Science.gov

Sample records for restore circadian food

  1. Oxyntomodulin regulates resetting of the liver circadian clock by food.

    PubMed

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. PMID:25821984

  2. Timed food availability affects circadian behavior but not the neuropeptide Y expression in Indian weaverbirds exposed to atypical light environment.

    PubMed

    Singh, Devraj; Trivedi, Neerja; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2016-07-01

    We tested the hypothesis whether daily food availability period would restore rhythmicity in individuals with disrupted circadian behavior with no effect on appetite regulation. Particularly, we investigated the effects of timed food availability on activity behavior, and Fos and neuropeptide Y expressions in Indian weaverbirds (Ploceus philippinus) under atypical light conditions. Initially, weaverbirds in 3 groups of 7-8 each were entrained to 7L:17D (25: <0.3lx) with food ad libitum. Thereafter, food availability was restricted for 7h such that it overlapped with the light period. After a week, 7L:17D was replaced with 3.5L: 3.5D (T7, group 1), 3.5L: 20.5D (T24, group 2) or constant dim light, LLdim (<0.3lx, group 3) for 5weeks. Food cycles synchronized the circadian activity behavior, albeit with group differences, but did not affect body mass, blood glucose levels or testis size. Further, Fos, not NPY mRNA or peptide, expression measured at ZT2 and ZT14 (ZT0=time of food given) showed significant group differences in the hippocampus, dorsomedial hypothalamus and infundibular nuclear complex. Another identical experiment examined after-effects of the 3 light conditions on persistence of the circadian rhythms. Weaverbirds exposed for 4weeks to identical food but different light conditions, as above, were released into the free-running condition of food ad libitum and LLdim. Circadian rhythms were decayed in birds previously exposed to T7 LD cycle. Overall, these results show that timed meal restores rhythmicity in individuals with circadian rhythm disruptions without involving neuropeptide Y, the key appetite regulatory molecule. PMID:27085910

  3. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila

    PubMed Central

    Rakshit, Kuntol; Giebultowicz, Jadwiga M.

    2013-01-01

    Summary Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two-way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age-related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age-related changes are not understood. We report that the circadian light-sensitive protein CRYPTOCHROME (CRY), is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. WE also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti-aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging. PMID:23692507

  4. Spatial Memory and Long-Term Object Recognition Are Impaired by Circadian Arrhythmia and Restored by the GABAAAntagonist Pentylenetetrazole

    PubMed Central

    Ruby, Norman F.; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H. Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopussungorus) so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus. PMID:24009680

  5. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.

    PubMed

    Bradley, Sean P; Prendergast, Brian J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce. PMID:24666779

  6. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters

    PubMed Central

    Bradley, Sean P.; Prendergast, Brian J.

    2014-01-01

    Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9 h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5 h interval of the light phase. Running wheel activity occurring within a 3 h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce. PMID:24666779

  7. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.

    PubMed

    Petersen, Christian C; Patton, Danica F; Parfyonov, Maksim; Mistlberger, Ralph E

    2014-12-01

    Rats can anticipate a daily feeding time. This has been interpreted as a rhythm controlled by food-entrainable circadian oscillators, because the rhythm persists during several cycles of total food deprivation and fails to track mealtimes if the feeding schedule deviates substantially from 24. These and other properties distinguish anticipation of daily meals from anticipation of food rewards provided at intervals in the seconds-to-minutes range, suggesting distinct mechanisms. It has been reported that rats can anticipate meals at long, but noncircadian, intervals if they are required to work for food, and that anticipation of daily meals, expressed in operant behavior, shows the scalar property, a hallmark of timing intervals in the seconds-to-minutes range. These observations raise the possibility of a universal timing system, rather than unique mechanisms for circadian and noncircadian intervals. To test whether circadian constraints on daily meal timing depend on the measure of behavior, we re-examined formal properties of food anticipation using lever pressing and motion sensors. We observed robust anticipation in both measures to meals at 24-hr intervals but no anticipation of meals at 18-hr intervals in light-dark or constant light and no evidence that the duration of anticipation scales with the interval between lighting transitions and mealtime. We are therefore unable to confirm reports that operant measures can reveal timing at long, but noncircadian, intervals. If timing processes exist that do permit anticipation of events at long, but noncircadian, intervals, the conditions under which these can be revealed are evidently highly constrained. PMID:25285457

  8. Vasopressin deficiency and circadian rhythms during food-restriction stress.

    PubMed

    Murphy, H M; Wideman, C H; Nadzam, G R

    1993-01-01

    Vasopressin-containing, Long-Evans (LE) rats and vasopressin-deficient, Brattleboro (DI) rats were monitored for activity and core body temperature via telemetry. Rats were exposed to a 12-12 light-dark cycle and allowed to habituate with ad lib access to food and water. The habituation period was followed by an experimental period of 23 h of food-restriction stress in which a 1-h feeding period was provided during the light cycle. Although both strains of animals showed nocturnal activity and temperature rhythms during the habituation period, DI rats were more active than LE rats. The DI rats also had a lower body temperature in the dark. During the experimental period, both strains exhibited a phase shift of activity and body temperature correlating with the presentation of food. The DI rats developed a diurnal shift more rapidly than LE rats. The DI animals showed a dramatic increase in activity during the light phase and a marked decrease in body temperature during the dark phase. The LE animals showed a significant attenuation of activity, but maintained both nocturnal and diurnal temperature peaks throughout the food-restricted condition. PMID:8134303

  9. A Circadian Clock in the Olfactory Bulb Anticipates Feeding during Food Anticipatory Activity

    PubMed Central

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents. PMID:23094084

  10. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer’s disease?

    PubMed Central

    Kent, Brianne A.

    2014-01-01

    Alzheimer’s disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD. PMID:25225484

  11. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's disease?

    PubMed

    Kent, Brianne A

    2014-01-01

    Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD. PMID:25225484

  12. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats.

    PubMed

    Wideman, Cyrilla H; Murphy, Helen M

    2009-10-01

    Melatonin levels, metabolic parameters, circadian rhythm activity patterns, and behavior were observed in rats subjected to a 12-h/12-h light/dark cycle (LD) compared to animals exposed to continuous dark (DD) or continuous light (LL). LD and DD animals were similar in melatonin levels, food intake, relative food intake, feed efficiency, water intake, circadian activity levels, and behavior. LL animals had lower melatonin levels in the subjective dark compared to LD and DD animals. Food intake, relative food intake, and water intake values were lower and feed efficiency was more positive in LL animals compared to LD and DD animals. In addition, LL animals exhibited greater visceral adiposity than the other two groups. The circadian rhythmicity of activity became free-running in LL animals and there was a decrease in overall activity. Notable behavioral changes in LL animals were an increase in irritability and excitability. Results indicate that a decrease in melatonin levels and concomitant changes in metabolism, circadian rhythms, and behavior are consequences of exposure to constant light. PMID:19761654

  13. The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability

    PubMed Central

    Munn, Robert G. K.; Tyree, Susan M.; McNaughton, Neil; Bilkey, David K.

    2015-01-01

    The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal’s regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of

  14. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes.

    PubMed

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  15. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    PubMed Central

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  16. Eplerenone restores 24-h blood pressure circadian rhythm and reduces advanced glycation end-products in rhesus macaques with spontaneous hypertensive metabolic syndrome

    PubMed Central

    Zhang, Yan; Zheng, Wen; Liu, Yuli; Wang, Jue; Peng, Ying; Shang, Haibao; Hou, Ning; Hu, Xiaomin; Ding, Yi; Xiao, Yao; Wang, Can; Zeng, Fanxin; Mao, Jiaming; Zhang, Jun; Ma, Dongwei; Sun, Xueting; Li, Chuanyun; Xiao, Rui-Ping; Zhang, Xiuqin

    2016-01-01

    Hypertension is often associated with metabolic syndrome (MetS), and serves as a risk factor of MetS and its complications. Blood pressure circadian rhythm in hypertensive patients has been suggested to contribute to cardiovascular consequences and organ damage of hypertension. But circadian changes of BP and their response to drugs have not been clearly investigated in non-human primates (NHPs) of MetS with hypertension. Here, we identified 16 elderly, hypertensive MetS rhesus monkeys from our in-house cohort. With implanted telemetry, we investigate BP changes and its circadian rhythm, together with the effect of antihypertensive drugs on BP and its diurnal fluctuation. MetS hypertensive monkeys displayed higher BP, obesity, glucose intolerance, and dyslipidemia. We also confirmed impaired 24-h BP circadian rhythm in MetS hypertensive monkeys. Importantly, Eplerenone, a mineralocorticoid receptor blocker, exerts multiple beneficial effects in MetS hypertensive monkeys, including BP reduction, 24-h BP circadian rhythm restoration, and decreased plasma concentration of inflammation factors and advanced glycation end-products. In summary, we identified a naturally-developed hypertensive MetS NHP model, which is of great value in the studies on pathogenesis of MetS-associated hypertension and development of novel therapeutic strategies. We also provided multiple novel mechanistic insights of the beneficial effect of Eplerenone on MetS with hypertension. PMID:27032687

  17. Is the food-entrainable circadian oscillator in the digestive system?

    NASA Technical Reports Server (NTRS)

    Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.

    2003-01-01

    Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.

  18. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice

    PubMed Central

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  19. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice.

    PubMed

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2016-01-01

    Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4-5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved. PMID:26757053

  20. Subsistence restoration project: Food safety testing. Exxon Valdez Oil Spill Restoration Project. Final report restoration project 94279

    SciTech Connect

    Miraglia, R.A.; Chartrand, A.W.

    1997-05-01

    The goal of this project was to restore the confidence of subsistence users in their abilities to determine the safety of their resources. Methods included community meetings, collection and testing of subsistence resources samples for hydrocarbon contamination, accompanying community representatives on tours of the laboratory where tests were conducted and informational newsletters. Over the two years of the project combined, 228 composite samples of edible tissues from shellfish were tested. The bile of forty rockfish, six sockeye salmon, twelve seals, twenty-three ducks were tested for the presence of hydrocarbon metabolites. Edible tissue (blubber) from seals was also tested. Generally, the tests showed such low levels of hydrocarbons and their metabolites, as to be within the test`s margin of error. The project was partly successful in disseminating the subsistence food safety advice of the Oil Spill Health Task Force and in improving the level of trust in the results of hydrocarbon tests on the resources.

  1. Circadian Rhythms

    MedlinePlus

    ... chronobiology. Are circadian rhythms the same thing as biological clocks? No, but they are related. Our biological clocks drive our circadian rhythms. What are biological clocks? The biological clocks that control circadian rhythms ...

  2. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  3. Developing a broader scientific foundation for river restoration: Columbia River food webs.

    PubMed

    Naiman, Robert J; Alldredge, J Richard; Beauchamp, David A; Bisson, Peter A; Congleton, James; Henny, Charles J; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N; Pearcy, William G; Rieman, Bruce E; Ruggerone, Gregory T; Scarnecchia, Dennis; Smouse, Peter E; Wood, Chris C

    2012-12-26

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management. PMID:23197837

  4. Developing a broader scientific foundation for river restoration: Columbia River food webs

    USGS Publications Warehouse

    Naiman, Robert J.; Alldredge, Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.

  5. Developing a broader scientific foundation for river restoration: Columbia River food webs

    PubMed Central

    Naiman, Robert J.; Alldredge, J. Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management. PMID:23197837

  6. Rev-erbα in the brain is essential for circadian food entrainment.

    PubMed

    Delezie, Julien; Dumont, Stéphanie; Sandu, Cristina; Reibel, Sophie; Pevet, Paul; Challet, Etienne

    2016-01-01

    Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability. PMID:27380954

  7. Rev-erbα in the brain is essential for circadian food entrainment

    PubMed Central

    Delezie, Julien; Dumont, Stéphanie; Sandu, Cristina; Reibel, Sophie; Pevet, Paul; Challet, Etienne

    2016-01-01

    Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability. PMID:27380954

  8. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows.

    PubMed

    Albrecht, Matthias; Duelli, Peter; Schmid, Bernhard; Müller, Christine B

    2007-09-01

    1. We studied the community and food-web structure of trap-nesting insects in restored meadows and at increasing distances within intensively managed grassland at 13 sites in Switzerland to test if declining species diversity correlates with declining interaction diversity and changes in food-web structure. 2. We analysed 49 quantitative food webs consisting of a total of 1382 trophic interactions involving 39 host/prey insect species and 14 parasitoid/predator insect species. Species richness and abundance of three functional groups, bees and wasps as the lower trophic level and natural enemies as the higher trophic level, were significantly higher in restored than in adjacent intensively managed meadows. Diversity and abundance of specific trophic interactions also declined from restored to intensively managed meadows. 3. The proportion of attacked brood cells and the mortality of bees and wasps due to natural enemies were significantly higher in restored than in intensively managed meadows. Bee abundance and the rate of attacked brood cells of bees declined with increasing distance from restored meadows. These findings indicate that interaction diversity declines more rapidly than species diversity in our study system. 4. Quantitative measures of food-web structure (linkage density, interaction diversity, interaction evenness and compartment diversity) were higher in restored than in intensively managed meadows. This was reflected in a higher mean number of host/prey species per consumer species (degree of generalism) in restored than in intensively managed meadows. 5. The higher insect species and interaction diversity was related to higher plant species richness in restored than in intensively managed meadows. In particular, bees and natural enemies reacted positively to increased plant diversity. 6. Our findings provide empirical evidence for the theoretical prediction that decreasing species richness at lower trophic levels should reduce species richness at

  9. The assembly, collapse and restoration of food webs

    USGS Publications Warehouse

    Dobson, Andy; Allesina, Stefano; Lafferty, Kevin; Pascual, Mercedes

    2009-01-01

    Darwin chose the metaphor of a 'tangled bank' to conclude the 'Origin of species'. Two centuries after Darwin's birth, we are still untangling the complex ecological networks he has pondered. In particular, studies of food webs provide important insights into how natural ecosystems function (Pascual & Dunne 2005). Although the nonlinear interactions between many species creates challenges of scale, resolution of data and significant computational constraints, the last 10 years have seen significant advances built on the earlier classic studies of Cohen, May, Pimm, Polis, Lawton and Yodzis (May 1974; Cohen 1978; Pimm 1982; Briand & Cohen 1984, 1987; Yodzis 1989; Cohen et al. 1990; Pimm et al. 1991; Yodzis & Innes 1992; Yodzis 1998). These gains stem from advances in computing power and the collation of more comprehensive data from a broader array of empirical food webs.

  10. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling.

    PubMed

    Mariman, Edwin C M; Bouwman, Freek G; Aller, Erik E J G; van Baak, Marleen A; Wang, Ping

    2015-06-01

    The hypothalamus is important for regulation of energy intake. Mutations in genes involved in the function of the hypothalamus can lead to early-onset severe obesity. To look further into this, we have followed a strategy that allowed us to identify rare and common gene variants as candidates for the background of extreme obesity from a relatively small cohort. For that we focused on subjects with a well-selected phenotype and on a defined gene set and used a rich source of genetic data with stringent cut-off values. A list of 166 genes functionally related to the hypothalamus was generated. In those genes complete exome sequence data from 30 extreme obese subjects (60 genomes) were screened for novel rare indel, nonsense, and missense variants with a predicted negative impact on protein function. In addition, (moderately) common variants in those genes were analyzed for allelic association using the general population as reference (false discovery rate<0.05). Six novel rare deleterious missense variants were found in the genes for BAIAP3, NBEA, PRRC2A, RYR1, SIM1, and TRH, and a novel indel variant in LEPR. Common variants in the six genes for MBOAT4, NPC1, NPW, NUCB2, PER1, and PRRC2A showed significant allelic association with extreme obesity. Our findings underscore the complexity of the genetic background of extreme obesity involving rare and common variants of genes from defined metabolic and physiologic processes, in particular regulation of the circadian rhythm of food intake and hypothalamic signaling. PMID:25805767

  11. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  12. [[The prevention of food wastage by restoring the value to food: reflections of an agroeconomist].

    PubMed

    Segré, Andrea

    2014-01-01

    Each year, about one trillion USD worth of food sales is lost or wasted. In addition to its economic impacts, food wastage has significant societal costs that are born indirectly by taxpayers. Should damage costs associated with food wastage be accounted for, this global wastage appears much higher. In fact, the monetization of environmental costs such as the impact of greenhouse gases, land erosion, water use and pollinators loss amnounts to another trillion USD. Furthermore, a valuation of social costs, such as health effects of pesticides, loss of livelihoods and conflicts over natural resources adds another trillion USD. Noteworthy is the fact that not all food wastage reduction strategies are equal in terms of environmental efficiency and reducing food wastage must be a priority over energy recovery fromn food wastage. As a case study, the Italian National Plan for Food Waste Prevention (PINPAS) aims at reducing food wastage upstream the food chain, will be considered. PINPAS also seeks to improve recovery measures of unsold food. As indicated in the Guidelines on the preparation of food waste prevention programmes by the European Commission, PINPAS engages all stakeholders of the agri-food chain, from policy makers to civil groups aid producers. The first action will be the reintroduction of food education at school. PMID:25558710

  13. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    PubMed Central

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  14. Morning Circadian Misalignment during Short Sleep Duration Impacts Insulin Sensitivity.

    PubMed

    Eckel, Robert H; Depner, Christopher M; Perreault, Leigh; Markwald, Rachel R; Smith, Mark R; McHill, Andrew W; Higgins, Janine; Melanson, Edward L; Wright, Kenneth P

    2015-11-16

    Short sleep duration and circadian misalignment are hypothesized to causally contribute to health problems including obesity, diabetes, metabolic syndrome, heart disease, mood disorders, cognitive impairment, and accidents. Here, we investigated the influence of morning circadian misalignment induced by an imposed short nighttime sleep schedule on impaired insulin sensitivity, a precursor to diabetes. Imposed short sleep duration resulted in morning wakefulness occurring during the biological night (i.e., circadian misalignment)-a time when endogenous melatonin levels were still high indicating the internal circadian clock was still promoting sleep and related functions. We show the longer melatonin levels remained high after wake time, insulin sensitivity worsened. Overall, we find a simulated 5-day work week of 5-hr-per-night sleep opportunities and ad libitum food intake resulted in ∼20% reduced oral and intravenous insulin sensitivity in otherwise healthy men and women. Reduced insulin sensitivity was compensated by an increased insulin response to glucose, which may reflect an initial physiological adaptation to maintain normal blood sugar levels during sleep loss. Furthermore, we find that transitioning from the imposed short sleep schedule to 9-hr sleep opportunities for 3 days restored oral insulin sensitivity to baseline, but 5 days with 9-hr sleep opportunities was insufficient to restore intravenous insulin sensitivity to baseline. These findings indicate morning wakefulness and eating during the biological night is a novel mechanism by which short sleep duration contributes to metabolic dysregulation and suggests food intake during the biological night may contribute to other health problems associated with short sleep duration. PMID:26549253

  15. Mitigating exotic impacts: restoring deer mouse populations elevated by an exotic food subsidy.

    PubMed

    Pearson, Dean E; Fletcher, Robert J

    2008-03-01

    The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool for restoring native deer mouse (Peromyscus maniculatus) populations elevated by exotic species. The exotic insects, Urophora spp., were introduced in North America for biological control of the Eurasian invader, spotted knapweed (Centaurea maculosa), but instead of controlling C. maculosa, Urophora have become an important food resource that doubles P. maniculatus populations, with substantial indirect effects on other organisms. We hypothesized that herbicide suppression of Urophora's host plant would reduce the Urophora food resource and restore P. maniculatus populations to natural levels. Prior to treatment, mouse populations did not differ between controls and treatments, but following treatment, P. maniculatus were half as abundant where treatment reduced Urophora. Peromyscus maniculatus is insensitive to direct herbicide effects, and herbicide-induced habitat changes could not explain the P. maniculatus response. Treatment-induced reductions of the Urophora food resource offered the most parsimonious explanation for the mouse response: Multistate mark-recapture models indicated that P. maniculatus survival declined where Urophora were removed, and survival rates were more correlated with variation in population size than movement rates. Other demographic and reproductive parameters (sex ratios, reproductive status, pregnancy rates, and juvenile recruitment) were unaffected by treatment. These results suggest the Urophora biocontrol elevated P. maniculatus survival, and the herbicide treatment restored mouse populations by removing the exotic food and reducing survival. This work illustrates the

  16. Arthropod food web restoration following removal of an invasive wetland plant.

    PubMed

    Gratton, Claudio; Denno, Robert F

    2006-04-01

    Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on

  17. Columbia River food webs: Developing a broader scientific foundation for river restoration

    USGS Publications Warehouse

    Alldredge, J. Richard; Beauchamp, David; Bisson, Peter A.; Congleton, James; Henny, Charles; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Naiman, Robert J.; Pearcy, William; Rieman, Bruce; Ruggerone, Greg; Scarnecchia, Dennis; Smouse, Peter; Wood, Chris C.

    2011-01-01

    The objectives of this report are to provide a fundamental understanding of aquatic food webs in the Columbia River Basin and to illustrate and summarize their influences on native fish restoration efforts. The spatial scope addresses tributaries, impoundments, the free-flowing Columbia and Snake rivers, as well as the estuary and plume. Achieving the Council's vision for the Columbia River Fish and Wildlife Program (NPCC 2009-09) of sustaining a "productive and diverse community" that provides "abundant" harvest, is best accomplished through a time-prioritized action plan, one that complements other approaches while addressing important challenges and uncertainties related to the Basin's food webs. Note that the oceanic food webs, although of immense importance in sustaining fish populations, are not considered beyond the plume since they involve an additional set of complex and rapidly evolving issues. An analysis of oceanic food webs of relevance to the Columbia River requires a separately focused effort (e.g., Hoegh- Guldberg and Bruno 2010).

  18. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  19. Atraumatic Restoration of Vertical Food Impaction with an Open Contact Using Flowable Composite Resin Aided by Cerclage Wire under Tension

    PubMed Central

    Ying Cao, Chris; Xu, Qiang-Jian; Xu, Xiao-Hua; Yin, Jia-Li

    2016-01-01

    To date, treating vertical food impaction with open contact effectively, especially with an atraumatic therapy, remains a challenge. In this study, we developed a simple, atraumatic, and economic therapeutic measure to treat vertical food impaction. The scientific rationale of our therapeutic technique is to restore an intact and firm proximal contact with proper location and form relationships to prevent forceful interproximal wedging of food, which in turn protects interdental papilla. We performed the procedure using flowable composite resin or composite resin cement with the aid of a cerclage wire under tension to rebuild the contact area. The reported method is especially useful for some challenging clinical cases, such as food impaction after crown and inlay on onlay restoration, and some conventional treatment methods, such as contouring the marginal ridge and developmental grooves, are ineffective. PMID:27579217

  20. Atraumatic Restoration of Vertical Food Impaction with an Open Contact Using Flowable Composite Resin Aided by Cerclage Wire under Tension.

    PubMed

    Li, Quan-Li; Ying Cao, Chris; Xu, Qiang-Jian; Xu, Xiao-Hua; Yin, Jia-Li

    2016-01-01

    To date, treating vertical food impaction with open contact effectively, especially with an atraumatic therapy, remains a challenge. In this study, we developed a simple, atraumatic, and economic therapeutic measure to treat vertical food impaction. The scientific rationale of our therapeutic technique is to restore an intact and firm proximal contact with proper location and form relationships to prevent forceful interproximal wedging of food, which in turn protects interdental papilla. We performed the procedure using flowable composite resin or composite resin cement with the aid of a cerclage wire under tension to rebuild the contact area. The reported method is especially useful for some challenging clinical cases, such as food impaction after crown and inlay on onlay restoration, and some conventional treatment methods, such as contouring the marginal ridge and developmental grooves, are ineffective. PMID:27579217

  1. Nutrition and the Circadian System

    PubMed Central

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-01-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partition incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24 hour day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation and thereby contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFDs) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFDs in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  2. Nutrition and the circadian system.

    PubMed

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-08-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  3. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  4. The circadian timing system in clinical oncology.

    PubMed

    Innominato, Pasquale F; Roche, Véronique P; Palesh, Oxana G; Ulusakarya, Ayhan; Spiegel, David; Lévi, Francis A

    2014-06-01

    The circadian timing system (CTS) controls several critical molecular pathways for cancer processes and treatment effects over the 24 hours, including drug metabolism, cell cycle, apoptosis, and DNA damage repair mechanisms. This results in the circadian time dependency of whole-body and cellular pharmacokinetics and pharmacodynamics of anticancer agents. However, CTS robustness and phase varies among cancer patients, based on circadian monitoring of rest- activity, body temperature, sleep, and/or hormonal secretion rhythms. Circadian disruption has been further found in up to 50% of patients with metastatic cancer. Such disruption was associated with poor outcomes, including fatigue, anorexia, sleep disorders, and short progression-free and overall survival. Novel, minimally invasive devices have enabled continuous CTS assessment in non-hospitalized cancer patients. They revealed up to 12-hour differences in individual circadian phase. Taken together, the data support the personalization of chronotherapy. This treatment method aims at the adjustment of cancer treatment delivery according to circadian rhythms, using programmable-in-time pumps or novel release formulations, in order to increase both efficacy and tolerability. A fixed oxaliplatin, 5-fluorouracil and leucovorin chronotherapy protocol prolonged median overall survival in men with metastatic colorectal cancer by 3.3 months as compared to conventional delivery, according to a meta-analysis (P=0.009). Further analyses revealed the need for the prevention of circadian disruption or the restoration of robust circadian function in patients on chronotherapy, in order to further optimize treatment effects. The strengthening of external synchronizers could meet such a goal, through programmed exercise, meal timing, light exposure, improved social support, sleep scheduling, and the properly timed administration of drugs that target circadian clocks. Chrono-rehabilitation warrants clinical testing for improving

  5. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis.

    PubMed

    Motta, Jean-Paul; Bermúdez-Humarán, Luis G; Deraison, Céline; Martin, Laurence; Rolland, Corinne; Rousset, Perrine; Boue, Jérôme; Dietrich, Gilles; Chapman, Kevin; Kharrat, Pascale; Vinel, Jean-Pierre; Alric, Laurent; Mas, Emmanuel; Sallenave, Jean-Michel; Langella, Philippe; Vergnolle, Nathalie

    2012-10-31

    Elafin, a natural protease inhibitor expressed in healthy intestinal mucosa, has pleiotropic anti-inflammatory properties in vitro and in animal models. We found that mucosal expression of Elafin is diminished in patients with inflammatory bowel disease (IBD). This defect is associated with increased elastolytic activity (elastase-like proteolysis) in colon tissue. We engineered two food-grade strains of lactic acid bacteria (LAB) to express and deliver Elafin to the site of inflammation in the colon to assess the potential therapeutic benefits of the Elafin-expressing LAB. In mouse models of acute and chronic colitis, oral administration of Elafin-expressing LAB decreased elastolytic activity and inflammation and restored intestinal homeostasis. Furthermore, when cultures of human intestinal epithelial cells were treated with LAB secreting Elafin, the inflamed epithelium was protected from increased intestinal permeability and from the release of cytokines and chemokines, both of which are characteristic of intestinal dysfunction associated with IBD. Together, these results suggest that oral delivery of LAB secreting Elafin may be useful for treating IBD in humans. PMID:23115353

  6. Circadian systems biology: When time matters

    PubMed Central

    Fuhr, Luise; Abreu, Mónica; Pett, Patrick; Relógio, Angela

    2015-01-01

    The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock. In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases. PMID:26288701

  7. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  8. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  9. A role for circadian clock in metabolic disease.

    PubMed

    Shimizu, Ippei; Yoshida, Yohko; Minamino, Tohru

    2016-07-01

    Many human behaviors and physiological activities show circadian rhythms. Circadian rhythms generated by central and peripheral clocks maintain homeostasis, including the regulation of metabolic processes. Biological rhythmicity is important for metabolic health, but circadian rhythms are affected and impaired by nocturnal activities and irregular food intake in modern society. Disruption of sleep is an established risk factor for diabetes and is known to promote systemic metabolic dysfunction in both humans and rodents. Metabolic stress promotes circadian clock disorders and modulation of clock gene expression has a causal role in the development of metabolic dysfunction. Maintenance of a physiological circadian rhythm is crucial for metabolic health and is an important strategy for combating obesity. PMID:26888117

  10. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    PubMed

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption. PMID:27104378

  11. Impact of nutrients on circadian rhythmicity

    PubMed Central

    Oosterman, Johanneke E.; Kalsbeek, Andries; la Fleur, Susanne E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock. PMID:25519730

  12. Circadian rhythms in liver physiology and liver diseases.

    PubMed

    Tong, Xin; Yin, Lei

    2013-04-01

    In mammals, circadian rhythms function to coordinate a diverse panel of physiological processes with environmental conditions such as food and light. As the driving force for circadian rhythmicity, the molecular clock is a self-sustained transcription-translational feedback loop system consisting of transcription factors, epigenetic modulators, kinases/phosphatases, and ubiquitin E3 ligases. The molecular clock exists not only in the suprachiasmatic nuclei of the hypothalamus but also in the peripheral tissues to regulate cellular and physiological function in a tissue-specific manner. The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Clock gene mutant animals display impaired glucose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction, providing strong evidence for the connection between the circadian clock and metabolic homeostasis. Circadian-controlled hepatic metabolism is partially achieved by controlling the expression and/or activity of key metabolic enzymes, transcription factors, signaling molecules, and transporters. Reciprocally, intracellular metabolites modulate the molecular clock activity in response to the energy status. Although still at the early stage, circadian clock dysfunction has been implicated in common chronic liver diseases. Circadian dysregulation of lipid metabolism, detoxification, reactive oxygen species (ROS) production, and cell-cycle control might contribute to the onset and progression of liver steatosis, fibrosis, and even carcinogenesis. In summary, these findings call for a comprehensive study of the function and mechanisms of hepatic circadian clock to gain better understanding of liver physiology and diseases. PMID:23720334

  13. Hippocampal-dependent learning requires a functional circadian system

    PubMed Central

    Ruby, Norman F.; Hwang, Calvin E.; Wessells, Colin; Fernandez, Fabian; Zhang, Pei; Sapolsky, Robert; Heller, H. Craig

    2008-01-01

    Decades of studies have shown that eliminating circadian rhythms of mammals does not compromise their health or longevity in the laboratory in any obvious way. These observations have raised questions about the functional significance of the mammalian circadian system, but have been difficult to address for lack of an appropriate animal model. Surgical ablation of the suprachiasmatic nucleus (SCN) and clock gene knockouts eliminate rhythms, but also damage adjacent brain regions or cause developmental effects that may impair cognitive or other physiological functions. We developed a method that avoids these problems and eliminates rhythms by noninvasive means in Siberian hamsters (Phodopus sungorus). The present study evaluated cognitive function in arrhythmic animals by using a hippocampal-dependent learning task. Control hamsters exhibited normal circadian modulation of performance in a delayed novel-object recognition task. By contrast, arrhythmic animals could not discriminate a novel object from a familiar one only 20 or 60 min after training. Memory performance was not related to prior sleep history as sleep manipulations had no effect on performance. The GABA antagonist pentylenetetrazol restored learning without restoring circadian rhythms. We conclude that the circadian system is involved in memory function in a manner that is independent of sleep. Circadian influence on learning may be exerted via cyclic GABA output from the SCN to target sites involved in learning. Arrhythmic hamsters may have failed to perform this task because of chronic inhibitory signaling from the SCN that interfered with the plastic mechanisms that encode learning in the hippocampus. PMID:18832172

  14. Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

    PubMed Central

    Peek, Clara Bien; Affinati, Alison H.; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A.; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C.; Bacsik, David J.; Gius, David; Newgard, Christopher B.; Goetzman, Eric; Chandel, Navdeep S.; Denu, John M.; Mrksich, Milan; Bass, Joseph

    2014-01-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD+) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD+ supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD+ bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding. PMID:24051248

  15. In vitro and in vivo Phase Changes of the Mouse Circadian Clock by Oxidative Stress

    PubMed Central

    Tahara, Yu; Yokota, Aya; Shiraishi, Takuya; Yamada, Shunya; Haraguchi, Atsushi; Shinozaki, Ayako

    2016-01-01

    Mammalian circadian rhythms are governed by an endogenous circadian clock system, including the molecular clock works in each cell and tissue. Adaptation of the circadian clock to different environmental stimuli such as light, food, and stress is essential for homeostasis maintenance. However, the influence of oxidative stress on the circadian clock phase is not fully understood in vitro and in vivo. Here, we examined the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the PERIOD2::LUCIFERASE bioluminescence rhythm in mouse embryonic fibroblasts in vitro and in mouse peripheral tissues in vivo. The circadian clock phase changed with the dose of H2O2 and time of day in vitro; similar phase changes were observed in vivo in the circadian clocks of the peripheral tissues. In addition, mice treated with hemin-induced oxidative stress also showed phase changes of peripheral clocks, similarly as H2O2 treatment. Thus, oxidative stress can entrain circadian clock systems.

  16. Biophotonics: Circadian photonics

    NASA Astrophysics Data System (ADS)

    Rea, Mark S.

    2011-05-01

    A growing body of medical evidence suggests that disrupting the body's biological clock can have adverse effects on health. Researchers are now creating the photonic tools to monitor, predict and influence the circadian rhythm.

  17. Physiology of circadian entrainment.

    PubMed

    Golombek, Diego A; Rosenstein, Ruth E

    2010-07-01

    Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments. PMID:20664079

  18. Circadian clocks and breast cancer.

    PubMed

    Blakeman, Victoria; Williams, Jack L; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome. PMID:27590298

  19. Getting through to circadian oscillators: why use constant routines?

    NASA Technical Reports Server (NTRS)

    Duffy, Jeanne F.; Dijk, Derk-Jan

    2002-01-01

    Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.

  20. Circadian metabolism in the light of evolution.

    PubMed

    Gerhart-Hines, Zachary; Lazar, Mitchell A

    2015-06-01

    Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. PMID:25927923

  1. Circadian Metabolism in the Light of Evolution

    PubMed Central

    2015-01-01

    Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. PMID:25927923

  2. Circadian Rhythms in Cyanobacteria.

    PubMed

    Cohen, Susan E; Golden, Susan S

    2015-12-01

    Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  3. Socially synchronized circadian oscillators

    PubMed Central

    Bloch, Guy; Herzog, Erik D.; Levine, Joel D.; Schwartz, William J.

    2013-01-01

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian ‘clock’). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day–night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the ‘group’ level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature. PMID:23825203

  4. Circadian Disruption Leads to Loss of Homeostasis and Disease

    PubMed Central

    Escobar, Carolina; Salgado-Delgado, Roberto; Gonzalez-Guerra, Eduardo; Tapia Osorio, Araceli; Angeles-Castellanos, Manuel; Buijs, Ruud M.

    2011-01-01

    The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony. PMID:23471148

  5. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    PubMed Central

    Sakata, Kazuki; Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Negishi, Osamu; Tsuno, Takuo; Tsuno, Hiromi; Yamazaki, Youta; Ishida, Norio

    2015-01-01

    Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of Drosophila melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP) rhythm of D. melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals. PMID:26097456

  6. Circadian Rhythm Sleep Disorders

    PubMed Central

    Kim, Min Ju; Lee, Jung Hie; Duffy, Jeanne F.

    2014-01-01

    Objective To review circadian rhythm sleep disorders, including underlying causes, diagnostic considerations, and typical treatments. Methods Literature review and discussion of specific cases. Results Survey studies 1,2 suggest that up to 3% of the adult population suffers from a circadian rhythm sleep disorder (CRSD). However, these sleep disorders are often confused with insomnia, and an estimated 10% of adult and 16% of adolescent sleep disorders patients may have a CRSD 3-6. While some CRSD (such as jet lag) can be self-limiting, others when untreated can lead to adverse medical, psychological, and social consequences. The International Classification of Sleep Disorders classifies CRSD as dyssomnias, with six subtypes: Advanced Sleep Phase Type, Delayed Sleep Phase Type, Irregular Sleep Wake Type, Free Running Type, Jet Lag Type, and Shift Work Type. The primary clinical characteristic of all CRSD is an inability to fall asleep and wake at the desired time. It is believed that CRSD arise from a problem with the internal biological clock (circadian timing system) and/or misalignment between the circadian timing system and the external 24-hour environment. This misalignment can be the result of biological and/or behavioral factors. CRSD can be confused with other sleep or medical disorders. Conclusions Circadian rhythm sleep disorders are a distinct class of sleep disorders characterized by a mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep. If untreated, CRSD can lead to insomnia and excessive daytime sleepiness, with negative medical, psychological, and social consequences. It is important for physicians to recognize potential circadian rhythm sleep disorders so that appropriate diagnosis, treatment, and referral can be made. PMID:25368503

  7. Circadian Disruption in Psychiatric Disorders.

    PubMed

    Jones, Stephanie G; Benca, Ruth M

    2015-12-01

    Evidence suggests that abnormalities in circadian rhythms might prove causally or pathophysiologically significant in psychiatric illness. The circadian regulation of hormonal and behavioral timekeeping processes is often altered in patients with major depression, bipolar disorder, and schizophrenia, and a susceptibility to rhythm instability may contribute to the functional impairment. For some patients, interventions that stabilize or resynchronize circadian rhythms prove therapeutically effective. Circadian disruption in the clinical profiles of most psychiatric illnesses and the treatment efficacy of chronobiological interventions suggest that attention to circadian phenotypes in a range of psychiatric disorders may help to uncover shared pathophysiologic mechanisms. PMID:26568124

  8. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders

    PubMed Central

    Videnovic, Aleksandar; Lazar, Alpar S.; Barker, Roger A.; Overeem, Sebastiaan

    2015-01-01

    Circadian rhythms are physiological and behavioural cycles generated by an endogenous biological clock, the suprachiasmatic nucleus. The circadian system influences the majority of physiological processes, including sleep–wake homeostasis. Impaired sleep and alertness are common symptoms of neurodegenerative disorders, and circadian dysfunction might exacerbate the disease process. The pathophysiology of sleep–wake disturbances in these disorders remains largely unknown, and is presumably multifactorial. Circadian rhythm dysfunction is often observed in patients with Alzheimer disease, in whom it has a major impact on quality of life and represents one of the most important factors leading to institutionalization of patients. Similarly, sleep and circadian problems represent common nonmotor features of Parkinson disease and Huntington disease. Clinical studies and experiments in animal models of neurodegenerative disorders have revealed the progressive nature of circadian dysfunction throughout the course of neurodegeneration, and suggest strategies for the restoration of circadian rhythmicity involving behavioural and pharmacological interventions that target the sleep–wake cycle. In this Review, we discuss the role of the circadian system in the regulation of the sleep–wake cycle, and outline the implications of disrupted circadian timekeeping in neurodegenerative diseases. PMID:25385339

  9. Circadian Clocks, Stress, and Immunity

    PubMed Central

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  10. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  11. Scheduled Feeding Alters the Timing of the Suprachiasmatic Nucleus Circadian Clock in Dexras 1-Deficient Mice

    PubMed Central

    Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.

    2013-01-01

    Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915

  12. Circadian Redox Signaling in Plant Immunity and Abiotic Stress

    PubMed Central

    Spoel, Steven H.

    2014-01-01

    Abstract Significance: Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Recent Advances: Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Critical Issues: Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Future Directions: Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive. Antioxid. Redox Signal. 20, 3024–3039. PMID:23941583

  13. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  14. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  15. Postoperative circadian disturbances.

    PubMed

    Gögenur, Ismail

    2010-12-01

    An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention has also been directed towards the circadian variation in endogenous rhythms in relation to surgery. The attention has been directed to the question whether the circadian variation in endogenous rhythms can affect postoperative recovery, morbidity and mortality. Based on the lack of studies where these endogenous rhythms have been investigated in relation to surgery we performed a series of studies exploring different endogenous rhythms and factors affecting these rhythms. We also wanted to examine whether the disturbances in the postoperative circadian rhythms could be correlated to postoperative recovery parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of melatonin (AMT6s) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively. There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The

  16. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  17. CIRCADIAN REGULATION OF METABOLISM

    PubMed Central

    Bailey, Shannon M.; Udoh, Uduak S.; Young, Martin E.

    2014-01-01

    In association with sleep/wake and fasting/feeding cycles, organisms experience dramatic oscillations in energetic demands and nutrient supply. It is therefore not surprising that various metabolic parameters, ranging from the activity status of molecular energy sensors to circulating nutrient levels, oscillate in time-of-day-dependent manners. It has become increasingly clear that rhythms in metabolic processes are not simply in response to daily environmental/behavioral influences, but are driven in part by cell autonomous circadian clocks. By synchronizing the cell with its environment, clocks modulate a host of metabolic processes in a temporally appropriate manner. The purpose of this article is to review current understanding of the interplay between circadian clocks and metabolism, in addition to the pathophysiologic consequences of disruption of this molecular mechanism, in terms of cardiometabolic disease development. PMID:24928941

  18. Environmental synchronizers of squirrel monkey circadian rhythms

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1977-01-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation on the drinking and activity rhythms of unrestrained monkeys was examined. In the absence of other time cues, 24-hr cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of the rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 hr with all possible phase relationships between the rhythms and the environmental cycles being examined.

  19. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa

    PubMed Central

    Holsen, Laura M.; Lawson, Elizabeth A.; Blum, Justine; Ko, Eunice; Makris, Nikos; Fazeli, Pouneh K.; Klibanski, Anne; Goldstein, Jill M.

    2012-01-01

    Background Previous studies have provided evidence of food motivation circuitry dysfunction in individuals with anorexia nervosa. However, methodological limitations present challenges to the development of a cohesive neurobiological model of anorexia nervosa. Our goal was to investigate the neural circuitry of appetite dysregulation across states of hunger and satiety in active and weight-restored phases of anorexia nervosa using robust methodology to advance our understanding of potential neural circuitry abnormalities related to hedonic and nonhedonic state and trait. Methods We scanned women with active anorexia nervosa, weight-restored women with anorexia nervosa and healthy-weight controls on a 3-T Siemens magnetic resonance scanner while they viewed images of high- and low-calorie foods and objects before (premeal) and after (postmeal) eating a 400 kcal meal. Results We enrolled 12 women with active disease, 10 weight-restored women with anorexia nervosa and 11 controls in our study. Compared with controls, both weight-restored women and those with active disease demonstrated hypoactivity premeal in the hypothalamus, amygdala and anterior insula in response to high-calorie foods (v. objects). Postmeal, hypoactivation in the anterior insula persisted in women with active disease. Percent signal change in the anterior insula was positively correlated with food stimuli ratings and hedonic and nonhedonic appetite ratings in controls, but not women with active disease. Limitations Our findings are limited by a relatively small sample size, which prevented the use of an analysis of variance model and exploration of interaction effects, although our substantial effect sizes of between-group differences suggest adequate power for our statistical analysis approach. Participants taking psychotropic medications were included. Conclusion Our data provide evidence of potential state and trait hypoactivations in food motivation regions involved in the assessment of food

  20. Gravitational biology and the mammalian circadian timing system

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.

    1989-01-01

    Using published reports, this paper compares and contrasts results on the effects of altered gravitational fields on the regulation in mammals of several physiological and behavioral variables with the circadian regulation of the same variables. The variables considered include the temperature regulation, heart rate, activity, food intake, and calcium balance. It is shown that, in rats, the homeostatic regulation of the body temperature, heart rate, and activity becomes depressed following exposure to a 2 G hyperdynamic field, and recovers within 6 days of 1 G condition. In addition, the circadian rhythms of these variables exhibit a depression of the rhythm amplitude; a recovery of this condition requires a minimum of 7 days.

  1. Circadian gene variants in cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostas...

  2. Circadian Disorganization Alters Intestinal Microbiota

    PubMed Central

    Voigt, Robin M.; Forsyth, Christopher B.; Green, Stefan J.; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H.; Turek, Fred W.; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  3. Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats.

    PubMed

    Llansola, Marta; Ahabrach, Hanan; Errami, Mohammed; Cabrera-Pastor, Andrea; Addaoudi, Kaoutar; Felipo, Vicente

    2013-08-15

    Patients with liver cirrhosis may present impaired sleep-wake and circadian rhythms, relative adrenal insufficiency and altered hypothalamus-pituitary-adrenal gland (HPA) axis. The underlying mechanisms remain unclear. Circadian rhythms are modulated by corticosteroids which secretion is regulated by HPA axis. Hyperammonemia alters circadian rhythms of activity and corticosterone in rats. The aims were: (1) assessing whether corticosterone alterations are responsible for altered circadian rhythm in hyperammonemia: (2) to shed light on the mechanism by which corticosterone circadian rhythm is altered in hyperammonemia. The effects of daily corticosterone injection at ZT10 on circadian rhythms of activity, plasma corticosterone, adreno-corticotropic hormone (ACTH) and hypothalamic corticotropic releasing hormone (CRH) were assessed in control and hyperammonemic rats. ACTH-induced corticosterone release was analyzed in cultured adrenal cells. Corticosterone injection restores the corticosterone peak in hyperammonemic rats and their activity and circadian rhythm. Plasma ACTH and CRH in hypothalamus are increased in hyperammonemic rats. Corticosterone injection normalizes ACTH. Chronic hyperammonemia impairs adrenal function, reduces corticosterone content and ACTH-induced corticosterone release in adrenals, leading to reduced feedback modulation of HPA axis by corticosterone which contributes to impair circadian rhythms of activity. Impaired circadian rhythms and motor activity may be corrected in hyperammonemia and hepatic encephalopathy by corticosterone treatment. PMID:23376587

  4. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  5. Phenotyping Circadian Rhythms in Mice.

    PubMed

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of 24 hr, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the "central pacemaker" of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hr as manifest when an animal is placed into constant dark or "free-running" conditions. Simple measurements of an organism's activity in free-running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their homecage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are presented here including the process of entrainment, determination of tau (period length) in free-running conditions, determination of circadian periodicity in response to light disruption (e.g., jet lag studies), and evaluation of clock plasticity in non-24-hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of environmental surroundings. PMID:26331760

  6. Endocrine Effects of Circadian Disruption.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Nelson, Randy J

    2016-01-01

    Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems. PMID:26208951

  7. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  8. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  9. Neurobiology of Circadian Rhythm Regulation.

    PubMed

    Rosenwasser, Alan M; Turek, Fred W

    2015-12-01

    Over the past few decades, multilevel research has elucidated the basic neuroanatomy, neurochemistry, and molecular neurobiology of the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). The circadian timing system is composed of a large number of cellular oscillators located in the SCN, in non-SCN brain structures, and throughout the body. Cellular-level oscillations are generated by a molecular feedback loop in which circadian clock genes rhythmically regulate their own transcription, as well as that of hundreds of clock-controlled genes. The maintenance of proper coordination within this network of cellular- and tissue-level clocks is essential for health and well-being. PMID:26568118

  10. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  11. Circadian organization is governed by extra-SCN pacemakers.

    PubMed

    Pezuk, Pinar; Mohawk, Jennifer A; Yoshikawa, Tomoko; Sellix, Michael T; Menaker, Michael

    2010-12-01

    In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators. PMID:21135159

  12. Endocrine regulation of circadian physiology.

    PubMed

    Tsang, Anthony H; Astiz, Mariana; Friedrichs, Maureen; Oster, Henrik

    2016-07-01

    Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis. PMID:27106109

  13. Circadian Control of Global Transcription

    PubMed Central

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  14. Circadian variation in gastric vagal afferent mechanosensitivity.

    PubMed

    Kentish, Stephen J; Frisby, Claudine L; Kennaway, David J; Wittert, Gary A; Page, Amanda J

    2013-12-01

    Food intake is coordinated to cellular metabolism by clock gene expression with a master clock in the suprachiasmatic nucleus synchronized by light exposure. Gastric vagal afferents play a role in regulating food intake, but it is unknown whether they exhibit circadian variation in their mechanosensitivity. We aimed to determine whether gastric vagal afferents express clock genes and whether their response to mechanical stimuli oscillates throughout the light/dark cycle. Nodose ganglia were collected from 8-week-old female C57BL/6 mice every 3 h starting at lights off (1800 h) to quantify Bmal1, Per1, Per2, and Nr1d1 mRNA by qRT-PCR. Additionally in vitro single-fiber recordings of gastric vagal mechanoreceptors were taken at all time points. Per1, Per2, Bmal1, and Nr1d1 mRNA is expressed in the nodose ganglia and levels oscillated over a 24 h period. In mice fed ad libitum, gastric content was 3 times higher at 0000 h and 0300 h than 1200 h. The response of tension receptors to 3 g stretch was reduced by up to 70% at 2100 h, 0000 h, and 0300 h compared with 1200 h. Gastric mucosal receptor response to stroking with a 50 mg von Frey hair was 3 times greater at 1200 h and 1500 h than the response at 0000 h. Similar findings were obtained in mice fasted for 6 h or maintained in darkness for 3 d before study. Therefore, these changes do not result from food intake or the light/dark cycle. Thus, gastric vagal mechanoreceptors display circadian rhythm, which may act to control food intake differentially at different times of the day. PMID:24305819

  15. Phenotyping Circadian Rhythms in Mice

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of twenty-four hours, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the “central pacemaker” of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hours as manifest when an animal is placed into constant dark- or “free running”- conditions. Simple measurements of an organism's activity in free running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their home cage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are outlined here including the process of entrainment, determination of tau (period length) in free running conditions, determination of circadian periodicity in response to light disruption (i.e. jet lag studies), and evaluation of clock plasticity in non-twenty-four hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of one's environmental surroundings. PMID:26331760

  16. Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat

    SciTech Connect

    Horseman, N.D.; Ehret, C.F.

    1982-09-01

    Intraperitoneal temperatures were monitored by radiotelemetry to observe the thermoregulatory rhythm of male laboratory rats (Rattus norvegicus albinus). Rats received single injections of dexamethasone (as dexamethasone sodium phosphate) during constant darkness (0.1 lx) with food freely available or no food available. No phase shifts occurred following saline injection or dexamethasone at 1 mg/kg body wt. Depending on the phase of injection relative to the circadian cycle, dexamethasone at 10 mg/kg caused thermoregulatory peaks to be either delayed or advanced on the 4th and 5th days after injection. There was an insensitive interval which corresponded to subjective day. Phase shifts induced by dexamethasone during ad libitum feeding were of less magnitude than those induced during starvation. The determination of phase-shifting parameters (i.e., a phase-response curve) for hormonal substances represents a rigorous and broadly applicable technique for determining endogenous mechanisms for circadian phase control and entrainment.

  17. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  18. Circadian regulation of renal function.

    PubMed

    Firsov, Dmitri; Bonny, Olivier

    2010-10-01

    Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms. PMID:20664559

  19. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato. PMID:26867616

  20. Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River - Environmental Restoration Program (CR-ERP)

    SciTech Connect

    Simbeck, D.J.

    1997-06-01

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6-15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Results from this test showed LC{sub 50} values of 0.97 and 0.84 mg Cu/L for phytoplankton and YCT-S, respectively. Previously obtained values for phytoplankton tests are 2.02 and 1.12 mg Cu/L. Too few tests have been conducted with copper as the toxicant to determine a normal range of values. Although significant reduction in growth, compared to the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups.

  1. Circadian Clock, Cancer, and Chemotherapy

    PubMed Central

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  2. Ube3a Imprinting Impairs Circadian Robustness in Angelman Syndrome Models

    PubMed Central

    Shi, Shu-qun; Bichell, Terry Jo; Ihrie, Rebecca A.; Johnson, Carl Hirschie

    2015-01-01

    Summary Background The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman Syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. Results We found an unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a, but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. Conclusions Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients. PMID:25660546

  3. Circadian Insights into Motivated Behavior.

    PubMed

    Antle, Michael C; Silver, Rae

    2016-01-01

    For an organism to be successful in an evolutionary sense, it and its offspring must survive. Such survival depends on satisfying a number of needs that are driven by motivated behaviors, such as eating, sleeping, and mating. An individual can usually only pursue one motivated behavior at a time. The circadian system provides temporal structure to the organism's 24 hour day, partitioning specific behaviors to particular times of the day. The circadian system also allows anticipation of opportunities to engage in motivated behaviors that occur at predictable times of the day. Such anticipation enhances fitness by ensuring that the organism is physiologically ready to make use of a time-limited resource as soon as it becomes available. This could include activation of the sympathetic nervous system to transition from sleep to wake, or to engage in mating, or to activate of the parasympathetic nervous system to facilitate transitions to sleep, or to prepare the body to digest a meal. In addition to enabling temporal partitioning of motivated behaviors, the circadian system may also regulate the amplitude of the drive state motivating the behavior. For example, the circadian clock modulates not only when it is time to eat, but also how hungry we are. In this chapter we explore the physiology of our circadian clock and its involvement in a number of motivated behaviors such as sleeping, eating, exercise, sexual behavior, and maternal behavior. We also examine ways in which dysfunction of circadian timing can contribute to disease states, particularly in psychiatric conditions that include adherent motivational states. PMID:26419240

  4. In vitro circadian rhythms: imaging and electrophysiology.

    PubMed

    Beaulé, Christian; Granados-Fuentes, Daniel; Marpegan, Luciano; Herzog, Erik D

    2011-06-30

    In vitro assays have localized circadian pacemakers to individual cells, revealed genetic determinants of rhythm generation, identified molecular players in cell-cell synchronization and determined physiological events regulated by circadian clocks. Although they allow strict control of experimental conditions and reduce the number of variables compared with in vivo studies, they also lack many of the conditions in which cellular circadian oscillators normally function. The present review highlights methods to study circadian timing in cultured mammalian cells and how they have shaped the hypothesis that all cells are capable of circadian rhythmicity. PMID:21819387

  5. In vitro circadian rhythms: imaging and electrophysiology

    PubMed Central

    Beaulé, Christian; Granados-Fuentes, Daniel; Marpegan, Luciano; Herzog, Erik D.

    2013-01-01

    In vitro assays have localized circadian pacemakers to individual cells, revealed genetic determinants of rhythm generation, identified molecular players in cell-cell synchronization and determined physiological events regulated by circadian clocks. Although they allow strict control of experimental conditions and reduce the number of variables compared with in vivo studies, they also lack many of the conditions in which cellular circadian oscillators normally function. The present review highlights methods to study circadian timing in cultured mammalian cells and how they have shaped the hypothesis that all cells are capable of circadian rhythmicity. PMID:21819387

  6. Circadian rhythm and its role in malignancy

    PubMed Central

    2010-01-01

    Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs) including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer. PMID:20353609

  7. Circadian rhythms: basic neurobiology and clinical applications.

    PubMed

    Moore, R Y

    1997-01-01

    Circadian rhythms are major features of adaptation to our environment. In mammals, circadian rhythms are generated and regulated by a circadian timing system. This system consists of entertainment pathways, pacemakers, and pace-maker output to effector systems that are under circadian control. The primary entertainment pathway is the retinohypothalamic tract, which terminates in the circadian pacemakers, the suprachiasmatic nuclei of the hypothalamus. The output of the suprachiasmatic nuclei is principally to the hypothalamus, the midline thalamus, and the basal forebrain. This provides a temporal organization to the sleep-wake cycle, to many physiological and endocrine functions, and to psychomotor performance functions. Disorders of circadian timing primarily affect entertainment and pacemaker functions. The pineal hormone, melatonin, appears to be promising agent for therapy of some circadian timing disorders. PMID:9046960

  8. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-01

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. PMID:27476975

  9. Metabolism and the Circadian Clock Converge

    PubMed Central

    Eckel-Mahan, Kristin

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907

  10. Prokineticin 2 and circadian clock output

    PubMed Central

    Zhou, Qun-Yong; Cheng, Michelle Y.

    2009-01-01

    Circadian timing from the suprachiasmatic nucleus (SCN) is a critical component of sleep regulation. Animal lesion and genetic studies have indicated an essential interaction between the circadian signals and the homeostatic processes that regulate sleep. Here we summarize the biological functions of prokineticins, a pair of newly discovered regulatory proteins, with focus on the circadian function of prokineticin 2 (PK2) and its potential role in sleep-wake regulation. PK2 has been shown as a candidate SCN output molecule that regulates circadian locomotor behavior. The PK2 molecular rhythm in the SCN is predominantly controlled by the circadian transcriptional/translational loops, but also regulated directly by light. The receptor for PK2 is expressed in the primary SCN output targets that regulate circadian behavior including sleep-wake. The depolarizing effect of PK2 on neurons that express PK2 receptor may represent a possible mechanism for the regulatory role of PK2 in circadian rhythms. PMID:16279936

  11. Sympathetic Activation Induces Skeletal Fgf23 Expression in a Circadian Rhythm-dependent Manner*

    PubMed Central

    Kawai, Masanobu; Kinoshita, Saori; Shimba, Shigeki; Ozono, Keiichi; Michigami, Toshimi

    2014-01-01

    The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism. PMID:24302726

  12. Circadian influences on myocardial infarction.

    PubMed

    Virag, Jitka A I; Lust, Robert M

    2014-01-01

    Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  13. Circadian influences on myocardial infarction

    PubMed Central

    Virag, Jitka A. I.; Lust, Robert M.

    2014-01-01

    Components of circadian rhythm maintenance, or “clock genes,” are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  14. Circadian time-place learning in mice depends on Cry genes.

    PubMed

    Van der Zee, Eddy A; Havekes, Robbert; Barf, R Paulien; Hut, Roelof A; Nijholt, Ingrid M; Jacobs, Edwin H; Gerkema, Menno P

    2008-06-01

    Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system. PMID:18514517

  15. Circadian Variation of the Human Metabolome Captured by Real-Time Breath Analysis

    PubMed Central

    Martinez-Lozano Sinues, Pablo; Tarokh, Leila; Li, Xue; Kohler, Malcolm; Brown, Steven A.; Zenobi, Renato; Dallmann, Robert

    2014-01-01

    Circadian clocks play a significant role in the correct timing of physiological metabolism, and clock disruption might lead to pathological changes of metabolism. One interesting method to assess the current state of metabolism is metabolomics. Metabolomics tries to capture the entirety of small molecules, i.e. the building blocks of metabolism, in a given matrix, such as blood, saliva or urine. Using mass spectrometric approaches we and others have shown that a significant portion of the human metabolome in saliva and blood exhibits circadian modulation; independent of food intake or sleep/wake rhythms. Recent advances in mass spectrometry techniques have introduced completely non-invasive breathprinting; a method to instantaneously assess small metabolites in human breath. In this proof-of-principle study, we extend these findings about the impact of circadian clocks on metabolomics to exhaled breath. As previously established, our method allows for real-time analysis of a rich matrix during frequent non-invasive sampling. We sampled the breath of three healthy, non-smoking human volunteers in hourly intervals for 24 hours during total sleep deprivation, and found 111 features in the breath of all individuals, 36–49% of which showed significant circadian variation in at least one individual. Our data suggest that real-time mass spectrometric "breathprinting" has high potential to become a useful tool to understand circadian metabolism, and develop new biomarkers to easily and in real-time assess circadian clock phase and function in experimental and clinical settings. PMID:25545545

  16. Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection?

    NASA Technical Reports Server (NTRS)

    Fuller, Patrick M.; Jones, Timothy A.; Jones, Sherri M.; Fuller, Charles A.

    2002-01-01

    Chronic exposure to increased force environments (+G) has pronounced effects on the circadian and homeostatic regulation of body temperature (T(b)), ambulatory activity (Act), heart rate, feeding, and adiposity. By using the Brn 3.1 knockout mouse, which lacks vestibular hair cells, we recently described a major role of the vestibular system in mediating some of these adaptive responses. The present study used the C57BL6JEi-het mouse strain (het), which lacks macular otoconia, to elucidate the contribution of specific vestibular receptors. In this study, eight het and eight WT mice were exposed to 2G for 8 weeks by means of chronic centrifugation. In addition, eight het and eight WT mice were maintained as 1G controls in similar conditions. Upon 2G exposure, the WT exhibited a decrease in T(b) and an attenuated T(b) circadian rhythm. Act means and rhythms also were attenuated. Body mass and food intake were significantly lower than the 1G controls. After 8 weeks, percent body fat was significantly lower in the WT mice (P < 0.0001). In contrast, the het mice did not exhibit a decrease in mean T(b) and only a slight decrease in T(b) circadian amplitude. het Act levels were attenuated similarly to the WT mice. Body mass and food intake were only slightly attenuated in the het mice, and percent body fat, after 8 weeks, was not different in the 2G het group. These results link the vestibular macular receptors with specific alterations in homeostatic and circadian regulation.

  17. Gut clock: implication of circadian rhythms in the gastrointestinal tract.

    PubMed

    Konturek, P C; Brzozowski, T; Konturek, S J

    2011-04-01

    Circadian and seasonal rhythms are a fundamental feature of all living organisms and their organelles. Biological rhythms are responsible for daily food intake; the period of hunger and satiety is controlled by the central pacemaker, which resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and communicates with tissues via bidirectional neuronal and humoral pathways. The molecular basis for circadian timing in the gastrointestinal tract (GIT) involves interlocking transcriptional/translational feedback loops which culminate in the rhythmic expression and activity of a set of clock genes and related hormones. Interestingly, it has been found that clocks in the GIT are responsible for the periodic activity (PA) of its various segments and transit along the GIT; they are localized in special interstitial cells, with unstable membrane potentials located between the longitudinal and circular muscle layers. The rhythm of slow waves is controlled in various segments of the GIT: in the stomach (about 3 cycles per min), in the duodenum (12 cycle per min), in the jejunum and ileum (from 7 to 10 cycles per min), and in the colon (12 cycles per min). The migrating motor complex (MMC) starts in the stomach and moves along the gut causing peristaltic contractions when the electrical activity spikes are superimposed on the slow waves. GIT hormones, such as motilin and ghrelin, are involved in the generation of MMCs, while others (gastrin, ghrelin, cholecystokinin, serotonin) are involved in the generation of spikes upon the slow waves, resulting in peristaltic or segmental contractions in the small (duodenum, jejunum ileum) and large bowel (colon). Additionally, melatonin, produced by neuro-endocrine cells of the GIT mucosa, plays an important role in the internal biological clock, related to food intake (hunger and satiety) and the myoelectric rhythm (produced primarily by the pineal gland during the dark period of the light-dark cycle). This appears to be an

  18. Role of Circadian Rhythms in Potassium Homeostasis

    PubMed Central

    Gumz, Michelle L.; Rabinowitz, Lawrence

    2013-01-01

    It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the last century clearly demonstrates that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the mechanism of regulation of renal potassium transport by the circadian clock is warranted in order to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis. PMID:23953800

  19. CIRCADIAN RHYTHM REPROGRAMMING DURING LUNG INFLAMMATION

    PubMed Central

    Haspel, Jeffrey A.; Chettimada, Sukrutha; Shaik, Rahamthulla S.; Chu, Jen-Hwa; Raby, Benjamin A.; Cernadas, Manuela; Carey, Vincent; Process, Vanessa; Hunninghake, G. Matthew; Ifedigbo, Emeka; Lederer, James A.; Englert, Joshua; Pelton, Ashley; Coronata, Anna; Fredenburgh, Laura E.; Choi, Augustine M. K.

    2014-01-01

    Circadian rhythms are known to regulate immune responses in healthy animals, but it is unclear whether they persist during acute illnesses where clock gene expression is disrupted by systemic inflammation. Here, we use a genome-wide approach to investigate circadian gene and metabolite expression in the lungs of endotoxemic mice and find that novel cellular and molecular circadian rhythms are elicited in this setting. The endotoxin-specific circadian program exhibits unique features, including a divergent group of rhythmic genes and metabolites compared to the basal state and a distinct periodicity and phase distribution. At the cellular level endotoxin treatment also alters circadian rhythms of leukocyte counts within the lung in a bmal1-dependent manner, such that granulocytes rather than lymphocytes become the dominant oscillating cell type. Our results show that inflammation produces a complex reorganization of cellular and molecular circadian rhythms that are relevant to early events in lung injury. PMID:25208554

  20. Mechanism of the circadian clock in physiology

    PubMed Central

    Richards, Jacob

    2013-01-01

    It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of “clock-independent effects” of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed. PMID:23576606

  1. Metabolic and Nontranscriptional Circadian Clocks: Eukaryotes

    PubMed Central

    Reddy, Akhilesh B.; Rey, Guillaume

    2016-01-01

    Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism’s clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, there is mounting evidence questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism. PMID:24606143

  2. Influence of circadian rhythms on rat muscle glycogen metabolism during and after exercise.

    PubMed

    Garetto, L P; Armstrong, R B

    1983-01-01

    Marked circadian fluctuations in skeletal muscle glycogen concentrations have previously been reported. The purpose of the present study was to estimate the influence of these rhythms on muscle glycogen metabolism during and after high-intensity treadmill exercise. Male Sprague-Dawley rats ran five 1-min sprints at 75 m min-1 interspersed by 1-3 min rest intervals either at 08.00 h (morning) or at 20.00 h (night). All muscles sampled lost significant amounts of glycogen during exercise at both time periods. There were no differences in rates of loss between morning and night, even though glycogen levels in several muscles (high-oxidative muscles) were significantly higher before exercise in the morning. Following exercise, glycogen restoration in muscle samples primarily composed of fast-twitch fibres was more rapid in the morning than at night. There was no difference in glycogen restoration rates between the two time periods in the muscle primarily composed of slow-twitch fibres. Although liver glycogen was lower after exercise at night than in the morning, there were no differences in post-exercise blood glucose levels between the two time periods. In conclusion, circadian rhythms do not appear to influence rates of glycogen loss during high-speed running. However, since glycogen loss is the same at all times of day, one would predict that circadian changes in pre-exercise muscle glycogen concentrations would affect muscular endurance. Muscle glycogen restoration after exercise does appear to be affected by circadian rhythms, although interpretation of these data is complicated by possible changes in patterns of muscle fibre contraction at different times of the day. These circadian influences should be considered in the design of exercise studies using laboratory rodents. PMID:6833943

  3. Circadian clocks: lessons from fish.

    PubMed

    Idda, M Laura; Bertolucci, Cristiano; Vallone, Daniela; Gothilf, Yoav; Sánchez-Vázquez, Francisco Javier; Foulkes, Nicholas S

    2012-01-01

    Our understanding of the molecular and cellular organization of the circadian timing system in vertebrates has increased enormously over the past decade. In large part, progress has been based on genetic studies in the mouse as well as on fundamental similarities between vertebrate and Drosophila clocks. The zebrafish was initially considered as a potentially attractive genetic model for identifying vertebrate clock genes. However, instead, fish have ultimately proven to be valuable complementary models for studying various aspects of clock biology. For example, many fish can shift from diurnal to nocturnal activity implying specific flexibility in their clock function. We have learned much about the function of light input pathways, and the ontogeny and function of the pineal organ, the fish central pacemaker. Finally, blind cavefish have also provided new insight into the evolution of the circadian clock under extreme environmental conditions. PMID:22877658

  4. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  5. Circadian rhythmometry of mammalian radiosensitivity

    NASA Technical Reports Server (NTRS)

    Haus, E.; Halberg, F.; Loken, M. K.; Kim, Y. S.

    1974-01-01

    In the case of human bone marrow, the largest number of mitoses is seen in the evening in diurnally active men, mitotic activity being at a minimum in the morning. The opposite pattern is observed for nocturnal animals such as rats and mice on a regimen of light during the daytime alternating with darkness during the night hours. The entirety of these rhythms plays an important role in the organism's responses to environmental stimuli, including its resistance to potentially harmful agents. Conditions under which circadian rhythms can be observed and validated by inferential statistical means are discussed while emphasizing how artifacts of the laboratory environment can be shown to obscure circadian periodic variations in radiosensitivity.

  6. Circadian rhythms: glucocorticoids and arthritis.

    PubMed

    Cutolo, Maurizio; Sulli, Alberto; Pizzorni, Carmen; Secchi, Maria Elena; Soldano, Stefano; Seriolo, Bruno; Straub, Rainer H; Otsa, Kati; Maestroni, Georges J

    2006-06-01

    Circadian rhythms are driven by biological clocks and are endogenous in origin. Therefore, circadian changes in the metabolism or secretion of endogenous glucocorticoids are certainly responsible in part for the time-dependent changes observed in the inflammatory response and arthritis. More recently, melatonin (MLT), another circadian hormone that is the secretory product of the pineal gland, has been found implicated in the time-dependent inflammatory reaction with effects opposite those of cortisol. Interestingly, cortisol and MLT show an opposite response to the light. The light conditions in the early morning have a strong impact on the morning cortisol peak, whereas MLT is synthesized in a strictly nocturnal pattern. Recently, a diurnal rhythmicity in healthy humans between cellular (Th1 type) or humoral (Th2 type) immune responses has been found and related to immunomodulatory actions of cortisol and MLT. The interferon (IFN)-gamma/interleukin (IL)-10 ratio peaked during the early morning and correlated negatively with plasma cortisol and positively with plasma MLT. Accordingly, the intensity of the arthritic pain varies consistently as a function of the hour of the day: pain is greater after waking up in the morning than in the afternoon or evening. The reduced cortisol and adrenal androgen secretion, observed during testing in rheumatoid arthritis (RA) patients not treated with glucocoticoids, should be clearly considered as a "relative adrenal insufficiency" in the presence of a sustained inflammatory process, and allows Th1 type cytokines to be produced in higher amounts during the late night. In conclusion, the right timing (early morning) for the glucocorticoid therapy in arthritis is fundamental and well justified by the circadian rhythms of the inflammatory mechanisms. PMID:16855156

  7. Circadian rhythms and cancer chemotherapy.

    PubMed

    Wood, P A; Hrushesky, W J

    1996-01-01

    Temporal coordination of biologic processes with an approximately 24-h cycle (circadian) is common throughout the animal and plant kingdom and even in some prokaryotic organisms. In all organisms studied, the capability to keep biologic time is an inherited characteristic located intracellularly. These biological clocks anticipate and get the organism ready for regular environmental changes. This indicates both the ubiquity and the weight of the selective environmental pressure to keep time accurately. Several molecular strategies for biologic time keeping have apparently arisen independently several times throughout evolution. The anatomic, biochemical, and molecular mechanisms of the clock are in the process of being defined. This temporal organization at the cellular, organ, and organismic levels results in predictable differences in the capacity of plants, animals, and human beings to respond to therapeutic interventions administered at different times throughout important biologic cycles (e.g., circadian timed therapy). In the treatment of the cancer bearing host, circadian timing of surgery, anticancer drugs, radiation therapy, and biologic agents can result in improved toxicity profiles, enhanced tumor control, and improved host survival. The routine clinical application of such principles is facilitated by the availability of programmable drug delivery devices. Rhythm frequency ranges other than 24-h (e.g., low frequency: menstrual; high frequency: 10 to 120 min) may also be important to understanding health and disease and to designing successful therapy in diseases as diverse as cancer, infertility, and diabetes. PMID:8959371

  8. Chronobesity: role of the circadian system in the obesity epidemic.

    PubMed

    Laermans, J; Depoortere, I

    2016-02-01

    Although obesity is considered to result from an imbalance between energy uptake and energy expenditure, the strategy of dietary changes and physical exercise has failed to tackle the global obesity epidemic. In search of alternative and more adequate treatment options, research has aimed at further unravelling the mechanisms underlying this excessive weight gain. While numerous studies are focusing on the neuroendocrine alterations that occur after bariatric Roux-en-Y gastric bypass surgery, an increasing amount of chronobiological studies have started to raise awareness concerning the pivotal role of the circadian system in the development and exacerbation of obesity. This internal timekeeping mechanism rhythmically regulates metabolic and physiological processes in order to meet the fluctuating demands in energy use and supply throughout the 24-h day. This review elaborates on the extensive bidirectional interaction between the circadian system and metabolism and explains how disruption of body clocks by means of shift work, frequent time zone travelling or non-stop consumption of calorie-dense foods can evoke detrimental metabolic alterations that contribute to obesity. Altering the body's circadian rhythms by means of time-related dietary approaches (chrononutrition) or pharmacological substances (chronobiotics) may therefore represent a novel and interesting way to prevent or treat obesity and associated comorbidities. PMID:26693661

  9. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  10. 21 CFR 878.3800 - External aesthetic restoration prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External aesthetic restoration prosthesis. 878.3800 Section 878.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External aesthetic restoration prosthesis. (a) Identification. An external aesthetic restoration...

  11. Identifying Novel Transcriptional Regulators with Circadian Expression

    PubMed Central

    Schick, Sandra; Thakurela, Sudhir; Fournier, David; Hampel, Mareike Hildegard

    2015-01-01

    Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms. PMID:26644408

  12. INTRINSIC CIRCADIAN RHYTHMS IN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cardiomyocyte possesses a fully functional circadian clock. Circadian clocks are a set of proteins that generate self-sustained transcriptional positive and negative feedback loops with a free-running period of 24 hours. These intracellular molecular mechanisms confer the selective advantage of ...

  13. Circadian regulation of ATP release in astrocytes.

    PubMed

    Marpegan, Luciano; Swanstrom, Adrienne E; Chung, Kevin; Simon, Tatiana; Haydon, Philip G; Khan, Sanjoy K; Liu, Andrew C; Herzog, Erik D; Beaulé, Christian

    2011-06-01

    Circadian clocks sustain daily oscillations in gene expression, physiology, and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high-level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP(3) signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP(3) signaling to express daily rhythms in ATP release. PMID:21653839

  14. Circadian regulation of ATP release in astrocytes

    PubMed Central

    Marpegan, Luciano; Swanstrom, Adrienne E.; Chung, Kevin; Simon, Tatiana; Haydon, Philip G.; Khan, Sanjoy K.; Liu, Andrew C.; Herzog, Erik D.; Beaulé, Christian

    2011-01-01

    Circadian clocks sustain daily oscillations in gene expression, physiology and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP3 signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP3 signaling to express daily rhythms in ATP release. PMID:21653839

  15. The Circadian Clock and Human Health.

    PubMed

    Roenneberg, Till; Merrow, Martha

    2016-05-23

    Epidemiological studies provided the first evidence suggesting a connection between the circadian clock and human health. Mutant mice convincingly demonstrate the principle that dysregulation of the circadian system leads to a multitude of pathologies. Chrono-medicine is one of the most important upcoming themes in the field of circadian biology. Although treatments counteracting circadian dysregulation are already being applied (e.g., prescribing strong and regular zeitgebers), we need to comprehend entrainment throughout the body's entire circadian network before understanding the mechanisms that tie circadian dysregulation to pathology. Here, we attempt to provide a systematic approach to understanding the connection between the circadian clock and health. This taxonomy of (mis)alignments on one hand exposes how little we know about entrainment within any organism and which 'eigen-zeitgeber' signals are used for entrainment by the different cells and tissues. On the other hand, it provides focus for experimental approaches and tools that will logically map out how circadian systems contribute to disease as well as how we can treat and prevent them. PMID:27218855

  16. Circadian dysregulation disrupts bile acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  17. Circadian dysfunction induces leptin resistance in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt over...

  18. [Circadian rhythm sleep disorders in psychiatric diseases].

    PubMed

    Bromundt, Vivien

    2014-11-01

    Circadian rhythm sleep disorders are prevalent among psychiatric patients. This is most probable due to a close relationship between functional disturbances of the internal clock, sleep regulation and mental health. Mechanisms on molecular level of the circadian clock and neurotransmitter signalling are involved in the development of both disorders. Moreover, circadian disorders and psychiatric diseases favour each other by accessory symptoms such as stress or social isolation. Actimetry to objectively quantify the rest-activity cycle and salivary melatonin profiles as marker for the circadian phase help to diagnose circadian rhythm sleep disorders in psychiatric patients. Chronotherapeutics such as bright light therapy, dark therapy, melatonin administration, and wake therapy are used to synchronise and consolidate circadian rhythms and help in the treatment of depression and other psychiatric disorders, but are still neglected in medicine. More molecular to behavioural research is needed for the understanding of the development of circadian disorders and their relationship to psychiatric illnesses. This will help to boost the awareness and treatment of circadian rhythm sleep disorders in psychiatry. PMID:25377290

  19. Circadian regulation of insect olfactory learning.

    PubMed

    Decker, Susan; McConnaughey, Shannon; Page, Terry L

    2007-10-01

    Olfactory learning in insects has been used extensively for studies on the neurobiology, genetics, and molecular biology of learning and memory. We show here that the ability of the cockroach Leucophaea maderae to acquire olfactory memories is regulated by the circadian system. We investigated the effect of training and testing at different circadian phases on performance in an odor-discrimination test administered 30 min after training (short-term memory) or 48 h after training (long-term memory). When odor preference was tested by allowing animals to choose between two odors (peppermint and vanilla), untrained cockroaches showed a clear preference for vanilla at all circadian phases, indicating that there was no circadian modulation of initial odor preference or ability to discriminate between odors. After differential conditioning, in which peppermint odor was associated with a positive unconditioned stimulus of sucrose solution and vanilla odor was associated with a negative unconditioned stimulus of saline solution, cockroaches conditioned in the early subjective night showed a strong preference for peppermint and retained the memory for at least 2 days. Animals trained and tested at other circadian phases showed significant deficits in performance for both short- and long-term memory. Performance depended on the circadian time (CT) of training, not the CT of testing, and results indicate that memory acquisition rather than retention or recall is modulated by the circadian system. The data suggest that the circadian system can have profound effects on olfactory learning in insects. PMID:17893338

  20. THE INTRINSIC CIRCADIAN CLOCK WITHIN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are intracellular molecular mechanisms that allow the cell to anticipate the time of day. We have previously reported that the intact rat heart expresses the major components of the circadian clock, of which its rhythmic expression in vivo is consistent with the operation of a fully...

  1. A colorful model of the circadian clock.

    PubMed

    Reppert, Steven M

    2006-01-27

    The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass. PMID:16439193

  2. Circadian rhythms in myocardial metabolism and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  3. Circadian regulation of human cortical excitability.

    PubMed

    Ly, Julien Q M; Gaggioni, Giulia; Chellappa, Sarah L; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  4. Genetic Basis of Human Circadian Rhythm Disorders

    PubMed Central

    Jones, Christopher R.; Huang, Angela L.; Ptáček, Louis J.; Fu, Ying-Hui

    2012-01-01

    Circadian rhythm disorders constitute a group of phenotypes that usually present as altered sleep-wake schedules. Until a human genetics approach was applied to investigate these traits, the genetic components regulating human circadian rhythm and sleep behaviors remained mysterious. Steady advances in the last decade have dramatically improved our understanding of the genes involved in circadian rhythmicity and sleep regulation. Finding these genes presents new opportunities to use a wide range of approaches, including in vitro molecular studies and in vivo animal modeling, to elevate our understanding of how sleep and circadian rhythms are regulated and maintained. Ultimately, this knowledge will reveal how circadian and sleep disruption contribute to various ailments and shed light on how best to maintain and recover good health. PMID:22849821

  5. Circadian regulation of human cortical excitability

    PubMed Central

    Ly, Julien Q. M.; Gaggioni, Giulia; Chellappa, Sarah L.; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N.; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  6. Central and peripheral circadian clocks in mammals.

    PubMed

    Mohawk, Jennifer A; Green, Carla B; Takahashi, Joseph S

    2012-01-01

    The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism. PMID:22483041

  7. Circadian light-input pathways in Drosophila.

    PubMed

    Yoshii, Taishi; Hermann-Luibl, Christiane; Helfrich-Förster, Charlotte

    2016-01-01

    Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-studied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called "clock neurons" and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock. PMID:27066180

  8. The circadian system: plasticity at many levels.

    PubMed

    Muraro, N I; Pírez, N; Ceriani, M F

    2013-09-01

    Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles. PMID:23727010

  9. Assessment of Circadian and Light-Entrainable Parameters in Mice Using Wheel-Running Activity.

    PubMed

    Banks, Gareth T; Nolan, Patrick M

    2011-01-01

    In most organisms, physiological variables are regulated by an internal clock. This endogenous circadian (∼24-hr) clock enables organisms to anticipate daily environmental changes and modify behavioral and physiological functions appropriately. Processes regulated by the circadian clock include sleep-wake and locomotor activity, core body temperature, metabolism, water/food intake, and available hormone levels. At the core of the mammalian circadian system are molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by signals from the environment (so called zeitgebers or time-givers) and, once integrated within the suprachiasmatic nucleus, are conveyed to remote neural circuits where output rhythms are regulated. Disrupting any of a number of neural processes can affect how rhythms are generated and relayed to the periphery and disturbances in circadian/entrainment parameters are associated with numerous human conditions. These non-invasive protocols can be used to determine whether circadian/entrainment parameters are affected in mouse mutants or treatment groups. Curr. Protoc. Mouse Biol. 1:369-381 © 2011 by John Wiley & Sons, Inc. PMID:26068996

  10. Interplay between Dioxin-Mediated Signaling and Circadian Clock: A Possible Determinant in Metabolic Homeostasis

    PubMed Central

    Wang, Chun; Zhang, Zhi-Ming; Xu, Can-Xin; Tischkau, Shelley A.

    2014-01-01

    The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function. PMID:24987953

  11. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  12. Circadian Rhythms in Acute Intermittent Porphyria—a Pilot Study

    PubMed Central

    Larion, Sebastian; Caballes, F. Ryan; Hwang, Sun-Il; Lee, Jin-Gyun; Rossman, Whitney Ellefson; Parsons, Judy; Steuerwald, Nury; Li, Ting; Maddukuri, Vinaya; Groseclose, Gale; Finkielstein, Carla V.; Bonkovsky, Herbert L.

    2013-01-01

    Acute intermittent porphyria (AIP) is an inherited disorder of heme synthesis wherein a partial deficiency of porphobilinogen [PBG] deaminase [PBGD], with other factors may give rise to biochemical and clinical manifestations of disease. The biochemical hallmarks of active AIP are relative hepatic heme deficiency and uncontrolled up-regulation of hepatic 5-aminolevulinic acid [ALA] synthase-1 [ALAS1] with overproduction of ALA and PBG. The treatment of choice is intravenous heme, which restores the deficient regulatory heme pool of the liver and represses ALAS1. Recently, heme has been shown to influence circadian rhythms by controlling their negative feedback loops. We evaluated whether subjects with AIP exhibited an altered circadian profile. Over a 21 h period, we measured levels of serum cortisol, melatonin, ALA, PBG, and mRNA levels [in peripheral blood mononuclear cells] of selected clock-controlled genes and genes involved in heme synthesis in 10 Caucasian [European-American] women who were either post-menopausal or had been receiving female hormone therapy, 6 of whom have AIP and 4 do not and are considered controls. Four AIP subjects with biochemical activity exhibited higher levels of PBG and lower levels and dampened oscillation of serum cortisol, and a trend for lower levels of serum melatonin, than controls or AIP subjects without biochemical activity. Levels of clock-controlled gene mRNAs showed significant increases over baseline in all subjects at 5 am and 11 pm, whereas mRNA levels of ALAS1, ALAS2, and PBGD were increased only at 11 pm in subjects with active AIP. This pilot study provides evidence for disturbances of circadian markers in women with active AIP that may trigger or sustain some common clinical features of AIP. PMID:23650938

  13. Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties

    PubMed Central

    Shultzaberger, Ryan K.; Boyd, Joseph S.; Katsuki, Takeo; Golden, Susan S.; Greenspan, Ralph J.

    2014-01-01

    The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network. PMID:25385627

  14. Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties.

    PubMed

    Shultzaberger, Ryan K; Boyd, Joseph S; Katsuki, Takeo; Golden, Susan S; Greenspan, Ralph J

    2014-11-25

    The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network. PMID:25385627

  15. Phoneme Restoration.

    ERIC Educational Resources Information Center

    Samuel, Arthur

    1996-01-01

    Notes that phonemic restoration is a powerful auditory illusion. Points out that when part of an utterance is replaced by another sound, listeners perceptually restore the missing speech. Several paradigms measure this illusion and explore its bottom-up and top-down bases. Findings reveal that acoustic properties of the replacement sound strongly…

  16. Reparative dentistry or restorative dentistry?

    PubMed

    Small, Bruce W

    2008-01-01

    The real definition of restorative dentistry is found in the heart and hands of each individual restorative dentist. His or her training, continuing dental education, mentors, needs (financial and emotional), and style of practice all help to develop a philosophy of dental practice that affects daily restorative decisions. Depending on the factors described above, the decision to repair a tooth or change the environment and restore the tooth to a different shape, size, or color also may change. In recent years, patients' esthetic desires have become more of a factor than they were in previous decades. There are no exact written-tn-stone definitions of restorative dentistry, since the answers are operator-dependent and can vary. This column is meant to be food for thought and perhaps inspire discussion when dentists assemble for meetings or study clubs with the goal of delivering longer-lasting dentistry through a restorative dental practice. PMID:18348367

  17. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  18. Circadian Clock Regulates Bone Resorption in Mice.

    PubMed

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  19. Circadian Rhythms, Sleep Deprivation, and Human Performance

    PubMed Central

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  20. Design principles underlying circadian clocks.

    PubMed Central

    Rand, D. A.; Shulgin, B. V.; Salazar, D.; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both the flexibility of clock networks and the relationships between various desirable properties such as robust entrainment, temperature compensation, and stability to environmental variations and parameter fluctuations. We use this to argue that the complexity provides the flexibility necessary to simultaneously attain multiple key properties of circadian clocks. As part of our analysis we show how to quantify the key evolutionary aims using infinitesimal response curves, a tool that we believe will be of general utility in the analysis of regulatory networks. Our results suggest that regulatory and signalling networks might be much less flexible and of lower dimension than their apparent complexity would suggest. PMID:16849158

  1. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  2. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. PMID:24942699

  3. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  4. Circadian rhythms, alcohol and gut interactions

    PubMed Central

    Forsyth, Christopher B.; Voigt, Rbin M.; Burgess, Helen J.; Swanson, Garth R.; Keshavarzian, Ali

    2015-01-01

    The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20–30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyper-permeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in ClockΔ19 mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our

  5. Working for Food Shifts Nocturnal Mouse Activity into the Day

    PubMed Central

    Boerema, Ate S.; Strijkstra, Arjen M.; Daan, Serge

    2011-01-01

    Nocturnal rodents show diurnal food anticipatory activity when food access is restricted to a few hours in daytime. Timed food access also results in reduced food intake, but the role of food intake in circadian organization per se has not been described. By simulating natural food shortage in mice that work for food we show that reduced food intake alone shifts the activity phase from the night into the day and eventually causes nocturnal torpor (natural hypothermia). Release into continuous darkness with ad libitum food, elicits immediate reversal of activity to the previous nocturnal phase, indicating that the classical circadian pacemaker maintained its phase to the light-dark cycle. This flexibility in behavioral timing would allow mice to exploit the diurnal temporal niche while minimizing energy expenditure under poor feeding conditions in nature. This study reveals an intimate link between metabolism and mammalian circadian organization. PMID:21479166

  6. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells

    PubMed Central

    Fang, Mingzhu; Guo, Wei-Ren; Park, Youngil; Kang, Hwan-Goo; Zarbl, Helmut

    2015-01-01

    We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis. PMID:26544624

  7. Restoring the prairie

    SciTech Connect

    Mlot, C.

    1990-12-01

    The US DOE at the Fermi National Accelerator Laboratory in Batavia, Illinois, prairie restoration is taking place in order to conserve the rich topsoil. This is the largest of many prairie restoration experiments. Big bluestem grass (Andropogon gerardi), blue grama (Bouteloua gracilis), and buffalo grass (Buchloe dactyloides) are the main initial grasses grown. After their growth reaches enough biomass to sustain a fire, other prairie plants such as purple prairie clover and dropseed grass appear. The goal of this is to provide a generous refuge for disappearing native plants and animals, a site for scientific research, and a storehouse of genes adapted to a region that produces much of the worlds food. Plans for restoring the marsh and oak savanna, also native to the Fermilab site are also in the works.

  8. WIDE AWAKE mediates the circadian timing of sleep onset.

    PubMed

    Liu, Sha; Lamaze, Angelique; Liu, Qili; Tabuchi, Masashi; Yang, Yong; Fowler, Melissa; Bharadwaj, Rajnish; Zhang, Julia; Bedont, Joseph; Blackshaw, Seth; Lloyd, Thomas E; Montell, Craig; Sehgal, Amita; Koh, Kyunghee; Wu, Mark N

    2014-04-01

    How the circadian clock regulates the timing of sleep is poorly understood. Here, we identify a Drosophila mutant, wide awake (wake), that exhibits a marked delay in sleep onset at dusk. Loss of WAKE in a set of arousal-promoting clock neurons, the large ventrolateral neurons (l-LNvs), impairs sleep onset. WAKE levels cycle, peaking near dusk, and the expression of WAKE in l-LNvs is Clock dependent. Strikingly, Clock and cycle mutants also exhibit a profound delay in sleep onset, which can be rescued by restoring WAKE expression in LNvs. WAKE interacts with the GABAA receptor Resistant to Dieldrin (RDL), upregulating its levels and promoting its localization to the plasma membrane. In wake mutant l-LNvs, GABA sensitivity is decreased and excitability is increased at dusk. We propose that WAKE acts as a clock output molecule specifically for sleep, inhibiting LNvs at dusk to promote the transition from wake to sleep. PMID:24631345

  9. Environmental Circadian Disruption Worsens Neurologic Impairment and Inhibits Hippocampal Neurogenesis in Adult Rats After Traumatic Brain Injury.

    PubMed

    Li, Dongpeng; Ma, Shanshan; Guo, Dewei; Cheng, Tian; Li, Hongwei; Tian, Yi; Li, Jianbin; Guan, Fangxia; Yang, Bo; Wang, Jian

    2016-10-01

    Circadian rhythms modulate many physiologic processes and behaviors. Therefore, their disruption causes a variety of potential adverse effects in humans and animals. Circadian disruption induced by constant light exposure has been discovered to produce pathophysiologic consequences after brain injury. However, the underlying mechanisms that lead to more severe impairment and disruption of neurophysiologic processes are not well understood. Here, we evaluated the effect of constant light exposure on the neurobehavioral impairment and survival of neurons in rats after traumatic brain injury (TBI). Sixty adult male Sprague-Dawley rats were subjected to a weight-drop model of TBI and then exposed to either a standard 12-/12-h light/dark cycle or a constant 24-h light/light cycle for 14 days. Our results showed that 14 days of constant light exposure after TBI significantly worsened the sensorimotor and cognitive deficits, which were associated with decreased body weight, impaired water and food intake, increased cortical lesion volume, and decreased neuronal survival. Furthermore, environmental circadian disruption inhibited cell proliferation and newborn cell survival and decreased immature cell production in rats subjected to the TBI model. We conclude that circadian disruption induced by constant light exposure worsens histologic and neurobehavioral impairment and inhibits neurogenesis in adult TBI rats. Our novel findings suggest that light exposure should be decreased and circadian rhythm reestablished in hospitalized TBI patients and that drugs and strategies that maintain circadian rhythm would offer a novel therapeutic option. PMID:26886755

  10. Reciprocal interactions between circadian clocks and aging.

    PubMed

    Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N

    2016-08-01

    Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system. PMID:27137838

  11. Photopic transduction implicated in human circadian entrainment

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Kronauer, R. E.; Czeisler, C. A.

    1997-01-01

    Despite the preeminence of light as the synchronizer of the circadian timing system, the phototransductive machinery in mammals which transmits photic information from the retina to the hypothalamic circadian pacemaker remains largely undefined. To determine the class of photopigments which this phototransductive system uses, we exposed a group (n = 7) of human subjects to red light below the sensitivity threshold of a scotopic (i.e. rhodopsin/rod-based) system, yet of sufficient strength to activate a photopic (i.e. cone-based) system. Exposure to this light stimulus was sufficient to reset significantly the human circadian pacemaker, indicating that the cone pigments which mediate color vision can also mediate circadian vision.

  12. Circadian clocks, feeding time, and metabolic homeostasis

    PubMed Central

    Paschos, Georgios K.

    2015-01-01

    Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The circadian clock is thought to have evolved as a time keeping system for the cell to optimize the timing of metabolic events according to physiological needs and environmental conditions. Circadian rhythms temporally separate incompatible cellular processes and optimize cellular and organismal fitness. A modern 24 h lifestyle can run at odds with the circadian rhythm dictated by our molecular clocks and create desynchrony between internal and external timing. It has been suggested that this desynchrony compromises metabolic homeostasis and may promote the development of obesity (Morris et al., 2012). Here we review the evidence supporting the association between circadian misalignment and metabolic homeostasis and discuss the role of feeding time. PMID:26082718

  13. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis.

    PubMed

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-05-01

    The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous "zeitgebers," such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here, we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK, and SREBP signaling, leading to altered insulin, glucose, and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PAPERCLIP. PMID:27153497

  14. Effects of circadian disruption on cardiometabolic system

    PubMed Central

    Rüger, Melanie; Scheer, Frank A.J.L.

    2011-01-01

    The presence of day-night variations in cardiovascular and metabolic functioning is well known. However, only recently it has been shown that cardiovascular and metabolic processes are not only affected by the behavioral sleep/wake cycle but are partly under direct control of the master circadian pacemaker located in the suprachiasmatic nucleus (SCN). Heart rate, cardiac autonomic activity, glucose metabolism and leptin —involved in appetite control—all show circadian variation (i.e., under constant behavioral and environmental conditions). This knowledge of behavioral vs. circadian modulation of cardiometabolic function is of clinical relevance given the morning peak in adverse cardiovascular incidents observed in epidemiological studies and given the increased risk for the development of diabetes, obesity, and cardiovascular disease in shift workers. We will review the evidence for circadian control of cardiometabolic functioning, as well its sensitivity to light and melatonin, and discuss potential implication for therapy. PMID:19784781

  15. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    PubMed

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle. PMID:22022521

  16. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans.

    PubMed

    Morris, Christopher J; Yang, Jessica N; Garcia, Joanna I; Myers, Samantha; Bozzi, Isadora; Wang, Wei; Buxton, Orfeu M; Shea, Steven A; Scheer, Frank A J L

    2015-04-28

    Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show--by using two 8-d laboratory protocols--in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers. PMID:25870289

  17. Pilot Fatigue and Circadian Desynchronosis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pilot fatigue and circadian desynchronosis, its significance to air transport safety, and research approaches, were examined. There is a need for better data on sleep, activity, and other pertinent factors from pilots flying a variety of demanding schedules. Simulation studies of flight crew performance should be utilized to determine the degree of fatigue induced by demanding schedules and to delineate more precisely the factors responsible for performance decrements in flight and to test solutions proposed to resolve problems induced by fatigue and desynchronosis. It was concluded that there is a safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue associated with various factors found in air transport operations.

  18. Circadian periodicity of tryptophan metabolism

    PubMed Central

    Rapoport, Morton I.; Beisel, William R.

    1968-01-01

    Rhythmicity of tryptophan metabolism via the kynurenine pathway has been demonstrated in man. Normal subjects given 3 g of tryptophan at 0900 hours excreted almost three times the quantity of kynurenine, kynurenic acid, and xanthurenic acid than did subjects given the same dose at 2100 hours. Other metabolites of the kynurenine pathway varied in the same fashion but with lesser magnitude. In contrast, indican, a tryptophan metabolite not in the kynurenine pathway, varied inversely with the other metabolites measured. The data suggest that the liver enzyme tryptophan pyrrolase has a circadian rhythm in man similar to that already described in mice in a previous study. Tryptophan tolerance tests in the future should be controlled relative to time of amino acid administration. PMID:5641628

  19. Circadian rhythms of performance: new trends

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.

    2000-01-01

    This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.

  20. Linking Core Promoter Classes to Circadian Transcription

    PubMed Central

    Westermark, Pål O.

    2016-01-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  1. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  2. Neuroimaging, cognition, light and circadian rhythms.

    PubMed

    Gaggioni, Giulia; Maquet, Pierre; Schmidt, Christina; Dijk, Derk-Jan; Vandewalle, Gilles

    2014-01-01

    In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning. PMID:25071478

  3. Linking Core Promoter Classes to Circadian Transcription.

    PubMed

    Westermark, Pål O

    2016-08-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  4. Personalized medicine for pathological circadian dysfunctions

    PubMed Central

    Skelton, Rachel L.; Kornhauser, Jon M.; Tate, Barbara A.

    2015-01-01

    The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities. PMID:26150790

  5. 7 CFR 273.17 - Restoration of lost benefits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Restoration of lost benefits. 273.17 Section 273.17... AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM CERTIFICATION OF ELIGIBLE HOUSEHOLDS § 273.17 Restoration... household is entitled to restoration of lost benefits. Furthermore, unless there is a statement elsewhere...

  6. Development of the Circadian Timing System in Rat Pups Exposed to Microgravity during Gestation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    Ten pregnant Sprague Dawley rat dams were exposed to spaceflight aboard the Space Shuttle (STS-70) for gestational days 11-20 (G 11-20; FILT group). Control dams were maintained in either a flight-like (FIDS group) or vivarium cage environment (VIV group) on earth. All dams had ad lib access to food and water and were exposed to a light-dark cycle consisting of 12 hours of light (- 30 lux) followed by 12 hours of darkness. The dams were closely monitored from G 22 until parturition. All pups were cross-fostered at birth; each foster dam had a litter of 10 pups. Pups remained with their foster dam until post-natal day 21 (PN 21). Pup body mass was measured twice weekly. At PN14 FILT pups had a smaller body mass than did the VIV pups (p < 0.01). Circadian rhythms of body temperature and activity of pups from two FILT dams (n = 8), two FIDS dams (n = 9) and two VIV dams (n = 7) were studied starting from age PN 21. All pups had circadian rhythms of temperature and activity at this age. There were no significant differences in rhythms between groups that could be attributed to microgravity exposure. We also examined the development of neural structures involved in circadian rhythmicity: the retina, the intergeniculate leaflet (IGL) and the circadian pacemaker, the suprachiasmatic nucleus (SCN). There were small differences between the flight and control groups at very early stages of development (G 20 and PN3) which indicated that the development of both the SCN and the IGL. These results indicate that exposure to the microgravity environment of spaceflight during this embryonic development period does not affect the development of the circadian rhythms of body temperature and activity, but may affect the early development of the neural structures involved in circadian timing.

  7. Evaluation of the Effect of Different Food Media on the Marginal Integrity of Class V Compomer, Conventional and Resin-Modified Glass-Ionomer Restorations: An In Vitro Study

    PubMed Central

    Dinakaran, Shiji

    2015-01-01

    Background: Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract®), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. Materials and Methods: After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Results: Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P < 0.05 were considered statistically significant. Conclusions: Among the three tested materials Compomer (Dyract®) showed more marginal integrity than the other two. Micro leakage values of Fuji II and Fuji II LC improved were statistically significant in acidic media (lime juice and Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins. PMID:25878480

  8. Effects of restricted feeding schedules on circadian organization in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Boulos, Z.; Frim, D. M.; Dewey, L. K.; Moore-Ede, M. C.

    1989-01-01

    Free running circadian rhythms of motor activity, food-motivated lever-pressing, and either drinking (N = 7) or body temperature (N = 3) were recorded from 10 squirrel monkeys maintained in constant illumination with unlimited access to food. Food availability was then restricted to a single unsignaled 3-hour interval each day. The feeding schedule failed to entrain the activity rhythms of 8 monkeys, which continued to free-run. Drinking was almost completely synchronized by the schedule, while body temperature showed a feeding-induced rise superimposed on a free-running rhythm. Nonreinforced lever-pressing showed both a free-running component and a 24-hour component that anticipated the time of feeding. At the termination of the schedule, all recorded variables showed free-running rhythms, but in 3 animals the initial phase of the postschedule rhythms was advanced by several hours, suggesting relative coordination. Of the remaining 2 animals, one exhibited stable entrainment of all 3 recorded rhythms, while the other appeared to entrain temporarily to the feeding schedule. These results indicate that restricted feeding schedules are only a weak zeitgeber for the circadian pacemaker generating free-running rhythms in the squirrel monkey. Such schedules, however, may entrain a separate circadian system responsible for the timing of food-anticipatory changes in behavior and physiology.

  9. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions.

    PubMed

    Brainard, Jason; Gobel, Merit; Bartels, Karsten; Scott, Benjamin; Koeppen, Michael; Eckle, Tobias

    2015-03-01

    The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts. PMID:25294583

  10. Evaluation of the circadian profiles of serum dehydroepiandrosterone (DHEA), cortisol, and cortisol/DHEA molar ratio after a single oral administration of DHEA in elderly subjects.

    PubMed

    Ceresini, G; Morganti, S; Rebecchi, I; Freddi, M; Ceda, G P; Banchini, A; Solerte, S B; Ferrari, E; Ablondi, F; Valenti, G

    2000-04-01

    Aging is associated with a selective decline in circulating levels of dehydroepiandrosterone (DHEA) and its sulfate, with no major changes in cortisol secretion. In young subjects, serum levels of both DHEA and cortisol are regulated according to a circadian rhythm, and an age-related attenuation of DHEA, but not cortisol, circadian rhythmicity has been reported. Several trials have evaluated the effects of DHEA supplementation in elderly subjects, although the results are still controversial. However, no data are available on the 24-hour profile of DHEA circulating levels in elderly subjects with DHEA administration. In the present study, we evaluated the circadian rhythms of DHEA, cortisol, and the cortisol/DHEA molar ratio in old subjects treated with either placebo (old-PL) or a single 50-mg dose of DHEA (old-D), both administered orally at 0700 hours. For each variable, the circadian profiles were compared with those obtained in young control subjects. The group of young subjects displayed a circadian rhythm for both DHEA and cortisol serum concentrations but no rhythm for the cortisol/DHEA molar ratio. In the old-PL group, the circadian rhythm of DHEA was completely abolished, whereas significant rhythms for both cortisol and the cortisol/DHEA molar ratio were observed. Particularly, at each time point, the cortisol/DHEA molar ratio was significantly higher in these subjects versus the young group. In the old-D group, the circadian rhythm of DHEA was completely restored and was comparable to that observed in the young group. Analogous to the observations in young subjects, the profile of the cortisol/DHEA molar ratio in old-D subjects did not display any circadian rhythmicity, the values being almost completely comparable to those observed in young controls. Our data demonstrate that the circadian rhythm of DHEA is totally abolished in elderly subjects. A single 50-mg dose of DHEA administered orally at 0700 hours restores the circadian rhythmicity of serum

  11. Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism.

    PubMed

    He, Lan; Hamm, J Austin; Reddy, Alex; Sams, David; Peliciari-Garcia, Rodrigo A; McGinnis, Graham R; Bailey, Shannon M; Chow, Chi-Wing; Rowe, Glenn C; Chatham, John C; Young, Martin E

    2016-06-01

    Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCβ, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways. PMID:27084392

  12. Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis

    PubMed Central

    Martí, María C.; Laurie, David A.; Greenland, Andy J.; Hall, Anthony; Webb, Alex A. R.

    2015-01-01

    Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom. Functional characterisation of circadian clock genes has been restricted to a few model species. Here we provide a functional characterisation of the Hordeum vulgare (barley) circadian clock genes Hv CIRCADIAN CLOCK ASSOCIATED 1 (HvCCA1) and Hv PHOTOPERIODH1, which are respectively most similar to Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1) and PSEUDO RESPONSE REGULATOR 7 (AtPRR7). This provides insight into the circadian regulation of one of the major crop species of Northern Europe. Through a combination of physiological assays of circadian rhythms in barley and heterologous expression in wild type and mutant strains of A. thaliana we demonstrate that HvCCA1 has a conserved function to AtCCA1. We find that Hv PHOTOPERIOD H1 has AtPRR7-like functionality in A. thaliana and that the effects of the Hv photoperiod h1 mutation on photoperiodism and circadian rhythms are genetically separable. PMID:26076005

  13. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock.

    PubMed

    Dang, Fabin; Sun, Xiujie; Ma, Xiang; Wu, Rong; Zhang, Deyi; Chen, Yaqiong; Xu, Qian; Wu, Yuting; Liu, Yi

    2016-01-01

    Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. PMID:27576939

  14. Ultrasonic vocalizations in rats anticipating circadian feeding schedules.

    PubMed

    Opiol, Hanna; Pavlovski, Ilya; Michalik, Mateusz; Mistlberger, Ralph E

    2015-05-01

    Rats readily learn to anticipate a reward signaled by an external stimulus. Anticipatory behaviors evoked by conditioned stimuli include 50 kHz ultrasonic vocalizations (USVs), a proposed behavioral correlate of positive affect and activation of midbrain dopamine pathways. Rats can also anticipate a reward, such as food, provided once daily, without external cueing. Anticipation of a daily reward exhibits formal properties of a circadian rhythm. The neural circuits that regulate the timing and amplitude of these rhythms remain an open question, but evidence suggests a role for dopamine. To gain further insight into the neural and affective correlates of circadian food anticipatory rhythms, we made 2h and 24h USV recordings in rats fed 2h/day in the light period, a procedure that induces robust anticipation 2-3h before mealtime. Potential interactions between internal and external time cues in USV production were evaluated by inclusion of a 3 kHz tone 15 min before mealtime. Prior to scheduled feeding, spontaneous 50 kHz USVs were rare during the light period. During scheduled feeding, flat and frequency modulated (FM) 50kHz USVs occurred prior to and during mealtime. FM USVs were more closely related to anticipation, while flat USVs were more dependent on food access. USVs also occurred during spontaneous waking at other times of day. The tone did not evoke USVs but did modulate activity. Behavioral anticipation of a daily meal is accompanied by USVs consistent with a positive affective state and elevated dopamine transmission. PMID:25677650

  15. Temporal Requirements of the Fragile X Mental Retardation Protein in Modulating Circadian Clock Circuit Synaptic Architecture

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2009-01-01

    Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924

  16. Osteoarthritis-like pathologic changes in the knee joint induced by environmental disruption of circadian rhythms is potentiated by a high-fat diet

    PubMed Central

    Kc, Ranjan; Li, Xin; Forsyth, Christopher B.; Voigt, Robin M.; Summa, Keith C.; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W.; Meng, Qing-Jun; Im, Hee-Jeong

    2015-01-01

    A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications. PMID:26584570

  17. Circadian rhythm dissociation in an environment with conflicting temporal information

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Hiles, L. G.; Moore-Ede, M. C.

    1978-01-01

    The relative contributions of light-dark (LD) cycles and eating-fasting (EF) cycles in providing temporal information to the circadian time-keeping system were examined in chair-acclimatized squirrel monkeys (Saimiri sciureus). The circadian rhythms of drinking, colonic temperature, urine volume, and urinary potassium excretion were measured with the LD and EF cycles providing either conflicting phases or periods. In conflicting phase experiments, animals were exposed to 24-hr LD cycles consisting of 12 hr of 600 lx followed by 12 hr of less than 1 lx and concurrent 24-hr EF cycles in which the animals ate for 3 hr and then fasted for 21 hr. One group had food available at the beginning and a second group at the end of the light period. In conflicting period experiments, monkeys were exposed to 23-hr LD cycles and 24-hr EF cycles. Analysis of the rhythms showed that both phase and period information were conveyed to the drinking and urinary rhythms by the EF cycle, and to the temperature rhythm by the LD cycle.

  18. Circadian Regulation of Kisspeptin in Female Reproductive Functioning

    PubMed Central

    2015-01-01

    Female reproductive functioning requires the precise temporal organization of numerous neuroendocrine events by a master circadian brain clock located in the suprachiasmatic nucleus. Across species, including humans, disruptions to circadian timing result in pronounced deficits in ovulation and fecundity. The present chapter provides an overview of the circadian control of female reproduction, underscoring the significance of kisspeptin as a key locus of integration for circadian and steroidal signaling necessary for the initiation of ovulation. PMID:23550016

  19. Natural restoration

    SciTech Connect

    Kamlet, K.S.

    1993-02-01

    After a company pays millions of dollars to clean up contaminated site, its liability may not be over. It may have to spend tens of millions more to restore damaged natural resources under an oft-overlooked Superfund program. Examples of liability are cited in this report from the Exxon Valdez oil spill and a pcb leak which contaminated a harbor.

  20. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  1. Systems biology of circadian-immune interactions

    PubMed Central

    Mavroudis, P.D.; Scheff, J.D.; Calvano, S.E.; Androulakis, I.P.

    2013-01-01

    There is increasing evidence that immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators such as cytokines, undergo daily fluctuations. Current experimental data indicates that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune system. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies requires not only an accurate identification of the signaling pathways that mediate host’s response, but also a systems-level description and evaluation. PMID:23006670

  2. The circadian basis of winter depression

    PubMed Central

    Lewy, Alfred J.; Lefler, Bryan J.; Emens, Jonathan S.; Bauer, Vance K.

    2006-01-01

    The following test of the circadian phase-shift hypothesis for patients with winter depression (seasonal affective disorder, or SAD) uses low-dose melatonin administration in the morning or afternoon/evening to induce phase delays or phase advances, respectively, without causing sleepiness. Correlations between depression ratings and circadian phase revealed a therapeutic window for optimal alignment of circadian rhythms that also appears to be useful for phase-typing SAD patients for the purpose of administering treatment at the correct time. These analyses also provide estimates of the circadian component of SAD that may apply to the antidepressant mechanism of action of appropriately timed bright light exposure, the treatment of choice. SAD may be the first psychiatric disorder in which a physiological marker correlates with symptom severity before, and in the course of, treatment in the same patients. The findings support the phase-shift hypothesis for SAD, as well as suggest a way to assess the circadian component of other psychiatric, sleep, and chronobiologic disorders. PMID:16648247

  3. Systems biology of circadian-immune interactions.

    PubMed

    Mavroudis, P D; Scheff, J D; Calvano, S E; Androulakis, I P

    2013-01-01

    There is increasing evidence that the immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators, such as cytokines, undergo daily fluctuations. Current experimental data indicate that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune systems. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies require not only an accurate identification of the signaling pathways that mediate host responses, but also a system-level description and evaluation. PMID:23006670

  4. Circadian and wakefulness-sleep modulation of cognition in humans.

    PubMed

    Wright, Kenneth P; Lowry, Christopher A; Lebourgeois, Monique K

    2012-01-01

    Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety. PMID:22529774

  5. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  6. A novel animal model linking adiposity to altered circadian rhythms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  7. The circadian clock in cancer development and therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  8. Circadian and wakefulness-sleep modulation of cognition in humans

    PubMed Central

    Wright, Kenneth P.; Lowry, Christopher A.; LeBourgeois, Monique K.

    2012-01-01

    Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety. PMID:22529774

  9. Diurnal oscillations of soybean circadian clock and drought responsive genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system i...

  10. Circadian typology: a comprehensive review.

    PubMed

    Adan, Ana; Archer, Simon N; Hidalgo, Maria Paz; Di Milia, Lee; Natale, Vincenzo; Randler, Christoph

    2012-11-01

    The interest in the systematic study of the circadian typology (CT) is relatively recent and has developed rapidly in the two last decades. All the existing data suggest that this individual difference affects our biological and psychological functioning, not only in health, but also in disease. In the present study, we review the current literature concerning the psychometric properties and validity of CT measures as well as individual, environmental and genetic factors that influence the CT. We present a brief overview of the biological markers that are used to define differences between CT groups (sleep-wake cycle, body temperature, cortisol and melatonin), and we assess the implications for CT and adjustment to shiftwork and jet lag. We also review the differences between CT in terms of cognitive abilities, personality traits and the incidence of psychiatric disorders. When necessary, we have emphasized the methodological limitations that exist today and suggested some future avenues of work in order to overcome these. This is a new field of interest to professionals in many different areas (research, labor, academic and clinical), and this review provides a state of the art discussion to allow professionals to integrate chronobiological aspects of human behavior into their daily practice. PMID:23004349

  11. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms.

    PubMed

    Hardeland, Rüdiger; Coto-Montes, Ana; Poeggeler, Burkhard

    2003-11-01

    the per2 gene homolog are reported to be cancer-prone, a finding which might also relate to oxidative stress. In the dinoflagellate Lingulodinium polyedrum [Gonyaulax polyedra], various treatments that cause oxidative stress result in strong suppressions of melatonin and its metabolite 5-methoxytryptamine (5-MT) and to secondary effects on overt rhythmicity. The glow maximum, depending on the presence of elevated 5-MT at the end of subjective night, decreases in a dose-dependent manner already under moderate, non-lethal oxidative stress, but is restored by replenishing melatonin. Therefore, a general effect of oxidative stress may consist in declines of easily oxidizable signaling molecules such as melatonin, and this can have consequences on the circadian intraorganismal organization and expression of overt rhythms. Recent findings on a redox-sensitive input into the core oscillator via modulation of NPAS2/BMAL1 or CLK/BMAL1 heterodimer binding to DNA indicate a direct influence of cellular redox balance, including oxidative stress, on the circadian clock. PMID:14680136

  12. Restoring Ancestral Language, Restoring Identity.

    ERIC Educational Resources Information Center

    Bannon, Kay T.

    1999-01-01

    Describes the Cherokee Language Renewal Program that was designed to help Cherokee elementary school children learn to function in the dominant culture without sacrificing their own cultural heritage. Explains how the program got started, and reports on how it helps restore a cultural identify to a people who are at risk of losing their identity.…

  13. Quantification of Circadian Rhythms in Single Cells

    PubMed Central

    Westermark, Pål O.; Welsh, David K.; Okamura, Hitoshi; Herzel, Hanspeter

    2009-01-01

    Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber). PMID:19956762

  14. Developmental alcohol and circadian clock function.

    PubMed

    Earnest, D J; Chen, W J; West, J R

    2001-01-01

    Studies in rats found that alcohol exposure during the early postnatal period, particularly during the brain-growth-spurt period, can result in cell loss in various brain regions and persistent behavioral impairments. Some investigators have speculated that the body's internal clock, which is located in the suprachiasmatic nuclei (SCN) in the brain, may also be affected by developmental alcohol exposure. For example, alcohol-induced damage to the SCN cells and their function could result in disturbances of the circadian timekeeping function, and these disturbances might contribute to the behavioral impairments and affective disorders observed in people prenatally exposed to alcohol. Preliminary findings of studies conducted in rats suggest that developmental alcohol exposure may indeed interfere with circadian clock function as evidenced by a shortened circadian sleep-wake cycle and changes in the release of certain brain chemicals (i.e., neuropeptides) by SCN cells. PMID:11584552

  15. Optimal Implementations for Reliable Circadian Clocks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  16. Effect of Light on Human Circadian Physiology

    PubMed Central

    Duffy, Jeanne F.; Czeisler, Charles A.

    2009-01-01

    Synopsis The circadian system in animals and humans, being near but not exactly 24-hours in cycle length, must be reset on a daily basis in order to remain in synchrony with external environmental time. This process of entrainment is achieved in most mammals through regular exposure to light and darkness. In this chapter, we review the results of studies conducted in our laboratory and others over the past 25 years in which the effects of light on the human circadian timing system were investigated. These studies have revealed, how the timing, intensity, duration, and wavelength of light affect the human biological clock. Our most recent studies also demonstrate that there is much yet to learn about the effects of light on the human circadian timing system. PMID:20161220

  17. Nutrient Sensing and the Circadian Clock

    PubMed Central

    Peek, Clara B.; Ramsey, Kathryn M.; Marcheva, Biliana; Bass, Joseph

    2012-01-01

    The circadian system synchronizes behavioral and physiologic processes with daily changes in the external light-dark cycle, optimizing energetic cycles with the rising and setting of the sun. Molecular clocks are organized hierarchically, with neural clocks orchestrating the daily switch between periods of feeding and fasting, and peripheral clocks generating 24hr oscillations of energy storage and utilization. Recent studies indicate that clocks respond to nutrient signals, and that high-fat diet influences the period of locomotor activity under free-running conditions, a core property of the clock. A major goal is to identify the molecular basis for the reciprocal relationship between metabolic and circadian pathways. Here, we highlight the role of peptidergic hormones and macromolecules as nutrient signals integrating circadian and metabolic systems. PMID:22424658

  18. Intact Interval Timing in Circadian CLOCK Mutants

    PubMed Central

    Cordes, Sara; Gallistel, C. R.

    2008-01-01

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/− and −/− mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing. PMID:18602902

  19. [Molecular oscillatory machinery of circadian rhythms].

    PubMed

    Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2012-07-01

    Many metabolic and physiological processes display daily rhythms oscillated by the internal circadian clock system. This rhythm is generated by interlocked transcription-(post) translation feedback loops of clock genes: the core oscillatory loop, being composed of CLOCK/BMAL1 heterodimer activating the expressions of PER and CRY that directly repress CLOCK/BMAL1, is accompanied by accessory loops consisted with REV-ERB nuclear receptor repressing Bmal1 or with DBP competing with E4BP4 on D-box site. These clock proteins are regulated by phosphorylation and ubiquitination (PER/CRY), and acetylation (CLOCK/BMAL1). Recently, a deacetylating protein SIRT1 mediated metabolic pathway is discovered to be interlocked with core oscillatory loop via Nampt expression, a late-limiting enzyme in NAD+ salvage pathway. Since many key-step enzymes of metabolisms are regulated by the circadian clock, circadian clock system may intimately link to cellular metabolism. PMID:22844791

  20. Klf15 orchestrates circadian nitrogen homeostasis

    PubMed Central

    Jeyaraj, Darwin; Scheer, Frank A.J.L.; Ripperger, Jürgen A.; Haldar, Saptarsi M.; Lu, Yuan; Prosdocimo, Domenick A.; Eapen, Sam J.; Eapen, Betty L.; Cui, Yingjie; Mahabeleshwar, Ganapathi H.; Lee, Hyoung-gon; Smith, Mark A.; Casadesus, Gemma; Mintz, Eric M.; Sun, Haipeng; Wang, Yibin; Ramsey, Kathryn M.; Bass, Joseph; Shea, Steven A.; Albrecht, Urs; Jain, Mukesh K.

    2012-01-01

    SUMMARY Diurnal variation in nitrogen homeostasis is observed across phylogeny. But whether these are endogenous rhythms, and if so, molecular mechanisms that link nitrogen homeostasis to the circadian clock remain unknown. Here, we provide evidence that a clock-dependent peripheral oscillator, Krüppel-like factor15 transcriptionally coordinates rhythmic expression of multiple enzymes involved in mammalian nitrogen homeostasis. In particular, Krüppel-like factor15-deficient mice exhibit no discernable amino acid rhythm, and the rhythmicity of ammonia to urea detoxification is impaired. Of the external cues, feeding plays a dominant role in modulating Krüppel-like factor15 rhythm and nitrogen homeostasis. Further, when all behavioral, environmental and dietary cues were controlled in humans, nitrogen homeostasis still expressed endogenous circadian rhythmicity. Thus, in mammals, nitrogen homeostasis exhibits circadian rhythmicity, and is orchestrated by Krüppel-like factor15. PMID:22405069

  1. Coordination of the maize transcriptome by a conserved circadian clock

    PubMed Central

    2010-01-01

    Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species. PMID:20576144

  2. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  3. Effect of hypergravity on the circadian rhythms of white rats.

    NASA Technical Reports Server (NTRS)

    Lafferty, J. F.

    1972-01-01

    The effects of artificial gravity on the circadian rhythm of white rats was observed by comparing feeding activity at 1.0 and 1.75 g. The feeding cycle data were obtained by observing the number of feeding switch responses, as well as the amount of food obtained, as a function of time. One of the three subjects clearly established a free-running cycle with a period of 24.742 hr. During a 40-day exposure to the 1.75 g environment, the subjects maintained the same feeding cycle period which was established at 1.0 g. While the results of this study indicate that the activity rhythms of rats are insensitive to gravity levels between 1.0 and 1.75 g, the effects of gravity levels below 1.0 g are yet to be determined.

  4. Circadian phenotyping of obese and diabetic db/db mice.

    PubMed

    Grosbellet, Edith; Dumont, Stephanie; Schuster-Klein, Carole; Guardiola-Lemaitre, Beatrice; Pevet, Paul; Criscuolo, François; Challet, Etienne

    2016-05-01

    Growing evidence links metabolic disorders to circadian alterations. Genetically obese db/db mice, lacking the long isoform of leptin receptor, are a recognized model of type 2 diabetes. In this study, we aimed at characterizing the potential circadian alterations of db/db mice in comparison to db/+ control mice. By using telemetry devices, we first reported arrhythmicity in general activity of most db/db mice under both light-dark cycle and constant darkness, while their rhythm of body temperature is less dramatically disrupted. Water access restricted to nighttime restores significant rhythmicity in behaviorally arrhythmic db/db mice, indicating a masking effect of polydipsia when water is available ad libitum. Endogenous period of temperature rhythm under constant dark conditions is significantly increased (+30 min) in db/db compared with db/+ mice. Next, we studied the oscillations of clock proteins (PER1, PER2 and BMAL1) in the suprachiasmatic nuclei (SCN), the site of the master clock, and detected no difference according to the genotype. Furthermore, c-FOS and P-ERK1/2 expression in response to a light pulse in late night was significantly increased (+80 and +55%, respectively) in the SCN of these diabetic mice. We previously showed that, in addition to altered activity rhythms, db/db mice exhibit altered feeding rhythm. Therefore, we investigated daily patterns of clock protein expression in medial hypothalamic oscillators involved in feeding behavior (arcuate nucleus, ventro- and dorso-medial hypothalamic nuclei). Compared with db/+ mice, very subtle or no difference in oscillations of PER1 and BMAL1 is found in the medial hypothalamus. Although we did not find a clear link between altered hypothalamic clockwork and behavioral rhythms in db/db mice, our results highlight a lengthened endogenous period and altered photic integration in these genetically obese and diabetic mice. PMID:26144489

  5. Suprachiasmatic Nucleus as the Site of Androgen Action on Circadian Rhythms

    PubMed Central

    Model, Zina; Butler, Matthew P.; LeSauter, Joseph; Silver, Rae

    2015-01-01

    Androgens act widely in the body in both central and peripheral sites. Prior studies indicate that in the mouse, suprachiasmatic nucleus (SCN) cells bear androgen receptors (ARs). The SCN of the hypothalamus in mammals is the locus of a brain clock that regulates circadian rhythms in physiology and behavior. Gonadectomy results in reduced AR expression in the SCN and in marked lengthening of the period of free-running activity rhythms. Both responses are restored by systemic administration of androgens, but the site of action remains unknown. Our goal was to determine whether intracranial androgen implants targeted to the SCN are sufficient to restore the characteristic free-running period in gonadectomized male mice. The results indicate that hypothalamic implants of testosterone propionate in or very near the SCN produce both anatomical and behavioral effects, namely increased AR expression in the SCN and restored period of free-running locomotor activity. The effect of the implant on the period of the free-running locomotor rhythm is positively correlated with the amount of AR expression in the SCN. There is no such correlation of period change with amount of AR expression in other brain regions examined, namely the preoptic area, bed nucleus of the stria terminalis and premammillary nucleus. We conclude that the SCN is the site of action of androgen effects on the period of circadian activity rhythmicity. PMID:26012711

  6. Restoration Process

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the accompanying photos, a laboratory technician is restoring the once-obliterated serial number of a revolver. The four-photo sequence shows the gradual progression from total invisibility to clear readability. The technician is using a new process developed in an applications engineering project conducted by NASA's Lewis Research Center in conjunction with Chicago State University. Serial numbers and other markings are frequently eliminated from metal objects to prevent tracing ownership of guns, motor vehicles, bicycles, cameras, appliances and jewelry. To restore obliterated numbers, crime laboratory investigators most often employ a chemical etching technique. It is effective, but it may cause metal corrosion and it requires extensive preparatory grinding and polishing. The NASA-Chicago State process is advantageous because it can be applied without variation to any kind of metal, it needs no preparatory work and number recovery can be accomplished without corrosive chemicals; the liquid used is water.

  7. Circadian oscillations of cytosolic and chloroplastic free calcium in plants

    NASA Technical Reports Server (NTRS)

    Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.

    1995-01-01

    Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.

  8. Circadian and Circalunar Clock Interactions in a Marine Annelid

    PubMed Central

    Zantke, Juliane; Ishikawa-Fujiwara, Tomoko; Arboleda, Enrique; Lohs, Claudia; Schipany, Katharina; Hallay, Natalia; Straw, Andrew D.; Todo, Takeshi; Tessmar-Raible, Kristin

    2013-01-01

    Summary Life is controlled by multiple rhythms. Although the interaction of the daily (circadian) clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly) clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm’s forebrain. The worm’s forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function. PMID:24075994

  9. Influence of circadian disruption on neurotransmitter levels, physiological indexes, and behaviour in rats.

    PubMed

    Matsumura, Takeru; Nakagawa, Hikaru; Suzuki, Kota; Ninomiya, Chisa; Ishiwata, Takayuki

    2015-01-01

    Brain monoamines - such as noradrenaline (NA), dopamine (DA) and serotonin (5-HT) - regulate several important physiological functions, including the circadian rhythm. The purpose of this study was to examine changes in NA, DA and 5-HT levels in various brain regions and their effect on core body temperature (Tc), heart rate (HR) and locomotor activity (Act) in rats following exposure to an artificial light/dark (LD) cycle. For this, male Wistar rats were housed at an ambient temperature (Ta) of 23 °C and 50% relative humidity with free access to food and water. Rats were exposed to either natural (12 h:12 h) or artificial (6 h:6 h) LD cycles for 1 month, after which each brain region was immediately extracted and homogenized to quantify the amounts of NA, DA and 5-HT by high-performance liquid chromatography. Behavioural changes were also monitored by the ambulatory activity test (AAT). Notably, we found that artificial LD cycles disrupted the physiological circadian rhythms of Tc, HR and Act. Although the 5-HT levels of rats with a disrupted circadian rhythm decreased in cell bodies (dorsal and median raphe nuclei) and projection areas (frontal cortex, caudate putamen, preoptic area and suprachiasmatic nucleus) relative to the control group, NA levels increased both in the cell body (locus coeruleus) and projection area (paraventricular hypothalamus). No significant changes were found with respect to DA. Moreover, circadian rhythm-disrupted rats also showed anxious behaviours in AAT. Collectively, the results of this study suggest that the serotonergic and noradrenergic systems, but not the dopaminergic system, are affected by artificial LD cycles in brain regions that control several neural and physiological functions, including the regulation of physiological circadian rhythms, stress responses and behaviour. PMID:26595278

  10. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed

  11. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis.

    PubMed

    Merlin, Christine; Lucas, Philippe; Rochat, Didier; François, Marie-Christine; Maïbèche-Coisne, Martine; Jacquin-Joly, Emmanuelle

    2007-12-01

    Circadian rhythms are observed in mating behaviors in moths: females emit sex pheromones and males are attracted by these pheromones in rhythmic fashions. In the moth Spodoptera littoralis, we demonstrated the occurrence of a circadian oscillator in the antenna, the peripheral olfactory organ. We identified different clock genes, period (per), cryptochrome1 (cry1) and cryptochrome2 (cry2), in this organ. Using quantitative real-time PCR (qPCR), we found that their corresponding transcripts cycled circadianly in the antenna as well as in the brain. Electroantennogram (EAG) recordings over 24 h demonstrated for the first time a circadian rhythm in antennal responses of a moth to sex pheromone. qPCR showed that out of one pheromone-binding protein (PBP), one olfactory receptor (OR), and one odorant-degrading enzyme (ODE), all putatively involved in the pheromone reception, only the ODE transcript presented a circadian rhythm that may be related to rhythms in olfactory signal resolution. Peripheral or central circadian clock control of olfaction is then discussed in light of recent data. PMID:18057325

  12. Circadian control of global gene expression by the cyanobacterial master regulator RpaA

    PubMed Central

    Markson, Joseph S.; Piechura, Joseph R.; Puszynska, Anna M.; O’Shea, Erin K.

    2014-01-01

    Summary The cyanobacterial circadian clock generates genome-wide transcriptional oscillations and regulates cell division, but the underlying mechanisms are not well understood. Here we show that the response regulator RpaA serves as the master regulator of these clock outputs. Deletion of rpaA abrogates gene expression rhythms globally and arrests cells in a dawn-like expression state. Although rpaA deletion causes core oscillator failure by perturbing clock gene expression, rescuing oscillator function does not restore global expression rhythms. We show that phosphorylated RpaA regulates the expression of not only clock components, generating feedback on the core oscillator, but also a small set of circadian effectors that in turn orchestrate genome-wide transcriptional rhythms. Expression of constitutively active RpaA is sufficient to switch cells from a dawn-like to a dusk-like expression state as well as to block cell division. Hence, complex global circadian phenotypes can be generated by controlling the phosphorylation of a single transcription factor. PMID:24315105

  13. Circadian rhythms in liver metabolism and disease

    PubMed Central

    Ferrell, Jessica M.; Chiang, John Y.L.

    2015-01-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease. PMID:26579436

  14. Temperature compensation and entrainment in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  15. Circadian Typology and Style of Thinking Differences

    ERIC Educational Resources Information Center

    Fabbri, Marco; Antonietti, Alessandro; Giorgetti, Marisa; Tonetti, Lorenzo; Natale, Vincenzo

    2007-01-01

    The purpose of the present study aims to investigate the relationship between circadian typology and learning-thinking styles conceptualised as a preference toward information processing typical of the right vs. the left cerebral hemisphere. A sample of 1254 undergraduates (380 boys and 874 girls; mean age=21.86+/-2.37,) was administered the…

  16. Circadian rhythms in liver metabolism and disease.

    PubMed

    Ferrell, Jessica M; Chiang, John Y L

    2015-03-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease. PMID:26579436

  17. Procedures for numerical analysis of circadian rhythms

    PubMed Central

    REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ

    2010-01-01

    This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111

  18. Neuroanatomy of the Extended Circadian Rhythm System

    PubMed Central

    Morin, Lawrence P

    2012-01-01

    The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation. PMID:22766204

  19. Circadian rhythm of gravitaxis in Euglena gracilis.

    PubMed

    Lebert, M; Porst, M; Hader, D P

    1999-09-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavioral reactions. One pronounced reaction is the orientation with respect to gravity. In synchronized cultures with no cell growth a distinct circadian rhythm of negative gravitactic orientation could be observed. The main maximum of sensitivity was detected 5 h after the beginning of the subjective day, the main minimum 5 h before the beginning of the subjective day. Transferring synchronized cultures to continuous light resulted in an almost instantaneous loss of rhythmicity. In contrast, after transfer to permanent darkness cells exhibited a circadian rhythm with a progressive shortening of the period for more than 5 days. These findings are in contrast to the circadian rhythm of phototaxis in Euglena, where a free-running period of 24 h was observed. Parallel measurements of negative gravitactic orientation, velocity, cell shape as well as cAMP concentration in synchronized cultures revealed a circadian rhythm of all reactions. The results are discussed with regard to the possible role of cell shape and cAMP in gravitactic orientation. PMID:11542916

  20. Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism.

    PubMed

    Moran, Damian; Softley, Rowan; Warrant, Eric J

    2014-01-01

    The eyed surface form and eyeless cave form of the Mexican tetra Astyanax mexicanus experience stark differences in the daily periodicities of light, food and predation, factors which are likely to have a profound influence on metabolism. We measured the metabolic rate of Pachón cave and surface fish at a fixed swimming speed under light/dark and constant dark photoperiods. In constant darkness surface forms exhibited a circadian rhythm in metabolism with an increase in oxygen demand during the subjective daytime, whereas cave forms did not. The lack of circadian rhythm in metabolism leads to a 27% energy savings for Pachón cave fish compared to surface fish when comparing both forms in their natural photoperiods. When surface forms were tested under constant dark conditions they expended 38% more energy than cave forms under equivalent conditions. Elimination of the circadian rhythm in metabolism may be a general feature of animals that live in perpetually dark food-limited environments such as caves or the deep sea. PMID:25251018

  1. Eyeless Mexican Cavefish Save Energy by Eliminating the Circadian Rhythm in Metabolism

    PubMed Central

    Moran, Damian; Softley, Rowan; Warrant, Eric J.

    2014-01-01

    The eyed surface form and eyeless cave form of the Mexican tetra Astyanax mexicanus experience stark differences in the daily periodicities of light, food and predation, factors which are likely to have a profound influence on metabolism. We measured the metabolic rate of Pachón cave and surface fish at a fixed swimming speed under light/dark and constant dark photoperiods. In constant darkness surface forms exhibited a circadian rhythm in metabolism with an increase in oxygen demand during the subjective daytime, whereas cave forms did not. The lack of circadian rhythm in metabolism leads to a 27% energy savings for Pachón cave fish compared to surface fish when comparing both forms in their natural photoperiods. When surface forms were tested under constant dark conditions they expended 38% more energy than cave forms under equivalent conditions. Elimination of the circadian rhythm in metabolism may be a general feature of animals that live in perpetually dark food-limited environments such as caves or the deep sea. PMID:25251018

  2. Peripheral circadian clocks--a conserved phenotype?

    PubMed

    Weigl, Yuval; Harbour, Valerie L; Robinson, Barry; Dufresne, Line; Amir, Shimon

    2013-05-01

    The circadian system of mammals regulates the timing of occurrence of behavioral and physiological events, thereby optimizing adaptation to their surroundings. This system is composed of a single master pacemaker located in the suprachiasmatic nucleus (SCN) and a population of peripheral clocks. The SCN integrates time information from exogenous sources and, in turn, synchronizes the downstream peripheral clocks. It is assumed that under normal conditions, the circadian phenotype of different peripheral clocks would be conserved with respect to its period and robustness. To study this idea, we measured the daily wheel-running activity (WRA; a marker of the SCN output) in 84 male inbred LEW/Crl rats housed under a 12 h:12 h light-dark cycle. In addition, we assessed the mRNA expression of two clock genes, rPer2 and rBmal1, and one clock-controlled gene, rDbp, in four tissues that have the access to time cues other than those emanating from the SCN: olfactory bulbs (OBs), liver, tail skin, and white blood cells (WBCs). In contrast with the assumption stated above, we found that circadian clocks in peripheral tissues differ in the temporal pattern of the expression of circadian clock genes, in the robustness of the rhythms, and possibly in the number of functional ~24-h-clock cells. Based on the tissue diversity in the robustness of the clock output, the hepatic clock is likely to house the highest number of functional ~24-h-clock cells, and the OBs, the fewest number. Thus, the phenotype of the circadian clock in the periphery is tissue specific and may depend not only on the SCN but also on the sensitivity of the tissue to non-SCN-derived time cues. In the OBs and liver, the circadian clock phenotypes seem to be dominantly shaped by the SCN output. However, in the tail skin and WBC, other time cues participate in the phenotype design. Finally, our study suggests that the basic phenotype of the circadian clock is constructed at the transcript level of the core clock

  3. Physiological responses to food intake throughout the day.

    PubMed

    Johnston, Jonathan D

    2014-06-01

    Circadian rhythms act to optimise many aspects of our biology and thereby ensure that physiological processes are occurring at the most appropriate time. The importance of this temporal control is demonstrated by the strong associations between circadian disruption, morbidity and disease pathology. There is now a wealth of evidence linking the circadian timing system to metabolic physiology and nutrition. Relationships between these processes are often reciprocal, such that the circadian system drives temporal changes in metabolic pathways and changes in metabolic/nutritional status alter core molecular components of circadian rhythms. Examples of metabolic rhythms include daily changes in glucose homeostasis, insulin sensitivity and postprandial response. Time of day alters lipid and glucose profiles following individual meals whereas, over a longer time scale, meal timing regulates adiposity and body weight; these changes may occur via the ability of timed feeding to synchronise local circadian rhythms in metabolically active tissues. Much of the work in this research field has utilised animal and cellular model systems. Although these studies are highly informative and persuasive, there is a largely unmet need to translate basic biological data to humans. The results of such translational studies may open up possibilities for using timed dietary manipulations to help restore circadian synchrony and downstream physiology. Given the large number of individuals with disrupted rhythms due to, for example, shift work, jet-lag, sleep disorders and blindness, such dietary manipulations could provide widespread improvements in health and also economic performance. PMID:24666537

  4. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  5. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest. PMID:23652198

  6. Circadian rhythms, sleep, and performance in space

    NASA Technical Reports Server (NTRS)

    Mallis, M. M.; DeRoshia, C. W.

    2005-01-01

    Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and

  7. Circadian rhythms, sleep, and performance in space.

    PubMed

    Mallis, M M; DeRoshia, C W

    2005-06-01

    Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and

  8. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.

    PubMed

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S

    2011-09-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  9. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder.

    PubMed

    Bunney, B G; Li, J Z; Walsh, D M; Stein, R; Vawter, M P; Cartagena, P; Barchas, J D; Schatzberg, A F; Myers, R M; Watson, S J; Akil, H; Bunney, W E

    2015-02-01

    Conventional antidepressants require 2-8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small

  10. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    PubMed

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972685

  11. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder

    PubMed Central

    Bunney, BG; Li, JZ; Walsh, DM; Stein, R; Vawter, MP; Cartagena, P; Barchas, JD; Schatzberg, AF; Myers, RM; Watson, SJ; Akil, H; Bunney, WE

    2016-01-01

    Conventional antidepressants require 2–8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small

  12. Age-associated circadian period changes in Arabidopsis leaves

    PubMed Central

    Kim, Hyunmin; Kim, Yumi; Yeom, Miji; Lim, Junhyun; Nam, Hong Gil

    2016-01-01

    As most organisms age, their appearance, physiology, and behaviour alters as part of a life history strategy that maximizes their fitness over their lifetime. The passage of time is measured by organisms and is used to modulate these age-related changes. Organisms have an endogenous time measurement system called the circadian clock. This endogenous clock regulates many physiological responses throughout the life history of organisms to enhance their fitness. However, little is known about the relation between ageing and the circadian clock in plants. Here, we investigate the association of leaf ageing with circadian rhythm changes to better understand the regulation of life-history strategy in Arabidopsis. The circadian periods of clock output genes were approximately 1h shorter in older leaves than younger leaves. The periods of the core clock genes were also consistently shorter in older leaves, indicating an effect of ageing on regulation of the circadian period. Shortening of the circadian period with leaf age occurred faster in plants grown under a long photoperiod compared with a short photoperiod. We screened for a regulatory gene that links ageing and the circadian clock among multiple clock gene mutants. Only mutants for the clock oscillator TOC1 did not show a shortened circadian period during leaf ageing, suggesting that TOC1 may link age to changes in the circadian clock period. Our findings suggest that age-related information is incorporated into the regulation of the circadian period and that TOC1 is necessary for this integrative process. PMID:27012281

  13. Oscillating primary transcripts harbor miRNAs with circadian functions

    PubMed Central

    Wang, Haifang; Fan, Zenghua; Zhao, Meng; Li, Juan; Lu, Minghua; Liu, Wei; Ying, Hao; Liu, Mofang; Yan, Jun

    2016-01-01

    The roles of miRNAs as important post-transcriptional regulators in the circadian clock have been suggested in several studies. But the search for circadian miRNAs has led to disparate results. Here we demonstrated that at least 57 miRNA primary transcripts are rhythmically transcribed in mouse liver. Most of these transcripts are under the regulation of circadian transcription factors such as BMAL1/CLOCK and REV-ERBα/β. However, the mature miRNAs derived from these transcripts are either not oscillating or oscillating at low amplitudes, which could explain the inconsistency of different circadian miRNA studies. In order to show that these circadian primary transcripts can give rise to miRNAs with circadian functions, we over-expressed one of them, miR-378, in mouse by adenovirus injection. We found a significant over-representation of circadian oscillating genes under-expressed by miR-378 over-expression in liver. In particular, we observed that miR-378 modulates the oscillation amplitudes of Cdkn1a in the control of cell cycle and Por in the regulation of oxidation reduction by forming partnership with different circadian transcription factors. Our study suggests that circadian transcription of miRNA at primary transcript level can be a good indicator for circadian miRNA functions. PMID:26898952

  14. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis copper sulfate reference toxicant/food test, Clinch River-Environmental Restoration Program (CR-ERP)

    SciTech Connect

    Simbeck, D.J.

    1993-12-31

    Reference toxicant testing using juvenile freshwater mussels was conducted as part of the CR-ERP biomonitoring study of Clinch River sediments to assess the sensitivity of test organisms and the overall performance of the test. Tests were conducted using moderately hard synthetic water spiked with known concentrations of copper as copper sulfate. Two different foods, phytoplankton and YCT-Selenastrum (YCT-S), were tested in side by side tests to compare food quality. Toxicity testing of copper sulfate reference toxicant was conducted from July 6--15, 1993. The organisms used for testing were juvenile fresh-water mussels (Anodonta imbecillis). Although significant reduction in growth, compared to the phytoplankton control, was seen in all treatments, including the YCT-S Control, the consequence of this observation has not been established. Ninety-day testing of juvenile mussels exhibited large variations in growth within treatment and replicate groups. Attachments to this report include: Toxicity test bench sheets and statistical analyses; and Copper analysis request and results.

  15. Manipulating the Circadian and Sleep Cycles to Protect Against Metabolic Disease

    PubMed Central

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng (Jake)

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging. PMID:25852644

  16. Compliance work for food contact materials: feasibility of the legally required safety assessment of an epoxy/amine-based coating for domestic water pipe restoration.

    PubMed

    Tillner, Jocelyn; Grob, Koni

    2014-01-01

    Options were explored for fulfilling the legally required safety assessment for a widely applied epoxy/amine coating used for restoring corroded domestic drinking water supply systems. The coating was made up of two components mixed shortly before application, the first mainly consisting of bisphenol A diglycidyl ether (BADGE), the second of various amines. The analytically identified starting substances were all authorised, but only constituted a small proportion of the low molecular mass material left after curing and potentially migrating into water. Reaction products synthesised from constituents of the starting components (expected oligomers) could not be eluted from GC even after derivatisation, indicating that standard GC-MS screening would miss most potential migrants. They were detectable by size exclusion chromatography (SEC) after acetylation. HPLC with MS or fluorescence detection was possible for constituents including a BADGE moiety, but phenalkamines could not be detected with adequate sensitivity. Possibilities for determining long-term migration relevant for chronic toxicity are discussed. Analysis in water shortly after application of the coating overestimates migration if migration decreases over time and requires detection limits far out of reach. Analysis of a solvent extract of the coating is easier and provides an upper estimate of what could migrate into the drinking water over the years. However, to satisfy the regulatory requirements, components of the complex mixture need to be identified at lower proportions than those accessible. In vitro testing of the whole mixture for genotoxicity is expected to fail because of the required sensitivity and the glycidyl functions probably wrongly resulting in positive tests. The difficulties in dealing with this situation are discussed. PMID:24761990

  17. Preliminary characterization of persisting circadian rhythms during space flight: Neurospora as a model system

    NASA Technical Reports Server (NTRS)

    Sulzman, F. W.

    1981-01-01

    The effects of the Spacelab environment on the circadian rhythms in microorganisms are investigated. Neurospora is chosen because of its well characterized circadian rhythm of growth. Growth rate, banding patterns, and circadian period and phase information are studied.

  18. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    PubMed

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats. PMID:11752126

  19. The role of circadian rhythm in breast cancer

    PubMed Central

    Li, Shujing; Ao, Xiang

    2013-01-01

    The circadian rhythm is an endogenous time keeping system shared by most organisms. The circadian clock is comprised of both peripheral oscillators in most organ tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the central nervous system. The circadian rhythm is crucial in maintaining the normal physiology of the organism including, but not limited to, cell proliferation, cell cycle progression, and cellular metabolism; whereas disruption of the circadian rhythm is closely related to multi-tumorigenesis. In the past several years, studies from different fields have revealed that the genetic or functional disruption of the molecular circadian rhythm has been found in various cancers, such as breast, prostate, and ovarian. In this review, we will investigate and present an overview of the current research on the influence of circadian rhythm regulating proteins on breast cancer. PMID:23997531

  20. Circadian Organization of Behavior and Physiology in Drosophila

    PubMed Central

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  1. The circadian system in Alzheimer's disease: disturbances, mechanisms, and opportunities.

    PubMed

    Coogan, Andrew N; Schutová, Barbora; Husung, Susanne; Furczyk, Karolina; Baune, Bernhard T; Kropp, Peter; Häßler, Frank; Thome, Johannes

    2013-09-01

    Alzheimer's disease (AD) is a devastating neurodegenerative condition associated with severe cognitive and behavioral impairments. Circadian rhythms are recurring cycles that display periods of approximately 24 hours and are driven by an endogenous circadian timekeeping system centered on the suprachiasmatic nucleus of the hypothalamus. We review the compelling evidence that circadian rhythms are significantly disturbed in AD and that such disturbance is of significant clinical importance in terms of behavioral symptoms. We also detail findings from neuropathological studies of brain areas associated with the circadian system in postmortem studies, the use of animal models of AD in the investigation of circadian processes, and the evidence that chronotherapeutic approaches aimed at bolstering weakened circadian rhythms in AD produce beneficial outcomes. We argue that further investigation in such areas is warranted and highlight areas for future research that might prove fruitful in ultimately providing new treatment options for this most serious and intractable of conditions. PMID:23273723

  2. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding.

    PubMed

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D

    2015-06-01

    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  3. Neuroendocrine underpinnings of sex differences in circadian timing systems.

    PubMed

    Yan, Lily; Silver, Rae

    2016-06-01

    There are compelling reasons to study the role of steroids and sex differences in the circadian timing system. A solid history of research demonstrates the ubiquity of circadian changes that impact virtually all behavioral and biological responses. Furthermore, steroid hormones can modulate every attribute of circadian responses including the period, amplitude and phase. Finally, desynchronization of circadian rhythmicity, and either enhancing or damping amplitude of various circadian responses can produce different effects in the sexes. Studies of the neuroendocrine underpinnings of circadian timing systems and underlying sex differences have paralleled the overall development of the field as a whole. Early experimental studies established the ubiquity of circadian rhythms by cataloging daily and seasonal changes in whole organism responses. The next generation of experiments demonstrated that daily changes are not a result of environmental synchronizing cues, and are internally orchestrated, and that these differ in the sexes. This work was followed by the revelation of molecular circadian rhythms within individual cells. At present, there is a proliferation of work on the consequences of these daily oscillations in health and in disease, and awareness that these may differ in the sexes. In the present discourse we describe the paradigms used to examine circadian oscillation, to characterize how these internal timing signals are synchronized to local environmental conditions, and how hormones of gonadal and/or adrenal origin modulate circadian responses. Evidence pointing to endocrinologically and genetically mediated sex differences in circadian timing systems can be seen at many levels of the neuroendocrine and endocrine systems, from the cell, the gland and organ, and to whole animal behavior, including sleep/wake or rest/activity cycles, responses to external stimuli, and responses to drugs. We review evidence indicating that the analysis of the circadian

  4. Methods to Record Circadian Rhythm Wheel Running Activity in Mice

    PubMed Central

    Siepka, Sandra M.; Takahashi, Joseph S.

    2013-01-01

    Forward genetic approaches (phenotype to gene) are powerful methods to identify mouse circadian clock components. The success of these approaches, however, is highly dependent on the quality of the phenotype— specifically, the ability to measure circadian rhythms in individual mice. This article outlines the factors necessary to measure mouse circadian rhythms, including choice of mouse strain, facilities and equipment design and construction, experimental design, high-throughput methods, and finally methods for data analysis. PMID:15817291

  5. Traumatic Brain Injury-Induced Dysregulation of the Circadian Clock

    PubMed Central

    Boone, Deborah R.; Sell, Stacy L.; Micci, Maria-Adelaide; Crookshanks, Jeanna M.; Parsley, Margaret; Uchida, Tatsuo; Prough, Donald S.; DeWitt, Douglas S.; Hellmich, Helen L.

    2012-01-01

    Circadian rhythm disturbances are frequently reported in patients recovering from traumatic brain injury (TBI). Since circadian clock output is mediated by some of the same molecular signaling cascades that regulate memory formation (cAMP/MAPK/CREB), cognitive problems reported by TBI survivors may be related to injury-induced dysregulation of the circadian clock. In laboratory animals, aberrant circadian rhythms in the hippocampus have been linked to cognitive and memory dysfunction. Here, we addressed the hypothesis that circadian rhythm disruption after TBI is mediated by changes in expression of clock genes in the suprachiasmatic nuclei (SCN) and hippocampus. After fluid-percussion TBI or sham surgery, male Sprague-Dawley rats were euthanized at 4 h intervals, over a 48 h period for tissue collection. Expression of circadian clock genes was measured using quantitative real-time PCR in the SCN and hippocampus obtained by laser capture and manual microdissection respectively. Immunofluorescence and Western blot analysis were used to correlate TBI-induced changes in circadian gene expression with changes in protein expression. In separate groups of rats, locomotor activity was monitored for 48 h. TBI altered circadian gene expression patterns in both the SCN and the hippocampus. Dysregulated expression of key circadian clock genes, such as Bmal1 and Cry1, was detected, suggesting perturbation of transcriptional-translational feedback loops that are central to circadian timing. In fact, disruption of circadian locomotor activity rhythms in injured animals occurred concurrently. These results provide an explanation for how TBI causes disruption of circadian rhythms as well as a rationale for the consideration of drugs with chronobiotic properties as part of a treatment strategy for TBI. PMID:23056261

  6. BK channel inactivation gates daytime excitability in the circadian clock

    PubMed Central

    Whitt, Joshua P.; Montgomery, Jenna R.; Meredith, Andrea L.

    2016-01-01

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. PMID:26940770

  7. Shift of Circadian Feeding Pattern by High-Fat Diets Is Coincident with Reward Deficits in Obese Mice

    PubMed Central

    Valladolid-Acebes, Ismael; Fole, Alberto; Cano, Victoria; Merino, Beatriz; Stucchi, Paula; Ruggieri, Daniela; López, Laura; Alguacil, Luis Fernando; Ruiz-Gayo, Mariano

    2012-01-01

    Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow (“forced synchronization”). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity. PMID:22570696

  8. Circadian rhythms and addiction: Mechanistic insights and future directions

    PubMed Central

    Logan, Ryan W.; Williams, Wilbur P.; McClung, Colleen A.

    2014-01-01

    Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes, may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction, and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction. PMID:24731209

  9. [The kidney and circadian rhythms: a whole new world?].

    PubMed

    Manfredini, Roberto; Sasso, Ferdinando Carlo; Pala, Marco; De Giorgi, Alfredo; Fabbian, Fabio

    2013-01-01

    Chronobiology is a branch of biomedical sciences devoted to the study of biological rhythms. Biological rhythms exist at any level of living organisms and, according to their cycle length, may be divided into three main types: circadian, ultradian, and infradian rhythms. Circadian rhythms are the most commonly and widely studied. The principal circadian clock is located in the suprachiasmatic nucleus of the hypothalamus, and is supposed to regulate peripheral clocks via neurohumoral modulation. Circadian clocks have been identified within almost all mammalian cell types, and circadian clock genes seem to be essential for cardiovascular health. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids regulated by rest/activity and feeding/fasting cycles. However, most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock, comprising a system of autoregulatory transcriptional/translational feedback loops, which have also been found in the kidney. PMID:24403200

  10. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species

    PubMed Central

    Wang, Yusi; Pati, Paramita; Xu, Yiming; Chen, Feng; Stepp, David W.; Huo, Yuqing; Rudic, R. Daniel; Fulton, David J. R.

    2016-01-01

    The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1) was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS) whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration. These results

  11. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders.

    PubMed

    Barandas, Rita; Landgraf, Dominic; McCarthy, Michael J; Welsh, David K

    2015-12-01

    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms. PMID:26483181

  12. Circadian Control of Antibacterial Immunity: Findings from Animal Models

    PubMed Central

    Tsoumtsa, Landry L.; Torre, Cedric; Ghigo, Eric

    2016-01-01

    Most of the biological functions, including the immune system, are linked to circadian rhythms in living organisms. Changes occurring to biological parameters as the result of these circadian rhythms can therefore affect the outcome of a disease. For decades, model organisms have proven to be a great tool to understanding biological mechanisms such as circadian cycle and immunity. In this review, we created an inventory of the use of model organisms in order to decipher the relation between circadian rhythms and antibacterial immunity. PMID:27242972

  13. CGRP neurons mediate sleep-specific circadian output in Drosophila

    PubMed Central

    Kunst, Michael; Hughes, Michael E.; Raccuglia, Davide; Felix, Mario; Li, Michael; Barnett, Gregory; Duah, Janelle; Nitabach, Michael N.

    2014-01-01

    Summary Background Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep is regulated by both the circadian clock and homeostatic sleep drive. However, very little is known about the cellular and molecular mechanisms by which the circadian clock regulates sleep. In this study we describe a novel role for DIURETIC HORMONE 31 (DH31), the fly homologue of the vertebrate neuropeptide CALCITONIN GENE RELATED PEPTIDE (CGRP), as a circadian wake-promoting signal that awakens the fly in anticipation of dawn. Results Analysis of loss-of-function and gain-of-function Drosophila mutants demonstrates that DH31 suppresses sleep late at night. DH31 is expressed by a subset of dorsal circadian clock neurons that also express the receptor for the circadian neuropeptide PIGMENT DISPERSING FACTOR (PDF). PDF secreted by the ventral pacemaker subset of circadian clock neurons acts on PDF receptors in the DH31-expressing dorsal clock neurons to increase DH31 secretion before dawn. Activation of PDFR in DH31 positive DN1 specifically affects sleep and has no effect on circadian rhythms, thus constituting a dedicated locus for circadian regulation of sleep. Conclusions We identified a novel signaling molecule (DH31) as part of a neuropeptide relay mechanism for circadian control of sleep. Our results indicate that outputs of the clock controlling sleep and locomotor rhythms are mediated via distinct neuronal/cellular channels. PMID:25455031

  14. NONO couples the circadian clock to the cell cycle

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A.

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization. PMID:23267082

  15. Sleep, Circadian Rhythms, and Anxious Traits.

    PubMed

    Coles, Meredith E; Schubert, Jessica R; Nota, Jacob A

    2015-09-01

    Anxiety is adaptive and plays an important role in keeping us safe. However, when anxiety becomes too extreme, it can cause significant disruptions and distress. Understanding the mechanisms underlying excessive anxiety and how to best treat it is a priority for researchers and clinicians. There is increasing recognition that disruptions in the amount and timing of sleep are associated with anxiety symptoms and characteristics. In the current paper, we explore the intersections between sleep, circadian rhythms, and anxiety. First, we review accumulating evidence that anxiety is associated with disruptions in sleep and circadian rhythms in both clinical and nonclinical samples and across ages. Next, we discuss the data linking sleep disruptions with anxiety-related traits (anxiety sensitivity, neuroticism, and perfectionism) and patterns of cognition and emotion. Finally, potential treatment implications are highlighted. Overall, these data suggest that delineating the role of disruptions in the amount and timing of sleep holds promise for improving the lives of individuals with heightened anxiety. PMID:26216591

  16. Circadian responses to endotoxin treatment in mice.

    PubMed

    Marpegán, Luciano; Bekinschtein, Tristán A; Costas, Monica A; Golombek, Diego A

    2005-03-01

    We tested the ability of Escherichia coli lipopolysaccharide (LPS) to phase-shift the activity circadian rhythm in C57Bl/6J mice. Intraperitoneal administration of 25 microg/kg LPS induced photic-like phase delays (-43+/-10 min) during the early subjective night. These delays were non-additive to those induced by light at CT 15, and were reduced by the previous administration of sulfasalazine, a NF-kappaB activation inhibitor. At CT 15, LPS induced c-Fos expression in the dorsal area of the suprachiasmatic nuclei (SCN). Our results suggest that the activation of the immune system should be considered an entraining signal for the murine circadian clock. PMID:15710463

  17. Avian circadian organization: a chorus of clocks.

    PubMed

    Cassone, Vincent M

    2014-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  18. Glaucoma Alters the Circadian Timing System

    PubMed Central

    Drouyer, Elise; Dkhissi-Benyahya, Ouria; Chiquet, Christophe; WoldeMussie, Elizabeth; Ruiz, Guadalupe; Wheeler, Larry A.; Denis, Philippe; Cooper, Howard M.

    2008-01-01

    Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC) and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN). In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (∼50–70%) of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD) cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system. PMID:19079596

  19. Shift work and circadian dysregulation of reproduction.

    PubMed

    Gamble, Karen L; Resuehr, David; Johnson, Carl Hirschie

    2013-01-01

    Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans), the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work) or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep-wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift work-induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization. PMID:23966978

  20. Photoreception for circadian, neuroendocrine, and neurobehavioral regulation.

    PubMed

    Hanifin, John P; Brainard, George C

    2007-03-01

    In the art and science of lighting, four traditional objectives have been to provide light that: 1) is optimum for visual performance; 2) is visually comfortable; 3) permits aesthetic appreciation of the space; and 4) conserves energy. Over the past 25 years, it has been demonstrated that there are nonvisual, systemic effects of light in healthy humans. Furthermore, light has been used to successfully treat patients with selected affective and sleep disorders as well as healthy individuals who have circadian disruption due to shift work, transcontinental jet travel, or space flight. Recently, there has been an upheaval in the understanding of photoreceptive input to the circadian system of humans and other mammals. Analytical action spectra in rodents, primates, and humans have identified 446-484 nm (predominantly the blue part of the spectrum) as the most potent wavelength region for neuroendocrine, circadian, and neurobehavioral responses. Those studies suggested that a novel photosensory system, distinct from the visual rods and cones, is primarily responsible for this regulation. Studies have now shown that this new photosensory system is based on a small population of widely dispersed retinal ganglion cells that are intrinsically responsive to light, and project to the suprachiasmatic nuclei and other nonvisual centers in the brain. These light-sensitive retinal ganglion cells contain melanopsin, a vitamin A photopigment that mediates the cellular phototransduction cascade. Although light detection for circadian and neuroendocrine phototransduction seems to be mediated principally by a novel photosensory system in the eye, the classic rod and cone photoreceptors appear to play a role as well. These findings are important in understanding how humans adapt to lighting conditions in modern society and will provide the basis for major changes in future architectural lighting strategies. PMID:17435349

  1. The Circadian Clock, Reward, and Memory

    PubMed Central

    Albrecht, Urs

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes. PMID:22084628

  2. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria.

    PubMed

    Chang, Yong-Gang; Cohen, Susan E; Phong, Connie; Myers, William K; Kim, Yong-Ick; Tseng, Roger; Lin, Jenny; Zhang, Li; Boyd, Joseph S; Lee, Yvonne; Kang, Shannon; Lee, David; Li, Sheng; Britt, R David; Rust, Michael J; Golden, Susan S; LiWang, Andy

    2015-07-17

    Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator. PMID:26113641

  3. Circadian disruption and remedial interventions: effects and interventions for jet lag for athletic peak performance.

    PubMed

    Forbes-Robertson, Sarah; Dudley, Edward; Vadgama, Pankaj; Cook, Christian; Drawer, Scott; Kilduff, Liam

    2012-03-01

    Jet lag has potentially serious deleterious effects on performance in athletes following transmeridian travel, where time zones are crossed eastwards or westwards; as such, travel causes specific effects related to desynchronization of the athlete's internal body clock or circadian clock. Athletes are particularly sensitive to the effects of jet lag, as many intrinsic aspects of sporting performance show a circadian rhythm, and optimum competitive results require all aspects of the athlete's mind and body to be working in tandem at their peak efficiency. International competition often requires transmeridian travel, and competition timings cannot be adjusted to suit individual athletes. It is therefore in the interest of the individual athlete and team to understand the effects of jet lag and the potential adaptation strategies that can be adopted. In this review, we describe the underlying genetic and physiological mechanisms controlling the circadian clock and its inherent ability to adapt to external conditions on a daily basis. We then examine the fundamentals of the various adaptation stimuli, such as light, chronobiotics (e.g. melatonin), exercise, and diet and meal timing, with particular emphasis on their suitability as strategies for competing athletes on the international circuit. These stimuli can be artificially manipulated to produce phase shifts in the circadian rhythm to promote adaptation in the optimum direction, but care must be taken to apply them at the correct time and dose, as the effects produced on the circadian rhythm follow a phase-response curve, with pronounced shifts in direction at different times. Light is the strongest realigning stimulus and careful timing of light exposure and avoidance can promote adjustment. Chronobiotics such as melatonin can also be used to realign the circadian clock but, as well as timing and dosage issues, there are also concerns as to its legal status in different countries and with the World Anti

  4. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    PubMed

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension. PMID:26781276

  5. Epidemiology of the human circadian clock.

    PubMed

    Roenneberg, Till; Kuehnle, Tim; Juda, Myriam; Kantermann, Thomas; Allebrandt, Karla; Gordijn, Marijke; Merrow, Martha

    2007-12-01

    Humans show large inter-individual differences in organising their behaviour within the 24-h day-this is most obvious in their preferred timing of sleep and wakefulness. Sleep and wake times show a near-Gaussian distribution in a given population, with extreme early types waking up when extreme late types fall asleep. This distribution is predominantly based on differences in an individuals' circadian clock. The relationship between the circadian system and different "chronotypes" is formally and genetically well established in experimental studies in organisms ranging from unicells to mammals. To investigate the epidemiology of the human circadian clock, we developed a simple questionnaire (Munich ChronoType Questionnaire, MCTQ) to assess chronotype. So far, more than 55,000 people have completed the MCTQ, which has been validated with respect to the Horne-Østberg morningness-eveningness questionnaire (MEQ), objective measures of activity and rest (sleep-logs and actimetry), and physiological parameters. As a result of this large survey, we established an algorithm which optimises chronotype assessment by incorporating the information on timing of sleep and wakefulness for both work and free days. The timing and duration of sleep are generally independent. However, when the two are analysed separately for work and free days, sleep duration strongly depends on chronotype. In addition, chronotype is both age- and sex-dependent. PMID:17936039

  6. Adaptive temperature compensation in circadian oscillations.

    PubMed

    François, Paul; Despierre, Nicolas; Siggia, Eric D

    2012-01-01

    A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model also suggests that the shape of the circadian limit cycle and the associated phase response curves (PRC) will vary since the average concentrations of clock proteins change with temperature. We propose an alternative class of models where the twin properties of a fixed period and entrainment are structural and arise from an underlying adaptive system that buffers temperature changes. These models are distinguished by a PRC whose shape is temperature independent and orbits whose extrema are temperature independent. They are readily evolved by local, hill climbing, optimization of gene networks for a common quality measure of biological clocks, phase anticipation. Interestingly a standard realization of the Goodwin model for temperature compensation displays properties of adaptive rather than distributed temperature compensation. PMID:22807663

  7. Links between Circadian Rhythms and Psychiatric Disease

    PubMed Central

    Karatsoreos, Ilia N.

    2014-01-01

    Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily) clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders. PMID:24834040

  8. Adaptive Temperature Compensation in Circadian Oscillations

    PubMed Central

    François, Paul; Despierre, Nicolas; Siggia, Eric D.

    2012-01-01

    A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model also suggests that the shape of the circadian limit cycle and the associated phase response curves (PRC) will vary since the average concentrations of clock proteins change with temperature. We propose an alternative class of models where the twin properties of a fixed period and entrainment are structural and arise from an underlying adaptive system that buffers temperature changes. These models are distinguished by a PRC whose shape is temperature independent and orbits whose extrema are temperature independent. They are readily evolved by local, hill climbing, optimization of gene networks for a common quality measure of biological clocks, phase anticipation. Interestingly a standard realization of the Goodwin model for temperature compensation displays properties of adaptive rather than distributed temperature compensation. PMID:22807663

  9. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  10. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  11. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  12. Tuning the phase of circadian entrainment

    PubMed Central

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-01-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues (‘zeitgebers’), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ − T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  13. Tuning the phase of circadian entrainment.

    PubMed

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-07-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues ('zeitgebers'), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ - T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  14. Cardiovascular tissues contain independent circadian clocks

    NASA Technical Reports Server (NTRS)

    Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.

    2005-01-01

    Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.

  15. Circadian clock system in the pineal gland.

    PubMed

    Fukada, Yoshitaka; Okano, Toshiyuki

    2002-02-01

    The pineal gland is a neuroendocrine organ that functions as a central circadian oscillator in a variety of nonmammalian vertebrates. In many cases, the pineal gland retains photic input and endocrinal-output pathways both linked tightly to the oscillator. This contrasts well with the mammalian pineal gland equipped only with the output of melatonin production that is subject to neuronal regulation by central circadian oscillator located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Molecular studies on animal clock genes were performed first in Drosophila and later developed in rodents. More recently, clock genes such as Per, Cry, Clock, and Bmal have been found in a variety of vertebrate clock structures including the avian pineal gland. The profiles of the temporal change of the clock gene expression in the avian pineal gland are more similar to those in the mammalian SCN rather than to those in the mammalian pineal gland. Avian pineal gland and mammalian SCN seem to share a fundamental molecular framework of the clock oscillator composed of a transcription/translation-based autoregulatory feedback loop. The circadian time-keeping mechanism also requires several post-translational events, such as protein translocation and degradation processes, in which protein phosphorylation plays a very important role for the stable 24-h cycling of the oscillator and/or the photic-input pathway for entrainment of the clock. PMID:11890455

  16. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  17. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption.

    PubMed

    Vetter, Céline; Fischer, Dorothee; Matera, Joana L; Roenneberg, Till

    2015-03-30

    Sleep loss and circadian disruption-a state of misalignment between physiological functions and imposed sleep/wake behavior-supposedly play central roles in the etiology of shift work-related pathologies [1-4]. Circadian entrainment is, however, highly individual [5], resulting in different chronotypes [6, 7]. Chronotype in turn modulates the effects of working times: compared to late chronotypes, earlier ones sleep worse and shorter and show higher levels of circadian misalignment during night shifts, while late types experience more sleep and circadian disruption than early types when working morning shifts [8]. To promote sleep and reduce the mismatch between circadian and working time, we implemented a chronotype-adjusted (CTA) shift schedule in a factory. We abolished the most strenuous shifts for extreme chronotypes (i.e., mornings for late chronotypes, nights for early ones) and examined whether sleep duration and quality, social jetlag [9, 10], wellbeing, subjective stress perception, and satisfaction with leisure time improved in this schedule. Intermediate chronotypes (quartiles 2 and 3) served as a control group, still working morning (6:00-14:00), evening (14:00-22:00), and night (22:00-6:00) shifts, with two strenuous shifts (out of twelve per month) replaced by evening ones. We observed a significant increase of self-reported sleep duration and quality, along with increased wellbeing ratings on workdays among extreme chronotypes. The CTA schedule reduced overall social jetlag by 1 hr, did not alter stress levels, and increased satisfaction with leisure time (early types only). Chronotype-based schedules thus can reduce circadian disruption and improve sleep; potential long-term effects on health and economic indicators need to be elucidated in future studies. PMID:25772446

  18. Fish Community Responses to Stream Restoration

    NASA Astrophysics Data System (ADS)

    Daniel, W.; Jack, J.; Kelley, R.

    2005-05-01

    Stream restoration projects are often justified based on expected improvements in habitat and ecosystem services, but few of these restorations have been systematically studied to assess their "success." A channelized section of Wilson Creek (Kentucky, USA) was relocated to a new, meandering channel using a natural channel design approach. Fish communities were sampled before and after the restoration and compared to an upstream site in Wilson and two control streams that were not restored. There were no consistent taxa changes among sites at Wilson Creek between the pre- and post restoration samples. Wilson Creek fish communities were always more diverse than either of the control streams. Kentucky Fish Index of Biotic Integrity (IBI) scores in Wilson were Excellent for the pre-restoration fish community and 4 out of 5 reaches sampled after the restoration retained that classification. The reference streams' IBIs were classified as Good and remained unchanged throughout the study period. We are also conducting a stable isotope analysis of representative trophic groups in Wilson to assess if there have been any changes in food web dynamics post- restoration. More pre- and post restoration studies are needed to help develop success criteria and incorporate "lessons learned" in stream restorations.

  19. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans

    PubMed Central

    Eastman, Charmane I.; Suh, Christina; Tomaka, Victoria A.; Crowley, Stephanie J.

    2015-01-01

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals. PMID:25670162

  20. Theory of Inpatient Circadian Care (TICC): A Proposal for a Middle-Range Theory

    PubMed Central

    Camargo-Sanchez, Andrés; Niño, Carmen L; Sánchez, Leonardo; Echeverri, Sonia; Gutiérrez, Diana P; Duque, Andrés F; Pianeta, Oscar; Jaramillo-Gómez, Jenny A; Pilonieta, Martin A; Cataño, Nhora; Arboleda, Humberto; Agostino, Patricia V; Alvarez-Baron, Claudia P; Vargas, Rafael

    2015-01-01

    The circadian system controls the daily rhythms of a variety of physiological processes. Most organisms show physiological, metabolic and behavioral rhythms that are coupled to environmental signals. In humans, the main synchronizer is the light/dark cycle, although non-photic cues such as food availability, noise, and work schedules are also involved. In a continuously operating hospital, the lack of rhythmicity in these elements can alter the patient’s biological rhythms and resilience. This paper presents a Theory of Inpatient Circadian Care (TICC) grounded in circadian principles. We conducted a literature search on biological rhythms, chronobiology, nursing care, and middle-range theories in the databases PubMed, SciELO Public Health, and Google Scholar. The search was performed considering a period of 6 decades from 1950 to 2013. Information was analyzed to look for links between chronobiology concepts and characteristics of inpatient care. TICC aims to integrate multidisciplinary knowledge of biomedical sciences and apply it to clinical practice in a formal way. The conceptual points of this theory are supported by abundant literature related to disease and altered biological rhythms. Our theory will be able to enrich current and future professional practice. PMID:25767632

  1. Development of circadian rhythms in rat pups exposed to microgravity during gestation.

    PubMed

    Hoban-Higgins, T M; Murakami, D M; Tang, I H; Fuller, P M; Fuller, C A

    1999-10-01

    Ten pregnant Sprague Dawley rat dams were exposed to spaceflight aboard the Space Shuttle (STS-70) for gestational days 11-20 (G 11-20; FLT group). Control dams were maintained in either a flight-like (FDS group) or vivarium cage environment (VIV group) on earth. All dams had ad lib access to food and water and were exposed to a light-dark cycle consisting of 12 hours of light (approximately 30 lux) followed by 12 hours of darkness. The dams were closely monitored from G 22 until parturition. All pups were cross-fostered at birth; each foster dam had a litter of 10 pups. Pups remained with their foster dam until post natal day 21 (PN 21). Pup body mass was measured twice weekly. At PN 14 FLT pups had a smaller body mass than did the VIV pups (p < 0.01). Circadian rhythms of body temperature and activity of pups from two FLT dams (n = 8), two FDS dams (n = 9) and two VIV dams (n = 7) were studied starting from age PN 21. All pups had circadian rhythms of temperature and activity at this age. There were no significant differences in rhythms between groups that could be attributed to microgravity exposure. These results indicate that exposure to the microgravity environment of spaceflight during this embryonic development period does not affect the development of the circadian rhythms of body temperature and activity. PMID:11543088

  2. Circadian egg production by Echinostoma caproni (Digenea: Echinostomatidae) in ICR mice.

    PubMed

    Platt, Thomas R; Hussey, Gabrielle L; Zelmer, Derek A

    2013-04-01

    Circadian egg production by Echinostoma caproni was investigated in ICR mice. Four female mice were infected with 25 E. caproni metacercariae, maintained in individual cages on a 12:12 light:dark cycle, and provided food and water ad libitum. Twenty-eight, 51, and 58 days post-infection, mice were transferred to individual, wire-bottomed cages and feces were collected every 2 hr for 24 hr. The feces were weighed and processed immediately to estimate the number of eggs present. Fecal output and egg production were standardized to unit maxima for analysis. Standardized egg count and standardized fecal output followed distinctly circadian patterns and covaried. Egg production was highest from 2200 to 0200 hr and lowest from 1000 to 1800 hr. These correspond to the highest and lowest fecal production, and highest and lowest periods of host activity, respectively. Egg density (eggs/g of feces) covaried weakly with fecal output with an additional peak at 0800-1000 hr, suggesting E. caproni is responding to changes in host physiology in timing of the production and release of eggs into the intestine. The continuous production and release of eggs during the patent period, coupled with the circadian pattern of daily egg release by E. caproni , would result in the widest dispersal of eggs in the host environment and enhance transmission to the first intermediate host. PMID:22985395

  3. Theory of Inpatient Circadian Care (TICC): A Proposal for a Middle-Range Theory.

    PubMed

    Camargo-Sanchez, Andrés; Niño, Carmen L; Sánchez, Leonardo; Echeverri, Sonia; Gutiérrez, Diana P; Duque, Andrés F; Pianeta, Oscar; Jaramillo-Gómez, Jenny A; Pilonieta, Martin A; Cataño, Nhora; Arboleda, Humberto; Agostino, Patricia V; Alvarez-Baron, Claudia P; Vargas, Rafael

    2015-01-01

    The circadian system controls the daily rhythms of a variety of physiological processes. Most organisms show physiological, metabolic and behavioral rhythms that are coupled to environmental signals. In humans, the main synchronizer is the light/dark cycle, although non-photic cues such as food availability, noise, and work schedules are also involved. In a continuously operating hospital, the lack of rhythmicity in these elements can alter the patient's biological rhythms and resilience. This paper presents a Theory of Inpatient Circadian Care (TICC) grounded in circadian principles. We conducted a literature search on biological rhythms, chronobiology, nursing care, and middle-range theories in the databases PubMed, SciELO Public Health, and Google Scholar. The search was performed considering a period of 6 decades from 1950 to 2013. Information was analyzed to look for links between chronobiology concepts and characteristics of inpatient care. TICC aims to integrate multidisciplinary knowledge of biomedical sciences and apply it to clinical practice in a formal way. The conceptual points of this theory are supported by abundant literature related to disease and altered biological rhythms. Our theory will be able to enrich current and future professional practice. PMID:25767632

  4. Monitoring circadian time in rat plasma using a secreted Cypridina luciferase reporter.

    PubMed

    Yamada, Yoshiko; Nishide, Shin-Ya; Nakajima, Yoshihiro; Watanabe, Toshiyuki; Ohmiya, Yoshihiro; Honma, Ken-Ichi; Honma, Sato

    2013-08-15

    A firefly luciferase reporter enabled us to monitor promoter activity in vivo as well as ex vivo; however, this requires a sufficient supply of the substrate luciferin and specific monitoring devices. To overcome these disadvantages, we developed transgenic rats carrying a secreted enzyme Cypridina luciferase (CLuc) reporter under the promoter of clock gene Per2 (Per2-CLuc). Per2-CLuc activity in serially sampled blood from freely moving rats exhibited robust circadian rhythms with a peak at early morning. The Per2-CLuc bioluminescence could be quantified even with approximately 100pl of plasma. Plasma Per2-CLuc rhythms were phase reversed, and the level was reduced by restricting food access for 2h during the light phase, suggesting that the plasma Per2-CLuc rhythms reflect the phase of peripheral clocks entrained to feeding cues as well as fuel metabolism. Fasting for 2days did not alter the circadian Per2-CLuc rhythms in rats, suggesting that feeding per se did not affect the circadian Per2-CLuc rhythms. Tissue-specific Per2-CLuc rhythms were observed in culture medium of peripheral tissues. The Per2-CLuc reporter is a powerful tool to access gene expression in vivo as well as ex vivo with ordinary laboratory equipment. PMID:23624321

  5. Scheduled Daily Mating Induces Circadian Anticipatory Activity Rhythms in the Male Rat

    PubMed Central

    Landry, Glenn J.; Opiol, Hanna; Marchant, Elliott G.; Pavlovski, Ilya; Mear, Rhiannon J.; Hamson, Dwayne K.; Mistlberger, Ralph E.

    2012-01-01

    Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2–3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role

  6. Scheduled daily mating induces circadian anticipatory activity rhythms in the male rat.

    PubMed

    Landry, Glenn J; Opiol, Hanna; Marchant, Elliott G; Pavlovski, Ilya; Mear, Rhiannon J; Hamson, Dwayne K; Mistlberger, Ralph E

    2012-01-01

    Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2-3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role for

  7. Physiological effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  8. Mammalian retinal Müller cells have circadian clock function

    PubMed Central

    Xu, Lili; Ruan, Guoxiang; Dai, Heng; Liu, Andrew C.; Penn, John

    2016-01-01

    Purpose To test whether Müller glia of the mammalian retina have circadian rhythms. Methods We used Müller glia cultures isolated from mouse lines or from humans and bioluminescent reporters of circadian clock genes to monitor molecular circadian rhythms. The clock gene dependence of the Müller cell rhythms was tested using clock gene knockout mouse lines or with siRNA for specific clock genes. Results We demonstrated that retinal Müller glia express canonical circadian clock genes, are capable of sustained circadian oscillations in isolation from other cell types, and exhibit unique features of their molecular circadian clock compared to the retina as a whole. Mouse and human Müller cells demonstrated circadian clock function; however, they exhibited species-specific differences in the gene dependence of their clocks. Conclusions Müller cells are the first mammalian retinal cell type in which sustained circadian rhythms have been demonstrated in isolation from other retinal cells. PMID:27081298

  9. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons

    PubMed Central

    Webb, Alexis B.; Angelo, Nikhil; Huettner, James E.; Herzog, Erik D.

    2009-01-01

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm2 eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling. PMID:19805326

  10. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    ERIC Educational Resources Information Center

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  11. Bidirectional Interactions between Circadian Entrainment and Cognitive Performance

    ERIC Educational Resources Information Center

    Gritton, Howard J.; Kantorowski, Ana; Sarter, Martin; Lee, Theresa M.

    2012-01-01

    Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of…

  12. Circadian clock genes universally control key agricultural traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, includin...

  13. The Circadian Clock-Controlled Transcriptome of Developing Soybean Seeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables the plant to anticipate daily changes in the environment. Microarray expression profiling was used to identify circadian clock controlled genes expressed in developing soybean seeds. 1.8...

  14. Circadian clocks and memory: time-place learning

    PubMed Central

    Mulder, C. K.; Gerkema, M. P.; Van der Zee, E. A.

    2013-01-01

    Time-Place learning (TPL) refers to the ability of animals to remember important events that vary in both time and place. This ability is thought to be functional to optimize resource localization and predator avoidance in a circadian changing environment. Various studies have indicated that animals use their circadian system for TPL. However, not much is known about this specific role of the circadian system in cognition. This review aims to put TPL in a broader context and to provide an overview of historical background, functional aspects, and future perspectives of TPL. Recent advances have increased our knowledge on establishing TPL in a laboratory setting, leading to the development of a behavioral paradigm demonstrating the circadian nature of TPL in mice. This has enabled the investigation of circadian clock components on a functional behavioral level. Circadian TPL (cTPL) was found to be Cry clock gene dependent, confirming the essential role of Cry genes in circadian rhythms. In contrast, preliminary results have shown that cTPL is independent of Per genes. Circadian system decline with aging predicts that cTPL is age sensitive, potentially qualifying TPL as a functional model for episodic memory and aging. The underlying neurobiological mechanism of TPL awaits further examination. Here we discuss some putative mechanisms. PMID:23596390

  15. Characterization of peripheral circadian clocks in adipose tissues.

    PubMed

    Zvonic, Sanjin; Ptitsyn, Andrey A; Conrad, Steven A; Scott, L Keith; Floyd, Z Elizabeth; Kilroy, Gail; Wu, Xiying; Goh, Brian C; Mynatt, Randall L; Gimble, Jeffrey M

    2006-04-01

    First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome. PMID:16567517

  16. Yes, circadian rhythms actually do affect almost everything.

    PubMed

    Dunlap, Jay C; Loros, Jennifer J

    2016-07-01

    Circadian rhythms in the level of intracellular Mg appear to be widely conserved phylogenetically, and have the potential to impact nearly all aspects of metabolism. Moreover, the clock regulates the ion channels that generate the rhythm, demonstrating that the whole cell operates as a circadian system. PMID:27241553

  17. Circadian rhythms and fractal fluctuations in forearm motion

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Hilton, Michael F.

    2005-03-01

    Recent studies have shown that the circadian pacemaker --- an internal body clock located in the brain which is normally synchronized with the sleep/wake behavioral cycles --- influences key physiologic functions such as the body temperature, hormone secretion and heart rate. Surprisingly, no previous studies have investigated whether the circadian pacemaker impacts human motor activity --- a fundamental physiologic function. We investigate high-frequency actigraph recordings of forearm motion from a group of young and healthy subjects during a forced desynchrony protocol which allows to decouple the sleep/wake cycles from the endogenous circadian cycle while controlling scheduled behaviors. We investigate both static properties (mean value, standard deviation), dynamical characteristics (long-range correlations), and nonlinear features (magnitude and Fourier-phase correlations) in the fluctuations of forearm acceleration across different circadian phases. We demonstrate that while the static properties exhibit significant circadian rhythms with a broad peak in the afternoon, the dynamical and nonlinear characteristics remain invariant with circadian phase. This finding suggests an intrinsic multi-scale dynamic regulation of forearm motion the mechanism of which is not influenced by the circadian pacemaker, thus suggesting that increased cardiac risk in the early morning hours is not related to circadian-mediated influences on motor activity.

  18. Integration of human sleep-wake regulation and circadian rhythmicity

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  19. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.

    PubMed

    Webb, Alexis B; Angelo, Nikhil; Huettner, James E; Herzog, Erik D

    2009-09-22

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm(2) eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling. PMID:19805326

  20. Regulation of circadian rhythms in mammals by behavioral arousal.

    PubMed

    Webb, Ian C; Antle, Michael C; Mistlberger, Ralph E

    2014-06-01

    Circadian rhythms in most mammals are synchronized to local time by phase and period resetting actions of daily light-dark cycles on a retino-recipient, light-entrainable circadian pacemaker, the suprachiasmatic nucleus (SCN). The SCN receives input from other brain regions, some of which mediate the phase and period resetting actions of behavioral arousal on circadian rhythms. We review historical milestones in the discovery of so-called "nonphotic" circadian clock resetting induced by environmentally stimulated arousal, or by feedback from clock-controlled rest-activity cycles. Topics include species generality, interactions between concurrent or successive photic and nonphotic inputs to the circadian clock, neural pathways, neurotransmitters, and clock cell responses that mediate resetting by behavioral arousal. The role of behavioral inputs to the circadian clock in determining the phase of entrainment to local time in natural environments is not well understood. Nonetheless, nonphotic effects are of sufficient magnitude to raise issues for the design of experiments in behavioral neuroscience (any procedure that is sufficiently arousing may alter the timing of circadian clocks that regulate dependent variables of primary interest). Nonphotic inputs to the clock may be exploited in strategies to reset or strengthen circadian rhythms in humans. PMID:24773430

  1. Circadian Modulation of Short-Term Memory in "Drosophila"

    ERIC Educational Resources Information Center

    Lyons, Lisa C.; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term…

  2. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    PubMed Central

    Udoh, Uduak S.; Valcin, Jennifer A.; Gamble, Karen L.; Bailey, Shannon M.

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases. PMID:26473939

  3. Circadian and postprandial variation in plasma citrulline concentration in healthy dogs.

    PubMed

    Dahan, Julien M; Giron, Celine; Concordet, Didier; Dossin, Olivier

    2016-03-01

    OBJECTIVE To evaluate circadian and postprandial variations in plasma citrulline concentration in healthy dogs. ANIMALS 8 healthy Beagles. PROCEDURES Blood samples were collected from dogs after 12 hours of food withholding (0 hours; 8:00 am) and then every 2 hours for 12 hours (until 8:00 pm) and again at 24 hours (8:00 am the next day). The same protocol was repeated, with the only difference being that a meal was given immediately after the 0-hour sample collection point. Plasma citrulline concentration was measured by ion exchange chromatography. RESULTS No significant difference in plasma citrulline concentration was identified among measurement points when food was withheld. Mean ± SD plasma citrulline concentration at 4 hours (72.2 ± 12.7 μmol/L) and 24 hours (56.1 ± 12.5 μmol/L) after dogs were fed was significantly different from that at 0 hours (64.4 ± 12.7 μmol/L). CONCLUSIONS AND CLINICAL RELEVANCE Plasma citrulline concentration had no circadian variation in unfed dogs but increased significantly in fed dogs 4 hours after a meal. Therefore, food should be withheld from dogs for 8 to 12 hours before blood sample collection for measurement of citrulline concentration. PMID:26919600

  4. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

    PubMed Central

    Tataroglu, Ozgur; Zhao, Xiaohu; Busza, Ania; Ling, Jinli; O’Neill, John S.; Emery, Patrick

    2015-01-01

    Summary Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles. PMID:26590423

  5. A circadian clock nanomachine that runs without transcription or translation

    PubMed Central

    Egli, Martin; Johnson, Carl Hirschie

    2013-01-01

    The biochemical basis of circadian timekeeping is best characterized in cyanobacteria. The structures of its key molecular players, KaiA, KaiB, and KaiC are known and these proteins can reconstitute a remarkable circadian oscillation in a test tube. KaiC is rhythmically phosphorylated and its phospho-status is a marker of circadian phase that regulates ATPase activity and the oscillating assembly of a nanomachine. Analyses of the nanomachines have revealed how their timing circuit is ratcheted to be unidirectional and how they stay in synch to ensure a robust oscillator. These insights are likely to elucidate circadian timekeeping in higher organisms, including how transcription and translation could appear to be a core circadian timer when the true pacemaker is an embedded biochemical oscillator. PMID:23571120

  6. A circadian clock nanomachine that runs without transcription or translation.

    PubMed

    Egli, Martin; Johnson, Carl Hirschie

    2013-10-01

    The biochemical basis of circadian timekeeping is best characterized in cyanobacteria. The structures of its key molecular players, KaiA, KaiB, and KaiC are known and these proteins can reconstitute a remarkable circadian oscillation in a test tube. KaiC is rhythmically phosphorylated and its phospho-status is a marker of circadian phase that regulates ATPase activity and the oscillating assembly of a nanomachine. Analyses of the nanomachines have revealed how their timing circuit is ratcheted to be unidirectional and how they stay in synch to ensure a robust oscillator. These insights are likely to elucidate circadian timekeeping in higher organisms, including how transcription and translation could appear to be a core circadian timer when the true pacemaker is an embedded biochemical oscillator. PMID:23571120

  7. Molecular components of the circadian clock in mammals.

    PubMed

    Takahashi, J S

    2015-09-01

    The circadian clock mechanism in animals involves a transcriptional feedback loop in which the bHLH-PAS proteins CLOCK and BMAL1 form a transcriptional activator complex to activate the transcription of the Period and Cryptochrome genes, which in turn feed back to repress their own transcription. In the mouse liver, CLOCK and BMAL1 interact with the regulatory regions of thousands of genes, which are both cyclically and constitutively expressed. The circadian transcription in the liver is clustered in phase and this is accompanied by circadian occupancy of RNA polymerase II recruitment and initiation. These changes also lead to circadian fluctuations in histone H3 lysine4 trimethylation (H3K4me3) as well as H3 lysine9 acetylation (H3K9ac) and H3 lysine27 acetylation (H3K27ac). Thus, the circadian clock regulates global transcriptional poise and chromatin state by regulation of RNA polymerase II. PMID:26332962

  8. Can small shifts in circadian phase affect performance?

    PubMed Central

    Burgess, Helen J.; Legasto, Carlo S.; Fogg, Louis F.; Smith, Mark R.

    2012-01-01

    Small shifts in circadian timing occur frequently as a result of daylight saving time or later weekend sleep. These subtle shifts in circadian phase have been shown to influence subjective sleepiness, but it remains unclear if they can significantly affect performance. In a retrospective analysis we examined performance on the Psychomotor Vigilance Test before bedtime and after wake time in 11 healthy adults on fixed sleep schedules based on their habitual sleep times. The dim light melatonin onset, a marker of circadian timing, was measured on two occasions. An average 1.1 hour shift away from a proposed optimal circadian phase angle (6 hours between melatonin onset and midpoint of sleep) significantly slowed mean, median and fastest 10% reaction times before bedtime and after wake time (p<0.05). These results add to previous reports that suggest that humans may be sensitive to commonly occurring small shifts in circadian timing. PMID:22695081

  9. Sex Differences in Circadian Timing Systems: Implications for Disease

    PubMed Central

    Bailey, Matthew; Silver, Rae

    2014-01-01

    Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamicadrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions. PMID:24287074

  10. Circadian System and Glucose Metabolism: Implications for Physiology and Disease.

    PubMed

    Qian, Jingyi; Scheer, Frank A J L

    2016-05-01

    The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption. PMID:27079518

  11. Circadian clock and pathology of the ageing brain

    PubMed Central

    Kondratova, A.A.; Kondratov, R.V.

    2013-01-01

    Ageing leads to functional deterioration of many brain systems, including the circadian clock - an internal time-keeping system that generates 24 hr rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between the severity of neurodegenerative disorders, sleep disturbances and weakening of circadian clock functions. The latest data from model organisms, gene expression studies and clinical trials imply that the dysfunction of the circadian clock may contribute to the progression of ageing and age-associated pathologies, suggesting a functional link between the circadian clock, and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation. PMID:22395806

  12. Circadian variation in witnessed out of hospital cardiac arrest

    PubMed Central

    Soo, L; Gray, D; Young, T; Hampton, J

    2000-01-01

    OBJECTIVES—To examine the effect on circadian variation of out of hospital cardiac arrest according to the underlying aetiology and presenting rhythm of arrest, and to explore strategies that might help to improve survival outcome using circadian variation.
DESIGN—Population based retrospective study.
SETTING—County of Nottinghamshire with a total population of 993 914 and an area of 2183 km2.
SUBJECTS—Between 1 January 1991 and 3 December 1994, all witnessed cardiac arrests attended by the Nottinghamshire Ambulance Service, of which 1196 patients had a cardiac cause for their arrest (ICD, 9th revision, codes 390-414 and 420-429) and 339 had a non-cardiac cause.
RESULTS—The circadian variation of the cardiac cases was not significantly different from that of non-cardiac cases (p = 0.587), even when adjusted for age, sex, or presenting rhythm of arrest. For cardiac cases, the circadian variation of those who presented with ventricular fibrillation was significantly different from those presenting with a rhythm other than ventricular fibrillation (p = 0.005), but was similar to the circadian variation of bystander cardiopulmonary resuscitation (p = 0.306) and survivors (p = 0.542). Ambulance response time was also found to have a circadian variation.
CONCLUSIONS—There is a common circadian variation of out of hospital cardiac arrest, irrespective of underlying aetiology, where the presenting rhythm is other than ventricular fibrillation. This is different from the circadian variation of cases of cardiac aetiology presenting with ventricular fibrillation. The circadian variation of ventricular fibrillation, and consequently survival, may be affected by the availability of bystander cardiopulmonary resuscitation and the speed of ambulance response.


Keywords: out of hospital; cardiac arrest; circadian variation PMID:10995402

  13. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system

    PubMed Central

    Wang, T; Jiang, Z; Hou, W; Li, Z; Cheng, S; Green, LA; Wang, Y; Wen, X; Cai, L; Clauss, M; Wang, Z

    2014-01-01

    Objectives Sleep disorders are common in patients with HIV/AIDS, and can lead to poor quality of life. Although many studies have investigated the aetiology of these disorders, it is still unclear whether impaired sleep quality is associated with HIV itself, social problems, or side effects of antiretroviral therapy (ART). Moreover, despite its known neurological associations, little is known about the role of the trans-activator of transcription (Tat) protein in sleep disorders in patients with HIV/AIDS. The purpose of this study was to test the hypothesis that the sleep quality of patients with HIV/AIDS affected by an altered circadian rhythm correlates with cerebrospinal HIV Tat protein concentration. Methods Ninety-six patients with HIV/AIDS between 20 and 69 years old completed the Pittsburgh Sleep Quality Index. Their circadian rhythm parameters of blood pressure, Tat concentration in cerebrospinal fluid, melatonin concentration, CD4 cell count and HIV RNA viral load in serum were measured. Results The circadian amplitude of systolic blood pressure and the score for sleep quality (Pittsburgh Sleep Quality Index) were negatively correlated with HIV Tat protein concentration, while the melatonin value was positively correlated with Tat protein concentration. Conclusions The HIV Tat protein affects circadian rhythmicity by interfering with the circadian system in patients with HIV/AIDS and further increases the melatonin excretion value. A Tat protein-related high melatonin value may counteract HIV-related poor sleep quality during the progression of HIV infection. This study provides the first clinical evidence offering an explanation for why sleep quality did not show an association with progression of HIV infection in previous studies. PMID:24750691

  14. Effects of Gravity on Insect Circadian Rhythmicity

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  15. Circadian molecular clock in lung pathophysiology.

    PubMed

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  16. Circadian Rhythms in Floral Scent Emission.

    PubMed

    Fenske, Myles P; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success. PMID:27148293

  17. Circadian photoentrainment: parameters of phase delaying.

    PubMed

    DeCoursey, P J

    1986-01-01

    Experiments were carried out using simulated den cages to delineate specific characteristics of phase delaying in circadian photoentrainment of a nocturnal rodent, the flying squirrel. The principal experiments entailed presentation of one to five consecutive 15-min white-light pulses per activity cycle at activity onset to animals free-running in darkness, in order to determine the immediate and final phase-shifting effect. Auxiliary experiments recorded entrainment patterns on light-dark (LD) schedules in the den cages. Phase response curves (PRCs) based on 15-min white-light pulses in standard wheel cages were also constructed for these animals as background information for interpreting the phase-delaying experiments. Exposure of a den animal to light by light sampling at the time of initial arousal from the rest state at circadian time (CT) 12, either by an LD schedule or by a 15-min light pulse, resulted in a return to the nest box for a short rest period. The phase delay occurring after a single light exposure at activity onset was equal to the induced rest, thus suggesting an immediate phase shift. The maximum delay was about 1 1/2 hr/cycle, with the amount of delay related to the number of light exposures. During the photoentrained state on an LD schedule, the activity rhythm of a den-housed animal was essentially free-running on the days following a phase delay. The data are used to expand current models for photoentrainment of circadian activity rhythms in nocturnal rodents. PMID:2979583

  18. Circadian Rhythms in Floral Scent Emission

    PubMed Central

    Fenske, Myles P.; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success. PMID:27148293

  19. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  20. Circadian rhythm asynchrony in man during hypokinesis.

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  1. Rhythms of Life: The Plant Circadian Clock - (By Katherine Hubbard and Antony Dodd).

    PubMed

    2016-04-01

    Summaryplantcell;28/4/tpc.116.tt0416/FIG1F1fig1This teaching tool explores circadian rhythms in plants. The topic is presented as a series of concepts illustrated by examples, including the architecture of circadian clocks and the connections between the oscillator and circadian-regulated processes such as metabolism and flowering. The Teaching Tool introduces some of the techniques used to investigate circadian biology and explores how understanding circadian rhythms could lead to crop improvement. PMID:27169989

  2. Food Stamp Restoration Act of 2012

    THOMAS, 112th Congress

    Sen. Inhofe, James M. [R-OK

    2012-09-20

    09/20/2012 Read twice and referred to the Committee on Agriculture, Nutrition, and Forestry. (text of measure as introduced: CR S6554-6555) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Neither the SCN nor the adrenals are required for circadian time-place learning in mice

    PubMed Central

    Papantoniou, Christos; Gerkema, Menno P.; Van Der Zee, Eddy A.

    2014-01-01

    During Time-Place Learning (TPL), animals link biological significant events (e.g. encountering predators, food, mates) with the location and time of occurrence in the environment. This allows animals to anticipate which locations to visit or avoid based on previous experience and knowledge of the current time of day. The TPL task applied in this study consists of three daily sessions in a three-arm maze, with a food reward at the end of each arm. During each session, mice should avoid one specific arm to avoid a foot-shock. We previously demonstrated that, rather than using external cue-based strategies, mice use an internal clock (circadian strategy) for TPL, referred to as circadian TPL (cTPL). It is unknown in which brain region(s) or peripheral organ(s) the consulted clock underlying cTPL resides. Three candidates were examined in this study: (a) the suprachiasmatic nucleus (SCN), a light entrainable oscillator (LEO) and considered the master circadian clock in the brain, (b) the food entrainable oscillator (FEO), entrained by restricted food availability, and (c) the adrenal glands, harboring an important peripheral oscillator. cTPL performance should be affected if the underlying oscillator system is abruptly phase-shifted. Therefore, we first investigated cTPL sensitivity to abrupt light and food shifts. Next we investigated cTPL in SCN-lesioned- and adrenalectomized mice. Abrupt FEO phase-shifts (induced by advancing and delaying feeding time) affected TPL performance in specific test sessions while a LEO phase-shift (induced by a light pulse) more severely affected TPL performance in all three daily test sessions. SCN-lesioned mice showed no TPL deficiencies compared to SHAM-lesioned mice. Moreover, both SHAM- and SCN-lesioned mice showed unaffected cTPL performance when re-tested after bilateral adrenalectomy. We conclude that, although cTPL is sensitive to timing manipulations with light as well as food, neither the SCN nor the adrenals are required for

  4. Principles of restorative dentistry.

    PubMed

    Banker, T

    1993-08-01

    A great deal of information regarding materials, instrumentation, and techniques used for restorative dentistry can be borrowed from the human dental field. Veterinary restorative dentistry is in its infancy. A thorough knowledge of the commonly used materials and how they can be effectively applied is important. Treatment planning is probably one of the most critical phases of restorative dentistry as is painstaking attention to detail. If the guidelines for restorative dental techniques are followed, failures will be minimal. However, one of the most important points to remember is that the success of a restoration is not determined at the completion of the procedure. A restoration, if properly planned and performed, should last the lifetime of the animal patient. It is very important that veterinary dentists continue to evaluate and assess their restorative work at regular intervals so that restorative failures can be detected early, and so that restorative techniques and materials can be critically evaluated in veterinary patients. PMID:8210800

  5. p38 MAP kinase regulates circadian rhythms in Drosophila.

    PubMed

    Vrailas-Mortimer, Alysia D; Ryan, Sarah M; Avey, Matthew J; Mortimer, Nathan T; Dowse, Harold; Sanyal, Subhabrata

    2014-12-01

    The large repertoire of circadian rhythms in diverse organisms depends on oscillating central clock genes, input pathways for entrainment, and output pathways for controlling rhythmic behaviors. Stress-activated p38 MAP Kinases (p38K), although sparsely investigated in this context, show circadian rhythmicity in mammalian brains and are considered part of the circadian output machinery in Neurospora. We find that Drosophila p38Kb is expressed in clock neurons, and mutants in p38Kb either are arrhythmic or have a longer free-running periodicity, especially as they age. Paradoxically, similar phenotypes are observed through either transgenic inhibition or activation of p38Kb in clock neurons, suggesting a requirement for optimal p38Kb function for normal free-running circadian rhythms. We also find that p38Kb genetically interacts with multiple downstream targets to regulate circadian locomotor rhythms. More specifically, p38Kb interacts with the period gene to regulate period length and the strength of rhythmicity. In addition, we show that p38Kb suppresses the arrhythmic behavior associated with inhibition of a second p38Kb target, the transcription factor Mef2. Finally, we find that manipulating p38K signaling in free-running conditions alters the expression of another downstream target, MNK/Lk6, which has been shown to cycle with the clock and to play a role in regulating circadian rhythms. These data suggest that p38Kb may affect circadian locomotor rhythms through the regulation of multiple downstream pathways. PMID:25403440

  6. Redox rhythm reinforces the circadian clock to gate immune response

    PubMed Central

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E.; Dong, Xinnian

    2015-01-01

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism’s metabolic activities1–3. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated4–7. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant’s redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid (SA) does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism. PMID:26098366

  7. Establishment of human cell lines showing circadian rhythms of bioluminescence.

    PubMed

    Yoshikawa, Aki; Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Ikeda, Masaaki; Kawashima, Minae; Kato, Nobumasa; Tokunaga, Katsushi; Ebisawa, Takashi

    2008-11-28

    We have established human retinal pigment epithelial cell lines stably expressing the luciferase gene, driven by the human Bmal1 promoter, to obtain human-derived cells that show circadian rhythms of bioluminescence after dexamethasone treatment. The average circadian period of bioluminescence for the obtained clones was 24.07+/-0.48 h. Lithium (10 mM) in the medium significantly lengthened the circadian period of bioluminescence, which is consistent with previous reports, while 2 mM or 5 mM lithium had no effect. This is the first report on the establishment of human-derived cell lines that proliferate infinitely and show circadian rhythms of bioluminescence, and also the first to investigate the effects of low-dose lithium on the circadian rhythms of human-derived cells in vitro. The established cells will be useful for various in vitro studies of human circadian rhythms and for the development of new therapies for human disorders related to circadian rhythm disturbances. PMID:18809466

  8. Implicit Associations Have a Circadian Rhythm

    PubMed Central

    Zadra, Jonathan R.; Proffitt, Dennis R.

    2014-01-01

    The current study shows that people's ability to inhibit implicit associations that run counter to their explicit views varies in a circadian pattern. The presence of this rhythmic variation suggests the involvement of a biological process in regulating automatic associations—specifically, with the current data, associations that form undesirable social biases. In 1998, Greenwald, McGhee, and Schwartz introduced the Implicit Association Test as a means of measuring individual differences in implicit cognition. The IAT is a powerful tool that has become widely used. Perhaps most visibly, studies employing the IAT demonstrate that people generally hold implicit biases against social groups, which often conflict with their explicitly held views. The IAT engages inhibitory processes similar to those inherent in self-control tasks. Because the latter processes are known to be resource-limited, we considered whether IAT scores might likewise be resource dependent. Analyzing IAT performance from over a million participants across all times of day, we found a clear circadian pattern in scores. This finding suggests that the IAT measures not only the strength of implicit associations, but also the effect of variations in the physiological resources available to inhibit their undesirable influences on explicit behavior. PMID:25365254

  9. Circadian Rhythms: Hijacking the Cyanobacterial Clock

    PubMed Central

    Hoyle, Nathaniel P.; O’Neill, John S

    2016-01-01

    The production of limitless carbon-free energy is a long-sought dream of scientists and politicians alike. One strategy for achieving this aim is the production of hydrogen by photosynthetic microorganisms – harnessing the effectively limitless power of the sun to power our cars, toasters and PCR machines. It may be tempting to think of host expression systems as miniature factories given over entirely to the production our molecule of interest. However, the biological nature of the host must be taken into account if we are to maximize productivity. The circadian rhythm, an organism’s entrainable oscillation of biological processes with a period of around 24 hours, is one such aspect that has received scant attention but is likely to be of particular importance to photosynthetic host systems. In this issue of current biology Xu et al. describe how our knowledge of the Synechococcus elongatus circadian clock can be leveraged to improve the production of exogeneous proteins, including those involved in the production of hydrogen [1]. PMID:24309283

  10. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus

    PubMed Central

    Block, Gene D.; Colwell, Christopher S.

    2015-01-01

    The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets. PMID:26553726

  11. Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle.

    PubMed

    Kitchener, Pierre; Di Blasi, Francesco; Borrelli, Emiliana; Piazza, Pier Vincenzo

    2004-04-01

    Glucocorticoid receptors (GRs) are transcription factors that, upon activation by glucocorticoids, translocate to the cell nucleus, and bind to specific response elements (GREs) in the promoter region of target genes. We analysed stress- and circadian-induced changes in nuclear translocation and GRE binding of GRs in the hippocampus and the prefrontal cortex of the rat brain. Nuclear translocation and binding to GRE were measured in nuclear extracts by Western blot and gel shift, respectively. When glucocorticoid levels were low, as during the light period of the circadian cycle, nuclear GRs and GRE binding were almost undetectable. However, the increase in glucocorticoid levels observed during the dark phase of the circadian cycle or after stress induced a massive nuclear translocation of GRs and GRE binding. These effects were corticosterone-dependent because they were suppressed by adrenalectomy and restored by the injection of corticosterone. Furthermore, GR translocation and GRE binding were of higher amplitude or lasted longer in the hippocampus than in the prefrontal cortex. By contrast, extracellular levels of glucocorticoids, measured by microdialysis in freely moving animals, were identical in the two structures. These results suggest that specific intracellular regulations of GR activity contribute to differentiate the effects of glucocorticoids in different regions of the brain. PMID:15078557

  12. Circadian Role in Daily Pattern of Cardiovascular Risk

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  13. Ethanol consumption in mice: relationships with circadian period and entrainment

    PubMed Central

    Trujillo, Jennifer L.; Do, David T.; Grahame, Nicholas J.; Roberts, Amanda J.; Gorman, Michael R.

    2011-01-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  14. Ethanol consumption in mice: relationships with circadian period and entrainment.

    PubMed

    Trujillo, Jennifer L; Do, David T; Grahame, Nicholas J; Roberts, Amanda J; Gorman, Michael R

    2011-03-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep, and body temperature; and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred high- (HAP) and low- (LAP) alcohol preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 or 22 h or remained in a standard 24 h cycle. On discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  15. 21 CFR 878.3800 - External aesthetic restoration prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External aesthetic restoration prosthesis. 878.3800 Section 878.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices §...

  16. 21 CFR 878.3800 - External aesthetic restoration prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External aesthetic restoration prosthesis. 878.3800 Section 878.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices §...

  17. 21 CFR 878.3800 - External aesthetic restoration prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External aesthetic restoration prosthesis. 878.3800 Section 878.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices §...

  18. Circadian rhythms in fatty acid-induced depression of myocardial contractile function: Potential mediation by the circadian clock within the cardiomyocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in susceptibility to cardiovascular (CV) pathologic events (e.g., arrhythmias, myocardial infarction) are well established. These phenomena have been explained largely by diurnal variations in neurohumoral influences, such as sympathetic activity. Circadian clocks are intracellular...

  19. Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load.

    PubMed

    McEwen, Bruce S; Karatsoreos, Ilia N

    2015-03-01

    Sleep has important homeostatic functions, and circadian rhythms organize physiology and behavior on a daily basis to insure optimal function. Sleep deprivation and circadian disruption can be stressors, enhancers of other stressors that have consequences for the brain and many body systems. Whether the origins of circadian disruption and sleep disruption and deprivation are from anxiety, depression, shift work, long-distance air travel, or a hectic lifestyle, there are consequences that impair brain functions and contribute to the cumulative wear and tear on body systems caused by too much stress and/or inefficient management of the systems that promote adaptation. PMID:26055668

  20. The circadian cycle: daily rhythms from behaviour to genes

    PubMed Central

    Merrow, Martha; Spoelstra, Kamiel; Roenneberg, Till

    2005-01-01

    The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle during the day varies widely for individuals, resulting in extremes colloquially called 'larks' and 'owls'. These behavioural oscillations are mirrored in the levels of physiology and gene expression. Deciphering the underlying mechanisms will provide important insights into how the circadian clock affects health and disease. PMID:16222241

  1. [Directional hearing in relation to individual circadian biorhythm].

    PubMed

    Karnicki, C

    1990-01-01

    Acuity angle of the directional hearing was investigated in connection with the individual circadian rhythm. Two groups of 15 persons represented the morning and evening form of the circadian rhythm. Body temperature fixed the rhythm character. The evaluations of the angle acuity of the directional hearing were performed in the highest and the lowest point of body temperature as well as in the neutral point, which was determined in the morning group in the middle between the two extremes. The possibility of the sound localization in individual and linked with the body temperature circadian rhythm. PMID:2234972

  2. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle. PMID:26113637

  3. Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part I: clocks and clocking machinery

    PubMed Central

    Uth, Kristin; Sleigh, Roger

    2014-01-01

    Many physiological processes occur in a rhythmic fashion, consistent with a 24-h cycle. The central timing of the day/night rhythm is set by a master clock, located in the suprachiasmatic nucleus (a tiny region in the hypothalamus), but peripheral clocks exist in different tissues, adjustable by cues other than light (temperature, food, hormone stimulation, etc.), functioning autonomously to the master clock. Presence of unrepaired DNA damage may adjust the circadian clock so that the phase in which checking for damage and DNA repair normally occurs is advanced or extended. The expression of many of the genes coding for proteins functioning in DNA damage-associated response pathways and DNA repair is directly or indirectly regulated by the core clock proteins. Setting up the normal rhythm of the circadian cycle also involves oscillating changes in the chromatin structure, allowing differential activation of various chromatin domains within the 24-h cycle. PMID:26019503

  4. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  5. Potent social synchronization can override photic entrainment of circadian rhythms

    PubMed Central

    Fuchikawa, Taro; Eban-Rothschild, Ada; Nagari, Moshe; Shemesh, Yair; Bloch, Guy

    2016-01-01

    Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts. PMID:27210069

  6. Similarities in the circadian clock and photoperiodism in plants

    PubMed Central

    Song, Young Hun; Ito, Shogo; Imaizumi, Takato

    2010-01-01

    Summary of recent advances Plants utilize circadian clocks to synchronize their physiological and developmental events with daily and yearly changes in the environment. Recent advances in Arabidopsis research have provided a better understanding of the molecular mechanisms of the circadian clock and photoperiodism. One of the most important questions is whether the mechanisms studied in Arabidopsis are conserved in other plants. Homologs of many Arabidopsis clock genes have been identified in various plants and some gene functions have been characterized. It seems that the circadian clocks in plants are similar. Recent success in molecular genetics has also revealed the mechanisms of photoperiodic flowering in cereals. The day-length sensing mechanisms appear to have diverged more between long-day plants and short-day plants than the circadian clock. PMID:20620097

  7. Nuclear receptors linking circadian rhythms and cardiometabolic control

    PubMed Central

    Duez, Hélène; Staels, Bart

    2010-01-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep(fasting)/wake(feeding) cycles as well as metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shiftwork, for instance, increases the risk to develop metabolic abnormalities resembling the Metabolic Syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie. Rev-erbα, RORα, PPARs) are subjected to circadian variations and are integral components of the molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window. PMID:20631353

  8. Circadian biology: a 2.5 billion year old clock.

    PubMed

    Loudon, Andrew S I

    2012-07-24

    A recent study suggests that circadian clocks may have evolved at the time of the Great Oxidation Event 2.5 billion years ago in order to drive detoxification of reactive oxygen species. PMID:22835791

  9. Dosing-Time Makes the Poison: Circadian Regulation and Pharmacotherapy.

    PubMed

    Dallmann, Robert; Okyar, Alper; Lévi, Francis

    2016-05-01

    Daily rhythms in physiology significantly modulate drug pharmacokinetics and pharmacodynamics according to the time-of-day, a finding that has led to the concept of chronopharmacology. The importance of biological clocks for xenobiotic metabolism has gained increased attention with the discovery of the molecular circadian clockwork. Mechanistic understanding of the cell-autonomous molecular circadian oscillator and the circadian timing system as a whole has opened new conceptual and methodological lines of investigation to understand first, the clock's impact on a specific drug's daily variations or the effects/side effects of environmental substances, and second, how clock-controlled pathways are coordinated within a given tissue or organism. Today, there is an increased understanding of the circadian modulation of drug effects. Moreover, several molecular strategies are being developed to treat disease-dependent and drug-induced clock disruptions in humans. PMID:27066876

  10. Potent social synchronization can override photic entrainment of circadian rhythms.

    PubMed

    Fuchikawa, Taro; Eban-Rothschild, Ada; Nagari, Moshe; Shemesh, Yair; Bloch, Guy

    2016-01-01

    Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts. PMID:27210069

  11. Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria

    PubMed Central

    Johnson, Carl Hirschie; Egli, Martin

    2014-01-01

    For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782

  12. The circadian clock and cell cycle: Interconnected biological circuits

    PubMed Central

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2014-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping. PMID:23969329

  13. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Technical Reports Server (NTRS)

    Sultzman, F. M.

    1984-01-01

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  14. Circadian rhythmicity as a predictor of weight-loss effectiveness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the major challenges associated with successful dietary weight management include the identification of individuals not responsive to specific interventions. The aim was to investigate the potential relationship between weight loss and circadian rhythmicity, using wrist temperature and actim...

  15. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.

    PubMed

    Mohawk, Jennifer A; Takahashi, Joseph S

    2011-07-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this review we will highlight recent advances in our knowledge of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  16. Modeling and Validating Chronic Pharmacological Manipulation of Circadian Rhythms

    PubMed Central

    Kim, J K; Forger, D B; Marconi, M; Wood, D; Doran, A; Wager, T; Chang, C; Walton, K M

    2013-01-01

    Circadian rhythms can be entrained by a light-dark (LD) cycle and can also be reset pharmacologically, for example, by the CK1δ/ε inhibitor PF-670462. Here, we determine how these two independent signals affect circadian timekeeping from the molecular to the behavioral level. By developing a systems pharmacology model, we predict and experimentally validate that chronic CK1δ/ε inhibition during the earlier hours of a LD cycle can produce a constant stable delay of rhythm. However, chronic dosing later during the day, or in the presence of longer light intervals, is not predicted to yield an entrained rhythm. We also propose a simple method based on phase response curves (PRCs) that predicts the effects of a LD cycle and chronic dosing of a circadian drug. This work indicates that dosing timing and environmental signals must be carefully considered for accurate pharmacological manipulation of circadian phase. PMID:23863866

  17. Circadian Phase Resetting via Single and Multiple Control Targets

    PubMed Central

    Bagheri, Neda; Stelling, Jörg; Doyle, Francis J.

    2008-01-01

    Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness. PMID:18795146

  18. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  19. Circadian Influence on Metabolism and Inflammation in Atherosclerosis.

    PubMed

    McAlpine, Cameron S; Swirski, Filip K

    2016-06-24

    Many aspects of human health and disease display daily rhythmicity. The brain's suprachiasmic nucleus, which interprets recurring external stimuli, and autonomous molecular networks in peripheral cells together, set our biological circadian clock. Disrupted or misaligned circadian rhythms promote multiple pathologies including chronic inflammatory and metabolic diseases such as atherosclerosis. Here, we discuss studies suggesting that circadian fluctuations in the vessel wall and in the circulation contribute to atherogenesis. Data from humans and mice indicate that an impaired molecular clock, disturbed sleep, and shifting light-dark patterns influence leukocyte and lipid supply in the circulation and alter cellular behavior in atherosclerotic lesions. We propose that a better understanding of both local and systemic circadian rhythms in atherosclerosis will enhance clinical management, treatment, and public health policy. PMID:27340272

  20. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  1. Circadian Disruption and Metabolic Disease: Findings from Animal Models

    PubMed Central

    Arble, Deanna Marie; Ramsey, Kathryn Moynihan; Bass, Joseph

    2010-01-01

    Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease. PMID:21112026

  2. Linking restoration ecology with coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  3. Circadian clocks, obesity and cardiometabolic function.

    PubMed

    Scott, E M

    2015-09-01

    Life on earth is governed by the continuous 24-h cycle of light and dark. Organisms have adapted to this environment with clear diurnal rhythms in their physiology and metabolism, enabling them to anticipate predictable environmental fluctuations over the day and to optimize the timing of relevant biological processes to this cycle. These rhythms are regulated by molecular circadian clocks, and current evidence suggests that interactions between the central and peripheral molecular clocks are important in metabolic and vascular functions. Disrupting this process through mutations in the core clock genes or by interfering with the environmental zeitgebers that entrain the clock appear to modulate the function of cells and tissues, leading to an increased risk for cardiometabolic disease. PMID:26332972

  4. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  5. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity.

    PubMed

    Parekh, Puja K; McClung, Colleen A

    2015-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  6. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  7. Circadian regulation of slow waves in human sleep: Topographical aspects

    PubMed Central

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  8. Circadian regulation of slow waves in human sleep: Topographical aspects.

    PubMed

    Lazar, Alpar S; Lazar, Zsolt I; Dijk, Derk-Jan

    2015-08-01

    Slow waves (SWs, 0.5-4Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  9. Circadian Control Sheds Light on Fungal Bioluminescence

    PubMed Central

    Oliveira, Anderson G.; Stevani, Cassius V.; Waldenmaier, Hans E.; Viviani, Vadim; Emerson, Jillian M.; Loros, Jennifer J.; Dunlap, Jay C.

    2015-01-01

    Summary Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi – only 71 species, all within the ~9000 fungi of the temperate and tropical Agaricales Order - are reported from among ~100,000 described fungal species [6,7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence, and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a by-product of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and the luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millenia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin “mushrooms”, internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans) as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants) at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy where wind flow is greatly reduced. PMID:25802150

  10. Spectral sensitivity of the circadian system

    NASA Astrophysics Data System (ADS)

    Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.

    2004-01-01

    Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.

  11. Circadian control sheds light on fungal bioluminescence.

    PubMed

    Oliveira, Anderson G; Stevani, Cassius V; Waldenmaier, Hans E; Viviani, Vadim; Emerson, Jillian M; Loros, Jennifer J; Dunlap, Jay C

    2015-03-30

    Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi-only 71 species, all within the ∼ 9,000 fungi of the temperate and tropical Agaricales order-are reported from among ∼ 100,000 described fungal species [6, 7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a byproduct of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature-compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millennia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin "mushrooms," internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans), as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants), at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy, where wind flow is greatly reduced. PMID:25802150

  12. Development of a circadian light source

    NASA Astrophysics Data System (ADS)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  13. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

    PubMed Central

    Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; Demayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

    2014-01-01

    The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection. PMID:25064128

  14. Sleep and circadian contributions to adolescent alcohol use disorder.

    PubMed

    Hasler, Brant P; Soehner, Adriane M; Clark, Duncan B

    2015-06-01

    Adolescence is a time of marked changes across sleep, circadian rhythms, brain function, and alcohol use. Starting at puberty, adolescents' endogenous circadian rhythms and preferred sleep times shift later, often leading to a mismatch with the schedules imposed by secondary education. This mismatch induces circadian misalignment and sleep loss, which have been associated with affect dysregulation, increased drug and alcohol use, and other risk-taking behaviors in adolescents and adults. In parallel to developmental changes in sleep, adolescent brains are undergoing structural and functional changes in the circuits subserving the pursuit and processing of rewards. These developmental changes in reward processing likely contribute to the initiation of alcohol use during adolescence. Abundant evidence indicates that sleep and circadian rhythms modulate reward function, suggesting that adolescent sleep and circadian disturbance may contribute to altered reward function, and in turn, alcohol involvement. In this review, we summarize the relevant evidence and propose that these parallel developmental changes in sleep, circadian rhythms, and neural processing of reward interact to increase risk for alcohol use disorder (AUD). PMID:25442171

  15. Circadian disruption and breast cancer: An epigenetic link?

    PubMed Central

    Kochan, David Z.; Kovalchuk, Olga

    2015-01-01

    Breast cancer is already the most common malignancy affecting women worldwide, and evidence is mounting that breast cancer induced by circadian disruption (CD) is a warranted concern. Numerous studies have investigated various aspects of the circadian clock in relation to breast cancer, and evidence from these studies indicates that melatonin and the core clock genes can play a crucial role in breast cancer development. Even though epigenetics has been increasingly recognized as a key player in the etiology of breast cancer and linked to circadian rhythms, and there is evidence of overlap between epigenetic deregulation and breast cancer induced by circadian disruption, only a handful of studies have directly investigated the role of epigenetics in CD-induced breast cancer. This review explores the circadian clock and breast cancer, and the growing role of epigenetics in breast cancer development and circadian rhythms. We also summarize the current knowledge and next steps for the investigation of the epigenetic link in CD-induced breast cancer. PMID:26220712

  16. Circadian gating of neuronal functionality: a basis for iterative metaplasticity.

    PubMed

    Iyer, Rajashekar; Wang, Tongfei A; Gillette, Martha U

    2014-01-01

    Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory. PMID:25285070

  17. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  18. Genetic analysis of Drosophila circadian behavior in seminatural conditions.

    PubMed

    Green, Edward W; O'Callaghan, Emma K; Pegoraro, Mirko; Armstrong, J Douglas; Costa, Rodolfo; Kyriacou, Charalambos P

    2015-01-01

    The study of circadian behavior in model organisms is almost exclusively confined to the laboratory, where rhythmic phenotypes are studied under highly simplified conditions such as constant darkness or rectangular light-dark cycles. Environmental cycles in nature are far more complex, and recent work in rodents and flies has revealed that when placed in natural/seminatural situations, circadian behavior shows unexpected features that are not consistent with laboratory observations. In addition, the recent observations of clockless mutants, both in terms of their circadian behavior and their Darwinian fitness, challenge some of the traditional beliefs derived from laboratory studies about what constitutes an adaptive circadian phenotype. Here, we briefly summarize the results of these newer studies and then describe how Drosophila behavior can be studied in the wild, pointing out solutions to some of the technical problems associated with extending locomotor monitoring to this unpredictable environment. We also briefly describe how to generate sophisticated simulations of natural light and temperature cycles that can be used to successfully mimic the fly's natural circadian behavior. We further clarify some misconceptions that have been raised in recent studies of natural fly behavior and show how these can be overcome with appropriate methodology. Finally, we describe some recent technical developments that will enhance the naturalistic study of fly circadian behavior. PMID:25662454

  19. The Circadian Clock in Cancer Development and Therapy

    PubMed Central

    Fu, Loning; Kettner, Nicole M.

    2014-01-01

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600

  20. Burn trauma disrupts circadian rhythms in rat liver

    PubMed Central

    Rao, Rohit; Yang, Qian; Orman, Mehmet A; Berthiaume, Francois; Ierapetritou, Marianthi G; Androulakis, Ioannis P

    2016-01-01

    Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets. Of the liver specific genes which we hypothesize that exhibit circadian rhythmicity, 88% are not differentially expressed following the burn injury. Specifically, the vast majority of the circadian regulated-genes representing central carbon and nitrogen metabolism are “up-regulated” after the burn injury, indicating the onset of hypermetabolism. In addition, cell-cell junction and membrane structure related genes showing rhythmic behavior in the control group were not differentially expressed across time in the burn group, which could be an indication of hepatic damage due to the burn. Finally, the suppression of the immune function related genes is observed in the postburn phase, implying the severe “immunosuppression”. Our results demonstrated that the short term response (24-h post injury) manifests a loss of circadian variability possibly compromising the host in terms of subsequent challenges. PMID:27335693

  1. Circadian Epigenomic Remodeling and Hepatic Lipogenesis: Lessons from HDAC3

    PubMed Central

    Sun, Zheng; Feng, Dan; Everett, Logan J.; Bugge, Anne; Lazar, Mitchell A.

    2013-01-01

    Circadian rhythms have evolved to anticipate metabolic needs across the 24-hour light/dark cycle. This is accomplished by circadian expression of metabolic genes orchestrated by transcription factors through chromatin remodeling and histone modifications. Our recent genome-wide study on histone deacetylase 3 (HDAC3) in mouse liver provides novel insights into the molecular link between circadian rhythm and hepatic de novo lipogenesis. We found that liver-specific knockout of HDAC3 in adult mouse display severe hepatic steatosis associated with enhanced de novo lipogenesis and increased expression of lipogenic genes. Genome-wide analysis (ChIP-seq) revealed a pronounced circadian pattern of HDAC3 occupancy on genes involved in lipid metabolism, which is inversely related to histone acetylation and RNA polymerase II recruitment at these sites. The cistromes of HDAC3 and its binding partner, nuclear receptor co-repressor (NCoR), significantly overlap with that of Rev-erbα, a nuclear receptor directly involved in the core circadian machinery. Knockout of Rev-erbα in mouse also leads to hepatic steatosis and enhanced de novo lipogenesis. Collectively, these data suggest that the circadian epigenomic remodeling controlled by HDAC3, and largely directed by Rev-erbα, is essential for homeostasis of the lipogenic process in liver. PMID:21900149

  2. Sleep and Circadian Contributions to Adolescent Alcohol Use Disorder

    PubMed Central

    Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.

    2014-01-01

    Adolescence is a time of marked changes across sleep, circadian rhythms, brain function, and alcohol use. Starting at puberty, adolescents’ endogenous circadian rhythms and preferred sleep times shift later, often leading to a mismatch with the schedules imposed by secondary education. This mismatch induces circadian misalignment and sleep loss, which have been associated with affect dysregulation, increased drug and alcohol use, and other risk-taking behaviors in adolescents and adults. In parallel to developmental changes in sleep, adolescent brains are undergoing structural and functional changes in the circuits subserving the pursuit and processing of rewards. These developmental changes in reward processing likely contribute to the initiation of alcohol use during adolescence. Abundant evidence indicates that sleep and circadian rhythms modulate reward function, suggesting that adolescent sleep and circadian disturbance may contribute to altered reward function, and in turn, alcohol involvement. In this review, we summarize the relevant evidence and propose that these parallel developmental changes in sleep, circadian rhythms, and neural processing of reward interact to increase risk for alcohol use disorder (AUD). PMID:25442171

  3. Temperature compensation and temperature sensation in the circadian clock

    PubMed Central

    Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.

    2015-01-01

    All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788

  4. Optimal Schedules of Light Exposure for Rapidly Correcting Circadian Misalignment

    PubMed Central

    Serkh, Kirill; Forger, Daniel B.

    2014-01-01

    Jet lag arises from a misalignment of circadian biological timing with the timing of human activity, and is caused by rapid transmeridian travel. Jet lag's symptoms, such as depressed cognitive alertness, also arise from work and social schedules misaligned with the timing of the circadian clock. Using experimentally validated mathematical models, we develop a new methodology to find mathematically optimal schedules of light exposure and avoidance for rapidly re-entraining the human circadian system. In simulations, our schedules are found to significantly outperform other recently proposed schedules. Moreover, our schedules appear to be significantly more robust to both noise in light and to inter-individual variations in endogenous circadian period than other proposed schedules. By comparing the optimal schedules for thousands of different situations, and by using general mathematical arguments, we are also able to translate our findings into general principles of optimal circadian re-entrainment. These principles include: 1) a class of schedules where circadian amplitude is only slightly perturbed, optimal for dim light and for small shifts 2) another class of schedules where shifting occurs along the shortest path in phase-space, optimal for bright light and for large shifts 3) the determination that short light pulses are less effective than sustained light if the goal is to re-entrain quickly, and 4) the determination that length of daytime should be significantly shorter when delaying the clock than when advancing it. PMID:24722195

  5. Circadian rhythms have broad implications for understanding brain and behavior

    PubMed Central

    Silver, Rae; Kriegsfeld, Lance J.

    2015-01-01

    Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific ‘circadian transcriptomes’. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain’s master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community. PMID:24799154

  6. CCL2 mediates the circadian response to low dose endotoxin.

    PubMed

    Duhart, José M; Brocardo, Lucila; Mul Fedele, Malena L; Guglielmotti, Angelo; Golombek, Diego A

    2016-09-01

    The mammalian circadian system is mainly originated in a master oscillator located in the suprachiasmatic nuclei (SCN) in the hypothalamus. Previous reports from our and other groups have shown that the SCN are sensitive to systemic immune activation during the early night, through a mechanism that relies on the action of proinflammatory factors within this structure. Chemokine (C-C motif) ligand 2 (CCL2) is induced in the brain upon peripheral immune activation, and it has been shown to modulate neuronal physiology. In the present work we tested whether CCL2 might be involved in the response of the circadian clock to peripheral endotoxin administration. The CCL2 receptor, C-C chemokine receptor type 2 (CCR2), was detected in the SCN of mice, with higher levels of expression during the early night, when the clock is sensitive to immune activation. Ccl2 was induced in the SCN upon intraperitoneal lipopolysaccharide (LPS) administration. Furthermore, mice receiving an intracerebroventricular (Icv) administration of a CCL2 synthesis inhibitor (Bindarit), showed a reduction LPS-induced circadian phase changes and Icv delivery of CCL2 led to phase delays in the circadian clock. In addition, we tested the possibility that CCL2 might also be involved in the photic regulation of the clock. Icv administration of Bindarit did not modify the effects of light pulses on the circadian clock. In summary, we found that CCL2, acting at the SCN level is important for the circadian effects of immune activation. PMID:27178133

  7. Thyroid circadian timing: roles in physiology and thyroid malignancies.

    PubMed

    Philippe, Jacques; Dibner, Charna

    2015-04-01

    The circadian clock represents an anticipatory mechanism, well preserved in evolution. It has a critical impact on most aspects of the physiology of light-sensitive organisms. These rhythmic processes are governed by environmental cues (fluctuations in light intensity and temperature), an internal circadian timing system, and interactions between this timekeeping system and environmental signals. Endocrine body rhythms, including hypothalamic-pituitary-thyroid (HPT) axis rhythms, are tightly regulated by the circadian system. Although the circadian profiles of thyroid-releasing hormone (TRH), thyroid-stimulating hormone (TSH), thyroxine (T4), and triiodothyronine (T3) in blood have been well described, relatively few studies have analyzed molecular mechanisms governing the circadian regulation of HPT axis function. In this review, we will discuss the latest findings in the area of complex regulation of thyroid gland function by the circadian oscillator. We will also highlight the molecular makeup of the human thyroid oscillator as well as the potential link between thyroid malignant transformation and alterations in the clockwork. PMID:25411240

  8. Caenorhabditis elegans opens up new insights into circadian clock mechanisms.

    PubMed

    Hasegawa, Kenji; Saigusa, Tetsu; Tamai, Yoichi

    2005-01-01

    The roundworm, Caenorhabditis elegans, is known to carry homologues of clock genes such as per (=period) and tim (=timeless), which constitute the core of the circadian clock in Drosophila and mammals: lin-42 and tim-1. Analyses using WormBase (C. elegans gene database) have identified with relatively high identity analogous of the clock genes recognized in Drosophila and mammals, with the notable exception of cry (=cryptochrome), which is lacking in C. elegans. All of these C. elegans cognates of the clock genes appear to belong to members of the PAS-superfamily and to participate in development or responsiveness to the environment but apparently are not involved in the C. elegans circadian clock. Nevertheless, C. elegans exhibits convincing circadian rhythms in locomotor behavior in the adult stage and in resistance to hyperosmotic stress in starved larvae (L1) after hatching, indicating that it has a circadian clock with a core design entirely different from that of Drosophila and mammals. Here two possibilities are considered. First, the core of the C. elegans circadian clock includes transcriptional/translational feedback loops between genes and their protein products that are entirely different from those of Drosophila and mammals. Second, a more basic principle such as homeostasis governs the circadian cellular physiology, and was established primarily to minimize the accumulation of DNA damage in response to an environment cycling at 24 h intervals. PMID:15865318

  9. Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms

    PubMed Central

    Dickmeis, Thomas; Lahiri, Kajori; Nica, Gabriela; Vallone, Daniela; Santoriello, Cristina; Neumann, Carl J; Hammerschmidt, Matthias; Foulkes, Nicholas S

    2007-01-01

    Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary–adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part. PMID:17373855

  10. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: can the seasonal timer evolve independently of the circadian clock?

    PubMed

    Bradshaw, W E; Holzapfel, C M; Mathias, D

    2006-04-01

    The two major rhythms of the biosphere are daily and seasonal; the two major adaptations to these rhythms are the circadian clock, mediating daily activities, and the photoperiodic timer, mediating seasonal activities. The mechanistic connection between the circadian clock and the photoperiodic timer remains unresolved. Herein, we show that the rhythmic developmental response to exotic light:dark cycles, usually used to infer a causal connection between the circadian clock and the photoperiodic timer, has evolved independently of the photoperiodic timer in the pitcher-plant mosquito Wyeomyia smithii across the climatic gradient of eastern North America from Florida to Canada and from the coastal plain to the mountains. We conclude that the photoperiodic timing of seasonal events can evolve independently of the daily circadian clock. PMID:16671002

  11. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    PubMed Central

    Guilding, Clare; Hughes, Alun TL; Brown, Timothy M; Namvar, Sara; Piggins, Hugh D

    2009-01-01

    Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism. PMID:19712475

  12. Neuropeptide Y and α-MSH Circadian Levels in Two Populations with Low Body Weight: Anorexia Nervosa and Constitutional Thinness

    PubMed Central

    Galusca, Bogdan; Prévost, Gaëtan; Germain, Natacha; Dubuc, Isabelle; Ling, Yiin; Anouar, Youssef; Estour, Bruno; Chartrel, Nicolas

    2015-01-01

    Context Anorexia nervosa (AN) presents an adaptive appetite regulating profile including high levels of ghrelin and 26RFa (orexigenic) and low levels of leptin and PYY (anorexigenic). However, this adaptive mechanism is not effective in promoting food intake. The NPY/proopiomelanocortin (POMC) system plays a crucial role in the regulation of feeding behavior as NPY is the most potent orexigenic neuropeptide identified so far and as the POMC-derived peptide α-MSH drastically reduces food intake, and this peptidergic system has not been thoroughly studied in AN. Objective The aim of the present study was thus to investigate whether a dysfunction of the NPY/POMC occurs in two populations with low body weight, AN and constitutional thinness (CT). Design and Settings This was a cross-sectional study performed in an endocrinological unit and in an academic laboratory. Investigated Subjects Three groups of age-matched young women were studied: 23 with AN (AN), 22 CT and 14 normal weight controls. Main Outcome Measures Twelve-point circadian profiles of plasma NPY and α-MSH levels were measured in the three groups of investigated subjects. Results No significant circadian variation of NPY was detected between the three groups. Plasma α-MSH levels were significantly lower in AN (vs controls) all over the day. The CT group, compared to controls, presented lower levels of α-MSH in the morning and the evening, and an important rise during lunchtime. Conclusion In AN patients, the NPY system is not up-regulated under chronic undernutrition suggesting that this may play a role in the inability of anorectic women to adapt food intake to their energy demand. In contrast, low circadian α-MSH levels integrate the adaptive profile of appetite regulation of this disease. Finally, in CT women, the important α-MSH peak detected during lunchtime could explain why these patients are rapidly food satisfied. PMID:25798605

  13. Periodontal restorative interrelationships: the isolated restoration.

    PubMed

    Fugazzotto, P A

    1985-06-01

    Only by controlling plaque early and consistently, before periodontal and restorative problems require intervention in the form of a full prosthetic and periodontal reconstruction, the continued maintenance of a full dentition is assured. Plaque control is not merely continued prophylaxes, but a striving for a healthy biologic situation with the placement of every restoration. This is attainable only through ensuring a normal attachment apparatus and establishing that all restorative margins be accessible to plaque control measures. Deep, subgingival restorations are not only difficult to place and finish correctly, but, by providing an environment conducive to microbial plaque retention and proliferation, also lead to inflammatory periodontal destruction and recurrent carious lesions. Early detection, although difficult, is essential to avoid excessive destruction of the tooth and its supporting structures. A deterrent to early detection may be the response of the patient's tissue. Paradoxically, if the patient's periodontal tissues respond in a fibrotic manner to early gingival inflammation, rather than in a dramatic, edematous manner, the situation may appear clinically healthy. Waerhaug discussed "submarginal gingivitis," a situation in which the tissue will appear pink and firm, elicit to exudate or bleeding on probing, and mimic healthy to the casual examiner. When this is coupled with the difficulty inherent in detecting early recurrent carious lesions, resulting from the radiographic superimposition of the existing restoration or the deep subgingival extent of the restoration, the situation becomes all the more demanding of the practitioner's efforts. PMID:3860551

  14. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals.

    PubMed

    Gilardi, Federica; Migliavacca, Eugenia; Naldi, Aurélien; Baruchet, Michaël; Canella, Donatella; Le Martelot, Gwendal; Guex, Nicolas; Desvergne, Béatrice

    2014-03-01

    In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus

  15. Isolating Neural Correlates of the Pacemaker for Food Anticipation

    PubMed Central

    Blum, Ian David; Waddington Lamont, Elaine; Rodrigues, Trevor; Abizaid, Alfonso

    2012-01-01

    Mice fed a single daily meal at intervals within the circadian range exhibit food anticipatory activity. Previous investigations strongly suggest that this behaviour is regulated by a circadian pacemaker entrained to the timing of fasting/refeeding. The neural correlate(s) of this pacemaker, the food entrainable oscillator (FEO), whether found in a neural network or a single locus, remain unknown. This study used a canonical property of circadian pacemakers, the ability to continue oscillating after removal of the entraining stimulus, to isolate activation within the neural correlates of food entrainable oscillator from all other mechanisms driving food anticipatory activity. It was hypothesized that continued anticipatory activation of central nuclei, after restricted feeding and a return to ad libitum feeding, would elucidate a neural representation of the signaling circuits responsible for the timekeeping component of the food entrainable oscillator. Animals were entrained to a temporally constrained meal then placed back on ad libitum feeding for several days until food anticipatory activity was abolished. Activation of nuclei throughout the brain was quantified using stereological analysis of c-FOS expressing cells and compared against both ad libitum fed and food entrained controls. Several hypothalamic and brainstem nuclei remained activated at the previous time of food anticipation, implicating them in the timekeeping mechanism necessary to track previous meal presentation. This study also provides a proof of concept for an experimental paradigm useful to further investigate the anatomical and molecular substrates of the FEO. PMID:22558352

  16. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle.

    PubMed

    Kalsbeek, A; Barassin, S; van Heerikhuize, J J; van der Vliet, J; Buijs, R M

    2000-02-01

    It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift. PMID:10677017

  17. Ras-Mediated Deregulation of the Circadian Clock in Cancer

    PubMed Central

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  18. Circadian misalignment increases cardiovascular disease risk factors in humans

    PubMed Central

    Morris, Christopher J.; Purvis, Taylor E.; Hu, Kun; Scheer, Frank A. J. L.

    2016-01-01

    Shift work is a risk factor for hypertension, inflammation, and cardiovascular disease. This increased risk cannot be fully explained by classic risk factors. One of the key features of shift workers is that their behavioral and environmental cycles are typically misaligned relative to their endogenous circadian system. However, there is little information on the impact of acute circadian misalignment on cardiovascular disease risk in humans. Here we show—by using two 8-d laboratory protocols—that short-term circadian misalignment (12-h inverted behavioral and environmental cycles for three days) adversely affects cardiovascular risk factors in healthy adults. Circadian misalignment increased 24-h systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 3.0 mmHg and 1.5 mmHg, respectively. These results were primarily explained by an increase in blood pressure during sleep opportunities (SBP, +5.6 mmHg; DBP, +1.9 mmHg) and, to a lesser extent, by raised blood pressure during wake periods (SBP, +1.6 mmHg; DBP, +1.4 mmHg). Circadian misalignment decreased wake cardiac vagal modulation by 8–15%, as determined by heart rate variability analysis, and decreased 24-h urinary epinephrine excretion rate by 7%, without a significant effect on 24-h urinary norepinephrine excretion rate. Circadian misalignment increased 24-h serum interleukin-6, C-reactive protein, resistin, and tumor necrosis factor-α levels by 3–29%. We demonstrate that circadian misalignment per se increases blood pressure and inflammatory markers. Our findings may help explain why shift work increases hypertension, inflammation, and cardiovascular disease risk. PMID:26858430

  19. Biphasic Effects of Alcohol as a Function of Circadian Phase

    PubMed Central

    Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.

    2013-01-01

    Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980

  20. Ras-mediated deregulation of the circadian clock in cancer.

    PubMed

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock. PMID:24875049

  1. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  2. Circadian variation of heart rate variability among welders

    PubMed Central

    Cavallari, Jennifer M; Fang, Shona C; Mittleman, Murray A; Christiani, David C

    2011-01-01

    Objective To compare the circadian variation of hourly heart rate variability (HRV) on work and non-workdays among boilermaker construction workers. Method A panel study of 18 males monitored by 24-h ambulatory ECG over 44 observation-days on paired work and non-workdays was conducted. ECGs were analysed and the SD of normal-to-normal beats index (SDNNi) was calculated from 5-min data and summarised hourly. SDNNis over work and non-workdays were compared using linear mixed-effects models to account for repeated measures and harmonic regression to account for circadian variation. Results Both work and non-work hourly HRV exhibited circadian variation with an increase in the evening and a decrease in the afternoon. SDNNi was lower on workdays as compared with non-workdays with the largest, statistically significant differences observed between 10:00 and 16:00, during active working. Lower SDNNi, albeit smaller yet statistically significant differences, was also observed in the evening hours following work (17:00–21:00) and early morning (4:00). In regression models using all time periods, an average workday SDNNi was 8.1 ms (95% CI –9.8 to –6.3) lower than non-workday SDNNi. The circadian pattern of HRV exhibited two peaks which differed on work and non-workdays. Conclusion While workday and non-workday HRV followed a circadian pattern, decreased HRV and variation of the circadian pattern were observed on workdays. Declines and changes in the circadian pattern of HRV is a concern among this exposed population. PMID:20798005

  3. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.

    PubMed

    Casiraghi, Leandro P; Alzamendi, Ana; Giovambattista, Andrés; Chiesa, Juan J; Golombek, Diego A

    2016-04-01

    Metabolic functions are synchronized by the circadian clock setting daily patterns of food intake, nutrient delivery, and behavioral activity. Here, we study the impact of chronic jet-lag (CJL) on metabolism, and test manipulations aimed to overcome potential alterations. We recorded weight gain in C57Bl/6 mice under chronic 6 h advances or delays of the light-dark cycle every 2 days (ChrA and ChrD, respectively). We have previously reported ChrA, but not ChrD, to induce forced desynchronization of locomotor activity rhythms in mice (Casiraghi et al. 2012). Body weight was rapidly increased under ChrA, with animals tripling the mean weight gain observed in controls by day 10, and doubling it by day 30 (6% vs. 2%, and 15% vs. 7%, respectively). Significant increases in retroperitoneal and epidydimal adipose tissue masses (172% and 61%, respectively), adipocytes size (28%), and circulating triglycerides (39%) were also detected. Daily patterns of food and water intake were abolished under ChrA In contrast, ChrD had no effect on body weight. Wheel-running, housing of animals in groups, and restriction of food availability to hours of darkness prevented abnormal increase in body weight under ChrA Our findings suggest that the observed alterations under ChrA may arise either from a direct effect of circadian disruption on metabolism, from desynchronization between feeding and metabolic rhythms, or both. Direction of shifts, timing of feeding episodes, and other reinforcing signals deeply affect the outcome of metabolic function under CJL Such features should be taken into account in further studies of shift working schedules in humans. PMID:27125665

  4. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.

    PubMed

    Dattolo, T; Coomans, C P; van Diepen, H C; Patton, D F; Power, S; Antle, M C; Meijer, J H; Mistlberger, R E

    2016-02-19

    Circadian rhythms in mammals are regulated by a system of circadian oscillators that includes a light-entrainable pacemaker in the suprachiasmatic nucleus (SCN) and food-entrainable oscillators (FEOs) elsewhere in the brain and body. In nocturnal rodents, the SCN promotes sleep in the day and wake at night, while FEOs promote an active state in anticipation of a predictable daily meal. For nocturnal animals to anticipate a daytime meal, wake-promoting signals from FEOs must compete with sleep-promoting signals from the SCN pacemaker. One hypothesis is that FEOs impose a daily rhythm of inhibition on SCN output that is timed to permit the expression of activity prior to a daytime meal. This hypothesis predicts that SCN activity should decrease prior to the onset of anticipatory activity and remain suppressed through the scheduled mealtime. To assess the hypothesis, neural activity in the SCN of mice anticipating a 4-5-h daily meal in the light period was measured using FOS immunohistochemistry and in vivo multiple unit electrophysiology. SCN FOS, quantified by optical density, was significantly reduced at the expected mealtime in food-anticipating mice with access to a running disk, compared to ad libitum-fed and acutely fasted controls. Group differences were not significant when FOS was quantified by other methods, or in mice without running disks. SCN electrical activity was markedly decreased during locomotion in some mice but increased in others. Changes in either direction were concurrent with locomotion, were not specific to food anticipation, and were not sustained during longer pauses. Reduced FOS indicates a net suppression of SCN activity that may depend on the intensity or duration of locomotion. The timing of changes in SCN activity relative to locomotion suggests that any effect of FEOs on SCN output is mediated indirectly, by feedback from neural or systemic correlates of locomotion. PMID:26701294

  5. Disruption of the circadian clock within the cardiomyocyte influences mycardial contractile function, metabolism, and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variatio...

  6. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that the circadian clock within the cardiomyocyte plays a role in regulating myo...

  7. Identification of genes directly regulated by the intrinsic circadian clock within the cardiomyocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias) are firmly established. These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences (e.g., sympathetic activity). Nevertheless, cardiomyocytes ...

  8. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  9. Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading.

    PubMed

    Zhu, Bokai; Gates, Leah A; Stashi, Erin; Dasgupta, Subhamoy; Gonzales, Naomi; Dean, Adam; Dacso, Clifford C; York, Brian; O'Malley, Bert W

    2015-12-01

    A central mechanism for controlling circadian gene amplitude remains elusive. We present evidence for a "facilitated repression (FR)" model that functions as an amplitude rheostat for circadian gene oscillation. We demonstrate that ROR and/or BMAL1 promote global chromatin decondensation during the activation phase of the circadian cycle to actively facilitate REV-ERB loading for repression of circadian gene expression. Mechanistically, we found that SRC-2 dictates global circadian chromatin remodeling through spatial and temporal recruitment of PBAF members of the SWI/SNF complex to facilitate loading of REV-ERB in the hepatic genome. Mathematical modeling highlights how the FR model sustains proper circadian rhythm despite fluctuations of REV-ERB levels. Our study not only reveals a mechanism for active communication between the positive and negative limbs of the circadian transcriptional loop but also establishes the concept that clock transcription factor binding dynamics is perhaps a central tenet for fine-tuning circadian rhythm. PMID:26611104

  10. Glia-related circadian plasticity in the visual system of Diptera

    PubMed Central

    Górska-Andrzejak, Jolanta

    2012-01-01

    The circadian changes in morphology of the first visual neuropil or lamina of Diptera represent an example of the neuronal plasticity controlled by the circadian clock (circadian plasticity). It is observed in terminals of the compound eye photoreceptor cells, the peripheral oscillators expressing the clock genes. However, it has been found also in their postsynaptic partners, the L1 and L2 monopolar cells, in which the activity of the clock genes have not yet been detected. The circadian input that the L1 and L2 receive seems to originate not only from the retina photoreceptors and from the circadian pacemaker neurons located in the brain, but also from the glial cells that express the clock genes and thus contain circadian oscillators. This paper summarizes the morphological and biochemical rhythms in glia of the optic lobe, shows how they contribute to circadian plasticity, and discusses how glial clocks may modulate circadian rhythms in the lamina. PMID:23986707

  11. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and contractile function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...

  12. A blue-violet laser irradiation stimulates bone nodule formation of mesenchymal stromal cells by the control of the circadian clock protein

    NASA Astrophysics Data System (ADS)

    Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which are present in adult bone marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, and muscle. Their rapid and selective differentiation should provide the potential of new therapeutic approaches for the restoration of damaged or diseased tissue. However, several fundamental questions must be answered before it will be feasible to usefully predict and control MSCs responses to exogenous cytokines or genes. In particular, a better understanding of how specific factor may alter the fate of differentiation of MSCs is needed. In recent reports, circadian clock protein controls osteogenesis in vitro and in vivo. Here we show that a stimulation of a blue-violet laser irradiation regulates the differentiation of mouse MSCs to osteoblasts by change of the localization of a circadian rhythm protein, mouse Cryptochrome 1 (mCRY1). We found that a blue laser irradiation accelerated osteogenesis of MSCs. After laser irradiation, mCRY1 protein was translocated from cytoplasm to nucleus and mCRY1 mRNA level was downregulated thereafter. These results indicate that mCRY1, a blue-violet-light receptor and a master regulator of circadian rhythm, plays important roles in the regulation of the differentiation of MSCs. Since the differentiation of MSCs was easily regulated only by a laser irradiation, the potential of new therapeutic approaches for the restoration of damaged or diseased tissue is anticipated. Furthermore, our results obtained in this study may prove an excellent opportunity to gain insights into cross-talk between circadian rhythms and bone formation.

  13. Watershed Restoration Project

    SciTech Connect

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  14. Ontogeny of alpha-amylase circadian rhythms in rat parotid gland.

    PubMed

    Sanz, E G; Vermouth, N T; Bellavia, S L

    1986-01-01

    The content of alpha-amylase (alpha-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1.) and total soluble proteins of parotid glands (from rats exposed to a photoperiod of 14 hr light: 10 hr dark), have been determined every 2 or 3 hr over 24 hr periods in 15, 25 and 90-day-old rats. In 35-, 45- and 72-day-old rats, determinations were performed only at 0100 and 1400 hr. The alpha-amylase and total soluble protein contents from 90-day-old rats show a circadian variation, with a maximum value at 2200 hr and a minimum at 1400 hr. Parotids from 15- and 25-day-old rats also show a circadian rhythm. The minimum value is recorded at 0100 hr and the maximum at 1400 hr. At day 35 and after, there is an inversion of the amylase rhythm. In immature rats, it appears that alpha-amylase and soluble protein are under the influence of another synchronizer, whose timing is independent of that imposed by mastication of solid food. PMID:2878787

  15. Winter Depression: Integrating mood, circadian rhythms, and the sleep/wake and light/dark cycles into a bio-psycho-social-environmental model

    PubMed Central

    Emens, Jonathan S.; Songer, Jeannie B.; Sims, Neelam; Laurie, Amber L.; Fiala, Steven C.; Buti, Allie L.

    2009-01-01

    Synopsis The phase shift hypothesis (PSH) states that most patients with SAD become depressed in the winter because of a delay in circadian rhythms with respect to the sleep/wake cycle: According to the PSH, these patients should preferentially respond to the antidepressant effects of bright light exposure when it is scheduled in the morning so as to provide a corrective phase advance and restore optimum alignment between the circadian rhythms tightly coupled to the endogenous circadian pacemaker and those rhythms that are related to the sleep/wake cycle. Recent support for the PSH has come from studies in which symptom severity was shown to correlate with the degree of circadian misalignment: it appears that a subgroup of patients are phase advanced, not phase delayed; however, the phase-delayed type is predominant in SAD and perhaps in other disorders as well, such as non-seasonal unipolar depression. It is expected that during the next few years the PSH will be tested in these and other conditions, particularly since healthy subjects appear to have more severe symptoms of sub-clinical dysphoria correlating with phase-delayed circadian misalignment; critically important will be the undertaking of treatment trials to investigate the therapeutic efficacy of morning bright light or afternoon/evening low-dose melatonin in these disorders in which symptoms are more severe as the dim light melatonin onset (DLMO) is delayed with respect to the sleep/wake cycle (non-restorative sleep should also be evaluated, as well as bipolar disorder). The possibility that some individuals (and disorders) will be of the phase-advanced type should be considered, taking into account that the correct timing of phase-resetting agents for them will be bright light scheduled in the evening and/or low-dose melatonin taken in the morning. While sleep researchers and clinicians are accustomed to phase-typing patients with circadian-rhythm sleep disorders according to the timing of sleep, phase

  16. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids

    PubMed Central

    Song, Qingxin; Juenger, Thomas E.

    2016-01-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  17. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  18. Restoring the smile: Inexpensive biologic restorations

    PubMed Central

    Mittal, Neeti P.

    2014-01-01

    Extensive breakdown of primary teeth to the cervical level and their loss in very young children is not uncommon. Owing to increasing concerns over self-appearance, due considerations to esthetic aspects in addition to restoring function are necessary aspects of rehabilitation of mutilated teeth to help children grow into a psychologically balanced personality. The present article describes rehabilitation of grossly decayed teeth with biologic restorations such as dentine posts, dentine post and core and biologic shell crown. This treatment modality provided a cost-effective esthetic solution. PMID:25097656

  19. Sleep disturbances and circadian CLOCK genes in borderline personality disorder.

    PubMed

    Fleischer, Monika; Schäfer, Michael; Coogan, Andrew; Häßler, Frank; Thome, Johannes

    2012-10-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients frequently report suffering from sleep disturbances. In this review, we overview the evidence that circadian rhythms and sleep are disturbed in BPD, and we explore the possibility that personality traits that are pertinent for BPD may be associated with circadian typology, and perhaps to circadian genotypes. With regards to sleep architecture, we review the evidence that BPD patients display altered non-REM and REM sleep. A possible cue to a deeper understanding of this temporal dysregulation might be an analysis of the circadian clock at the molecular and cellular level, as well as behavioural studies using actigraphy and we suggest avenues for further exploration of these factors. PMID:22806005

  20. Suprachiasmatic astrocytes as an interface for immune-circadian signalling.

    PubMed

    Leone, María Juliana; Marpegan, Luciano; Bekinschtein, Tristán A; Costas, Mónica A; Golombek, Diego A

    2006-11-15

    The hypothalamic suprachiasmatic nuclei (SCN), the site of a mammalian circadian clock, exhibit a dense immunoreactivity for glial fibrillary acidic protein (GFAP), a specific marker for astrocytes. Although there is evidence of a circadian variation in GFAP-IR in the hamster SCN and of the participation of glial cells in input and output mechanisms of the clock, the role of these cells within the circadian system is not clearly understood. The fact that astroglia can express and respond to cytokines suggests that they could work as mediators of immune signals to the circadian system. In the present study, we have found a daily variation of GFAP-IR in the mouse SCN, peaking during the light phase. In addition, we have identified GFAP and nuclear factor-kappaB (NF-kappaB) in glial cells within the SCN and in primary cultures of the mouse SCN. Moreover, SCN glia cultures were transfected with an NF-kappaB/luc construct whose transcriptional activity was increased with lipopolysaccharide 2 mug/ml, tumor necrosis factor-alpha 20 ng/ml, or interleukin-1alpha 100 ng/ml, after 12 hr of stimulation. These results suggest that the glial cells of the SCN can mediate input signals to the mouse circadian system coming from the immune system via NF-kappaB signaling. PMID:16955486

  1. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  2. Natural selection against a circadian clock gene mutation in mice

    PubMed Central

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S. I.; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close to or equal to the natural light–dark cycle are considered evolutionarily adaptive (“circadian resonance hypothesis”). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  3. Natural selection against a circadian clock gene mutation in mice.

    PubMed

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  4. Sleep and Circadian Rhythms in Four Orbiting Astronauts

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.; Buysse, Daniel J.; Billy, Bart D.; Kennedy, Kathy S.; Willrich, Linda M.

    1999-01-01

    INTRODUCTION The study of human sleep and circadian rhythms in space has both operational and scientific significance. Operationally, U.S. Spaceflight is moving away from brief missions with durations of less than one week. Most space shuttle missions now last two weeks or more, and future plans involving space stations, lunar bases and interplanetary missions all presume that people will be living away from the gravity and time cues of earth for months at a time. Thus, missions are moving away from situations where astronauts can "tough it out" for comparatively brief durations, to situations where sleep and circadian disruptions are likely to become chronic, and thus resistant to short term pharmacological or behavioral manipulations. As well as the operational significance, there is a strong theoretical imperative for studying the sleep and circadian rhythms of people who are removed from the gravity and time cues of earth. Like other animals, in humans, the Circadian Timekeeping System (CTS) is entrained to the correct period (24h) and temporal orientation by various time cues ("zeitgebers"), the most powerful of which is the alternation of daylight and darkness. In leaving Earth, astronauts are removing themselves from the prime zeitgeber of their circadian system -- the 24h alternation of daylight and darkness.

  5. Emerging Models for the Molecular Basis of Mammalian Circadian Timing

    PubMed Central

    2015-01-01

    Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock. PMID:25303119

  6. Dynamical mechanism of circadian singularity behavior in Neurospora

    NASA Astrophysics Data System (ADS)

    Sun, Maorong; Wang, Yi; Xu, Xin; Yang, Ling

    2016-09-01

    Many organisms have oscillators with a period of about 24 hours, called "circadian clocks". They employ negative biochemical feedback loops that are self-contained within a single cell (requiring no cell-to-cell interaction). Circadian singularity behavior is a phenomenon of the abolishment of circadian rhythmicities by a critical stimulus. These behaviors have been found experimentally in Neurospora, human and hamster, by temperature step-up or light pulse. Two alternative models have been proposed to explain this phenomenon: desynchronization of cell populations, and loss of oscillations in all cells by resetting each cell close to a steady state. In this work, we use a mathematical model to investigate the dynamical mechanism of circadian singularity behavior in Neurospora. Our findings suggest that the arrhythmic behavior after the critical stimulus is caused by the collaboration of the desynchronization and the loss of oscillation amplitude. More importantly, we found that the stable manifold of the unstable equilibrium point, instead of the steady state itself, plays a crucial role in circadian singularity behavior.

  7. The Circadian Clock in Oral Health and Diseases

    PubMed Central

    Papagerakis, S.; Zheng, L.; Schnell, S.; Sartor, M.A.; Somers, E.; Marder, W.; McAlpin, B.; Kim, D.; McHugh, J.; Papagerakis, P.

    2014-01-01

    Most physiological processes in mammals display circadian rhythms that are driven by the endogenous circadian clock. This clock is comprised of a central component located in the hypothalamic suprachiasmatic nucleus and subordinate clocks in peripheral tissues. Circadian rhythms sustain 24-hour oscillations of a large number of master genes controlling the correct timing and synchronization of diverse physiological and metabolic processes within our bodies. This complex regulatory network provides an important communication link between our brain and several peripheral organs and tissues. At the molecular level, circadian oscillations of gene expression are regulated by a family of transcription factors called “clock genes”. Dysregulation of clock gene expression results in diverse human pathological conditions, including autoimmune diseases and cancer. There is increasing evidence that the circadian clock affects tooth development, salivary gland and oral epithelium homeostasis, and saliva production. This review summarizes current knowledge of the roles of clock genes in the formation and maintenance of oral tissues, and discusses potential links between “oral clocks” and diseases such as head and neck cancer and Sjögren’s syndrome. PMID:24065634

  8. The circadian clock in oral health and diseases.

    PubMed

    Papagerakis, S; Zheng, L; Schnell, S; Sartor, M A; Somers, E; Marder, W; McAlpin, B; Kim, D; McHugh, J; Papagerakis, P

    2014-01-01

    Most physiological processes in mammals display circadian rhythms that are driven by the endogenous circadian clock. This clock is comprised of a central component located in the hypothalamic suprachiasmatic nucleus and subordinate clocks in peripheral tissues. Circadian rhythms sustain 24-hour oscillations of a large number of master genes controlling the correct timing and synchronization of diverse physiological and metabolic processes within our bodies. This complex regulatory network provides an important communication link between our brain and several peripheral organs and tissues. At the molecular level, circadian oscillations of gene expression are regulated by a family of transcription factors called "clock genes". Dysregulation of clock gene expression results in diverse human pathological conditions, including autoimmune diseases and cancer. There is increasing evidence that the circadian clock affects tooth development, salivary gland and oral epithelium homeostasis, and saliva production. This review summarizes current knowledge of the roles of clock genes in the formation and maintenance of oral tissues, and discusses potential links between "oral clocks" and diseases such as head and neck cancer and Sjögren's syndrome. PMID:24065634

  9. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  10. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  11. Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Turek, Fred W.; Woods, Stephen C.; Seeley, Randy J.

    2015-01-01

    Background/Objectives Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (e.g., night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared to the non-disrupted population. However, it is unclear if the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG) in mouse models of genetic and environmental circadian disruption. Results VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (P < .05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P > .05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P < .05). Conclusions Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, since the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption. PMID:25869599

  12. Disrupting circadian homeostatis of sympathetic signaling promotes tumor development in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell proliferation in all rapidly renewing mammalian tissues follows a circadian rhythm that is often disrupted in advanced-stage tumors. Epidemiologic studies have revealed a clear link between disruption of circadian rhythms and cancer development in humans. Mice lacking the circadian genes Perio...

  13. Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle

    PubMed Central

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-01-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms. PMID:25714999

  14. Characterization of neurospora circadian rhythms in space

    NASA Technical Reports Server (NTRS)

    Ferraro, James S.

    1987-01-01

    To determine whether the circadian rhythm of conidiation in neurospora crassa is endogenously derived or is driven by some geophysical time cue, an experiment was conducted on space shuttle flight STS-9, where inoculated race tubes were exposed to the microgravity environment of space. The results demonstated that the rhythm can persist in space. However, there were several minor alterations noted; an increase in the period of the oscillation and the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of the flight, the tubes were exposed to light while their growth fronts were marked. It appears that some aspects of this marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. It was hypothesized that the damping found prior to the marking procedure on STS-9 may have been a result of the hypergravity pulse of launch and not due to the microgravity of the orbital lab; furthermore, that the marking procedure, by exposing the samples to light, had reinstated rhythmicity. To test this, an investigation was conducted into the effects of acute and chronic exposure to hypergravity.

  15. Circadian variation in unexpected postoperative death.

    PubMed

    Rosenberg, J; Pedersen, M H; Ramsing, T; Kehlet, H

    1992-12-01

    Unexpected deaths still occur following major surgical procedures. The cause is often unknown but may be cardiac or thromboembolic in nature. Postoperative ischaemia, infarction and sudden cardiac death may be triggered by episodic or constant arterial hypoxaemia, which increases during the night. This study examined the circadian variation of sudden unexpected death following abdominal surgery between 1985 and 1989 inclusive. Deaths were divided into those occurring during the day (08.00-16.00 hours), evening (16.00-24.00 hours) and night (24.00-08.00 hours). Twenty-three deaths were considered to have been totally unexpected. Of 16 such patients undergoing autopsy, pulmonary embolism was the cause of death in five. In the remaining 11 patients, death occurred at night in eight (P < 0.005). Five of the seven patients without an autopsy died at night (P < 0.04); overall, 13 of 18 unexpected deaths occurred at night-time. These results suggest a need for further studies of sleep- and respiration-related effects on postoperative nocturnal cardiac function. The efficacy of monitoring during this apparent high-risk period should be evaluated. PMID:1486424

  16. Circadian temperature rhythms of older people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1995-01-01

    This collection of studies had the aim of exploring whether older (77+ years) men and women have circadian body temperature rhythms different from those of younger adults. A total of 20 older men and 28 older women were compared with either 22 young men or 14 middle-aged men in four protocols; all but the first protocol using a subset of the sample. The four protocols were: 1) 24 h, and 2) 72 h data collections on a normal laboratory routine (sleeping at night); 3) between 36 h and 153 h of field data collection at home; and 4) 36 h of a constant conditions routine (wakeful bedrest under temporal isolation) in the laboratory. There was some evidence for an age-related phase advance in temperature rhythm, especially for the older men on a normal routine, though this was not present in the constant conditions protocol, where 5 of the older subjects showed major delays in the timing of the body temperature trough (10:00 or later). There was no statistically significant evidence from any of the protocols that older subjects generally had lower temperature rhythm amplitudes than younger adults. Only when older men were compared with younger men in 24-h rhythm amplitude by simple t-test did any comparison involving amplitude achieve statistical significance (p < 0.05).

  17. The effect of stress on circadian rhythms.

    PubMed

    Brodan, V; Kuhn, E; Veselková, A; Kaucká, J

    1982-01-01

    The authors chose four types of intensive stress in man and show their effect on the circadian rhythms of selected parameters. Sleep deprivation reduces mean sideraemia and oscilation amplitudes. The morning rhythm maximum shifts to early morning hours. Acute fasting does not change the biorhythm of serum iron despite that mean sideraemia increases. On the other hand, realimentation is associated with a marked drop of iron level and a shift of the morning maximum to early afternoon hours. Stress induced by isolation in humid warm environment initiates a decrease of systolic blood pressure. While biorhythm amplitude remains unchanged peak systolic pressure moves from the usual 18 to 20 hours up to 23 to 24 hours. Stress caused by diagnostic cardiac catheterization results in biorhythm inversion of the urinary excretion of catecholamines and 17-OH-corticoids. On the day of catheterization, performed in all cases in the morning hours, the usual morning peak values of adrenaline shifted to afternoon hours and those of noradrenaline and 17-OH-corticoids even to late night hours. For practical purposes, biorhythm changes can be used as indicators of the effect and intensity of stress. PMID:7075389

  18. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    PubMed

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of theArabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control ofPRRsremains incompletely defined. Here, we demonstrate that direct regulation ofPRR5by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state ofPRR5in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream ofPRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressedPRR5promoter activity in a transient assay. The regions bound by CCA1 in thePRR5promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seqrevealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhydouble mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression ofPRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includesPRR5. PMID:26941090

  19. Utah Paiute Tribal Restoration.

    ERIC Educational Resources Information Center

    Turner, Allen C.

    The Paiute Indian Tribe of Utah Restoration Act (1980) restored federal recognition of the tribe after a quarter century of ambiguous political status, and resulted in significant improvements of educational status of tribal members and intensification of the political presence of Southern Paiutes. Following the Paiute Indian Termination Act…

  20. Restoration of bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.; Hanau, H.

    1977-01-01

    Process consisting of grinding raceways to oversize but original quality condition and installing new oversize balls or bearings restores wornout ball and roller bearings to original quality, thereby doubling their operating life. Evaluations reveal process results in restoration of 90% of replaced bearings at less than 50% of new-bearing costs.

  1. Gill's 'History' restored

    NASA Astrophysics Data System (ADS)

    Hurn, Mark

    2009-06-01

    Note about the restoration of the copy of Sir David Gill's 'A History and Description of the Royal Observatory, Cape of Good Hope' in the Library of the Institute of Astronomy, Cambridge. The book was restored with funds provided by the SHA in thanks for facilities for meetings provided to the Institute.

  2. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  3. Retributive and restorative justice.

    PubMed

    Wenzel, Michael; Okimoto, Tyler G; Feather, Norman T; Platow, Michael J

    2008-10-01

    The emergence of restorative justice as an alternative model to Western, court-based criminal justice may have important implications for the psychology of justice. It is proposed that two different notions of justice affect responses to rule-breaking: restorative and retributive justice. Retributive justice essentially refers to the repair of justice through unilateral imposition of punishment, whereas restorative justice means the repair of justice through reaffirming a shared value-consensus in a bilateral process. Among the symbolic implications of transgressions, concerns about status and power are primarily related to retributive justice and concerns about shared values are primarily related to restorative justice. At the core of these processes, however, lies the parties' construal of their identity relation, specifically whether or not respondents perceive to share an identity with the offender. The specific case of intergroup transgressions is discussed, as are implications for future research on restoring a sense of justice after rule-breaking. PMID:17957457

  4. Circadian regulation of hormone signaling and plant physiology.

    PubMed

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways. PMID:27061301

  5. Circadian Dysrhythmias, Physiological Aberrations, and the Link to Skin Cancer

    PubMed Central

    Gutierrez, Daniel; Arbesman, Joshua

    2016-01-01

    Circadian rhythms are core regulators of a variety of mammalian physiologic processes and oscillate in a 24-h pattern. Many peripheral organs possess endogenous rhythmicity that is then modulated by a master clock; the skin is one of these peripheral organs. The dysregulation of rhythms is associated with decreased ability to ameliorate cellular stressors at a local and global level, which then increases the propensity for the development of neoplastic growths. In this article, we review the implications of altered circadian rhythms on DNA repair as well as modified gene expression of core clock proteins with particular focus on skin models. These findings are then correlated with epidemiologic data regarding skin cancer to showcase the effects of circadian disruption on this phenomenon. PMID:27128901

  6. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans.

    PubMed

    Johnston, Jonathan D; Ordovás, José M; Scheer, Frank A; Turek, Fred W

    2016-03-01

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population. PMID:26980824

  7. How coupling determines the entrainment of circadian clocks

    NASA Astrophysics Data System (ADS)

    Bordyugov, G.; Granada, A. E.; Herzel, H.

    2011-08-01

    Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism's fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.

  8. Pressed for time: the circadian clock and hypertension

    PubMed Central

    Fulton, David J.

    2009-01-01

    Hypertension is a major risk factor for cardiovascular disease and death. The “silent” rise of blood pressure that occurs over time is largely asymptomatic. However, its impact is deafening—causing and exacerbating cardiovascular disease, end-organ damage, and death. The present article addresses recent observations from human and animal studies that provide new insights into how the circadian clock regulates blood pressure, contributes to hypertension, and ultimately evolves vascular disease. Further, the molecular components of the circadian clock and their relationship with locomotor activity, metabolic control, fluid balance, and vascular resistance are discussed with an emphasis on how these novel, circadian clock-controlled mechanisms contribute to hypertension. PMID:19679741

  9. Influence of the Circadian System on Disease Severity

    PubMed Central

    Litinski, Mikhail; Scheer, Frank AJL; Shea, Steven A

    2009-01-01

    Synopsis The severity of many diseases varies across the day and night. For example, adverse cardiovascular incidents peak in the morning, asthma is often worse at night and temporal lobe epileptic seizures are most prevalent in the afternoon. These patterns may be due to the day/night rhythm in environment and behavior, and/or endogenous circadian rhythms in physiology. Furthermore, chronic misalignment between the endogenous circadian timing system and the behavioral cycles could be a cause of increased risk of diabetes, obesity, cardiovascular disease and certain cancers in shift workers. Here we describe the magnitude, relevance and potential biological basis of such daily changes in disease severity and of circadian/behavioral misalignment, and present how these insights may help in the development of appropriate chronotherapy. PMID:20161149

  10. The circadian system as an organizer of metabolism.

    PubMed

    Hurley, Jennifer M; Loros, Jennifer J; Dunlap, Jay C

    2016-05-01

    The regulation of metabolism by circadian systems is believed to be a key reason for the extensive representation of circadian rhythms within the tree of life. Despite this, surprisingly little work has focused on the link between metabolism and the clock in Neurospora, a key model system in circadian research. The analysis that has been performed has focused on the unidirectional control from the clock to metabolism and largely ignored the feedback from metabolism on the clock. Recent efforts to understand these links have broken new ground, revealing bidirectional control from the clock to metabolism and vise-versa, showing just how strongly interconnected these two cellular systems can be in fungi. This review describes both well understood and emerging links between the clock and metabolic output of fungi as well as the role that metabolism plays in influencing the rhythm set by the clock. PMID:26498192

  11. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  12. Light-induced suppression of endogenous circadian amplitude in humans

    NASA Technical Reports Server (NTRS)

    Jewett, Megan; Czeisler, Charles A.; Kronauer, Richard E.

    1991-01-01

    A recent demonstration that the phase of the human circadian pacemaker could be inverted using an unconventional three-cycle stimulus has led to an investigation of whether critically timed exposure to a more moderate stimulus could drive that oscillator toward its singularity, a phaseless position at which the amplitude of circadian oscillation is zero. It is reported here that exposure of humans to fewer cycles of bright light, centered around the time at which the human circadian pacemaker is most sensitive to light-induced phase shifts, can markedly attenuate endogenous cicadian amplitude. In some cases this results in an apparent loss of rhythmicity, as expected to occur in the region of singularity.

  13. Unwinding the Molecular Basis of Interval and Circadian Timing

    PubMed Central

    Agostino, Patricia V.; Golombek, Diego A.; Meck, Warren H.

    2011-01-01

    Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible interaction between interval and circadian timing and reviews the molecular basis of both mechanisms, including the discussion of the contribution from studies of genetically modified animal models. While there is currently no common neurochemical substrate for timing mechanisms in the brain, circadian modulation of interval timing suggests an interaction of different frequencies in cerebral temporal processes. PMID:22022309

  14. Relationship between Oxidative Stress, Circadian Rhythms, and AMD

    PubMed Central

    Fanjul-Moles, María Luisa; López-Riquelme, Germán Octavio

    2016-01-01

    This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed. PMID:26885250

  15. Molecular bases of circadian rhythmicity in renal physiology and pathology.

    PubMed

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L; Mazzoccoli, Gianluigi

    2013-10-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental-social cues and physiological-behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time-dependent changes in renal pathology. PMID:23901050

  16. Molecular bases of circadian rhythmicity in renal physiology and pathology

    PubMed Central

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L.; Mazzoccoli, Gianluigi

    2013-01-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental–social cues and physiological–behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time–dependent changes in renal pathology. PMID:23901050

  17. Implications of circadian rhythm and stress in addiction vulnerability

    PubMed Central

    Becker-Krail, Darius; McClung, Colleen

    2016-01-01

    In the face of chronic stress, some individuals can maintain normal function while others go on to develop mental illness. Addiction, affecting one in every twelve people in America, is a substance use disorder long associated with stressful life events and disruptions in the sleep/wake cycle. The circadian and stress response systems have evolved to afford adaptability to environmental changes and allow for maintenance of functional stability, or homeostasis. This mini-review will discuss how circadian rhythms and stress individually affect drug response, affect each other, and how their interactions may regulate reward-related behavior. In particular, we will focus on the interactions between the circadian clock and the regulation of glucocorticoids by the hypothalamic-pituitary-adrenal (HPA) axis. Determining how these two systems act on dopaminergic reward circuitry may not only reveal the basis for vulnerability to addiction, but may also illuminate potential therapeutic targets for future investigation. PMID:26913197

  18. Aging signaling pathways and circadian clock-dependent metabolic derangements

    PubMed Central

    Tevy, Maria Florencia; Giebultowicz, Jadwiga; Pincus, Zachary; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2013-01-01

    The circadian clock machinery orchestrates organism metabolism in order to ensure that development, survival and reproduction are attuned to diurnal environmental variations. For unknown reasons, there is a decline in circadian rhythms with age, concomitant with declines in the overall metabolic tissues homeostasis and changes in the feeding behavior of aged organisms. This disruption of the relationship between the clock and the nutrient sensing networks might underlie age-related diseases; overall, greater knowledge of the molecular mediators of and variations in clock networks during lifespan may shed light on the aging process and how it may be delayed. In this review we address the complex links between the circadian clock, metabolic (dys)functions and aging in different model organisms. PMID:23299029

  19. Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hayward, E. F.; Dalton, Bonnie P. (Technical Monitor)

    1997-01-01

    A habitat for housing up to 32 black body beetles (Trigonoscelis gigas) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit Assembly, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures allows for ad lib movement of the beetle, as well as providing a simple food source and allowing ventilation of the beetle volume via an externally operated hand pump. The Beetle Kit Assemblies will be launched on STS-84 (Shuttle-Mir Mission-06) in May, 1997 and will be transferred to the Priroda module of the Russian Mir space station. he beetles will remain on Mir for approximately 125 days, and will be returned to earth on STS-86 in September, 1997.

  20. Dysregulation of circadian rhythms following prolactin-secreting pituitary microadenoma.

    PubMed

    Borodkin, Katy; Ayalon, Liat; Kanety, Hanna; Dagan, Yaron

    2005-01-01

    A patient who developed an irregular sleep-wake pattern following prolactin-secreting pituitary microadenoma is described. The patient reported difficulties in sleep onset and awakening at the desired time, which caused major dysfunction in his daily life activities. Despite these difficulties, the sleep-related complaints of the patient remained unrecognized for as long as three yrs. Statistical analyses of the patient's rest-activity patterns revealed that the disruption of the sleep-wake circadian rhythm originated from a disharmony between ultradian (semicircadian) and circadian components. The circadian component displayed shorter than 24 h periodicity most of the time, but the semicircadian component fluctuated between longer and shorter than 12 h periods. Additionally, desynchrony in terms of period length was found in the tentative analyses of the rest-activity pattern, salivary melatonin, and oral temperature. While the salivary melatonin time series data could be characterized by a best-fit cosine curve of 24 h, the time series data of oral temperature was more compatible with 28 h best-fit curve. The rest-activity cycle during the simultaneous measurements, however, was best approximated by a best-fit curve of 21 h. The dysregulation of circadian rhythms occurred concomitantly, but not beforehand, with the onset of pituitary disease, thus suggesting an association between the two phenomena. This association may have interesting implications to the modeling of the circadian time-keeping system. This case also highlights the need to raise the awareness to circadian rhythm sleep disorders and to consider disruptions of sleep-wake cycle in patients with pituitary adenoma. PMID:15865328

  1. Racial Differences in the Human Endogenous Circadian Period

    PubMed Central

    Smith, Mark R.; Burgess, Helen J.; Fogg, Louis F.; Eastman, Charmane I.

    2009-01-01

    The length of the endogenous period of the human circadian clock (tau) is slightly greater than 24 hours. There are individual differences in tau, which influence the phase angle of entrainment to the light/dark (LD) cycle, and in doing so contribute to morningness-eveningness. We have recently reported that tau measured in subjects living on an ultradian LD cycle averaged 24.2 hours, and is similar to tau measured using different experimental methods. Here we report racial differences in tau. Subjects lived on an ultradian LD cycle (1.5 hours sleep, 2.5 hours wake) for 3 days. Circadian phase assessments were conducted before and after the ultradian days to determine the change in circadian phase, which was attributed to tau. African American subjects had a significantly shorter tau than subjects of other races. We also tested for racial differences in our previous circadian phase advancing and phase delaying studies. In the phase advancing study, subjects underwent 4 days of a gradually advancing sleep schedule combined with a bright light pulse upon awakening each morning. In the phase delaying study, subjects underwent 4 days of a gradually delaying sleep schedule combined with evening light pulses before bedtime. African American subjects had larger phase advances and smaller phase delays, relative to Caucasian subjects. The racial differences in tau and circadian phase shifting have important implications for understanding normal phase differences between individuals, for developing solutions to the problems of jet lag and shift work, and for the diagnosis and treatment of circadian rhythm based sleep disorders such as advanced and delayed sleep phase disorder. PMID:19564915

  2. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  3. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms

    PubMed Central

    Causton, Helen C.; Feeney, Kevin A.; Ziegler, Christine A.; O’Neill, John S.

    2015-01-01

    Summary Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. PMID:25866393

  4. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms.

    PubMed

    Causton, Helen C; Feeney, Kevin A; Ziegler, Christine A; O'Neill, John S

    2015-04-20

    Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. PMID:25866393

  5. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  6. Circadian Control of Neuroendocrine Circuits Regulating Female Reproductive Function

    PubMed Central

    Williams, Wilbur P.; Kriegsfeld, Lance J.

    2012-01-01

    Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary–gonadal (HPG) axis functioning. In mammals, the master circadian pacemaker in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus coordinates reproductively relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene) lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the gonadotropin-releasing hormone (GnRH) system in control of the preovulatory luteinizing hormone (LH) surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge. PMID:22661968

  7. Flight Schedule and the Circadian Clock Influence on Sleep Loss During Overnight Cargo Operations

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Gregory, Kevin B.; Rosekind, Mark R.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    Thirty-four flight crew members were monitored before, during, and after two 8-day overnight cargo duty patterns which involved multiple flights at night crossing no more than one time zone per 24 h. Rectal temperature, heart rate, and wrist activity were recorded every 2 min. Sleep quantity and quality, and nap timing, were noted in a logbook. To reduce the masking effects of physical activity on temperature, 0.28 C was added to each subject's raw temperature data whenever he reported being asleep. For both masked and unmasked data, daily temperature minima were estimated from the multiple complex demodulated waveform. The temperature minima did not show a progressive adaptation to night duty, which was interrupted by a night off after 5 nights on one trip pattern and after 3 nights on the other. On duty days, the average temperature minimum delayed by about 3 h, occurring near the end of the duty period. Daytime sleep episodes averaged 2.9 h shorter than nighttime sleep episodes, and were rated as lighter, less restorative, and poorer overall. Fifty-three percent of subjects slept more than once per 24 h while they were on night duty, compared to 17% when able to sleep at night. The total sleep per 24 h on duty days averaged 1.2 h less than pretrip. Twenty-nine percent of subjects lost more than 2 h of sleep per 24 h across the 8-day duty patterns. After night duty, subjects awoke around 1400 local time, even when they had slept 2-3 h less than a normal nocturnal sleep episode. Consequently, the duration of morning sleep episodes was correlated with the off-duty time (multiple r(sup 2)=0.44, F=37.23, p less than 0.0001). Anecdotally, crew members complained of being unable to sleep longer and not feeling well-rested. These wakeups were clustered 6 h after the temperature minimum, which suggests that they may have been a response to the circadian wakeup signal. Daytime layovers in which crew members were able to sleep again in the evening ended later (0200

  8. A matter of time: study of circadian clocks and their role in inflammation.

    PubMed

    Carter, Stuart J; Durrington, Hannah J; Gibbs, Julie E; Blaikley, John; Loudon, Andrew S; Ray, David W; Sabroe, Ian

    2016-04-01

    Circadian rhythms regulate changes in physiology, allowing organisms to respond to predictable environmental demands varying over a 24 h period. A growing body of evidence supports a key role for the circadian clock in the regulation of immune functions and inflammatory responses, which influence the understanding of infections and inflammatory diseases and their treatment. A variety of experimental methods have been used to assess the complex bidirectional crosstalk between the circadian clock and inflammation. In this review, we summarize the organization of the molecular clock, experimental methods used to study circadian rhythms, and both the inflammatory and immune consequences of circadian disturbance. PMID:26856993

  9. Circadian rhythms from multiple oscillators: lessons from diverse organisms.

    PubMed

    Bell-Pedersen, Deborah; Cassone, Vincent M; Earnest, David J; Golden, Susan S; Hardin, Paul E; Thomas, Terry L; Zoran, Mark J

    2005-07-01

    The organization of biological activities into daily cycles is universal in organisms as diverse as cyanobacteria, fungi, algae, plants, flies, birds and man. Comparisons of circadian clocks in unicellular and multicellular organisms using molecular genetics and genomics have provided new insights into the mechanisms and complexity of clock systems. Whereas unicellular organisms require stand-alone clocks that can generate 24-hour rhythms for diverse processes, organisms with differentiated tissues can partition clock function to generate and coordinate different rhythms. In both cases, the temporal coordination of a multi-oscillator system is essential for producing robust circadian rhythms of gene expression and biological activity. PMID:15951747

  10. Best practices for fluorescence microscopy of the cyanobacterial circadian clock

    PubMed Central

    Cohen, Susan E.; Erb, Marcella L.; Pogliano, Joe; Golden, Susan S.

    2015-01-01

    Summary This chapter deals with methods of monitoring the subcellular localization of proteins in single cells in the circadian model system Synechococcus elongatus PCC 7942. While genetic, biochemical and structural insights into the cyanobacterial circadian oscillator have flourished, difficulties in achieving informative subcellular imaging in cyanobacterial cells have delayed progress of the cell biology aspects of the clock. Here, we describe best practices for using fluorescent protein tags to monitor localization. Specifically we address how to vet fusion proteins and overcome challenges in microscopic imaging of very small autofluorescent cells. PMID:25662459

  11. Metabolism control by the circadian clock and vice versa

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2014-01-01

    Circadian rhythms govern a wide variety of physiological and metabolic functions in most organisms. At the heart of these regulatory pathways in mammals is the clock machinery, a remarkably coordinated transcription-translation system that relies on dynamic changes in chromatin states. Recent findings indicate that regulation also goes the other way, as specific elements of the clock can sense changes in the cellular metabolism. Understanding in full detail the intimate links between cellular metabolism and the circadian clock machinery will provide not only crucial insights into system physiology but also new avenues toward pharmacological intervention of metabolic disorders. PMID:19421159

  12. Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes.

    PubMed

    Simpson, Craig G; Fuller, John; Calixto, Cristiane P G; McNicol, Jim; Booth, Clare; Brown, John W S; Staiger, Dorothee

    2016-01-01

    Posttranscriptional control makes an important contribution to circadian regulation of gene expression. In higher plants, alternative splicing is particularly prevalent upon abiotic and biotic stress and in the circadian system. Here we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) to monitor alternative splicing events. The use of the panel allows the quantification of changes in the proportion of splice isoforms between different samples, e.g., different time points, different tissues, genotypes, ecotypes, or treatments. PMID:26867620

  13. Illuminating the circadian clock in monarch butterfly migration.

    PubMed

    Froy, Oren; Gotter, Anthony L; Casselman, Amy L; Reppert, Steven M

    2003-05-23

    Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration. PMID:12764200

  14. Circadian fluctuations in onset of perimesencephalic hemorrhage.

    PubMed

    Mensing, Liselore A; Greebe, Paut; Algra, Ale; Ruigrok, Ynte M; Rinkel, Gabriel J E

    2013-10-01

    Aneurysmal subarachnoid hemorrhage (aSAH) occurs more often during working hours and in the evening, and thus at times of relatively high blood pressure, with an even distribution over the days of the week in most studies. Perimesencephalic hemorrhage (PMH) is a non-aneurysmal subset of subarachnoid hemorrhage (SAH) without known circadian fluctuation. We studied the time and day of onset in a large series of patients with PMH. For all 249 PMH patients included in our SAH-database we analyzed the time (categorized in 2- and 6-h intervals) and day of onset by calculating rate ratios (RRs) with corresponding 95 % confidence intervals (CIs) for time and day, with the afternoon and Saturday as reference. The risk of PMH was lower between 2-4 AM (RR 0.14; 95 % CI 0.03-0.63), 4-6 AM (RR 0.21; 95 % CI 0.06-0.75) and 6-8 AM (RR 0.07; 95 % CI 0.01-0.54). A tendency towards higher risks in the morning and afternoon was observed. Analyzing the time of onset in 6-h intervals also showed a lower risk (RR 0.35; 95 % CI 0.21-0.58) during night hours (12-6 AM). The risk of PMH was evenly distributed over the days of the week. PMH occurs less often during night hours. The pattern of PMH during the day shows similarities to that seen in aSAH, although the differences over the day are not statistically significant, as they are in aSAH. The occurrence of PMH is evenly distributed over the days of the week, as it is in aSAH. PMID:23881103

  15. Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related?

    PubMed

    Bechtel, William

    2015-01-01

    This paper reviews some of the compelling evidence of disrupted circadian rhythms in individuals with mood disorders (major depressive disorder, seasonal affective disorder, and bipolar disorder) and that treatments such as bright light, designed to alter circadian rhythms, are effective in treating these disorders. Neurotransmitters in brain regions implicated in mood regulation exhibit circadian rhythms. A mouse model originally employed to identify a circadian gene has proven a potent model for mania. While this evidence is suggestive of an etiological role for altered circadian rhythms in mood disorders, it is compatible with other explanations, including that disrupted circadian rhythms and mood disorders are effects of a common cause and that genes and proteins implicated in both simply have pleiotropic effects. In light of this, the paper advances a proposal as to what evidence would be needed to establish a direct causal link between disruption of circadian rhythms and mood disorders. PMID:26379559

  16. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes.

    PubMed

    Lebailly, B; Boitard, C; Rogner, U C

    2015-09-01

    Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system. PMID:26332978

  17. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes.

    PubMed

    Mohawk, Jennifer A; Baer, Matthew L; Menaker, Michael

    2009-03-01

    The "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus controls most behavioral, physiological, and molecular circadian rhythms in mammals. However, there are other, still unidentified, circadian oscillators that are able to carry out some SCN functions. Here we show that one of these, the methamphetamine-sensitive circadian oscillator (MASCO), which generates behavioral rhythms in the absence of the SCN, is based on an entirely different molecular mechanism. We tested mice lacking, or with mutations of, genes that form the canonical circadian machinery. In all cases, animals that were arrhythmic as a consequence of genetic defect expressed circadian locomotor rhythms when treated with methamphetamine. These results strongly support the hypothesis that the mechanism generating MASCO does not involve the molecular feedback loops that underlie canonical circadian rhythmicity. The properties of MASCO may provide insight into the evolution of circadian mechanisms. Importantly, MASCO may play a role in addiction to psychostimulants. PMID:19204282

  18. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation

    PubMed Central

    Sahar, Saurabh; Nin, Veronica; Barbosa, Maria Thereza; Chini, Eduardo Nunes; Sassone-Corsi, Paolo

    2011-01-01

    The Intracellular levels of nicotinamide adenine dinucleotide (NAD+) are rhythmic and controlled by the circadian clock. However, whether NAD+ oscillation in turn contributes to circadian physiology is not fully understood. To address this question we analyzed mice mutated for the NAD+ hydrolase CD38. We found that rhythmicity of NAD+ was altered in the CD38-deficient mice. The high, chronic levels of NAD+ results in several anomalies in circadian behavior and metabolism. CD38-null mice display a shortened period length of locomotor activity and alteration in the rest-activity rhythm. Several clock genes and, interestingly, genes involved in amino acid metabolism were deregulated in CD38-null livers. Metabolomic analysis identified alterations in the circadian levels of several amino acids, specifically tryptophan levels were reduced in the CD38-null mice at a circadian time paralleling with elevated NAD+ levels. Thus, CD38 contributes to behavioral and metabolic circadian rhythms and altered NAD+ levels influence the circadian clock. PMID:21937766

  19. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  20. Fracture resistance of posterior teeth restored with modern restorative materials

    PubMed Central

    Hamouda, Ibrahim M.; Shehata, Salah H.

    2011-01-01

    We studied the fracture resistance of maxillary premolars restored with recent restorative materials. Fifty maxillary premolars were divided into five groups: Group 1 were unprepared teeth; Group 2 were teeth prepared without restoration; Group 3 were teeth restored with tetric ceram HB; Group 4 were teeth restored with InTen S; and Group 5 were teeth restored with Admira. The samples were tested using a universal testing machine. Peak loads at fracture were recorded. The teeth restored with Admira had the highest fracture resistance followed by those restored with InTen-S and tetric ceram HB. Prepared, unrestored teeth were the weakest group. There was a significant difference between the fracture resistance of intact teeth and the prepared, unrestored teeth. There was also a significant difference among the tested restorative materials. Teeth restored with Admira showed no significant difference when compared with the unprepared teeth. It was concluded that the teeth restored with Admira exhibited the highest fracture resistance. PMID:23554719