Science.gov

Sample records for restricted ketogenic diet

  1. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model

    PubMed Central

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Introduction Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system. Methods Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Results Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Conclusions Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting

  2. Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets.

    PubMed

    Craig, Courtney

    2015-11-01

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome is an idiopathic illness characterized by debilitating fatigue and neuro-immune abnormalities. A growing body of evidence proposes mitochondrial dysfunction as a central perpetrator of the illness due to activation of immune-inflammatory pathways that burden the mitochondria. Under a model of mitochondrial dysfunction, this paper explores dietary strategies that are mitoprotective. Studied for decades, the cellular mechanisms of ketogenic diets, fasting, and caloric restriction now reveal mitochondria-specific mechanisms which could play a role in symptom reduction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Future research should examine the physiological effects of these dietary strategies in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. PMID:26315446

  3. Should the ketogenic diet be considered for enhancing fertility?

    PubMed

    Kulak, D; Polotsky, A J

    2013-01-01

    The ketogenic diet was first developed in the 1920s as a treatment for epilepsy in an attempt to create a prolonged physiologic starvation state. Since that time, the diet has been found to have other therapeutic effects, most of which are neurologic. Other diets, mostly based on the principals of caloric restriction, have been shown to improve fertility in certain populations. We explore the data, both clinical and laboratory, for potential fertility enhancing benefits of the ketogenic diet, beyond just caloric restriction or weight loss. PMID:23122539

  4. Epilepsy characteristics and psychosocial factors associated with ketogenic diet success.

    PubMed

    McNamara, Nancy A; Carbone, Loretta A; Shellhaas, Renée A

    2013-10-01

    The ketogenic diet is an effective therapy for childhood epilepsy, but its important impacts on families could affect successful treatment. We assessed medical and psychosocial factors associated with successful ketogenic diet treatment. A total of 23 families of patients treated with ketogenic diet completed questionnaires (30% response), including inquiries about challenges to successful dietary treatments and validated family functioning scales. Of these, 14 were considered successful (diet discontinued once the child was seizure-free or continued as clinically indicated). Family-identified challenges were food preparation time (n = 11) and that the diet was too restrictive (n = 9). Neither Medicaid insurance nor family functioning scale scores were significantly associated with successful treatment. Lower seizure frequency prior to ketogenic diet initiation (P = .02) and postdiet seizure improvement (P = .01) were associated with increased odds of success. Effective ketogenic diet treatment is dictated both by psychosocial and epilepsy-related influences. A focus on understanding the psychosocial issues may help to improve families' experiences and success with the ketogenic diet. PMID:23001929

  5. The ketogenic diet and other dietary treatments for refractory epilepsy in children.

    PubMed

    Sharma, Suvasini; Jain, Puneet

    2014-07-01

    The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed. PMID:25221391

  6. The ketogenic diet and other dietary treatments for refractory epilepsy in children

    PubMed Central

    Sharma, Suvasini; Jain, Puneet

    2014-01-01

    The ketogenic diet is a high-fat, low-carbohydrate, and restricted protein diet that is useful in patients with refractory epilepsy. The efficacy of the ketogenic diet is better than most of the new antiepileptic drugs. Other modifications of the diet are also beneficial, such as the modified Atkins diet and the low glycemic index treatment. There is a lack of awareness of the ketogenic diet as a treatment modality for epilepsy amongst pediatricians and neurologists. In this review, the use of the ketogenic diet and other dietary treatments in refractory epilepsy is discussed. The Indian experience with the use of these dietary treatments is also briefly reviewed. PMID:25221391

  7. Ketogenic diets, mitochondria, and neurological diseases.

    PubMed

    Gano, Lindsey B; Patel, Manisha; Rho, Jong M

    2014-11-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate "classic KD", as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  8. Ketogenic diets, mitochondria, and neurological diseases

    PubMed Central

    Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.

    2014-01-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  9. The Ketogenic Diet Improves Recently Worsened Focal Epilepsy

    ERIC Educational Resources Information Center

    Villeneuve, Nathalie; Pinton, Florence; Bahi-Buisson, Nadia; Dulac, Olivier; Chiron, Catherine; Nabbout, Rima

    2009-01-01

    Aim: We observed a dramatic response to the ketogenic diet in several patients with highly refractory epilepsy whose seizure frequency had recently worsened. This study aimed to identify whether this characteristic was a useful indication for the ketogenic diet. Method: From the 70 patients who received the ketogenic diet during a 3-year period at…

  10. The Neuropharmacology of the Ketogenic Diet

    PubMed Central

    Hartman, Adam L.; Gasior, Maciej; Vining, Eileen P. G.; Rogawski, Michael A.

    2007-01-01

    The ketogenic diet is a valuable therapeutic approach for epilepsy, one in which most clinical experience has been with children. Although the mechanism by which the diet protects against seizures is unknown, there is evidence that it causes effects on intermediary metabolism that influence the dynamics of the major inhibitory and excitatory neurotransmitter systems in brain. The pattern of protection of the ketogenic diet in animal models of seizures is distinct from that of other anticonvulsants, suggesting that it has a unique mechanism of action. During consumption of the ketogenic diet, marked alterations in brain energy metabolism occur, with ketone bodies partly replacing glucose as fuel. Whether these metabolic changes contribute to acute seizure protection is unclear; however, the ketone body acetone has anticonvulsant activity and could play a role in the seizure protection afforded by the diet. In addition to acute seizure protection, the ketogenic diet provides protection against the development of spontaneous recurrent seizures in models of chronic epilepsy, and it has neuroprotective properties in diverse models of neurodegenerative disease. PMID:17509459

  11. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice.

    PubMed

    Denny, Christine A; Heinecke, Karie A; Kim, Youngho P; Baek, Rena C; Loh, Katrina S; Butters, Terry D; Bronson, Roderick T; Platt, Frances M; Seyfried, Thomas N

    2010-06-01

    Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy. PMID:20374428

  12. The ketogenic diet in pharmacoresistant childhood epilepsy.

    PubMed

    Winesett, Steven Parrish; Bessone, Stacey Kordecki; Kossoff, Eric H W

    2015-06-01

    Available pharmacologic treatments for seizures are limited in their efficacy. For a patient with seizures, pharmacologic treatment with available anticonvulsant medications leads to seizure control in <70% of patients. Surgical resection can lead to control in a select subset of patients but still leaves a significant number of patients with uncontrolled seizures. The ketogenic diet and related diets have proven to be useful in pharmacoresistant childhood epilepsy. PMID:25994046

  13. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes.

    PubMed

    Rhyu, Hyun-Seung; Cho, Su-Youn; Roh, Hee-Tae

    2014-12-01

    The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15-18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity. PMID:25610820

  14. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes

    PubMed Central

    Rhyu, Hyun-seung; Cho, Su-Youn; Roh, Hee-Tae

    2014-01-01

    The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15–18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity. PMID:25610820

  15. [The ketogenic diet: an underappreciated therapeutic option?].

    PubMed

    Paoli, A; Canato, M; Toniolo, L; Bargossi, A M; Neri, M; Mediati, M; Alesso, D; Sanna, G; Grimaldi, K A; Fazzari, A L; Bianco, A

    2011-01-01

    Obesity is reaching epidemic proportions in Western countries and is a strong risk factor for cardiovascular disease. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Although there is a common agreement about the concept that exercise and diet are two key factors for the control of body weight, the ideal amount and type of exercise and also the ideal diet for weight control are still under debate. A widely accepted nutritional regime is the Mediterranean diet that has evident health benefits although less attention has been paid to see if the effects are due to other lifestyle factors which may contribute to the health benefits perhaps as much as specific food choices. There are several other options available to the physician that may produce good weight loss results in the short/medium term and also for maintenance of the goal achieved. One of these strategies is the ketogenic diet or VLCKD (very low carbohydrate ketogenic diet) that has been widely studied in recent years. Most studies show that this diet has a solid physiological and biochemical basis which is able to induce effective weight loss and improvement of several parameters of cardiovascular risk. This review discusses the physiological basis of VLCKD and the main applications together with its strengths and weaknesses compared to common dietary recommendations. PMID:22041813

  16. Purines and neuronal excitability: links to the ketogenic diet.

    PubMed

    Masino, S A; Kawamura, M; Ruskin, D N; Geiger, J D; Boison, D

    2012-07-01

    ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A(1) receptor (A(1)R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A(1)Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A(1)R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A(1)Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms. PMID:21880467

  17. Ketogenic Diet for Obesity: Friend or Foe?

    PubMed Central

    Paoli, Antonio

    2014-01-01

    Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients. PMID:24557522

  18. Ketogenic diet for obesity: friend or foe?

    PubMed

    Paoli, Antonio

    2014-02-01

    Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients. PMID:24557522

  19. An Update on the Ketogenic Diet, 2012

    PubMed Central

    Halevy, Ayelet; Peleg-Weiss, Lilach; Cohen, Roni; Shuper, Avinoam

    2012-01-01

    The ketogenic diet has been in use for the last 90 years, and its role in the treatment of epilepsy in the pediatric population has been gaining recognition. It can be helpful in many types of epilepsies, even the more severe ones, and has a beneficial effect on the child’s alertness and cognition, which can be impaired by both the condition and the medications needed for controlling it. Parental compliance is good in spite of the inconveniences inherent in following the diet. The significant advancements in understanding the nature of the diet are in better defining when its use is contraindicated and in validating its application in severe epilepsies in infancy, such as infantile spasms. Although most neurologists do not consider it as being the preferred first-line therapy, it is often a reasonable option when two medications have already failed. PMID:23908829

  20. Ketogenic diets and physical performance

    PubMed Central

    Phinney, Stephen D

    2004-01-01

    Impaired physical performance is a common but not obligate result of a low carbohydrate diet. Lessons from traditional Inuit culture indicate that time for adaptation, optimized sodium and potassium nutriture, and constraint of protein to 15–25 % of daily energy expenditure allow unimpaired endurance performance despite nutritional ketosis. PMID:15507148

  1. Glut1 deficiency syndrome and novel ketogenic diets.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel

    2013-08-01

    The classical ketogenic diet has been used for refractory childhood epilepsy for decades. It is also the treatment of choice for disorders of brain energy metabolism, such as Glut1 deficiency syndrome. Novel ketogenic diets such as the modified Atkins diet and the low glycemic index treatment have significantly improved the therapeutic options for dietary treatment. Benefits of these novel diets are increased palatability, practicability, and thus compliance-at the expense of lower ketosis. As high ketones appear essential to meet the brain energy deficit caused by Glut1 deficiency syndrome, the use of novel ketogenic diets in this entity may be limited. This article discusses the current data on novel ketogenic diets and the implications on the use of these diets in regard to Glut1 deficiency syndrome. PMID:23666044

  2. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  3. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis.

    PubMed

    Gibson, A A; Seimon, R V; Lee, C M Y; Ayre, J; Franklin, J; Markovic, T P; Caterson, I D; Sainsbury, A

    2015-01-01

    Very-low-energy diets (VLEDs) and ketogenic low-carbohydrate diets (KLCDs) are two dietary strategies that have been associated with a suppression of appetite. However, the results of clinical trials investigating the effect of ketogenic diets on appetite are inconsistent. To evaluate quantitatively the effect of ketogenic diets on subjective appetite ratings, we conducted a systematic literature search and meta-analysis of studies that assessed appetite with visual analogue scales before (in energy balance) and during (while in ketosis) adherence to VLED or KLCD. Individuals were less hungry and exhibited greater fullness/satiety while adhering to VLED, and individuals adhering to KLCD were less hungry and had a reduced desire to eat. Although these absolute changes in appetite were small, they occurred within the context of energy restriction, which is known to increase appetite in obese people. Thus, the clinical benefit of a ketogenic diet is in preventing an increase in appetite, despite weight loss, although individuals may indeed feel slightly less hungry (or more full or satisfied). Ketosis appears to provide a plausible explanation for this suppression of appetite. Future studies should investigate the minimum level of ketosis required to achieve appetite suppression during ketogenic weight loss diets, as this could enable inclusion of a greater variety of healthy carbohydrate-containing foods into the diet. PMID:25402637

  4. A model for determining total ketogenic ratio (TKR) for evaluating the ketogenic property of a weight-reduction diet.

    PubMed

    Cohen, I A

    2009-09-01

    Ketogenic weight-reduction dieting methods have existed since antiquity. Recent research has demonstrated their value in controlling type 2 diabetes. Although research done in the 1920s provided a mathematical model of non-weight-reduction ketogenic clinical diets using the concept of a ketogenic ratio (KR), little has been done to evaluate the ketogenic nature of purported ketogenic weight-reduction diets. The mathematical model of Woodyatt is valid only under isocaloric conditions where dietary energy intake is balanced by energy use. It is hypothesised that under certain conditions of weight loss, energy deficit can predict utilization of stored lipid so that a modified formula for total ketogenic ratio (TKR) may be derived. Such a predictive mathematical model may be a useful tool in predicting the efficacy of weight-reduction diets and adapting such diets to individual patient needs. PMID:19410378

  5. Renal Stone Associated with the Ketogenic Diet in a 5-Year Old Girl with Intractable Epilepsy

    PubMed Central

    Choi, Ji Na; Song, Ji Eun; Shin, Jae Il; Kim, Heung Dong; Kim, Myung Joon

    2010-01-01

    In this paper, we report on a 5-year-old girl who developed a renal stone while following the ketogenic diet to treat refractory seizure disorder. Three months after initiating the ketogenic diet, she developed severe abdominal pain and vomiting. The spot urine calcium-to-creatinine (Ca/Cr) ratio and 24-hour urine evaluation showed hypercalciuria. Computed tomography (CT) imaging revealed a stone in the right ureteropelvic junction, resulting in hydronephrosis of the right kidney. The renal stone disappeared 5 days after conservative treatment; the patien's microscopic hematuria resolved concurrently. In light of this case report, we recommend regularly monitoring the urine Ca/Cr ratio with ultrasonography for further development of renal stones in patients following the ketogenic diet. If these patients exhibit evidence of symptomatic hypercalciuria or cyristalluria, liberalization of fluid restriction and urine alkalization using oral potassium citrate should be considered. PMID:20376903

  6. The Use of Ketogenic Diet in Pediatric Patients with Epilepsy

    PubMed Central

    Misiewicz Runyon, Amanda; So, Tsz-Yin

    2012-01-01

    A ketogenic diet is a nonpharmacologic treatment strategy to control refractory epilepsy in children. Although this diet has been used successfully to reduce seizures since the 1920s, the anticonvulsant mechanism of ketosis remains unknown. The initiation of the diet requires an average four-day hospitalization to achieve ketosis in the patient as well as to provide thorough education on diet maintenance for both the patient and the caregivers. A ketogenic diet, consisting of low carbohydrate and high fat intake, leaves little room for additional carbohydrates supplied by medications. Patients on ketogenic diets who exceed their daily carbohydrate limit have the risk of seizure relapse, necessitating hospital readmission to repeat the diet initiation process. These patients are at a high risk for diversion from the diet. Patients admitted to the hospital setting are often initiated on multiple medications, and many hospital systems are not equipped with appropriate monitoring systems to prevent clinicians from introducing medications with high carbohydrate contents. Pharmacists have the resources and the expertise to help identify and prevent the initiation of medications with high carbohydrate content in patients on ketogenic diets. PMID:22970384

  7. Methionine and choline regulate the metabolic phenotype of a ketogenic diet.

    PubMed

    Pissios, Pavlos; Hong, Shangyu; Kennedy, Adam Richard; Prasad, Deepthi; Liu, Fen-Fen; Maratos-Flier, Eleftheria

    2013-01-01

    Low-carbohydrate ketogenic diets are commonly used as weight loss alternatives to low-fat diets, however the physiological and molecular adaptations to these diets are not completely understood. It is assumed that the metabolic phenotype of the ketogenic diet (KD) is caused by the absence of carbohydrate and high fat content, however in rodents the protein content of KD affects weight gain and ketosis. In this study we examined the role of methionine and choline in mediating the metabolic effects of KD. We have found that choline was more effective than methionine in decreasing the liver steatosis of KD-fed mice. On the other hand, methionine supplementation was more effective than choline in restoring weight gain and normalizing the expression of several fatty acid and inflammatory genes in the liver of KD-fed mice. Our results indicate that choline and methionine restriction rather than carbohydrate restriction underlies many of the metabolic effects of KD. PMID:24049742

  8. A ketogenic diet does not impair rat behavior or long-term potentiation.

    PubMed

    Thio, Liu Lin; Rensing, Nicholas; Maloney, Susan; Wozniak, David F; Xiong, Chengjie; Yamada, Kelvin A

    2010-08-01

    The effect of the ketogenic diet on behavior and cognition is unclear. We addressed this issue in rats behaviorally and electrophysiologically.We fed postnatal day 21 rats a standard diet (SD), ketogenic diet (KD), or calorie-restricted diet (CR) for 2–3 weeks. CR controlled for the slower weight gain experienced by KD-fed rats. We assessed behavioral performance with a locomotor activity and a conditioned fear test. To evaluate possible parallel effects of diet on synaptic function, we examined paired-pulse modulation (PPM) and long-term potentiation (LTP) in the medial perforant path in vivo. KD-fed rats performed similarly to SD-fed rats on the behavioral tests and electrophysiologic assays. These data suggest that the KD does not alter behavioral performance or synaptic plasticity. PMID:20132289

  9. Ketogenic Diet Provides Neuroprotective Effects against Ischemic Stroke Neuronal Damages

    PubMed Central

    Shaafi, Sheyda; Mahmoudi, Javad; Pashapour, Ali; Farhoudi, Mehdi; Sadigh-eteghad, Saeed; Akbari, Hossein

    2014-01-01

    Ischemic stroke is a leading cause of death and disability in the world. Many mechanisms contribute in cell death in ischemic stroke. Ketogenic diet which has been successfully used in the drug-resistant epilepsy has been shown to be effective in many other neurologic disorders. The mechanisms underlying of its effects are not well studied, but it seems that its neuroprotective ability is mediated at least through alleviation of excitotoxicity, oxidative stress and apoptosis events. On the basis of these mechanisms, it is postulated that ketogenic diet could provide benefits to treatment of cerebral ischemic injuries. PMID:25671178

  10. The Ketogenic Diet and Sport: A Possible Marriage?

    PubMed

    Paoli, Antonio; Bianco, Antonino; Grimaldi, Keith A

    2015-07-01

    The ketogenic diet (KD) is used widely as a weight loss strategy and, more rarely, as therapy for some diseases. In many sports, weight control is often necessary (boxing, weightlifting, wrestling, etc.), but the KD usually is not considered. Our hypothesis is that KD might be used to achieve fat loss without affecting strength/power performance negatively. PMID:25906427

  11. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet.

    PubMed

    Rogawski, Michael A; Löscher, Wolfgang; Rho, Jong M

    2016-01-01

    Antiseizure drugs (ASDs), also termed antiepileptic drugs, are the main form of symptomatic treatment for people with epilepsy, but not all patients become free of seizures. The ketogenic diet is one treatment option for drug-resistant patients. Both types of therapy exert their clinical effects through interactions with one or more of a diverse set of molecular targets in the brain. ASDs act by modulation of voltage-gated ion channels, including sodium, calcium, and potassium channels; by enhancement of γ-aminobutyric acid (GABA)-mediated inhibition through effects on GABAA receptors, the GABA transporter 1 (GAT1) GABA uptake transporter, or GABA transaminase; through interactions with elements of the synaptic release machinery, including synaptic vesicle 2A (SV2A) and α2δ; or by blockade of ionotropic glutamate receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. The ketogenic diet leads to increases in circulating ketones, which may contribute to the efficacy in treating pharmacoresistant seizures. Production in the brain of inhibitory mediators, such as adenosine, or ion channel modulators, such as polyunsaturated fatty acids, may also play a role. Metabolic effects, including diversion from glycolysis, are a further postulated mechanism. For some ASDs and the ketogenic diet, effects on multiple targets may contribute to activity. Better understanding of the ketogenic diet will inform the development of improved drug therapies to treat refractory seizures. PMID:26801895

  12. CSF Amino Acids, Pterins and Mechanism of the Ketogenic Diet.

    PubMed

    Millichap, J Gordon

    2015-10-01

    Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic. PMID:26933537

  13. The ketogenic diet for type II bipolar disorder.

    PubMed

    Phelps, James R; Siemers, Susan V; El-Mallakh, Rif S

    2013-01-01

    Successful mood stabilizing treatments reduce intracellular sodium in an activity-dependent manner. This can also be achieved with acidification of the blood, as is the case with the ketogenic diet. Two women with type II bipolar disorder were able to maintain ketosis for prolonged periods of time (2 and 3 years, respectively). Both experienced mood stabilization that exceeded that achieved with medication; experienced a significant subjective improvement that was distinctly related to ketosis; and tolerated the diet well. There were no significant adverse effects in either case. These cases demonstrate that the ketogenic diet is a potentially sustainable option for mood stabilization in type II bipolar illness. They also support the hypothesis that acidic plasma may stabilize mood, perhaps by reducing intracellular sodium and calcium. PMID:23030231

  14. Ketogenic Diets: New Advances for Metabolism-Based Therapies

    PubMed Central

    Kossoff, Eric H.; Hartman, Adam L.

    2014-01-01

    Purpose of review Despite myriad anticonvulsants available and in various stages of development, there are thousands of children and adults with epilepsy worldwide still refractory to treatment and not candidates for epilepsy surgery. Many of these patients will now turn to dietary therapies such as the ketogenic diet, medium-chain triglyceride (MCT) diet, modified Atkins diet, and low glycemic index treatment. Recent Findings In the past several years, neurologists are finding new indications to use these dietary treatments, perhaps even as first-line therapy, including infantile spasms, myoclonic-astatic epilepsy (Doose syndrome), Dravet syndrome, and status epilepticus (including FIRES syndrome). Adults are also one of the most rapidly growing populations being treated nowadays; a group of patients previously not typically offered these treatments. In 2009, two controlled trials of the ketogenic diet were published as well as an International Expert Consensus Statement on dietary treatment of epilepsy. Ketogenic diets are also now being increasingly studied for neurologic conditions other than epilepsy, including Alzheimer disease and cancer. Insights from basic science research have helped elucidate the mechanisms by which metabolism-based therapy may be helpful, both in terms of an anticonvulsant and possibly neuroprotective effect. Summary Dietary therapy for epilepsy continues to grow in popularity worldwide, with expanding use for adults and conditions other than epilepsy. PMID:22322415

  15. Ketosis, ketogenic diet and food intake control: a complex relationship

    PubMed Central

    Paoli, Antonio; Bosco, Gerardo; Camporesi, Enrico M.; Mangar, Devanand

    2015-01-01

    Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture. PMID:25698989

  16. [Ketogenic diets and weight loss: basis and effectiveness].

    PubMed

    Pérez-Guisado, Joaquín

    2008-06-01

    The international consensus is that carbohydrates are the basis of the food pyramid of a healthy diet. Today's specialists believe that the best way to lose weight is by cutting down on calories, essentialy in the form of fat. However, this paper will clarify that ketogenic diets are, from a physiological, biochemicale and practical point of view, a much more effective way of losing weight, since such diets provide metabolic advantages such as the capacity to preserve muscle mass, reduce appetite, to have a lower metabolic efficiency, produce a metabolic activation of thermogenesis and favour a greater fat loss even with a greater number of calories. PMID:18833988

  17. A high-fat, ketogenic diet induces a unique metabolic state in mice.

    PubMed

    Kennedy, Adam R; Pissios, Pavlos; Otu, Hasan; Roberson, Russell; Xue, Bingzhong; Asakura, Kenji; Furukawa, Noburu; Marino, Frank E; Liu, Fen-Fen; Kahn, Barbara B; Libermann, Towia A; Maratos-Flier, Eleftheria

    2007-06-01

    Ketogenic diets have been used as an approach to weight loss on the basis of the theoretical advantage of a low-carbohydrate, high-fat diet. To evaluate the physiological and metabolic effects of such diets on weight we studied mice consuming a very-low-carbohydrate, ketogenic diet (KD). This diet had profound effects on energy balance and gene expression. C57BL/6 mice animals were fed one of four diets: KD; a commonly used obesogenic high-fat, high-sucrose diet (HF); 66% caloric restriction (CR); and control chow (C). Mice on KD ate the same calories as mice on C and HF, but weight dropped and stabilized at 85% initial weight, similar to CR. This was consistent with increased energy expenditure seen in animals fed KD vs. those on C and CR. Microarray analysis of liver showed a unique pattern of gene expression in KD, with increased expression of genes in fatty acid oxidation pathways and reduction in lipid synthesis pathways. Animals made obese on HF and transitioned to KD lost all excess body weight, improved glucose tolerance, and increased energy expenditure. Analysis of key genes showed similar changes as those seen in lean animals placed directly on KD. Additionally, AMP kinase activity was increased, with a corresponding decrease in ACC activity. These data indicate that KD induces a unique metabolic state congruous with weight loss. PMID:17299079

  18. How do you keto? Survey of North American pediatric ketogenic diet centers.

    PubMed

    Jung, Da Eun; Joshi, Sucheta M; Berg, Anne T

    2015-06-01

    We surveyed ketogenic diet centers in North America about their practices surrounding the ketogenic diet. An internet survey was disseminated via REDCap(©) to North American ketogenic diet centers identified from the Charlie Foundation and Ketocal(©) websites. Fifty-six centers responded. In addition to physicians, nurses and dieticians, ketogenic teams included social workers (39%), feeding specialists (14%), educational liaisons (4%), psychologists (5%), and pharmacists (36%). A child attending school (2%), non-English speaking family (19%), single-parent family (0%), and oral feeding (6%) were rarely considered barriers. Overall, the diet was considered the first or second (0%), third or fourth (67%), fifth or sixth (29%), and last resort treatment (4%) by centers. It was considered the first or second treatment for GLUT1 disease (86%) and third or fourth for Dravet (63%), West (71%), and Doose (65%) syndromes. Ketogenic diet is no longer a last resort option. Traditional barriers do not influence its use. PMID:25143482

  19. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    PubMed

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-01

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. PMID:26111645

  20. The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation.

    PubMed

    Chwiej, Joanna; Skoczen, Agnieszka; Matusiak, Katarzyna; Janeczko, Krzysztof; Patulska, Agnieszka; Sandt, Christophe; Simon, Rolf; Ciarach, Malgorzata; Setkowicz, Zuzanna

    2015-08-01

    A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment

  1. Antiepileptic popular ketogenic diet: emerging twists in an ancient story.

    PubMed

    Vamecq, Joseph; Vallée, Louis; Lesage, Florian; Gressens, Pierre; Stables, James P

    2005-01-01

    The antiepileptic activity associated with ketogenic diets (KD) have been known for some time. First reports date back to the Middle Ages and even Biblical times where KD was achieved by fasting (i.e. "water diet") [see Swink, T.D., Vining, E.P.G., Freeman, J.M., 1997. The ketogenic diet: 1997. Adv. Pediatr. 44, 297-329, and references therein]. In the early 20th century, changes in the design of the KD were introduced, shifting the so-called "water diet" to a high-fat diet. Initial clinical evaluations undertaken between the 1920s and 1940s were enthusiastic, but the popularity of the KD was retrograded upon clinical introduction of phenytoin and subsequently other antiepileptic drugs. Today, despite a pharmacological arsenal targeting cerebral receptors and specific events in seizure initiation and development, about 30-40% patients are still refractory to available medications. Thus, the KD has been re-introduced in recent years as an alternative therapy, averring to be efficacious against some instances of resistant or intractable epilepsy. Despite a long historical background and enlarged clinical use, identification of the underlying anticonvulsant mechanisms associated with this nonpharmacological approach is still in stagnation. The present review is an attempt to encourage current research orientation through well-based and directed proposals for putative emerging candidates mediating KD anticonvulsant mechanisms. The reader is provided with a special emphasis on ATP-sensitive and recently cloned two-pore (or tandem) domain potassium channels, as well as several emerging conceptual views and advances such as nuclear receptors, uncoupling proteins and gap junctions that the authors speculate may contribute to understanding the basic mechanisms linked to the KD. PMID:15713528

  2. Effect of short-term ketogenic diet on redox status of human blood.

    PubMed

    Nazarewicz, Rafal R; Ziolkowski, Wieslaw; Vaccaro, Patrick S; Ghafourifar, Pedram

    2007-12-01

    The present study investigated the effect of a ketogenic diet on the blood redox status of healthy female subjects. Twenty healthy females with mean body mass index of 21.45 +/- 2.05 kg/m(2) were provided a low-carbohydrate (55 +/- 6 g; 13% total energy), high-fat (138 +/- 16 g; 74% total energy), calorie-restricted (-465 +/- 115 kcal/d) diet. The followings were tested prior to and after 14 days consumption of the diet: Whole body, body weight and total body fat; blood, complete blood count, red blood cells, white blood cells, hemoglobin, and hematocrit; plasma, 3-beta-hydroxybutyrate, total antioxidative status, and uric acid; red blood cells, total sulfhydryl content, malondialdehyde, superoxide dismutase activity, and catalase activity. After 14 days, weight loss was significant whereas no changes were detected in body fat. No alterations were observed in blood count or morphology. 3-beta-hydroxybutyrate, total antioxidative status, uric acid, and sulfhydryl content were significantly increased. There were no alterations in malondialdehyde, or superoxide dismutase or catalase activity. The present study demonstrates that 14 days of a ketogenic diet elevates blood antioxidative capacity and does not induce oxidative stress in healthy subjects. PMID:17663642

  3. Fat-Free Mass Changes During Ketogenic Diets and the Potential Role of Resistance Training.

    PubMed

    Tinsley, Grant M; Willoughby, Darryn S

    2016-02-01

    Low-carbohydrate and very-low-carbohydrate diets are often used as weight-loss strategies by exercising individuals and athletes. Very-low-carbohydrate diets can lead to a state of ketosis, in which the concentration of blood ketones (acetoacetate, 3-β-hydroxybutyrate, and acetone) increases as a result of increased fatty acid breakdown and activity of ketogenic enzymes. A potential concern of these ketogenic diets, as with other weight-loss diets, is the potential loss of fat-free mass (e.g., skeletal muscle). On examination of the literature, the majority of studies report decreases in fat-free mass in individuals following a ketogenic diet. However, some confounding factors exist, such as the use of aggressive weight-loss diets and potential concerns with fat-free mass measurement. A limited number of studies have examined combining resistance training with ketogenic diets, and further research is needed to determine whether resistance training can effectively slow or stop the loss of fat-free mass typically seen in individuals following a ketogenic diet. Mechanisms underlying the effects of a ketogenic diet on fat-free mass and the results of implementing exercise interventions in combination with this diet should also be examined. PMID:26284291

  4. What Constitutes a Relevant Animal Model of the Ketogenic Diet?

    PubMed Central

    Holmes, Gregory L.

    2009-01-01

    Summary Animal models of human disease have been enormously important in improving our understanding of the pathophysiological basis and the development of novel therapies. In epilepsy, modeling using both in vivo and in vitro preparations has provided insight into fundamental neuronal mechanisms. Indeed, much of our understanding of seizure mechanisms comes from animal studies. The conceptual advances in understanding basic mechanisms of epilepsies have been largely validated in humans, attesting to the validity of the rationale and providing a basis for bridging the gaps between experimental and human data. While the ketogenic diet is clearly efficacious in a wide variety of seizure types and syndromes, the mechanism of action of the diet has not been established. Animal models will continue to be enormously important in furthering our understanding of how dietary therapy can help individuals with epilepsy. PMID:19049589

  5. Spanish Ketogenic Mediterranean diet: a healthy cardiovascular diet for weight loss

    PubMed Central

    Pérez-Guisado, Joaquín; Muñoz-Serrano, Andrés; Alonso-Moraga, Ángeles

    2008-01-01

    Background Ketogenic diets are an effective healthy way of losing weight since they promote a non-atherogenic lipid profile, lower blood pressure and decrease resistance to insulin with an improvement in blood levels of glucose and insulin. On the other hand, Mediterranean diet is well known to be one of the healthiest diets, being the basic ingredients of such diet the olive oil, red wine and vegetables. In Spain the fish is an important component of such diet. The objective of this study was to determine the dietary effects of a protein ketogenic diet rich in olive oil, salad, fish and red wine. Methods A prospective study was carried out in 31 obese subjects (22 male and 19 female) with the inclusion criteria whose body mass index and age was 36.46 ± 2.22 and 38.48 ± 2.27, respectively. This Ketogenic diet was called "Spanish Ketogenic Mediterranean Diet" (SKMD) due to the incorporation of virgin olive oil as the principal source of fat (≥30 ml/day), moderate red wine intake (200–400 ml/day), green vegetables and salads as the main source of carbohydrates and fish as the main source of proteins. It was an unlimited calorie diet. Statistical differences between the parameters studied before and after the administration of the "Spanish Ketogenic Mediterranean diet" (week 0 and 12) were analyzed by paired Student's t test. Results There was an extremely significant (p < 0.0001) reduction in body weight (108.62 kg→ 94.48 kg), body mass index (36.46 kg/m2→31.76 kg/m2), systolic blood pressure (125.71 mmHg→109.05 mmHg), diastolic blood pressure (84.52 mmHg→ 75.24 mmHg), total cholesterol (208.24 mg/dl→186.62 mg/dl), triacylglicerols (218.67 mg/dl→113.90 mg/dl) and glucose (109.81 mg/dl→ 93.33 mg/dl). There was a significant (p = 0.0167) reduction in LDLc (114.52 mg/dl→105.95 mg/dl) and an extremely significant increase in HDLc (50.10 mg/dl→54.57 mg/dl). The most affected parameter was the triacylglicerols (47.91% of reduction). Conclusion The

  6. Recommendations for the clinical management of children with refractory epilepsy receiving the ketogenic diet.

    PubMed

    Alberti, María J; Agustinho, Ariela; Argumedo, Laura; Armeno, Marisa; Blanco, Virginia; Bouquet, Cecilia; Cabrera, Analía; Caraballo, Roberto; Caramuta, Luciana; Cresta, Araceli; de Grandis, Elizabeth S; De Martini, Martha G; Diez, Cecilia; Dlugoszewski, Corina; Escobal, Nidia; Ferrero, Hilario; Galicchio, Santiago; Gambarini, Victoria; Gamboni, Beatriz; Guisande, Silvina; Hassan, Amal; Matarrese, Pablo; Mestre, Graciela; Pesce, Laura; Ríos, Viviana; Sosa, Patricia; Vaccarezza, María; Viollaz, Rocío; Panico, Luis

    2016-02-01

    The ketogenic diet, a non-drug treatment with proven effectiveness, has been the most commonly used therapy in the past decade for the management of refractory epilepsy in the pediatric population. Compared to adding a new drug to a pre-existing treatment, the ketogenic diet is highly effective and reduces the number of seizures by 50-90% in approximately 45-60% of children after six months of treatment. For this reason, the Argentine Society of Pediatric Neurology established the Ketogenic Diet Working Group. It is integrated by pediatric dietitians, pediatricians, pediatric neurologists and B.S. in Nutrition, who developed recommendations for the optimal management of patients receiving the classical ketogenic diet based on expert consensus and scientific publications in this field. PMID:26914076

  7. The Ketogenic and Atkins Diets Effect on Intractable Epilepsy: A Comparison

    PubMed Central

    GHAZAVI, Ahad; TONEKABONI, Seyed Hassan; KARIMZADEH, Parvaneh; NIKIBAKHSH, Ahmad Ali; KHAJEH, Ali; FAYYAZI, Afshin

    2014-01-01

    Objective Intractable epilepsy is a major difficulty in child neurology, because the numbers of drugs that are available for treatment are limited and new treatments such as diets must be tried. Now there are some diets available for treating patients with intractable epilepsy. The oldest diet is the classic ketogenic diet and one of the newest diets is the modified Atkins diet. Patients have a harder time accepting the classic ketogenic diet than the Atkins diet, which is easier to accept because the food tastes better. This study compares the efficacy of the ketogenic diet and the Atkins diet for intractable epilepsy in children. Materials & Methods This study is a clinical trial survey with sample size of 40 children with refractory epilepsy who were patients at Mofid hospital in Tehran, Iran. Initially, from Jan 2005–Oct 2007, 20 children were treated with the Atkins diet, and then from Oct 2007–March 2010, the other group was treated with the classic ketogenic diet and the results were compared. Results In this study, response to treatment was greater than a 50% reduction in seizures and at the end of first, second, and third months for the ketogenic diet were 55%, 30%, and 70% and for the Atkins diet were 50%, 65%, and 70%, respectively. Conclusion The results of this study show that there is no significant difference between the classic Ketogenic diet and the Atkins diet at the end of first, second, and third months and both had similar responses to the treatments. PMID:25143768

  8. Ketogenic diets in patients with inherited metabolic disorders.

    PubMed

    Scholl-Bürgi, S; Höller, A; Pichler, K; Michel, M; Haberlandt, E; Karall, D

    2015-07-01

    Ketogenic diets (KDs) are diets that bring on a metabolic condition comparable to fasting, usually without catabolism. Since the mid-1990s such diets have been widely used in patients with seizures/epilepsies, mostly children. This review focuses on the use of KDs in patients with various inherited metabolic disorders (IMD). In glucose transporter type 1 deficiency syndrome (GLUT1-DS) and pyruvate dehydrogenase complex (PDHc) deficiency, KDs are deemed the therapy of choice and directly target the underlying metabolic disorder. Moreover, in other IMD, mainly of intermediary metabolism such as glycogen storage diseases and disorders of mitochondrial energy supply, KDs may ameliorate clinical symptoms and laboratory parameters. KDs have also been used successfully to treat symptoms such as seizures/epilepsy in IMD, e.g. in urea cycle disorders and non-ketotic hyperglycinemia. As a note of caution, catabolism may cause the condition of patients with IMD to deteriorate and should thus be avoided during KDs. For this reason, careful monitoring (clinical, laboratory and apparatus-supported) is warranted. In some IMDs specific macronutrient supply is critical. Therefore, in cases of PDHc deficiency the carbohydrate intake tolerated without lactate increase and in urea cycle disorders the protein tolerance should be determined. Considering this, it is particularly important in patients with IMD that the use of KDs be individualized and well documented. PMID:26109259

  9. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    PubMed

    Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation. PMID:24009777

  10. Role of Choline Deficiency in the Fatty Liver Phenotype of Mice Fed a Low Protein, Very Low Carbohydrate Ketogenic Diet

    PubMed Central

    Schugar, Rebecca C.; Huang, Xiaojing; Moll, Ashley R.; Brunt, Elizabeth M.; Crawford, Peter A.

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet – weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction – were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation. PMID:24009777

  11. Effects of a ketogenic diet on hippocampal plasticity in freely moving juvenile rats

    PubMed Central

    Blaise, J Harry; Ruskin, David N; Koranda, Jessica L; Masino, Susan A

    2015-01-01

    Ketogenic diets are low-carbohydrate, sufficient protein, high-fat diets with anticonvulsant activity used primarily as a treatment for pediatric epilepsy. The anticonvulsant mechanism is thought to involve elevating inhibition and/or otherwise limiting excitability in the brain. Such a mechanism, however, might also significantly affect normal brain activity and limit synaptic plasticity, effects that would be important to consider in the developing brain. To assess ketogenic diet effects on synaptic transmission and plasticity, electrophysiological recordings were performed at the perforant path/dentate gyrus synapse in awake, freely-behaving juvenile male rats. Electrodes were implanted 1 week prior to recording. Animals were fed regular chow or a ketogenic diet ad libitum for 3 weeks before recording. Although the ketogenic diet did not significantly alter baseline excitability (assessed by input–output curves) or short-term plasticity (using the paired-pulse ratio), it did reduce the magnitude of long-term potentiation at all poststimulation timepoints out to the last time measured (48 h). The results suggest an effect of ketogenic diet-feeding on the induction magnitude but not the maintenance of long-term potentiation. The lack of effect of the diet on baseline transmission and the paired-pulse ratio suggests a mechanism that limits excitation preferentially in conditions of strong stimulation, consonant with clinical reports in which the ketogenic diet alleviates seizures without a major impact on normal brain activity. Limiting plasticity in a seizure-susceptible network may limit seizure-induced epileptogenesis which may subserve the ongoing benefit of the ketogenic diet in epilepsy. PMID:26009636

  12. Effects of a ketogenic diet on hippocampal plasticity in freely moving juvenile rats.

    PubMed

    Blaise, J Harry; Ruskin, David N; Koranda, Jessica L; Masino, Susan A

    2015-05-01

    Ketogenic diets are low-carbohydrate, sufficient protein, high-fat diets with anticonvulsant activity used primarily as a treatment for pediatric epilepsy. The anticonvulsant mechanism is thought to involve elevating inhibition and/or otherwise limiting excitability in the brain. Such a mechanism, however, might also significantly affect normal brain activity and limit synaptic plasticity, effects that would be important to consider in the developing brain. To assess ketogenic diet effects on synaptic transmission and plasticity, electrophysiological recordings were performed at the perforant path/dentate gyrus synapse in awake, freely-behaving juvenile male rats. Electrodes were implanted 1 week prior to recording. Animals were fed regular chow or a ketogenic diet ad libitum for 3 weeks before recording. Although the ketogenic diet did not significantly alter baseline excitability (assessed by input-output curves) or short-term plasticity (using the paired-pulse ratio), it did reduce the magnitude of long-term potentiation at all poststimulation timepoints out to the last time measured (48 h). The results suggest an effect of ketogenic diet-feeding on the induction magnitude but not the maintenance of long-term potentiation. The lack of effect of the diet on baseline transmission and the paired-pulse ratio suggests a mechanism that limits excitation preferentially in conditions of strong stimulation, consonant with clinical reports in which the ketogenic diet alleviates seizures without a major impact on normal brain activity. Limiting plasticity in a seizure-susceptible network may limit seizure-induced epileptogenesis which may subserve the ongoing benefit of the ketogenic diet in epilepsy. PMID:26009636

  13. Ketogenic diet treatment in adults with refractory epilepsy.

    PubMed

    Klein, Pavel; Janousek, Jaromir; Barber, Arkady; Weissberger, Randi

    2010-12-01

    The ketogenic diet (KD) is an effective treatment for refractory epilepsy in children. It has been little studied in adults. We evaluated the efficacy of, safety of, and compliance with adjunctive KD treatment in adults with refractory epilepsy in a prospective open-label pilot study. Seizure frequency was evaluated for 4 baseline months, 4 months of adjunctive KD treatment with a 3:1 [fat]:[carbohydrate+protein] weight ratio and 1600 kcal/day, and subsequent elective open-ended KD treatment. A 3:1 ratio was used instead of the 4:1 ratio employed in children because of greater palatability. Average monthly seizure frequency and seizure-free months at baseline were compared with KD months 1-4 (phase 1) and all KD treatment (phase 2). Diet compliance was evaluated with daily urine ketone body and monthly serum β-hydroxybutyrate levels. Twelve subjects were treated for up to 26 months. Three stopped treatment early for psychosocial reasons (n=2) or lack of efficacy. Seven of the 12 subjects were fully compliant, 4 were partially compliant, and 1 was noncompliant. Mean seizure frequency declined by 38.4 and 44.1% for phases 1 and 2, respectively (P=0.04). Forty-two percent and 50% of subjects had a >50% reduction during phases 1 and 2, respectively. Four of 12 subjects (33%) had a >85% seizure reduction. Twenty percent of subject-months were seizure free at baseline versus 56% during both study phases (P=0.04). Adverse effects were mild: nausea, vomiting, diarrhea, constipation, and weight loss. PMID:20937568

  14. Substantial and sustained seizure reduction with ketogenic diet in a patient with Ohtahara syndrome.

    PubMed

    Sivaraju, Adithya; Nussbaum, Ilisa; Cardoza, Candace S; Mattson, Richard H

    2015-01-01

    Ketogenic diet has been shown to be efficacious in some epileptic encephalopathies but rarely reported as being useful in children with Ohtahara syndrome. This could possibly be attributed to the rarity of the disease and associated short survival period. We report on a 5-year-old child with Ohtahara syndrome, whose seizures failed to improve with all known medications, continued to show persistent suppression-burst pattern on the electroencephalography (EEG) and had substantial reduction in seizure frequency for one year post-initiation of ketogenic diet. He has not had a single visit to the emergency room because of seizures in the last one year, and more importantly, there has been a clear improvement noted in his level of interaction and temperament. Patients with Ohtahara syndrome invariably have medically intractable seizures and catastrophic neurodevelopmental outcome. Ketogenic diet is a treatment modality that might be worth considering even in this group of patients. PMID:26005637

  15. The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis

    PubMed Central

    Storoni, Mithu; Plant, Gordon T.

    2015-01-01

    Until recently, multiple sclerosis has been viewed as an entirely inflammatory disease without acknowledgment of the significant neurodegenerative component responsible for disease progression and disability. This perspective is being challenged by observations of a dissociation between inflammation and neurodegeneration where the neurodegenerative component may play a more significant role in disease progression. In this review, we explore the relationship between mitochondrial dysfunction and neurodegeneration in multiple sclerosis. We review evidence that the ketogenic diet can improve mitochondrial function and discuss the potential of the ketogenic diet in treating progressive multiple sclerosis for which no treatment currently exists. PMID:26839705

  16. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets.

    PubMed

    Giordano, Carmela; Marchiò, Maddalena; Timofeeva, Elena; Biagini, Giuseppe

    2014-01-01

    Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal

  17. Neuroactive Peptides as Putative Mediators of Antiepileptic Ketogenic Diets

    PubMed Central

    Giordano, Carmela; Marchiò, Maddalena; Timofeeva, Elena; Biagini, Giuseppe

    2014-01-01

    Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal

  18. Ketogenic diet for adults in super-refractory status epilepticus

    PubMed Central

    Thakur, Kiran T.; Probasco, John C.; Hocker, Sara E.; Roehl, Kelly; Henry, Bobbie; Kossoff, Eric H.; Kaplan, Peter W.; Geocadin, Romergryko G.; Hartman, Adam L.; Venkatesan, Arun

    2014-01-01

    Objective: To describe a case series of adult patients in the intensive care unit in super-refractory status epilepticus (SRSE; refractory status lasting 24 hours or more despite appropriate anesthetic treatment) who received treatment with the ketogenic diet (KD). Methods: We performed a retrospective case review at 4 medical centers of adult patients with SRSE treated with the KD. Data collected included demographic features, clinical presentation, diagnosis, EEG data, anticonvulsant treatment, and timing and duration of the KD. Primary outcome measures were resolution of status epilepticus (SE) after initiation of KD and ability to wean from anesthetic agents. Results: Ten adult patients at 4 medical centers were started on the KD for SRSE. The median age was 33 years (interquartile range [IQR] 21), 4 patients (40%) were male, and 7 (70%) had encephalitis. The median duration of SE before initiation of KD was 21.5 days (IQR 28) and the median number of antiepileptic medications used before initiation of KD was 7 (IQR 7). Ninety percent of patients achieved ketosis, and SE ceased in all patients achieving ketosis in a median of 3 days (IQR 8). Three patients had minor complications of the KD including transient acidosis and hypertriglyceridemia and 2 patients ultimately died of causes unrelated to the KD. Conclusion: We describe treatment of critically ill adult patients with SRSE with the KD, with 90% of patients achieving resolution of SE. Prospective trials are warranted to examine the efficacy of the KD in adults with refractory SE. Classification of evidence: This study provides Class IV evidence that for intensive care unit patients with refractory SE, a KD leads to resolution of the SE. PMID:24453083

  19. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets

    PubMed Central

    Paoli, A; Rubini, A; Volek, J S; Grimaldi, K A

    2013-01-01

    Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases, cancer and the amelioration of respiratory and cardiovascular disease risk factors. The possibility that modifying food intake can be useful for reducing or eliminating pharmaceutical methods of treatment, which are often lifelong with significant side effects, calls for serious investigation. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possible mechanisms for the therapeutic actions of the ketogenic diet on different diseases. The present review also questions whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician's hand. PMID:23801097

  20. Lack of influence of body mass index on the efficacy of the ketogenic diet.

    PubMed

    Hamdy, Rana F; Turner, Zahava; Pyzik, Paula L; Kossoff, Eric H

    2007-10-01

    The ketogenic diet is carefully calculated by dietitians in an effort to achieve the child's ideal body weight, theoretically to improve seizure control. This study researched whether achieving a stable body mass index or ideal body mass index-for-age correlates with efficacy with the traditional ketogenic diet. The outcomes of 123 children started on the ketogenic diet were analyzed at clinic visits 3, 6, 9, and 12 months after diet onset. Children who were at 40% to 59% body mass index-for-age did not have higher efficacy than those at a higher or lower body mass index-for-age, except at the 12-month clinic visit (81% versus 48%; P = .02). No clear link was demonstrated between either an ideal body mass index or changes in the body mass index and seizure control in the management of children receiving a ketogenic diet. Attributing changes in seizure control to a rapid weight gain or loss may be unjustified. PMID:17940242

  1. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets.

    PubMed

    Paoli, A; Rubini, A; Volek, J S; Grimaldi, K A

    2013-08-01

    Very-low-carbohydrate diets or ketogenic diets have been in use since the 1920s as a therapy for epilepsy and can, in some cases, completely remove the need for medication. From the 1960s onwards they have become widely known as one of the most common methods for obesity treatment. Recent work over the last decade or so has provided evidence of the therapeutic potential of ketogenic diets in many pathological conditions, such as diabetes, polycystic ovary syndrome, acne, neurological diseases, cancer and the amelioration of respiratory and cardiovascular disease risk factors. The possibility that modifying food intake can be useful for reducing or eliminating pharmaceutical methods of treatment, which are often lifelong with significant side effects, calls for serious investigation. This review revisits the meaning of physiological ketosis in the light of this evidence and considers possible mechanisms for the therapeutic actions of the ketogenic diet on different diseases. The present review also questions whether there are still some preconceived ideas about ketogenic diets, which may be presenting unnecessary barriers to their use as therapeutic tools in the physician's hand. PMID:23801097

  2. Ketogenic diet for the treatment of catastrophic epileptic encephalopathies in childhood.

    PubMed

    Coppola, Giangennaro; Verrotti, Alberto; Ammendola, Edoardo; Operto, Francesca Felicia; Corte, Rita Della; Signoriello, Giuseppe; Pascotto, Antonio

    2010-05-01

    The ketogenic diet for the treatment of refractory epileptic encephalopathies has been suggested as an early treatment option in very young children. The aim of the present study was to assess the efficacy and tolerability of the ketogenic diet in children younger than 5 years, all affected by different types of catastrophic childhood encephalopathies. The study group is composed of 38 children (22 males and 16 females), aged between 3 months and 5 years, affected by symptomatic partial epilepsy (6) and cryptogenic-symptomatic epileptic encephalopathies (32). Psychomotor delay-mental retardation was present in all of the patients: mild to moderate (9), severe (7), and profound (22). Cerebral palsy was present in 74% of the cases. Children were started on a 4:1 ketogenic diet as ketocal formula alone or supporting about the 80% of the daily caloric amount. Children poorly complying with ketocal milk were shifted to a classic 4:1 ketogenic diet. The average time (months +/- S.D.) on the diet was 10.3 +/- 7.4. All the children initiating the diet remained on it at 1 month and 35 of them (92%) at 3 months, 28 (73.7%) remained on it at 6 months, and 20 (52.7%) at 1 year. At 12-month follow-up, 11 children (28.9%) had a greater than 50% reduction of seizures and the other 9 (23.7%) were seizure-free. Adverse side effects were recorded in 25 of 38 patients (65.8%), including drowsiness, constipation, weight loss, vomiting, gastroesophageal reflux, fever, and hyperlipidemia. This report confirms that severe epileptic encephalopathies are much suitable for the ketogenic diet. PMID:19632870

  3. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    PubMed

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  4. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    PubMed Central

    Masino, Susan A.; Geiger, Jonathan D.

    2015-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903

  5. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis.

    PubMed

    Liśkiewicz, Arkadiusz D; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin-Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska-Szypułka, Halina

    2016-01-01

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/-) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth. PMID:26892894

  6. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis

    PubMed Central

    Liśkiewicz, Arkadiusz D.; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin–Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska–Szypułka, Halina

    2016-01-01

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/−) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth. PMID:26892894

  7. Long term successful weight loss with a combination biphasic ketogenic Mediterranean diet and Mediterranean diet maintenance protocol.

    PubMed

    Paoli, Antonio; Bianco, Antonino; Grimaldi, Keith A; Lodi, Alessandra; Bosco, Gerardo

    2013-12-01

    Weight loss protocols can only be considered successful if they deliver consistent results over the long term-a goal which is often elusive, so much so that the term "yo-yo" is used to describe the perennial weight loss/weight regain battle common in obesity. We hypothesized that a ketogenic Mediterranean diet with phytoextracts (KEMEPHY) combined with the acknowledged health benefits of traditional Mediterranean nutrition may favor long term weight loss. We analysed 89 male and female obese subjects, aged between 25 and 65 years who were overall healthy apart from being overweight. The subjects followed a staged diet protocol over a period of 12 months: 20 day of KEMEPHY; 20 days low carb-non ketogenic; 4 months Mediterranean normocaloric nutrition; a second 20 day ketogenic phase followed by 6 months of Mediterranean normocaloric nutrition. For the majority of subjects (88.25%) there was significant loss of weight (from 100.7 ± 16.54 to 84.59 ± 9.71 kg; BMI from 35.42 ± 4.11 to 30.27 ± 3.58) and body fat (form 43.44% ± 6.34% to 33.63% ± 7.6%) during both ketogenic phases followed by successful maintenance, without weight regain, during the 6 month stabilization phase with only 8 subjects failing to comply. There were also significant and stable decreases in total cholesterol, LDLc, triglycerides and glucose levels over the 12 month study period. HDLc showed small increases after the ketogenic phases but over the full 12 months there was no significant change. No significant changes were observed in ALT, AST, Creatinine or BUN. The combination of a biphasic KEMEPHY diet separated by longer periods of maintenance nutrition, based on the traditional Mediterranean diet, led to successful long term weight loss and improvements in health risk factors in a majority of subjects; compliance was very high which was a key determinant of the results seen. PMID:24352095

  8. The Ketogenic Diet and Brain Metabolism of Amino Acids: Relationship to the Anticonvulsant Effect

    PubMed Central

    Yudkoff, Marc; Daikhin, Yevgeny; Melø, Torun Margareta; Nissim, Ilana; Sonnewald, Ursula; Nissim, Itzhak

    2014-01-01

    In many epileptic patients, anticonvulsant drugs either fail adequately to control seizures or they cause serious side effects. An important adjunct to pharmacologic therapy is the ketogenic diet, which often improves seizure control, even in patients who respond poorly to medications. The mechanisms that explain the therapeutic effect are incompletely understood. Evidence points to an effect on brain handling of amino acids, especially glutamic acid, the major excitatory neurotransmitter of the central nervous system. The diet may limit the availability of oxaloacetate to the aspartate aminotransferase reaction, an important route of brain glutamate handling. As a result, more glutamate becomes accessible to the glutamate decarboxylase reaction to yield gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter and an important antiseizure agent. In addition, the ketogenic diet appears to favor the synthesis of glutamine, an essential precursor to GABA. This occurs both because ketone body carbon is metabolized to glutamine and because in ketosis there is increased consumption of acetate, which astrocytes in the brain quickly convert to glutamine. The ketogenic diet also may facilitate mechanisms by which the brain exports to blood compounds such as glutamine and alanine, in the process favoring the removal of glutamate carbon and nitrogen. PMID:17444813

  9. Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism

    PubMed Central

    Allen, Bryan G.; Bhatia, Sudershan K.; Anderson, Carryn M.; Eichenberger-Gilmore, Julie M.; Sibenaller, Zita A.; Mapuskar, Kranti A.; Schoenfeld, Joshua D.; Buatti, John M.; Spitz, Douglas R.; Fath, Melissa A.

    2014-01-01

    Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as O2•−and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses. PMID:25460731

  10. Ketogenic diet-fed rats have increased fat mass and phosphoenolpyruvate carboxykinase activity.

    PubMed

    Ribeiro, Letícia C; Chittó, Ana L; Müller, Alexandre P; Rocha, Juliana K; Castro da Silva, Mariane; Quincozes-Santos, André; Nardin, Patrícia; Rotta, Liane N; Ziegler, Denize R; Gonçalves, Carlos-Alberto; Da Silva, Roselis S M; Perry, Marcos L S; Gottfried, Carmem

    2008-11-01

    The ketogenic diet (KD), characterized by high fat and low carbohydrate and protein contents, has been proposed to be beneficial in children with epilepsy disorders not helped by conventional anti-epileptic drug treatment. Weight loss and inadequate growth is an important drawback of this diet and metabolic causes are not well characterized. The aim of this study was to examine body weight variation during KD feeding for 6 wk of Wistar rats; fat mass and adipocyte cytosolic phosphoenolpyruvate carboxykinase (PEPCK) activity were also observed. PEPCK activity was determined based on the [H(14)CO(3) (-)]-oxaloacetate exchange reaction. KD-fed rats gained weight at a less rapid rate than normal-fed rats, but with a significant increment in fat mass. The fat mass/body weight ratio already differed between ketogenic and control rats after the first week of treatment, and was 2.4 x higher in ketogenic rats. The visceral lipogenesis was supported by an increment in adipocyte PEPCK, aiming to provide glycerol 3-phosphate to triacylglycerol synthesis and this fat accumulation was accompanied by glucose intolerance. These data contribute to our understanding of the metabolic effects of the KD in adipose tissue and liver and suggest some potential risks of this diet, particularly visceral fat accumulation. PMID:18655006

  11. Usefulness of ketogenic diet in a girl with migrating partial seizures in infancy.

    PubMed

    Mori, Tatsuo; Imai, Katsumi; Oboshi, Taikan; Fujiwara, Yuh; Takeshita, Saoko; Saitsu, Hirotomo; Matsumoto, Naomichi; Takahashi, Yukitoshi; Inoue, Yushi

    2016-06-01

    Migrating partial seizures in infancy (MPSI) are an age-specific epilepsy syndrome characterized by migrating focal seizures, which are intractable to various antiepileptic drugs and cause severe developmental delay. We report a case of MPSI with heterozygous missense mutation in KCNT1, which was successfully managed by ketogenic diet. At age 2months, the patient developed epilepsy initially manifesting focal seizures with eye deviation and apnea, then evolving to secondarily generalized clonic convulsion. Various antiepileptic drugs including phenytoin, valproic acid, zonisamide, clobazam, levetiracetam, vitamin B6, and carbamazepine were not effective, but high-dose phenobarbital allowed discontinuation of midazolam infusion. Ictal scalp electroencephalogram showed migrating focal seizures. MPSI was suspected and she was transferred to our hospital for further treatment. Potassium bromide (KBr) was partially effective, but the effect was transient. High-dose KBr caused severe adverse effects such as over-sedation and hypercapnia, with no further effects on the seizures. At age 9months, we started a ketogenic diet, which improved seizure frequency and severity without obvious adverse effects, allowing her to be discharged from hospital. Ketogenic diet should be tried in patients with MPSI unresponsive to antiepileptic drugs. In MPSI, the difference in treatment response in patients with and those without KCNT1 mutation remains unknown. Accumulation of case reports would contribute to establish effective treatment options for MPSI. PMID:26785903

  12. The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

    PubMed Central

    2012-01-01

    The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its anti-epileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage. PMID:23049588

  13. Cardiovascular and hormonal aspects of very-low-carbohydrate ketogenic diets.

    PubMed

    Volek, Jeff S; Sharman, Matthew J

    2004-11-01

    In recent years, restriction of carbohydrate intake for weight loss has become widespread. Our research group began studying physiological responses to very-low-carbohydrate ketogenic diets (VLCKDs) in the late 1990s because we felt there was a significant void in the literature and limited understanding of metabolic responses to VLCKDs. This launched us into a line of research examining the physiological effects of VLCKDs. In this paper, we briefly overview nine studies we have published on isoenergetic and hypoenergetic VLCKDs in men and women. These studies have focused on blood lipid responses to VLCKDs, but we have also addressed changes in body weight, body composition, and hormones. Compared with low-fat diets, short-term VLCKDs consistently result in improvements in fat loss, fasting and postprandial triacylglycerols, high-density lipoprotein-cholesterol, the distribution of low-density lipoprotein-cholesterol subclasses, and insulin resistance. These are the key metabolic abnormalities of metabolic syndrome, a problem of epidemic proportions in the United States. There is substantial variability in total cholesterol and low-density lipoprotein-cholesterol responses to VLCKD. The factors responsible for this variability are not known, and studies designed to identify methods to predict blood lipid responses to VLCKD and other dietary approaches represent critical areas for nutrition researchers. Further research is warranted to validate the physiological effects of VLCKD over longer periods of time, including studies that modify the quality of macronutrients (i.e., the type of fat and protein) and the interaction with other interventions (e.g., exercise, dietary supplements, drugs). PMID:15601959

  14. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet

    PubMed Central

    Garbow, Joel R.; Doherty, Jason M.; Schugar, Rebecca C.; Travers, Sarah; Weber, Mary L.; Wentz, Anna E.; Ezenwajiaku, Nkiruka; Cotter, David G.; Brunt, Elizabeth M.

    2011-01-01

    Low-carbohydrate diets are used to manage obesity, seizure disorders, and malignancies of the central nervous system. These diets create a distinctive, but incompletely defined, cellular, molecular, and integrated metabolic state. Here, we determine the systemic and hepatic effects of long-term administration of a very low-carbohydrate, low-protein, and high-fat ketogenic diet, serially comparing these effects to a high-simple-carbohydrate, high-fat Western diet and a low-fat, polysaccharide-rich control chow diet in C57BL/6J mice. Longitudinal measurement of body composition, serum metabolites, and intrahepatic fat content, using in vivo magnetic resonance spectroscopy, reveals that mice fed the ketogenic diet over 12 wk remain lean, euglycemic, and hypoinsulinemic but accumulate hepatic lipid in a temporal pattern very distinct from animals fed the Western diet. Ketogenic diet-fed mice ultimately develop systemic glucose intolerance, hepatic endoplasmic reticulum stress, steatosis, cellular injury, and macrophage accumulation, but surprisingly insulin-induced hepatic Akt phosphorylation and whole-body insulin responsiveness are not impaired. Moreover, whereas hepatic Pparg mRNA abundance is augmented by both high-fat diets, each diet confers splice variant specificity. The distinctive nutrient milieu created by long-term administration of this low-carbohydrate, low-protein ketogenic diet in mice evokes unique signatures of nonalcoholic fatty liver disease and whole-body glucose homeostasis. PMID:21454445

  15. Glucose reduces the anticonvulsant effects of the ketogenic diet in EL mice.

    PubMed

    Mantis, John G; Meidenbauer, Joshua J; Zimick, Nicholas C; Centeno, Nicole A; Seyfried, Thomas N

    2014-09-01

    The ketogenic diet (KD) is known to be anticonvulsant and anti-epileptogenic. While the mechanism behind this therapeutic benefit is unclear, a reduction of circulating glucose levels through calorie restriction (CR) has been implicated. Foods or drinks that elevate blood glucose are known to compromise the therapeutic benefit of the KD in some children with epilepsy. We therefore evaluated the effect of a calorie restricted KD (KD-R) with supplementation of glucose in the drinking water of EL mice, a natural model of idiopathic generalized epilepsy, prior to seizure testing to assess the effect of glucose on seizure generation. Mice were fed either a standard diet or the KD unrestricted (SD-UR and KD-UR, respectively), or the KD restricted (KD-R). d-Glucose (25 mM) was supplemented in the drinking water of KD-R fed mice for 0.5h or for 2.5h prior to seizure testing. Each restricted mouse served as its own body weight control to achieve a 15-18% body weight reduction. Seizure susceptibility, body weights, and plasma glucose and β-hydroxybutyrate levels were measured over a nine-week treatment period. Body weights and glucose levels remained high over the testing period in both the SD-UR and the KD-UR groups, but were significantly reduced in all R-fed groups. A significant increase in β-hydroxybutyrate levels was observed in all KD groups. Seizure susceptibility remained highest in the SD-UR group, was slightly reduced in the KD-UR group, and was significantly reduced after three weeks in all R-fed groups. Supplementation of glucose prior to seizure testing resulted in a decrease of seizure threshold for R-fed mice, but did not alter bodyweight or circulating glucose levels. The KD has both an anticonvulsant and antiepileptogenic effect in EL mice. Here we confirm that CR enhances the anticonvulsant action of the KD in EL mice. Additionally, we show for the first time that supplementation of glucose decreases the anticonvulsant action of the KD, which further

  16. Ketogenic Diet for Children with Epilepsy: A Practical Meal Plan in a Hospital.

    PubMed

    Lee, Eunjoo; Kang, Hoon-Chul; Kim, Heung Dong

    2016-01-01

    A ketogenic diet (KD) is a dietary approach to treat intractable epilepsy. The KD begins with hospitalization and the child and their parents can adapt to the KD for 1-2 weeks. Recently, various type of dietary intervention such as the modified Atkins diet (MAD) and the low glycemic index treatment (LGIT) have been performed. Since 2010, we carried out the KD, MAD, and LGIT for total of 802 patients; 489 patients (61%) for the KD, 147 patients (18.3%) with the MAD, and 166 patients (20.7%) for the LGIT. In this report, application of these dietary practices in Severance Hospital is shared. PMID:26839878

  17. Ketogenic Diet for Children with Epilepsy: A Practical Meal Plan in a Hospital

    PubMed Central

    2016-01-01

    A ketogenic diet (KD) is a dietary approach to treat intractable epilepsy. The KD begins with hospitalization and the child and their parents can adapt to the KD for 1-2 weeks. Recently, various type of dietary intervention such as the modified Atkins diet (MAD) and the low glycemic index treatment (LGIT) have been performed. Since 2010, we carried out the KD, MAD, and LGIT for total of 802 patients; 489 patients (61%) for the KD, 147 patients (18.3%) with the MAD, and 166 patients (20.7%) for the LGIT. In this report, application of these dietary practices in Severance Hospital is shared. PMID:26839878

  18. [Ketogenic diets: additional benefits to the weight loss and unfounded secondary effects].

    PubMed

    Pérez-Guisado, Joaquin

    2008-12-01

    It is also necessary to emphasize that as well as the weight loss, ketogenic diets are healthier because they promote a non-atherogenic lipid profile, lower blood pressure and diminish resistance to insulin with an improvement in blood levels of glucose and insulin. Such diets also have antineoplastic benefits, do not alter renal or liver functions, do not produce metabolic acidosis by Ketosis, have many neurological benefits in central nervous system, do not produce osteoporosis and could increase the perfomance in aerobic sports. PMID:19368291

  19. An unfortunate challenge: Ketogenic diet for the treatment of Lennox-Gastaut syndrome in tyrosinemia type 1.

    PubMed

    De Lucia, Silvana; Pichard, Samia; Ilea, Adina; Greneche, Marie-Odile; François, Laurent; Delanoë, Catherine; Schiff, Manuel; Auvin, Stéphane

    2016-07-01

    The ketogenic diet is an evidence-based treatment for resistant epilepsy including Lennox-Gastaut syndrome. This diet is based on low carbohydrate-high fat intakes. Dietary treatment is also therapeutic for inborn errors of metabolism such as aminoacdiopathies. We report a child with both Lennox-Gastaut syndrome and tyrosinemia type 1. This epilepsy syndrome resulted form a porencephalic cyst secondary to brain abscesses that occurred during the management of malnutrition due to untreated tyrosinemia type 1. We used a ketogenic diet as treatment for Lennox-Gastaut syndrome taking into account dietary requirements for tyrosinemia type 1. The patient was transiently responder during a 6-month period. This report illustrates that ketogenic diet remains a therapeutic option even when additional dietary requirements are needed. PMID:27052529

  20. Neurological and cardiac responses after treatment with miglustat and a ketogenic diet in a patient with Sandhoff disease.

    PubMed

    Villamizar-Schiller, Ives T; Pabón, Laudy A; Hufnagel, Sophia B; Serrano, Norma C; Karl, Gabriela; Jefferies, John L; Hopkin, Robert J; Prada, Carlos E

    2015-03-01

    Sandhoff disease is a progressive neurodegenerative disorder characterized by accumulation of GM2 gangliosides. We describe a 6-year-old male with coarse facial features, developmental delay, refractory seizures, hypertrophic cardiomyopathy, who was later found to have Sandhoff disease. Previous studies have revealed that caloric restriction in combination with miglustat increased survival and motor behavior in mouse model of Sandhoff disease. These findings suggest that combination therapy may result in improved outcomes for patients with Sandhoff. Initiation of treatment with miglustat and a ketogenic diet was followed by improvement of the patient's seizure control and cardiac function. Further clinical investigation is required to better determine the benefit of management in late-onset forms of Sandhoff disease. PMID:25497207

  1. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats.

    PubMed

    Lusardi, Theresa A; Akula, Kiran K; Coffman, Shayla Q; Ruskin, David N; Masino, Susan A; Boison, Detlev

    2015-12-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects. PMID:26256422

  2. Occurrence of GLUT1 deficiency syndrome in patients treated with ketogenic diet.

    PubMed

    Ramm-Pettersen, Anette; Nakken, Karl O; Haavardsholm, Kathrine Cammermeyer; Selmer, Kaja Kristine

    2014-03-01

    Glucose transporter 1 deficiency syndrome (GLUT1-DS) is a treatable metabolic encephalopathy caused by a mutation in the SLC2A1 gene. This mutation causes a compromised transport of glucose across the blood-brain barrier. The treatment of choice is ketogenic diet, with which most patients become seizure-free. At the National Centre for Epilepsy, we have, since 2005, offered treatment with ketogenic diet (KD) and modified Atkins diet (MAD) to children with difficult-to-treat epilepsy. As we believe many children with GLUT1-DS are unrecognized, the aim of this study was to search for patients with GLUT1-DS among those who had been responders (>50% reduction in seizure frequency) to KD or MAD. Of the 130 children included, 58 (44%) were defined as responders. Among these, 11 were already diagnosed with GLUT1-DS. No mutations in the SLC2A1 gene were detected in the remaining patients. However, the clinical features of these patients differed considerably from the patients diagnosed with GLUT1-DS. While 9 out of 10 patients with GLUT1-DS became seizure-free with dietary treatment, only 3 out of the 33 remaining patients were seizure-free with KD or MAD treatment. We therefore conclude that a seizure reduction of >50% following dietary treatment is not a suitable criterion for identifying patients with GLUT1-DS, as these patients generally achieve complete seizure freedom shortly after diet initiation. PMID:24508593

  3. Long Term Successful Weight Loss with a Combination Biphasic Ketogenic Mediterranean Diet and Mediterranean Diet Maintenance Protocol

    PubMed Central

    Paoli, Antonio; Bianco, Antonino; Grimaldi, Keith A; Lodi, Alessandra; Bosco, Gerardo

    2013-01-01

    Weight loss protocols can only be considered successful if they deliver consistent results over the long term—a goal which is often elusive, so much so that the term “yo-yo” is used to describe the perennial weight loss/weight regain battle common in obesity. We hypothesized that a ketogenic Mediterranean diet with phytoextracts (KEMEPHY) combined with the acknowledged health benefits of traditional Mediterranean nutrition may favor long term weight loss. We analysed 89 male and female obese subjects, aged between 25 and 65 years who were overall healthy apart from being overweight. The subjects followed a staged diet protocol over a period of 12 months: 20 day of KEMEPHY; 20 days low carb-non ketogenic; 4 months Mediterranean normocaloric nutrition; a second 20 day ketogenic phase followed by 6 months of Mediterranean normocaloric nutrition. For the majority of subjects (88.25%) there was significant loss of weight (from 100.7 ± 16.54 to 84.59 ± 9.71 kg; BMI from 35.42 ± 4.11 to 30.27 ± 3.58) and body fat (form 43.44% ± 6.34% to 33.63% ± 7.6%) during both ketogenic phases followed by successful maintenance, without weight regain, during the 6 month stabilization phase with only 8 subjects failing to comply. There were also significant and stable decreases in total cholesterol, LDLc, triglycerides and glucose levels over the 12 month study period. HDLc showed small increases after the ketogenic phases but over the full 12 months there was no significant change. No significant changes were observed in ALT, AST, Creatinine or BUN. The combination of a biphasic KEMEPHY diet separated by longer periods of maintenance nutrition, based on the traditional Mediterranean diet, led to successful long term weight loss and improvements in health risk factors in a majority of subjects; compliance was very high which was a key determinant of the results seen. PMID:24352095

  4. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway

    PubMed Central

    McDaniel, Sharon S.; Rensing, Nicholas R.; Thio, Liu Lin; Yamada, Kelvin A.; Wong, Michael

    2011-01-01

    Summary The ketogenic diet (KD) is an effective treatment for epilepsy, but its mechanisms of action are poorly understood. We investigated the hypothesis that KD inhibits mammalian target of rapamycin (mTOR) pathway signaling. The expression of pS6 and pAkt, markers of mTOR pathway activation, was reduced in hippocampus and liver of rats fed KD. In the kainate model of epilepsy, KD blocked the hippocampal pS6 elevation that occurs after status epilepticus. As mTOR signaling has been implicated in epileptogenesis, these results suggest that the KD may have anticonvulsant or antiepileptogenic actions via mTOR pathway inhibition. PMID:21371020

  5. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington's disease.

    PubMed

    Ruskin, David N; Ross, Jessica L; Kawamura, Masahito; Ruiz, Tiffany L; Geiger, Jonathan D; Masino, Susan A

    2011-07-01

    Ketogenic diets are high in fat and low in carbohydrates, and have long been used as an anticonvulsant therapy for drug-intractable and pediatric epilepsy. Additionally, ketogenic diets have been shown to provide neuroprotective effects against acute and chronic brain injury, including beneficial effects in various rodent models of neurodegeneration. Huntington's disease is a progressive neurodegenerative disease characterized by neurological, behavioral and metabolic dysfunction, and ketogenic diets have been shown to increase energy molecules and mitochondrial function. We tested the effects of a ketogenic diet in a transgenic mouse model of Huntington's disease (R6/2 1J), with a focus on life-long behavioral and physiological effects. Matched male and female wild-type and transgenic mice were maintained on a control diet or were switched to a ketogenic diet fed ad libitum starting at six weeks of age. We found no negative effects of the ketogenic diet on any behavioral parameter tested (locomotor activity and coordination, working memory) and no significant change in lifespan. Progressive weight loss is a hallmark feature of Huntington's disease, yet we found that the ketogenic diet-which generally causes weight loss in normal animals-delayed the reduction in body weight of the transgenic mice. These results suggest that metabolic therapies could offer important benefits for Huntington's disease without negative behavioral or physiological consequences. PMID:21501628

  6. Ketogenic diet does not affect strength performance in elite artistic gymnasts

    PubMed Central

    2012-01-01

    Background Despite the increasing use of very low carbohydrate ketogenic diets (VLCKD) in weight control and management of the metabolic syndrome there is a paucity of research about effects of VLCKD on sport performance. Ketogenic diets may be useful in sports that include weight class divisions and the aim of our study was to investigate the influence of VLCKD on explosive strength performance. Methods 8 athletes, elite artistic gymnasts (age 20.9 ± 5.5 yrs) were recruited. We analyzed body composition and various performance aspects (hanging straight leg raise, ground push up, parallel bar dips, pull up, squat jump, countermovement jump, 30 sec continuous jumps) before and after 30 days of a modified ketogenic diet. The diet was based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrates, but which mimicked their taste, with the addition of some herbal extracts. During the VLCKD the athletes performed the normal training program. After three months the same protocol, tests were performed before and after 30 days of the athletes’ usual diet (a typically western diet, WD). A one-way Anova for repeated measurements was used. Results No significant differences were detected between VLCKD and WD in all strength tests. Significant differences were found in body weight and body composition: after VLCKD there was a decrease in body weight (from 69.6 ± 7.3 Kg to 68.0 ± 7.5 Kg) and fat mass (from 5.3 ± 1.3 Kg to 3.4 ± 0.8 Kg p < 0.001) with a non-significant increase in muscle mass. Conclusions Despite concerns of coaches and doctors about the possible detrimental effects of low carbohydrate diets on athletic performance and the well known importance of carbohydrates there are no data about VLCKD and strength performance. The undeniable and sudden effect of VLCKD on fat loss may be useful for those athletes who compete in sports based on weight class. We have

  7. Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats.

    PubMed

    Scichilone, John M; Yarraguntla, Kalyan; Charalambides, Ana; Harney, Jacob P; Butler, David

    2016-09-01

    For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25-40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures. PMID:27112438

  8. MED23-associated refractory epilepsy successfully treated with the ketogenic diet.

    PubMed

    Lionel, Anath C; Monfared, Nasim; Scherer, Stephen W; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2016-09-01

    We report a new patient with refractory epilepsy associated with a novel pathogenic homozygous MED23 variant. This 7.5-year-old boy from consanguineous parents had infantile onset global developmental delay and refractory epilepsy. He was treated with the ketogenic diet at 2.5 years of age and became seizure free on the first day. He had microcephaly and truncal hypotonia. His brain MRI showed delayed myelination and thin corpus callosum. He was enrolled in a whole exome sequencing research study, which identified a novel, homozygous, likely pathogenic (c.1937A>G; p.Gln646Arg) variant in MED23. MED23 is a regulator of energy homeostasis and glucose production. Liver-specific Med23-knockout mice showed reduced liver gluconeogenesis and lower blood glucose levels compared to control mice. This is the first patient with documented refractory epilepsy caused by a novel homozygous pathogenic variant in MED23 expanding the phenotypic spectrum. Identification of the underlying genetic defect in MED23 sheds light on the possible mechanism of complete response to the ketogenic diet in this child. © 2016 Wiley Periodicals, Inc. PMID:27311965

  9. Lipoid pneumonia--a case of refractory pneumonia in a child treated with ketogenic diet.

    PubMed

    Buda, Piotr; Wieteska-Klimczak, Anna; Własienko, Anna; Mazur, Agnieszka; Ziołkowski, Jerzy; Jaworska, Joanna; Kościesza, Andrzej; Dunin-Wąsowicz, Dorota; Książyk, Janusz

    2013-01-01

    Lipoid pneumonia (LP) is a chronic inflammation of the lung parenchyma with interstitial involvement due to the accumulation of endogenous or exogenous lipids. Exogenous LP (ELP) is associated with the aspiration or inhalation of oil present in food, oil-based medications or radiographic contrast media. The clinical manifestations of LP range from asymptomatic cases to severe pulmonary involvement, with respiratory failure and death, according to the quantity and duration of the aspiration. The diagnosis of exogenous lipoid pneumonia is based on a history of exposure to oil and the presence of lipid-laden macrophages on sputum or bronchoalveolar lavage (BAL) analysis. High-resolution computed tomography (HRCT) is the imaging technique of choice for evaluation of patients with suspected LP. The best therapeutic strategy is to remove the oil as early as possible through bronchoscopy with multiple BALs and interruption in the use of mineral oil. Steroid therapy remains controversial, and should be reserved for severe cases. We describe a case of LP due to oil aspiration in 3-year-old girl with intractable epilepsy on ketogenic diet. Diagnostic problems were due to non-specific symptoms that were mimicking serious infectious pneumonia. A high index of suspicion and precise medical history is required in cases of refractory pneumonia and fever unresponsive to conventional therapy. Gastroesophageal reflux and a risk of aspiration may be regarded as relative contraindications to the ketogenic diet. Conservative treatment, based on the use of oral steroids, proved to be an efficient therapeutic approach in this case. PMID:23996884

  10. Ketogenic Diet, but Not Polyunsaturated Fatty Acid Diet, Reduces Spontaneous Seizures in Juvenile Rats with Kainic Acid-induced Epilepsy

    PubMed Central

    Dustin, Simone M.; Stafstrom, Carl E.

    2016-01-01

    Background and Purpose: The high-fat, low-carbohydrate ketogenic diet (KD) is effective in many cases of drug-resistant epilepsy, particularly in children. In the classic KD, fats consist primarily of long-chain saturated triglycerides. Polyunsaturated fatty acids (PUFAs), especially the n-3 type, decrease neuronal excitability and provide neuroprotection; pilot human studies have raised the possibility of using PUFAs to control seizures in patients. Methods: To determine the relative roles of the KD and PUFAs in an animal model, we induced epilepsy in juvenile rats (P29–35) using intraperitoneal kainic acid (KA). KA caused status epilepticus in all rats. Two days after KA, rats were randomized to one of 4 dietary groups: Control diet; PUFA diet; KD; or KD plus PUFA. All diets were administered isocalorically at 90% of the rat recommended daily calorie requirement. Spontaneous recurrent seizures (SRS) were assessed for 3 months after diet randomization. Results: Rats receiving the KD or KD-PUFA diet had significantly fewer SRS than those receiving the Control diet or PUFA diet. The PUFA diet did not reduce SRS compared to the Control diet. Conclusions: In the KA epilepsy model, the KD protects against SRS occurrence but dietary enhancement with PUFA does not afford additional protection against spontaneous seizures. PMID:27390673

  11. Biochemical effect of a ketogenic diet on the brains of obese adult rats.

    PubMed

    Mohamed, Hoda E; El-Swefy, Sahar E; Rashed, Leila A; Abd El-Latif, Sally K

    2010-07-01

    Excess weight, particularly abdominal obesity, can cause or exacerbate cardiovascular and metabolic disease. Obesity is also a proven risk factor for Alzheimer's disease (AD). Various studies have demonstrated the beneficial effects of a ketogenic diet (KD) in weight reduction and in modifying the disease activity of neurodegenerative disorders, including AD. Therefore, in this study we examined the metabolic and neurodegenerative changes associated with obesity and the possible neuroprotective effects of a KD in obese adult rats. Compared with obese rats fed a control diet, obese rats fed a KD showed significant weight loss, improvement in lipid profiles and insulin resistance, and upregulation of adiponectin mRNA expression in adipose tissue. In addition, the KD triggered significant downregulation of brain amyloid protein precursor, apolipoprotein E and caspase-3 mRNA expression, and improvement of brain oxidative stress responses. These findings suggest that a KD has anti-obesity and neuroprotective effects. PMID:20395146

  12. Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy

    PubMed Central

    Paul, Elahna; Conant, Kerry D.; Dunne, Irie E.; Pfeifer, Heidi H.; Lyczkowski, David A.; Linshaw, Michael A.; Thiele, Elizabeth A.

    2011-01-01

    Summary Children with refractory epilepsy who are co-treated with the ketogenic diet (KD) and carbonic anhydrase inhibitor (CA-I) anti-epileptic medications including topiramate (TPM) and zonisamide (ZNS) are at risk for urolithiasis. Retrospective chart review of all children treated with ketogenic therapy at our institution was performed in order to estimate the minimal risk of developing signs or symptoms of stone disease. Children (N = 93) were classified into groups according to KD +/− CA-I co-therapy. Fourteen patients had occult hematuria or worse, including 6 with radiologically confirmed stones. Three of 6 calculi developed in the KD + ZNS group of 17 patients who were co-treated for a cumulative total of 97 months (3.1 stones per 100 patient months). One confirmed stone was in the KD + TPM group of 22 children who were co-treated for a cumulative total of 263 months (0.4 stones per 100 patient months). All six patients had at least three of five biochemical risk factors including metabolic acidosis, concentrated urine, acid urine, hypercalciuria and hypocitraturia. Standard of care interventions to minimize hypercalciuria, crystalluria and stone formation used routinely by pediatric nephrologists should also be prescribed by neurologists treating patients with combination anti-epileptic therapy. Non-fasting KD initiation, fluid liberalization, potassium citrate prophylaxis as well as regular laboratory surveillance are indicated in this high risk population. PMID:20466520

  13. Elemental changes in the hippocampal formation following two different formulas of ketogenic diet: an X-ray fluorescence microscopy study.

    PubMed

    Chwiej, J; Patulska, A; Skoczen, A; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2015-12-01

    The main purpose of the following study was the determination of elemental changes occurring within hippocampal formation as a result of high-fat and carbohydrate-restricted ketogenic diet (KD). To realize it, X-ray fluorescence microscopy was applied for topographic and quantitative analysis of P, S, K, Ca, Fe, Cu, Zn and Se in hippocampal formations taken from rats fed with two different KDs and naive controls. The detailed comparisons were done for sectors 1 and 3 of the Ammon's, the dentate gyrus and hilus of dentate gyrus. The results of elemental analysis showed that the KDs induced statistically significant changes in the accumulation of P, K, Ca, Zn and Se in particular areas of hippocampal formation and these alterations strongly depended on the composition of the diets. Much greater influence on the hippocampal areal densities of examined elements was found for the KD which was characterized by a lower content of carbohydrates, higher content of fats and increased proportion of unsaturated fatty acids. The levels of P, K and Zn decreased whilst those of Ca and Se increased as a result of the treatment with the KDs. PMID:26537249

  14. Effects of ketogenic diets on the occurrence of pilocarpine-induced status epilepticus of rats.

    PubMed

    Gama, Iclea Rocha; Trindade-Filho, Euclides Marinho; Oliveira, Suzana Lima; Bueno, Nassib Bezerra; Melo, Isabelle Tenório; Cabral-Junior, Cyro Rego; Barros, Elenita M; Galvão, Jaqueline A; Pereira, Wanessa S; Ferreira, Raphaela C; Domingos, Bruna R; da Rocha Ataide, Terezinha

    2015-02-01

    Two sources of medium-chain triglycerides--triheptanoin with anaplerotic properties and coconut oil with antioxidant features--have emerged as promising therapeutic options for the management of pharmacoresistant epilepsy. We investigated the effects of ketogenic diets (KDs) containing coconut oil, triheptanoin, or soybean oil on pilocarpine-induced status epilepticus (SE) in rats. Twenty-four adult male Wistar rats were divided into 4 groups and fed a control diet (7% lipids) or a KD containing soybean oil, coconut oil, or triheptanoin (69.8% lipids). The ketogenic and control diets had a lipid:carbohydrate + protein ratio of 1:11.8 and 3.5:1, respectively. SE was induced in all rats 20 days after initiation of the dietary treatment, through the administration of pilocarpine (340 mg/kg; i.p.). The latency, frequency, duration, and severity of seizures before and during SE were observed with a camcorder. SE was aborted after 3 h with the application of diazepam (5 mg/kg; i.p.). The rats in the triheptanoin-based KD group needed to undergo a higher number of seizures to develop SE, as compared to the control group (P < 0.05). Total weight gain, intake, energy intake, and feed efficiency coefficient, prior to induction of SE, differed between groups (P < 0.05), where the triheptanoin-based KD group showed less weight gain than all other groups, less energy intake than the Control group and intermediate values of feed efficiency coefficient between Control and other KDs groups. Triheptanoin-based KD may have a neuroprotective effect on the establishment of SE in Wistar rats. PMID:25005004

  15. Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?

    PubMed Central

    Hartman, Adam L.

    2009-01-01

    Summary The ketogenic diet (KD) has been used successfully in a variety of epilepsy syndromes. This includes syndromes with multiple etiologies, including Lennox-Gastaut syndrome and infantile spasms; developmental syndromes of unknown etiology, such as Landau-Kleffner syndrome; and idiopathic epilepsies, such as myoclonic-astatic (Doose) epilepsy. It also includes syndromes where genetics play a major role, such as Dravet syndrome, tuberous sclerosis, and Rett syndrome. Study of the KD in humans and animals harboring various genetic mutations may yield insights into the diet’s mechanisms. Comparison of the diet’s effectiveness with other treatments in specific syndromes may be another useful tool for mechanistic studies. The diet’s utility in epilepsy syndromes of various etiologies and in some neurodegenerative disorders suggests it may have multiple mechanisms of action. PMID:19049588

  16. Potential Therapeutic Use of the Ketogenic Diet in Autism Spectrum Disorders

    PubMed Central

    Napoli, Eleonora; Dueñas, Nadia; Giulivi, Cecilia

    2014-01-01

    The ketogenic diet (KGD) has been recognized as an effective treatment for individuals with glucose transporter 1 (GLUT1) and pyruvate dehydrogenase (PDH) deficiencies as well as with epilepsy. More recently, its use has been advocated in a number of neurological disorders prompting a newfound interest in its possible therapeutic use in autism spectrum disorders (ASD). One study and one case report indicated that children with ASD treated with a KGD showed decreased seizure frequencies and exhibited behavioral improvements (i.e., improved learning abilities and social skills). The KGD could benefit individuals with ASD affected with epileptic episodes as well as those with either PDH or mild respiratory chain (RC) complex deficiencies. Given that the mechanism of action of the KGD is not fully understood, caution should be exercised in ASD cases lacking a careful biochemical and metabolic characterization to avoid deleterious side effects or refractory outcomes. PMID:25072037

  17. Very low-calorie ketogenic diet may allow restoring response to systemic therapy in relapsing plaque psoriasis.

    PubMed

    Castaldo, Giuseppe; Galdo, Giovanna; Rotondi Aufiero, Felice; Cereda, Emanuele

    2016-01-01

    Psoriasis is a chronic disease associated with overweight/obesity and related cardiometabolic complications. The link between these diseases is likely the inflammatory background associated with adipose tissue, particularly the visceral one. Accordingly, previous studies have demonstrated that in the long-term weight loss may improve the response to systemic therapies. We report a case report of a woman in her 40s suffering from relapsing moderate-to-severe plaque psoriasis and obesity-related metabolic syndrome, in whom adequate response to ongoing treatment with biological therapy (adalimumab) was restored after only 4 weeks of very low-calorie, carbohydrate-free (ketogenic), protein-based diet. Accordingly, through rapid and consistent weight loss, very low calorie ketogenic diet may allow restoring a quick response to systemic therapy in a patient suffering from relapsing psoriasis. This intervention should be considered in overweight/obese patients before the rearrangement of systemic therapy. Nonetheless, studies are required to evaluate whether very low calorie ketogenic diets should be preferred to common low-calorie diets to improve the response to systemic therapy at least in patients with moderate-to-severe psoriasis. PMID:26559897

  18. Eucaloric Ketogenic Diet Reduces Hypoglycemia and Inflammation in Mice with Endotoxemia.

    PubMed

    Nandivada, Prathima; Fell, Gillian L; Pan, Amy H; Nose, Vania; Ling, Pei-Ra; Bistrian, Bruce R; Puder, Mark

    2016-06-01

    Dietary strategies to alter the immune response to acute inflammation have the potential to improve outcomes in critically ill patients. A eucaloric ketogenic diet (EKD), composed predominantly of fat with very small amounts of carbohydrate, can provide adequate caloric support while minimizing spikes in blood glucose and reducing oxidative stress. The purpose of this study was to evaluate the effects of an EKD on glycemic control and the inflammatory response after acute endotoxemia in mice. Mice received either an EKD or a carbohydrate-based control diet (CD) for 4 weeks. Animals subsequently underwent either a 2-h fast (postprandial) or an overnight fast (postabsorptive), and half of the animals in each diet group were randomized to receive either intraperitoneal lipopolysaccharide (1 mg/kg) or an equivalent volume of saline. Glycemic response, insulin resistance, inflammatory cytokine levels, and the expression of key inflammatory and metabolic genes were measured. After endotoxin challenge, hypoglycemia was more frequent in mice fed a CD than an EKD in the postprandial period. This was due in part to the preservation of hepatic glycogen stores despite endotoxin exposure and prolonged fasting in mice fed an EKD. Furthermore, mice fed the CD had higher levels of IL-6 and TNF-α in the postabsorptive period, with a fivefold higher expression of hepatic NFκB compared to mice fed the EKD in both fasting periods. These results suggest that the unique metabolic state induced by an EKD can alter the response to acute inflammation in mice. PMID:27117864

  19. Effects of n-3 Polyunsaturated Fatty Acids (ω-3) Supplementation on Some Cardiovascular Risk Factors with a Ketogenic Mediterranean Diet

    PubMed Central

    Paoli, Antonio; Moro, Tatiana; Bosco, Gerardo; Bianco, Antonino; Grimaldi, Keith A.; Camporesi, Enrico; Mangar, Devanand

    2015-01-01

    Background: the ketogenic diet (KD) has become a widely used nutritional approach for weight loss. Some of the KD’s positive effects on metabolism and cardiovascular risk factors are similar to those seen after n-3 polyunsaturated fatty acids (ω-3) supplementation. We hypothesized that a ketogenic Mediterranean diet with phytoextracts combined with ω-3 supplementation may have increased positive effects on cardiovascular risk factors and inflammation. Methods: We analyzed 34 male overweight subjects; aged between 25 and 65 years who were overall healthy apart from overweight. The subjects followed a ketogenic diet protocol for four weeks; with (KDO3) or without (KD) ω-3 supplementation. Results: All subjects experienced a significant loss of body weight and body fat and there was no significant differences between treatment (body weight: KD—4.7 kg, KDO3—4.03 kg, body fat KD—5.41 kg, KDO3—5.86 kg). There were also significant decreases in total cholesterol, LDL-c, and glucose levels. Triglycerides and insulin levels decreased more in KDO3 vs. KD subjects, with a significant difference. All the investigated inflammatory cytokines (IL-1β, IL-6, TNF-α) decreased significantly in KDO3 subjects whilst only TNF-α showed a significant decrease in KD subjects over the 12 month study period. No significant changes were observed in anti-inflammatory cytokines (IL-10 and IL-1Ra), creatinine, urea and uric acid. Adiponectin increased significantly only in the KDO3 group. Conclusions: ω-3 supplementation improved the positive effects of a ketogenic Mediterranean diet with phytoextracts on some cardiovascular/metabolic risk factors and inflammatory state. PMID:25689563

  20. Triheptanoin supplementation to ketogenic diet curbs cognitive impairment in APP/PS1 mice used as a model of familial Alzheimer's disease.

    PubMed

    Aso, Ester; Semakova, Jana; Joda, Laura; Semak, Vladislav; Halbaut, Lyda; Calpena, Ana; Escolano, Carmen; Perales, Jose C; Ferrer, Isidro

    2013-03-01

    Diets containing a high proportion of fat with respect to protein plus carbohydrates are capable of inducing ketone body production in the liver, which provides an energetic alternative to glucose. Some ketogenic diets have been tested as therapeutic strategies for treating metabolic disorders related to a deficiency in glucose-driven ATP generation. However, ketone bodies are not capable of providing extra tricarboxylic acid cycle intermediates, limiting the anabolic capacity of the cell. Therefore, it is reasonable to hypothesize that supplementing a ketogenic diet with anaplerotic compounds such as triheptanoin may improve ketogenic diet effectiveness. The present study tests this hypothesis in APP/PS1 (APPswe/PS1dE9) transgenic mice, used as a model of familial Alzheimer's disease because impaired energy supply to neurons has been linked to this neurodegenerative process. Triheptanoin supplementation to a ketogenic diet for three months and starting at the age of three months reduces the memory impairment of APP/PS1 mice at the age of 6 months. The Aβ production and deposition were not significantly altered by the ketogenic diet, supplemented or not by triheptanoin. However, mice fed with triheptanoin-rich ketogenic diet have shown decreased astroglial response in the vicinity of Aβ plaques and decreased expression of the pro-inflammatory cytokine interferon-γ in astrocytes. These findings correlate with transcriptional up-regulation of the ROS detoxifying mechanisms Sirt1 and Pparg, thus linking triheptanoin with improved mitochondrial status. Present findings support the concept that ketogenic diets supplemented with anaplerotic compounds can be considered potential therapeutic strategies at early stages of Alzheimer's disease. PMID:23131121

  1. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats.

    PubMed

    Jiang, Yan; Lu, Yuqiang; Jia, Mengmeng; Wang, Xiaohang; Zhang, Zhengxiang; Hou, Qun; Wang, Baohui

    2016-09-01

    The ketogenic diet (KD) controls seizure and improves cognition in patients with drug refractory epilepsy. However, few experimental models have shown this neuroprotective effect on cognition. In this study, we investigated the cognitive protective effects of KD in pentylenetetrazol (PTZ)-kindled rats. We used two relatively low-stress behavioral assessment methods, the novel object recognition (NOR) task and the novel placement recognition (NPR) task, to reveal impairment in item and spatial memory, respectively. We used the Morris water maze (MWM) test for comparisons amongst memory assessment methods. The KD group had a slower body weight gain and shorter bregma-lambda length than the control normal diet (ND) group. KD did not increase anxiety or decrease motor activities in an open-field test. KD attenuated the decrease in exploration ratio both in NOR and NPR tasks in kindled rats. Compared to the kindled ND rats, kindled KD rats stayed longer in target quarter during the probe trial testing of MWM. However, there were no differences in memory acquisition based on the MWM test results. In conclusion, KD attenuated the spatial and item memory impairment in PTZ-induced seizures. PMID:27343950

  2. False-positive breath-alcohol test after a ketogenic diet.

    PubMed

    Jones, A W; Rössner, S

    2007-03-01

    A 59-year-old man undergoing weight loss with very low calorie diets (VLCD) attempted to drive a car, which was fitted with an alcohol ignition interlock device, but the vehicle failed to start. Because the man was a teetotaller, he was surprised and upset by this result. VLCD treatment leads to ketonemia with high concentrations of acetone, acetoacetate and beta-hydroxybutyrate in the blood. The interlock device determines alcohol (ethanol) in breath by electrochemical oxidation, but acetone does not undergo oxidation with this detector. However, under certain circumstances acetone is reduced in the body to isopropanol by hepatic alcohol dehydrogenase (ADH). The ignition interlock device responds to other alcohols (e.g. methanol, n-propanol and isopropanol), which therefore explains the false-positive result. This 'side effect' of ketogenic diets needs further discussion by authorities when people engaged in safety-sensitive work (e.g. bus drivers and airline pilots) submit to random breath-alcohol tests. PMID:16894360

  3. The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    PubMed Central

    Ruskin, David N.; Masino, Susan A.

    2012-01-01

    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316

  4. Protective effect of the ketogenic diet in Scn1a mutant mice

    PubMed Central

    Dutton, Stacey B. B.; Sawyer, Nikki T.; Kalume, Franck; Jumbo-Lucioni, Patricia; Borges, Karin; Catterall, William A.; Escayg, Andrew

    2011-01-01

    Summary Purpose We evaluated the ability of the ketogenic diet (KD) to improve thresholds to flurothyl-induced seizures in two mouse lines with Scn1a mutations: one that models Dravet syndrome (DS) and another that models genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Methods At postnatal day 21, mouse models of DS and GEFS+ were fasted for 12–14 hours and then placed on either a 6:1 KD or a standard diet (SD) for two weeks. At the end of the two-week period, we measured thresholds to seizures induced by the chemiconvulsant flurothyl. Body weight, β-hydroxybutyrate (BHB) levels, and glucose levels were also recorded every two days over a two-week period in separate cohorts of mutant and wild-type mice that were either on the KD or the SD. Key Findings Mice on the KD gained less weight and exhibited significantly higher BHB levels compared to mice on the SD. Importantly, thresholds to flurothyl-induced seizures were restored to more normal levels in both mouse lines after two weeks on the KD. Significance These results indicate that the KD may be an effective treatment for refractory patients with SCN1A mutations. The availability of mouse models of DS and GEFS+ also provides an opportunity to better understand the mechanism of action of the KD, which may facilitate the development of improved treatments. PMID:21801172

  5. An observational study of sequential protein-sparing, very low-calorie ketogenic diet (Oloproteic diet) and hypocaloric Mediterranean-like diet for the treatment of obesity.

    PubMed

    Castaldo, Giuseppe; Monaco, Luigi; Castaldo, Laura; Galdo, Giovanna; Cereda, Emanuele

    2016-09-01

    The impact of a rehabilitative multi-step dietary program consisting in different diets has been scantily investigated. In an open-label study, 73 obese patients underwent a two-phase weight loss (WL) program: a 3-week protein-sparing, very low-calorie, ketogenic diet (<500 kcal/day; Oloproteic(®) Diet) and a 6-week hypocaloric (25-30 kcal/kg of ideal body weight/day), low glycemic index, Mediterranean-like diet (hypo-MD). Both phases improved visceral adiposity, liver enzymes, GH levels, blood pressure and glucose and lipid metabolism. However, the hypo-MD was responsible for a re-increase in blood lipids and glucose tolerance parameters. Changes in visceral adiposity and glucose control-related variables were more consistent in patients with metabolic syndrome. However, in these patients the hypo-MD did not result in a consistent re-increase in glucose control-related variables. A dietary program consisting in a ketogenic regimen followed by a balanced MD appeared to be feasible and efficacious in reducing cardiovascular risk, particularly in patients with metabolic syndrome. PMID:27193396

  6. Ketogenic diet protects against epileptogenesis as well as neuronal loss in amygdaloid-kindling seizures.

    PubMed

    Jiang, Yan; Yang, Yi; Wang, Shuang; Ding, Yao; Guo, Yi; Zhang, Man-Man; Wen, Shu-Qun; Ding, Mei-Ping

    2012-02-01

    Ketogenic diets (KD) have shown beneficial effects in terms of anticonvulsant and anti-epileptogenic properties in several experimental models. However, few studies have investigated the consequences of KD with regards to the anti-epileptogenic and neuroprotective effects in kindling-induced seizures. Here, postnatal day 28 male Sprague-Dawley rats received one of two experimental diets for 4 weeks: (a) a 'classic' 4:1 KD; and (b) a normal regular rodent chow diet (ND). Fully-kindled seizures were achieved by daily electrical stimulation in the amygdala. Seizure stage and after-discharge duration (ADD) were assessed daily. The after-discharge threshold (ADT) was measured every 5 days. The effects of the two diets on neuronal loss were observed before kindling and 20 days after stimulation by Nissl staining. We found that the progression of seizure stage and ADD was delayed by KD. KD prevented the ADT decrease on day 5. The incidence of generalized seizures was lower in the KD group compared to the ND group. The neuronal density was decreased in the ipsilateral hilus of the dentate gyrus (DG) and CA1 area, as well as the contralateral CA1 area before kindling in the KD group. However, KD prevented neuronal loss in the ipsilateral CA1 area 20 days after stimulation. Our data suggest that KD can protect against epileptogenesis by preventing both after-discharge generation and propagation in kindling seizures. In addition, KD also possesses a neuroprotective function during kindling although it changes hippocampal development in early life. PMID:22178860

  7. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial

    PubMed Central

    2011-01-01

    Background Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO) tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD) fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Methods Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day) with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2)], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. Results One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side effects, especially no

  8. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

    PubMed Central

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-01-01

    Introduction The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. Methods To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. Results The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. Conclusions These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood. PMID:25642385

  9. Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents

    PubMed Central

    Streijger, Femke; Plunet, Ward T.; Lee, Jae H. T.; Liu, Jie; Lam, Clarrie K.; Park, Soeyun; Hilton, Brett J.; Fransen, Bas L.; Matheson, Keely A. J.; Assinck, Peggy; Kwon, Brian K.; Tetzlaff, Wolfram

    2013-01-01

    High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited. PMID:24223849

  10. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester

    PubMed Central

    Hashim, Sami A.; VanItallie, Theodore B.

    2014-01-01

    Ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (βHB), were considered harmful metabolic by-products when discovered in the mid-19th century in the urine of patients with diabetic ketoacidosis. It took physicians many years to realize that KBs are normal metabolites synthesized by the liver and exported into the systemic circulation to serve as an energy source for most extrahepatic tissues. Studies have shown that the brain (which normally uses glucose for energy) can readily utilize KBs as an alternative fuel. Even when there is diminished glucose utilization in cognition-critical brain areas, as may occur early in Alzheimer’s disease (AD), there is preliminary evidence that these same areas remain capable of metabolizing KBs. Because the ketogenic diet (KD) is difficult to prepare and follow, and effectiveness of KB treatment in certain patients may be enhanced by raising plasma KB levels to ≥2 mM, KB esters, such as 1,3-butanediol monoester of βHB and glyceryl-tris-3-hydroxybutyrate, have been devised. When administered orally in controlled dosages, these esters can produce plasma KB levels comparable to those achieved by the most rigorous KD, thus providing a safe, convenient, and versatile new approach to the study and potential treatment of a variety of diseases, including epilepsy, AD, and Parkinson’s disease. PMID:24598140

  11. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester.

    PubMed

    Hashim, Sami A; VanItallie, Theodore B

    2014-09-01

    Ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (βHB), were considered harmful metabolic by-products when discovered in the mid-19th century in the urine of patients with diabetic ketoacidosis. It took physicians many years to realize that KBs are normal metabolites synthesized by the liver and exported into the systemic circulation to serve as an energy source for most extrahepatic tissues. Studies have shown that the brain (which normally uses glucose for energy) can readily utilize KBs as an alternative fuel. Even when there is diminished glucose utilization in cognition-critical brain areas, as may occur early in Alzheimer's disease (AD), there is preliminary evidence that these same areas remain capable of metabolizing KBs. Because the ketogenic diet (KD) is difficult to prepare and follow, and effectiveness of KB treatment in certain patients may be enhanced by raising plasma KB levels to ≥2 mM, KB esters, such as 1,3-butanediol monoester of βHB and glyceryl-tris-3-hydroxybutyrate, have been devised. When administered orally in controlled dosages, these esters can produce plasma KB levels comparable to those achieved by the most rigorous KD, thus providing a safe, convenient, and versatile new approach to the study and potential treatment of a variety of diseases, including epilepsy, AD, and Parkinson's disease. PMID:24598140

  12. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet.

    PubMed

    Vanderperre, Benoît; Herzig, Sébastien; Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-05-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  13. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  14. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis

    PubMed Central

    Klement, Rainer J.; Champ, Colin E.; Otto, Christoph; Kämmerer, Ulrike

    2016-01-01

    Background Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. Methods We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]). Conclusions There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors. PMID:27159218

  15. The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children.

    PubMed

    Güzel, Orkide; Yılmaz, Unsal; Uysal, Utku; Arslan, Nur

    2016-03-01

    Ketogenic diet (KD) is one of the most effective therapies for intractable epilepsy. Olive oil is rich in monounsaturated fatty acids and antioxidant molecules and has some beneficial effects on lipid profile, inflammation and oxidant status. The aim of this study was to evaluate the serum lipid levels of children who were receiving olive oil-based KD for intractable seizures at least 1 year. 121 patients (mean age 7.45 ± 4.21 years, 57 girls) were enrolled. At baseline and post-treatment 1, 3, 6, and 12 months body mass index-SDS, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride levels were measured. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. The mean duration of KD was 15.4 ± 4.1 months. Mean total cholesterol, LDL-cholesterol and triglyceride levels were significantly higher at 1st, 3rd, 6th and 12th months of the KD treatment, compared to pre-treatment levels (p = 0.001), but showed no difference among during-treatment measurements. Mean body mass index-SDS and HDL-cholesterol levels were not different among the baseline and follow-up time points (p = 0.113 and p = 0.067, respectively). No child in this study discontinued the KD because of dyslipidemia. Even if rich in olive oil, high-fat KD causes significant increase in LDL-cholesterol and triglyceride levels. More studies are needed to determine the effect of KD on serum lipids in children using different fat sources in the diet. PMID:26700799

  16. The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders

    PubMed Central

    Stafstrom, Carl E.; Rho, Jong M.

    2012-01-01

    Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat – or at least ameliorate symptoms of – these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more “natural” treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD) used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component. PMID:22509165

  17. The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer

    PubMed Central

    Poff, Angela M.; Ari, Csilla; Seyfried, Thomas N.; D’Agostino, Dominic P.

    2013-01-01

    Introduction Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. Methods We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. Results KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. Conclusions KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease. PMID:23755243

  18. Effect of ketogenic mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees

    PubMed Central

    2011-01-01

    Background There has been increased interest in recent years in very low carbohydrate ketogenic diets (VLCKD) that, even though they are much discussed and often opposed, have undoubtedly been shown to be effective, at least in the short to medium term, as a tool to tackle obesity, hyperlipidemia and some cardiovascular risk factors. For this reason the ketogenic diet represents an interesting option but unfortunately suffers from a low compliance. The aim of this pilot study is to ascertain the safety and effects of a modified ketogenic diet that utilizes ingredients which are low in carbohydrates but are formulated to simulate its aspect and taste and also contain phytoextracts to add beneficial effects of important vegetable components. Methods The study group consisted of 106 Rome council employees with a body mass index of ≥ 25, age between 18 and 65 years (19 male and 87 female; mean age 48.49 ± 10.3). We investigated the effects of a modified ketogenic diet based on green vegetables, olive oil, fish and meat plus dishes composed of high quality protein and virtually zero carbohydrate but which mimic their taste, with the addition of some herbal extracts (KEMEPHY ketogenic Mediterranean with phytoextracts). Calories in the diet were unlimited. Measurements were taken before and after 6 weeks of diet. Results There were no significant changes in BUN, ALT, AST, GGT and blood creatinine. We detected a significant (p < 0.0001) reduction in BMI (31.45 Kg/m2 to 29.01 Kg/m2), body weight (86.15 kg to 79.43 Kg), percentage of fat mass (41.24% to 34.99%), waist circumference (106.56 cm to 97.10 cm), total cholesterol (204 mg/dl to 181 mg/dl), LDLc (150 mg/dl to 136 mg/dl), triglycerides (119 mg/dl to 93 mg/dl) and blood glucose (96 mg/dl to 91 mg/dl). There was a significant (p < 0.0001) increase in HDLc (46 mg/dl to 52 mg/dl). Conclusions The KEMEPHY diet lead to weight reduction, improvements in cardiovascular risk markers, reduction in waist circumference and

  19. The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: A case series in general practice

    PubMed Central

    JANSEN, NATALIE; WALACH, HARALD

    2016-01-01

    Since the initial observations by Warburg in 1924, it has become clear in recent years that tumour cells require a high level of glucose to proliferate. Therefore, a ketogenic diet that provides the body with energy mainly through fat and proteins, but contains a reduced amount of carbohydrates, has become a dietary option for supporting tumour treatment and has exhibited promising results. In the present study, the first case series of such a treatment in general practice is presented, in which 78 patients with tumours were treated within a time window of 10 months. The patients were monitored regarding their levels of transketolase-like-1 (TKTL1), a novel tumour marker associated with aerobic glycolysis of tumour cells, and the patients' degree of adherence to a ketogenic diet. Tumour progression was documented according to oncologists' reports. Tumour status was correlated with TKTL1 expression (Kruskal-Wallis test, P<0.0001), indicating that more progressed and aggressive tumours may require a higher level of aerobic glycolysis. In palliative patients, a clear trend was observed in patients who adhered strictly to a ketogenic diet, with one patient experiencing a stagnation in tumour progression and others an improvement in their condition. The adoption of a ketogenic diet was also observed to affect the levels of TKTL1 in those patients. In conclusion, the results from the present case series in general practice suggest that it may be beneficial to advise tumour patients to adopt a ketogenic diet, and that those who adhere to it may have positive results from this type of diet. Thus, the use of a ketogenic diet as a complementary treatment to tumour therapy must be further studied in rigorously controlled trials. PMID:26870251

  20. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain.

    PubMed

    Jornayvaz, François R; Jurczak, Michael J; Lee, Hui-Young; Birkenfeld, Andreas L; Frederick, David W; Zhang, Dongyang; Zhang, Xian-Man; Samuel, Varman T; Shulman, Gerald I

    2010-11-01

    Low-carbohydrate, high-fat ketogenic diets (KD) have been suggested to be more effective in promoting weight loss than conventional caloric restriction, whereas their effect on hepatic glucose and lipid metabolism and the mechanisms by which they may promote weight loss remain controversial. The aim of this study was to explore the role of KD on liver and muscle insulin sensitivity, hepatic lipid metabolism, energy expenditure, and food intake. Using hyperinsulinemic-euglycemic clamps, we studied insulin action in mice fed a KD or regular chow (RC). Body composition was assessed by ¹H magnetic resonance spectroscopy. Despite being 15% lighter (P < 0.001) than RC-fed mice because of a 17% increase in energy expenditure (P < 0.001), KD-fed mice manifested severe hepatic insulin resistance, as reflected by decreased suppression (0% vs. 100% in RC-fed mice, P < 0.01) of endogenous glucose production during the clamp. Hepatic insulin resistance could be attributed to a 350% increase in hepatic diacylglycerol content (P < 0.001), resulting in increased activation of PKCε (P < 0.05) and decreased insulin receptor substrate-2 tyrosine phosphorylation (P < 0.01). Food intake was 56% (P < 0.001) lower in KD-fed mice, despite similar caloric intake, and could partly be attributed to a more than threefold increase (P < 0.05) in plasma N-acylphosphatidylethanolamine concentrations. In conclusion, despite preventing weight gain in mice, KD induces hepatic insulin resistance secondary to increased hepatic diacylglycerol content. Given the key role of nonalcoholic fatty liver disease in the development of type 2 diabetes and the widespread use of KD for the treatment of obesity, these results may have potentially important clinical implications. PMID:20807839

  1. What are the minimum requirements for ketogenic diet services in resource-limited regions? Recommendations from the International League Against Epilepsy Task Force for Dietary Therapy.

    PubMed

    Kossoff, Eric H; Al-Macki, Nabil; Cervenka, Mackenzie C; Kim, Heung D; Liao, Jianxiang; Megaw, Katherine; Nathan, Janak K; Raimann, Ximena; Rivera, Rocio; Wiemer-Kruel, Adelheid; Williams, Emma; Zupec-Kania, Beth A

    2015-09-01

    Despite the increasing use of dietary therapies for children and adults with refractory epilepsy, the availability of these treatments in developing countries with limited resources remains suboptimal. One possible contributory factor may be the costs. There is often reported a significant perceived need for a large ketogenic diet team, supplements, laboratory studies, and follow-up visits to provide this treatment. The 2009 Epilepsia Consensus Statement described ideal requirements for a ketogenic diet center, but in some situations this is not feasible. As a result, the International League Against Epilepsy (ILAE) Task Force on Dietary Therapy was asked to convene and provide practical, cost-effective recommendations for new ketogenic diet centers in resource-limited regions of the world. PMID:26033161

  2. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.

    PubMed

    Bueno, Nassib Bezerra; de Melo, Ingrid Sofia Vieira; de Oliveira, Suzana Lima; da Rocha Ataide, Terezinha

    2013-10-01

    The role of very-low-carbohydrate ketogenic diets (VLCKD) in the long-term management of obesity is not well established. The present meta-analysis aimed to investigate whether individuals assigned to a VLCKD (i.e. a diet with no more than 50 g carbohydrates/d) achieve better long-term body weight and cardiovascular risk factor management when compared with individuals assigned to a conventional low-fat diet (LFD; i.e. a restricted-energy diet with less than 30% of energy from fat). Through August 2012, MEDLINE, CENTRAL, ScienceDirect,Scopus, LILACS, SciELO, ClinicalTrials.gov and grey literature databases were searched, using no date or language restrictions, for randomised controlled trials that assigned adults to a VLCKD or a LFD, with 12 months or more of follow-up. The primary outcome was bodyweight. The secondary outcomes were TAG, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), systolic and diastolic blood pressure,glucose, insulin, HbA1c and C-reactive protein levels. A total of thirteen studies met the inclusion/exclusion criteria. In the overall analysis,five outcomes revealed significant results. Individuals assigned to a VLCKD showed decreased body weight (weighted mean difference 20·91 (95% CI 21·65, 20·17) kg, 1415 patients), TAG (weighted mean difference 20·18 (95% CI 20·27, 20·08) mmol/l, 1258 patients)and diastolic blood pressure (weighted mean difference 21·43 (95% CI 22·49, 20·37) mmHg, 1298 patients) while increased HDL-C(weighted mean difference 0·09 (95% CI 0·06, 0·12) mmol/l, 1257 patients) and LDL-C (weighted mean difference 0·12 (95% CI 0·04,0·2) mmol/l, 1255 patients). Individuals assigned to a VLCKD achieve a greater weight loss than those assigned to a LFD in the longterm; hence, a VLCKD may be an alternative tool against obesity. PMID:23651522

  3. Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts

    PubMed Central

    Allen, Bryan G.; Bhatia, Sudershan K.; Buatti, John M.; Brandt, Kristin E.; Lindholm, Kaleigh E.; Button, Anna M.; Szweda, Luke I.; Smith, Brian J.; Spitz, Douglas R.; Fath, Melissa A.

    2014-01-01

    Purpose Ketogenic diets (KDs) are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that KDs enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Experimental Design Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a KD (KetoCal® 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immuno-reactive 4-hydroxy-2-nonenal-(4HNE) modified proteins as a marker of oxidative stress as well as PCNA and γH2AX as indices of proliferation and DNA damage, respectively. Results The KD combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (p<0.05), relative to radiation alone. The KD also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a KD in combination with radiation demonstrated increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. Conclusions These results show that a KD enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress. PMID:23743570

  4. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes

    PubMed Central

    Rhyu, Hyun-seung; Cho, Su-Youn

    2014-01-01

    The purpose of this study was to investigate the effects of the weight loss through 3 weeks of ketogenic diet on performance-related physical fitness and inflammatory cytokines in Taekwondo athletes. The subjects selected for this research were 20 Taekwondo athletes of the high schools who participated in a summer camp training program. The subjects were randomly assigned to 2 groups, 10 subjects to each group: the ketogenic diet (KD) group and the non-ketogenic diet (NKD) group. Body composition, performance-related physical fitness factors (2,000 m sprint, Wingate test, grip force, back muscle strength, sit-up, 100 m sprint, standing broad jump, single leg standing) and cytokines (Iinterleukin-6, Interferon-γ, tumor necrosis factor-α) were analyzed before and after 3weeks of ketogenic diet. No difference between the KD and NKD groups in weight, %body fat, BMI and fat free mass. However, the KD group, compared to the NKD group, finished 2,000 m sprint in less time after weight loss, and also felt less fatigue as measured by the Wingate test and showed less increase in tumor necrosis factor-α. This result suggests that KD diet can be helpful for weight category athletes, such as Taekwondo athletes, by improving aerobic capacity and fatigue resistance capacity, and also by exerting positive effect on inflammatory response. PMID:25426472

  5. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes.

    PubMed

    Rhyu, Hyun-Seung; Cho, Su-Youn

    2014-10-01

    The purpose of this study was to investigate the effects of the weight loss through 3 weeks of ketogenic diet on performance-related physical fitness and inflammatory cytokines in Taekwondo athletes. The subjects selected for this research were 20 Taekwondo athletes of the high schools who participated in a summer camp training program. The subjects were randomly assigned to 2 groups, 10 subjects to each group: the ketogenic diet (KD) group and the non-ketogenic diet (NKD) group. Body composition, performance-related physical fitness factors (2,000 m sprint, Wingate test, grip force, back muscle strength, sit-up, 100 m sprint, standing broad jump, single leg standing) and cytokines (Iinterleukin-6, Interferon-γ, tumor necrosis factor-α) were analyzed before and after 3weeks of ketogenic diet. No difference between the KD and NKD groups in weight, %body fat, BMI and fat free mass. However, the KD group, compared to the NKD group, finished 2,000 m sprint in less time after weight loss, and also felt less fatigue as measured by the Wingate test and showed less increase in tumor necrosis factor-α. This result suggests that KD diet can be helpful for weight category athletes, such as Taekwondo athletes, by improving aerobic capacity and fatigue resistance capacity, and also by exerting positive effect on inflammatory response. PMID:25426472

  6. Do Glut1 (glucose transporter type 1) defects exist in epilepsy patients responding to a ketogenic diet?

    PubMed

    Becker, Felicitas; Schubert, Julian; Weckhuysen, Sarah; Suls, Arvid; Grüninger, Steffen; Korn-Merker, Elisabeth; Hofmann-Peters, Anne; Sperner, Jürgen; Cross, Helen; Hallmann, Kerstin; Elger, Christian E; Kunz, Wolfram S; Madeleyen, René; Lerche, Holger; Weber, Yvonne G

    2015-08-01

    In the recent years, several neurological syndromes related to defects of the glucose transporter type 1 (Glut1) have been descried. They include the glucose transporter deficiency syndrome (Glut1-DS) as the most severe form, the paroxysmal exertion-induced dyskinesia (PED), a form of spastic paraparesis (CSE) as well as the childhood (CAE) and the early-onset absence epilepsy (EOAE). Glut1, encoded by the gene SLC2A1, is the most relevant glucose transporter in the brain. All Glut1 syndromes respond well to a ketogenic diet (KD) and most of the patients show a rapid seizure control. Ketogenic Diet developed to an established treatment for other forms of pharmaco-resistant epilepsies. Since we were interested in the question if those patients might have an underlying Glut1 defect, we sequenced SLC2A1 in a cohort of 28 patients with different forms of pharmaco-resistant epilepsies responding well to a KD. Unfortunately, we could not detect any mutations in SLC2A1. The exact action mechanisms of KD in pharmaco-resistant epilepsy are not well understood, but bypassing the Glut1 transporter seems not to play an important role. PMID:26088884

  7. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures.

    PubMed

    Ni, Hong; Zhao, Dong-Jing; Tian, Tian

    2016-02-01

    Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage. PMID:26709877

  8. Transcript profiling of the ruminant liver indicates a unique program of transcriptional regulation of ketogenic enzymes during food restriction.

    PubMed

    Doelman, John; Cao, Honghe; Purdie, Norman G; Kim, Julie J M; Swanson, Kendall C; Osborne, Vernon R; Tey, Jasper; Ali, Ayesha; Feng, Zeny; Karrow, Niel A; Cant, John P

    2012-09-01

    Ruminants absorb little glucose and rely on hepatic gluconeogenesis and ketogenesis in the fed state to convert short-chain fatty acids produced during digestion into glucose and ketone bodies, respectively. In contrast to the non-ruminant response, fluxes through gluconeogenic and ketogenic pathways decrease during food restriction. Transcriptional regulation responsible for these unique food restriction responses has not been established. To determine the hepatic transcriptional response of ruminants to an acute drop in dietary nutrient supply, 102 yearling heifers were assigned to either ad libitum feeding or 24 h of food withdrawal in a randomized block design. Liver biopsies were obtained for microarray and quantitative real-time PCR analyses of gene expression. Plasma concentrations of non-esterified fatty acids were higher in food restricted heifers, while levels of β-hydroxybutyrate, triacylglycerol, and glucose were decreased. Despite a decline in substrate supply and a lower hepatic production of glucose, expression of the key gluconeogenic enzymes pyruvate carboxylase, phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase was upregulated as in non-ruminants. Downregulation of cholesterolgenic genes and upregulation of fatty acid oxidative genes were consistent with SREBP-2 and PPARα control, respectively. Ketogenesis from short-chain fatty acids was downregulated, contrary to the non-ruminant response to food restriction. Short-chain fatty acids may exert transcriptional control in the ruminant liver similar to that demonstrated in the large intestine of non-ruminants. PMID:22748507

  9. The ketogenic diet as a treatment option in adults with chronic refractory epilepsy: efficacy and tolerability in clinical practice.

    PubMed

    Lambrechts, Danielle A J E; Wielders, Laura H P; Aldenkamp, Albert P; Kessels, Fons G H; de Kinderen, Reina J A; Majoie, Marian J M

    2012-03-01

    The ketogenic diet (KD) is a high-fat, low-protein, low-carbohydrate diet that is used as a treatment for patients with difficult-to-control epilepsy. The present study assesses the efficacy and tolerability of the KD as an add-on therapy in adults with chronic refractory epilepsy. 15 adults were treated with the classical diet or MCT diet. During a follow-up period of 1 year we assessed seizure frequency, seizure severity, tolerability, cognitive performance, mood and quality of life (QOL). We found a significant reduction in seizures among the patients who followed the diet at least 1 year (n=5). Of these 5 patients, 2 had a reduction between 50 and 90%. Analyzing the study months separately, we found a seizure reduction of ≥50% in 26.6% of the patients during at least 1 month of treatment. Common side-effects were gastrointestinal disorders, loss of weight and fatigue. There was a considerable, non-significant improvement found in mood and QOL scores. Improvements were independent of reduction in seizure frequency, indicating that the effects of the KD reach further than seizure control. PMID:22366051

  10. Counting calories in Drosophila diet restriction.

    PubMed

    Min, Kyung-Jin; Flatt, Thomas; Kulaots, Indrek; Tatar, Marc

    2007-03-01

    The extension of life span by diet restriction in Drosophila has been argued to occur without limiting calories. Here we directly measure the calories assimilated by flies when maintained on full- and restricted-diets. We find that caloric intake is reduced on all diets that extend life span. Flies on low-yeast diet are long-lived and consume about half the calories of flies on high-yeast diets, regardless of the energetic content of the diet itself. Since caloric intake correlates with yeast concentration and thus with the intake of every metabolite in this dietary component, it is premature to conclude for Drosophila that calories do not explain extension of life span. PMID:17125951

  11. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity.

    PubMed

    Moreno, Basilio; Bellido, Diego; Sajoux, Ignacio; Goday, Albert; Saavedra, Dolores; Crujeiras, Ana B; Casanueva, Felipe F

    2014-12-01

    The global prevalence of obesity has significantly increased in most industrialized countries. Anti-obesity drugs are scarce, and indications to change their life style are impractical. Therefore, to identify diets able to produce significantly and maintained weight loss is mandatory. The present work evaluated the efficacy of a very low-calorie-ketogenic (VLCK) diet in obesity. A group of obese patients were randomized into two groups: the VLCK diet group and a standard low-calorie diet (LC group). The follow-up period was 12 months. Both groups received external support, counseling, to perform physical activity and adhered to the diet. The VLCK diet induced a 30-45 days of mild ketosis and significant effects on body weight within 15 days. At 2 months, the weight reductions in the VLCK diet and LC diet groups were 13.6 ± 3.9 and 4.8 ± 2.7 kg, respectively (p < 0.0001). At the end of the study, at 12 months, the weight reductions were 19.9 ± 12.3 and 7.0 ± 5.6 kg, respectively (p < 0.0001), and more than 88 % of patients in the VLCK diet group lost more of 10 % of their initial weight. Lean mass was practically unaffected. The VLCK diet was well tolerated and the side effects were moderate and transitory. In a group of obese patients, the VLCK diet was significantly more effective than a standard LC diet. At one year follow-up in the group with VLCK diet, most of the patients loss more than 10 % of their initial weight and lean mass was well preserved. PMID:24584583

  12. Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder.

    PubMed

    Smith, Jacklyn; Rho, Jong M; Teskey, G Campbell

    2016-05-01

    Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder characterized by deficits in sociability and communication, and restricted and/or repetitive motor behaviors. Amongst the diverse hypotheses regarding the pathophysiology of ASD, one possibility is that there is increased neuronal excitation, leading to alterations in sensory processing, functional integration and behavior. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used in the treatment of medically intractable epilepsy, has already been shown to reduce autistic behaviors in both humans and in rodent models of ASD. While the mechanisms underlying these effects remain unclear, we hypothesized that this dietary approach might shift the balance of excitation and inhibition towards more normal levels of inhibition. Using high-resolution intracortical microstimulation, we investigated basal sensorimotor excitation/inhibition in the BTBR T+Itpr(tf)/J (BTBR) mouse model of ASD and tested whether the KD restores the balance of excitation/inhibition. We found that BTBR mice had lower movement thresholds and larger motor maps indicative of higher excitation/inhibition compared to C57BL/6J (B6) controls, and that the KD reversed both these abnormalities. Collectively, our results afford a greater understanding of cortical excitation/inhibition balance in ASD and may help expedite the development of therapeutic approaches aimed at improving functional outcomes in this disorder. PMID:26876011

  13. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    PubMed

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice. PMID:26170063

  14. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle

    PubMed Central

    Vorgerd, M; Zange, J

    2007-01-01

    Summary McArdle’s disease is caused by genetic defects of the musclespecific isozyme of glycogen phosphorylase, which block ATP formation from glycogen in skeletal muscle. Creatine supplementation and ketogenic diet have been tested as potential supplements for muscle energy metabolism which may improve muscle symptomatic. Outcome measures were clinical scores describing muscle symptomatic and parameters derived from 31P-MRS examinations on working muscle. In two placebo controlled cross-over studies low dose creatine showed beneficial effects on muscle symptoms and performance whereas high dose creatine distinctly worsened muscle symptomatic in patients. In both studies, however, the absence of an elevation in phosphocreatine indicated the absence of a creatine uptake by the muscle fibre. The effects of creatine on muscle symptomatic may be independent from energy metabolism in muscle. In a case study, ketogenic diet improved muscle symptomatic and performance. However, these effects again did not result in 31PMRS visible changes in muscle energy metabolism. PMID:17915573

  15. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  16. The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: A rat model

    PubMed Central

    Shaafi, Sheida; Najmi, Safa; Aliasgharpour, Hamed; Mahmoudi, Javad; Sadigh-Etemad, Saeed; Farhoudi, Mahdi; Baniasadi, Negar

    2016-01-01

    Background: The ketogenic diet (KD), high in fat and low in carbohydrate and protein, provides sufficient protein but insufficient carbohydrates for all the metabolic needs of the body. KD has been known as a therapeutic manner intractable epilepsy. In recent years, the effectiveness of KD drew attention to the treatment of some other disorders such as Parkinson’s disease (PD). This study has evaluated the efficacy of KD on motor function in Parkinsonian model of rat and compared it with pramipexole. Methods: A total of 56 male Wistar rats weighing 200-240 g between 12 and 14 weeks of age were randomized in seven 8-rat groups as follows: Control group; sham-operated group; KD group; Parkinsonian control group; KD-Parkinsonian group; pramipexole-Parkinsonian group; and KD-pramipexole-Parkinsonian group. The results of bar test, beam traversal task test, and cylinder task test were compared between the groups. Results: The mean number of ketone bodies had increased significantly in the rats blood after KD. Regarding the results of the triad tests, no statistically significant difference was found between the controls and the sham-operated group. Among the Parkinsonian rats, better results were found in KD groups compared to the non-KD group. The KD enhanced the effect of pramipexole for motor function but did not reach a statistically significant level. Conclusion: The KD reinforced the motor function in Parkinsonian rats in our study. When the diet was combined with pramipexole, the effectiveness of the drug increased in enhancing motor function. PMID:27326359

  17. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss.

    PubMed

    Badman, Michael K; Kennedy, Adam R; Adams, Andrew C; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2009-11-01

    In mice of normal weight and with diet-induced obesity, a high-fat, low-carbohydrate ketogenic diet (KD) causes weight loss, reduced circulating glucose and lipids, and dramatic changes in hepatic gene expression. Many of the effects of KD are mediated by fibroblast growth factor 21 (FGF21). We tested the effects of KD feeding on ob/ob mice to determine if metabolic effects would occur in obesity secondarily to leptin deficiency. We evaluated the effect of prolonged KD feeding on weight, energy homeostasis, circulating metabolites, glucose homeostasis, and gene expression. Subsequently, we evaluated the effects of leptin and fasting on FGF21 expression in ob/ob mice. KD feeding of ob/ob mice normalized fasting glycemia and substantially reduced insulin and lipid levels in the absence of weight loss. KD feeding was associated with significant increases in lipid oxidative genes and reduced expression of lipid synthetic genes, including stearoyl-coenzyme A desaturase 1, but no change in expression of inflammatory markers. In chow-fed ob/ob mice, FGF21 mRNA was elevated 10-fold compared with wild-type animals, and no increase from this elevated baseline was seen with KD feeding. Administration of leptin to chow-fed ob/ob mice led to a 24-fold induction of FGF21. Fasting also induced hepatic FGF21 in ob/ob mice. Thus, KD feeding improved ob/ob mouse glucose homeostasis without weight loss or altered caloric intake. These data demonstrate that manipulation of dietary macronutrient composition can lead to marked improvements in metabolic profile of leptin-deficient obese mice in the absence of weight loss. PMID:19738035

  18. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    PubMed

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders. PMID

  19. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    PubMed Central

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d’Amati, Giulia

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  20. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model.

    PubMed

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2(-/-)) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2(-/-) mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  1. Effectiveness of ketogenic diet in pentylenetetrazol-induced and kindling rats as well as its potential mechanisms.

    PubMed

    Wang, Shan; Ding, Yao; Ding, Xiao-Yan; Liu, Zhi-Rong; Shen, Chun-Hong; Jin, Bo; Guo, Yi; Wang, Shuang; Ding, Mei-Ping

    2016-02-12

    The effects and mechanisms of ketogenic diets (KD) are unclear. In this study, we aimed to reveal electrographic and behavioral thresholds in responses to the KD in pentylenetetrazol (PTZ)-induced seizures, as well as its antiepileptogenic effects on PTZ-kindling rats. Additionally, we investigated the potential link between KD and expression levels of two cation chloride co-transporters: K(+)-Cl(-) co-transporter 2 (KCC2) and Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1). The KD group had significantly higher electrographic thresholds than the control (ND) group for the first spike-and-wave, subcontinuous spike-and-wave, high amplitude spike-and-wave, and polyspikes both in the cortex and hippocampus. Compared to the ND group, the KD group had higher behavioral thresholds for behavioral absence, first jerk, first overt myoclonia, and generalized seizures. In the PTZ-kindling model, KD not only prolonged the latency of myoclonic and clonic convulsions, but shortened clonic and generalized duration. In addition, KD rats had higher KCC2 protein expression before kindling, during myoclonic jerks, and GTCS compared with ND rats. There were no significant differences in NKCC1 protein levels between both groups following the four-week dietary intervention without PTZ exposure (before kindling). Moreover, KD inhibited the upregulation of NKCC1 expression induced by kindling in myoclonic jerks and GTCS. Therefore, our findings demonstrated that KD had antiepileptic features in elevating thresholds to most electrographic and behavioral seizure patterns in PTZ-induced rats, as well as delaying the progression and alleviating the severity of seizure in PTZ-kindling model. The antiepileptogenic effects of KD may be attributed to its regulatory properties on KCC2 and NKCC1 protein expression. PMID:26751594

  2. The modified atkins diet in refractory epilepsy.

    PubMed

    Sharma, Suvasini; Jain, Puneet

    2014-01-01

    The modified Atkins diet is a less restrictive variation of the ketogenic diet. This diet is started on an outpatient basis without a fast, allows unlimited protein and fat, and does not restrict calories or fluids. Recent studies have shown good efficacy and tolerability of this diet in refractory epilepsy. In this review, we discuss the use of the modified Atkins diet in refractory epilepsy. PMID:24627806

  3. Very low calorie ketogenic weight reduction diet in patients with cirrhosis: a case series.

    PubMed

    Temmerman, J C; Friedman, A N

    2013-01-01

    Weight reduction may be necessary in patients with end-stage liver disease (ESLD) before liver transplantation. Although very low calorie diets (VLCDs) are a highly effective weight loss strategy, they risk inducing protein-calorie malnutrition, sarcopenia and hepatic encephalopathy in ESLD patients. We report for the first time on the use of VCLDs in ESLD. Two severely obese individuals with ESLD underwent a modified VLCD to become eligible for liver transplantation. Patients consumed four protein supplements and one lean meal daily, equivalent to 800 kilocalories (kcal) and were closely monitored during the diet period. Subject 1, a 46-year-old male with alcoholic cirrhosis, lost 44.1 kg after 28 weeks on a modified VLCD. Liver function and MELD (model for end-stage liver disease) scores improved and he currently does not require listing for transplantation. Subject 2, a 64-year-old female with non-alcoholic steatohepatitis, lost 39.7 kg after a 30-week modified VLCD. She is awaiting liver transplantation listing with a stable MELD score. VLCDs were well tolerated by both patients without adverse effects. In conclusion, under close medical supervision VLCDs in patients with ESLD can be safe and effective in reducing weight, facilitating liver transplantation listing, and possibly improving liver damage. PMID:24247485

  4. Catabolism of (2E)-4-Hydroxy-2-nonenal via ω- and ω-1-Oxidation Stimulated by Ketogenic Diet*

    PubMed Central

    Jin, Zhicheng; Berthiaume, Jessica M.; Li, Qingling; Henry, Fabrice; Huang, Zhong; Sadhukhan, Sushabhan; Gao, Peng; Tochtrop, Gregory P.; Puchowicz, Michelle A.; Zhang, Guo-Fang

    2014-01-01

    Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE. PMID:25274632

  5. Does ketogenic diet improve cognitive function in patients with GLUT1-DS? A 6- to 17-month follow-up study.

    PubMed

    Ramm-Pettersen, Anette; Stabell, Kirsten Engberg; Nakken, Karl O; Selmer, Kaja Kristine

    2014-10-01

    The aim of this study was to investigate the effects of ketogenic diet (KD) on cognitive function in patients with glucose transporter protein 1 deficiency syndrome (GLUT1-DS). Six patients with GLUT1-DS who were referred to the National Centre for Epilepsy in Norway during the period of November 2011-September 2013 were included. They were diagnosed with GLUT1-DS on the basis of early-onset seizures and developmental delay (with or without movement disorders or microcephaly) in addition to CSF-to-blood glucose ratio below 0.5. They were all treated with either classical KD or modified Atkins diet (MAD). The effect of the diet with >90% reduction in the seizure frequency was, in retrospect, considered as a support for the diagnosis. The patients underwent standardized neuropsychological assessment before the diet was initiated, and they were reassessed after a minimum of six months on the diet. The neuropsychological tests were individually selected for each patient in order to match their cognitive level. The main finding was a considerable improvement in several aspects of neuropsychological functioning after 6-17 months of dietary treatment in all the six patients. The greatest progress was seen in the youngest children. Our findings suggest that early diagnosis and dietary treatment are important in order to prevent developmental delay. However, also adults with GLUT1-DS may profit from dietary treatment by improving alertness, setting the stage for enhanced learning capacity, as well as physical endurance and quality of life. PMID:25240122

  6. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    PubMed

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. PMID:27001280

  7. The Impact of 3:1 Ketogenic Diet on Cardiac Repolarization Changes in Children with Refractory Seizures: A Prospective Follow-Up Study.

    PubMed

    Özdemir, Rahmi; Güzel, Orkide; Küçük, Mehmet; Karadeniz, Cem; Yılmaz, Ünsal; Calik, Tansel; Meşe, Timur

    2016-06-01

    Background The association between ketogenic diet (KD) and prolonged QT interval, life-threatening ventricular arrhythmias, and sudden death is controversial. Aim We aimed to prospectively evaluate the effect of KD on electrocardiography (ECG) measures in children with refractory epilepsy. Method A total of 70 children with drug-resistant epilepsy who received a KD for at least 12 months were included in the study. The standard 12-lead electrocardiography was performed in all patients before the beginning and in the 12th month of KD. Heart rate, P-wave duration and dispersion, corrected QT interval and QT dispersion, and Tp-e interval were measured. Results All ECG-derived parameters, but P-wave dispersion increased after 12 months of KD compared with the baseline values. However, these changes were not statistically significant. Conclusion A 12-month long 3:1 KD treatment exerts no deleterious effect on cardiac repolarization measures. PMID:27043293

  8. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats.

    PubMed

    de Almeida Rabello Oliveira, Marcela; da Rocha Ataíde, Terezinha; de Oliveira, Suzana Lima; de Melo Lucena, Ana Luíza; de Lira, Carla Emmanuela Pereira Rodrigues; Soares, Anderson Acioli; de Almeida, Clarissa Beatriz Santos; Ximenes-da-Silva, Adriana

    2008-03-21

    The ketogenic diet (KD) is a high fat and low carbohydrate and protein diet. It is used in the clinical treatment of epilepsy, in order to decrease cerebral excitability. KD is usually composed by long-chain triglycerides (LCT) while medium-chain triglycerides (MCT) diet is beginning to be used in some clinical treatment of disorders of pyruvate carboxylase enzyme and long-chain fatty acid oxidation. Our study aimed to analyze the effects of medium- and long-chain KD on cerebral electrical activity, analyzing the propagation of the phenomenon of cortical spreading depression (CSD). Three groups of weaned rats (21 days old) received, for 7 weeks, either a control (AIN-93G diet), or a MCT-KD (rich in triheptanoin oil), or a LCT-KD (rich in soybean oil). They were compared to another three groups (21 days old) receiving the same diets for just 10 days. CSD propagation was evaluated just after ending the dietary treatments. Results showed that short-term KD treatment resulted in a significant reduction of the CSD velocity of propagation (control group: 4.02+/-1.04mm/min; MCT-KD: 0.81+/-1.46mm/min and LCT-KD: 2.26+/-0.41mm/min) compared to the control group. However, long-term treatment with both KDs had no effect on the CSD velocity (control group: 3.10+/-0.41mm/min, MCT-KD: 2.91+/-1.62mm/min, LCT-KD: 3.02+/-2.26mm/min) suggesting that both short-term KDs have a positive effect in decreasing brain cerebral excitability in young animals. These data show for the first time that triheptanoin has an effect on central nervous system. PMID:18281154

  9. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma

    PubMed Central

    2010-01-01

    Background Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia. Methods Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet. Results Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4. Conclusions Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose. PMID:20831808

  10. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver.

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2015-12-01

    Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver. PMID:26408964

  11. Comments on dietary restriction, Okinawa diet and longevity.

    PubMed

    Gavrilova, Natalia S; Gavrilov, Leonid A

    2012-01-01

    Longevity in Okinawa is considered to be a result of traditional low calorie diet. Le Bourg suggests that Okinawa is an example of severe malnutrition, which is harmful for later generations. We believe that current loss of longevity advantage in Okinawa is a result of diet westernization and that the dietary restriction is a valid way of life extension in humans. PMID:21893946

  12. The MCT-ketogenic diet as a treatment option in refractory childhood epilepsy: A prospective study with 2-year follow-up.

    PubMed

    Lambrechts, Danielle A J E; de Kinderen, Reina J A; Vles, Hans S H; de Louw, Anton J; Aldenkamp, Albert P; Majoie, Marian J M

    2015-10-01

    The present study assessed the long-term (i.e., 24months) efficacy of the ketogenic diet (KD) as an add-on therapy in children with refractory epilepsy, with focus on seizure frequency, seizure severity, and tolerability. Most patients were treated with the MCT-diet. At one and two years, 33% and 23%, respectively, of the 48 included patients were still on the KD. After three months, one year, and two years of treatment, 16.7% of the patients were responders. The highest responder rate (i.e., 22.9%) was seen at six and nine months of treatment. Of the fifteen patients with seizure clusters during baseline, 60% were responders after three months when looking at cluster reduction and most of them were not responders for the total seizure frequency. From three months of treatment onwards, most of the patients had a relevant decrease in seizure severity which was mainly related to the most severe seizure type. Gastrointestinal dysfunction was often reported, especially in the first six weeks of treatment. Growth deceleration was present in 30% of the patients, and weight reduction in 15%. Improved arousal was mentioned in 30% of patients. No patients developed ECG abnormalities or kidney stones. Increase in lipid profile was rare. The KD is an effective therapy for children with therapy-resistant epilepsy. Effectiveness is reflected in the reduction of seizure frequency as well as in the reduction of seizure severity. After 6months of treatment, it is obvious which patients are responders and tolerate the treatment well. Most of these patients will continue to benefit from the KD for a longer time. Long-term use of the diet was well tolerated. PMID:26301622

  13. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1−/− mice

    PubMed Central

    Nylen, Kirk; Velazquez, Jose Luis Perez; Sayed, Venus; Gibson, K. Michael; Burnham, W.M.; Snead, O. Carter

    2009-01-01

    Summary BACKGROUND Succinic semialdehyde dehydrogenase (SSADH) deficiency is an inborn error of GABA metabolism characterized clinically by ataxia, psychomotor retardation and seizures. A mouse model of SSADH deficiency, the Aldh5a1−/− mouse, has been used to study the pathophysiology and treatment of this disorder. Recent work from our group has shown that the ketogenic diet (KD) is effective in normalizing the Aldh5a1−/− phenotype, although the mechanism of the effect remains unclear. METHODS Here, we examine the effects of a KD on the number of hippocampal mitochondria as well as on ATP levels in hippocampus. Electron microscopy was performed to determine the number of mitochondria in the hippocampus of Aldh5a1−/− mice. Adenosine triphosphate (ATP) levels were measured in hippocampal extracts. RESULTS Our results show that the KD increases the number of mitochondria in Aldh5a1−/− mice. We also show that Aldh5a1−/− mice have significant reductions in hippocampal ATP levels as compared to controls, and that the KD restores ATP in mutant mice to normal levels. CONCLUSIONS & GENERAL SIGNIFICANCE Taken together, our data suggest that the KD’s actions on brain mitochondria may play a role in the diet’s ability to treat murine SSADH deficiency. PMID:19168117

  14. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy

    PubMed Central

    Poff, A. M.; Ward, N.; Seyfried, T. N.; Arnold, P.; D’Agostino, D. P.

    2015-01-01

    The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies – the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT) and dietary ketone supplementation – could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control), low glucose (LG), ketone supplementation (βHB), hyperbaric oxygen (HBOT), or combination therapy (LG+βHB+HBOT) on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers. PMID:26061868

  15. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy.

    PubMed

    Poff, A M; Ward, N; Seyfried, T N; Arnold, P; D'Agostino, D P

    2015-01-01

    The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies - the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT) and dietary ketone supplementation - could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control), low glucose (LG), ketone supplementation (βHB), hyperbaric oxygen (HBOT), or combination therapy (LG+βHB+HBOT) on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers. PMID:26061868

  16. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model

    PubMed Central

    Woolf, Eric C.; Curley, Kara L.; Liu, Qingwei; Turner, Gregory H.; Charlton, Julie A.; Preul, Mark C.; Scheck, Adrienne C.

    2015-01-01

    Background The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. Methods To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Results Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. Conclusions The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas. PMID:26083629

  17. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running.

    PubMed

    Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2016-08-01

    We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P < 0.05). Absolute and relative (body mass-adjusted) omental adipose tissue (OMAT) masses were greatest in WD rats (P < 0.05), and OMAT adipocyte diameters were lowest in KD-fed rats (P < 0.05). None of the assayed OMAT or subcutaneous (SQ) protein markers were affected by the diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss. PMID:27357802

  18. Long-term ketogenic diet causes glucose intolerance and reduced β- and α-cell mass but no weight loss in mice.

    PubMed

    Ellenbroek, Johanne H; van Dijck, Laura; Töns, Hendrica A; Rabelink, Ton J; Carlotti, Françoise; Ballieux, Bart E P B; de Koning, Eelco J P

    2014-03-01

    High-fat, low-carbohydrate ketogenic diets (KD) are used for weight loss and for treatment of refractory epilepsy. Recently, short-time studies in rodents have shown that, besides their beneficial effect on body weight, KD lead to glucose intolerance and insulin resistance. However, the long-term effects on pancreatic endocrine cells are unknown. In this study we investigate the effects of long-term KD on glucose tolerance and β- and α-cell mass in mice. Despite an initial weight loss, KD did not result in weight loss after 22 wk. Plasma markers associated with dyslipidemia and inflammation (cholesterol, triglycerides, leptin, monocyte chemotactic protein-1, IL-1β, and IL-6) were increased, and KD-fed mice showed signs of hepatic steatosis after 22 wk of diet. Long-term KD resulted in glucose intolerance that was associated with insufficient insulin secretion from β-cells. After 22 wk, insulin-stimulated glucose uptake was reduced. A reduction in β-cell mass was observed in KD-fed mice together with an increased number of smaller islets. Also α-cell mass was markedly decreased, resulting in a lower α- to β-cell ratio. Our data show that long-term KD causes dyslipidemia, a proinflammatory state, signs of hepatic steatosis, glucose intolerance, and a reduction in β- and α-cell mass, but no weight loss. This indicates that long-term high-fat, low-carbohydrate KD lead to features that are also associated with the metabolic syndrome and an increased risk for type 2 diabetes in humans. PMID:24398402

  19. Comparison of a Restricted and Unrestricted Vegan Diet Plan with a Restricted Omnivorous Diet Plan on Health-Specific Measures

    PubMed Central

    Bloomer, Richard J.; Gunnels, Trint A.; Schriefer, JohnHenry M.

    2015-01-01

    Background: We have previously noted beneficial health outcomes when individuals follow a dietary restriction plan in accordance with the Daniel Fast (DF). This is true whether individuals eliminate all animal products or include small amounts of meat and dairy in their plan. The present study sought to compare anthropometric and biochemical measures of health in individuals following a traditional DF (i.e., restricted vegan) or modified DF (i.e., restricted omnivorous; inclusive of ad libitum meat and skim milk consumption), with those following an unrestricted vegan diet plan. Methods: 35 subjects (six men; 29 women; 33 ± 2 years; range: 18–67 years) completed a 21-day diet plan. Subjects reported to the lab for pre- (day 1) and post-intervention testing (day 22) in a 10 h fasted state. Blood samples were collected and assayed for complete blood count, metabolic panel, lipid panel, insulin, HOMA-IR, C-reactive protein, and oxidative stress biomarkers (malondialdehyde, advanced oxidation protein products, and nitrate/nitrite). Heart rate and blood pressure were measured and body composition was determined via dual energy X-ray absorptiometry. Subjects’ self-reported compliance, mental and physical health, and satiety in relation to the dietary modification were recorded. Results: No interaction effects were noted for our outcome measures (p > 0.05). However, subjects in the traditional DF group reported an approximate 10% increase in perceived mental and physical health, with a 25% reduction in malondialdehyde and a 33% reduction in blood insulin. Systolic BP was reduced approximately 7 mmHg in subjects assigned to the traditional DF, with an approximate 5 mmHg reduction in subjects assigned to the modified DF and the unrestricted vegan plan. A small (2 mmHg) reduction in diastolic BP was noted for subjects in both DF groups; a slight increase in diastolic BP was noted for subjects assigned to the unrestricted vegan group. An approximate 20% reduction was

  20. Low-carbohydrate diets: an update on current research.

    PubMed

    Wylie-Rosett, Judith; Davis, Nichola J

    2009-10-01

    The diabetes and obesity epidemics have stimulated research to assess the benefits and potential risks of low-carbohydrate diets. Carbohydrate comprises less than 45% of calories in carbohydrate-restricted diets, but very low carbohydrate ketogenic diets may restrict carbohydrate to 20 g initially with variability in the carbohydrate level subsequently. Some research suggests that low-carbohydrate diets may achieve better early weight loss than comparison diets higher in carbohydrate. Studies of up to 1 year suggest that weight loss on low-carbohydrate diet is comparable with fat-restricted diets with higher carbohydrate content. Limited research has been conducted to evaluate low-carbohydrate diets in managing type 2 diabetes. Although science continues to advance in this field, current research suggests that low-carbohydrate diets can be a viable option for achieving weight loss and may have beneficial effects on glycemic control, triglyceride levels, and high-density lipoprotein cholesterol levels in some patients. PMID:19793510

  1. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women

    PubMed Central

    Volek, JS; Sharman, MJ; Gómez, AL; Judelson, DA; Rubin, MR; Watson, G; Sokmen, B; Silvestre, R; French, DN; Kraemer, WJ

    2004-01-01

    Objective To compare the effects of isocaloric, energy-restricted very low-carbohydrate ketogenic (VLCK) and low-fat (LF) diets on weight loss, body composition, trunk fat mass, and resting energy expenditure (REE) in overweight/obese men and women. Design Randomized, balanced, two diet period clinical intervention study. Subjects were prescribed two energy-restricted (-500 kcal/day) diets: a VLCK diet with a goal to decrease carbohydrate levels below 10% of energy and induce ketosis and a LF diet with a goal similar to national recommendations (%carbohydrate:fat:protein = ~60:25:15%). Subjects 15 healthy, overweight/obese men (mean ± s.e.m.: age 33.2 ± 2.9 y, body mass 109.1 ± 4.6 kg, body mass index 34.1 ± 1.1 kg/m2) and 13 premenopausal women (age 34.0 ± 2.4 y, body mass 76.3 ± 3.6 kg, body mass index 29.6 ± 1.1 kg/m2). Measurements Weight loss, body composition, trunk fat (by dual-energy X-ray absorptiometry), and resting energy expenditure (REE) were determined at baseline and after each diet intervention. Data were analyzed for between group differences considering the first diet phase only and within group differences considering the response to both diets within each person. Results Actual nutrient intakes from food records during the VLCK (%carbohydrate:fat:protein = ~9:63:28%) and the LF (~58:22:20%) were significantly different. Dietary energy was restricted, but was slightly higher during the VLCK (1855 kcal/day) compared to the LF (1562 kcal/day) diet for men. Both between and within group comparisons revealed a distinct advantage of a VLCK over a LF diet for weight loss, total fat loss, and trunk fat loss for men (despite significantly greater energy intake). The majority of women also responded more favorably to the VLCK diet, especially in terms of trunk fat loss. The greater reduction in trunk fat was not merely due to the greater total fat loss, because the ratio of trunk fat/total fat was also significantly reduced during the VLCK diet in

  2. A decade of the modified Atkins diet (2003–2013): Results, insights, and future directions.

    PubMed

    Kossoff, Eric H; Cervenka, Mackenzie C; Henry, Bobbie J; Haney, Courtney A; Turner, Zahava

    2013-12-01

    The modified Atkins diet has been used since 2003 for the treatment of children and adults with refractory epilepsy.This “alternative” ketogenic diet is started in clinic, without fasting, hospitalization, and restriction of protein,calories, or fluid intake. Now after 10 years of continued use, approximately 400 patients have been reported in over 30 studies of the modified Atkins diet as treatment for intractable seizures, with results demonstrating similar efficacy to the ketogenic diet and improved tolerability. The modified Atkins diet is being increasingly used in the adult population. Clinical trials have provided insight into the mechanisms of action of dietary therapies overall. This review will discuss the past decade of experience with the modified Atkins diet as well as predictions for its role in the treatment of epilepsy a decade from now. PMID:24386671

  3. Adaptation of Myocardial Substrate Metabolism to a Ketogenic Nutrient Environment*

    PubMed Central

    Wentz, Anna E.; d'Avignon, D. André; Weber, Mary L.; Cotter, David G.; Doherty, Jason M.; Kerns, Robnet; Nagarajan, Rakesh; Reddy, Naveen; Sambandam, Nandakumar; Crawford, Peter A.

    2010-01-01

    Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor α-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial 13C enrichment of glutamate when 13C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states. PMID:20529848

  4. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    SciTech Connect

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-11-15

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.

  5. Restrictive Diets May Cause Thyroid Troubles in Young Kids

    MedlinePlus

    ... autism. His parents were keeping him on a gluten-free, casein-free diet -- which meant he wasn' ... certain foods -- such as meat or dairy or gluten-containing grains -- they talk to their pediatrician or ...

  6. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  7. [Effect of dosed diet restriction on physiological remodeling and bioelectric properties of bone].

    PubMed

    Levashov, M I; Ianko, R V; Chaka, E G; Safonov, S L

    2014-07-01

    The effect of dosed diet restriction on the physiological remodeling and bioelectric properties of bone tissue was studied in 48 male Wistar rats 3- and 18-months of age. The rate of bone tissue apposition was studied by the dynamic histomorphometry method (intravital tetracycline labeling). Electric potentials on the periosteal surface of the freshly isolated femurs were recorded. The magnitude of dielectric loss factor was determined to assess the quality of bone tissue. The control rats received a standard diet. The experimental rats received a limited diet (60 % of the standard mass) for 28 days. The magnitude and rate of the bone tissue apposition on the endosteal and periosteal surface of the tibia were less by 38.4% and 122.7% respectively in experimental rats after dosed diet restriction. Electric potential in the metaphyseal-epiphyseal growth zones of the femur was 29.7% lower, and the dielectric loss factor increased by 15.8%. The bone tissue apposition rate and the electric potential magnitude were increased 10 days after completion of the dosed diet restriction. The magnitude of the dielectric loss factor decreased after returning to the standard diet. Key words: dosed diet restriction, bone, remodelling, bioelectric properties. PMID:25669112

  8. A putative low-carbohydrate ketogenic diet elicits mild nutritional ketosis but does not impair the acute or chronic hypertrophic responses to resistance exercise in rodents.

    PubMed

    Roberts, Michael D; Holland, A Maleah; Kephart, Wesley C; Mobley, C Brooks; Mumford, Petey W; Lowery, Ryan P; Fox, Carlton D; McCloskey, Anna E; Shake, Joshua J; Mesquita, Paulo; Patel, Romil K; Martin, Jeffrey S; Young, Kaelin C; Kavazis, Andreas N; Wilson, Jacob M

    2016-05-15

    We examined whether acute and/or chronic skeletal muscle anabolism is impaired with a low-carbohydrate diet formulated to elicit ketosis (LCKD) vs. a mixed macronutrient Western diet (WD). Male Sprague-Dawley rats (9-10 wk of age, 300-325 g) were provided isoenergetic amounts of a LCKD or a WD for 6 wk. In AIM 1, basal serum and gastrocnemius assessments were performed. In AIM 2, rats were resistance exercised for one bout and were euthanized 90-270 min following exercise for gastrocnemius analyses. In AIM 3, rats voluntarily exercised daily with resistance-loaded running wheels, and hind limb muscles were analyzed for hypertrophy markers at the end of the 6-wk protocol. In AIM 1, basal levels of gastrocnemius phosphorylated (p)-rps6, p-4EBP1, and p-AMPKα were similar between diets, although serum insulin (P < 0.01), serum glucose (P < 0.001), and several essential amino acid levels (P < 0.05) were lower in LCKD-fed rats. In AIM 2, LCKD- and WD-fed rats exhibited increased postexercise muscle protein synthesis levels (P < 0.0125), but no diet effect was observed (P = 0.59). In AIM 3, chronically exercise-trained LCKD- and WD-fed rats presented similar increases in relative hind limb muscle masses compared with their sedentary counterparts (12-24%, P < 0.05), but there was no between-diet effects. Importantly, the LCKD induced "mild" nutritional ketosis, as the LCKD-fed rats in AIM 2 exhibited ∼1.5-fold greater serum β-hydroxybutyrate levels relative to WD-fed rats (diet effect P = 0.003). This study demonstrates that the tested LCKD in rodents, while only eliciting mild nutritional ketosis, does not impair the acute or chronic skeletal muscle hypertrophic responses to resistance exercise. PMID:26718785

  9. Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy.

    PubMed

    Yuen, Alan W C; Sander, Josemir W

    2014-04-01

    There has been resurgence in the use of dietary treatment, principally the classical ketogenic diet and its variants, for people with epilepsy. These diets generally require significant medical and dietician support. An effective but less restrictive dietary regimen is likely to be more acceptable and more widely used. Calorie-restricted diets appear to produce a range of biochemical and metabolic changes including reduced glucose levels, reduced inflammatory markers, increased sirtuins, increased AMPK signaling, inhibition of mTOR signaling, and increase in autophagy. There are studies in animal seizure models that suggest that these biochemical and metabolic changes may decrease ictogenesis and epileptogenesis. A calorie-restricted diet might be effective in reducing seizures in people with epilepsy. Hence, there is a sufficient rationale to undertake clinical trials to assess the efficacy and safety of calorie-restricted diets in people with epilepsy. PMID:24657501

  10. Dieting in bulimia nervosa is associated with increased food restriction and psychopathology but decreased binge eating.

    PubMed

    Lowe, Michael R; Witt, Ashley A; Grossman, Stephanie L

    2013-08-01

    The cognitive behavioral model of bulimia nervosa (BN) suggests that dieting is central to the maintenance of binge eating. However, correlational and experimental studies suggest that additional clarification is needed about the nature of this relationship. Dieting, weight, eating disorder psychopathology, and depression were assessed at admission among 166 patients with BN presenting for residential treatment. As in past research, a significant fraction (43%) of patients with BN reported not currently dieting. A comparison of weight loss dieters and non-dieters found greater food restriction and eating disorder psychopathology among weight loss dieters. However, dieters reported less frequent binge eating. There were no significant group differences in depression. Results suggest that 1) while many individuals with BN are attempting to restrict their food intake, the goal of losing weight fundamentally alters the effect of such restriction on binge eating, and 2) treatment may benefit from helping patients to establish a healthier approach to achieving long-term weight stability. PMID:23910778

  11. Zinc-deficient rats have more limited bone recovery during repletion than diet-restricted rats.

    PubMed

    Hosea, Heather J; Taylor, Carla G; Wood, Trisha; Mollard, Rebecca; Weiler, Hope A

    2004-04-01

    The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats. PMID:15044713

  12. Ketogenic dietary therapies in adults with epilepsy: a practical guide.

    PubMed

    Schoeler, Natasha E; Cross, J Helen

    2016-06-01

    Ketogenic dietary therapies are an effective treatment option for children with drug-resistant epilepsy. There is an increasing worldwide interest in using these diets to manage adult epilepsy; uncontrolled studies show similar response rates to those in children. Despite this, there are only a few centres with dedicated services for adults. We clearly need controlled studies of this treatment in adults. Here, we aim to familiarise adult neurologists with the evidence base for these diets and give practical advice on starting and maintaining them in adults. PMID:26908897

  13. Time-restricted feeding reduces adiposity in mice fed a high-fat diet.

    PubMed

    Sundaram, Sneha; Yan, Lin

    2016-06-01

    Disruption of the circadian rhythm contributes to obesity. This study tested the hypothesis that time-restricted feeding (TRF) reduces high-fat diet-induced increase in adiposity. Male C57BL/6 mice were fed the AIN93G or the high-fat diet ad libitum (ad lib); TRF of the high-fat diet for 12 or 8hours during the dark cycle was initiated when high-fat diet-fed mice exhibited significant increases in body weight. Energy intake of the TRF 12-hour group was not different from that of the high-fat ad lib group, although that of the TRF 8-hour group was slightly but significantly lower. Restricted feeding of the high-fat diet reduced body fat mass and body weight compared with mice fed the high-fat diet ad lib. There were no differences in respiratory exchange ratio (RER) among TRF and high-fat ad lib groups, but the RER of these groups was lower than that of the AIN93G group. Energy expenditure of the TRF groups was slightly but significantly lower than that of the high-fat ad lib group. Plasma concentrations of ghrelin were increased in TRF groups compared with both AIN93G and high-fat ad lib groups. Elevations of plasma concentrations of insulin, leptin, monocyte chemoattractant protein-1, and tissue inhibitor metalloproteinase-1 by high-fat ad lib feeding were reduced by TRF to the levels of mice fed the AIN93G diet. In conclusion, TRF during the dark cycle reduces high-fat diet-induced increases in adiposity and proinflammatory cytokines. These results indicate that circadian timing of food intake may prevent obesity and abate obesity-related metabolic disturbance. PMID:27188906

  14. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  15. Effects of diet, bacitracin, and body weight restrictions on the intestine of broiler chicks.

    PubMed

    Stutz, M W; Johnson, S L; Judith, F R

    1983-08-01

    Six experiments were conducted to evaluate the effects of diet, bacitracin, and body weight restrictions on the intestine of the broiler chick. Bacitracin, at levels of 11 and 55 ppm, significantly increased body weight, significantly reduced small intestine weight, but had no significant effect on liver weight of chicks fed a soybean protein and sucrose-based diet. The greatest effects were observed in the ileum where weight, moisture, length per unit of body weight, and dry matter per unit of length were all significantly reduced. The least effects were observed in the duodenum where weight and length per unit of body weight were significantly reduced and dry matter per unit of length was significantly increased. Intestinal weight, as a percent of body weight, was not significantly affected when body weight was suppressed with a high level of nicarbazin added to a practical diet, but it was significantly reduced when bacitracin was added to the semipurified diet and chicks were restricted in food intake to 70% of controls. A level of 55 ppm of bacitracin added to the practical diet had no significant effect on body weight, intestinal weight, or liver weight. As discussed, the observed changes in the intestine, due to bacitracin, are probably indirect and most likely reflect the action of the antibiotic on the intestinal microflora. PMID:6634597

  16. Time-restricted feeding of a high-fat diet reduces diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing obesity may alleviate many medical complications including diabetes, cardiovascular disease and cancer. It has been suggested that obesity is contributed by the disruption of the circadian rhythms in addition to increased caloric intake. Restricting feeding to particular times of the day ma...

  17. Body-mass, survival, and pairing consequences of winter-diet restriction in wood ducks

    USGS Publications Warehouse

    Demarest, D.W.; Kaminski, R.M.; Brennan, L.A.; Boyle, C.R.

    1997-01-01

    We conducted feeding experiments with captive, wild-strain wood ducks (Aix sponsa) during winters 1990-91 and 1991-92 to test effects of increasing levels of food restriction on body mass dynamics, mortality, and pair formation. Male and female wood ducks fed restricted diets (i.e., 5, 10, 15, or 20% less food [g] than consumed on the previous day by a control group fed ad libitum) weighed less (P ??? 0.037) than birds fed ad libitum; those on 15 and 20% restricted diets weighed least. Increased mortality and decreased pair formation occurred only within the 20% restricted group (P ??? 0.049). We concluded that food restriction ranging between 15 and 20% of ad libitum intake may signify a threshold above which survival and reproduction of captive wood ducks may be impaired. Because energy costs of free living are greater than in captivity, a lower threshold may exist for wild wood ducks. Research is needed to validate the threshold theory for free-ranging wood ducks and other waterfowl, and to evaluate its potential application for conservation of winter foraging habitat. Conservation of bottomland hardwood ecosystems, which provide important foraging habitat for migrating and wintering wood ducks, should be encouraged to prevent potential negative effects on wood duck life-cycle events.

  18. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  19. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    PubMed

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2015-05-10

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR's tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent. PMID:25895126

  20. Physical and Cognitive Performance of the Least Shrew (Cryptotis parva) on a Calcium-Restricted Diet.

    PubMed

    Czajka, Jessica L; McCay, Timothy S; Garneau, Danielle E

    2012-09-01

    Geological substrates and air pollution affect the availability of calcium to mammals in many habitats, including the Adirondack Mountain Region (Adirondacks) of the United States. Mammalian insectivores, such as shrews, may be particularly restricted in environments with low calcium. We examined the consequences of calcium restriction on the least shrew (Cryptotis parva) in the laboratory. We maintained one group of shrews (5 F, 5 M) on a mealworm diet with a calcium concentration comparable to beetle larvae collected in the Adirondacks (1.1 ± 0.3 mg/g) and another group (5 F, 3 M) on a mealworm diet with a calcium concentration almost 20 times higher (19.5 ± 5.1 mg/g). Animals were given no access to mineral sources of calcium, such as snail shell or bone. We measured running speed and performance in a complex maze over 10 weeks. Shrews on the high-calcium diet made fewer errors in the maze than shrews on the low-calcium diet (F1,14 = 12.8, p < 0.01). Females made fewer errors than males (F1,14 = 10.6, p < 0.01). Running speeds did not markedly vary between diet groups or sexes, though there was a trend toward faster running by shrews on the high calcium diet (p = 0.087). Shrews in calcium-poor habitats with low availability of mineral sources of calcium may have greater difficulty with cognitive tasks such as navigation and recovery of food hoards. PMID:25379219

  1. Physical and Cognitive Performance of the Least Shrew (Cryptotis parva) on a Calcium-Restricted Diet

    PubMed Central

    Czajka, Jessica L.; McCay, Timothy S.; Garneau, Danielle E.

    2012-01-01

    Geological substrates and air pollution affect the availability of calcium to mammals in many habitats, including the Adirondack Mountain Region (Adirondacks) of the United States. Mammalian insectivores, such as shrews, may be particularly restricted in environments with low calcium. We examined the consequences of calcium restriction on the least shrew (Cryptotis parva) in the laboratory. We maintained one group of shrews (5 F, 5 M) on a mealworm diet with a calcium concentration comparable to beetle larvae collected in the Adirondacks (1.1 ± 0.3 mg/g) and another group (5 F, 3 M) on a mealworm diet with a calcium concentration almost 20 times higher (19.5 ± 5.1 mg/g). Animals were given no access to mineral sources of calcium, such as snail shell or bone. We measured running speed and performance in a complex maze over 10 weeks. Shrews on the high-calcium diet made fewer errors in the maze than shrews on the low-calcium diet (F1,14 = 12.8, p < 0.01). Females made fewer errors than males (F1,14 = 10.6, p < 0.01). Running speeds did not markedly vary between diet groups or sexes, though there was a trend toward faster running by shrews on the high calcium diet (p = 0.087). Shrews in calcium-poor habitats with low availability of mineral sources of calcium may have greater difficulty with cognitive tasks such as navigation and recovery of food hoards. PMID:25379219

  2. Lower fat and better quality diet therapy for children with pharmacoresistant epilepsy.

    PubMed

    Yoon, Jung-Rim; Kim, Heung Dong; Kang, Hoon-Chul

    2013-08-01

    The ketogenic diet (KD) is an established, effective, nonpharmacologic treatment for children with pharmacoresistant epilepsy. Although the KD is the most well-established dietary therapy for epilepsy, it is too restrictive and is associated with serious complications; therefore, alternative lower-fat diets, including a modified Atkins diet and low-glycemic index diet, have been developed. Recent ongoing clinical evidence suggests that other dietary therapies have an efficacy almost comparable to that of the KD. In addition, a diet rich in polyunsaturated fatty acids appears to increase the efficacy of diet therapy and reduce the complications of a high-fat diet. Here, we review the systematic information about lower-fat diets and better-quality dietary therapies and the current clinical status of each of these dietary approaches. PMID:24019842

  3. Lower fat and better quality diet therapy for children with pharmacoresistant epilepsy

    PubMed Central

    Yoon, Jung-Rim; Kim, Heung Dong

    2013-01-01

    The ketogenic diet (KD) is an established, effective, nonpharmacologic treatment for children with pharmacoresistant epilepsy. Although the KD is the most well-established dietary therapy for epilepsy, it is too restrictive and is associated with serious complications; therefore, alternative lower-fat diets, including a modified Atkins diet and low-glycemic index diet, have been developed. Recent ongoing clinical evidence suggests that other dietary therapies have an efficacy almost comparable to that of the KD. In addition, a diet rich in polyunsaturated fatty acids appears to increase the efficacy of diet therapy and reduce the complications of a high-fat diet. Here, we review the systematic information about lower-fat diets and better-quality dietary therapies and the current clinical status of each of these dietary approaches. PMID:24019842

  4. Feed restriction and a diet's caloric value: The influence on the aerobic and anaerobic capacity of rats

    PubMed Central

    2012-01-01

    Background The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats. Methods We used 40 adult Wistar rats. The animals were divided into four groups: ad libitum commercial Purina® diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina® diet (RAP), ad libitum semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05). Results At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with ad libitum diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups. Conclusions We conclude that dietary restriction induces changes in energetic substrates and that ad libitum intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises. PMID:22448911

  5. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice

    PubMed Central

    Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie

    2016-01-01

    Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces

  6. Iodine Deficiency and Hypothyroidism From Voluntary Diet Restrictions in the US: Case Reports.

    PubMed

    Booms, Stephanie; Hill, Elizabeth; Kulhanek, Leah; Vredeveld, Jennifer; Gregg, Brigid

    2016-06-01

    Iodine deficiency is rare in the United States today, and this is largely due to the effectiveness of iodization in the general food supply. Recent trends among specific populations of children in the United States include adopting food restrictions, such casein-free and gluten-free diets. Although the effect of these types of diets on overall nutrition status and certain micronutrients has been studied in children with autism spectrum disorder, the effect of these limitations on iodine levels in children has not been assessed. We present here 2 cases of iodine deficiency resulting from severe food restriction and associated primary hypothyroidism. In 1 case a classic presentation with a goiter was seen. These children were able to discontinue thyroid hormone treatment once iodine levels were normalized. There were no adverse events or unanticipated outcomes. The occurrence of these cases of iodine deficiency in the United States points to the need for thyroid function testing in children with severe food restrictions, especially those who have limited exposure to dairy, baked goods, and table salt. PMID:27244854

  7. What are the roles of calorie restriction and diet quality in promoting healthy longevity?

    PubMed

    Rizza, Wanda; Veronese, Nicola; Fontana, Luigi

    2014-01-01

    Epidemiological and experimental data indicate that diet plays a central role in the pathogenesis of many age-associated chronic diseases, and in the biology of aging itself. Data from several animal studies suggest that the degree and time of calorie restriction (CR) onset, the timing of food intake as well as diet composition, play major roles in promoting health and longevity, breaking the old dogma that only calorie intake is important in extending healthy lifespan. Data from human studies indicate that long-term CR with adequate intake of nutrients results in several metabolic adaptations that reduce the risk of developing type 2 diabetes, hypertension, cardiovascular disease and cancer. Moreover, CR opposes the expected age-associated alterations in myocardial stiffness, autonomic function, and gene expression in the human skeletal muscle. However, it is possible that some of the beneficial effects on metabolic health are not entirely due to CR, but to the high quality diets consumed by the CR practitioners, as suggested by data collected in individuals consuming strict vegan diets. More studies are needed to understand the interactions among single nutrient modifications (e.g. protein/aminoacid, fatty acids, vitamins, phytochemicals, and minerals), the degree of CR and the frequency of food consumption in modulating anti-aging metabolic and molecular pathways, and in the prevention of age-associated diseases. PMID:24291541

  8. Time-restricted feeding of a high-fat diet reduces adiposity and inflammatory cytokine production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythms contributes to obesity. Restricting feeding to particular times of the day may reset the circadian rhythms and reduce obesity and resulting complications. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity...

  9. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-02-01

    Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in rats and mice, achieving "aging retardant" effects very similar to those of caloric restriction, including a suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve moderate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino acid. Plant proteins - especially those derived from legumes or nuts - tend to be lower in methionine than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie content, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free IGF-I; the latter effect would be amplified by methionine restriction - though it is not clear whether IGF-I down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents. PMID:18789600

  10. Long-term consumption of a carbohydrate-restricted diet does not induce deleterious metabolic effects.

    PubMed

    Grieb, Paweł; Kłapcińska, Barbara; Smol, Ewelina; Pilis, Tomasz; Pilis, Wiesław; Sadowska-Krepa, Ewa; Sobczak, Andrzej; Bartoszewicz, Zbigniew; Nauman, Janusz; Stańczak, Kinga; Langfort, Józef

    2008-12-01

    Carbohydrate (CHO)-restricted diets have been recommended for weight loss and to prevent obesity, but their long-term effects have not been fully elucidated. This study was designed to evaluate the effect of long-term (>1 year) consumption of a low-CHO high-fat diet ("The optimal diet," developed by Dr Kwaśniewski referenced herein) on lipid profile, glycemic control, and cardiovascular disease risk factors in healthy subjects. Of 31 "optimal" dieters enrolled in the study (17 women and 14 men, aged 51.7+/-16.6 years), 22 declared adherence to the diet for more than 3 years. Average energy intake and principal nutrients consumed were assessed from 6-day dietary records provided by the participants. In most dieters, concentrations of beta-hydroxybutyrate, free fatty acids, total cholesterol, and low-density lipoprotein cholesterol exceeded the upper limits of the reference ranges for nonstarved subjects. The metabolic profiles of most subjects were positive for several indicators, including relatively low concentrations of triacylglycerols, high levels of high-density lipoprotein cholesterol (HDL-C), and normal ratios of low-density lipoprotein cholesterol/HDL-C and total cholesterol/HDL-C. In most subjects, plasma concentrations of glucose, insulin, glucagon, cortisol, homocysteine, glycerol, and C-reactive protein were within reference ranges. Notably, in all but one subject, the homeostasis model assessment index of insulin resistance remained below the threshold for diagnosis of insulin resistance. These results indicate that long-term (>1 year) compliance with a low-CHO high-fat "optimal diet" does not induce deleterious metabolic effects and does not increase the risk for cardiovascular disease, as evidenced by maintenance of adequate glycemic control and relatively low values for conventional cardiovascular risk factors. PMID:19083495

  11. DNA Methylation Pattern in Overweight Women under an Energy-Restricted Diet Supplemented with Fish Oil

    PubMed Central

    do Amaral, Cátia Lira; Milagro, Fermín I.; Curi, Rui; Martínez, J. Alfredo

    2014-01-01

    Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC). However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded. PMID:24579084

  12. Effect of a Low Iodine Diet vs. Restricted Iodine Diet on Postsurgical Preparation for Radioiodine Ablation Therapy in Thyroid Carcinoma Patients

    PubMed Central

    Lim, Chi Young; Kim, Jung-Yeon; Yoon, Mi-Jin; Chang, Hang Seok; Park, Cheong Soo

    2015-01-01

    Purpose The radioiodine ablation therapy is required for patients who underwent a total thyroidectomy. Through a comparative review of a low iodine diet (LID) and a restricted iodine diet (RID), the study aims to suggest guidelines that are suitable for the conditions of Korea. Materials and Methods The study was conducted with 101 patients. With 24-hour urine samples from the patients after a 2-week restricted diet and after a 4-week restricted diet, the amount of iodine in the urine was estimated. The consumed radioiodine amounts for 2 hours and 24 hours were calculated. Results This study was conducted with 47 LID patients and 54 RID patients. The amounts of iodine in urine, the 2-week case and 4-week case for each group showed no significant differences. The amounts of iodine in urine between the two groups were both included in the range of the criteria for radioiodine ablation therapy. Also, 2 hours and 24 hours radioiodine consumption measured after 4-week restrictive diet did not show statistical differences between two groups. Conclusion A 2-week RID can be considered as a type of radioiodine ablation therapy after patients undergo a total thyroidectomy. PMID:26069126

  13. Diet restriction and life history trade-offs in short- and long-lived species of Daphnia.

    PubMed

    Latta, Leigh Clark; Frederick, Shannon; Pfrender, Michael Eugene

    2011-12-01

    The life-extending effects of diet restriction are well documented. One evolutionary model that accounts for this widespread conservation is the resource allocation model, where the selected individuals are those that can delay reproduction during periods of resource limitation. In this study, we use closely related species of a model organism, Daphnia, with widely divergent lifespans to address the relationship between diet restriction and longevity and assess whether the relationships are owing to trade-offs between reproductive and somatic investment. Specifically, we conducted a common garden experiment and constructed reaction norms for lifespan, fecundity, and body size as a function of food concentration. Our study provides evidence that the short-lived species in our study, D. pulex, shows the classically observed relationship of enhanced lifespan in response to reduced diet intake, but does not divert resources to somatic maintenance at the expense of reproduction during chronic diet restriction. In contrast, we find no evidence that the long-lived species in our study, D. pulicaria, gains any life-extending effects through diet restriction. Combined, our results provide evidence that the resource allocation model is not sufficient to explain the evolution of diet-mediated lifespan plasticity. PMID:21953827

  14. Components of an anticancer diet: dietary recommendations, restrictions and supplements of the Bill Henderson Protocol.

    PubMed

    Mannion, Cynthia; Page, Stacey; Bell, Laurie Heilman; Verhoef, Marja

    2011-01-01

    The use of complementary and alternative medicines including dietary supplements, herbals and special diets to prevent or treat disease continues to be popular. The following paper provides a description of an alternative dietary approach to the self-management and treatment of cancer, the Bill Henderson Protocol (BHP). This diet encourages daily intake of raw foods, a combination of cottage cheese and flaxseed oil and a number of supplements. Some foods and food groups are restricted (e.g., gluten, meat, dairy). Early background theory that contributed to the protocol's development is presented as is a summary of relevant evidence concerning the anti-cancer fighting properties of the individual components. Supplement intake is considered in relation to daily recommended intakes. Challenges and risks to protocol adherence are discussed. As with many complementary and alternative interventions, clear evidence of this dietary protocol's safety and efficacy is lacking. Consumers of this protocol may require guidance on the ability of this protocol to meet their individual nutritional needs. PMID:22254073

  15. Components of an Anticancer Diet: Dietary Recommendations, Restrictions and Supplements of the Bill Henderson Protocol

    PubMed Central

    Mannion, Cynthia; Page, Stacey; Bell, Laurie Heilman; Verhoef, Marja

    2010-01-01

    The use of complementary and alternative medicines including dietary supplements, herbals and special diets to prevent or treat disease continues to be popular. The following paper provides a description of an alternative dietary approach to the self-management and treatment of cancer, the Bill Henderson Protocol (BHP). This diet encourages daily intake of raw foods, a combination of cottage cheese and flaxseed oil and a number of supplements. Some foods and food groups are restricted (e.g., gluten, meat, dairy). Early background theory that contributed to the protocol’s development is presented as is a summary of relevant evidence concerning the anti-cancer fighting properties of the individual components. Supplement intake is considered in relation to daily recommended intakes. Challenges and risks to protocol adherence are discussed. As with many complementary and alternative interventions, clear evidence of this dietary protocol’s safety and efficacy is lacking. Consumers of this protocol may require guidance on the ability of this protocol to meet their individual nutritional needs. PMID:22254073

  16. Improvement in metabolic parameters in obese subjects after 16 weeks on a Brazilian-staple calorie-restricted diet

    PubMed Central

    Reis, Caio E. G.; da Silva, Fábio V. P.; Casulari, Luiz A.

    2014-01-01

    BACKGROUND/OBJECTIVES The standard pattern of Brazilian food consumption is based on the combination of rice and beans served together in the main meals. This study assessed the effects of Brazilian-staple calorie-restricted (BS-diet) dietary advice, with brown rice and beans, on metabolic parameters, body composition, and food intake in overweight/obese subjects. SUBJECTS/METHODS Twentyseven subjects were randomly assigned to a conventional-type calorie-restricted diet (CT-diet) (n = 13) or a BS-diet (n = 14). Glucose metabolism, lipid profile, anthropometric and body composition parameters, and food intake were measured before and after 16 weeks. Paired t-tests/Wilcoxon tests were used for comparison of differences from baseline and unpaired t-tests/Mann-Whitney tests were used for comparison of differences between the groups. RESULTS After 16 weeks, both groups showed reductions in weight and waist circumference (P < 0.02), and the BS-diet group showed a decrease in body fat (P = 0.0001), and significant improvement in glucose metabolism (fasting plasma glucose, glucose and insulin areas under the curve, Cederholm index, and HOMA2-%β) (P ≤ 0.04) and lipid profile (cholesterol, triacylglycerol, LDL-c, VLDL-c, and cholesterol/HDL-c ratio) (P ≤ 0.05). In addition, the BS-diet group showed significant improvement in HOMA2-%β, compared to the CT-diet group (P = 0.03). The BS-diet group also showed a significant reduction in energy, lipids, carbohydrate, and cholesterol intake (P ≤ 0.04) and an increase in fiber intake (P ≤ 0.001), while the CT-diet group showed a significant reduction in intake of energy, macronutrients, PUFA, and cholesterol (P ≤ 0.002). CONCLUSIONS These results demonstrate the benefits of the BS-diet on metabolic parameters in obese subjects. PMID:25110561

  17. FGF21 is an endocrine signal of protein restriction.

    PubMed

    Laeger, Thomas; Henagan, Tara M; Albarado, Diana C; Redman, Leanne M; Bray, George A; Noland, Robert C; Münzberg, Heike; Hutson, Susan M; Gettys, Thomas W; Schwartz, Michael W; Morrison, Christopher D

    2014-09-01

    Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake. PMID:25133427

  18. Long–Term Effects of Energy-Restricted Diets Differing in Glycemic Load on Metabolic Adaptation and Body Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A randomized controlled trial of high glycemic load (HG) and low glycemic load (LG) diets with food provided for 6 months and self-administered for 6 additional months at 30% caloric restriction (CR) was performed in 29 overweight adults (mean+/-SD, age 35+/-5y; BMI 27.5+/-1.5 kg/m2). Total energy e...

  19. Energy metabolism and biochemical features of adipose tissues in ICR mice after long-term calorie-restricted diet.

    PubMed

    Mizonova, O V; Elsukova, E I; Medvedev, L N

    2013-10-01

    Long-term calorie-restricted diet (8 weeks, 60% of control food intake) was followed by an increase in thermogenic activity of interscapular brown fat. The relative amount of DNA and protein and the rate of oxygen consumption increased and tissue-specific marker of brown fat (uncoupling protein UCP1) appeared in significantly reduced deep-pink abdominal adipose tissue. PMID:24288756

  20. The effects of diet and caloric restriction on adipose tissue fatty acid signatures of tufted puffin (Fratercula cirrhata) nestlings.

    PubMed

    Williams, Cory T; Iverson, Sara J; Buck, C Loren

    2009-08-01

    Fatty acid (FA) signature analysis is a powerful tool to investigate foraging ecology and food web dynamics in marine ecosystems. However, use of FA signatures to qualitatively or quantitatively infer diets is potentially complicated by effects of nutritional state on lipid metabolism. Estimation of diets using the quantitative fatty acid signature analysis (QFASA) model requires the use of calibration coefficients to account for predator metabolism of individual FAs. We conducted a captive feeding experiment to determine the effects of a 50% reduction in food intake on growth rate and adipose tissue FA signatures of tufted puffin (Fratercula cirrhata) nestlings, a species that routinely experiences food restriction during growth. FA signatures of chicks fed low- and high-calorie diets both exhibited a change in composition in response to the dietary shift with the direction of change in the composition of individual FAs matching the direction of change in the dietary FAs. Despite a growth rate in the restricted nestlings that was 38% of those in the well-fed group, rates of FA turnover were not different between high and low-calorie treatments, and turnover was close to, but not entirely complete, after 27 days on both high-calorie and restricted diets. FA signatures of tufted puffin nestlings were significantly affected by caloric restriction, but these effects were much less pronounced than those of dietary turnover, and calibration coefficients of puffins fed low and high-calorie diets were highly correlated. Our results demonstrate that changes in physiological state can affect FA metabolism, but future research is required to better understand whether the size of these effects is sufficient to substantially alter diet estimation using the QFASA model. PMID:19350253

  1. Diet restriction in Ramadan and the effect of fasting on glucose levels in pregnancy

    PubMed Central

    2014-01-01

    Background Maternal diet restriction might be associated with adverse maternal and perinatal outcomes due to metabolic changes. This study aimed to investigate the prevalence of changes in glucose levels due to Ramadan fasting in Emirati pregnant women. We conducted a cross-sectional observational study of 150 women from the United Arab Emirates, (76 during Ramadan and 74 after Ramadan), with uncomplicated pregnancies at a gestational age between 20 and 36 weeks. Results The two groups of pregnant women had similar physiological parameters. Using the oral glucose tolerance test, the mean random blood glucose level after 1 hour of breaking the fast was significantly higher (p = 0.002) in the Ramadan fasting group than in the control group, and this was not affected by the number of fasting days. In 50% of patients after Ramadan and 70.5% during Ramadan, this value was more than 6.7 mmol/l, which is high and not an acceptable postprandial level in pregnancy. Conclusion Caregivers need to consider the 1-hour postprandial glucose level response after fasting in Muslim pregnant women. Research of an interventional design is required to determine remedial actions for this issue. PMID:24962444

  2. Diet composition exacerbates or attenuates soman toxicity in rats: implied metabolic control of nerve agent toxicity.

    PubMed

    Myers, Todd M; Langston, Jeffrey L

    2011-06-01

    To evaluate the role of diet composition on nerve agent toxicity, rats were fed four distinct diets ad libitum for 28 d prior to challenge with 110 μg/kg (1.0 LD(50), sc) soman. The four diets used were a standard rodent diet, a choline-enriched diet, a glucose-enriched diet, and a ketogenic diet. Body weight was recorded throughout the study. Toxic signs and survival were evaluated at key times for up to 72 h following soman exposure. Additionally, acquisition of discriminated shuttlebox avoidance performance was characterized beginning 24h after soman challenge and across the next 8 d (six behavioral sessions). Prior to exposure, body weight was highest in the standard diet group and lowest in the ketogenic diet group. Upon exposure, differences in soman toxicity as a function of diet became apparent within the first hour, with mortality in the glucose-enriched diet group reaching 80% and exceeding all other groups (in which mortality ranged from 0 to 6%). At 72 h after exposure, mortality was 100% in the glucose-enriched diet group, and survival approximated 50% in the standard and choline-enriched diet groups, but equaled 87% in the ketogenic diet group. Body weight loss was significantly reduced in the ketogenic and choline-enriched diet groups, relative to the standard diet group. At 1 and 4h after exposure, rats in the ketogenic diet group had significantly lower toxic sign scores than all other groups. The ketogenic diet group performed significantly better than the standard diet group on two measures of active avoidance performance. The exacerbated soman toxicity observed in the glucose-enriched diet group coupled with the attenuated soman toxicity observed in the ketogenic diet group implicates glucose availability in the toxic effects of soman. This increased glucose availability may enhance acetylcholine synthesis and/or utilization, thereby exacerbating peripheral and central soman toxicity. PMID:21396400

  3. Diets

    MedlinePlus

    Your diet is made up of what you eat. A healthy diet May include fruits, vegetables, whole grains, and fat- ... added sugars There are many different types of diets. Some, like a vegetarian diet, don't include ...

  4. Failure of lactose-restricted diets to prevent radiation-induced diarrhea in patients undergoing whole pelvis irradiation

    SciTech Connect

    Stryker, J.A.; Bartholomew, M.

    1986-05-01

    Sixty-four patients were randomized prior to pelvic radiotherapy into one of three dietary groups: the control group maintained a regular diet except that they drank at least 480 cc of milk daily; the lactose-restricted group was placed on a lactose-restricted diet; and the lactase group drank at least 480 cc of milk with lactase enzyme added to hydrolyze 90% of the lactose. The patients kept records of their stool frequency and the number of diphenoxylate tablets required to control their diarrhea during a 5 week course of standard whole pelvis irradiation. The data does not support the concept that one of the mechanisms of radiation-induced diarrhea associated with pelvic irradiation is a reduction the ability of the intestine to hydrolyze ingested lactose due to the effect of the radiation on the small intestine. There was not a significant difference in stool frequency or diphenoxylate usage among the dietary groups.

  5. Effect of concentrates restriction on feed consumption, diet digestibility, and nitrogen utilization in captive Asian elephants (Elephas maximus).

    PubMed

    Das, A; Smith, M L; Saini, M; Katole, Shrikant; Kullu, S S; Gupta, B K; Sharma, A K; Swarup, D

    2015-01-01

    In order to study the effect of concentrates restriction on feed consumption, diet digestibility, and utilization of nitrogen in captive Asian elephants (Elephas maximus), two feeding trials were conducted on three juveniles, four sub-adults, and three adults. During trial I, the conventional zoo diets of juveniles, sub-adults, and adult contained 22, 17, and 16% of concentrates on dry matter (DM) basis, respectively. During trial II, the amount of concentrate was reduced by 50%. A digestion trial of five days collection period was conducted during each period. The animals ate more roughages when concentrates were restricted. Intake of DM (g/kg BW(0.75) /day) was highest in sub-adults, followed by juveniles and adults. Apparent digestibility of crude protein (CP), neutral detergent soluble (NDS), and supply of digestible energy (DE) was highest in juveniles, followed by sub-adults and adults. Based upon the estimated metabolic fecal nitrogen (MFN) and calculated endogenous urinary nitrogen (EUN) and dermal losses, minimum dietary CP required to meet maintenance requirement was estimated to be 6.12, 6.05, and 5.97% in juveniles, sub-adults, and adults, respectively. Restriction of concentrates resulted in decreased (P < 0.05) digestibility of DM and GE, but the diet still supplied adequate amounts of DE and CP to fulfill estimated requirements of energy and protein during the period of experimentation. Thus, the concentrates portion of the diets of captive Asian elephants should be fed in a restricted way so as to reduce the intake of excessive calories and the potential risk of obesity. PMID:25516334

  6. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    SciTech Connect

    Magrane, D. )

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % of tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.

  7. THE EFFECTS OF THE DASH DIET ALONE AND IN COMBINATION WITH EXERCISE AND CALORIC RESTRICTION ON INSULIN SENSITIVITY AND LIPIDS

    PubMed Central

    Blumenthal, James A.; Babyak, Michael A.; Sherwood, Andrew; Craighead, Linda; Lin, Pao-Hwa; Johnson, Julie; Watkins, Lana L.; Wang, Jenny T.; Kuhn, Cynthia; Feinglos, Mark; Hinderliter, Alan

    2010-01-01

    This study examined the effects of the Dietary Approaches to Stop Hypertension (DASH) diet on insulin sensitivity and lipids. In a randomized control trial, 144 overweight (body mass index 25–40) men (N= 47) and women (N= 97) with high blood pressure (130–159/85–99 mm Hg) were randomly assigned to either: (1) DASH diet alone (DASH-A); (2) DASH diet with aerobic exercise and caloric restriction (DASH-WM); or usual diet controls (UC). Body composition, fitness, insulin sensitivity, and fasting lipids were measured before and following 4 months of treatment. Insulin sensitivity was estimated based on glucose and insulin levels in the fasting state and after an oral glucose load. Participants in the DASH-WM condition lost weight (−8.7 [95% CI = −2.0, −9.7] kg,), and exhibited a significant increase in aerobic capacity, while the DASH-A and UC participants maintained their weight (−0.3 [95% CI = −1.2, 0.5] kg and +0.9 [95% CI = 0.0, 1.7] kg, respectively) and had no improvement in exercise capacity. DASH-WM demonstrated lower glucose levels following the oral glucose load, improved insulin sensitivity, and lower total cholesterol and triglycerides compared to both DASH-A and UC, and lower fasting glucose and low-density lipoprotein cholesterol compared to UC; DASH-A participants generally did not differ from UC in these measures. Combining the DASH diet with exercise and weight loss resulted in significant improvements in insulin sensitivity and lipids. Despite clinically significant reductions in blood pressure, the DASH diet alone, without caloric restriction or exercise, resulted in minimal improvements in insulin sensitivity or lipids. PMID:20212264

  8. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    PubMed

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus. PMID:24189138

  9. Effect of carbohydrate restriction and high carbohydrates diets on men with chemical diabetes.

    PubMed

    Anderson, J W

    1977-03-01

    The influence of low carbohydrate (CHO) diets, starvation, and high CHO diets on glucose tolerance tests (GTT) and plasma insulin response of men with chemical diabetes was studied. The GTT and insulin responses of these seven lean diabetic men were unchanged when the carbohydrate content of the diet was reduced from 44 to 20% of calories. After a 48-hr fast a significant deterioration of the GTT was observed in these diabetic men but the percentage change was identical to that reported previously for normal men. Thus these studies indicate that changes in glucose mtes are quite similar to those reported previously for normal men. The fasting plasma glucose values of seven lean and four obese men with chemical diabetes were significantly lower after one week on a 75% CHO diet than values on a 44% CHO diet. The 75% CHO diet also was accompanied by slight improvements in the oral and intravenous GTT and by slightly lower plasma insulin responses. The improvement in glucose metabolism on high CHO diets appears to results from increased insulin sensitivity. Serum triglyceride values were approximately 55% higher on the 75% CHO diet than values on the 44% CHO diet for the 11 men but these differences were not statistically significant. These studies support previous observations and suggest that high CHO diets may be beneficial in the management of certain diabetic patients. However, further studies are required to determine the long-term effects of high CHO diets containing natural foods on the glucose and lipid metabolism of diabetic patients. PMID:842491

  10. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet.

    PubMed

    Camargo, Rafael L; Batista, Thiago M; Ribeiro, Rosane A; Branco, Renato C S; Da Silva, Priscilla M R; Izumi, Clarice; Araujo, Thiago R; Greene, Lewis J; Boschero, Antonio C; Carneiro, Everardo M

    2015-11-01

    Malnutrition programs the neuroendocrine axis by disruption of food-intake control, leading to obesity. Taurine (Tau) is neuroprotective and improves anorexigenic actions in the hypothalamus. We evaluated the hypothalamic gene-expression profile and food-intake control in protein-restricted mice submitted to a high-fat diet (HFD) and Tau supplementation. Mice were fed on a control (14 % protein-C) or a protein-restricted diet (6 % protein-R) for 6 weeks. Thereafter, mice received, or not, HFD for 8 weeks (CH and RH) with or without 5 % Tau supplementation (CHT and RHT). Protein restriction led to higher food intake, but calories were matched to controls. Excessive calorie intake occurred in HFD mice and this was prevented by Tau supplementation only in the CH group. Additionally, RH and CH mice developed hypothalamic leptin resistance, which was prevented by Tau. Global alterations in the expressions of genes involved in hypothalamic metabolism, cellular defense, apoptosis and endoplasmic reticulum stress pathways were induced by dietary manipulations and Tau treatment. The orexigenic peptides NPY and AgRP were increased by protein restriction and lowered by the HFD. The anorexigenic peptide Pomc was increased by HFD, and this was prevented by Tau only in CH mice. Thus, food intake was disrupted by dietary protein restriction and obesity. HFD-induced alterations were not enhanced by previous protein deficiency, but the some beneficial effects of Tau supplementation upon food intake were blunted by protein restriction. Tau effects upon feeding behavior control are complex and involve interactions with a vast gene network, preventing hypothalamic leptin resistance. PMID:26133737

  11. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  12. Salicylate elimination diets in children: is food restriction supported by the evidence?

    PubMed

    Gray, Paul E A; Mehr, Sam; Katelaris, Constance H; Wainstein, Brynn K; Star, Anita; Campbell, Dianne; Joshi, Preeti; Wong, Melanie; Frankum, Brad; Keat, Karuna; Dunne, Geraldine; Dennison, Barbara; Kakakios, Alyson; Ziegler, John B

    2013-06-17

    A review of case notes from our Sydney-based paediatric allergy services, between 1 January 2003 and 31 December 2011, identified 74 children who had been prescribed diets that eliminated foods containing natural salicylates before attending our clinics. The most common indications for starting the diets were eczema (34/74) and behavioural disturbances (17/74) including attention deficit hyperactivity disorder (ADHD). We could find no peer-reviewed evidence to support the efficacy of salicylate elimination diets in managing these diseases. We do not prescribe these diets, and in a survey of European and North American food allergy experts, only 1/23 respondents used a similar diet for eczema, with none of the respondents using salicylate elimination to treat ADHD. A high proportion (31/66) of children suffered adverse outcomes, including nutritional deficiencies and food aversion, with four children developing eating disorders. We could find no published evidence to support the safety of these diets in children. While this uncontrolled study does not prove a causal relationship between salicylate elimination diets and harm, the frequency of adverse events appears high, and in the absence of evidence of safety or efficacy, we cannot recommend the use of these diets in children. PMID:23919705

  13. Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats.

    PubMed

    Shen, Chwan-Li; Zhu, Wenbin; Gao, Weimin; Wang, Shu; Chen, Lixia; Chyu, Ming-Chien

    2013-08-01

    This study investigates the effects of a restricted diet (RD) on body composition and musculoskeletal health along with endocrines and molecular mechanism in established mature obese rats. Twenty female rats were fed with a high-fat diet (HFD) ad libitum for 4 months and then assigned to either HFD or RD group for another 4 months. Another 10 rats were on a low-fat diet for 8 months. Outcome measures included body composition, bone mineral density, microarchitecrure, and strength; serum leptin, adiponectin, insulin-like growth factor I, and liver glutathione peroxidase activity; and protein expression and spleen tumor necrosis factor α messenger RNA expression. We hypothesized that mature obese rats on a 35% energy restriction diet for 4 months would improve body composition but degrade microstructural and mechanical properties of long bones, and such changes in musculoskeletal integrity are related to the modulation of obesity-related endocrines and proinflammation. Relative to HFD, RD benefited body composition (decreased body weight and %fat mass and increased %fat-free mass); decreased insulin-like growth factor I and leptin; elevated adiponectin, glutathione peroxidase activity and protein expression and tumor necrosis factor α messenger RNA expression; and suppressed bone formation and increased bone resorption, resulting in decreased trabecular and cortical bone volume, bone mineral density, and bone strength. Relative to low-fat diet, RD had a similar effect on body composition and serum markers but increased bone turnover rate and decreased bone mineral density and strength. Our data suggest that long-term RD has a negative impact on bone remodeling in obese female rats, probably through modification of endocrines and elevation of proinflammation. PMID:23890357

  14. Opioid effects on glucose and eicosanoid metabolism in isolated uterus of ovariectomized and non-ovariectomized restricted diet rats.

    PubMed

    Campos, M L; Casalino-Matsuda, S M; Linares, J A; Goldraij, A

    2001-09-01

    The effect of a 25-day restricted diet (50% of the normal food intake) on uterine glucose metabolism of ovariectomized (25 days) and non-ovariectomized rats, was studied. Underfeeding reduces (14)CO(2) production from U(14)C-glucose in intact animal. However, in spayed rats, results are the opposite. In intact rats receiving a low food intake, the effect of the addition to the KRB medium of various agonist opioids, was studied. Dinorphin A did not bring about any change. On the other hand, beta endorphin increased glucose metabolism. Also, the addition of Dago and Dadle increased (14)CO(2) production, while their corresponding specific blockers, beta-FNA and Naltrindole, reversed it. Ovariectomized rats subjected to food restriction are not affected by opioid agonists. In vitro morphine, like endogenous opioids, increased (14)CO(2) in intact restricted diet rats. Arachidonic acid metabolism in these rats show that underfeeding brings about a decrease in PGF(2 alpha) and PGE(2), but the addition of morphine does not alter this situation, for which eicosanoids metabolites are not related to the effect of morphine. The morphine effect was not altered by naloxone. The subcutaneous injection of morphine increased glucose metabolism in intact underfed animals, while naloxone reduced (14)CO(2) in spayed rats subjected to underfeeding. It can be concluded that uteri from ovariectomized rats receiving a restricted diet are influenced by a mechanism of upregulation related to endogenous opioids. These likely originate in other tissues, and so prevent us from seeing the morphine effect. PMID:11728161

  15. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice.

    PubMed

    Kim, Hwajin; Kang, Heeyoung; Heo, Rok Won; Jeon, Byeong Tak; Yi, Chin-Ok; Shin, Hyun Joo; Kim, Jeonghyun; Jeong, Seon-Yong; Kwak, Woori; Kim, Won-Ho; Kang, Sang Soo; Roh, Gu Seob

    2016-06-01

    Diabetes-induced cognitive decline has been recognized in human patients of type 2 diabetes mellitus and mouse model of obesity, but the underlying mechanisms or therapeutic targets are not clearly identified. We investigated the effect of caloric restriction on diabetes-induced memory deficits and searched a molecular mechanism of caloric restriction-mediated neuroprotection. C57BL/6 mice were fed a high-fat diet for 40 weeks and RNA-seq analysis was performed in the hippocampus of high-fat diet-fed mice. To investigate caloric restriction effect on differential expression of genes, mice were fed high-fat diet for 20 weeks and continued on high-fat diet or subjected to caloric restriction (2 g/day) for 12 weeks. High-fat diet-fed mice exhibited insulin resistance, glial activation, blood-brain barrier leakage, and memory deficits, in that we identified neurogranin, a down-regulated gene in high-fat diet-fed mice using RNA-seq analysis; neurogranin regulates Ca(2+)/calmodulin-dependent synaptic function. Caloric restriction increased insulin sensitivity, reduced high-fat diet-induced blood-brain barrier leakage and glial activation, and improved memory deficit. Furthermore, caloric restriction reversed high-fat diet-induced expression of neurogranin and the activation of Ca(2+)/calmodulin-dependent protein kinase II and calpain as well as the downstream effectors. Our results suggest that neurogranin is an important factor of high-fat diet-induced memory deficits on which caloric restriction has a therapeutic effect by regulating neurogranin-associated calcium signaling. PMID:26661177

  16. New research with diets and epilepsy.

    PubMed

    Cross, J Helen

    2013-08-01

    The ketogenic diet is not a new treatment for the treatment of epilepsy, but the degree of literature now available seems to have given it a new lease of life. Over the past 12 years, there has been more scientific data on both benefits and effect of the ketogenic diet. Data demonstrate a clear benefit in efficacy. We also have a clearer idea in utilization, type of diet to use, and in whom. Questions however remain and further work is required, not least in recognizing likely candidates and in simplifying administration. PMID:23680944

  17. Restricted feeding of a high-fat diet reduces spontaneous metastases of Lewis lung carcinoma in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a risk factor for cancer. We previously reported that consumption of a high-fat diet enhances metastasis in mice (Yan, Clin Exp Metastasis 2010). The present study investigated the effects of restricted feeding of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma (LLC) i...

  18. Long–Term Effects of High-and Low-Glycemic Load Energy-Restricted Diets on Metabolic Adaptation and the Composition of Weight Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of high glycemic load (HG) and low glycemic load (LG) diets on resting metabolic rate (RMR) and body composition changes in response to caloric restriction (CR) remains controversial. Objective To examine the effects of two CR diets differing primarily in glycemic load on RMR and the % o...

  19. Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet.

    PubMed

    Shen, Chwan-Li; Han, Jia; Wang, Shu; Chung, Eunhee; Chyu, Ming-Chien; Cao, Jay J

    2015-12-01

    This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet. PMID:26525915

  20. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    ERIC Educational Resources Information Center

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  1. Effects of calorie restriction and weight loss on glucose and insulin levels in obese humans.

    PubMed

    Atkinson, R L; Kaiser, D L

    1985-01-01

    The relative contributions of weight loss vs calorie restriction in the improvement of glucose tolerance in obese subjects has not been well studied. We measured fasting and stimulated glucose and insulin levels in seven obese subjects at 4 time periods: on a regular diet before weight loss, on a very low calorie ketogenic diet (VLCKD) after 4 days and after 6 weeks, and after 4 days back on a regular diet. Fasting glucose and insulin levels fell significantly after only 4 days of calorie restriction and did not change after 6 weeks. With return to a regular diet, these levels rose toward baseline even through body weight remained well below baseline. Stimulated glucose and insulin levels during an insulin tolerance test, intravenous glucose tolerance test, and standard meal demonstrated a similar pattern, although the changes due to either diet or weight loss were minimal. We conclude that calorie restriction has a greater effect on glucose and insulin levels than does weight loss in obese subjects who are losing weight. PMID:3900179

  2. Factors that Affect Pancreatic Islet Cell Autophagy in Adult Rats: Evaluation of a Calorie-Restricted Diet and a High-Fat Diet

    PubMed Central

    Wang, Lingxiao; Yang, Fan; Meng, Zhangming; Xiao, Hengyi; Xiang, Bing; Li, Xiujun; Fu, Xianghui; Wang, Shuang

    2016-01-01

    Aging may be a risk factor for type 2 diabetes in the elderly. Dietary intervention can affect glucose tolerance in adults, which may be due to body composition and islet cell autophagy. The aim of this study was to determine the effects of various dietary interventions on islet cell autophagy. Pancreatic tissue and blood samples were collected from Sprague Dawley rats (14–16 months old, n = 15 for each group) that received a normal diet (ND), a high-fat diet (HFD), or a calorie-restricted diet (CRD). The body weight (BW), visceral fat, serum lipid levels, fasting serum glucose, insulin levels, and β/α cell area were determined in 14-16-(0-w), 16-18-(8-w), and 18-20(16-w)-month-old rats. Pancreatic islet autophagy (LC3B and LAMP2), AP (Acid Phosphatase) and apoptosis (apoptosis index, AI (TUNEL assay) and cleaved caspase-3) were detected using immunohistochemistry, ELISA and western blot. At 16 weeks, the expressions of LC3B, LAMP2 and AP markedly increased in both the HFD (P<0.01) and CRD (P<0.05) groups; however, an increase in the AI (P<0.05), cleaved caspase-3 and Beclin1 expression and a decrease in the expressions of BCL2 and BCLXL (P<0.05) were observed in only the HFD group. FFA, triglyceride levels, HOMA-IR, insulin levels and glucagon levels were significantly increased in the HFD group but decreased in the CRD group at 16 weeks (P<0.05). The degree of islet cell autophagy was potentially regulated by the levels of FFA and islet cell insulin and glucagon, which may have been due to the effects of Beclin1/BCL2. PMID:26963814

  3. Weight loss on an energy-restricted, low-fat, sugar-containing diet in overweight sedentary men.

    PubMed

    Drummond, Sandra; Dixon, Kathryn; Griffin, Jane; De Looy, Anne

    2004-06-01

    With the increasing prevalence of obesity in the United Kingdom, the search for an effective weight reducing diet is a priority in helping to reverse this trend. A 12-week dietary intervention study was carried out to test the effectiveness of an energy-restricted, low-fat, sugar-containing diet on weight loss in sedentary overweight men. The study also aimed to assess eating behaviour, to measure change in attitude towards sugar-containing foods and to measure the impact of the study on perceived quality of life. Subjects were recruited from three UK cities; Edinburgh, Birmingham and London. Seventy-six men, aged between 25 and 60 years, completed the study. Baseline diets were assessed by a 7-day diet diary. Compliance to the subsequent dietary advice was measured on four occasions post intervention, by 4-day diaries. Measures of body weight status were also monitored. Eating behaviour, attitudes towards sugar-containing foods and quality of life were assessed by questionnaire. Significant reductions in body weight (5.2%), body fat (11.2%) and waist:hip ratio (3%) were observed following reported dietary changes that included a reduction in reported energy intake of 3.2 MJ/day (770 kcal/day), a reduction in the percent energy from fat (from 38.1% to 26.2%), an increase in the percent energy from total carbohydrate (from 44.4% to 54%) and from protein (from 17.3% to 20.6%). Subjects scored relatively highly for dietary restraint and emotional eating, and were strongly influenced by external eating cues. On completion of the 12-week study, subjects had a more positive attitude towards sugar-containing foods and perceived an improved quality of life. It is concluded, therefore, that including sugar-containing foods in a weight-reducing diet may be an effective strategy to achieve a palatable, low-fat, high-carbohydrate diet, which promotes weight loss in overweight individuals. PMID:15369982

  4. Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring.

    PubMed

    Lewis, E D; Goruk, S; Richard, C; Dellschaft, N S; Curtis, J M; Jacobs, R L; Field, C J

    2016-09-01

    The nutrient choline is necessary for membrane synthesis and methyl donation, with increased requirements during lactation. The majority of immune development occurs postnatally, but the importance of choline supply for immune development during this critical period is unknown. The objective of this study was to determine the importance of maternal supply of choline during suckling on immune function in their offspring among rodents. At parturition, Sprague-Dawley dams were randomised to either a choline-devoid (ChD; n 7) or choline-sufficient (ChS, 1 g/kg choline; n 10) diet with their offspring euthanised at 3 weeks of age. In a second experiment, offspring were weaned to a ChS diet until 10 weeks of age (ChD-ChS, n 5 and ChS-ChS, n 9). Splenocytes were isolated, and parameters of immune function were measured. The ChD offspring received less choline in breast milk and had lower final body and organ weight compared with ChS offspring (P<0·05), but this effect disappeared by week 10 with choline supplementation from weaning. ChD offspring had a higher proportion of T cells expressing activation markers (CD71 or CD28) and a lower proportion of total B cells (CD45RA+) and responded less to T cell stimulation (lower stimulation index and less IFN-γ production) ex vivo (P<0·05). ChD-ChS offspring had a lower proportion of total and activated CD4+ T cells, and produced less IL-6 after mitogen stimulation compared with cells from ChS-ChS (P<0·05). Our study suggests that choline is required in the suckling diet to facilitate immune development, and choline deprivation during this critical period has lasting effects on T cell function later in life. PMID:27480608

  5. Energy Dense, Protein Restricted Diet Increases Adiposity and Perturbs Metabolism in Young, Genetically Lean Pigs

    PubMed Central

    Fisher, Kimberly D.; Scheffler, Tracy L.; Kasten, Steven C.; Reinholt, Brad M.; van Eyk, Gregory R.; Escobar, Jeffery; Scheffler, Jason M.; Gerrard, David E.

    2013-01-01

    Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1–12.9% crude protein, or a control corn-based diet (n = 11) with 12.2–19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001) energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P<0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (P<0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7) was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs. PMID:23991090

  6. Vitamin B deficiencies in a critically ill autistic child with a restricted diet.

    PubMed

    Baird, J Scott; Ravindranath, Thyyar M

    2015-02-01

    An 11-year-old male with autism became less responsive and was hospitalized with hepatomegaly and liver dysfunction, as well as severe lactic acidosis. His diet for several years was self-limited exclusively to a single "fast food"-a particular type of fried chicken-and was deficient in multiple micronutrients, including the B vitamins thiamine and pyridoxine. Lactic acidosis improved rapidly with thiamine; 2 weeks later, status epilepticus-with low serum pyridoxine-resolved rapidly with pyridoxine. Dietary B vitamin deficiencies complicated the care of this critically ill autistic child and should be considered in this setting. PMID:25112945

  7. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial

    PubMed Central

    Imayama, Ikuyo; Ulrich, Cornelia M.; Alfano, Catherine M.; Wang, Chiachi; Xiao, Liren; Wener, Mark H.; Campbell, Kristin L.; Duggan, Catherine; Foster-Schubert, Karen E.; Kong, Angela; Mason, Caitlin E.; Wang, Ching-Yun; Blackburn, George L.; Bain, Carolyn E.; Thompson, Henry J.; McTiernan, Anne

    2012-01-01

    Obese and sedentary persons have increased risk for cancer; inflammation is a hypothesized mechanism. We examined the effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in 439 women. Overweight and obese postmenopausal women were randomized to 1-year: caloric restriction diet (goal of 10% weight loss, N=118), aerobic exercise (225 minutes/week of moderate-to-vigorous activity, N=117), combined diet+exercise (N=117) or control (N=87). Baseline and 1-year high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA), interleukin-6 (IL-6), leukocyte and neutrophil levels were measured by investigators blind to group. Inflammatory biomarker changes were compared using generalized estimating equations. Models were adjusted for baseline body mass index (BMI), race/ethnicity and age. 438 (N=1 in diet+exercise group was excluded) were analyzed. Relative to controls, hs-CRP decreased by geometric mean (95% confidence interval, p-value) 0.92mg/L (0.53–1.31, P<0.001) in the diet and 0.87mg/L (0.51–1.23, P<0.0001) in the diet+exercise groups. IL-6 decreased by 0.34pg/ml (0.13–0.55, P=0.001) in the diet and 0.32pg/ml (0.15–0.49, P<0.001) in the diet+exercise groups. Neutrophil counts decreased by 0.31×109/L (0.09–0.54, P=0.006) in the diet and 0.30×109/L (0.09–0.50, P=0.005) in the diet+exercise groups. Diet and diet+exercise participants with ≥5% weight loss reduced inflammatory biomarkers (hs-CRP, SAA, and IL-6) compared to controls. The diet and diet+exercise groups reduced hs-CRP in all subgroups of baseline BMI, waist circumference, CRP level, and fasting glucose. Our findings indicate that a caloric restriction weight loss diet with or without exercise reduces biomarkers of inflammation in postmenopausal women, with potential clinical significance for cancer risk reduction. PMID:22549948

  8. Diet restriction in migraine, based on IgG against foods: A clinical double-blind, randomised, cross-over trial

    PubMed Central

    Alpay, Kadriye; Ertaş, Mustafa; Orhan, Elif Kocasoy; Üstay, Didem Kanca; Lieners, Camille; Baykan, Betül

    2010-01-01

    Introduction: It is well-known that specific foods trigger migraine attacks in some patients. We aimed to investigate the effect of diet restriction, based on IgG antibodies against food antigens on the course of migraine attacks in this randomised, double blind, cross-over, headache-diary based trial on 30 patients diagnosed with migraine without aura. Methods: Following a 6-week baseline, IgG antibodies against 266 food antigens were detected by ELISA. Then, the patients were randomised to a 6-week diet either excluding or including specific foods with raised IgG antibodies, individually. Following a 2-week diet-free interval after the first diet period, the same patients were given the opposite 6-week diet (provocation diet following elimination diet or vice versa). Patients and their physicians were blinded to IgG test results and the type of diet (provocation or elimination). Primary parameters were number of headache days and migraine attack count. Of 30 patients, 28 were female and 2 were male, aged 19–52 years (mean, 35 ± 10 years). Results: The average count of reactions with abnormally high titre was 24 ± 11 against 266 foods. Compared to baseline, there was a statistically significant reduction in the number of headache days (from 10.5 ± 4.4 to 7.5 ± 3.7; P < 0.001) and number of migraine attacks (from 9.0 ± 4.4 to 6.2 ± 3.8; P < 0.001) in the elimination diet period. Conclusion: This is the first randomised, cross-over study in migraineurs, showing that diet restriction based on IgG antibodies is an effective strategy in reducing the frequency of migraine attacks. PMID:20647174

  9. Energy restriction and exercise modulate angiopoietins and vascular endothelial growth factor expression in the cavernous tissue of high-fat diet-fed rats

    PubMed Central

    Tomada, Inês; Tomada, Nuno; Almeida, Henrique; Neves, Delminda

    2012-01-01

    The purpose of the current study was to evaluate the effect of a high-fat (HF) diet, energy restriction and exercise on the expression of vascular endothelial growth factor (VEGF), angiopoietin (Ang) 1 and 2, and their receptors in rat corpus cavernosum (CC). Male Wistar rats were fed ad libitum with an HF diet for 8 or 16 weeks. After 8 weeks of the HF diet, a group of rats was subjected to energy restriction with or without exercise for 8 weeks. Control animals had free access to standard diet for the same period. After euthanasia, blood was collected and the penises removed for immunofluorescence assays (VEGF, VEGF receptor (VEGFR) 1 and 2, Ang1, Ang2 and Tie2) and semiquantification of VEGF, VEGFR1, VEGFR2, Ang1, Ang2, Tie2, endothelial nitric oxide synthase (eNOS) and Akt/phospho-Akt by Western blotting. HF diet-fed rats exhibited lower high-density lipoprotein cholesterol (HDL-c) levels, higher systolic blood pressure and an increased atherogenic index. A significant increase in Ang2 expression in the CC was verified and coupled to a decrease in VEGF and VEGFRs. The Akt pathway was activated by the HF diet. Energy restriction and exercise increased eNOS expression and restored most HF diet-induced modifications except for VEGFR2 expression. These results emphasize the role of diet on vascular function regulation, demonstrating that cavernous imbalance of VEGF/VEGFRs and Angs/Tie2 systems occurs before serum lipid changes and obesity onset, antedating structural atherosclerotic features. PMID:22138901

  10. Costs and Outcomes over 36 Years of Patients with Phenylketonuria Who Do and Do Not Remain on a Phenylalanine-Restricted Diet

    ERIC Educational Resources Information Center

    Guest, J. F.; Bai, J. J.; Taylor, R. R.; Sladkevicius, E.; Lee, P. J.; Lachmann, R. H.

    2013-01-01

    Background: To quantify the costs and consequences of managing phenylketonuria (PKU) in the UK and to estimate the potential implications to the UK's National Health Service (NHS) of keeping patients on a phenylalanine-restricted diet for life. Methods: A computer-based model was constructed depicting the management of PKU patients over the…

  11. Restriction on an Energy-Dense Diet Improves Markers of Metabolic Health and Cellular Aging in Mice Through Decreasing Hepatic mTOR Activity

    PubMed Central

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald

    2015-01-01

    Abstract Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum–fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5′-adenosine monophosphate–activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation. PMID:25405871

  12. Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment.

    PubMed

    Faber, Catherine; Zhu, Zhaohai J; Castellino, Stephen; Wagner, David S; Brown, Roger H; Peterson, Richard A; Gates, Lisa; Barton, Joanna; Bickett, Mark; Hagerty, Laura; Kimbrough, Carie; Sola, Mario; Bailey, David; Jordan, Holly; Elangbam, Chandikumar S

    2014-11-01

    Cardiolipin (CL) is crucial for mitochondrial energy metabolism and structural integrity. Alterations in CL quantity or CL species have been associated with mitochondrial dysfunction in several pathological conditions and diseases, including mitochondrial dysfunction-related compound attrition and post-market withdrawal of promising drugs. Here we report alterations in the CL profiles in conjunction with morphology of soleus muscle (SM) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice, subjected to ephedrine treatment (EPH: 200 mg kg(-1)  day(-1) orally), treadmill exercise (EX: 10 meters per min, 1 h per day), or dietary restriction (DR: 25% less of mean food consumed by the EX group) for 7 days. Mice from the DR and EPH groups had a significant decrease in percent body weight and reduced fat mass compared with DIO controls. Morphologic alterations in the BAT included brown adipocytes with reduced cytoplasmic lipid droplets and increased cytoplasmic eosinophilia in the EX, DR and EPH groups. Increased cytoplasmic eosinophilia in the BAT was ultrastructurally manifested by increased mitochondrial cristae, fenestration of mitochondrial cristae, increased electron density of mitochondrial matrix, and increased complexity of shape and elongation of mitochondria. Mitochondrial ultrastructural alterations in the SM of the EX and DR groups included increased mitochondrial cristae, cup-shaped mitochondria and mitochondrial degeneration. All four CL species (tri-linoleoyl-mono-docosahexaenoyl, tetralinoleoyl, tri-linoleoyl-mono-oleoyl, and di-linoleoyl-di-oleoyl) were increased in the BAT of the DR and EPH groups and in the SM of the EPH and EX groups. In conclusion, cardiolipin profiling supported standard methods for assessing mitochondrial biogenesis and health, and may serve as a potential marker of mitochondrial dysfunction in preclinical toxicity studies. PMID:25132005

  13. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis?

    PubMed

    Di Lorenzo, Cherubino; Currà, Antonio; Sirianni, Giulio; Coppola, Gianluca; Bracaglia, Martina; Cardillo, Alessandra; De Nardis, Lorenzo; Pierelli, Francesco

    2013-01-01

    The ketogenic diet is a high-fat, low-carbohydrate diet long used to treat refractory epilepsy; ketogenesis (ketone body formation) is a physiological phenomenon also observed in patients following lowcarbohydrate, low-calorie diets prescribed for rapid weight loss. We report the case of a pair of twin sisters, whose high-frequency migraine improved during a ketogenic diet they followed in order to lose weight. The observed time-lock between ketogenesis and migraine improvement provides some insight into how ketones act to improve migraine. PMID:24598400

  14. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis?

    PubMed Central

    Di Lorenzo, Cherubino; Currà, Antonio; Sirianni, Giulio; Coppola, Gianluca; Bracaglia, Martina; Cardillo, Alessandra; De Nardis, Lorenzo; Pierelli, Francesco

    2013-01-01

    Summary The ketogenic diet is a high-fat, low-carbohydrate diet long used to treat refractory epilepsy; ketogenesis (ketone body formation) is a physiological phenomenon also observed in patients following low-carbohydrate, low-calorie diets prescribed for rapid weight loss. We report the case of a pair of twin sisters, whose high-frequency migraine improved during a ketogenic diet they followed in order to lose weight. The observed time-lock between ketogenesis and migraine improvement provides some insight into how ketones act to improve migraine. PMID:24598400

  15. Effect of Exercise and Calorie Restriction on Tissue Acylcarnitines, Tissue Desaturase Indices, and Fat Accumulation in Diet-Induced Obese Rats

    PubMed Central

    Gopalan, Venkatesh; Michael, Navin; Ishino, Seigo; Lee, Swee Shean; Yang, Adonsia Yating; Bhanu Prakash, K. N.; Yaligar, Jadegoud; Sadananthan, Suresh Anand; Kaneko, Manami; Zhou, Zhihong; Satomi, Yoshinori; Hirayama, Megumi; Kamiguchi, Hidenori; Zhu, Bin; Horiguchi, Takashi; Nishimoto, Tomoyuki; Velan, S. Sendhil

    2016-01-01

    Both exercise and calorie restriction interventions have been recommended for inducing weight-loss in obese states. However, there is conflicting evidence on their relative benefits for metabolic health and insulin sensitivity. This study seeks to evaluate the differential effects of the two interventions on fat mobilization, fat metabolism, and insulin sensitivity in diet-induced obese animal models. After 4 months of ad libitum high fat diet feeding, 35 male Fischer F344 rats were grouped (n = 7 per cohort) into sedentary control (CON), exercise once a day (EX1), exercise twice a day (EX2), 15% calorie restriction (CR1) and 30% calorie restriction (CR2) cohorts. Interventions were carried out over a 4-week period. We found elevated hepatic and muscle long chain acylcarnitines with both exercise and calorie restriction, and a positive association between hepatic long chain acylcarnitines and insulin sensitivity in the pooled cohort. Our result suggests that long chain acylcarnitines may not indicate incomplete fat oxidation in weight loss interventions. Calorie restriction was found to be more effective than exercise in reducing body weight. Exercise, on the other hand, was more effective in reducing adipose depots and muscle triglycerides, favorably altering muscle/liver desaturase activity and improving insulin sensitivity. PMID:27197769

  16. Effect of Exercise and Calorie Restriction on Tissue Acylcarnitines, Tissue Desaturase Indices, and Fat Accumulation in Diet-Induced Obese Rats.

    PubMed

    Gopalan, Venkatesh; Michael, Navin; Ishino, Seigo; Lee, Swee Shean; Yang, Adonsia Yating; Bhanu Prakash, K N; Yaligar, Jadegoud; Sadananthan, Suresh Anand; Kaneko, Manami; Zhou, Zhihong; Satomi, Yoshinori; Hirayama, Megumi; Kamiguchi, Hidenori; Zhu, Bin; Horiguchi, Takashi; Nishimoto, Tomoyuki; Velan, S Sendhil

    2016-01-01

    Both exercise and calorie restriction interventions have been recommended for inducing weight-loss in obese states. However, there is conflicting evidence on their relative benefits for metabolic health and insulin sensitivity. This study seeks to evaluate the differential effects of the two interventions on fat mobilization, fat metabolism, and insulin sensitivity in diet-induced obese animal models. After 4 months of ad libitum high fat diet feeding, 35 male Fischer F344 rats were grouped (n = 7 per cohort) into sedentary control (CON), exercise once a day (EX1), exercise twice a day (EX2), 15% calorie restriction (CR1) and 30% calorie restriction (CR2) cohorts. Interventions were carried out over a 4-week period. We found elevated hepatic and muscle long chain acylcarnitines with both exercise and calorie restriction, and a positive association between hepatic long chain acylcarnitines and insulin sensitivity in the pooled cohort. Our result suggests that long chain acylcarnitines may not indicate incomplete fat oxidation in weight loss interventions. Calorie restriction was found to be more effective than exercise in reducing body weight. Exercise, on the other hand, was more effective in reducing adipose depots and muscle triglycerides, favorably altering muscle/liver desaturase activity and improving insulin sensitivity. PMID:27197769

  17. Oat beta-glucan supplementation does not enhance the effectiveness of an energy-restricted diet in overweight women.

    PubMed

    Beck, Eleanor J; Tapsell, Linda C; Batterham, Marijka J; Tosh, Susan M; Huang, Xu-Feng

    2010-04-01

    Epidemiological evidence shows an inverse relationship between dietary fibre intake and body weight gain. Oat beta-glucan, a soluble fibre alters appetite hormones and subjective satiety in acute meal test studies, but its effects have not been demonstrated with chronic consumption. The present study aimed to test the effects in women of two different doses of oat beta-glucan on weight loss and hormones associated with appetite regulation. In a 3-month parallel trial, sixty-six overweight females were randomised into one of three 2 MJ energy-deficit diets: a control and two interventions including 5-6 g or 8-9 g beta-glucan. Anthropometric and metabolic variables (blood glucose level, insulin, total cholesterol (TC), LDL, HDL, TAG and leptin), together with markers of appetite regulation (cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), ghrelin, peptide YY (PYY) and PYY3-36) were measured at baseline and at 3 months. After 3 months, all groups lost weight (P < 0.001) and showed a reduced waist circumference (P < 0.001). The study sample also showed reductions in TC, LDL, HDL, leptin, PYY, GLP-1 values (all P < 0.001) and an increase in CCK levels (P < 0.001). No significant differences were noted between the groups for all outcome values except PYY levels (P = 0.018). In broad terms, the addition of oat beta-glucan did not enhance the effect of energy restriction on weight loss in mildly overweight women, although wide variations in observed results suggests that individual responsiveness may be an issue. PMID:19930764

  18. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus

    PubMed Central

    Severi, Ilenia; Perugini, Jessica; Mondini, Eleonora; Smorlesi, Arianna; Frontini, Andrea; Cinti, Saverio; Giordano, Antonio

    2013-01-01

    In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites. PMID:24409114

  19. Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: Effects of diet restriction and phenobarbital

    SciTech Connect

    Chilakapati, Jaya; Korrapati, Midhun C.; Shankar, Kartik; Hill, Ronald A.; Warbritton, Alan; Latendresse, John R.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2007-02-15

    Thioacetamide (TA) undergoes saturation toxicokinetics in ad libitum (AL) fed rats. Diet restriction (DR) protects rats from lethal dose of TA despite increased bioactivation-mediated liver injury via CYP2E1 induction. While a low dose (50 mg TA/kg) produces 6-fold higher initial injury, a 12-fold higher dose produces delayed and mere 2.5-fold higher injury. The primary objective was to determine if this less-than-expected increase in injury is due to saturation toxicokinetics. Rats on AL and DR for 21 days received either 50 or 600 mg TA/kg i.p. T {sub 1/2} and AUCs for TA and TA-S-oxide were consistent with saturable kinetics. Covalent binding of {sup 14}C-TA-derived-radiolabel to liver macromolecules after low dose was 2-fold higher in DR than AL rats. However, following lethal dose, no differences were found between AL and DR. This lack of dose-dependent response appears to be due to saturation of bioactivation at the higher dose. The second objective was to investigate the effect of phenobarbital pretreatment (PB) on TA-initiated injury following a sub-lethal dose (500 mg/kg). PB induced CYP2B1/2 {approx} 350-fold, but did not increase covalent binding of {sup 14}C-TA, TA-induced liver injury and mortality, suggesting that CYP2B1/2 has no major role in TA bioactivation. The third objective was to investigate the role of CYP2E1 using cyp2e1 knockout mice (KO). Injury was assessed over time (0-48 h) in wild type (WT) and KO mice after LD{sub 100} dose (500 mg/kg) in WT. While WT mice exhibited robust injury which progressed to death, KO mice exhibited neither initiation nor progression of injury. These findings confirm that CYP2E1 is responsible for TA bioactivation.

  20. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    PubMed

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  1. Phenylalanine-restricted diet should be life long. A case report on long-term follow-up of an adolescent with untreated phenylketonuria.

    PubMed

    Merrick, Joav; Aspler, Shoshana; Schwarz, Gerard

    2003-01-01

    The aim of this brief report is to stimulate a debate and to advocate life-long treatment with phenylalanine restricted diet to persons with phenylketonuria. We present a case of an adolescent male who today is a 65 year old with moderate mental retardation. He was previously observed as having severe challenging and self-injurious behaviour, sleeping disorder, hyperactivity, and masturbation. In the last year before reassessment he displayed loss of weight, muscle weakness resulting in wheelchair placement, upper respiratory infections, and fungal skin infections. After reassessment in 1998 the patient was started on treatment with a phenylalanine-restricted diet supplemented with vitamin B12, iron, and folic acid. At follow-up one year later the patient had regained his weight and was walking around freely. The challenging and self-injurious behaviour, and the masturbation, had ceased, and he was participating in social activities which he had previously not been able to participate in. At follow-up four years later he was still at this level of accomplishment. In general, this patient's quality of life had increased. We therefore recommend life-long treatment with phenylalanine restricted diet for persons with previously treated, and also for those with untreated, phenylketonuria. PMID:12955819

  2. The effect of an iodine restricted including no sea foods diet, on technetium-99m thyroid scintigraphy: a neglected issue in nuclear medicine practice.

    PubMed

    Javadi, Hamid; Neshandarasli, Isa; Mogharrabi, Mehdi; Jalallat, Sara; Nabipour, Iraj; Assadi, Majid

    2012-01-01

    Although it is recommended to patients to avoid sea food and iodine-containing medications prior to iodine-131 (¹³¹I) scanning, the efficacy of this diet as for technetium-99m pertechnetate ((99m)Tc-P) thyroid scintigraphy is not well addressed in the literature. We evaluated a self-managed, outpatients, iodine restricted diet (IRD) designed to reduce total body iodine in preparation for such a scan. We have studied 39 patients who referred to our Department for multinodular goiter, 30 females and 9 males, aged:14-54 years and their (99m)Tc-P thyroid scintigraphy showed poor visualization of the thyroid gland. These patiens were living in regions with high consumption of sea foods went underwent a two-weeks iodine restriction including restriction of sea food diet for the reduction of iodine body content. These patients were called for a repeated scan after going on a IRD for at least two weeks. The two scans were compared visually, and by semiquantitative analysis. Semiquantitative analysis was applied in 8 regions of interest (ROI) by using Wilcoxon signed rank test. Thirty-six subjects had better quality scintigraphy images in the post IRD thyroid scan, as was visually assessed by two nuclear medicine physicians. Semiquantitatetively, there was a significant difference in the mean counts of ROI of the right and the left thyroid lobes in favor of the post IRD scans (P<0.05). In conclusion, this study suggests that in patients with multinodular goiter, living in regions with high consumption of sea foods a two-weeks diet for the reduction of iodine body content induces in most of the cases a slightly better diagnostic thyroid (99m)Tc-P scan. PMID:22413111

  3. Validating growth and development of a seabird as an indicator of food availability: captive-reared Caspian Tern chicks fed ad libitum and restricted diets

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, Daniel D.

    2011-01-01

    For seabirds raising young under conditions of limited food availability, reducing chick provisioning and chick growth rates are the primary means available to avoid abandonment of a breeding effort. For most seabirds, however, baseline data characterizing chick growth and development under known feeding conditions are unavailable, so it is difficult to evaluate chick nutritional status as it relates to foraging conditions near breeding colonies. To address this need, we examined the growth and development of young Caspian Terns (Hydroprogne caspia), a cosmopolitan, generalist piscivore, reared in captivity and fed ad libitum and restricted (ca. one-third lower caloric intake) diets. Ad libitum-fed chicks grew at similar rates and achieved a similar size at fledging as previously documented for chicks in the wild and had energetic demands that closely matched allometric predictions. We identified three general characteristics of food-restricted Caspian Tern chicks compared to ad libitum chicks: (1) lower age-specific body mass, (2) lower age-specific skeletal and feather size, such as wing chord length, and (3) heightened levels of corticosterone in blood, both for baseline levels and in response to acute stress. Effects of diet restriction on feather growth (10-11% slower growth in diet-restricted chicks) were less pronounced than effects on structural growth (37-52% slower growth) and body mass (24% lower at fledging age), apparently due to preferential allocation of food resources to maintain plumage growth. Our results suggest that measurements of chick body mass and feather development (e.g., wing chord or primary length) or measurement of corticosterone levels in the blood would allow useful evaluation of the nutritional status of chicks reared in the wild and of food availability in the foraging range of adults. Such evaluations could also inform demography studies (e.g., predict future recruitment) and assist in evaluating designated piscivorous waterbird

  4. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

    PubMed Central

    Ren, M.; Zhang, S. H.; Zeng, X. F.; Liu, H.; Qiao, S. Y.

    2015-01-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal

  5. 21 CFR 862.1385 - 17-Hydroxycorticosteroids (17-ketogenic steroids) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1385 17-Hydroxycorticosteroids (17-ketogenic steroids) test...

  6. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet

    PubMed Central

    Kimani, S.; Moterroso, V.; Morales, P.; Wagner, J.; Kipruto, S.; Bukachi, F.; Maitai, C.; Tshala-Katumbay, D.

    2014-01-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5 mg/kg bw) or NaOCN (50 mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~ 80X faster in the nervous system (14 milliseconds to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In macaca fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~ 2X relative to that of rodents. The nervous system susceptibility to cyanide may result from a “multiple hit” by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. PMID:24500607

  7. Cocoa extract intake for 4 weeks reduces postprandial systolic blood pressure response of obese subjects, even after following an energy-restricted diet

    PubMed Central

    Ibero-Baraibar, Idoia; Suárez, Manuel; Arola-Arnal, Anna; Zulet, M. Angeles; Martinez, J. Alfredo

    2016-01-01

    Background Cardiometabolic profile is usually altered in obesity. Interestingly, the consumption of flavanol-rich foods might be protective against those metabolic alterations. Objective To evaluate the postprandial cardiometabolic effects after the acute consumption of cocoa extract before and after 4 weeks of its daily intake. Furthermore, the bioavailability of cocoa extract was investigated. Design Twenty-four overweight/obese middle-aged subjects participated in a 4-week intervention study. Half of the volunteers consumed a test meal enriched with 1.4 g of cocoa extract (415 mg flavanols), while the rest of the volunteers consumed the same meal without the cocoa extract (control group). Glucose and lipid profile, as well as blood pressure and cocoa metabolites in plasma, were assessed before and at 60, 120, and 180 min post-consumption, at the beginning of the study (Postprandial 1) and after following a 4-week 15% energy-restricted diet including meals containing or not containing the cocoa extract (Postprandial 2). Results In the Postprandial 1 test, the area under the curve (AUC) of systolic blood pressure (SBP) was significantly higher in the cocoa group compared with the control group (p=0.007), showing significant differences after 120 min of intake. However, no differences between groups were observed at Postprandial 2. Interestingly, the reduction of postprandial AUC of SBP (AUC_Postprandial 2-AUC_Postprandial 1) was higher in the cocoa group (p=0.016). Furthermore, cocoa-derived metabolites were detected in plasma of the cocoa group, while the absence or significantly lower amounts of metabolites were found in the control group. Conclusions The daily consumption of cocoa extract within an energy-restricted diet for 4 weeks resulted in a greater reduction of postprandial AUC of SBP compared with the effect of energy-restricted diet alone and independently of body weight loss. These results suggest the role of cocoa flavanols on postprandial blood

  8. Long-term Effects of High and Low Glycemic Load Diets at Different Levels of Caloric Restriction on Dietary Adherence, Body Composition and Metabolism in CALERIE, a One Year Randomized Controlled Trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context The effects of dietary macronutrient composition and level of energy intake on adherence to a calorically-restricted diet remain uncertain. Objective To examine the effects of dietary macronutrients, and level of caloric restriction (CR), for 12 months, on adherence to the prescribed regim...

  9. What evidence for the benefits of '5-a-day', a Mediterranean diet and sodium restriction on health?

    PubMed

    2015-01-01

    Guidelines for healthcare professionals encourage the provision of dietary advice to promote healthy eating, especially to patients at risk of chronic disease.1 Yet the evidence base for dietary interventions relies heavily on epidemiological studies, which are subject to the challenges associated with observational research. Such problems include difficulties of assessing and measuring outcomes, misclassification, confounding and establishing causation. This reliance on epidemiological evidence may reflect the difficulty and cost of carrying out large-scale long-term randomised controlled studies of diet.2 In addition, there is a dearth of organisations willing to fund such research. Recent publications have questioned the '5-a-day' advice for fruit and vegetable consumption and population-level attempts to lower salt consumption.3,4 Studies of lifestyle advice are widely reported in the media, which may lead to public confusion about dietary advice when conclusions differ. Some researchers have urged a move from assessing how single foods or nutrients affect risk factors, to a consideration of the overall diet pattern, as this may overcome the risk of confounding the effect of one food type by others in the diet.5 The Mediterranean diet pattern is one of the most studied, since its identification in the late 1970s. Here, we provide an update of evidence for three aspects of dietary recommendations that feature regularly in the media-fruit and vegetable intake, salt reduction and the Mediterranean diet. PMID:25592688

  10. Restricting carbohydrates to fight head and neck cancer-is this realistic?

    PubMed

    Klement, Rainer J

    2014-09-01

    Head and neck cancers (HNCs) are aggressive tumors that typically demonstrate a high glycolytic rate, which results in resistance to cytotoxic therapy and poor prognosis. Due to their location these tumors specifically impair food intake and quality of life, so that prevention of weight loss through nutrition support becomes an important treatment goal. Dietary restriction of carbohydrates (CHOs) and their replacement with fat, mostly in form of a ketogenic diet (KD), have been suggested to accommodate for both the altered tumor cell metabolism and cancer-associated weight loss. In this review, I present three specific rationales for CHO restriction and nutritional ketosis as supportive treatment options for the HNC patient. These are (1) targeting the origin and specific aspects of tumor glycolysis; (2) protecting normal tissue from but sensitizing tumor tissue to radiation- and chemotherapy induced cell kill; (3) supporting body and muscle mass maintenance. While most of these benefits of CHO restriction apply to cancer in general, specific aspects of implementation are discussed in relation to HNC patients. While CHO restriction seems feasible in HNC patients the available evidence indicates that its role may extend beyond fighting malnutrition to fighting HNC itself. PMID:25364576