images recognition using MACE, GMACE and MINACE invariant correlation filters. There is given data about testing of above mentioned filters on database of grayscale images with different resolution that contains only true class and both true class and false class objects. There presented data about output correlation peak qualitative and quantitative characteristics and about the comparison for different filter types. The filters were synthesized specially for case of such geometrical transform as change of scale. Also there is presented data about testing of mentioned filters for recognition of rotated images and given an analysis of results.

  12. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  13. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs.

    PubMed

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-01-01

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study. PMID:26400011

  14. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  15. Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs

    PubMed Central

    Sasaki, Akira; Yamamoto, Johtaro; Jin, Takashi; Kinjo, Masataka

    2015-01-01

    Reducing intracellular DNA degradation is critical to enhance the efficiency of gene therapy. Exogenous DNA incorporation into cells is strictly blocked by the defense machinery of intracellular nuclease activity. Raster image correlation spectroscopy (RICS) and raster image cross-correlation spectroscopy (cross-correlation RICS; ccRICS) are image-based correlation methods. These powerful tools allow the study of spatiotemporal molecular dynamics. Here we performed spatiotemporal ccRICS analyses of fluorescent DNA and directly monitored the process of exogenous DNA degradation in living cell cytoplasm. Such direct monitors of DNA degradation allow us to determine the fate of the exogenous DNA in living cells. On comparing the process in living cells, our study shows that cytoplasmic nuclease activity differs between cell lines; therefore, we propose that the difference of nuclease activity in cytoplasm dictates a different resistance to exogenous DNA incorporation. New insight on efficient gene delivery can be provided with our study. PMID:26400011

  16. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  17. Inflammatory Marker sTREM-1 Reflects the Clinical Stage and Respiratory Tract Obstruction in Allergic Asthma Bronchiale Patients and Correlates with Number of Neutrophils

    PubMed Central

    Bucova, Maria; Suchankova, Magda; Dzurilla, Martin; Vrlik, Mojmir; Novosadova, Helena; Tedlova, Eva; Urban, Stefan; Hornakova, Edita; Seligova, Marianna; Durmanova, Vladimira; Penz, Peter; Javor, Juraj; Paulovicova, Ema

    2012-01-01

    The knowledge that asthma is an inflammatory disorder has prompted us to investigate the plasma levels of a new inflammatory marker sTREM-1 that is released from the surfaces of activated neutrophils and monocytes. The plasma levels of sTREM-1 were analysed by a sandwich ELISA test in the cohort of 76 patients with allergic asthma bronchiale and 39 healthy controls. Our results revealed more than 3.5 times higher levels of sTREM-1 in AB patients (92.3 pg/mL ± 125.6) compared with healthy subjects (25.7 pg/mL ± 9.2; P = 0.0001). Higher levels of sTREM-1 were found also in patients with exacerbated AB (170.5 pg/mL ± 78.2) compared with nonexacerbated AB patients (59.1 ± 78.2; P < 0.0001), patients with respiratory tract obstruction (176.4 pg/mL ± 177.8), than those without obstruction (51.99 pg/mL ± 64.0; P < 0.0001) and patients with anti-IgE therapy (P < 0.0001). Levels of sTREM-1 correlated with number of leucocytes (P = 0.002), and absolute number of neutrophils (P = 0.001). Elevated plasma levels of sTREM-1 reflect the severity, state of exacerbation, presence of respiratory tract obstruction in AB patients and together with increased number of neutrophils point to the role of neutrophils in inflammation accompanying AB. PMID:22829716

  18. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  19. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  20. Motor features in posterior cortical atrophy and their imaging correlates.

    PubMed

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  1. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

    SciTech Connect

    Schaly, B; Gaede, S; Xhaferllari, I

    2015-06-15

    Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline, where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.

  2. Respiratory Failure

    MedlinePlus

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, such ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can't ...

  3. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  4. In vivo Bioluminescence Imaging of Burkholderia mallei Respiratory Infection and Treatment in the Mouse Model

    PubMed Central

    Massey, Shane; Johnston, Katie; Mott, Tiffany M.; Judy, Barbara M.; Kvitko, Brian H.; Schweizer, Herbert P.; Estes, D. Mark; Torres, Alfredo G.

    2011-01-01

    Bioluminescent imaging (BLI) technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real-time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5 × 103 bacteria and monitored by BLI at 24, 48, and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria. PMID:21904535

  5. Predictive classification of correlated targets with application to detection of metastatic cancer using functional CT imaging.

    PubMed

    Wang, Yuan; Hobbs, Brian P; Hu, Jianhua; Ng, Chaan S; Do, Kim-Anh

    2015-09-01

    Perfusion computed tomography (CTp) is an emerging functional imaging modality that uses physiological models to quantify characteristics pertaining to the passage of fluid through blood vessels. Perfusion characteristics provide physiological correlates for neovascularization induced by tumor angiogenesis. Thus CTp offers promise as a non-invasive quantitative functional imaging tool for cancer detection, prognostication, and treatment monitoring. In this article, we develop a Bayesian probabilistic framework for simultaneous supervised classification of multivariate correlated objects using separable covariance. The classification approach is applied to discriminate between regions of liver that contain pathologically verified metastases from normal liver tissue using five perfusion characteristics. The hepatic regions tend to be highly correlated due to common vasculature. We demonstrate that simultaneous Bayesian classification yields dramatic improvements in performance in the presence of strong correlation among intra-subject units, yet remains competitive with classical methods in the presence of weak or no correlation. PMID:25851056

  6. Correlated imaging for a reflective target with a smooth or rough surface

    NASA Astrophysics Data System (ADS)

    Gong, Wenlin

    2016-08-01

    Correlated imaging for a reflective target with a smooth or rough surface is investigated. Our analytical results, which are backed up by numerical simulations, demonstrate that for a reflective target with a smooth surface, the quality of ghost imaging is related with the transverse sizes of both the source and the detector in the object path, and the target’s information can also be obtained by the technique of Fourier-transform ghost diffraction. However, for a reflective target with a rough surface, the target’s whole image can be reconstructed by ghost imaging even using a single point-like detector but Fourier-transform ghost diffraction is invalid. The application of correlated imaging in remote sensing is also discussed based on the above results.

  7. Correlating Preoperative Imaging with Histologic Subtypes of Renal Cell Carcinoma and Common Mimickers.

    PubMed

    Gordetsky, Jennifer; Zarzour, Jessica

    2016-07-01

    Renal cell carcinoma (RCC) consists of distinct subtypes that have unique pathologic and imaging features as well as specific cytogenetic and molecular characteristics. As the prognosis and therapeutic strategies may differ for each subtype, correlation of the preoperative imaging with the pathologic findings is of great clinical relevance. In addition, differentiation of RCC from benign entities is ideal in order to prevent overtreatment. However, a noninvasive diagnosis with imaging alone is not always straightforward due to the overlapping appearance of RCC with benign lesions such as fat-poor angiomyolipoma and oncocytoma. With new imaging modalities, there have been significant improvements in correlating preoperative imaging with pathologic characteristics. These new discoveries are able to aid in a more specific, noninvasive, diagnosis that in turn helps direct patient management. PMID:27154238

  8. Morphological center operator based infrared and visible image fusion through correlation coefficient

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi

    2016-05-01

    It is important to well maintain the information of infrared (IR) and visible images, including image regions and details, in a fusion image. To be effective for fusion, an algorithm for fusion IR and visible images based on the morphological center operator through feature extraction and correlation coefficient is given. This paper utilizes the contrast enlargement strategy for fusion. Firstly, the morphological center or anti-center operator identifies the bright and dim features of the IR and visible images, and these identified features are used for fusion based on the correlation coefficient. Secondly, the multi-scale morphological theory is employed to extract the multi-scale features through the correlation coefficient based strategy to form the final fusion features. Finally, the extracted final fusion features are combined to form the final fusion image by utilizing the contrast enlargement strategy. Because of the effectively feature identifying by the morphological center and anti-center operators, the proposed algorithm has good performance for IR and visible image fusion. Experiments on different IR and visible images verified that the proposed algorithm performed effectively.

  9. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

    PubMed

    Jung, Rex E; Flores, Ranee A; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability

  10. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    PubMed Central

    Jung, Rex E.; Flores, Ranee A.; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination

  11. Theory and imaging applications of the angular correlation of multiply-scattered optical fields

    NASA Astrophysics Data System (ADS)

    Hoover, Brian Gilday

    Through analysis of the field angular correlation the scattering of quasimonochromatic optical fields is considered as a coherence-based process well into the multiple scattering regime. Coherence analysis leads to the prediction of coherent effects in multiply-scattered light that can be applied to perform computed amplitude- phase imaging through turbid media and noninvasive laser material characterization. With the incentive of improved imaging through turbid media an experiment is described that directly compares the degradations, with the number of scattering mean free paths, of the field angular correlation and the correlation of the scattered wave with an unscattered reference wave, both of which can be used to form gates for imaging techniques in scattered light. Results for 20μ m polymer spheres show that the former correlation is consistently larger well into the multiple scattering regime (up to 10 mean free paths) for wavevector separations less than at least 50mm -1, and that the two correlations tend to merge in this scattering regime for larger wavevector separations. The implications of the results for imaging applications are considered. Complementary theoretical formulations of coherence effects in multiply-scattered fields are presented. Relations of the spatial coherence properties to the angular characteristics of the scattered field are established. A coherence-based model of multiple scattering processes is derived. The model predicts radiative-transfer-like behavior for restricted observational parameters, but also shows that the coherence-based process is required for an accurate description of the scattered field over an observational parameters. The applicability of the model to noninvasive laser material characterization is emphasized. A wavefront-sensor method is presented for measurement of the complex field angular correlation function of a three-dimensional turbid medium. The angular correlation function is measured at a series of

  12. Respiration-Correlated Image Guidance Is the Most Important Radiotherapy Motion Management Strategy for Most Lung Cancer Patients

    SciTech Connect

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte; Brink, Carsten; Juhler-Nottrup, Trine

    2012-07-15

    Purpose: The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population. Materials and Methods: Images were acquired from 46 lung cancer patients participating in four separate protocols at three institutions in Europe and the United States. Seven patients were imaged using fluoroscopy, and 39 patients were imaged using 4DCT. The magnitude of respiratory tumor motion was measured. The required treatment field margins were calculated using a statistical recipe (van Herk M, et al. Int J Radiat Oncol Biol Phys 2000;474:1121-1135), with magnitudes of all uncertainties, except respiratory peak-to-peak displacement, the same for all patients, taken from literature. Required margins for respiratory motion management were calculated using the residual respiratory tumor motion for each patient for various motion management strategies. Margin reductions for respiration management were calculated using 4DCT, 4D-IG, and gated beam delivery. Results: The median tumor motion magnitude was 4.4 mm for the 46 patients (range 0-29.3 mm). This value corresponded to required treatment field margins of 13.7 to 36.3 mm (median 14.4 mm). The use of 4DCT, 4D-IG, and beam gating required margins that were reduced by 0 to 13.9 mm (median 0.5 mm), 3 to 5.2 mm (median 5.1 mm), and 0 to 7 mm (median 0.2 mm), respectively, to a total of 8.5 to 12.4 mm (median 8.6 mm). Conclusion: A respiratory management strategy for lung cancer radiotherapy including planning on 4DCT scans and daily image guidance provides a potential reduction of 37% to 47% in treatment field margins. The 4D image guidance strategy was the most effective strategy for >85% of the patients.

  13. Brain responses strongly correlate with Weibull image statistics when processing natural images.

    PubMed

    Scholte, H Steven; Ghebreab, Sennay; Waldorp, Lourens; Smeulders, Arnold W M; Lamme, Victor A F

    2009-01-01

    The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the fragmentation and texture similarity within an image. Since it is often assumed that the brain exploits structural regularities in natural image statistics to efficiently encode and analyze visual input, we here ask ourselves whether the brain approximates the beta and gamma values underlying the contrast distributions of natural images. We present a model that shows that beta and gamma can be easily estimated from the outputs of X-cells and Y-cells. In addition, we covaried the EEG responses of subjects viewing natural images with the beta and gamma values of those images. We show that beta and gamma explain up to 71% of the variance of the early ERP signal, substantially outperforming other tested contrast measurements. This suggests that the brain is strongly tuned to the image's beta and gamma values, potentially providing the visual system with an efficient way to rapidly classify incoming images on the basis of omnipresent low-level natural image statistics. PMID:19757938

  14. The Anatomy of Fourier-Based Correlation Image Velocimetry and Sources of Decorrelating Errors

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Vlachos, Pavlos

    2015-11-01

    Particle image velocimetry (PIV) algorithms have recently been applied to photographs captured using a variety of techniques including schlieren, synchrotron x-ray, and microscope imaging. While the characteristics of these types of images differ greatly from those of particle images, virtually no analysis has been done to determine how these differences affect the performance of Fourier-based cross correlation (CC) algorithms. Here, we analyze schlieren, x-ray, and traditional PIV images to show that the signal-to-noise ratios (SNR) of their CCs vary across spectral wavenumbers, and that the assignment of a single SNR to the CC is an oversimplification that obfuscates the underlying source of the decorrelating errors. We will show that the failure of traditional algorithms to distinguish correlated from uncorrelated wavenumbers introduces secondary CC peaks that increase measurement uncertainty by decreasing the correlation peak-height ratio, and can cause the measurement to fail by overtaking the true peak. Finally, we introduce a new algorithm that mitigates these issues and increases measurement accuracy by automatically discriminating correlated wavenumbers with no a priori information about the images' contents.

  15. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  16. Correlating Hemodynamic Magnetic Resonance Imaging with high-field Intracranial Vessel Wall Imaging in Stroke

    PubMed Central

    Langdon, Weston; Donahue, Manus J.; van der Kolk, Anja G.; Rane, Swati; Strother, Megan K.

    2014-01-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct. PMID:25426229

  17. Practical implementation of the image domain joint transform correlator for holographic security

    NASA Astrophysics Data System (ADS)

    Borisov, Michael V.; Odinokov, Sergey B.; Bondarev, Leonid A.; Kurakin, Sergey V.

    2003-05-01

    We describe the experimental setup of the image domain joint transform correlator intended for holographic security application. The security verification routine demands two channels. The first one corresponds to the reference hologram stored in the security device. The other is a security holographic mark with several test sub-holograms, applied to a carrier: ID-card, paper seal etc. Each of the holograms stores a part of entire image, stored in the reference hologram. Image domain JTC is used to match the images retrieved from the holograms. The images are recorded by a light addressed spatial light modulator (LASLM). Being recorded and retrieved, the images provides correlation peaks with special positions, with a strict dependence on the tested and reference holograms mutual shifts. We prove experimentally that the image domain recognizing provides as more effective usage of the LASLM work pupil and resolution as a less device size. The system also has a good tolerance to shift and rotation of the security holographic mark. Few correlation peaks respected to test holograms enhances the device recognizing probability. We provide computer simulations based on the mathematical analysis of the optical signal transforming. The real-time experimental results corresponded with computer simulations are presented.

  18. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  19. Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint

    NASA Astrophysics Data System (ADS)

    Zhan, Qin; Yuan, Yuan; Fan, Xiangtao; Huang, Jianyong; Xiong, Chunyang; Yuan, Fan

    2016-06-01

    Digital image correlation (DIC) is essentially implicated in a class of inverse problem. Here, a regularization scheme is developed for the subset-based DIC technique to effectively inhibit potential ill-posedness that likely arises in actual deformation calculations and hence enhance numerical stability, accuracy and precision of correlation measurement. With the aid of a parameterized two-dimensional Butterworth window, a regularized subpixel registration strategy is established, in which the amount of speckle information introduced to correlation calculations may be weighted through equivalent subset size constraint. The optimal regularization parameter associated with each individual sampling point is determined in a self-adaptive way by numerically investigating the curve of 2-norm condition number of coefficient matrix versus the corresponding equivalent subset size, based on which the regularized solution can eventually be obtained. Numerical results deriving from both synthetic speckle images and actual experimental images demonstrate the feasibility and effectiveness of the set of newly-proposed regularized DIC algorithms.

  20. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants. PMID:27153828

  1. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    SciTech Connect

    Kipritidis, John Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  2. The superior longitudinal fasciculus in typically developing children and adolescents: diffusion tensor imaging and neuropsychological correlates.

    PubMed

    Urger, Sacide E; De Bellis, Michael D; Hooper, Stephen R; Woolley, Donald P; Chen, Steven D; Provenzale, James

    2015-01-01

    The relationship between superior longitudinal fasciculus microstructural integrity and neuropsychological functions were examined in 49 healthy children (range: 5-17 years) using diffusion tensor imaging. Seven major cognitive domains (intelligence, fine-motor, attention, language, visual-spatial, memory, executive function) were assessed. Data analyses used correlational methods. After adjusting for age and gender, fractional anisotropy and axial diffusivity values in the superior longitudinal fasciculus were positively correlated with executive functions of set shifting, whereas left superior longitudinal fasciculus fractional anisotropy values correlated with attention and language. Apparent diffusion coefficient values in the left superior longitudinal fasciculus negatively correlated with inhibitory control. In the left arcuate fasciculus, fractional anisotropy correlated with IQ and attention, whereas radial diffusivity values negatively correlated with IQ, fine-motor skills, and expressive language. Findings from this study provide an examination of the relationship between superior longitudinal fasciculus integrity and children's neuropsychological abilities that can be useful in monitoring pediatric neurologic diseases. PMID:24556549

  3. Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2008-01-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  4. Dependence of adaptive cross-correlation algorithm performance on the extended scene image quality

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin

    2008-08-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  5. Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.; Kahle, Anne B.; Walker, Richard E.

    1986-01-01

    Conventional enhancements for the color display of multispectral images are based on independent contrast modifications or 'stretches' of three input images. This approach is not effective if the image channels are highly correlated or if the image histograms are strongly bimodal or more complex. Any of several procedures that tend to 'stretch' color saturation while leaving hue unchanged may better utilize the full range of colors for the display of image information. Two conceptually different enhancements are discussed: the 'decorrelation stretch', based on principal-component (PC) analysis, and the 'stretch' of 'hue' - 'saturation' - intensity (HSI) transformed data. The PC transformation in scene-dependent, but the HSI transformation is invariant. Examples of images enhanced by conventional linear stretches, decorrelation stretch, and by stretches of HSI transformed data are compared. Schematic variation diagrams or two- and three-dimensional histograms are used to illustrate the 'decorrelation stretch' method and the effect of the different enhancements.

  6. MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC)

    SciTech Connect

    Yip, S; Aerts, H; Berbeco, R; McCall, K; Aristophanous, M; Chen, A

    2014-06-15

    Purpose: PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. Methods: Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Four texture features (Coarseness, Contrast, Busyness, and Complexity) were computed within the the physician-defined tumor volume. The relative difference (δ) in each measure between the 3D- and 4D-PET imaging was calculated. Wilcoxon signed-rank test (p<0.01) was used to determine if δ was significantly different from zero. Coefficient of variation (CV) was used to determine the variability in the texture features between all 4D-PET phases. Pearson correlation coefficient was used to investigate the impact of tumor size and motion amplitude on δ. Results: Significant differences (p<<0.01) between 3D and 4D imaging were found for Coarseness, Busyness, and Complexity. The difference for Contrast was not significant (p>0.24). 4D-PET increased Busyness (∼20%) and Complexity (∼20%), and decreased Coarseness (∼10%) and Contrast (∼5%) compared to 3D-PET. Nearly negligible variability (CV=3.9%) was found between the 4D phase bins for Coarseness and Complexity. Moderate variability was found for Contrast and Busyness (CV∼10%). Poor correlation was found between the tumor volume and δ for the texture features (R=−0.34−0.34). Motion amplitude had moderate impact on δ for Contrast and Busyness (R=−0.64− 0.54) and no impact for Coarseness and Complexity (R=−0.29−0.17). Conclusion: Substantial differences in textures were found between 3D and 4D-PET imaging. Moreover, the variability between phase bins for Coarseness and Complexity was negligible, suggesting that similar

  7. Multiple template-based image matching using alpha-rooted quaternion phase correlation

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2010-04-01

    In computer vision applications, image matching performed on quality-degraded imagery is difficult due to image content distortion and noise effects. State-of-the art keypoint based matchers, such as SURF and SIFT, work very well on clean imagery. However, performance can degrade significantly in the presence of high noise and clutter levels. Noise and clutter cause the formation of false features which can degrade recognition performance. To address this problem, previously we developed an extension to the classical amplitude and phase correlation forms, which provides improved robustness and tolerance to image geometric misalignments and noise. This extension, called Alpha-Rooted Phase Correlation (ARPC), combines Fourier domain-based alpha-rooting enhancement with classical phase correlation. ARPC provides tunable parameters to control the alpha-rooting enhancement. These parameter values can be optimized to tradeoff between high narrow correlation peaks, and more robust wider, but smaller peaks. Previously, we applied ARPC in the radon transform domain for logo image recognition in the presence of rotational image misalignments. In this paper, we extend ARPC to incorporate quaternion Fourier transforms, thereby creating Alpha-Rooted Quaternion Phase Correlation (ARQPC). We apply ARQPC to the logo image recognition problem. We use ARQPC to perform multiple-reference logo template matching by representing multiple same-class reference templates as quaternion-valued images. We generate recognition performance results on publicly-available logo imagery, and compare recognition results to results generated from standard approaches. We show that small deviations in reference templates of sameclass logos can lead to improved recognition performance using the joint matching inherent in ARQPC.

  8. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  9. Unstructured finite element-based digital image correlation with enhanced management of quadrature and lens distortions

    NASA Astrophysics Data System (ADS)

    Pierré, J.-E.; Passieux, J.-C.; Périé, J.-N.; Bugarin, F.; Robert, L.

    2016-02-01

    Like subset-based methods, the very first finite element versions of digital image correlation were closely related to the regular structure of images, as they were based on regular quadrilateral elements corresponding to an integer number of pixels. The use of unstructured meshes, to exploit the full potential of FE-DIC in structural mechanics, is now widespread. Most of the time, the formulation, the quadrature and the definition of the region of interest still rely on the pixels grid. In this paper, a formulation in the physical coordinate system and not in the image frame is proposed for 2D digital image correlation. In addition to a more precise definition of the region of interest, it allows the use of a more accurate quadrature rule. It is also shown that lens distortions can be successfully taken into account directly with such a formalism.

  10. Resolution of ghost imaging with entangled photons for different types of momentum correlation

    NASA Astrophysics Data System (ADS)

    Zhong, MaLin; Xu, Ping; Lu, LiangLiang; Zhu, ShiNing

    2016-07-01

    We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen (EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states, which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.

  11. Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images

    NASA Technical Reports Server (NTRS)

    Kim, Taemin; Husmann, Kyle; Moratto, Zachary; Nefian, Ara V.

    2011-01-01

    A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.

  12. Shape Change Studies of BCC Single Crystals Using a Non-Contact Image Correlation System

    SciTech Connect

    Florando, J N; Lassila, D H; Leblanc, M M; Kay, G J; Perfect, S A; Arsenlis, A; Rhee, M; Magid, K R; Lilleodden, E T; Morris Jr., J W

    2004-08-31

    A 3-D image correlation system has been used to study the deformation behavior of high purity molybdenum single crystals. This system, in conjunction with a recently developed experimental apparatus, provides the full field displacement and strain data needed to validate dislocation dynamics simulations. The accuracy of the image correlation system was verified by comparing the results with data taken from conventional strain gage rosettes. In addition, a stress analysis has been performed to examine the non-uniformities in stress. The results of the analysis show that after the sample has been strain 2%, the axial stress in the sample varies by {+-} 20%.

  13. Velocity Mapping of Proteins via Space-Time Image Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Benedict; Wiseman, Paul W.

    2004-03-01

    The imaging analogs of fluorescence correlation spectroscopy (FCS), image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS), have proven successful in assessing the degree of aggregation and the membrane density of fluorescently labeled macromolecule clusters, as well as measuring diffusion coefficients and flow speeds within the plasma membrane in living cells. We present a new extension of ICS and ICCS that relies on complete analysis of the temporal and all spatial correlation lags for intensity fluctuations from laser scanning microscopy image series. This new approach allows measurement of diffusion coefficients and velocity vectors (magnitude and direction) for labeled proteins in vivo. By filtering in Fourier space, we can measure the protein transport even in the presence of a large fraction of immobile proteins. We will present computer simulations and fluorescent microsphere sample analysis to demonstrate proof of principle, capabilities and limitations of the technique. We will also show correlation velocity mapping of proteins on living cells. This new method permits us to generate complete transport maps for sub-regions of the basal membrane even if the protein concentration is too high to perform single particle tracking studies.

  14. Research on computer tracking system of uniaxial tension based on image correlation method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; He, Xiao-yuan

    2011-08-01

    The mechanics properties of the materials in which displacement sensors or strain gauges can not be intalled or pasted are unable to be measured by the experiment of traditional tension. In view of the case, the new computer tracking system of uniaxial tension based on the digital image correlation method has been developed. Firstly, according to the principle of uniaxial tension, the computer tracking system is designed by combining the loading installation, light source, camera lens, image card with the computer. Secondly, the correlativity is high between the original image and the deformed image, the image correlation formula is utilized to calculate the correlation coefficients of pixel values between the object template and the search region. Moreover, the measurement precision can be improved greatly by using the algorithm of bilinear inter value. Finally, through the computer tracking experiment of uniaxial tension of the rubber band, the object template size of 11× 7 and the search region of 21 × 17 are used to improve the computer calculating speed in the matching processing. The experimental results show that the object can be successfully tracked and the deformation evoluation of the rubber band are agree with the actual mechanics properties of materials.

  15. The correlation of the displacements of the images of point sources in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Marakasov, Dmitri A.

    2015-11-01

    We consider the problem of determining of the transverse wind speed on atmospheric path from the temporal correlation of the displacements of the centroids of the images of point sources shifted in the transverse. In the framework of the first approximation of the method of small perturbations expressions for correlation functions are outlined. The possibility of estimation of the wind velocity averaged over the optical path is shown.

  16. Spectral analysis of pair-correlation bandwidth: application to cell biology images

    PubMed Central

    Binder, Benjamin J.; Simpson, Matthew J.

    2015-01-01

    Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time. PMID:26064605

  17. Intrapelvic chronic expanding hematoma: magnetic resonance imaging findings with pathological correlation.

    PubMed

    Sakurai, Jun; Akaki, Shiro; Yonezawa, Masaru; Horiguchi, Ikuyo; Nakamura, Satoko; Kanazawa, Susumu

    2010-01-01

    Chronic expanding hematoma is rare and occasionally misdiagnosed as malignant neoplasm. We describe a case in the female pelvis and correlate findings from pathology and magnetic resonance imaging. On diffusion-weighted images (DWI), our patient's hematoma showed 2 different signal intensities, which corresponded to pathological features of fresh and altered blood components. DWI can distinguish between such pathological features of a chronic expanding hematoma. PMID:20585198

  18. Elevated CXCL-8 expression in bronchoalveolar lavage correlates with disease severity in patients with acute respiratory distress syndrome resulting from tuberculosis

    PubMed Central

    2014-01-01

    Background Tuberculosis (TB) is a rare but known cause of acute respiratory distress syndrome (ARDS). The role of inflammatory cytokines in the progression of ARDS in TB patients is unknown. Objectives In this study we investigated the possible link between the levels of inflammatory cytokines in bronchoalveolar lavage (BAL) in patients with TB or ARDS alone or in patients with TB-induced ARDS (ARDS + TB). Methods 90 patients were studied: 30 with TB alone, 30 with ARDS alone and 30 with ARDS + TB. BAL was collected by fiberoptic bronchoscopy and the concentrations of interleukin(IL)-6, CXCL8, TNF-α and IL-1β and the amounts of total protein were measured by ELISA and bicinchoninic acid assay (BCA) methods respectively. The correlation between disease severity measured by Murray scores, SOFA and APACHE II analysis and BAL mediators and cells was also determined. Results CXCL8 levels in BAL were significantly higher in the ARDS + TB group compared to TB and ARDS alone groups. Disease severity in the ARDS + TB group as determined by Murray score correlated with BAL CXCL8 and neutrophils but not with IL-6, IL-1β and TNF-α concentrations. In addition, CXCL8 levels and neutrophils were increased in non-miliary TB versus miliary TB. This difference in CXCL8 was lost in the presence of ARDS. Conclusions BAL CXCL8 levels were significantly higher in patients with ARDS induced by TB and could suggest an important role of CXCL8 in the pathogenesis of this form of ARDS. This further suggests that CXCL8 inhibitors or blockers may be useful to control the onset and/or development of these combined diseases. PMID:25110464

  19. Image Reconstruction Method with the Exploitation of the Spatial Correlation for Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Liu, Shi

    2015-12-01

    Electrical capacitance tomography (ECT) is considered to be a competitive measurement method. The imaging objects in ECT measurements are often in a time-varying process, and exploiting the prior information related to the dynamic nature is important for reconstructing high-quality images. Different from existing reconstruction models, in this paper a new model that incorporates the spatial correlation of the pixels by introducing the radial basis function (RBF) method, the dynamic behaviors of a timevarying imaging object, and the ECT measurement information is proposed to formulate the dynamic imaging problem. An objective functional that exploits the spatial correlation of the pixels, the combinational regularizer of the first-order total variation (FOTV) and the second-order total variation (SOTV), the multi-scale regularization, the spatial constraint, and the temporal correlation is proposed to convert the ECT imaging task into an optimization problem. A split Bregman iteration (SBI) method based iteration scheme is developed for solving the proposed objective functional. Numerical simulation results validate the superiority of the proposed reconstruction method on the improvement of the imaging quality.

  20. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart.

    PubMed

    DeVore, G R; Falkensammer, P; Sklansky, M S; Platt, L D

    2003-10-01

    Spatio-temporal image correlation (STIC) is a new approach for clinical assessment of the fetal heart. It offers an easy to use technique to acquire data from the fetal heart and to aid in visualization with both two-dimensional and three-dimensional (3D) cine sequences. The acquisition is performed in two steps: first, images are acquired by a single, automatic volume sweep. Second, the system analyzes the image data according to their spatial and temporal domain and processes an online dynamic 3D image sequence that is displayed in a multiplanar reformatted cross-sectional display and/or a surface rendered display. The examiner can navigate within the heart, re-slice, and produce all of the standard image planes necessary for a comprehensive diagnosis. The advantages of STIC for use in evaluation of the fetal heart are as follows: the technique delivers a temporal resolution which corresponds to a B-mode frame rate of approximately 80 frames/s; it provides the examiner with an unlimited number of images for review; it allows for correlation between image planes that are perpendicular to the main image acquisition plane; it may shorten the evaluation time when complex heart defects are suspected; it enables the reconstruction of a 3D rendered image that contains depth and volume which may provide additional information that is not available from the thin multiplanar image slices (e.g. for pulmonary veins, septal thickness); it lends itself to storage and review of volume data by the examiner or by experts at a remote site; it provides the examiner with the ability to review all images in a looped cine sequence. PMID:14528474

  1. Image motion compensation by area correlation and centroid tracking of solar surface features

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  2. Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system

    NASA Astrophysics Data System (ADS)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Tromberg, Bruce; Cerussi, Albert; Choi, Bernard

    2009-02-01

    Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the tumor metabolic state. Such quantitative information would enhance our understanding of tumor progression and response to treatment, and to our overall understanding of tumor biology. To address this problem, we have developed a wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated imaging (MI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm × 5 cm) field of view. Using MI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated using a Monte Carlo model. From the spatial maps of local absorption and reduced scattering coefficients, tissue composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, volume and oxygenation state. We currently are employing the WiFI instrument to study tumor development in a BRCA1/p53 deficient mice breast tumor model. The animals are monitored with WiFI during hyperoxic respiratory challenge. At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic changes during hyperoxic respiratory challenge can be determined.

  3. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.

    PubMed

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-10-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research. PMID:25389451

  4. Correlating objective and subjective evaluation of texture appearance with applications to camera phone imaging

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.

    2009-01-01

    Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.

  5. Nonlinear intensity difference correlation for multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Ji, Shunping; Zhang, Tong; Guan, Qingfeng; Li, Junli

    2013-04-01

    Compared to geometric distortions exhibited in remote sensing images, radiometric deformations are less addressed in the literature and linear variations are usually assumed during image matching or registration. This paper proposes a novel robust and automatic image matching approach for multi-temporal and multi-sensor remote sensing images which usually present non-linear radiometric changes. We introduce a non-linear intensity difference correlation (NIDC) algorithm that aims to reduce the impacts of non-linear intensity differences during image matching. Differences of illumination intensity are accounted for and modeled in the NIDC algorithm through the extension of traditional feature-based matching techniques. Our proposed approach has been tested with typical multi-temporal and multi-sensor remote sensing images characterized by either dense or sparse ground control points (GCPs). Experimental results demonstrate that our matching approach outperforms common image matching techniques such as cross correlation (CC), scale-invariant feature transform (SIFT), and speeded-up robust features (SURF) with respects to matching success rate and robustness in test data.

  6. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    PubMed Central

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-01-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research. PMID:25389451

  7. Minimum variance imaging based on correlation analysis of Lamb wave signals.

    PubMed

    Hua, Jiadong; Lin, Jing; Zeng, Liang; Luo, Zhi

    2016-08-01

    In Lamb wave imaging, MVDR (minimum variance distortionless response) is a promising approach for the detection and monitoring of large areas with sparse transducer network. Previous studies in MVDR use signal amplitude as the input damage feature, and the imaging performance is closely related to the evaluation accuracy of the scattering characteristic. However, scattering characteristic is highly dependent on damage parameters (e.g. type, orientation and size), which are unknown beforehand. The evaluation error can degrade imaging performance severely. In this study, a more reliable damage feature, LSCC (local signal correlation coefficient), is established to replace signal amplitude. In comparison with signal amplitude, one attractive feature of LSCC is its independence of damage parameters. Therefore, LSCC model in the transducer network could be accurately evaluated, the imaging performance is improved subsequently. Both theoretical analysis and experimental investigation are given to validate the effectiveness of the LSCC-based MVDR algorithm in improving imaging performance. PMID:27155349

  8. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  9. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    PubMed

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized. PMID:26168172

  10. Y2O3:Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging.

    PubMed

    Fukushima, Shoichiro; Furukawa, Taichi; Niioka, Hirohiko; Ichimiya, Masayoshi; Miyake, Jun; Ashida, Masaaki; Araki, Tsutomu; Hashimoto, Mamoru

    2014-12-01

    We present a phosphor nanoparticle that shows both upconversion luminescence (UCL) and cathodoluminescence (CL). With this particle, low-autofluorescence, deep-tissue and wide-field fluorescence imaging can be achieved with nanometer-order high-spatial-resolution imaging. We synthesized Y2O3:Tm,Yb nanophosphors that emit visible and near-infrared UCL under 980 nm irradiation and blue CL via electron beam excitation. The phosphors were applied to fluorescent imaging of HeLa cells. The photostability of the phosphors was superior to that of a conventional organic dye. We show that after uptake by HeLa cells, the particles can be imaged with SEM and CL contrast in a cellular section. This indicates that correlative UCL and CL imaging of biological samples could be realized. PMID:25146422

  11. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    PubMed

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. PMID:26477562

  12. Visualizing Functional Pathways in the Human Brain Using Correlation Tensors and Magnetic Resonance Imaging

    PubMed Central

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K.; Wu, Tung-Lin; Morgan, Victoria L.; Cutting, Laurie E.; Anderson, Adam W.; Gore, John C.

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. PMID:26477562

  13. Multilabel image classification via high-order label correlation driven active learning.

    PubMed

    Zhang, Bang; Wang, Yang; Chen, Fang

    2014-03-01

    Supervised machine learning techniques have been applied to multilabel image classification problems with tremendous success. Despite disparate learning mechanisms, their performances heavily rely on the quality of training images. However, the acquisition of training images requires significant efforts from human annotators. This hinders the applications of supervised learning techniques to large scale problems. In this paper, we propose a high-order label correlation driven active learning (HoAL) approach that allows the iterative learning algorithm itself to select the informative example-label pairs from which it learns so as to learn an accurate classifier with less annotation efforts. Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to example-label pair; 2) different labels are seldom independent, and label correlations provide critical information for efficient learning; 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning; and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining method is required to discover informative label correlations. The proposed approach is tested on public data sets, and the empirical results demonstrate its effectiveness. PMID:24723538

  14. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  15. The impact of angular separation on the performance of biplane correlation imaging for lung nodule detection

    NASA Astrophysics Data System (ADS)

    Nasab, Nariman Majdi; Samei, Ehsan

    2006-03-01

    In this paper, we evaluate the performance of biplane correlation imaging (BCI) using a set of off-angle projections acquired from an anthropomorphic chest phantom. BCI reduces the effect of anatomical noise, which would otherwise impact the detection subtle lesions in planar images. BCI also minimizes the number of false positives (FPs) when used in conjunction with computer aided diagnosis (CAD) applied to a set of coronal chest x-ray projections by eliminating non-correlated nodule candidates. In BCI, two digital images of the chest are acquired within a short time interval from two slightly different posterior projections. The image data are then incorporated into the CAD algorithm in which nodules are detected by examining the geometrical correlation of the detected signals in the two views, thus largely "canceling" the impact of anatomical noise. Seventy-one low exposure posterior projections were acquired of an anthropomorphic chest phantom containing tissue equivalent lesions with small angular separations (0.32 degree) over a range of 20 degrees, [-10°, +10°], along the vertical axis. The data were analyzed to determine the accuracy of the technique as a function of angular separation. The results indicated that the best performance was obtained when the angular separation of the projection pair was greater than 6 degrees. Within the range of optimum angular separation, the number of FPs per image, FPpI, was ~1.1 with average sensitivity around 75% (supported by a grant from the NIH R01CA109074).

  16. Medical image diagnoses by artificial neural networks with image correlation, wavelet transform, simulated annealing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1993-09-01

    Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.

  17. Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification.

    PubMed

    Li, Qiang; Xie, Bo; You, Jane; Bian, Wei; Tao, Dacheng

    2016-08-01

    In this paper, we present correlated logistic (CorrLog) model for multilabel image classification. CorrLog extends conventional logistic regression model into multilabel cases, via explicitly modeling the pairwise correlation between labels. In addition, we propose to learn the model parameters of CorrLog with elastic net regularization, which helps exploit the sparsity in feature selection and label correlations and thus further boost the performance of multilabel classification. CorrLog can be efficiently learned, though approximately, by regularized maximum pseudo likelihood estimation, and it enjoys a satisfying generalization bound that is independent of the number of labels. CorrLog performs competitively for multilabel image classification on benchmark data sets MULAN scene, MIT outdoor scene, PASCAL VOC 2007, and PASCAL VOC 2012, compared with the state-of-the-art multilabel classification algorithms. PMID:27295670

  18. Sparse models for correlative and integrative analysis of imaging and genetic data

    PubMed Central

    Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.

    2014-01-01

    The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561

  19. Sparse models for correlative and integrative analysis of imaging and genetic data.

    PubMed

    Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D; Wang, Yu-Ping

    2014-11-30

    The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561

  20. Non-contact measurement of linear thermal expansion coefficients of solid materials by infrared image correlation

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Freni, F.

    2014-01-01

    A new non-contact optical method (IIC, infrared image correlation) for the determination of the coefficients of thermal expansion of solid materials is presented. The proposed method is based on performing a digital image correlation between thermal images recorded at different temperatures by means of an infrared camera. It allows the coefficient of thermal expansion of both isotropic and anisotropic solid materials to be determined by measuring simultaneously the fractional increase in length and the actual thermal field over a small region of interest in which a dual-emissivity stochastic speckle pattern has been created. The results reported in this paper prove the effectiveness of the proposed method that can be applied either to carry out reference measurements in laboratory or to evaluate thermal stresses and strains on structural components in-field.

  1. Prospective respiratory-gated micro-CT of free breathing rodents.

    PubMed

    Ford, Nancy L; Nikolov, Hristo N; Norley, Chris J D; Thornton, Michael M; Foster, Paula J; Drangova, Maria; Holdsworth, David W

    2005-09-01

    Microcomputed tomography (Micro-CT) has the potential to noninvasively image the structure of organs in rodent models with high spatial resolution and relatively short image acquisition times. However, motion artifacts associated with the normal respiratory motion of the animal may arise when imaging the abdomen or thorax. To reduce these artifacts and the accompanying loss of spatial resolution, we propose a prospective respiratory gating technique for use with anaesthetized, free-breathing rodents. A custom-made bed with an embedded pressure chamber was connected to a pressure transducer. Anaesthetized animals were placed in the prone position on the bed with their abdomens located over the chamber. During inspiration, the motion of the diaphragm caused an increase in the chamber pressure, which was converted into a voltage signal by the transducer. An output voltage was used to trigger image acquisition at any desired time point in the respiratory cycle. Digital radiographic images were acquired of anaesthetized, free-breathing rats with a digital radiographic system to correlate the respiratory wave form with respiration-induced organ motion. The respiratory wave form was monitored and recorded simultaneously with the x-ray radiation pulses, and an imaging window was defined, beginning at end expiration. Phantom experiments were performed to verify that the respiratory gating apparatus was triggering the micro-CT system. Attached to the distensible phantom were 100 microm diameter copper wires and the measured full width at half maximum was used to assess differences in image quality between respiratory-gated and ungated imaging protocols. This experiment allowed us to quantify the improvement in the spatial resolution, and the reduction of motion artifacts caused by moving structures, in the images resulting from respiratory-gated image acquisitions. The measured wire diameters were 0.135 mm for the stationary phantom image, 0.137 mm for the image gated at end

  2. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    SciTech Connect

    Kimura, Tomoki; Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  3. Adaptive DCT-based filtering of images corrupted by spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Zelensky, Aleksandr A.; Astola, Jaakko T.; Egiazarian, Karen O.

    2008-02-01

    Majority of image filtering techniques are designed under assumption that noise is of special, a priori known type and it is i.i.d., i.e. spatially uncorrelated. However, in many practical situations the latter assumption is not true due to several reasons. Moreover, spatial correlation properties of noise might be rather different and a priori unknown. Then the assumption that noise is i.i.d. under real conditions of spatially correlated noise commonly leads to considerable decrease of a used filter effectiveness in comparison to a case if this spatial correlation is taken into account. Our paper deals with two basic aspects. The first one is how to modify a denoising algorithm, in particular, a discrete cosine transform (DCT) based filter in order to incorporate a priori or preliminarily obtained knowledge of spatial correlation characteristics of noise. The second aspect is how to estimate spatial correlation characteristics of noise for a given image with appropriate accuracy and robustness under condition that there is some a priori information about, at least, noise type and statistics like variance (for additive noise case) or relative variance (for multiplicative noise). We also present simulation results showing the effectiveness (the benefit) of taking into consideration noise correlation properties.

  4. Experimental research of digital image correlation system in high temperature test

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Yonghong; Dan, Xizuo; Xiao, Ying; Yang, Lianxiang

    2016-01-01

    Digital Image Correlation (DIC) is a full-field technique based on white-light illumination for displacement and strain measurement. But radiation on the specimen surface at high temperature affects the quality of acquired speckle pattern images for traditional DIC measurement. In order to minimize the radiation effect in high temperature measurement, this paper proposes a two-dimensional ultraviolet digital image correlation system (2D UV-DIC) containing UV LED and UV band-pass filter. It is confirmed by experiments that images acquired by this system saturate at higher temperature in comparison with DIC using filtered blue light imaging system. And the UV-DIC remains minimally affected by radiation at the temperature which is nearing the specimen's maximum working temperature (about 1250°C). In addition, considering the heat disturbance that can't be ignored in actual high temperature measurement, this paper also proposes a method using an air controller in combination with image average algorithm, and the method was then used to obtain the thermal expansion coefficient of the Austenitic chromium-nickel stainless steel specimen at different temperatures. By comparing the coefficients with the results calculated by other method, it shows that this comprehensive method has the advantages of strong anti-interference ability and high precision.

  5. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    SciTech Connect

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-06-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  6. Learning statistical correlation for fast prostate registration in image-guided radiotherapy

    SciTech Connect

    Shi Yonghong; Liao Shu; Shen Dinggang

    2011-11-15

    Purpose: In adaptive radiation therapy of prostate cancer, fast and accurate registration between the planning image and treatment images of the patient is of essential importance. With the authors' recently developed deformable surface model, prostate boundaries in each treatment image can be rapidly segmented and their correspondences (or relative deformations) to the prostate boundaries in the planning image are also established automatically. However, the dense correspondences on the nonboundary regions, which are important especially for transforming the treatment plan designed in the planning image space to each treatment image space, are remained unresolved. This paper presents a novel approach to learn the statistical correlation between deformations of prostate boundary and nonboundary regions, for rapidly estimating deformations of the nonboundary regions when given the deformations of the prostate boundary at a new treatment image. Methods: The main contributions of the proposed method lie in the following aspects. First, the statistical deformation correlation will be learned from both current patient and other training patients, and further updated adaptively during the radiotherapy. Specifically, in the initial treatment stage when the number of treatment images collected from the current patient is small, the statistical deformation correlation is mainly learned from other training patients. As more treatment images are collected from the current patient, the patient-specific information will play a more important role in learning patient-specific statistical deformation correlation to effectively reflect prostate deformation of the current patient during the treatment. Eventually, only the patient-specific statistical deformation correlation is used to estimate dense correspondences when a sufficient number of treatment images have been acquired from the current patient. Second, the statistical deformation correlation will be learned by using a

  7. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  8. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction.

    PubMed

    Chan, Kam Wai C; O'Sullivan, Malcolm N; Boyd, Robert W

    2010-03-15

    We compare the performance of high-order thermal ghost imaging with that of conventional (that is, lowest-order) thermal ghost imaging for different data processing methods. Particular attention is given to high-order thermal ghost imaging with background normalization and conventional ghost imaging with background subtraction. The contrast-to-noise ratio (CNR) of the ghost image is used as the figure of merit for the comparison.We find analytically that the CNR of the normalized high-order ghost image is inversely proportional to the square root of the number of transmitting pixels of the object. This scaling law is independent of the exponents used in calculating the high-order correlation and is the same as that of conventional ghost imaging with background subtraction. We find that no data processing procedure performs better than lowest-order ghost imaging with background subtraction. Our results are found to be able to explain the observations of a recent experiment [Chen et al., arXiv:0902.3713v3 [quant-ph

  9. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities.

    PubMed

    Hamper, U M; DeJong, M R; Caskey, C I; Sheth, S

    1997-01-01

    Power Doppler imaging has recently gained attention as an additional color flow imaging technique that overcomes some of the limitations of conventional color Doppler ultrasound (US). Limitations of conventional color Doppler US include angle dependence, aliasing, and difficulty in separating background noise from true flow in slow-flow states. Owing to its increased sensitivity to flow, power Doppler sonography is valuable in low-flow states and when optimal Doppler angles cannot be obtained. Longer segments of vessels and more individual vessels can be visualized with power Doppler US than with conventional color Doppler sonography. Power Doppler sonography increases diagnostic confidence when verifying or excluding testicular or ovarian torsion and confirming thrombosis or occlusion of vessels. Power Doppler sonography also improves evaluation of parenchymal flow and decreases examination times in technically challenging cases. Power Doppler US is a useful adjunct to mean-frequency color Doppler sonography, especially when color Doppler US cannot adequately obtain or display diagnostic information. PMID:9084086

  10. Atom-atom correlations in time-of-flight imaging of ultracold bosons in optical lattices

    SciTech Connect

    Zaleski, T. A.; Kopec, T. K.

    2011-11-15

    We study the spatial correlations of strongly interacting bosons in a ground state, confined in a two-dimensional square and a three-dimensional cubic lattice. Using the combined Bogoliubov method and the quantum rotor approach, we map the Hamiltonian of strongly interacting bosons onto U(1) phase action in order to calculate the atom-atom correlations' decay along the principal axis and a diagonal of the lattice-plane direction as a function of distance. Lower tunneling rates lead to quicker decays of the correlations, whose character becomes exponential. Finally, correlation functions allow us to calculate quantities that are directly bound to experimental outcomes, namely time-of-flight absorption images and resulting visibility. Our results contain all the characteristic features present in experimental data (transition from Mott insulating blob to superfluid peaks, etc.), emphasizing the usability of the proposed approach.

  11. Multi-modal contrast of tissue anatomy enables correlative biomarker imaging

    NASA Astrophysics Data System (ADS)

    Garsha, Karl; Ventura, Franklin; Pestano, Gary; Otter, Michael; Nagy, Dea; Nagle, Ray B.; Roberts, Esteban; Barnes, Michael

    2015-03-01

    Optical imaging techniques are being developed that promise to increase the information content related to specific molecular reporters. Such modalities do not produce contrast in the structural context of the surrounding tissue, making it difficult to reconcile molecular information with morphological context. We report a solution that enables visualization of the tissue morphology on formalin-fixed, paraffin embedded sections prepared for analytical biomarker imaging. Our approach combines modes of transmitted darkfield and fluorescence contrast and computer visualization to produce 2-component image data analogous to the classical hematoxylin and eosin histological stain. An interferometric hyperspectral image capture mode enables measurement of multiplexed biomarkers in annotated anatomic regions. The system enables practical correlative analysis of molecular changes within areas of anatomic pathology.

  12. Application of linear-scale differential analysis in phase correlation method of image stitching

    NASA Astrophysics Data System (ADS)

    Bezzubik, Vitalii V.; Belashenkov, Nickolai R.; Losev, Sergei V.

    2016-03-01

    A robust method of creation of panoramic images which does not consume much processing resources is proposed and investigated. The phase correlation (PC) method is taken as a basic one because of simplicity of its algorithm and low computing time due to application of FFT technique. Standard PC procedure is modified by preprocessing of source frames of panoramic images in spatial domain. Preprocessing comprises Linear-Scale Differential Analysis (LSDA) with sequent content-dependent thresholding of intensity gradients. Method is proved for artificially blurred and noise corrupted images. It is shown that new robust algorithm allows to increase the productivity of creation of panoramic images keeping the probability of successive stitching close to maximum even for low-quality source frames.

  13. Damage in dual phase steel DP1000 investigated using digital image correlation and microstructure simulation

    NASA Astrophysics Data System (ADS)

    Alharbi, Khaled; Ghadbeigi, Hassan; Efthymiadis, Panos; Zanganeh, Mohammad; Celotto, Steven; Dashwood, Richard; Pinna, Christophe

    2015-12-01

    Microstructure failure mechanisms and void nucleation in dual-phase (DP) steels during deformation have been studied using a combination of in situ tensile testing in a scanning electron microscope (SEM), digital image correlation (DIC) and finite element (FE) modelling. SEM images acquired during in situ tests were used to follow the evolution of damage within the microstructure of a DP1000 steel. From these images, strain maps were generated using DIC and used as boundary conditions for a FE model to investigate the stress state of martensite and ferrite before the onset of the martensite phase cracking. Based on the simulation results, a maximum principal stress of about 1700 MPa has been estimated for crack initiation in the martensite of the investigated DP1000 steel. The SEM image observations in combination with the FE analyses provide new insights for the development of physically-based damage models for DP-steels.

  14. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  15. Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation.

    PubMed

    Sachs, C; Fabritius, H; Raabe, D

    2006-09-01

    This study presents a novel experimental approach to the characterization of the deformation of a mineralized biological composite using arthropod cuticle as a model material. By performing tensile tests combined with a detailed strain analysis via digital image correlation, the elastic-plastic deformation behavior of the endocuticle of the American lobster Homarus americanus is examined. The test specimens originate from the pincher and crusher claws. For evaluating the effect of moisture on the deformation behavior, the samples are tested both in dry and in wet state. Sample characterization using the digital image correlation method requires a stochastic spot pattern on the sample surface. Digital images are then taken at subsequent deformation stages during the mechanical test. These images are used to calculate the displacement, the displacement gradient, and the strain fields via pattern correlation. The method is applied both, at a global scale to measure with high precision the stress-strain behavior of the bulk cuticle and at a microscopic scale to reveal strain heterogeneity, strain patterning, and strain localization phenomena. PMID:16899374

  16. Correlation plane statistical analysis for estimation of measurement uncertainty for Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Xue, Zhenyu; Charonoko, John; Vlachos, Pavlos

    2013-11-01

    Early development of Particle Image Velocimetry (PIV) methods did not involve quantification of measurement uncertainty, which in result created skepticism about the reliability of PIV. Quantification of PIV uncertainty is complex because coupled sources are involved in PIV measurement. Recently several attempts have been proposed. However, most of those methods were ``posteriori'' methods: deducing the uncertainty from post-processing of recorded images, or using observed relationships between metrics calculated from images, flow field and the resulting error distribution. Here we propose a novel theoretical and statistical PIV uncertainty estimation approach. It is based on the notion that the correlation plane represents the probability distribution function (PDF) of all possible particle displacements convoluted with particle shape information. The PDF can be obtained by de-convolving the particle information from original correlation plane. Knowing the primary peak of correlation plane indicates the most probable displacement, and the PDF, standard deviation of measured displacement, i.e. the uncertainty, can be calculated by computing the second order moment about the most probable displacement. We will present theoretical and statistical foundations of this method, we will validate each performance with synthetic image sets, and finally we will show its application on real experiment data.

  17. Concept of coherence aperture and pathways toward white light high-resolution correlation imaging

    NASA Astrophysics Data System (ADS)

    Bouchal, P.; Bouchal, Z.

    2013-12-01

    Self-interference correlation imaging is a recently discovered method that takes advantage of holographic reconstruction when using a spatially incoherent light. Although the temporal coherence of light significantly influences the resolution of the method, it has not been studied either theoretically or experimentally. We present the first systematic study of the resolution in a broadband correlation imaging based on the concept of coherence-induced diffraction. We show that the physical limits of the resolution are reached in a non-dispersive experiment and their examination can be performed by the coherence aperture whose width depends on the coherence length of light and the optical path difference of interfering waves. As the main result, the optimal configuration of the non-dispersive experimental system is found in which the sub-diffraction image resolution previously demonstrated for monochromatic light can be retained even when the white light is used. Dispersion effects that prevent reaching the physical resolution limits are discussed and the dispersion sensitivity of the currently available experiments examined. The proposed concept of the coherence aperture is verified experimentally and its generalization to the concept of the dispersion-induced aperture suggested. As a challenge for future research, possible methods of dispersion elimination are outlined that allow the design of advanced optical systems enabling implementation of the high-resolution white light correlation imaging.

  18. Marking-dots digital image correlation and application to studies of spinal biomechanics

    NASA Astrophysics Data System (ADS)

    Chen, Jinlong; Sun, Cuiru; Qin, Yuwen; Ji, Xinhua

    2005-04-01

    A method of marking-dots digital image correlation is developed to measure the biomechanics behavior of cattle spine. In the system, a video camera and personal computer are used to acquire digitized images of a random speckle pattern on the surface of a marking-dot before and after deformation. The method of making-dots digital image correlation can immediately measure the transformation by tracking the gray value pattern in small local neighborhoods commonly referred to as subsets. In the experiment, a specimen was selected from the cattle's spine that was covered with some muscles and tissues. It is apparent that the covering muscles and tissues cannot be treated as the information carrier, for they must be kept active and moist curing by the physiological brine in the course of the experiment. In order to solve the problem, the marking-dots were fixed into the vertebrae, and the front surface of a marking-dot was coated with a thin layer of white paint and splattered with black spot so as to create a random black-on-white speckle pattern. Experimental results have shown that the marking-dots digital image correlation method can be applied to the measurement of the biomechanical behavior of cattle spine, and offer an effective measurement tool to research the range of motion of the adjacent segment in spine under intervertebral fusion.

  19. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method

    NASA Astrophysics Data System (ADS)

    Abshirini, Mohammad; Soltani, Nasser; Marashizadeh, Parisa

    2016-03-01

    Mode I of fracture of centrally cracked Brazilian disc was investigated experimentally using a digital image correlation (DIC) method. Experiments were performed on PMMA polymers subjected to diametric-compression load. The displacement fields were determined by a correlation between the reference and the deformed images captured before and during loading. The stress intensity factors were calculated by displacement fields using William's equation and the least square algorithm. The parameters involved in the accuracy of SIF calculation such as number of terms in William's equation and the region of analysis around the crack were discussed. The DIC results were compared with the numerical results available in literature and a very good agreement between them was observed. By extending the tests up to the critical state, mode I fracture toughness was determined by analyzing the image of specimen captured at the moment before fracture. The results showed that the digital image correlation was a reliable technique for the calculation of the fracture toughness of brittle materials.

  20. Partial correlation analyses of global diffusion tensor imaging-derived metrics in glioblastoma multiforme: Pilot study

    PubMed Central

    Cortez-Conradis, David; Rios, Camilo; Moreno-Jimenez, Sergio; Roldan-Valadez, Ernesto

    2015-01-01

    AIM: To determine existing correlates among diffusion tensor imaging (DTI)-derived metrics in healthy brains and brains with glioblastoma multiforme (GBM). METHODS: Case-control study using DTI data from brain magnetic resonance imaging of 34 controls (mean, 41.47; SD, ± 21.94 years; range, 21-80 years) and 27 patients with GBM (mean, SD; 48.41 ± 15.18 years; range, 18-78 years). Image postprocessing using FSL software calculated eleven tensor metrics: fractional (FA) and relative anisotropy; pure isotropic (p) and anisotropic diffusions (q), total magnitude of diffusion (L); linear (Cl), planar (Cp) and spherical tensors (Cs); mean (MD), axial (AD) and radial diffusivities (RD). Partial correlation analyses (controlling the effect of age and gender) and multivariate Mancova were performed. RESULTS: There was a normal distribution for all metrics. Comparing healthy brains vs brains with GBM, there were significant very strong bivariate correlations only depicted in GBM: [FA↔Cl (+)], [FA↔q (+)], [p↔AD (+)], [AD↔MD (+)], and [MD↔RD (+)]. Among 56 pairs of bivariate correlations, only seven were significantly different. The diagnosis variable depicted a main effect [F-value (11, 23) = 11.842, P ≤ 0.001], with partial eta squared = 0.850, meaning a large effect size; age showed a similar result. The age also had a significant influence as a covariate [F (11, 23) = 10.523, P < 0.001], with a large effect size (partial eta squared = 0.834). CONCLUSION: DTI-derived metrics depict significant differences between healthy brains and brains with GBM, with specific magnitudes and correlations. This study provides reference data and makes a contribution to decrease the underlying empiricism in the use of DTI parameters in brain imaging. PMID:26644826

  1. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions

    PubMed Central

    2010-01-01

    Background Both a large lesion volume and abnormalities in diffusion tensor imaging are independently associated with a poor prognosis after cerebral infarctions. Therefore, we assume that they are associated. This study assessed the associations between lesion volumes and diffusion tensor imaging in patients with a right-sided cerebral infarction. Methods The lesion volumes of 33 patients (age 65.9 ± 8.7, 26 males and 7 females) were imaged using computed tomography (CT) in the acute phase (within 3-4 hours) and magnetic resonance imaging (MRI) in the chronic phase (follow-up at 12 months, with a range of 8-27 months). The chronic-phase fractional anisotropy (FA) and mean diffusivity (MD) values were measured at the site of the infarct and selected white matter tracts. Neurological tests in both the acute and chronic phases, and DTI lateralization were assessed with the Wilcoxon signed-rank test. The effects of thrombolytic therapy (n = 10) were assessed with the Mann-Whitney U test. The correlations between the measured parameters were analysed with Spearman's rho correlation. Bonferroni post-hoc correction was used to compensate for the familywise error rate in multiple comparisons. Results Several MD values in the right hemisphere correlated positively and FA values negatively with the lesion volumes. These correlations included both lesion area and healthy tissue. The results of the mini-mental state examination and the National Institutes of Health Stroke Scale also correlated with the lesion volume. Conclusions A larger infarct volume is associated with more pronounced tissue modifications in the chronic stage as observed with the MD and FA alterations. PMID:20849612

  2. Correlation of two-photon in vivo imaging and FIB/SEM microscopy.

    PubMed

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-08-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer's disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. PMID:25786682

  3. Single image correlation for blood flow mapping in complex vessel networks

    NASA Astrophysics Data System (ADS)

    Chirico, Giuseppe; Sironi, Laura; Bouzin, Margaux; D'Alfonso, Laura; Collini, Maddalena; Ceffa, Nicolo'G.; Marquezin, Cassia

    2015-05-01

    Microcirculation plays a key role in the maintenance and hemodynamics of tissues and organs also due to its extensive interaction with the immune system. A critical limitation of state-of-the-art clinical techniques to characterize the blood flow is their lack of the spatial resolution required to scale down to individual capillaries. On the other hand the study of the blood flow through auto- or cross-correlation methods fail to correlate the flow speed values with the morphological details required to describe an intricate network of capillaries. Here we propose to use a newly developed technique (FLICS, FLow Image Correlation Spectroscopy) that, by employing a single raster-scanned xy-image acquired in vivo by confocal or multi-photon excitation fluorescence microscopy, allows the quantitative measurement of the blood flow velocity in the whole vessel pattern within the field of view, while simultaneously maintaining the morphological information on the immobile structures of the explored circulatory system. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The whole analytical dependence of the CCFs on the flow speed amplitude and the flow direction has been reported recently. We report here the derivation of approximated analytical relations that allows to use the CCF peak lag time and the corresponding CCF value, to directly estimate the flow speed amplitude and the flow direction. The validation has been performed on Zebrafish embryos for which the flow direction was changed systematically by rotating the embryos on the microscope stage. The results indicate that also from the CCF peak lag time it is possible to recover the flow speed amplitude within 13% of uncertainty (overestimation) in a wide range of angles between the flow and

  4. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  5. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    PubMed Central

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan

    2016-01-01

    Objective To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. Materials and Methods We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D* and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. Results No correlation was found between f or D* and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D* (p > 0.05, respectively). Conclusion Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck. PMID:27587952

  6. Correlation of diffusion tensor imaging parameters with neural status in Pott’s spine

    PubMed Central

    Jain, Nikhil; Saini, Namita Singh; Kumar, Sudhir; Rajagopalan, Mukunth; Chakraborti, Kanti Lal; Jain, Anil Kumar

    2016-01-01

    Introduction: Diffusion tensor imaging (DTI) has been used in cervical trauma and spondylotic myelopathy, and it has been found to correlate with neural deficit and prognosticate neural recovery. Such a correlation has not been studied in Pott’s spine with paraplegia. Hence, this prospective study has been used to find correlation of DTI parameters with neural deficit in these patients. Methods: Thirty-four patients of spinal TB were enrolled and DTI was performed before the start of treatment and after six months. Fractional anisotropy (FA), Mean diffusivity (MD), and Tractography were studied. Neurological deficit was graded by the Jain and Sinha scoring. Changes in FA and MD at and below the site of lesion (SOL) were compared to above the SOL (control) using the unpaired t-test. Pre-treatment and post-treatment values were also compared using the paired t-test. Correlation of DTI parameters with neurological score was done by Pearson’s correlation. Subjective assessment of Tractography images was done. Results: Mean average FA was not significantly decreased at the SOL in patients with paraplegia as compared to control. After six months of treatment, a significant decrease (p = 0.02) in mean average FA at the SOL compared to pre-treatment was seen. Moderate positive correlation (r = 0.49) between mean average FA and neural score after six months of treatment was found. Tractography images were not consistent with severity of paraplegia. Conclusion: Unlike spondylotic myelopathy and trauma, epidural collection and its organized inflammatory tissue in Pott’s spine precludes accurate assessment of diffusion characteristics of the compressed cord. PMID:27163110

  7. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    PubMed Central

    Avcu, Serhat; Altun, Ersan; Akpinar, Ihsan; Bulut, Mehmet Deniz; Eresov, Kemal; Biren, Tugrul

    2010-01-01

    Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI) of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years). Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker's cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients) followed by grade-II meniscal degeneration (in 43% of the patients) were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient. PMID:22624141

  8. Nanoscale deformation measurement of microscale interconnection assemblies by a digital image correlation technique.

    PubMed

    Sun, Yaofeng; Pang, John H L; Fan, Wei

    2007-10-01

    The continuous miniaturization of microelectronic devices and interconnections demand more and more experimental strain/stress analysis of micro- and nanoscale components for material characterization and structure reliability analysis. The digital image correlation (DIC) technique, with the aid of scanning probe microscopes, has become a very promising tool to meet this demand. In this study, an atomic force microscope (AFM) was used to scan and digitally image micro-interconnection assemblies in a micro-thermoelectric cooler. AFM images of the scan region of interest were obtained separately when the microelectronic device was operated before and after the cooling and heating stages. The AFM images were then used to obtain the in-plane deformation fields in the observed region of the micro-assembly. AFM image correlation is performed for nanoscale deformation analysis using the authors' AFM-DIC program. The results show that the observed region was subjected to cyclic strains when the device worked between its cooling and heating stages, and cyclic strain in the vertical direction was found to be a significant deformation mode. The thermally induced deformation behavior of the micro-assembly device was modeled by finite element analysis (FEA). Both thermal-electric analysis and thermal stress analysis were conducted on a 3D finite element model of the device. It is shown that the experimental results were able to validate the finite element analysis results. PMID:21730419

  9. Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic, and MR imaging findings.

    PubMed

    Chong, W K; Sweeney, B; Wilkinson, I D; Paley, M; Hall-Craggs, M A; Kendall, B E; Shepard, J K; Beecham, M; Miller, R F; Weller, I V

    1993-07-01

    Abnormalities at cerebral proton spectroscopy occur in patients with the acquired immunodeficiency syndrome (AIDS). N-acetyl aspartate (NAA) is believed to be a neuronal marker, and neuronal loss is thought to underlie the human immunodeficiency virus (HIV)-associated cognitive/motor complex. The proton spectra in 103 HIV-seropositive patients and 23 control subjects were compared and correlated with clinical, immunologic, and radiologic measures of HIV infection. Significant (P < .05) reductions in the mean NAA/choline (Cho) and NAA/creatine (Cr) ratios were seen in patients with immune suppression and neurologic signs. Significant increases in the Cho/Cr ratios were seen in patients with low CD4 lymphocyte counts and abnormal magnetic resonance (MR) images. Reduced NAA ratios correlated with diffuse but not focal MR imaging abnormalities. Combined MR imaging and spectroscopy provides closer relationships to clinical and immunologic measures of disease than either modality alone. Spectroscopy is an adjunct to MR imaging and augments the value of an MR imaging study. PMID:8099750

  10. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  11. Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging.

    PubMed

    Woehl, Taylor J; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  12. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  13. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    SciTech Connect

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  14. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGESBeta

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  15. Three-dimensional displacement measurement based on the combination of digital holography and digital image correlation.

    PubMed

    Yan, Hao; Pan, Bing

    2014-09-01

    A new simultaneous three-dimensional (3D) displacement measurement technique based on the combination of digital holography (DH) and digital imaging correlation (DIC) is proposed. The current DH-based 3D displacement measurement technique needs three sets of DH setups, and only the phase images are utilized in measurements, with all the intensity images discarded. In contrast, the proposed new technique only adopts a single off-axis DH setup. In the proposed technique, the phase images are used to extract out-of-plane displacements, but the intensity images (instead of being discarded) are processed by an intensity correlation algorithm to retrieve in-plane displacement components. Because the proposed technique fully takes advantage of all the information obtained by an off-axis DH without additional optical arrangements, it is simpler and more practical than the existing DH-based 3D displacement measurement technique. Experiments performed on a United States Air Force (USAF) target demonstrate that both the in-plane and out-of-plane displacements can be accurately determined by the proposed technique. PMID:25166100

  16. Time reversal imaging and cross-correlations techniques by normal mode theory

    NASA Astrophysics Data System (ADS)

    Montagner, J.; Fink, M.; Capdeville, Y.; Phung, H.; Larmat, C.

    2007-12-01

    Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and recently to seismic waves in seismology for earthquake imaging. The increasing power of computers and numerical methods (such as spectral element methods) enables one to simulate more and more accurately the propagation of seismic waves in heterogeneous media and to develop new applications, in particular time reversal in the three-dimensional Earth. Generalizing the scalar approach of Draeger and Fink (1999), the theoretical understanding of time-reversal method can be addressed for the 3D- elastic Earth by using normal mode theory. It is shown how to relate time- reversal methods on one hand, with auto-correlation of seismograms for source imaging and on the other hand, with cross-correlation between receivers for structural imaging and retrieving Green function. The loss of information will be discussed. In the case of source imaging, automatic location in time and space of earthquakes and unknown sources is obtained by time reversal technique. In the case of big earthquakes such as the Sumatra-Andaman earthquake of december 2004, we were able to reconstruct the spatio-temporal history of the rupture. We present here some new applications at the global scale of these techniques on synthetic tests and on real data.

  17. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations

    NASA Astrophysics Data System (ADS)

    Katz, Ori; Heidmann, Pierre; Fink, Mathias; Gigan, Sylvain

    2014-10-01

    Optical imaging through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples such as biological tissue randomly scatter and diffuse light, preventing the formation of diffraction-limited images. Despite many recent advances, no current method can perform non-invasive imaging in real-time using diffused light. Here, we show that, owing to the ‘memory-effect’ for speckle correlations, a single high-resolution image of the scattered light, captured with a standard camera, encodes sufficient information to image through visually opaque layers and around corners with diffraction-limited resolution. We experimentally demonstrate single-shot imaging through scattering media and around corners using spatially incoherent light and various samples, from white paint to dynamic biological samples. Our single-shot lensless technique is simple, does not require wavefront-shaping nor time-gated or interferometric detection, and is realized here using a camera-phone. It has the potential to enable imaging in currently inaccessible scenarios.

  18. A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men.

    PubMed

    Kozel, F Andrew; Revell, Letty J; Lorberbaum, Jeffrey P; Shastri, Ananda; Elhai, Jon D; Horner, Michael David; Smith, Adam; Nahas, Ziad; Bohning, Daryl E; George, Mark S

    2004-01-01

    We hypothesized that specific brain regions would activate during deception, and these areas would correlate with changes in electrodermal activity (EDA). Eight men were asked to find money hidden under various objects. While functional MRI images were acquired and EDA was recorded, the subjects gave both truthful and deceptive answers regarding the money's location. The group analysis revealed significant activation during deception in the orbitofrontal cortex (OFCx) and anterior cingulate (AC), but individual results were not consistent. Individually and as a group, EDA correlated with blood flow changes in the OFCx and AC. Specific brain regions were activated during deception, but the present technique lacks good predictive power for individuals. PMID:15377736

  19. The influence of the property of random coded patterns on fluctuation-correlation ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chenglong; Gong, Wenlin; Shao, Xuehui; Han, Shensheng

    2016-06-01

    According to the reconstruction feature of fluctuation-correlation ghost imaging (GI), we define a normalized characteristic matrix and the influence of the property of random coded patterns on GI is investigated based on the theory of matrix analysis. Both simulative and experimental results demonstrate that for different random coded patterns, the quality of fluctuation-correlation GI can be predicted by some parameters extracted from the normalized characteristic matrix, which suggests its potential application in the optimization of random coded patterns for GI system.

  20. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  1. Morphological characterization of keratoconus-affected human corneas by SHG imaging and correlation analysis

    NASA Astrophysics Data System (ADS)

    Mercatelli, R.; Ratto, F.; Tatini, F.; Rossi, F.; Menabuoni, L.; Nicoletti, R.; Pini, R.; Pavone, Frederick; Cicchi, R.

    2016-03-01

    Keratoconus is an ophthalmic disease in which the cornea acquires an abnormal conical shape that prevents the correct focusing on the retina, causing visual impairment. The late diagnosis of keratoconus is among the principal causes of corneal transplantation surgery. In this study, we characterize the morphology of keratoconic corneas by means of the correlation of SHG images, finding that keratoconus can be diagnosed by analyzing the inclination of lamellae below Bowman's membrane. In addition, imaging performed with both sagittal and "en face" geometry demonstrated that this morphological features can be highlighted both ex vivo and in vivo.

  2. Image restoration through thin turbid layers by correlation with a known object.

    PubMed

    He, Hexiang; Guan, Yefeng; Zhou, Jianying

    2013-05-20

    A method to recover the image of an object behind thin turbid layers is developed by wavefront shaping technique. The optimized wavefront is generated by modulating the scattering light of a known object with a spatial light modulator. A Pearson Correlation Coefficient is introduced as a cost function for the optimization. A beam scanning method based on optical memory effect is proposed to further enlarge the Field-of-View (FOV). The experimental results show good fidelity and large FOV of the recovered image. PMID:23736472

  3. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  4. Three-phase quadrature spectral matching imager using correlation image sensor and wavelength-swept monochromatic illumination

    NASA Astrophysics Data System (ADS)

    Kimachi, Akira; Ando, Shigeru; Doi, Motonori; Nishi, Shogo

    2011-12-01

    We propose a three-phase spectral matching imager (3PSMI) to realize a novel spectral matching method called quadrature spectral matching (QSM) in real time. The 3PSMI is comprised of the correlation image sensor (CIS) and wavelength-swept monochromatic illumination (WSMI) to perform QSM at each pixel on the CIS at a video frame rate. QSM consists of spectral correlation between an ac component of an object spectrum and an orthonormal pair of reference spectra, being equivalent to projecting the ac object spectrum onto a two-dimensional subspace spanned by the reference spectra. Similarity of the ac object spectrum to the reference spectra is evaluated in terms of the azimuth angle of the projection, independently of the norm of the ac object spectrum as well as spatial intensity distribution of the WSMI. A programable spectral light source is employed to implement the WSMI so that the spectral characteristics of the WSMI and CIS cancel each other and thus do not affect QSM on the 3PSMI. Experimental results confirm that the developed 3PSMI system can distinguish objects with smaller difference in spectral reflectance in real time than RGB imaging with off-the-shelf cameras.

  5. Fracture analysis of plastic-bonded explosive by digital image correlation technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, J.; Xiong, Chun-Yang; Fang, J.; Hao, Y.; Wen, M. P.

    2002-05-01

    Plastic-bonded explosive is a kind of energy material used in military and civil engineering. It serves also as structures or components to sustain external loads. Safety and reliability of the material is of importance to prevent damage and fracture during both manufacturing and usage procedure. Digital image correlation technique was applied to analyze the deformation field of the material near crack tip. The specimen was loaded by uniaxial compression and a slot was preset at the specimen edge with 45 degrees orientation. The speckle images were captured during the load and the surface patterns were matched by correlation computation to obtain the displacement components. The stress intensity factors of the crack tip were evaluated by the deformation in the near region of the crack. By the comparison of the strain field and the surface profile, the damage form of the material can be analyzed that showed brittle behavior with axial splitting fracture.

  6. Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations.

    PubMed

    Withington, Stafford; Saklatvala, George; Hobson, Michael P

    2006-06-01

    Phased arrays are of considerable importance for far-infrared, submillimeter-wave, and microwave astronomy; they are also being developed for areas as diverse as optical switching, radar, and radio communications. We present a discretized, modal theory of imaging and interferometric phased arrays. It is shown that the average powers, field correlations, power fluctuations, and correlations between power fluctuations at the output ports of an imaging, or interferometric, phased array can be determined for a source in any state of spatial coherence and polarization, once the synthesized beam patterns are known. It is not necessary to know anything about the internal construction of the beam-forming networks; indeed, the beam patterns can be taken from experimental data. The synthesized beams can be nonorthogonal and even linearly dependent. Our theory leads to many conceptual insights and opens the way to a range of new design and simulation techniques. PMID:16715152

  7. An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation.

    PubMed

    Bouzin, Margaux; Sironi, Laura; Chirico, Giuseppe; D'Alfonso, Laura; Inverso, Donato; Pallavicini, Piersandro; Collini, Maddalena

    2015-12-01

    Anisotropic metallic nanoparticles have been devised as powerful potential tools for in vivo imaging, photothermal therapy, and drug delivery thanks to plasmon-enhanced absorption and scattering cross sections, ease in synthesis and functionalization, and controlled cytotoxicity. The rational design of all these applications requires the characterization of the nanoparticles intracellular trafficking pathways. In this work, we exploit live-cell time-lapse confocal reflectance microscopy and image correlation in both direct and reciprocal space to investigate the intracellular transport of branched gold nanostars (GNSs). Different transport mechanisms, spanning from pure Brownian diffusion to (sub-)ballistic superdiffusion, are revealed by temporal and spatio-temporal image correlation spectroscopy on the tens-of-seconds timescale. According to these findings, combined with numerical simulations and with a Bayesian (hidden Markov model-based) analysis of single particle tracking data, we ascribe the superdiffusive, subballistic behavior characterizing the GNSs dynamics to a two-state switching between Brownian diffusion in the cytoplasm and molecular motor-mediated active transport. For the investigation of intermittent-type transport phenomena, we derive an analytical theoretical framework for Fourier-space image correlation spectroscopy (kICS). At first, we evaluate the influence of all the dynamic and kinetic parameters (the diffusion coefficient, the drift velocity, and the transition rates between the diffusive and the active transport regimes) on simulated kICS correlation functions. Then we outline a protocol for data analysis and employ it to derive whole-cell maps for each parameter underlying the GNSs intracellular dynamics. Capable of identifying even simpler transport phenomena, whether purely diffusive or ballistic, our intermittent kICS approach allows an exhaustive investigation of the dynamics of GNSs and biological macromolecules. PMID:26636936

  8. Biplane correlation imaging for lung nodule detection: initial human subject results

    NASA Astrophysics Data System (ADS)

    Majdi Nasab, Nariman; Samei, Ehsan; Dobbins, James T., III

    2006-03-01

    In this paper, we present performance of biplane correlation imaging (BCI) on set of chest x-ray projections of human data. BCI significantly minimizes the number of false positives (FPs) when used in conjunction with computer aided detection (CAD) by eliminating non-correlated nodule candidates. Sixty-one low exposure posterior projections were acquired from more than 20 human subjects with small angular separations (0.32 degree) over a range of 20 degrees along the vertical axis. All patients were previously diagnosed for the presence of lung nodules based on computed tomography (CT) examination. Images were processed following two steps. First, all images were analyzed using our CAD routine for chest radiography. This process proceeded with a BCI processing in which the results of CAD on each single projection were examined in terms of their geometrical correlation with those found in the other 60 projections based on the predetermined shift of possible nodule locations in each projection. The suspect entities with a geometrical correlation that coincided with the known location of the lesions were selected as nodules; otherwise they were ignored. An expert radiologist with reference to the associated CT dataset determined the truth regarding nodule location and sizes, which were then used to determine if the found nodules are true positive or false positive. The preliminary results indicated that the best performance was obtained when the angular separation of the projection pair was greater than about 6.7 degrees. Within the range of optimum angular separation, the number of FPs per image was 0-1 without impacting the number of true positives (TPs), averaged around 92%.

  9. Image Correlation Applied to Single Crystal Plasticity Experiments and Comparison to Strain Gage Data

    SciTech Connect

    LeBlanc, M M; Florando, J N; Lassila, D H; Schmidt, T; Tyson II, J

    2005-06-29

    Full-field optical techniques are becoming increasingly popular for measuring the deformation of materials, especially in materials that exhibit non-uniform behavior. While there are many full-field techniques available (e.g. moire interferometry, electronic speckle pattern interferometry (ESPI), holography, and image correlation [1]), for our study of the deformation of single crystals, the image correlation technique was chosen for its insensitivity to vibrations and ability to measure large strains. While the theory and development of the algorithms for image correlation have been presented elsewhere [2,3] a comparative study to a conventional strain measurement device, such as a strain gage rosette, is desired to test the robustness and accuracy of the technique. The 6 Degrees of Freedom (6DOF) experiment, which was specifically designed to validate dislocation dynamics (DD) simulations [4], is ideally suited to compare the two methods. This experiment is different from previous experiments on single crystals in that it allows the crystal to deform essentially unconstrained, in both the elastic and plastic regimes, by allowing the bottom of the sample to move as the sample is being compressed. This unconstrained motion prevents the internal crystal planes from rotating during the deformation as typically seen in the pioneering work of Schmid [5] and Taylor [6]. In the early development of the 6DOF apparatus, stacked strain gage rosettes were used to provide the strain data [7]. While very accurate at small strains, strain gages provide an averaged measurement over a small area and cannot be used to measure the inhomogeneous plastic strains that typically occur during the 6DOF experiment. An image correlation technique can measure the full-field in-plane and out-of-plane deformation that occurs in single crystals, and a comparison to the strain gage data at small strains can test the accuracy of the method.

  10. Respiratory acidosis

    MedlinePlus

    ... when the lungs cannot remove all of the carbon dioxide the body produces. This causes body fluids, especially ... Acute respiratory acidosis is a condition in which carbon dioxide builds up very quickly, before the kidneys can ...

  11. A new simultaneous compression and encryption method for images suitable to recognize form by optical correlation

    NASA Astrophysics Data System (ADS)

    Alfalou, Ayman; Elbouz, Marwa; Jridi, Maher; Loussert, Alain

    2009-09-01

    In some recognition form applications (which require multiple images: facial identification or sign-language), many images should be transmitted or stored. This requires the use of communication systems with a good security level (encryption) and an acceptable transmission rate (compression rate). In the literature, several encryption and compression techniques can be found. In order to use optical correlation, encryption and compression techniques cannot be deployed independently and in a cascade manner. Otherwise, our system will suffer from two major problems. In fact, we cannot simply use these techniques in a cascade manner without considering the impact of one technique over another. Secondly, a standard compression can affect the correlation decision, because the correlation is sensitive to the loss of information. To solve both problems, we developed a new technique to simultaneously compress & encrypt multiple images using a BPOF optimized filter. The main idea of our approach consists in multiplexing the spectrums of different transformed images by a Discrete Cosine Transform (DCT). To this end, the spectral plane should be divided into several areas and each of them corresponds to the spectrum of one image. On the other hand, Encryption is achieved using the multiplexing, a specific rotation functions, biometric encryption keys and random phase keys. A random phase key is widely used in optical encryption approaches. Finally, many simulations have been conducted. Obtained results corroborate the good performance of our approach. We should also mention that the recording of the multiplexed and encrypted spectra is optimized using an adapted quantification technique to improve the overall compression rate.

  12. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts.

    PubMed

    Kraemmer, Julia; Kovacs, Gabor G; Perju-Dumbrava, Laura; Pirker, Susanne; Traub-Weidinger, Tatiana; Pirker, Walter

    2014-12-01

    Dopamine transporter imaging is widely used for the differential diagnosis of parkinsonism. Only limited data are available on the relationship between striatal dopamine transporter binding and dopaminergic cell loss in the substantia nigra (SN). We analyzed postmortem SN cell counts in patients who had previously undergone dopamine transporter single-photon emission computed tomography (SPECT). Pathological diagnoses included Parkinson's disease (n = 1), dementia with Lewy bodies (n = 2), multiple system atrophy (n = 1), corticobasal degeneration (n = 2), atypical parkinsonism with multiple pathological conditions (n = 1), Alzheimer's disease (n = 1), and Creutzfeldt-Jakob disease (n = 1). [(12) (3) I]β-CIT SPECT had been performed in all subjects using a standardized protocol on the same triple-head gamma camera. The density of neuromelanin-containing and tyrosine hydroxylase-positive substantia nigra neurons/mm(2) was evaluated in paraffin-embedded tissue sections by morphometric methods. Mean disease duration at the time of dopamine transporter imaging was 2.3 years, and the mean interval from imaging to death was 29.3 months (range, 4-68 months). Visual analysis of dopamine transporter images showed reduced striatal uptake in all seven patients with neurodegenerative parkinsonism, but not in Alzheimer's and Creutzfeldt-Jakob disease cases. Averaged [(right+left)/2] striatal uptake was highly correlated with averaged SN cell counts (rs  = 0.98, P < 0.0005 for neuromelanin- and rs  = 0.96, P < 0.0005 for tyrosine hydroxylase-positive cells). Similar strong correlations were found in separate analyses for the right and left sides. Striatal dopamine transporter binding highly correlated with postmortem SN cell counts, confirming the validity of dopamine transporter imaging as an excellent in vivo marker of nigrostriatal dopaminergic degeneration. PMID:25048738

  13. Future Applications Using Return-Pulse Correlation from Imaging Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Rabine, David L.

    2000-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, wide-swath, digitization-only laser altimeter capable of collecting full return waveforms (i.e. echoes) from laser footprints ranging in diameter from 1 to 80 m across up to a 1 km wide data swath. The return waveform can be used to enhance the accuracy of laser ranging and to provide information about the vertical structure of vegetation and topography within each laser footprint. Although extremely small laser footprints (< 1 0 cm diameter) generally return simple, impulse responses to their target surface, larger footprints typically exhibit complex returns representing the diverse vertical distributions of surfaces contained in each footprint. Only a handful of airborne and spaceborne laser altimeters record the return echo or return pulse that is reflected from the Earth's surface (i.e. NASA's LVIS, SLA, VCL, and GLAS laser altimeters). Waveforms are currently interpreted to extract a timing or ranging point or points to represent the mean ground elevation or the vertical height of vegetation. But, recent progress using pulse shape correlation techniques shows promise for a variety of science applications involving change detection of surface topography and vegetation as well as potential for improving data processing by correlating images or crossovers to solve systematic biases. We show example correlation images from LVIS and discuss instrument design implications and potential science applications.

  14. MR imaging correlates of white-matter pathology in a preterm baboon model

    PubMed Central

    Griffith, Jennifer L; Shimony, Joshua S; Cousins, Stephanie A; Rees, Sandra E; McCurnin, Donald C; Inder, Terrie E; Neil, Jeffrey J

    2013-01-01

    Introduction Cerebral white matter (WM) abnormalities on magnetic resonance imaging (MRI) correlate with neurodevelopmental disability in infants born prematurely. Methods We assessed the histopathological correlates of MRI abnormalities in a baboon model of premature birth. Baboons were delivered at 125 days gestation (dg, term ~ 185 dg) and maintained in an animal intensive care unit for 14 (n = 26) or 28 days (n = 17). Gestational control animals were delivered at 140 dg (n = 9) or 153 dg (n = 4). Cerebral WM in fixed brains was evaluated using MRI, diffusion tensor imaging (DTI), and histopathology. Results Quantitative histological measures of WM and ventricular volumes correlated with qualitative MRI scores of WM volume loss and ventriculomegaly. Diffuse astrocytosis was associated with signal abnormality on T2-weighted imaging and higher apparent diffusion coefficient in WM. Loss of oligodendrocytes was associated with lower relative anisotropy characterized by higher radial diffusivity values. The relationship between histopathology and MRI abnormalities was more pronounced in animals in the 28 d model, equivalent to the term human infant. Discussion MRI reflects microstructural and anatomical abnormalities that are characteristic of WM injury in the preterm brain, and these changes are more evident on MRI at term equivalent postmenstrual age. PMID:22258130

  15. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography.

    PubMed

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope = 1.00, R(2) = 1.00, and p < 10(-5) in simulation and regression slope ≥ 0.97, R(2) ≥ 0.96, and p < 10(-3) in phantom. These results exhibit promise of our ncDCT technique for 3-D imaging of deep tissue blood flow heterogeneities. PMID:24737919

  16. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    SciTech Connect

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope = 1.00, R{sup 2} = 1.00, and p < 10{sup −5} in simulation and regression slope ≥ 0.97, R{sup 2} ≥ 0.96, and p < 10{sup −3} in phantom. These results exhibit promise of our ncDCT technique for 3-D imaging of deep tissue blood flow heterogeneities.

  17. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-01

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope = 1.00, R2 = 1.00, and p < 10-5 in simulation and regression slope ≥ 0.97, R2 ≥ 0.96, and p < 10-3 in phantom. These results exhibit promise of our ncDCT technique for 3-D imaging of deep tissue blood flow heterogeneities.

  18. In Vivo Imaging of the Photoreceptor Mosaic in Retinal Dystrophies and Correlations with Visual Function

    PubMed Central

    Choi, Stacey S.; Doble, Nathan; Hardy, Joseph L.; Jones, Steven M.; Keltner, John L.; Olivier, Scot S.; Werner, John S.

    2008-01-01

    Purpose To relate in vivo microscopic retinal changes to visual function in patients who have various forms of retinal dystrophy. Methods The UC Davis Adaptive Optics (AO) fundus camera was used to acquire in vivo retinal images at the cellular level. Visual function tests consisting of visual fields, multifocal electroretinography (mfERG), and contrast sensitivity were measured in all subjects by using stimuli that were coincident with areas imaged. Five patients with different forms of retinal dystrophy and three control subjects were recruited. Cone densities were quantified for all retinal images. Results In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were apparent in patients with retinal dystrophy. There were significant correlations between functional vision losses and the extent to which these irregularities, quantified by cone density, occurred in retinal images. Conclusions AO fundus imaging is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests provide borderline or ambiguous results, as it allows visualization of individual photoreceptors. PMID:16639019

  19. Azimuth correlator for real-time synthetic aperture radar image processing

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1979-01-01

    An azimuth correlator architecture is defined wherein a number of serial range-line buffer memories are cascaded such that the output stages of all buffer memories together form a complete and unique range bin in the azimuthal dimension at any given time. A range bin is automatically read out of the last stages of the registers in parallel on a range line sample-by-sample basis for subsequent range migration correction and correlation. Range migration correction is performed on the range bins by effectively varying the length of a delay register at the output of each range-line buffer memory. The corrected range bin output from the delay registers is then correlated with a Doppler reference function to form an image element on a real-time basis.

  20. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. PMID:26206941

  1. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    PubMed

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space. PMID:12814580

  2. Multilingual information identification and extraction from imaged documents using optical correlator

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Brower, James; Vaughn, Lou; Vertuno, Mike

    2002-11-01

    Most organizations usually have large archives of paper documents that they maintain. These archives typically contain valuable information and data, which are imaged to provide electronic access. However, once a document is either printed or imaged, these organizations had no efficient method of retrieving information from these documents. The only methods available to retrieve information from them were to either manually read them or to convert them to ASCII text using optical character recognition (OCR). For most of the archives with large numbers of documents, these methods are problematic. Manual searches are not feasible. OCR, on the other hand, can be CPU intensive and prone to error. In addition, for many foreign languages, OCR engines do not exist. By contrast, our system provides an innovative approach to the problem of retrieving information from imaged document archives utilizing a client/server architecture. Since its beginning in 1999, we have made significant advances in the development of a system that employs optical correlation (OC) technology (either software or hardware) to access directly the textual and graphic information contained in imaged paper documents therefore eliminating the OCR process. It provides a fast, accurate means of accessing this information directly from multilingual documents. In addition, our system can also rapidly and accurately detect the presence of duplicate documents within an archive using optical correlation techniques. In this paper, we describe the present system and selected examples of its capabilities. We also present some performance results (accuracy, speed, etc.) against test document sets.

  3. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  4. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGESBeta

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  5. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    SciTech Connect

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; Wang, Jiangwei; Liu, Yang; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for the analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.

  6. Lymphoma of the mediastinum and neck: Evaluation with Ga-67 imaging and CT correlation

    SciTech Connect

    Drossman, S.R.; Schiff, R.G.; Kronfeld, G.D.; McNamara, J.; Leonidas, J.C. )

    1990-01-01

    The role of gallium-67 in the differentiation between active disease and fibrotic changes in patients with childhood lymphoma involving the mediastinum and neck was evaluated prospectively. Ga-67 imaging and computed tomography (CT) were correlated with clinical findings at the time of initial presentation and follow-up in 19 patients. Both modalities enabled detection of active disease on all occasions, but CT results were false-positive for residual disease in 10 patients (53%), whereas Ga-67 imaging results were false-positive in only one patient (5%). Neither modality, however, proved accurate in patients with rebound thymic hyperplasia. Ga-67 imaging is a useful tool for assessing response to therapy in children with lymphoma of the mediastinum and neck.

  7. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  8. A method for correlating in vivo prostate magnetic resonance imaging and histopathology using individualized magnetic resonance -based molds

    NASA Astrophysics Data System (ADS)

    Shah, Vijay; Pohida, Thomas; Turkbey, Baris; Mani, Haresh; Merino, Maria; Pinto, Peter A.; Choyke, Peter; Bernardo, Marcelino

    2009-10-01

    A method for the design and rapid manufacture of a patient specific tissue slicing device based on in vivo images in order to facilitate the process of correlating the images with histopathology is presented. The method is applied to radical prostatectomy specimens where the customized mold is designed using magnetic resonance (MR) images of each patient obtained prior to surgery. In this case, the mold holds the prostate in place while a knife with a single blade or multiple blades is inserted in slots which are positioned to obtain tissue blocks corresponding to the slices in the MR images. The resulting histological specimens demonstrate good anatomical correlation with the MR images.

  9. NOTE: A comparison of image registration techniques for the correlation of radiolabelled antibody distribution with tumour morphology

    NASA Astrophysics Data System (ADS)

    Flynn, A. A.; Green, A. J.; Boxer, G.; Pedley, R. B.; Begent, R. H. J.

    1999-07-01

    Image registration is a powerful tool for correlating functional images with images of anatomical structure. This facilitates more accurate quantitation of regional radiopharmaceutical uptake. Similarly, registration of images of radiolabelled antibody distribution, in tissue sections, with the equivalent histological images allows the comparison and measurement of radiopharmaceutical distribution with morphological structure. The images used were obtained by storage phosphor plate technology, for the radiopharmaceutical distribution, and by digitization of the stained histological sections. Here we compare four fully automatic registration techniques and one manual technique in terms of their spatial accuracy. We have found that there was no difference in accuracy between cross-correlation, minimization of variance and mutual information. These techniques were more accurate than principal axes and the manual technique. However, minimization of variance and mutual information were more time-consuming than the other methods. Consequently, cross-correlation is the method of choice for automatic registration of large numbers of these image pairs.

  10. Imaging features of primary anorectal gastrointestinal stromal tumors with clinical and pathologic correlation

    PubMed Central

    Koch, M.R.; Jagannathan, J.P.; Krajewski, K.M.; Raut, C.P.; Hornick, J.L.; Ramaiya, N.H.

    2012-01-01

    Abstract Purpose: To evaluate the imaging features of anorectal gastrointestinal stromal tumors (GISTs) with clinical and histopathologic correlation. Materials and methods: In this Institutional Review Board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study, 16 patients (12 men; mean age 66 years (30–89 years)) with pathologically proven anorectal GISTs seen at our institution from January 2001 to July 2011 were identified. Electronic medical records were reviewed to obtain clinical data. Pretreatment imaging studies (computed tomography (CT) in 16 patients, magnetic resonance imaging (MRI) in 9 patients and fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT in 8 patients) were evaluated by 2 radiologists until consensus. The location, size and imaging features of the primary tumor and metastases at presentation, if any, were recorded, and correlated with clinical data and pathologic features (histologic type, presence of necrosis, mitotic activity, risk category, immunohistochemical profile). Results: The mean tumor size was 6.9 × 6.0 cm. Of the 16 tumors, 11 (68.7%) were infralevator, 4 (25%) supra and infralevator and 1 (6.3%) supralevator; 9 (56.2%) were exophytic, 6 (37.5%) both exophytic and intraluminal, and 1 (6.3%) was intraluminal. The tumors were iso- to minimally hypoattenuating to muscle on CT, iso- to minimally hypointense on T1-weighted images, hyperintense on T2-weighted images and showed variable enhancement. Necrosis was seen in 4 (25%), and hemorrhage and calcification in 2 (12.5%) patients each. The tumors were FDG avid with a mean maximum standardized uptake value of 11 (8.4–16.8). All tumors were positive for KIT and CD34. Distant metastasis to liver was seen in 1 patient (6.3%) at presentation. Conclusion: Anorectal GISTs are well-circumscribed, non-circumferential, predominantly infralevator, intramural or exophytic, FDG-avid, hypoattenuating masses, and present without

  11. Neuroanatomical Correlates of Theory of Mind Deficit in Parkinson’s Disease: A Multimodal Imaging Study

    PubMed Central

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Gómez-Beldarrain, María Ángeles; Gómez-Esteban, Juan Carlos; Ibarretxe-Bilbao, Naroa

    2015-01-01

    Background Parkinson’s disease (PD) patients show theory of mind (ToM) deficit since the early stages of the disease, and this deficit has been associated with working memory, executive functions and quality of life impairment. To date, neuroanatomical correlates of ToM have not been assessed with magnetic resonance imaging in PD. The main objective of this study was to assess cerebral correlates of ToM deficit in PD. The second objective was to explore the relationships between ToM, working memory and executive functions, and to analyse the neural correlates of ToM, controlling for both working memory and executive functions. Methods Thirty-seven PD patients (Hoehn and Yahr median = 2.0) and 15 healthy controls underwent a neuropsychological assessment and magnetic resonance images in a 3T-scanner were acquired. T1-weighted images were analysed with voxel-based morphometry, and white matter integrity and diffusivity measures were obtained from diffusion weighted images and analysed using tract-based spatial statistics. Results PD patients showed impairments in ToM, working memory and executive functions; grey matter loss and white matter reduction compared to healthy controls. Grey matter volume decrease in the precentral and postcentral gyrus, middle and inferior frontal gyrus correlated with ToM deficit in PD. White matter in the superior longitudinal fasciculus (adjacent to the parietal lobe) and white matter adjacent to the frontal lobe correlated with ToM impairment in PD. After controlling for executive functions, the relationship between ToM deficit and white matter remained significant for white matter areas adjacent to the precuneus and the parietal lobe. Conclusions Findings reinforce the existence of ToM impairment from the early Hoehn and Yahr stages in PD, and the findings suggest associations with white matter and grey matter volume decrease. This study contributes to better understand ToM deficit and its neural correlates in PD, which is a basic

  12. Correlative analysis of breast lesions on full-field digital mammography and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Yading

    Multi-modality imaging techniques are increasingly being applied in clinical practice to improve the accuracy with which breast cancer can be diagnosed. However, interpreting images from different modalities is not trivial as different images of the same lesion may exhibit different physical lesion attributes, and currently the various image modality acquisitions are performed under different breast positioning protocols. The general objective of this research is to investigate computerized correlative feature analysis (CFA) methods for integrating information from full-field digital mammographic (FFDM) images and dynamic contrast-enhanced magnetic resonance (DCE-MR) images by taking advantage of the information from different imaging modalities, and thus improving the diagnostic ability of computer-aided diagnosis (CADx) in breast cancer workup. The main hypothesis to be tested is that by incorporating correlative feature analysis in CADx, one can achieve an accurate and efficient discrimination between corresponding and non-corresponding lesion pairs, and subsequently improve performance in the estimation of computer-estimated probabilities of malignancy. The main contributions of this research work are summarized as follows. (1) A novel active-contour model based algorithm was developed for lesion segmentation on mammograms. This new algorithm yielded a statistically improved segmentation performance as compared to previously developed methods: a region-growing method and a radial gradient index (RGI) based method. (2) A computerized feature-based, supervised-learning driven CFA method was investigated to identify corresponding lesions in different mammographic views. The performance obtained by combining multiple features was found to be statistically better than the use of a distance feature alone, and robust across different mammographic view combinations. (3) A multi-modality CADx method that automatically selects and combines discriminative information from

  13. Equine respiratory pharmacology.

    PubMed

    Foreman, J H

    1999-12-01

    Differentiation of diseases of the equine respiratory tract is based on history, clinical signs, auscultation, endoscopy, imaging, and sampling of airway exudate. Upper respiratory therapies include surgical correction of airway obstructions; flushing of localized abscesses (strangles), guttural pouch disease, or sinusitis; and oral or parenteral antibiotic and anti-inflammatory therapy if deemed necessary. Pneumonia usually is treated with antimicrobials, anti-inflammatories, and bronchodilators. Pleural drainage is indicated if significant pleural effusion is present. The most commonly used therapies for early inflammatory and chronic allergic obstructive conditions include bronchodilators and anti-inflammatories. Acute respiratory distress, particularly acute pulmonary edema, is treated with diuretics (usually furosemide), intranasal oxygen, bronchodilators, corticosteroids, and alleviation of the underlying cause. Furosemide also had been used in North America as a race-day preventative for exercise-induced pulmonary hemorrhage (EIPH), but recent data have shown that furosemide may be a performance-enhancing agent itself. PMID:10589473

  14. Detection of Prostate Cancer: Quantitative Multiparametric MR Imaging Models Developed Using Registered Correlative Histopathology.

    PubMed

    Metzger, Gregory J; Kalavagunta, Chaitanya; Spilseth, Benjamin; Bolan, Patrick J; Li, Xiufeng; Hutter, Diane; Nam, Jung W; Johnson, Andrew D; Henriksen, Jonathan C; Moench, Laura; Konety, Badrinath; Warlick, Christopher A; Schmechel, Stephen C; Koopmeiners, Joseph S

    2016-06-01

    Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34

  15. Measuring water velocity using DIDSON and image cross-correlation techniques

    SciTech Connect

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    2009-08-01

    To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof

  16. Statistical correlation of low-altitude ENA emissions with geomagnetic activity from IMAGE/MENA observations

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.-M.; Perez, J. D.; Pollock, C. J.; Valek, P. W.

    2016-03-01

    Plasma sheet particles transported Earthward during times of active magnetospheric convection can interact with exospheric/thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low-altitude (300-800 km) ion precipitation in the high-latitude atmosphere/ionosphere are termed low-altitude emissions (LAEs). Remotely observed LAEs are highly nonisotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90°. The Geomagnetic Emission Cone of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity. The LAE data are from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000-2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest sensitivity. The magnetic local time distribution of LAEs is centered about midnight and spreads with increasing activity. The invariant latitude for all indices has a slightly negative correlation. The combined results indicate LAE behavior similar to that of ion precipitation.

  17. Neural correlates of anxiety sensitivity in panic disorder: A functional magnetic resonance imaging study.

    PubMed

    Poletti, Sara; Radaelli, Daniele; Cucchi, Michele; Ricci, Liana; Vai, Benedetta; Smeraldi, Enrico; Benedetti, Francesco

    2015-08-30

    Panic disorder has been associated with dysfunctional neuropsychological dimensions, including anxiety sensitivity. Brain-imaging studies of the neural correlates of emotional processing have identified a network of structures that constitute the neural circuitry for emotions. The anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC) and insula, which are part of this network, are also involved in the processing of threat-related stimuli. The aim of the study was to investigate if neural activity in response to emotional stimuli in the cortico-limbic network is associated to anxiety sensitivity in panic disorder. In a sample of 18 outpatients with panic disorder, we studied neural correlates of implicit emotional processing of facial affect expressions with a face-matching paradigm; correlational analyses were performed between brain activations and anxiety sensitivity. The correlational analyses performed showed a positive correlation between anxiety sensitivity and brain activity during emotional processing in regions encompassing the PFC, ACC and insula. Our data seem to confirm that anxiety sensitivity is an important component of panic disorder. Accordingly, the neural underpinnings of anxiety sensitivity could be an interesting focus for treatment and further research. PMID:26071623

  18. Interferences, ghost images and other quantum correlations according to stochastic optics

    SciTech Connect

    Fonseca da Silva, Luciano; Dechoum, Kaled

    2012-09-15

    There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: Black-Right-Pointing-Pointer We analyse some quantum correlations in the light of stochastic optics. Black-Right-Pointing-Pointer We study how vacuum fluctuations can rule quantum correlations. Black-Right-Pointing-Pointer Many criteria cannot be considered a boundary between quantum and classical theories. Black-Right-Pointing-Pointer Non-locality is a misused term in relation to many observed experiments.

  19. Correlative cathodoluminescence and near-infrared fluorescence imaging for bridging from nanometer to millimeter scale bioimaging.

    PubMed

    Niioka, H; Fukushima, S; Ichimiya, M; Ashida, M; Miyake, J; Araki, T; Hashimoto, M

    2014-11-01

    Correlative light and electron microscopy (CLEM) is one attractive method of observing biological specimens because it combines the advantages of both light microscopy (LM) and electron microscopy (EM). In LM, specimens are fully hydrated, and molecular species are distinguished based on the fluorescence colors of probes. EM provides both high-spatial-resolution images superior to those obtained with LM and ultrastructural information of cellular components. The combination of LM and EM gives much more information than either method alone, which helps us to analyze cellular function in more detail.We propose a Y2O3:Tm,Yb phosphor nanoparticle which allows upconversion luminescence (UCL) imaging with near-infrared (NIR) light excitation and cathodoluminescence (CL) imaging [1], where the light emission induced by an electron beam is called cathodoluminescence (CL). Due to electron beam excitation, the spatial resolution of CL microscopy is on the order of nanometers [2,3]. Upconversion is a process in which lower energy, longer wavelength excitation light is transduced to higher energy, shorter wavelength emission light. So far, in LM observation for CLEM, ultraviolet (UV) or visible light has been used for excitation. However, UV and visible light have limited ability to observe deep tissue regions due to absorption, scattering, and autofluorescence. On the other hand, NIR light does not suffer from these problems. Rare-earth-doped upconversion nanophosphors have been applied to biological imaging because of the advantages of NIR excitation [4].We investigated the UCL and CL spectra of Y2O3:Tm,Yb nanophosphors. Y2O3:Tm,Yb nanophosphors that emit visible and near-infrared UCL under 980nm irradiation and blue CL via electron beam excitation. To confirm bimodality of our nanophosphors, correlative UCL/CL images of the nanophosphors were obtained for the same region. The nanophosphors were poured onto a P doped Si substrate (Fig. 1(a)) and were irradiated with 980 nm

  20. The change in differing leukocyte populations during vaccination to bovine respiratory disease and their correlations with lung scores, health records, and average daily gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine Respiratory Disease (BRD) is the most economically important disease in U.S. feedlots. Infection can result in morbidity, mortality, and reduced average daily gain. Cheap and reliable genetic methods of prediction and (or) protection from BRD would be highly advantageous to the industry. T...

  1. The kinetics of white blood cell counts during vaccination against bovine respiratory disease pathogens and their correlations with lung lesions, diagnosis and average daily gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine Respiratory Disease (BRD) is the most common disease within US feedlots. Infection can result in morbidity, mortality and reduced average daily gain. The discovery of cheap and reliable methods of prediction and/or protection would be highly advantageous to both breeders and farmers. Cattle (...

  2. Correlation map analysis between appearances of Japanese facial images and amount of melanin and hemoglobin components in the skin

    NASA Astrophysics Data System (ADS)

    Tsumura, Norimichi; Uetsuki, Keiji; Ojima, Nobutoshi; Miyake, Yoichi

    2001-06-01

    Skin color reproduction becomes increasingly important with the recent progress in various imaging systems. In this paper, based on subjective experiments, correlation maps are analyzed between appearance of Japanese facial images and amount of melanin and hemoglobin components in the facial skin. Facial color images were taken by digital still camera. The spatial distributions of melanin and hemoglobin components in the facial color image were separated by independent component analysis of skin colors. The separated components were synthesized to simulate the various facial color images by changing the quantities of the two separated pigments. The synthesized images were evaluated subjectively by comparing with the original facial images. From the analysis of correlation map, we could find the visual or psychological terms that are well related to melanin components influence the appearance of facial color image.

  3. Correlative nanoscale 3D imaging of structure and composition in extended objects.

    PubMed

    Xu, Feng; Helfen, Lukas; Suhonen, Heikki; Elgrabli, Dan; Bayat, Sam; Reischig, Péter; Baumbach, Tilo; Cloetens, Peter

    2012-01-01

    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies. PMID:23185554

  4. Hyperspectral image correlation for monitoring membrane protein dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Davis, Ryan W.; Carson, Bryan; Jones, Howland D. T.; Sinclair, Michael B.

    2009-02-01

    Temporal image correlation provides a powerful fluorescence technique for measuring several biologically relevant parameters of molecules in living cells. These parameters include, but are not limited to local concentrations, diffusion dynamics, and aggregation states of biomolecules. However, the complex cellular environment presents several limitations, precluding high quantitative accuracy and constraining biological implementation. In order to address these issues, high speed spectral imaging was employed to compare the results of image correlation from spectrally unmixed and virtually implemented fluorescence emission filters. Of particular interest in this study is the impact of cellular autofluorescence, which is ubiquitous in fluorescence imaging of cells and tissues. Using traditional instrumentation, corrections for autofluorescence are commonly estimated as a static offset collected from a separate control specimen. While this may be sufficient in highly homogenous regions of interest, the low analyte concentrations requisite to fluctuation-based methods result in the potential for unbounded error resulting from spectral cross-talk between local autofluorescence inhomogeneities and the fluorescence signal of interest. Thus we demonstrate the importance of accurate autofluorescence characterization and discuss potential corrections using a case study focusing on fluorescence confocal spectral imaging of immune cells before and after stimulation with lipopolysaccheride (LPS). In these experiments, binding of LPS to the membrane receptor, YFP-TLR4, is observed to result in initiation of the immune response characterized by altered receptor diffusion dynamics and apparent heterogeneous aggregation states. In addition to characterizing errors resulting from autofluorescence spectral bleed-through, we present data leading to a deeper understanding of the molecular dynamics of the immune response and suggest hypotheses for future work utilizing hyperspectrally

  5. Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    PubMed Central

    Xu, Feng; Helfen, Lukas; Suhonen, Heikki; Elgrabli, Dan; Bayat, Sam; Reischig, Péter; Baumbach, Tilo; Cloetens, Peter

    2012-01-01

    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies. PMID:23185554

  6. Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.

    2012-02-01

    Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.

  7. Correlative intravital imaging of cGMP signals and vasodilation in mice

    PubMed Central

    Thunemann, Martin; Schmidt, Kjestine; de Wit, Cor; Han, Xiaoxing; Jain, Rakesh K.; Fukumura, Dai; Feil, Robert

    2014-01-01

    Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism. PMID:25352809

  8. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation