Science.gov

Sample records for retardation protein paralogs

  1. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins.

    PubMed

    Lustig, Arthur J

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes. PMID:26904098

  2. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins

    PubMed Central

    Lustig, Arthur J.

    2016-01-01

    Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes. PMID:26904098

  3. Using Disease-Associated Coding Sequence Variation to Investigate Functional Compensation by Human Paralogous Proteins

    PubMed Central

    Miura, Sayaka; Tate, Stephanie; Kumar, Sudhir

    2015-01-01

    Gene duplication enables the functional diversification in species. It is thought that duplicated genes may be able to compensate if the function of one of the gene copies is disrupted. This possibility is extensively debated with some studies reporting proteome-wide compensation, whereas others suggest functional compensation among only recent gene duplicates or no compensation at all. We report results from a systematic molecular evolutionary analysis to test the predictions of the functional compensation hypothesis. We contrasted the density of Mendelian disease-associated single nucleotide variants (dSNVs) in proteins with no discernable paralogs (singletons) with the dSNV density in proteins found in multigene families. Under the functional compensation hypothesis, we expected to find greater numbers of dSNVs in singletons due to the lack of any compensating partners. Our analyses produced an opposite pattern; paralogs have over 35% higher dSNV density than singletons. We found that these patterns are concordant with similar differences in the rates of amino acid evolution (ie, functional constraints), as the proteins with paralogs have evolved 33% slower than singletons. Our evolutionary constraint explanation is robust to differences in family sizes, ages (young vs. old duplicates), and degrees of amino acid sequence similarities among paralogs. Therefore, disease-associated human variation does not exhibit significant signals of functional compensation among paralogous proteins, but rather an evolutionary constraint hypothesis provides a better explanation for the observed patterns of disease-associated and neutral polymorphisms in the human genome. PMID:26604664

  4. Functional prediction: identification of protein orthologs and paralogs.

    PubMed Central

    Chen, R.; Jeong, S. S.

    2000-01-01

    Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families. PMID:11206056

  5. A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities.

    PubMed

    Ghosh, Pritha; Grellscheid, Sushma Nagaraja; Sowdhamini, R

    2016-09-01

    The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2β, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins. PMID:26414300

  6. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  7. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs.

    PubMed

    Nobre, Lígia S; Meloni, Dionigia; Teixeira, Miguel; Viscogliosi, Eric; Saraiva, Lígia M

    2016-06-01

    Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs. PMID:27124376

  8. Protein Phosphatase 1 β Paralogs Encode the Zebrafish Myosin Phosphatase Catalytic Subunit

    PubMed Central

    Jayashankar, Vaishali; Nguyen, Michael J.; Carr, Brandon W.; Zheng, Dale C.; Rosales, Joseph B.; Rosales, Joshua B.; Weiser, Douglas C.

    2013-01-01

    Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the in vivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required. PMID:24040418

  9. Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human.

    PubMed

    Peters, L L; Weier, H U; Walensky, L D; Snyder, S H; Parra, M; Mohandas, N; Conboy, J G

    1998-12-01

    Four highly conserved members of the skeletal protein 4.1 gene family encode a diverse array of protein isoforms via tissue-specific transcription and developmentally regulated alternative pre-mRNA splicing. In addition to the prototypical red blood cell 4.1R (human gene symbol EPB41,) these include two homologues that are strongly expressed in the brain (4.1N, EPB41L1; and 4.1B, EPB41L3) and another that is widely expressed in many tissues (4.1G, EPB41L2). As part of a study on the structure and evolution of the 4.1 genes in human and mouse, we have now completed the chromosomal mapping of their respective loci by reporting the localization of mouse 4.1N, 4.1G, and 4.1B, as well as human 4.1B. For the mouse 4.1 genes, Southern blot analysis of RFLPs in The Jackson Laboratory BSS interspecific backcross yielded the following assignments: 4.1N (Epb4.1l1,) chromosome 2; 4.1G (Epb4.1l2,) chromosome 10; and 4.1B (Epb4.1l3,) mouse chromosome 17. Human 4.1B was physically mapped to chromosome 18p11 using fluorescence in situ hybridization. All of the mouse genes mapped within or adjacent to regions of conserved synteny with corresponding human chromosomes. We conclude that a set of four paralogous 4.1 genes has been evolutionarily conserved in rodents and primates. PMID:9828140

  10. Identifying Cognate Binding Pairs among a Large Set of Paralogs: The Case of PE/PPE Proteins of Mycobacterium tuberculosis

    PubMed Central

    Riley, Robert; Pellegrini, Matteo; Eisenberg, David

    2008-01-01

    We consider the problem of how to detect cognate pairs of proteins that bind when each belongs to a large family of paralogs. To illustrate the problem, we have undertaken a genomewide analysis of interactions of members of the PE and PPE protein families of Mycobacterium tuberculosis. Our computational method uses structural information, operon organization, and protein coevolution to infer the interaction of PE and PPE proteins. Some 289 PE/PPE complexes were predicted out of a possible 5,590 PE/PPE pairs genomewide. Thirty-five of these predicted complexes were also found to have correlated mRNA expression, providing additional evidence for these interactions. We show that our method is applicable to other protein families, by analyzing interactions of the Esx family of proteins. Our resulting set of predictions is a starting point for genomewide experimental interaction screens of the PE and PPE families, and our method may be generally useful for detecting interactions of proteins within families having many paralogs. PMID:18787688

  11. Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions*

    PubMed Central

    Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre

    2013-01-01

    Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID

  12. Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    López-Igual, Rocío; Wilson, Adjélé; Leverenz, Ryan L; Melnicki, Matthew R; Bourcier de Carbon, Céline; Sutter, Markus; Turmo, Aiko; Perreau, François; Kerfeld, Cheryl A; Kirilovsky, Diana

    2016-07-01

    The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins. PMID:27208286

  13. Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 71201[OPEN

    PubMed Central

    López-Igual, Rocío; Wilson, Adjélé; Bourcier de Carbon, Céline; Sutter, Markus; Turmo, Aiko

    2016-01-01

    The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins. PMID:27208286

  14. Did Androgen-Binding Protein Paralogs Undergo Neo- and/or Subfunctionalization as the Abp Gene Region Expanded in the Mouse Genome?

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution. PMID:25531410

  15. Unfolding stabilities of two paralogous proteins from Naja naja naja (Indian cobra) as probed by molecular dynamics simulations.

    PubMed

    Gorai, Biswajit; Sivaraman, Thirunavukkarasu

    2013-09-01

    Structurally similar but functionally different two paralogous proteins, CTX1 (a cardiotoxin) and LNTX2 (an alpha-neurotoxin), from venom of Naja naja naja have been homology modeled and subjected to molecular dynamics (MD) simulations at four different temperatures (298 K, 310 K, 373 K & 473 K) under close quarters of physiological conditions. Each MD simulation was performed for 25 ns and trajectory structures stored at every 25 ps were used to probe various structural events occurring in the temperature-induced unfolding of the proteins. Notwithstanding their similar scaffolds, the two proteins are drastically differing in their unfolding stabilities from each other. The structural orders of flexibilities for the CTX1 and LNTX2 were found to be loop II > loop III > loop I > C-terminal and C-terminal > loop I > loop III > loop II, respectively. Based on the comprehensive analyses of the simulation data and studies on the various structural interactions of all cardiotoxins (CTXs) and alpha-neurotoxins (NTXs) for which three-dimensional structures determined by experimental techniques are available to date, we have herein proposed a hypothesis ('CN network') rationalizing the differential stabilities of the CTXs and NTXs belonging to a three-finger toxin superfamily of snake venoms. PMID:23791667

  16. Case study on the evolution of hetero-oligomer interfaces based on the differences in paralogous proteins

    PubMed Central

    Aoto, Saki; Yura, Kei

    2015-01-01

    We addressed the evolutionary trace of hetero-oligomer interfaces by comparing the structures of paralogous proteins; one of them is a monomer or homo-oligomer and the other is a hetero-oligomer. We found different trends in amino acid conservation pattern and hydrophobicity between homo-oligomer and hetero-oligomer. The degree of amino acid conservation in the interface of homo-oligomer has no obvious difference from that in the surface, whereas the degree of conservation is much higher in the interface of hetero-oligomer. The interface of homo-oligomer has a few very conserved residue positions, whereas the residue conservation in the interface of hetero-oligomer tends to be higher. In addition, the interface of hetero-oligomer has a tendency of being more hydrophobic compared with the one in homo-oligomer. We conjecture that these differences are related to the inherent symmetry in homo-oligomers that cannot exist in hetero-oligomers. Paucity of the structural data precludes statistical tests of these tendencies, yet the trend can be applied to the prediction of the interface of hetero-oligomer. We obtained putative interfaces of the subunits in CPSF (cleavage and polyadenylation specificity factor), one of the human pre-mRNA 3′-processing complexes. The locations of predicted interface residues were consistent with the known experimental data. PMID:27493859

  17. Charge Dependent Retardation of Amyloid β Aggregation by Hydrophilic Proteins

    PubMed Central

    2014-01-01

    The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer’s disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D9k and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, −2, and −4, whereas no effect is observed for proteins with net charge of −6 and −8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D9k and single-chain monellin bind to Aβ40. PMID:24475785

  18. Knockout of the abundant Trichomonas vaginalis hydrogenosomal membrane protein TvHMP23 increases hydrogenosome size but induces no compensatory up-regulation of paralogous copies.

    PubMed

    Brás, Xavier Pereira; Zimorski, Verena; Bolte, Kathrin; Maier, Uwe-G; Martin, William F; Gould, Sven B

    2013-05-01

    The Trichomonas vaginalis genome encodes up to 60000 genes, many of which stem from genome duplication events. Paralogous copies thus accompany most T. vaginalis genes, a phenomenon that limits genetic manipulation. We characterized one of the parasite's most abundant hydrogenosomal membrane proteins, TvHMP23, which is phylogenetically distinct from canonical metabolite carriers, and which localizes to the inner hydrogenosomal membrane as shown through sub-organellar fractionation and protease protection assays. Knockout of Tvhmp23 through insertion of the selectable neomycin marker led to a size increase of hydrogenosomes, the first knockout-induced phenotypes reported for Trichomonas, but no growth impairment. The transcriptional response of its four paralogous copies then analyzed revealed that they are not up-regulated, and hence do not compensate for the Tvhmp23 knockout. PMID:23499435

  19. MglC, a Paralog of Myxococcus xanthus GTPase-Activating Protein MglB, Plays a Divergent Role in Motility Regulation

    PubMed Central

    McLoon, Anna L.; Wuichet, Kristin; Häsler, Michael; Keilberg, Daniela; Szadkowski, Dobromir

    2015-01-01

    ABSTRACT In order to optimize interactions with their environment and one another, bacteria regulate their motility. In the case of the rod-shaped cells of Myxococcus xanthus, regulated motility is essential for social behaviors. M. xanthus moves over surfaces using type IV pilus-dependent motility and gliding motility. These two motility systems are coordinated by a protein module that controls cell polarity and consists of three polarly localized proteins, the small G protein MglA, the cognate MglA GTPase-activating protein MglB, and the response regulator RomR. Cellular reversals are induced by the Frz chemosensory system, and the output response regulator of this system, FrzZ, interfaces with the MglA/MglB/RomR module to invert cell polarity. Using a computational approach, we identify a paralog of MglB, MXAN_5770 (MglC). Genetic epistasis experiments demonstrate that MglC functions in the same pathway as MglA, MglB, RomR, and FrzZ and is important for regulating cellular reversals. Like MglB, MglC localizes to the cell poles asymmetrically and with a large cluster at the lagging pole. Correct polar localization of MglC depends on RomR and MglB. Consistently, MglC interacts directly with MglB and the C-terminal output domain of RomR, and we identified a surface of MglC that is necessary for the interaction with MglB and for MglC function. Together, our findings identify an additional member of the M. xanthus polarity module involved in regulating motility and demonstrate how gene duplication followed by functional divergence can add a layer of control to the complex cellular processes of motility and motility regulation. IMPORTANCE Gene duplication and the subsequent divergence of the duplicated genes are important evolutionary mechanisms for increasing both biological complexity and regulation of biological processes. The bacterium Myxococcus xanthus is a soil bacterium with an unusually large genome that carries out several social processes, including

  20. Fragile X Mental Retardation Syndrome: Structure of the KH1-KH2 Domains of Fragile X Mental Retardation Protein

    SciTech Connect

    Valverde,R.; Poznyakova, I.; Kajander, T.; Venkatraman, J.; Regan, L.

    2007-01-01

    Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.

  1. Fragile X Mental Retardation Protein Regulates Heterosynaptic Plasticity in the Hippocampus

    ERIC Educational Resources Information Center

    Connor, Steven A.; Hoeffer, Charles A.; Klann, Eric; Nguyen, Peter V.

    2011-01-01

    Silencing of a single gene, FMR1, is linked to a highly prevalent form of mental retardation, characterized by social and cognitive impairments, known as fragile X syndrome (FXS). The FMR1 gene encodes fragile X mental retardation protein (FMRP), which negatively regulates translation. Knockout of Fmr1 in mice results in enhanced long-term…

  2. Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation.

    PubMed

    Xu, Changzheng; Tai, Huanhuan; Saleem, Muhammad; Ludwig, Yvonne; Majer, Christine; Berendzen, Kenneth W; Nagel, Kerstin A; Wojciechowski, Tobias; Meeley, Robert B; Taramino, Graziana; Hochholdinger, Frank

    2015-09-01

    The paralogous maize (Zea mays) LBD (Lateral Organ Boundaries Domain) genes rtcs (rootless concerning crown and seminal roots) and rtcl (rtcs-like) emerged from an ancient whole-genome duplication. RTCS is a key regulator of crown root initiation. The diversity of expression, molecular interaction and phenotype of rtcs and rtcl were investigated. The rtcs and rtcl genes display highly correlated spatio-temporal expression patterns in roots, despite the significantly higher expression of rtcs. Both RTCS and RTCL proteins bind to LBD downstream promoters and act as transcription factors. In line with its auxin inducibility and binding to auxin response elements of rtcs and rtcl promoters, ARF34 (AUXIN RESPONSE FACTOR 34) acts as transcriptional activator. Yeast two-hybrid screening combined with bimolecular fluorescence complementation (BiFC) experiments revealed conserved and unique interaction partners of RTCS and RTCL. The rtcl mutation leads to defective shoot-borne root elongation early in development. Cooperative action of RTCS and RTCL during shoot-borne root formation was demonstrated by rtcs-dependent repression of rtcl transcription in coleoptilar nodes. Although RTCS is instrumental in shoot-borne root initiation, RTCL controls shoot-borne root elongation early in development. Their conserved role in auxin signaling, but diverse function in shoot-borne root formation, is underscored by their conserved and unique interaction partners. PMID:25902765

  3. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom

    PubMed Central

    2013-01-01

    Background Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. Results We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. Conclusion In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously

  4. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes.

    PubMed

    Guais, Adeline; Siegrist, Sylvie; Solhonne, Brigitte; Jouault, Hélène; Guellaën, Georges; Bulle, Frédérique

    2006-06-01

    In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells

  5. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  6. Deciphering the spatio-temporal expression and stress regulation of Fam107B, the paralog of the resilience-promoting protein DRR1 in the mouse brain.

    PubMed

    Masana, M; Jukic, M M; Kretzschmar, A; Wagner, K V; Westerholz, S; Schmidt, M V; Rein, T; Brodski, C; Müller, M B

    2015-04-01

    Understanding the molecular mechanisms that promote stress resilience might open up new therapeutic avenues to prevent stress-related disorders. We recently characterized a stress and glucocorticoid-regulated gene, down-regulated in renal cell carcinoma - DRR1 (Fam107A). DRR1 is expressed in the mouse brain; it is up-regulated by stress and glucocorticoids and modulates neuronal actin dynamics. In the adult mouse, DRR1 was shown to facilitate specific behaviors which might be protective against some of the deleterious consequences of stress exposure: in the hippocampal CA3 region, DRR1 improved cognitive performance whereas in the septum, it specifically increased social behavior. Therefore DRR1 was suggested as a candidate protein promoting stress-resilience. Fam107B (family with sequence similarity 107, member B) is the unique paralog of DRR1, and both share high sequence similarities, predicted glucocorticoid response elements, heat-shock induction and tumor suppressor properties. So far, the role of Fam107B in the central nervous system was not studied. The aim of the present investigation, therefore, was to analyze whether Fam107B and DRR1 display comparable mRNA expression patterns in the brain and whether both are modulated by stress and glucocorticoids. Spatio-temporal mapping of Fam107B mRNA expression in the embryonic and adult mouse brain, by means of in situ hybridization, showed that Fam107B was expressed during embryogenesis and in the adulthood, with particularly high and specific expression in the forming telencephalon suggestive of an involvement in corticogenesis. In the adult mouse, expression was restricted to neurogenic niches, like the dentate gyrus. In contrast to DRR1, Fam107B mRNA expression failed to be modulated by glucocorticoids and social stress in the adult mouse. In summary, Fam107B and DRR1 show different spatio-temporal expression patterns in the central nervous system, suggesting at least partially different functional roles in

  7. Deletion of PTEN Produces Deficits in Conditioned Fear and Increases Fragile X Mental Retardation Protein

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Smith, Gregory D.; Morrison, Jessica B.; White, Jessika

    2013-01-01

    The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new…

  8. The Fragile X Mental Retardation Protein, FMRP, Recognizes G-Quartets

    ERIC Educational Resources Information Center

    Darnell, Jennifer C.; Warren, Stephen T.; Darnell, Robert B.

    2004-01-01

    Fragile X mental retardation is a disease caused by the loss of function of a single RNA-binding protein, FMRP. Identifying the RNA targets recognized by FMRP is likely to reveal much about its functions in controlling some aspects of memory and behavior. Recent evidence suggests that one of the predominant RNA motifs recognized by the FMRP…

  9. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins

    PubMed Central

    Dempwolff, Felix; Schmidt, Felix K.; Hervás, Ana B.; Stroh, Alex; Rösch, Thomas C.; Riese, Cornelius N.; Dersch, Simon; Heimerl, Thomas; Lucena, Daniella; Hülsbusch, Nikola; Stuermer, Claudia A. O.; Takeshita, Norio; Fischer, Reinhard; Graumann, Peter L.

    2016-01-01

    Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro—and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds. PMID:27362352

  10. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development.

    PubMed

    Bonaccorso, C M; Spatuzza, M; Di Marco, B; Gloria, A; Barrancotto, G; Cupo, A; Musumeci, S A; D'Antoni, S; Bardoni, B; Catania, M V

    2015-05-01

    Fragile X syndrome is caused by the lack of expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA transport and translation. FMRP is a component of mRNA ribonucleoprotein complexes and it can interact with a range of proteins either directly or indirectly, as demonstrated by two-hybrid selection and co-immunoprecipitation, respectively. Most of FMRP-interacting proteins are RNA-binding proteins such as FXR1P, FXR2P and 82-FIP. Interestingly, FMRP can also interact directly with the cytoplasmic proteins CYFIP1 and CYFIP2, which do not bind RNA and link FMRP to the RhoGTPase pathway. The interaction with these different proteins may modulate the functions of FMRP by influencing its affinity to RNA and by affecting the FMRP ability of cytoskeleton remodeling through Rho/Rac GTPases. To better define the relationship of FMRP with its interacting proteins during brain development, we have analyzed the expression pattern of FMRP and its interacting proteins in the cortex, striatum, hippocampus and cerebellum at different ages in wild type (WT) mice. FMRP and FXR2P were strongly expressed during the first week and gradually decreased thereafter, more rapidly in the cerebellum than in the cortex. FXR1P was also expressed early and showed a reduction at later stages of development with a similar developmental pattern in these two regions. CYFIP1 was expressed at all ages and peaked in the third post-natal week. In contrast, CYFIP2 and 82-FIP (only in forebrain regions) were moderately expressed at P3 and gradually increased after P7. In general, the expression pattern of each protein was similar in the regions examined, except for 82-FIP, which exhibited a strong expression at P3 and low levels at later developmental stages in the cerebellum. Our data indicate that FMRP and its interacting proteins have distinct developmental patterns of expression and suggest that FMRP may be preferentially associated to certain proteins in

  11. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis.

    PubMed

    Zhang, Liu-Xia; Cao, Yi-Ren; Xiao, Hua; Liu, Xiao-Ping; Liu, Shao-Rong; Meng, Qing-Hua; Fan, Liu-Yin; Cao, Cheng-Xi

    2016-03-15

    In the present work we address a simple, rapid and quantitative analytical method for detection of different proteins present in biological samples. For this, we proposed the model of titration of double protein (TDP) and its relevant leverage theory relied on the retardation signal of chip moving reaction boundary electrophoresis (MRBE). The leverage principle showed that the product of the first protein content and its absolute retardation signal is equal to that of the second protein content and its absolute one. To manifest the model, we achieved theoretical self-evidence for the demonstration of the leverage principle at first. Then relevant experiments were conducted on the TDP-MRBE chip. The results revealed that (i) there was a leverage principle of retardation signal within the TDP of two pure proteins, and (ii) a lever also existed within these two complex protein samples, evidently demonstrating the validity of TDP model and leverage theory in MRBE chip. It was also showed that the proposed technique could provide a rapid and simple quantitative analysis of two protein samples in a mixture. Finally, we successfully applied the developed technique for the quantification of soymilk in adulterated infant formula. The TDP-MRBE opens up a new window for the detection of adulteration ratio of the poor food (milk) in blended high quality one. PMID:26414025

  12. Similarities and differences in the structure and function of 4.1G and 4.1R135, two protein 4.1 paralogs expressed in erythroid cells

    PubMed Central

    Nunomura, Wataru; Kinoshita, Kengo; Parra, Marilyn; Gascard, Philippe; An, Xiuli; Mohandas, Narla; Takakuwa, Yuichi

    2015-01-01

    Summary Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N and 4.1B. Two isoforms of 4.1R (4.1R135 and 4.1R80) as well as 4.1G are expressed in erythroblasts during terminal differentiation, but only 4.1R80 is present in mature erythrocytes. While the function of 4.1R isoforms in erythroid cells has been well characterized, there is little or no information on the function of 4.1G in these cells. In the present study, we performed detailed characterization of the interaction of 4.1G with various erythroid membrane proteins and the regulation of these interactions by calcium-saturated calmodulin. Like both isoforms of 4.1R, 4.1G bound to band 3, glycophorin C, CD44, p55 and calmodulin. While both 4.1G and 4.1R135 interact with similar affinity with CD44 and p55, there are significant differences in the affinity of their interaction with band 3 and glycophorin C. This difference in affinity is related to the non-conserved N-terminal headpiece region of the two proteins that is upstream of the 30kDa membrane binding domain that harbors the binding sites for the various membrane proteins. The headpiece region of 4.1G also contains a high affinity calcium-dependent calmodulin-binding site that plays a key role in modulating its interaction with various membrane proteins. We suggest that expression of the two paralogs of protein 4.1 with different affinities for band 3 and glycophorin C is likely to play a role in assembly of these two membrane proteins during terminal erythroid differentiation. PMID:20812914

  13. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.; Mekhedov, Sergey L.; Mirkin, Boris G.; Koonin, Eugene V.

    2005-01-01

    Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes. PMID:16106042

  14. The Fragile X Mental Retardation Protein in Circadian Rhythmicity and Memory Consolidation

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2013-01-01

    The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The Fragile X Mental Retardation Protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes Fragile X Syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function. PMID:19214804

  15. Regulation of Heart Rate in Drosophila via Fragile X Mental Retardation Protein

    PubMed Central

    Novak, Stefanie Mares; Joardar, Archi; Gregorio, Carol C.; Zarnescu, Daniela C.

    2015-01-01

    RNA binding proteins play a pivotal role in post-transcriptional gene expression regulation, however little is understood about their role in cardiac function. The Fragile X (FraX) family of RNA binding proteins is most commonly studied in the context of neurological disorders, as mutations in Fragile X Mental Retardation 1 (FMR1) are the leading cause of inherited mental retardation. More recently, alterations in the levels of Fragile X Related 1 protein, FXR1, the predominant FraX member expressed in vertebrate striated muscle, have been linked to structural and functional defects in mice and zebrafish models. FraX proteins are established regulators of translation and are known to regulate specific targets in different tissues. To decipher the direct role of FraX proteins in the heart in vivo, we turned to Drosophila, which harbors a sole, functionally conserved and ubiquitously expressed FraX protein, dFmr1. Using classical loss of function alleles as well as muscle specific RNAi knockdown, we show that Drosophila FMRP, dFmr1, is required for proper heart rate during development. Functional analyses in the context of cardiac-specific dFmr1 knockdown by RNAi demonstrate that dFmr1 is required cell autonomously in cardiac cells for regulating heart rate. Interestingly, these functional defects are not accompanied by any obvious structural abnormalities, suggesting that dFmr1 may regulate a different repertoire of targets in Drosophila than in vertebrates. Taken together, our findings support the hypothesis that dFmr1 protein is essential for proper cardiac function and establish the fly as a new model for studying the role(s) of FraX proteins in the heart. PMID:26571124

  16. Fragile X Mental Retardation Protein Regulates Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells

    PubMed Central

    Smrt, Richard D.; Johnson, Eric B.; Li, Xuekun; Pfeiffer, Rebecca L.; Szulwach, Keith E.; Duan, Ranhui; Barkho, Basam Z.; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-01-01

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis. PMID:20386739

  17. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.

    PubMed

    Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé

    2016-06-28

    Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine. PMID:27233938

  18. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Chen, Zhenhang; Fu, Yanjun; He, Qingzhong; Jiang, Lun; Zheng, Jiangge; Gao, Yina; Mei, Pinchao; Chen, Zhongzhou; Ren, Xueqin

    2015-03-01

    Flexibility is an intrinsic property of proteins and essential for their biological functions. However, because of structural flexibility, obtaining high-quality crystals of proteins with heterogeneous conformations remain challenging. Here, we show a novel approach to immobilize traditional precipitants onto molecularly imprinted polymers (MIPs) to facilitate protein crystallization, especially for flexible proteins. By applying this method, high-quality crystals of the flexible N-terminus of human fragile X mental retardation protein are obtained, whose absence causes the most common inherited mental retardation. A novel KH domain and an intermolecular disulfide bond are discovered, and several types of dimers are found in solution, thus providing insights into the function of this protein. Furthermore, the precipitant-immobilized MIPs (piMIPs) successfully facilitate flexible protein crystal formation for five model proteins with increased diffraction resolution. This highlights the potential of piMIPs for the crystallization of flexible proteins.

  19. Vertebrate paralogous conserved noncoding sequences may be related to gene expressions in brain.

    PubMed

    Matsunami, Masatoshi; Saitou, Naruya

    2013-01-01

    Vertebrate genomes include gene regulatory elements in protein-noncoding regions. A part of gene regulatory elements are expected to be conserved according to their functional importance, so that evolutionarily conserved noncoding sequences (CNSs) might be good candidates for those elements. In addition, paralogous CNSs, which are highly conserved among both orthologous loci and paralogous loci, have the possibility of controlling overlapping expression patterns of their adjacent paralogous protein-coding genes. The two-round whole-genome duplications (2R WGDs), which most probably occurred in the vertebrate common ancestors, generated large numbers of paralogous protein-coding genes and their regulatory elements. These events could contribute to the emergence of vertebrate features. However, the evolutionary history and influences of the 2R WGDs are still unclear, especially in noncoding regions. To address this issue, we identified paralogous CNSs. Region-focused Basic Local Alignment Search Tool (BLAST) search of each synteny block revealed 7,924 orthologous CNSs and 309 paralogous CNSs conserved among eight high-quality vertebrate genomes. Paralogous CNSs we found contained 115 previously reported ones and newly detected 194 ones. Through comparisons with VISTA Enhancer Browser and available ChIP-seq data, one-third (103) of paralogous CNSs detected in this study showed gene regulatory activity in the brain at several developmental stages. Their genomic locations are highly enriched near the transcription factor-coding regions, which are expressed in brain and neural systems. These results suggest that paralogous CNSs are conserved mainly because of maintaining gene expression in the vertebrate brain. PMID:23267051

  20. Fragile X Mental Retardation Protein expression in the retina is regulated by light.

    PubMed

    Guimarães-Souza, E M; Perche, O; Morgans, C W; Duvoisin, R M; Calaza, K C

    2016-05-01

    Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein that modulates protein synthesis at the synapse and its function is regulated by glutamate. The retina is the first structure that participates in vision, and uses glutamate to transduce electromagnetic signals from light to electrochemical signals to neurons. FMRP has been previously detected in the retina, but its localization has not been studied yet. In this work, our objectives were to describe the localization of FMRP in the retina, to determine whether different exposure to dark or light stimulus alters FMRP expression in the retina, and to compare the pattern in two different species, the mouse and chick. We found that both FMRP mRNA and protein are expressed in the retina. By immunohistochemistry analysis we found that both mouse and chick present similar FMRP expression localized mainly in both plexiform layers and the inner retina. It was also observed that FMRP is down-regulated by 24 h dark adaptation compared to its expression in the retina of animals that were exposed to light for 1 h after 24 h in the dark. We conclude that FMRP is likely to participate in retinal physiology, since its expression changes with light exposure. In addition, the expression pattern and regulation by light of FMRP seems well conserved since it was similar in both mouse and chick. PMID:26719241

  1. Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb

    PubMed Central

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A.; Greer, Charles A.; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2013-01-01

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis. PMID:21307257

  2. Temporal Requirements of the Fragile X Mental Retardation Protein in Modulating Circadian Clock Circuit Synaptic Architecture

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2009-01-01

    Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924

  3. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitate expression of diverse tissue-specific isoforms.

    PubMed

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Mohandas, Narla; Gascard, Philippe D; Conboy, John G

    2004-10-01

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140- to 240-kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity; alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer. PMID:15475241

  4. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitates expression of diverse tissue-specific isoforms

    SciTech Connect

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Narla, Mohandas; Gascard, Philippe D.; Conboy, John G.

    2004-07-15

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140kb-240kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains, interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity: alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.

  5. Zfrp8 forms a complex with fragile-X mental retardation protein and regulates its localization and function.

    PubMed

    Tan, William; Schauder, Curtis; Naryshkina, Tatyana; Minakhina, Svetlana; Steward, Ruth

    2016-02-15

    Fragile-X syndrome is the most commonly inherited cause of autism and mental disabilities. The Fmr1 (Fragile-X Mental Retardation 1) gene is essential in humans and Drosophila for the maintenance of neural stem cells, and Fmr1 loss results in neurological and reproductive developmental defects in humans and flies. FMRP (Fragile-X Mental Retardation Protein) is a nucleo-cytoplasmic shuttling protein, involved in mRNA silencing and translational repression. Both Zfrp8 and Fmr1 have essential functions in the Drosophila ovary. In this study, we identified FMRP, Nufip (Nuclear Fragile-X Mental Retardation Protein-interacting Protein) and Tral (Trailer Hitch) as components of a Zfrp8 protein complex. We show that Zfrp8 is required in the nucleus, and controls localization of FMRP in the cytoplasm. In addition, we demonstrate that Zfrp8 genetically interacts with Fmr1 and tral in an antagonistic manner. Zfrp8 and FMRP both control heterochromatin packaging, also in opposite ways. We propose that Zfrp8 functions as a chaperone, controlling protein complexes involved in RNA processing in the nucleus. PMID:26772998

  6. Drosophila Torsin Protein Regulates Motor Control and Stress Sensitivity and Forms a Complex with Fragile-X Mental Retardation Protein

    PubMed Central

    Ahn, Hyo-Min; Koh, Young Ho

    2016-01-01

    We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903

  7. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life.

    PubMed

    Benachenhou-Lahfa, N; Forterre, P; Labedan, B

    1993-04-01

    The existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family I) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family II) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotes in distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the

  8. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao

    2014-02-01

    The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.

  9. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila

    PubMed Central

    Friedman, Samuel H.; Dani, Neil; Rushton, Emma; Broadie, Kendal

    2013-01-01

    SUMMARY Fragile X syndrome (FXS), the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1) gene product (FMRP), an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1) null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs): GPI-anchored glypican Dally-like protein (Dlp) and transmembrane Syndecan (Sdc). Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg) ligand abundance and downstream Frizzled-2 (Fz2) receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb), and downstream ERK phosphorylation (dpERK) are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb) and downstream signaling via phosphorylation of the transcription factor MAD (pMAD) seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1) Wg and Jeb trans-synaptic signaling, and (2) synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS

  10. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space.

    PubMed

    Hudson, William H; Kossmann, Bradley R; de Vera, Ian Mitchelle S; Chuo, Shih-Wei; Weikum, Emily R; Eick, Geeta N; Thornton, Joseph W; Ivanov, Ivaylo N; Kojetin, Douglas J; Ortlund, Eric A

    2016-01-12

    Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity. PMID:26715749

  11. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice.

    PubMed

    Rozhdestvensky, Timofey S; Robeck, Thomas; Galiveti, Chenna R; Raabe, Carsten A; Seeger, Birte; Wolters, Anna; Gubar, Leonid V; Brosius, Jürgen; Skryabin, Boris V

    2016-01-01

    Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093

  12. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice

    PubMed Central

    Rozhdestvensky, Timofey S.; Robeck, Thomas; Galiveti, Chenna R.; Raabe, Carsten A.; Seeger, Birte; Wolters, Anna; Gubar, Leonid V.; Brosius, Jürgen; Skryabin, Boris V.

    2016-01-01

    Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScrp−/m5′LoxP), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScrp−/m5′LoxP mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScrp−/m5′LoxP mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases. PMID:26848093

  13. Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne

    PubMed Central

    Barendt, Skye; Lee, Hyunwoo; Birch, Cierra; Nakano, Michiko M; Jones, Marcus; Zuber, Peter

    2013-01-01

    Abstract Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes. Bacillus anthracis harbors two paralogs of the global transcriptional

  14. Structural Studies of the Tandem Tudor Domains of Fragile X Mental Retardation Related Proteins FXR1 and FXR2

    SciTech Connect

    Adams-Cioaba, Melanie A.; Guo, Yahong; Bian, ChuanBing; Amaya, Maria F.; Lam, Robert; Wasney, Gregory A.; Vedadi, Masoud; Xu, Chao; Min, Jinrong

    2011-11-23

    Expansion of the CGG trinucleotide repeat in the 5'-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs are locally translated in response to stimuli. Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 {angstrom}, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9. The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner.

  15. Orthologs, paralogs and genome comparisons

    NASA Technical Reports Server (NTRS)

    Gogarten, J. P.; Olendzenski, L.

    1999-01-01

    During the past decade, ancient gene duplications were recognized as one of the main forces in the generation of diverse gene families and the creation of new functional capabilities. New tools developed to search data banks for homologous sequences, and an increased availability of reliable three-dimensional structural information led to the recognition that proteins with diverse functions can belong to the same superfamily. Analyses of the evolution of these superfamilies promises to provide insights into early evolution but are complicated by several important evolutionary processes. Horizontal transfer of genes can lead to a vertical spread of innovations among organisms, therefore finding a certain property in some descendants of an ancestor does not guarantee that it was present in that ancestor. Complete or partial gene conversion between duplicated genes can yield phylogenetic trees with several, apparently independent gene duplications, suggesting an often surprising parallelism in the evolution of independent lineages. Additionally, the breakup of domains within a protein and the fusion of domains into multifunctional proteins makes the delineation of superfamilies a task that remains difficult to automate.

  16. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response

    PubMed Central

    Alpatov, Roman; Lesch, Bluma J.; Nakamoto-Kinoshita, Mika; Blanco, Andres; Chen, Shuzhen; Stützer, Alexandra; Armache, Karim J.; Simon, Matthew D.; Xu, Chao; Ali, Muzaffar; Murn, Jernej; Prisic, Sladjana; Kutateladze, Tatiana G.; Vakoc, Christopher R.; Min, Jinrong; Kingston, Robert E.; Fischle, Wolfgang; Warren, Stephen T.; Page, David C.; Shi, Yang

    2014-01-01

    Summary The fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm where it regulates translation of proteins important for synaptic function. We identify FMRP as a chromatin binding protein that functions in the DNA damage response (DDR). Specifically, we show that FMRP binds chromatin through its tandem Tudor (Agenet) domain in vitro, and associates with chromatin in vivo. We also demonstrate that FMRP participates in the DDR in a chromatin binding-dependent manner. The DDR machinery is known to play important roles in developmental processes such as gametogenesis. We show that FMRP occupies meiotic chromosomes and regulates the dynamics of DDR machinery during mouse spermatogenesis. These findings suggest that nuclear FMRP regulates genomic stability at the chromatin interface, and may impact gametogenesis and some developmental aspects of the fragile X syndrome. PMID:24813610

  17. Functional Redundancy of Paralogs of an Anaphase Promoting Complex/Cyclosome Subunit in Caenorhabditis elegans Meiosis

    PubMed Central

    Stein, Kathryn K.; Nesmith, Jessica E.; Ross, Benjamin D.; Golden, Andy

    2010-01-01

    The anaphase promoting complex/cyclosome (APC/C) mediates the metaphase-to-anaphase transition by instructing the ubiquitination and turnover of key proteins at this stage of the cell cycle. We have recovered a gain-of-function allele in an APC5 subunit of the anaphase promoting complex/cyclosome. This finding led us to investigate further the role of APC5 in Caenorhabditis elegans, which contains two APC5 paralogs. We have shown that these two paralogs, such-1 and gfi-3, are coexpressed in the germline but have nonoverlapping expression patterns in other tissues. Depletion of such-1 or gfi-3 alone does not have a notable effect on the meiotic divisions; however, codepletion of these two factors results in meiotic arrest. In sum, the two C. elegans APC5 paralogs have a redundant function during the meiotic divisions. PMID:20944012

  18. COPII Paralogs in Plants: Functional Redundancy or Diversity?

    PubMed

    Chung, Kin Pan; Zeng, Yonglun; Jiang, Liwen

    2016-09-01

    In eukaryotes, the best-described mechanism of endoplasmic reticulum (ER) export is mediated by coat protein complex II (COPII) vesicles, which comprise five conserved cytosolic components [secretion-associated, Ras-related protein 1 (Sar1), Sec23-24, and Sec13-31]. In higher organisms, multiple paralogs of COPII components are created due to gene duplication. However, the functional diversity of plant COPII subunit isoforms remains largely elusive. Here we summarize and discuss the latest findings derived from studies of various arabidopsis COPII subunit isoforms and their functional diversity. We also put forward testable hypotheses on distinct populations of COPII vesicles performing unique functions in ER export in developmental and stress-related pathways in plants. PMID:27317568

  19. Short and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein

    PubMed Central

    Banerjee, Paromita; Schoenfeld, Brian P.; Bell, Aaron J.; Choi, Catherine H.; Bradley, Michael P.; Hinchey, Paul; Kollaros, Maria; Park, Jae H.; McBride, Sean M.J.; Dockendorff, Thomas C.

    2010-01-01

    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of D. melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation. PMID:20463240

  20. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    NASA Astrophysics Data System (ADS)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  1. Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica

    PubMed Central

    Israelachvili, Jacob N.; Chen, Yunfei; Waite, J. Herbert

    2014-01-01

    The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment. PMID:25303409

  2. Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4.

    PubMed

    Reid, Mary V; Murray, Kaitlin A; Marsh, Eric D; Golden, Jeffrey A; Simmons, Rebecca A; Grinspan, Judith B

    2012-07-01

    Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood. We used a rat model of IUGR created by bilateral ligation of the uterine artery at embryonic Day 19 that results in fetal growth retardation and oxidative stress in the developing brain. The IUGR rat pups showed significant delays in oligodendrocyte differentiation and myelination that resolved by 8 weeks. Bone morphogenetic protein 4 (BMP4), which inhibits oligodendrocyte maturation, was elevated in IUGR brains at postnatal time points and returned to near normal by adulthood. Despite the apparent recovery, behavioral deficiencies were found in 8-week-old female animals, suggesting that the early transient myelination defects have permanent effects. In support of these in vivo data, oligodendrocyte precursor cells cultured from postnatal IUGR rats retained increased BMP4 expression and impaired differentiation that was reversed with the BMP inhibitor noggin. Oxidants in oligodendrocyte cultures increased BMP expression, which decreased differentiation; however, abrogating BMP signaling with noggin in vitro and in BMP-deficient mice prevented these effects. Together, these findings suggest that IUGR results in delayed myelination through the generation of oxidative stress that leads to BMP4 upregulation. PMID:22710965

  3. Differential Selection within the Drosophila Retinal Determination Network and Evidence for Functional Divergence between Paralog Pairs

    PubMed Central

    Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.

    2011-01-01

    The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943

  4. Learning and Behavioral Deficits Associated with the Absence of the Fragile X Mental Retardation Protein: What a Fly and Mouse Model Can Teach Us

    ERIC Educational Resources Information Center

    Santos, Ana Rita; Kanellopoulos, Alexandros K.; Bagni, Claudia

    2014-01-01

    The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the "FMR1" gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain…

  5. Mental Retardation.

    ERIC Educational Resources Information Center

    Baumeister, Alfred A., Ed.

    Thirteen papers by different authors consider the application of research findings and theoretical formulations to the practical appraisal and treatment of mental retardation. All suggest methods for shaping appropriate and adaptive behaviors in retarded individuals. The papers include "Definition, Diagnosis, and Classification" by D.W. Brison,…

  6. Mental Retardation.

    ERIC Educational Resources Information Center

    Purpura, Dominick P.; And Others

    Evidence today indicates that the causes of mental retardation are biological, psychological, and social in origin and that a combination of these causes frequently occur in a single individual. Mental retardation is identified clinically by the presence of several signs that include, but are not limited to, a significant impairment of…

  7. FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure

    PubMed Central

    Bensaid, Mounia; Melko, Mireille; Bechara, Elias G.; Davidovic, Laetitia; Berretta, Antonio; Catania, Maria Vincenza; Gecz, Jozef; Lalli, Enzo; Bardoni, Barbara

    2009-01-01

    FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure. PMID:19136466

  8. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  9. Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure.

    PubMed

    Gatto, Cheryl L; Broadie, Kendal

    2008-08-01

    Fragile X syndrome (FraX), caused by the loss-of-function of one gene (FMR1), is the most common inherited form of both mental retardation and autism spectrum disorders. The FMR1 product (FMRP) is an mRNA-binding translation regulator that mediates activity-dependent control of synaptic structure and function. To develop any FraX intervention strategy, it is essential to define when and where FMRP loss causes the manifestation of synaptic defects, and whether the reintroduction of FMRP can restore normal synapse properties. In the Drosophila FraX model, dFMRP loss causes neuromuscular junction (NMJ) synapse over-elaboration (overgrowth, overbranching, excess synaptic boutons), accumulation of development-arrested satellite boutons, and altered neurotransmission. We used the Gene-Switch method to conditionally drive dFMRP expression to define the spatiotemporal requirements in synaptic mechanisms. Constitutive induction of targeted neuronal dFMRP at wild-type levels rescues all synaptic architectural defects in Drosophila Fmr1 (dfmr1)-null mutants, demonstrating a presynaptic requirement for synapse structuring. By contrast, presynaptic dFMRP expression does not ameliorate functional neurotransmission defects, indicating a postsynaptic dFMRP requirement. Strikingly, targeted early induction of dFMRP effects nearly complete rescue of synaptic structure defects, showing a primarily early-development role. In addition, acute dFMRP expression at maturity partially alleviates dfmr1-null defects, although rescue is not as complete as either early or constitutive dFMRP expression, showing a modest capacity for late-stage structural plasticity. We conclude that dFMRP predominantly acts early in synaptogenesis to modulate architecture, but that late dFMRP introduction at maturity can weakly compensate for early absence of dFMRP function. PMID:18579676

  10. Temporal Requirements of the Fragile X Mental Retardation Protein in the Regulation of Synaptic Structure

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2009-01-01

    Fragile X Syndrome (FraX), caused by the loss of function of one gene (FMR1), is the most common inherited form of both mental retardation and autism spectrum disorders. The FMR1 product (FMRP) is an mRNA-binding translation regulator that mediates activity-dependent control of synaptic structure and function. To develop any FraX intervention strategy, it is critical to define when and where FMRP loss causes the manifestation of synaptic defects, and whether reintroduction of FMRP can restore normal synapse properties. In the Drosophila FraX model, dFMRP loss causes neuromuscular junction (NMJ) synapse over-elaboration (overgrowth, overbranching, excess synaptic boutons), accumulation of development-arrested satellite boutons, and altered neurotransmission. We have used the Gene-Switch (GS) method to conditionally drive dFMRP to define the spatiotemporal requirements in synaptic mechanisms. Constitutive induction of targeted neuronal dFMRP at wild-type levels rescues all synaptic architectural defects in dfmr1 null mutants, demonstrating a presynaptic requirement for synapse structuring. In contrast, presynaptic dFMRP expression does not ameliorate functional neurotransmission defects, indicating a postsynaptic dFMRP requirement. Strikingly, targeted early induction of dFMRP effects nearly complete rescue of synaptic structure defects, showing a primarily early development role. In addition, acute dFMRP expression at maturity partially alleviates dfmr1 null defects, although rescue is not as complete as either early or constitutive dFMRP expression, showing a modest capacity for late-stage structural plasticity. We conclude that dFMRP predominantly acts early in synaptogenesis to modulate architecture, but that late dFMRP introduction at maturity can weakly compensate for early absence of dFMRP function. PMID:18579676

  11. Clinicopathologic significance of immunostaining of α-thalassemia/mental retardation syndrome X-linked protein and death domain-associated protein in neuroendocrine tumors.

    PubMed

    Chen, Shi-Fan; Kasajima, Atsuko; Yazdani, Samaneh; Chan, Monica S M; Wang, Lin; He, Yang-Yang; Gao, Hong-Wen; Sasano, Hironobu

    2013-10-01

    α-Thalassemia/mental retardation syndrome X-linked protein (ATRX) and death domain-associated protein (DAXX) genes are tumor suppressors whose mutations have been identified in sporadic pancreatic neuroendocrine tumors as well as in patients with MEN1. However, it is unknown whether ATRX and DAXX alterations are specific for pancreatic neuroendocrine tumor. In addition, the association of ATRX/DAXX protein loss with tumor cell proliferation has not been examined. We, therefore, immunostained ATRX and DAXX in 10 gastric, 15 duodenal, 20 rectal, 70 pancreatic, and 22 pulmonary neuroendocrine tumors with 15 nonneoplastic pancreases and 27 pancreatic adenocarcinomas to elucidate the site-specific roles of ATRX/DAXX abnormalities. At least 1 loss of ATRX and DAXX immunoreactivity was detected in all neuroendocrine tumor cases but not in any of nonneoplastic pancreatic tissues or pancreatic adenocarcinomas. The loss of DAXX protein was correlated with the Ki-67 index (ATRX, P = .904; DAXX, P = .044). The status of DAXX immunoreactivity correlated positively with World Health Organization histologic grade (P = .026). These results suggest that the status of ATRX or DAXX protein loss in neuroendocrine tumor differed among the organs in which these tumors arose, and these proteins may play site-specific roles in the development of these tumors. PMID:23954140

  12. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    PubMed

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  13. Enhanced corticosteroid signaling alters synaptic plasticity in the dentate gyrus in mice lacking the fragile X mental retardation protein.

    PubMed

    Ghilan, M; Hryciw, B N; Brocardo, P S; Bostrom, C A; Gil-Mohapel, J; Christie, B R

    2015-05-01

    The fragile X mental retardation protein (FMRP) is an important regulator of protein translation, and a lack of FMRP expression leads to a cognitive disorder known as fragile X syndrome (FXS). Clinical symptoms characterizing FXS include learning impairments and heightened anxiety in response to stressful situations. Here, we report that, in response to acute stress, mice lacking FMRP show a faster elevation of corticosterone and a more immediate impairment in N-methyl-d-aspartate receptor (NMDAR) dependent long-term potentiation (LTP) in the dentate gyrus (DG). These stress-induced LTP impairments were rescued by administering the glucocorticoid receptor (GR) antagonist RU38486. Administration of RU38486 also enhanced LTP in Fmr1(-/y) mice in the absence of acute stress to wild-type levels, and this enhancement was blocked by application of the NMDAR antagonist 2-amino-5-phosphonopentanoic acid. These results suggest that a loss of FMPR results in enhanced GR signaling that may adversely affect NMDAR dependent synaptic plasticity in the DG. PMID:25731748

  14. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin.

    PubMed

    Taha, Mohamed S; Nouri, Kazem; Milroy, Lech G; Moll, Jens M; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P; Ahmadian, Mohammad R

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146

  15. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    SciTech Connect

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  16. Different Poses for Ligand and Chaperone in Inhibitor Bound Hsp90 and GRP94: Implications for Paralog-specific Drug Design

    PubMed Central

    Immormino, Robert M.; Metzger, Louis E.; Reardon, Patrick N.; Dollins, D. Eric; Blagg, Brian S.J.; Gewirth, Daniel T.

    2009-01-01

    Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian hsp90 paralogs, which are cytoplasmic Hsp90α and β, ER GRP94, and mitochondrial Trap-1. Given that each of the hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each hsp90 paralog. Here we present side by side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-hsp90 inhibitors Geldanamycin and Radamide. These structures reveal paralog specific differences in the Hsp90 and GRP94 conformations in response to Geldanamycin binding. We also report significant variation in the pose and disparate binding affinities for the Geldanamycin-Radicicol chimera Radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors. PMID:19361515

  17. Expression of fragile X mental retardation protein within the vocal control system of developing and adult male zebra finches

    PubMed Central

    Winograd, Claudia; Clayton, David; Ceman, Stephanie

    2008-01-01

    Individuals with fragile X syndrome (FXS) are cognitively impaired and have marked speech delays and deficits. Our goal was to characterize expression of FMRP, the fragile X mental retardation protein, encoded by the gene FMR1, in an animal model that learns to vocalize, namely the zebra finch Taeniopygia guttata (Tgu). We cloned and sequenced the zebra finch ortholog of FMR1 (TguFmr1) and developed an antibody that recognizes TguFmrp specifically. TguFmrp has structural features similar to its human ortholog FMRP. Because FXS patients exhibit sensorimotor deficits, we examined TguFmrp expression prior to, during, and after sensorimotor song learning in zebra finches. We found that TguFmrp is expressed throughout the brain and in four major song nuclei of the male zebra finch brain, primarily in neurons. Additionally, prior to sensorimotor learning, we observed elevated TguFmrp expression in the RA of post-hatch day 30 males, compared to the surrounding telencephalon, suggesting a preparation for this stage of song learning. Finally, we observed variable TguFmrp expression in the RA of adolescent and adult males: in some males it was elevated and in others it was comparable to the surrounding telencephalon. In summary, we have characterized the zebra finch ortholog of FMRP and found elevated levels in the premotor nucleus RA at a key developmental stage for vocal learning. PMID:18835331

  18. Mechanistic Relationships between Drosophila Fragile X Mental Retardation Protein and Metabotropic Glutamate Receptor A Signaling

    PubMed Central

    Pan, Luyuan; Woodruff, Elvin; Liang, Ping; Broadie, Kendal

    2014-01-01

    Fragile X Syndrome is caused by loss of the FMRP translational regulator. A current hypothesis proposes that FMRP functions downstream of mGluR signaling to regulate synaptic connections. Using the Drosophila disease model, we test relationships between dFMRP and the sole Drosophila mGluR (DmGluRA) by assaying protein expression, behavior and neuron structure in brain and NMJ; in single mutants, double mutants and with an mGluR antagonist. At the protein level, dFMRP is upregulated in dmGluRA mutants, and DmGluRA is upregulated in dfmr1 mutants, demonstrating mutual negative feedback. Null dmGluRA mutants display defects in coordinated movement behavior, which are rescued by removing dFMRP expression. Null dfmr1 mutants display increased NMJ presynaptic structural complexity and elevated presynaptic vesicle pools, which are rescued by blocking mGluR signaling. Null dfmr1 brain neurons similarly display increased presynaptic architectural complexity, which is rescued by blocking mGluR signaling. These data show that DmGluRA and dFMRP convergently regulate presynaptic properties. PMID:18280750

  19. Characterization and Expression of the Zebrafish qki Paralogs

    PubMed Central

    Radomska, Katarzyna J.; Sager, Jonathan; Farnsworth, Bryn; Tellgren-Roth, Åsa; Tuveri, Giulia; Peuckert, Christiane; Kettunen, Petronella; Jazin, Elena; Emilsson, Lina S.

    2016-01-01

    Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development. PMID:26727370

  20. Characterization and Expression of the Zebrafish qki Paralogs.

    PubMed

    Radomska, Katarzyna J; Sager, Jonathan; Farnsworth, Bryn; Tellgren-Roth, Åsa; Tuveri, Giulia; Peuckert, Christiane; Kettunen, Petronella; Jazin, Elena; Emilsson, Lina S

    2016-01-01

    Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development. PMID:26727370

  1. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.

    PubMed

    Hendriks, Hester S; Koolen, Lucas A E; Dingemans, Milou M L; Viberg, Henrik; Lee, Iwa; Leonards, Pim E G; Ramakers, Geert M J; Westerink, Remco H S

    2015-12-01

    Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17-19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment. PMID:25253649

  2. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC.

    PubMed

    Stevens, Charles M; Rayani, Kaveh; Genge, Christine E; Singh, Gurpreet; Liang, Bo; Roller, Janine M; Li, Cindy; Li, Alison Yueh; Tieleman, D Peter; van Petegem, Filip; Tibbits, Glen F

    2016-07-12

    Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity

  3. Flame retardants

    NASA Technical Reports Server (NTRS)

    Troitzsch, J.

    1988-01-01

    The use of flame retardants in plastics has grown only slightly in recent years and will probably grow slowly in the future. The reasons for this are slow economic growth and the absence of fundamentally new requirements for future fire prevention. The trends are toward the increasing use of easily handled, dust-free and well-dispersed flame retardant compounds and master batches; there are no spectacular new developments. In the future, questions of smoke evolution, toxicity and corrosiveness of combustion gases will become increasingly important, especially due to new regulations and rising requirements for environmental protection.

  4. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Collins, David W.; Albala, Joanna S.; Thompson, Larry H.; Kronenberg, Amy; Schild, David; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for interactions involving XRCC3 and Rad51C, stable human cell lines have been isolated that express (His)6-tagged versions of XRCC3 or Rad51C. Ni2+-binding experiments demonstrate that XRCC3 and Rad51C interact in human cells. In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2. These results argue that there are at least two complexes of Rad51 paralogs in human cells (Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2), both containing Rad51C. Moreover, Rad51 is not found in these complexes. X-ray treatment did not alter either the level of any Rad51 paralog or the observed interactions between paralogs. However, the endogenous level of Rad51C is moderately elevated in the XRCC3-overexpressing cell line, suggesting that dimerization between these proteins might help stabilize Rad51C.

  5. Fragile X Mental Retardation Protein is Required for Programmed Cell Death and Clearance of Developmentally-Transient Peptidergic Neurons

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2011-01-01

    Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of “pruning” dysfunction may contribute to the FXS disease state. PMID:21596027

  6. Opposite Dysregulation of Fragile-X Mental Retardation Protein and Heteronuclear Ribonucleoprotein C Protein Associates with Enhanced APP Translation in Alzheimer Disease.

    PubMed

    Borreca, Antonella; Gironi, Katia; Amadoro, Giusy; Ammassari-Teule, Martine

    2016-07-01

    Amyloid precursor protein (APP) is overexpressed in familiar and sporadic Alzheimer Disease (AD) patients suggesting that, in addition to abnormalities in APP cleavage, enhanced levels of APP full length might contribute to the pathology. Based on data showing that the two RNA binding proteins (RBPs), Fragile-X Mental Retardation Protein (FMRP) and heteronuclear Ribonucleoprotein C (hnRNP C), exert an opposite control on APP translation, we have analyzed whether expression and translation of these two RBPs vary in relation to changes in APP protein and mRNA levels in the AD brain at 1, 3, and 6 months of age. Here, we show that, as expected, human APP is overexpressed in hippocampal total extract from Tg2576 mice at all age points. APP overexpression, however, is not stable over time but reaches its maximal level in 1-month-old mutants in association with the stronger (i) reduction of FMRP and (ii) augmentation of hnRNP C. APP levels then decrease progressively as a function of age in close relationship with the gradual normalization of FMRP and hnRNP C levels. Consistent with the mouse data, expression of FMRP and hnRNP C are, respectively, decreased and increased in hippocampal synaptosomes from sporadic AD patients. Our findings identify two RBP targets that might be manipulated for reducing abnormally elevated levels of APP in the AD brain, with the hypothesis that acting upstream of amyloidogenic processing might contribute to attenuate the amyloid burden. PMID:26048669

  7. Functional specialization of chordate CDK1 paralogs during oogenic meiosis

    PubMed Central

    Øvrebø, Jan Inge; Campsteijn, Coen; Kourtesis, Ioannis; Hausen, Harald; Raasholm, Martina; Thompson, Eric M

    2015-01-01

    Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program. PMID:25714331

  8. Functional specialization of chordate CDK1 paralogs during oogenic meiosis.

    PubMed

    Øvrebø, Jan Inge; Campsteijn, Coen; Kourtesis, Ioannis; Hausen, Harald; Raasholm, Martina; Thompson, Eric M

    2015-01-01

    Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program. PMID:25714331

  9. Regulation of fragile X mental retardation 1 protein by C-terminus of Hsc70-interacting protein depends on its phosphorylation status.

    PubMed

    Choi, Ye Na; Jeong, Dar Heum; Lee, Ji Sun; Yoo, Soon Ji

    2014-10-10

    The fragile X mental retardation 1 (FMR1) protein binds mRNA and acts as a negative regulator of translation. Lack of FMR1 causes the most common neurological disorder, fragile X syndrome, while its overexpression is associated with metastasis of breast cancer. Its activity has been well-studied in nervous tissue, but recent evidence as well as its role in cancer indicates that it also acts in other tissues. We have investigated the expression of FMR1 in brain and other tissues of mouse and examined its regulation. We detected expression of FMR1 in liver and heart tissues of mice as well as in brain tissue, supporting other contentions that it acts in non-nervous tissue. Expression of FMR1 inversely correlated with expression of the C-terminus of Hsc70-interacting protein (CHIP) and, based on the known activity of CHIP in protein homeostasis, we suggest that CHIP regulates expression of FMR1. CHIP ubiquitinated FMR1 for proteasomal degradation in a molecular chaperone-independent manner. FMR1 expression was reduced following treatment with okadaic acid, a phosphatase inhibitor, but not in CHIP-depleted cells. Also, a non-phospho FMR1 mutant was much less efficiently ubiquitinated by CHIP and had a longer half-life compared to either wild-type FMR or a phospho-mimic mutant. Taken together, our results demonstrate that CHIP regulates the levels of FMR1 as an E3 ubiquitin ligase in phosphorylation-dependent manner, suggesting that CHIP regulates FMR1-mediated translational repression by regulating the levels of FMR1. PMID:25268320

  10. Retardation of Protein Dynamics by Trehalose in Dehydrated Systems of Photosynthetic Reaction Centers. Insights from Electron Transfer and Thermal Denaturation Kinetics.

    PubMed

    Malferrari, Marco; Francia, Francesco; Venturoli, Giovanni

    2015-10-29

    Conformational protein dynamics is known to be hampered in amorphous matrixes upon dehydration, both in the absence and in the presence of glass forming disaccharides, like trehalose, resulting in enhanced protein thermal stability. To shed light on such matrix effects, we have compared the retardation of protein dynamics in photosynthetic bacterial reaction centers (RC) dehydrated at controlled relative humidity in the absence (RC films) or in the presence of trehalose (RC-trehalose glasses). Small scale RC dynamics, associated with the relaxation from the dark-adapted to the light-adapted conformation, have been probed up to the second time scale by analyzing the kinetics of electron transfer from the photoreduced quinone acceptor (QA(-)) to the photoxidized primary donor (P(+)) as a function of the duration of photoexcitation from 7 ns (laser pulse) to 20 s. A more severe inhibition of dynamics is found in RC-trehalose glasses than in RC films: only in the latter system does a complete relaxation to the light-adapted conformation occur even at extreme dehydration, although strongly retarded. To gain insight into the large scale RC dynamics up to the time scale of days, the kinetics of thermal denaturation have been studied at 44 °C by spectral analysis of the Qx and Qy bands of the RC bacteriochlorin cofactors, as a function of the sugar/protein molar ratio, m, varied between 0 and 10(4). Upon increasing m, denaturation is slowed progressively, and above m ∼ 500 the RC is stable at least for several days. The stronger retardation of RC relaxation and dynamics induced by trehalose is discussed in the light of a recent molecular dynamics simulation study performed in matrixes of the model protein lysozyme with and without trehalose. We suggest that the efficiency of trehalose in retarding RC dynamics and preventing thermal denaturation stems mainly from its propensity to form and stabilize extended networks of hydrogen bonds involving sugar, residual water, and

  11. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles. PMID:17186471

  12. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice

    PubMed Central

    Wu, Ping

    2014-01-01

    The importance of SPX-domain-containing proteins to phosphate (Pi) homeostasis and signalling transduction has been established in plants. In this study, phylogenetic analysis revealed that OsSPX3 and OsSPX5 (SPX3/5) are paralogous SPX genes (SYG1/Pho81/XPR1) in cereal crops. SPX3/5 are specifically responsive to Pi starvation at both the transcriptional and post-transcriptional levels. Similar tissue expression patterns of the two genes and proteins were identified by in situ hybridization and the transgenic plants harbouring SPX3pro-SPX3-GUS or SPX5pro-SPX5-GUS fusions, respectively. Both SPX3/5 are localized in the nucleus and cytoplasm in rice protoplasts and plants. SPX3/5 negatively regulate root-to-shoot Pi translocation with redundant function. The data showed that the Pi-starvation-accumulated SPX3/5 proteins are players in restoring phosphate balance following phosphate starvation. In vitro and in vivo protein–protein interaction analyses indicated that these two proteins can form homodimers and heterodimers, also implying their functional redundancy. Genetic interaction analysis indicated that SPX3/5 are functional repressors of OsPHR2 (PHR2), the rice orthologue of the central regulator AtPHR1 for Pi homeostasis and Pi signalling. These results suggest that the evolution of the additional redundant paralogous SPX genes is beneficial to plants recovering Pi homeostasis after Pi starvation by PHR2 pathway. PMID:24368504

  13. pATsi: Paralogs and Singleton Genes from Arabidopsis thaliana

    PubMed Central

    Ambrosino, Luca; Bostan, Hamed; di Salle, Pasquale; Sangiovanni, Mara; Vigilante, Alessandra; Chiusano, Maria L.

    2016-01-01

    Arabidopsis thaliana is widely accepted as a model species in plant biology. Its genome, due to its small size and diploidy, was the first to be sequenced among plants, making this species also a reference for plant comparative genomics. Nevertheless, the evolutionary mechanisms that shaped the Arabidopsis genome are still controversial. Indeed, duplications, translocations, inversions, and gene loss events that contributed to the current organization are difficult to be traced. A reliable identification of paralogs and single-copy genes is essential to understand these mechanisms. Therefore, we implemented a dedicated pipeline to identify paralog genes and classify single-copy genes into opportune categories. PATsi, a web-accessible database, was organized to allow the straightforward access to the paralogs organized into networks and to the classification of single-copy genes. This permits to efficiently explore the gene collection of Arabidopsis for evolutionary investigations and comparative genomics. PMID:26792975

  14. Arabidopsis Small Ubiquitin-Like Modifier Paralogs Have Distinct Functions in Development and Defense[C][W][OA

    PubMed Central

    van den Burg, Harrold A.; Kini, Ramachandra K.; Schuurink, Robert C.; Takken, Frank L.W.

    2010-01-01

    Posttranslational modifications allow dynamic and reversible changes to protein function. In Arabidopsis thaliana, a small gene family encodes paralogs of the small ubiquitin-like posttranslational modifier. We studied the function of these paralogs. Single mutants of the SUM1 and SUM2 paralogs do not exhibit a clear phenotype. However, the corresponding double knockdown mutant revealed that SUM1 and SUM2 are essential for plant development, floral transition, and suppression of salicylic acid (SA)–dependent defense responses. The SUM1 and SUM2 genes are constitutively expressed, but their spatial expression patterns do not overlap. Tight transcriptional regulation of these two SUM genes appears to be important, as overexpression of either wild-type or conjugation-deficient mutants resulted in activation of SA-dependent defense responses, as did the sum1 sum2 knockdown mutant. Interestingly, expression of the paralog SUM3 is strongly and widely induced by SA and by the defense elicitor Flg22, whereas its expression is otherwise low and restricted to a few specific cell types. Loss of SUM3 does not result in an aberrant developmental phenotype except for late flowering, while SUM3 overexpression causes early flowering and activates plant defense. Apparently, SUM3 promotes plant defense downstream of SA, while SUM1 and SUM2 together prevent SA accumulation in noninfected plants. PMID:20525853

  15. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots

    PubMed Central

    Chen, Chun-Ying; Schmidt, Wolfgang

    2015-01-01

    Phosphate (Pi) deficiency alters root hair length and frequency as a means of increasing the absorptive surface area of roots. Three partly redundant single R3 MYB proteins, CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1) and TRIPTYCHON (TRY), positively regulate the root hair cell fate by participating in a lateral inhibition mechanism. To identify putative targets and processes that are controlled by these three transcription factors (TFs), we conducted transcriptional profiling of roots from Arabidopsis thaliana wild-type plants, and cpc, etc1 and try mutants grown under Pi-replete and Pi-deficient conditions using RNA-seq. The data show that in an intricate interplay between the three MYBs regulate several developmental, physiological and metabolic processes that are putatively located in different tissues. When grown on media with a low Pi concentration, all three TFs acquire additional functions that are related to the Pi starvation response, including transition metal transport, membrane lipid remodelling, and the acquisition, uptake and storage of Pi. Control of gene activity is partly mediated through the regulation of potential antisense transcripts. The current dataset extends the known functions of R3 MYB proteins, provides a suite of novel candidates with critical function in root hair development under both control and Pi-deficient conditions, and challenges the definition of genetic redundancy by demonstrating that environmental perturbations may confer specific functions to orthologous proteins that could have similar roles under control conditions. PMID:26022254

  16. Hox11 paralogous genes are essential for metanephric kidney induction.

    PubMed

    Wellik, Deneen M; Hawkes, Patrick J; Capecchi, Mario R

    2002-06-01

    The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis. PMID:12050119

  17. Human-chimpanzee alignment: ortholog exponentials and paralog power laws.

    PubMed

    Gao, Kun; Miller, Jonathan

    2014-12-01

    Genomic subsequences conserved between closely related species such as human and chimpanzee exhibit an exponential length distribution, in contrast to the algebraic length distribution observed for sequences shared between distantly related genomes. We find that the former exponential can be further decomposed into an exponential component primarily composed of orthologous sequences, and a truncated algebraic component primarily composed of paralogous sequences. PMID:25443749

  18. Identification of pathways, gene networks and paralogous gene families in Daphnia pulex responding to exposure to the toxic cyanobacterium Microcystis aeruginosa

    PubMed Central

    Asselman, Jana; De Coninck, Dieter IM; Glaholt, Stephen; Colbourne, John K; Janssen, Colin R; Shaw, Joseph R; De Schamphelaere, Karel AC

    2013-01-01

    Although cyanobacteria produce a wide range of natural toxins that impact aquatic organisms, food webs and water quality, the mechanisms of toxicity are still insufficiently understood. Here, we implemented a whole-genome expression microarray to identify pathways, gene networks and paralogous gene families responsive to Microcystis stress in Daphnia pulex. Therefore, neonates of a sensitive isolate were given a diet contaminated with Microcystis to contrast with those given a control diet for sixteen days. The microarray revealed 2247 differentially expressed (DE) genes (7.6% of the array) in response to Microcystis, of which 17% are lineage specific( i.e., these genes have no detectable homology to any other gene in currently available databases) and 49% are gene duplicates (paralogs). We identified four pathways/gene networks and eight paralogous gene families affected by Microcystis. Differential regulation of the ribosome, including 3 paralogous gene families encoding 40S, 60S and mitochondrial ribosomal proteins, suggests an impact of Microcystis on protein synthesis of D. pulex. In addition, differential regulation of the oxidative phosphorylation pathway (including the NADH ubquinone oxidoreductase gene family) and the trypsin paralogous gene family (a major component of the digestive system in D. pulex) could explain why fitness is reduced based on energy budget considerations. PMID:22799445

  19. The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo.

    PubMed

    Cappai, Roberto; Cheng, Fang; Ciccotosto, Giuseppe D; Needham, B Elise; Masters, Colin L; Multhaup, Gerd; Fransson, Lars-Ake; Mani, Katrin

    2005-04-01

    Processing of the recycling proteoglycan glypican-1 involves the release of its heparan sulfate chains by copper ion- and nitric oxide-catalyzed ascorbate-triggered autodegradation. The Alzheimer disease amyloid precursor protein (APP) and its paralogue, the amyloid precursor-like protein 2 (APLP2), contain copper ion-, zinc ion-, and heparan sulfate-binding domains. We have investigated the possibility that APP and APLP2 regulate glypican-1 processing during endocytosis and recycling. By using cell-free biochemical experiments, confocal laser immunofluorescence microscopy, and flow cytometry of tissues and cells from wild-type and knock-out mice, we find that (a) APP and glypican-1 colocalize in perinuclear compartments of neuroblastoma cells, (b) ascorbate-triggered nitric oxidecatalyzed glypican-1 autodegradation is zinc ion-dependent in the same cells, (c) in cell-free experiments, APP but not APLP2 stimulates glypican-1 autodegradation in the presence of both Cu(II) and Zn(II) ions, whereas the Cu(I) form of APP and the Cu(II) and Cu(I) forms of APLP2 inhibit autodegradation, (d) in primary cortical neurons from APP or APLP2 knock-out mice, there is an increased nitric oxide-catalyzed degradation of heparan sulfate compared with brain tissue and neurons from wild-type mice, and (e) in growth-quiescent fibroblasts from APLP2 knock-out mice, but not from APP knock-out mice, there is also an increased heparan sulfate degradation. We propose that the rate of autoprocessing of glypican-1 is modulated by APP and APLP2 in neurons and by APLP2 in fibroblasts. These observation identify a functional relationship between the heparan sulfate and copper ion binding activities of APP/APLP2 in their modulation of the nitroxyl anion-catalyzed heparan sulfate degradation in glypican-1. PMID:15677459

  20. Characterization of two paralogous myostatin genes and evidence for positive selection in Tibet fish: Gymnocypris przewalskii.

    PubMed

    Tong, Chao; Zhang, Cunfang; Shi, Jianquan; Qi, Hongfang; Zhang, Renyi; Tang, Yongtao; Li, Guogang; Feng, Chenguang; Zhao, Kai

    2015-07-10

    Myostatin (mstn) is an important member of TGF-β superfamily, a muscle growth inhibitor. Though mstn has been identified in many organisms, little is known about this gene in highland fish, Gymnocypris przewalskii endemic to the Qinghai-Tibetan Plateau. In this study, we first cloned two paralogous mstn genes (mstn1 and mstn2) from G. przewalskii through homologue cloning. The 3D structures of both Mstn proteins varied in the numbers of β-sheets and conformations of α-helices. The branch-site model showed that mstn1 has undergone positive selection, and two positively selected sites (107M and 181T) were located on the random coils of the 3D protein structure. Expression patterns indicated that the mstn1 expressed widely, while the mstn2 only expressed in the muscle and brain. During the early stage of embryo development, the expression levels of both mstn paralogous genes showed different increasing trends. These results suggest that it is diverging in two mstn paralogues of G. przewalskii via specific differences in gene structure, protein structure, selection pressure and gene expression patterns. Taken together, this study provides novel contribution on the research topics of growth related gene function and mechanism of highland fish in extreme aquatic environment on the Qinghai-Tibetan Plateau. PMID:25861868

  1. Effects of GHRP-2 and Cysteamine Administration on Growth Performance, Somatotropic Axis Hormone and Muscle Protein Deposition in Yaks (Bos grunniens) with Growth Retardation

    PubMed Central

    Hu, Rui; Wang, Zhisheng; Peng, Quanhui; Zou, Huawei; Wang, Hongze; Yu, Xiaoqiang; Jing, Xiaoping; Wang, Yixin; Cao, Binghai; Bao, Shanke; Zhang, Wenhua; Zhao, Suonan; Ji, Hanzhong; Kong, Xiangying; Niu, Quanxi

    2016-01-01

    secretion in yaks with growth retardation. GHRP-2 enhanced muscle protein deposition mainly by up-regulated the protein synthesis pathways, whereas CS worked mainly by down-regulated the ubiquitin-proteasome pathway. PMID:26894743

  2. Unexpected Ancient Paralogs and an Evolutionary Model for the COPII Coat Complex

    PubMed Central

    Schlacht, Alexander; Dacks, Joel B.

    2015-01-01

    The coat protein complex II (COPII) is responsible for the transport of protein cargoes from the Endoplasmic Reticulum (ER) to the Golgi apparatus. COPII has been functionally characterized extensively in vivo in humans and yeast. This complex shares components with the nuclear pore complex and the Seh1-Associated (SEA) complex, inextricably linking its evolution with that of the nuclear pore and other protocoatomer domain-containing complexes. Importantly, this is one of the last coat complexes to be examined from a comparative genomic and phylogenetic perspective. We use homology searching of eight components across 74 eukaryotic genomes, followed by phylogenetic analyses, to assess both the distribution of the COPII components across eukaryote diversity and to assess its evolutionary history. We report that Sec12, but not Sed4 was present in the Last Eukaryotic Common Ancestor along with Sec16, Sar1, Sec13, Sec31, Sec23, and Sec24. We identify a previously undetected paralog of Sec23 that, at least, predates the archaeplastid clade. We also describe three Sec24 paralogs likely present in the Last Eukaryotic Common Ancestor, including one newly detected that was anciently present but lost from both opisthokonts and excavates. Altogether, we report previously undescribed complexity of the COPII coat in the ancient eukaryotic ancestor and speculate on models for the evolution, not only of the complex, but its relationship to other protocoatomer-derived complexes. PMID:25747251

  3. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

    PubMed

    McClendon, T Brooke; Sullivan, Meghan R; Bernstein, Kara A; Yanowitz, Judith L

    2016-05-01

    Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability. PMID:26936927

  4. Fragile X Mental Retardation Protein Interactions with a G quadruplex structure in the 3′-Untranslated Region of NR2B mRNA

    PubMed Central

    Stefanovic, Snezana; DeMarco, Brett A.; Underwood, Ayana; Williams, Kathryn R.; Bassell, Gary J.; Mihailescu, Mihaela Rita

    2015-01-01

    Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5′-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the Post Synaptic Density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3′-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3′-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-D-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets. PMID:26412477

  5. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases

    PubMed Central

    2013-01-01

    Background Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the asparagine residue in the N-glycosylation sequons. The catalytic subunits of the OST enzyme are STT3 in eukaryotes, AglB in archaea and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three paralogous AglB proteins. We previously solved the crystal structures of the C-terminal globular domains of two paralogs, AglB-Short 1 and AglB-Short 2. Results We determined the crystal structure of the C-terminal globular domain of the third AglB paralog, AglB-Long, at 1.9 Å resolutions. The crystallization of the fusion protein with maltose binding protein (MBP) afforded high quality protein crystals. Two MBP-AglB-L molecules formed a swapped dimer in the crystal. Since the fusion protein behaved as a monomer upon gel filtration, we reconstituted the monomer structure from the swapped dimer by exchanging the swapped segments. The C-terminal domain of A. fulgidus AglB-L includes a structural unit common to AglB-S1 and AglB-S2. This structural unit contains the evolutionally conserved WWDYG and DK motifs. The present structure revealed that A. fulgidus AglB-L contained a variant type of the DK motif with a short insertion, and confirmed that the second signature residue, Lys, of the DK motif participates in the formation of a pocket that binds to the serine and threonine residues at the +2 position of the N-glycosylation sequon. Conclusions The structure of A. fulgidus AglB-L, together with the two previously solved structures of AglB-S1 and AglB-S2, provides a complete overview of the three AglB paralogs encoded in the A. fulgidus genome. All three AglBs contain a variant type of the DK motif. This finding supports a previously proposed rule: The STT3/AglB/PglB paralogs in one organism always contain the same type of Ser/Thr-binding pocket. The present structure will be useful as a

  6. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens.

    PubMed

    Crutcher, Frankie K; Moran-Diez, Maria E; Ding, Shengli; Liu, Jinggao; Horwitz, Benjamin A; Mukherjee, Prasun K; Kenerley, Charles M

    2015-06-01

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs within the T. virens genome. The paralog sm2 is highly expressed in the presence of plant roots. Gene deletion mutants of sm2 were generated and the mutants were found to overproduce SM1. The ability to elicit ISR in maize against Colletotrichum graminicola was not compromised for the mutants compared to that of wild type isolate. However, the deletion strains had a significantly lowered ability to colonize maize roots. This appears to be the first report on the involvement of an effector-like protein in colonization of roots by Trichoderma. PMID:25986544

  7. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling.

    PubMed

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2016-04-01

    Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are widely used as brominated flame retardants (BFRs) in consumer products. Because humans can be exposed to BFRs mainly through air or dust, the effects of the BFRs on the respiratory system and the underlying mechanisms were investigated. HBCD exposure significantly increased the expression of intercellular adhesion molecule (ICAM)-1 and the production of interleukin (IL)-6 and -8 in human bronchial epithelial cells (BEAS-2B). TBBPA exposure significantly increased the expression of ICAM-1 and IL-6, but not IL-8. HBCD and TBBPA stimulated epidermal growth factor (EGF) production and EGF receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and the subsequent mitogen-activated protein kinase effectively blocked the increase in the expression of proinflammatory proteins. The activation of nuclear factor-kappa B (p50, p65) and activator protein 1 (c-Jun) was also observed following HBCD exposure. Furthermore, the modulation for nuclear receptors was investigated. TBBPA but not HBCD showed ligand activity for thyroid hormone receptor (TR) and TR antagonist significantly suppressed the TBBPA-induced increase of the expression of ICAM-1 and IL-6. In conclusion, HBCD and TBBPA can disrupt the expression of proinflammatory proteins in bronchial epithelial cells, possibly via the modulation of EGFR-related pathways and/or nuclear receptors. PMID:26718265

  8. Datasets depicting mobility retardation of NCS proteins observed upon incubation with calcium, but not with magnesium, barium or strontium.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Scully, Jenna; Wu, Hao; Venkataraman, Venkat

    2016-06-01

    In this data article we show the specificity of the Ca(2+)-induced mobility shift in three proteins that belong to the neuronal calcium sensor (NCS) protein family: Hippocalcin, GCAP1 and GCAP2. These proteins did not display a shift in mobility in native gels when incubated with divalent cations other than Ca(2+) - such as Mg(2+), Ba(2+), and Sr(2+), even at 10× concentrations. The data is similar to that obtained with another NCS protein, neurocalcin delta (Viviano et al., 2016, "Electrophoretic Mobility Shift in Native Gels Indicates Calcium-dependent Structural Changes of Neuronal Calcium Sensor Proteins", [1]). PMID:27222862

  9. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  10. Deregulation of paralogous 13 HOX genes in oral squamous cell carcinoma

    PubMed Central

    Aquino, Gabriella; Franco, Renato; Sabatino, Rocco; Mantia, Elvira La; Scognamiglio, Giosuè; Collina, Francesca; Longo, Francesco; Ionna, Franco; Losito, Nunzia S; Liguori, Giuseppina; Botti, Gerardo; Cantile, Monica

    2015-01-01

    Many oncogenic drivers related to the pathogenesis of OSCC have identified, but the discovery of new molecular markers for early detection of this cancer, remains one the main goals of clinical research. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have demonstrated that the deregulation of HOX genes play a significant role in cancer development and progression. In this study, we built a prognostic TMA with 119 OSCC samples, representative of deep and superficial part of the tumour, to investigate, the paralogous 13 HOX proteins expression, correlating them with clinicpathological parameters, outcomes and therapy information. Our results show an aberrant expression of HOX A13 and HOX D13 in OSCC pathogenesis and tumour progression. HOX A13 overexpression is related to an OSCC better prognosis (P=0.029) and better therapy response in patients treated with both radiotherapy and chemotherapy (P=0.015). HOX D13 overexpression is inversely related to an overall survival (P=0.004). These data highlight the potential prognostic role of HOX paralogous group 13 genes in OSCC. PMID:26693058

  11. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content.

    PubMed

    Sjögren, Lars L E; MacDonald, Tara M; Sutinen, Sirkka; Clarke, Adrian K

    2004-12-01

    ClpC is a molecular chaperone of the Hsp100 family. In higher plants there are two chloroplast-localized paralogs (ClpC1 and ClpC2) that are approximately 93% similar in primary sequence. In this study, we have characterized two independent Arabidopsis (Arabidopsis thaliana) clpC1 T-DNA insertion mutants lacking on average 65% of total ClpC content. Both mutants display a retarded-growth phenotype, leaves with a homogenous chlorotic appearance throughout all developmental stages, and more perpendicular secondary influorescences. Photosynthetic performance was also impaired in both knockout lines, with relatively fewer photosystem I and photosystem II complexes, but no changes in ATPase and Rubisco content. However, despite the specific drop in photosystem I and photosystem II content, no changes in leaf cell anatomy or chloroplast ultrastructure were observed in the mutants compared to the wild type. Previously proposed functions for envelope-associated ClpC in chloroplast protein import and degradation of mistargeted precursors were examined and shown not to be significantly impaired in the clpC1 mutants. In the stroma, where the majority of ClpC protein is localized, marked increases of all ClpP paralogs were observed in the clpC1 mutants but less variation for the ClpR paralogs and a corresponding decrease in the other chloroplast-localized Hsp100 protein, ClpD. Increased amounts of other stromal molecular chaperones (Cpn60, Hsp70, and Hsp90) and several RNA-binding proteins were also observed. Our data suggest that overall ClpC as a stromal molecular chaperone plays a vital role in chloroplast function and leaf development and is likely involved in photosystem biogenesis. PMID:15563614

  12. Datasets depicting mobility retardation of NCS proteins observed upon incubation with calcium, but not with magnesium, barium or strontium

    PubMed Central

    Viviano, Jeffrey; Krishnan, Anuradha; Scully, Jenna; Wu, Hao; Venkataraman, Venkat

    2016-01-01

    In this data article we show the specificity of the Ca2+-induced mobility shift in three proteins that belong to the neuronal calcium sensor (NCS) protein family: Hippocalcin, GCAP1 and GCAP2. These proteins did not display a shift in mobility in native gels when incubated with divalent cations other than Ca2+ – such as Mg2+, Ba2+, and Sr2+, even at 10× concentrations. The data is similar to that obtained with another NCS protein, neurocalcin delta (Viviano et al., 2016, “Electrophoretic Mobility Shift in Native Gels Indicates Calcium-dependent Structural Changes of Neuronal Calcium Sensor Proteins”, [1]). PMID:27222862

  13. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules

    PubMed Central

    Tremblay, Sandra; Jaglin, Xavier; Dury, Alain; Robert, Claude; De Koninck, Paul; Khandjian, Edouard W.

    2016-01-01

    Local translation at the synapse plays key roles in neuron development and activity-dependent synaptic plasticity. mRNAs are translocated from the neuronal soma to the distant synapses as compacted ribonucleoparticles referred to as RNA granules. These contain many RNA-binding proteins, including the Fragile X Mental Retardation Protein (FMRP), the absence of which results in Fragile X Syndrome, the most common inherited form of intellectual disability and the leading genetic cause of autism. Using FMRP as a tracer, we purified a specific population of RNA granules from mouse brain homogenates. Protein composition analyses revealed a strong relationship between polyribosomes and RNA granules. However, the latter have distinct architectural and structural properties, since they are detected as close compact structures as observed by electron microscopy, and converging evidence point to the possibility that these structures emerge from stalled polyribosomes. Time-lapse video microscopy indicated that single granules merge to form cargoes that are transported from the soma to distal locations. Transcriptomic analyses showed that a subset of mRNAs involved in cytoskeleton remodelling and neural development is selectively enriched in RNA granules. One third of the putative mRNA targets described for FMRP appear to be transported in granules and FMRP is more abundant in granules than in polyribosomes. This observation supports a primary role for FMRP in granules biology. Our findings open new avenues for the study of RNA granule dysfunctions in animal models of nervous system disorders, such as Fragile X syndrome. PMID:27462983

  14. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules.

    PubMed

    El Fatimy, Rachid; Davidovic, Laetitia; Tremblay, Sandra; Jaglin, Xavier; Dury, Alain; Robert, Claude; De Koninck, Paul; Khandjian, Edouard W

    2016-07-01

    Local translation at the synapse plays key roles in neuron development and activity-dependent synaptic plasticity. mRNAs are translocated from the neuronal soma to the distant synapses as compacted ribonucleoparticles referred to as RNA granules. These contain many RNA-binding proteins, including the Fragile X Mental Retardation Protein (FMRP), the absence of which results in Fragile X Syndrome, the most common inherited form of intellectual disability and the leading genetic cause of autism. Using FMRP as a tracer, we purified a specific population of RNA granules from mouse brain homogenates. Protein composition analyses revealed a strong relationship between polyribosomes and RNA granules. However, the latter have distinct architectural and structural properties, since they are detected as close compact structures as observed by electron microscopy, and converging evidence point to the possibility that these structures emerge from stalled polyribosomes. Time-lapse video microscopy indicated that single granules merge to form cargoes that are transported from the soma to distal locations. Transcriptomic analyses showed that a subset of mRNAs involved in cytoskeleton remodelling and neural development is selectively enriched in RNA granules. One third of the putative mRNA targets described for FMRP appear to be transported in granules and FMRP is more abundant in granules than in polyribosomes. This observation supports a primary role for FMRP in granules biology. Our findings open new avenues for the study of RNA granule dysfunctions in animal models of nervous system disorders, such as Fragile X syndrome. PMID:27462983

  15. Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors.

    PubMed

    Caffé, A R; Söderpalm, A; van Veen, T

    1993-08-01

    Previously we have presented the morphological features of a neonatal mouse retinal explant kept in culture for 3 to 4 weeks. To further evaluate the organotypic parameters of the tissue we have examined the presence of opsin, S-antigen, and interphotoreceptor retinoid-binding protein (IRBP) in the same experimental paradigm, using light microscopic immunocytochemistry. In vitro, opsin and S-antigen staining is found in photoreceptor somata from genetically normal explants and those derived from mice with the rd or the rds mutation. When present, inner and outer segments label more intensely. No IRBP staining has been found in cell bodies of any genotype. However, some labeling is found in the plexiform layers and in the inner segments. The results indicate that photoreceptor proteins are continuously produced in vitro. This further establishes the organotypic nature of the retinal explant in culture. The administration of growth factors to these explants has been investigated. Neither basic fibroblast growth factor nor nerve growth factor alone has affected the explants phenotype. However, the combination of these proteins has significantly retarded rd cell loss in vitro. PMID:8222732

  16. Regulation of Ras Paralog Thermostability by Networks of Buried Ionizable Groups.

    PubMed

    Isom, Daniel G; Sridharan, Vishwajith; Dohlman, Henrik G

    2016-01-26

    Protein folding is governed by a variety of molecular forces including hydrophobic and ionic interactions. Less is known about the molecular determinants of protein stability. Here we used a recently developed computer algorithm (pHinder) to investigate the relationship between buried charge and thermostability. Our analysis revealed that charge networks in the protein core are generally smaller in thermophilic organisms as compared to mesophilic organisms. To experimentally test whether core network size influences protein thermostability, we purified 18 paralogous Ras superfamily GTPases from yeast and determined their melting temperatures (Tm, or temperature at which 50% of the protein is unfolded). This analysis revealed a wide range of Tm values (35-63 °C) that correlated significantly (R = 0.87) with core network size. These results suggest that thermostability depends in part on the arrangement of ionizable side chains within a protein core. An improved capacity to predict protein thermostability may be useful for selecting the best candidates for protein crystallography, the development of protein-based therapeutics, as well as for industrial enzyme applications. PMID:26701741

  17. Sublethal effects of the flame retardant intermediate hexachlorocyclopentadiene (HCCPD) on the gene transcription and protein activity of Daphnia magna.

    PubMed

    Houde, Magali; Carter, Barbara; Douville, Mélanie

    2013-09-15

    Hexachlorocyclopentadiene (HCCPD) is a chlorinated chemical of high production volume used as an intermediate in the production of flame retardants. HCCPD may be released to the environment during production, use, and as a result of product degradation. The objectives of this study were to evaluate sublethal effects of HCCPD exposure to Daphnia magna at environmentally relevant concentrations (0.0138-13.8 μg/L) using genomic tools (microarray and qPCR), enzyme activities, and life-history endpoints (survival, reproduction, and growth). In chronic exposures, no differences were observed in life-history endpoints (survival, time of first brood, time of first molt, molt frequency, number of neonates, and body length) between exposed organisms and controls. Microarray analyses indicated significant differential genomic transcription for 46 genes (p-value ≤ 0.05 and fold-change>2). Five identified genes were related to metabolic functions. Enzyme activities of α-amylase and trypsin, selected based on transcriptional responses, were evaluated in D. magna. Although trypsin activity was similar between treatments and controls, the activity of α-amylase significantly decreased with increasing HCCPD concentrations. On the chemical level, instability of HCCPD was observed in spiked culture media, most probably due to photolysis and biodegradation. HCCPD was not detected in surface water samples collected upstream and at the point of discharge of a major wastewater treatment plant effluent. Environmentally, rapid degradation of HCCPD could be outdone by its continuous release into aquatic ecosystems in specific areas of concern (e.g., vicinity of industries and hazardous sites). Toxicity results from this study highlight the use of genomics in the identification of biomarkers and help advance the science, and potential use, of multi-level biological approaches for environmental risk assessment. PMID:23820075

  18. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau.

    PubMed

    Liu, Shi-Jie; Zheng, Ping; Wright, David K; Dezsi, Gabi; Braine, Emma; Nguyen, Thanh; Corcoran, Niall M; Johnston, Leigh A; Hovens, Christopher M; Mayo, Jamie N; Hudson, Matthew; Shultz, Sandy R; Jones, Nigel C; O'Brien, Terence J

    2016-07-01

    There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy. PMID:27289302

  19. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us

    PubMed Central

    Santos, Ana Rita; Kanellopoulos, Alexandros K.

    2014-01-01

    The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities. PMID:25227249

  20. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human.

    PubMed

    Wang, Yuan; Sakano, Hitomi; Beebe, Karisa; Brown, Maile R; de Laat, Rian; Bothwell, Mark; Kulesza, Randy J; Rubel, Edwin W

    2014-06-15

    Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders. PMID:24318628

  1. SPOCS: Software for Predicting and Visualizing Orthology/Paralogy Relationships Among Genomes

    SciTech Connect

    Curtis, Darren S.; Phillips, Aaron R.; Callister, Stephen J.; Conlan, Sean; McCue, Lee Ann

    2013-10-15

    At the rate that prokaryotic genomes can now be generated, comparative genomics studies require a flexible method for quickly and accurately predicting orthologs among the rapidly changing set of genomes available. SPOCS implements a graph-based ortholog prediction method to generate a simple tab-delimited table of orthologs and in addition, html files that provide a visualization of the predicted ortholog/paralog relationships to which gene/protein expression metadata may be overlaid. AVAILABILITY AND IMPLEMENTATION: A SPOCS web application is freely available at http://cbb.pnnl.gov/portal/tools/spocs.html. Source code for Linux systems is also freely available under an open source license at http://cbb.pnnl.gov/portal/software/spocs.html; the Boost C++ libraries and BLAST are required.

  2. Introduction to Mental Retardation

    ERIC Educational Resources Information Center

    Arc of the United States, 2004

    2004-01-01

    The purpose of this document is to define mental retardation and answer questions related to this topic. According to the American Association on Mental Retardation (AAMR), mental retardation is a disability that occurs before age 18. It is characterized by significant limitations in intellectual functioning and adaptive behaviors as expressed in…

  3. Functional Diversification after Gene Duplication: Paralog Specific Regions of Structural Disorder and Phosphorylation in p53, p63, and p73

    PubMed Central

    Siltberg-Liberles, Jessica

    2016-01-01

    Conformational and functional flexibility promote protein evolvability. High evolvability allows related proteins to functionally diverge and perhaps to neostructuralize. p53 is a multifunctional protein frequently referred to as the Guardian of the Genome–a hub for e.g. incoming and outgoing signals in apoptosis and DNA repair. p53 has been found to be structurally disordered, an extreme form of conformational flexibility. Here, p53, and its paralogs p63 and p73, were studied for further insights into the evolutionary dynamics of structural disorder, secondary structure, and phosphorylation. This study is focused on the post gene duplication phase for the p53 family in vertebrates, but also visits the origin of the protein family and the early domain loss and gain events. Functional divergence, measured by rapid evolutionary dynamics of protein domains, structural properties, and phosphorylation propensity, is inferred across vertebrate p53 proteins, in p63 and p73 from fish, and between the three paralogs. In particular, structurally disordered regions are redistributed among paralogs, but within clades redistribution of structural disorder also appears to be an ongoing process. Despite its deemed importance as the Guardian of the Genome, p53 is indeed a protein with high evolvability as seen not only in rearranged structural disorder, but also in fluctuating domain sequence signatures among lineages. PMID:27003913

  4. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress

    PubMed Central

    da Silva, Sofia M.; Amaral, Catarina; Neves, Susana S.; Santos, Cátia; Pimentel, Catarina; Rodrigues-Pousada, Claudina

    2015-01-01

    Desulfovibrio gigas belongs to the group of sulfate reducing bacteria (SRB). These ubiquitous and metabolically versatile microorganisms are often exposed to reactive nitrogen species (RNS). Nonetheless, the mechanisms and regulatory elements involved in nitrosative stress protection are still poorly understood. The transcription factor HcpR has emerged as a putative regulator of nitrosative stress response among anaerobic bacteria. HcpR is known to orchestrate the expression of the hybrid cluster protein gene, hcp, proposed to be involved in cellular defense against RNS. According to phylogenetic analyses, the occurrence of hcpR paralog genes is a common feature among several Desulfovibrio species. Within the D. gigas genome we have identified two HcpR-related sequences. One of these sequences, hcpR1, was found in the close vicinity of the hcp gene and this finding prompted us to proceed with its functional characterization. We observed that the growth of a D. gigas strain lacking hcpR1 is severely impaired under nitrosative stress. An in silico search revealed several putative targets of HcpR1 that were experimentally validated. The fact that HcpR1 regulates several genes encoding proteins involved in nitrite and nitrate metabolism, together with the sensitive growth phenotype to NO displayed by an hcpR1 mutant strain, strongly supports a relevant role of this factor under nitrosative stress. Moreover, the finding that several Desulfovibrio species possess HcpR paralogs, which have been transmitted vertically in the evolution and diversification of the genus, suggests that these sequences may confer adaptive or survival advantage to these organisms, possibly by increasing their tolerance to nitrosative stress. PMID:26273559

  5. Unusual subcellular confinement of the fragile X mental retardation protein (FMRP) in circulating human platelets: complete polyribosome dissociation.

    PubMed

    Lauzière, Véronique; Lessard, Mandy; Meunier, Alexandre J; McCoy, Marie; Bergeron, Lucien Junior; Corbin, Francois

    2012-04-01

    FMRP, a RNA-binding protein, was shown in association with polyribosomes in every cell types studied so far, suggesting a ubiquitous role as a translational regulator. Platelets are known for their limited protein synthesis potential. However, current investigations put forward that RNA metabolism is more developed than previously thought. Unexpectedly, our results provide evidence that FMRP, in platelets, is not constitutively associated with heavy particles, such as polyribosomes, and possesses a sedimentation coefficient of less than 10S contrasting with values of 150 to 500S as reported in other cell types. In summary, this report brings to light platelets as a simple human biological system to delineate novel FMRP functions as well as strengthening our comprehension of the pathophysiology of the fragile X syndrome which results from the absence of FMRP. PMID:22210492

  6. Metabotropic Glutamate Receptor–Mediated Use–Dependent Down-Regulation of Synaptic Excitability Involves the Fragile X Mental Retardation Protein

    PubMed Central

    Repicky, Sarah; Broadie, Kendal

    2009-01-01

    Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator. PMID:19036865

  7. Adaptation of topoisomerase I paralogs to nuclear and mitochondrial DNA

    PubMed Central

    Rosa, Ilaria Dalla; Goffart, Steffi; Wurm, Melanie; Wiek, Constanze; Essmann, Frank; Sobek, Stefan; Schroeder, Peter; Zhang, Hongliang; Krutmann, Jean; Hanenberg, Helmut; Schulze-Osthoff, Klaus; Mielke, Christian; Pommier, Yves; Boege, Fritz; Christensen, Morten O.

    2009-01-01

    Topoisomerase I is essential for DNA metabolism in nuclei and mitochondria. In yeast, a single topoisomerase I gene provides for both organelles. In vertebrates, topoisomerase I is divided into nuclear and mitochondrial paralogs (Top1 and Top1mt). To assess the meaning of this gene duplication, we targeted Top1 to mitochondria or Top1mt to nuclei. Overexpression in the fitting organelle served as control. Targeting of Top1 to mitochondria blocked transcription and depleted mitochondrial DNA. This was also seen with catalytically inactive Top1 mutants, but not with Top1mt overexpressed in mitochondria. Targeting of Top1mt to the nucleus revealed that it was much less able to interact with mitotic chromosomes than Top1 overexpressed in the nucleus. Similar experiments with Top1/Top1mt hybrids assigned these functional differences to structural divergences in the DNA-binding core domains. We propose that adaptation of this domain to different chromatin environments in nuclei and mitochondria has driven evolutional development and conservation of organelle-restricted topoisomerase I paralogs in vertebrates. PMID:19720733

  8. Structure–Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 Paralog Grp94

    PubMed Central

    Patel, Hardik J.; Patel, Pallav D.; Ochiana, Stefan O.; Yan, Pengrong; Sun, Weilin; Patel, Maulik R.; Shah, Smit K.; Tramentozzi, Elisa; Brooks, James; Bolaender, Alexander; Shrestha, Liza; Stephani, Ralph; Finotti, Paola; Leifer, Cynthia; Li, Zihai; Gewirth, Daniel T.; Taldone, Tony; Chiosis, Gabriela

    2015-01-01

    Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 μM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/β and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor. PMID:25901531

  9. Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.

    PubMed

    Dickmanns, Achim; Schmidt, Bernhard; Rudolph, Markus G; Mariappan, Malaiyalam; Dierks, Thomas; von Figura, Kurt; Ficner, Ralf

    2005-04-15

    In eukaryotes, sulfate esters are degraded by sulfatases, which possess a unique Calpha-formylglycine residue in their active site. The defect in post-translational formation of the Calpha-formylglycine residue causes a severe lysosomal storage disorder in humans. Recently, FGE (formylglycine-generating enzyme) has been identified as the protein required for this specific modification. Using sequence comparisons, a protein homologous to FGE was found and denoted pFGE (paralog of FGE). pFGE binds a sulfatase-derived peptide bearing the FGE recognition motif, but it lacks formylglycine-generating activity. Both proteins belong to a large family of pro- and eukaryotic proteins containing the DUF323 domain, a formylglycine-generating enzyme domain of unknown three-dimensional structure. We have crystallized the glycosylated human pFGE and determined its crystal structure at a resolution of 1.86 A. The structure reveals a novel fold, which we denote the FGE fold and which therefore serves as a paradigm for the DUF323 domain. It is characterized by an asymmetric partitioning of secondary structure elements and is stabilized by two calcium cations. A deep cleft on the surface of pFGE most likely represents the sulfatase polypeptide binding site. The asymmetric unit of the pFGE crystal contains a homodimer. The putative peptide binding site is buried between the monomers, indicating a biological significance of the dimer. The structure suggests the capability of pFGE to form a heterodimer with FGE. PMID:15687489

  10. Comparison of the peptide binding preferences of three closely related TRAF paralogs: TRAF2, TRAF3, and TRAF5.

    PubMed

    Foight, Glenna Wink; Keating, Amy E

    2016-07-01

    Tumor necrosis factor receptor-associated factors (TRAFs) constitute a family of adapter proteins that act in numerous signaling pathways important in human biology and disease. The MATH domain of TRAF proteins binds peptides found in the cytoplasmic domains of signaling receptors, thereby connecting extracellular signals to downstream effectors. Beyond several very general motifs, the peptide binding preferences of TRAFs have not been extensively characterized, and differences between the binding preferences of TRAF paralogs are poorly understood. Here we report a screening system that we established to explore TRAF peptide-binding specificity using deep mutational scanning of TRAF-peptide ligands. We displayed single- and double-mutant peptide libraries based on the TRAF-binding sites of CD40 or TANK on the surface of Escherichia coli and screened them for binding to TRAF2, TRAF3, and TRAF5. Enrichment analysis of the library sequencing results showed differences in the permitted substitution patterns in the TANK versus CD40 backgrounds. The three TRAF proteins also demonstrated different preferences for binding to members of the CD40 library, and three peptides from that library that were analyzed individually showed striking differences in affinity for the three TRAFs. These results illustrate a previously unappreciated level of binding specificity between these close paralogs and demonstrate that established motifs are overly simplistic. The results from this work begin to outline differences between TRAF family members, and the experimental approach established herein will enable future efforts to investigate and redesign TRAF peptide-binding specificity. PMID:26779844

  11. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  12. THE MENTALLY RETARDED.

    ERIC Educational Resources Information Center

    JORDAN, THOMAS E.

    THIS BOOK PROVIDES A GUIDE TO THE BASIC CONCEPTS AND ISSUES IN THE FIELD OF MENTAL RETARDATION. THERE ARE MANY SOURCES OR CAUSES OF MENTAL RETARDATION AND THE FOLLOWING TYPES ARE EXPLAINED--(1) GENETIC OR CHEMICAL DISORDERS, (2) BIRTH TRAUMA, (3) SUBSEQUENT ACCIDENTS OR DISEASE, AND (4) ENVIRONMENTAL INFLUENCES. IT IS NOTED THAT MOST CASES INVOLVE…

  13. Mental Retardation in Perspective.

    ERIC Educational Resources Information Center

    Horvath, Michael; And Others

    This monograph presents a general introduction to the history, classification, and characteristics of mental retardation. It begins with a discussion of the history of mental retardation from ancient Greece and Rome to the present. The beginnings of special education are traced to the early 19th century in Europe. Major influences in treatment of…

  14. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  15. Vignettes in Mental Retardation.

    ERIC Educational Resources Information Center

    Crissey, Marie Skodak

    1983-01-01

    The use of the family history chart and the "Binet-Simon Scale" to study mental retardation in the early 20th century are considered, along with the implications of this practice. With the thesis that mental retardation was primarily familial and hereditary, limiting reproduction and segregation were viewed as appropriate approaches. (SEW)

  16. Orthologs and paralogs of regA, a master cell-type regulatory gene in Volvox carteri.

    PubMed

    Duncan, Leonard; Nishii, Ichiro; Howard, Alicia; Kirk, David; Miller, Stephen M

    2006-07-01

    The multicellular green alga Volvox carteri forma nagariensis has only two cell types: terminally differentiated somatic cells and reproductive cells. The regA gene maintains the terminally differentiated state of the somatic cells, apparently by repressing transcription of genes required for chloroplast biogenesis and thereby preventing cell growth. Because the RegA protein sequence bore no obvious motifs, we are attempting to identify regions of functional importance by searching for strongly conserved domains in RegA orthologs. Here we report the cloning and characterization of regA from the most closely related known taxon, V. carteri f. kawasakiensis. Given the closeness of the relationship between these two formas, their regA genes are surprisingly different: they differ in the number of introns and by several lengthy indels, and they encode proteins that are only 80% identical. We also serendipitously discovered a paralogous gene immediately upstream of each regA locus. The two regA genes, both upstream paralogs and several genes in Chlamydomonas (the closest unicellular relative of Volvox) encode a conserved region (the VARL domain) that contains what appears to be a DNA-binding SAND domain. This discovery has opened up a new avenue for exploring how regA and the terminally differentiated state that it controls evolved. PMID:16622701

  17. Consanguinity and mental retardation.

    PubMed

    Madhavan, T; Narayan, J

    1991-04-01

    Consanguinity among parents as a cause of mental retardation in their children is debatable. The present study was conducted to find out the effect of consanguinity on mental retardation where the causative factor is not established. A total of 517 mentally retarded persons and their families were studied out of which 160 were born of consanguineous marriage and 357 were of non-consanguineous marriage. The results indicated that, when there is a history of mental retardation in the family and if the parents are consanguineously married, the risk of mental retardation in the offspring is significantly high (chi 2 = 11.52; P less than 0.001). Among the consanguineously married families, the blood relationship of uncle-niece seems to have the highest risk of affecting the offsprings. The implications are discussed in detail. PMID:2072392

  18. Fire-Retardant, Decorative Inks

    NASA Technical Reports Server (NTRS)

    Kourtides, D.; Nir, Z.; Mikroyannidis, J.

    1987-01-01

    Effectiveness of fire-retardant additives evaluated. Fire retardance of decorative acrylic printing inks for aircraft interiors enhanced by certain commercial and experimental fire-retardant additives, according to study.

  19. Identification and mapping of paralogous genes on a known genomic DNA sequence.

    PubMed

    Bina, Minou

    2006-01-01

    The completion of whole genome sequencing projects offers the opportunity to examine the organization of genes and the discovery of evolutionarily related genes in a given species. For the beginners in the field, through a specific example, this chapter provides a step-by-step procedure for identifying paralogous genes, using the genome browser at UCSC (http://genome.ucsc.edu/). The example describes identification and mapping in the human genome, the paralogs of TCF12/HTF4. The example identifies TCF3 and TCF4 as paralogs of the TCF12/HTF4 gene. The example also identifies a related sequence, corresponding to a pseudogene, in one of the introns of the JAK2 gene. The procedure described should be applicable to the discovery and creation of maps of paralogous genes in the genomic DNA sequences that are available at the genome browser at UCSC. PMID:16888348

  20. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart

    PubMed Central

    Somyajit, Kumar; Saxena, Sneha; Babu, Sharath; Mishra, Anup; Nagaraju, Ganesh

    2015-01-01

    Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis. PMID:26354865

  1. Preventing Mental Retardation

    PubMed Central

    Fotheringham, John B.

    1974-01-01

    Influences producing mental retardation can be divided into three categories: inherited factors, health problems and social-emotional influences. This article outlines steps which can be taken to reduce the first two categories, both pre and postnatally. PMID:20469133

  2. Fire retardant polyisocyanurate foam

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  3. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair**

    PubMed Central

    Coates, Julia; Jhujh, Satpal; Mehmood, Shahid; Tamura, Naoka; Travers, Jon; Wu, Qian; Draviam, Viji M.; Robinson, Carol V.; Blundell, Tom L.; Jackson, Stephen P.

    2014-01-01

    XRCC4 and XLF are two structurally-related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF; also called C9orf142) as a new XRCC4-superfamily member, and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX−/− cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro, and assembly of core non-homologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery. PMID:25574025

  4. All-or-(N)One - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci.

    PubMed

    Kutzner, Arne; Pramanik, Subrata; Kim, Pok-Son; Heese, Klaus

    2015-11-01

    FAM72 is a novel neuronal progenitor cell (NPC) self-renewal supporting protein expressed under physiological conditions at low levels in other tissues. Accumulating data indicate the potential pivotal tumourigenic effects of FAM72. Our in silico human genome-wide analysis (GWA) revealed that the FAM72 gene family consists of four human-specific paralogous members, all of which are located on chromosome (chr) 1. Unique asymmetric FAM72 segmental gene duplications are most likely to have occurred in conjunction with the paired genomic neighbour SRGAP2 (SLIT-ROBO Rho GTPase activating protein), as both genes have four paralogues in humans but only one vertebra-emerging orthologue in all other species. No species with two or three FAM72/SRGAP2 gene pairs could be identified, and the four exclusively human-defining ohnologues, with different mutation patterns in Homo neanderthalensis and Denisova hominin, may remain under epigenetic control through long non-coding (lnc) RNAs. PMID:26206078

  5. Litter-Spinning Retarders

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  6. csrR, a Paralog and Direct Target of CsrA, Promotes Legionella pneumophila Resilience in Water

    PubMed Central

    Abbott, Zachary D.; Yakhnin, Helen; Babitzke, Paul

    2015-01-01

    ABSTRACT Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for “CsrA-similar protein for resilience”). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila’s switch to a cell type that is resilient in water supplies. PMID:26060275

  7. Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner☆

    PubMed Central

    Collette, Nicole M.; Yee, Cristal S.; Murugesh, Deepa; Sebastian, Aimy; Taher, Leila; Gale, Nicholas W.; Economides, Aris N.; Harland, Richard M.; Loots, Gabriela G.

    2013-01-01

    WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1–/– mice lack any obvious limb or skeletal defects, Sost–/– mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost–/–; Sostdc1–/– mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost–/– and Sost–/–; Sostdc1–/– mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling. PMID:23994639

  8. Assessment of Complement C4 Gene Copy Number Using the Paralog Ratio Test

    PubMed Central

    Fernando, Michelle M.A.; Boteva, Lora; Morris, David L.; Zhou, Bi; Wu, Yee Ling; Lokki, Marja-Liisa; Yu, Chack Yung; Rioux, John D.; Hollox, Edward J.; Vyse, Timothy J.

    2013-01-01

    The complement C4 locus is in the class III region of the MHC, and exhibits copy number variation. Complement C4 null alleles have shown association with a number of diseases including systemic lupus erythematosus (SLE). However, most studies to date have used protein immunophenotyping and not direct interrogation of the genome to determine C4 null allele status. Moreover, a lack of accurate C4 gene copy number (GCN) estimation and tight linkage disequilibrium across the disease-associated MHC haplotypes has confounded attempts to establish whether or not these associations are causal. We have therefore developed a high through-put paralog ratio test (PRT) in association with two restriction enzyme digest variant ratio tests (REDVRs) to determine total C4 GCN, C4A GCN, and C4B GCN. In the densely genotyped CEU cohort we show that this method is accurate and reproducible when compared to gold standard Southern blot copy number estimation with a discrepancy rate of 9%. We find a broad range of C4 GCNs in the CEU and the 1958 British Birth Cohort populations under study. In addition, SNP-C4 CNV analyses show only moderate levels of correlation and therefore do not support the use of SNP genotypes as proxies for complement C4 GCN. PMID:20506482

  9. Close association between paralogous multiple isomiRs and paralogous/orthologues miRNA sequences implicates dominant sequence selection across various animal species.

    PubMed

    Guo, Li; Zhao, Yang; Zhang, Hui; Yang, Sheng; Chen, Feng

    2013-09-25

    MicroRNAs (miRNAs) are crucial negative regulators of gene expression at the post-transcriptional level. Next-generation sequencing technologies have identified a series of miRNA variants (named isomiRs). In this study, paralogous isomiR assemblies (from the miRNA locus) were systematically analyzed based on data acquired from deep sequencing data sets. Evolutionary analysis of paralogous (members in miRNA gene family in a specific species) and orthologues (across different animal species) miRNAs was also performed. The sequence diversity of paralogous isomiRs was found to be similar to the diversity of paralogous and orthologues miRNAs. Additionally, both isomiRs and paralogous/orthologues miRNAs were implicated in 5' and 3' ends (especially 3' ends), nucleotide substitutions, and insertions and deletions. Generally, multiple isomiRs can be produced from a single miRNA locus, but most of them had lower enrichment levels, and only several dominant isomiR sequences were detected. These dominant isomiR groups were always stable, and one of them would be selected as the most abundant miRNA sequence in specific animal species. Some isomiRs might be consistent to miRNA sequences in some species but not the other. Homologous miRNAs were often detected in similar isomiR repertoires, and showed similar expression patterns, while dominant isomiRs showed complex evolutionary patterns from miRNA sequences across the animal kingdom. These results indicate that the phenomenon of multiple isomiRs is not a random event, but rather the result of evolutionary pressures. The existence of multiple isomiRs enables different species to express advantageous sequences in different environments. Thus, dominant sequences emerge in response to functional and evolutionary pressures, allowing an organism to adapt to complex intra- and extra-cellular events. PMID:23856130

  10. The Impact of Paralogy on Phylogenomic Studies – A Case Study on Annelid Relationships

    PubMed Central

    Struck, Torsten H.

    2013-01-01

    Phylogenomic studies based on hundreds of genes derived from expressed sequence tags libraries are increasingly used to reveal the phylogeny of taxa. A prerequisite for these studies is the assignment of genes into clusters of orthologous sequences. Sophisticated methods of orthology prediction are used in such analyses, but it is rarely assessed whether paralogous sequences have been erroneously grouped together as orthologous sequences after the prediction, and whether this had an impact on the phylogenetic reconstruction using a super-matrix approach. Herein, I tested the impact of paralogous sequences on the reconstruction of annelid relationships based on phylogenomic datasets. Using single-partition analyses, screening for bootstrap support, blast searches and pruning of sequences in the supermatrix, wrongly assigned paralogous sequences were found in eight partitions and the placement of five taxa (the annelids Owenia, Scoloplos, Sthenelais and Eurythoe and the nemertean Cerebratulus) including the robust bootstrap support could be attributed to the presence of paralogous sequences in two partitions. Excluding these sequences resulted in a different, weaker supported placement for these taxa. Moreover, the analyses revealed that paralogous sequences impacted the reconstruction when only a single taxon represented a previously supported higher taxon such as a polychaete family. One possibility of a priori detection of wrongly assigned paralogous sequences could combine 1) a screening of single-partition analyses based on criteria such as nodal support or internal branch length with 2) blast searches of suspicious cases as presented herein. Also possible are a posteriori approaches in which support for specific clades is investigated by comparing alternative hypotheses based on differences in per-site likelihoods. Increasing the sizes of EST libraries will also decrease the likelihood of wrongly assigned paralogous sequences, and in the case of orthology

  11. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells

    PubMed Central

    Swaroop, Manju; Southall, Noel; Huang, Wenwei; Usdin, Karen

    2015-01-01

    Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. Significance In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. PMID:25999519

  12. Identical Substitutions in Magnesium Chelatase Paralogs Result in Chlorophyll-Deficient Soybean Mutants

    PubMed Central

    Campbell, Benjamin W.; Mani, Dhananjay; Curtin, Shaun J.; Slattery, Rebecca A.; Michno, Jean-Michel; Ort, Donald R.; Schaus, Philip J.; Palmer, Reid G.; Orf, James H.; Stupar, Robert M.

    2014-01-01

    The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was selected as a candidate for a different yellow foliage mutant, T219H (Y11y11), that had been previously mapped to chromosome 13. Although the phenotypes of MinnGold and T219H are clearly distinct, sequencing of ChlI1a in T219H identified a different nonsynonymous mutation in the third exon, only six base pairs from the MinnGold mutation. This information, along with previously published allelic tests, were used to identify and clone a third yellow foliage mutation, CD-5, which was previously mapped to chromosome 15. This mutation was identified in the ChlI1b gene, a paralog of ChlI1a. Sequencing of the ChlI1b allele in CD-5 identified a nonsynonymous substitution in the third exon that confers an identical amino acid change as the T219H substitution at ChlI1a. Protein sequence alignments of the two Mg-chelatase subunits indicated that the sites of amino acid modification in MinnGold, T219H, and CD-5 are highly conserved among photosynthetic species. These results suggest that amino acid alterations in this critical domain may create competitive inhibitory interactions between the mutant and wild-type ChlI1a and ChlI1b proteins. PMID:25452420

  13. Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes

    PubMed Central

    Heger, Andreas; Ponting, Chris P.

    2007-01-01

    The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%–97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species’ gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. PMID:17989258

  14. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    PubMed Central

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  15. Functional Divergence in Teleost Cardiac Troponin Paralogs Guides Variation in the Interaction of TnI Switch Region with TnC.

    PubMed

    Genge, Christine E; Stevens, Charles M; Davidson, William S; Singh, Gurpreet; Peter Tieleman, D; Tibbits, Glen F

    2016-01-01

    Gene duplication results in extra copies of genes that must coevolve with their interacting partners in multimeric protein complexes. The cardiac troponin (Tn) complex, containing TnC, TnI, and TnT, forms a distinct functional unit critical for the regulation of cardiac muscle contraction. In teleost fish, the function of the Tn complex is modified by the consequences of differential expression of paralogs in response to environmental thermal challenges. In this article, we focus on the interaction between TnI and TnC, coded for by genes that have independent evolutionary origins, but the co-operation of their protein products has necessitated coevolution. In this study, we characterize functional divergence of TnC and TnI paralogs, specifically the interrelated roles of regulatory subfunctionalization and structural subfunctionalization. We determined that differential paralog transcript expression in response to temperature acclimation results in three combinations of TnC and TnI in the zebrafish heart: TnC1a/TnI1.1, TnC1b/TnI1.1, and TnC1a/TnI1.5. Phylogenetic analysis of these highly conserved proteins identified functionally divergent residues in TnI and TnC. The structural and functional effect of these Tn combinations was modeled with molecular dynamics simulation to link divergent sites to changes in interaction strength. Functional divergence in TnI and TnC were not limited to the residues involved with TnC/TnI switch interaction, which emphasizes the complex nature of Tn function. Patterns in domain-specific divergent selection and interaction energies suggest that substitutions in the TnI switch region are crucial to modifying TnI/TnC function to maintain cardiac contraction with temperature changes. This integrative approach introduces Tn as a model of functional divergence that guides the coevolution of interacting proteins. PMID:26979795

  16. Functional Divergence in Teleost Cardiac Troponin Paralogs Guides Variation in the Interaction of TnI Switch Region with TnC

    PubMed Central

    Genge, Christine E.; Stevens, Charles M.; Davidson, William S.; Singh, Gurpreet; Peter Tieleman, D.; Tibbits, Glen F.

    2016-01-01

    Gene duplication results in extra copies of genes that must coevolve with their interacting partners in multimeric protein complexes. The cardiac troponin (Tn) complex, containing TnC, TnI, and TnT, forms a distinct functional unit critical for the regulation of cardiac muscle contraction. In teleost fish, the function of the Tn complex is modified by the consequences of differential expression of paralogs in response to environmental thermal challenges. In this article, we focus on the interaction between TnI and TnC, coded for by genes that have independent evolutionary origins, but the co-operation of their protein products has necessitated coevolution. In this study, we characterize functional divergence of TnC and TnI paralogs, specifically the interrelated roles of regulatory subfunctionalization and structural subfunctionalization. We determined that differential paralog transcript expression in response to temperature acclimation results in three combinations of TnC and TnI in the zebrafish heart: TnC1a/TnI1.1, TnC1b/TnI1.1, and TnC1a/TnI1.5. Phylogenetic analysis of these highly conserved proteins identified functionally divergent residues in TnI and TnC. The structural and functional effect of these Tn combinations was modeled with molecular dynamics simulation to link divergent sites to changes in interaction strength. Functional divergence in TnI and TnC were not limited to the residues involved with TnC/TnI switch interaction, which emphasizes the complex nature of Tn function. Patterns in domain-specific divergent selection and interaction energies suggest that substitutions in the TnI switch region are crucial to modifying TnI/TnC function to maintain cardiac contraction with temperature changes. This integrative approach introduces Tn as a model of functional divergence that guides the coevolution of interacting proteins. PMID:26979795

  17. RETARDED GROWTH OF EMBRYO1, a New Basic Helix-Loop-Helix Protein, Expresses in Endosperm to Control Embryo Growth1[W

    PubMed Central

    Kondou, Youichi; Nakazawa, Miki; Kawashima, Mika; Ichikawa, Takanari; Yoshizumi, Takeshi; Suzuki, Kumiko; Ishikawa, Akie; Koshi, Tomoko; Matsui, Ryo; Muto, Shu; Matsui, Minami

    2008-01-01

    We have isolated two dominant mutants from screening approximately 50,000 RIKEN activation-tagging lines that have short inflorescence internodes. The activation T-DNAs were inserted near a putative basic helix-loop-helix (bHLH) gene and expression of this gene was increased in the mutant lines. Overexpression of this bHLH gene produced the original mutant phenotype, indicating it was responsible for the mutants. Specific expression was observed during seed development. The loss-of-function mutation of the RETARDED GROWTH OF EMBRYO1 (RGE1) gene caused small and shriveled seeds. The embryo of the loss-of-function mutant showed retarded growth after the heart stage although abnormal morphogenesis and pattern formation of the embryo and endosperm was not observed. We named this bHLH gene RGE1. RGE1 expression was determined in endosperm cells using the β-glucuronidase reporter gene and reverse transcription-polymerase chain reaction. Microarray and real-time reverse transcription-polymerase chain reaction analysis showed specific down-regulation of putative GDSL motif lipase genes in the rge1-1 mutant, indicating possible involvement of these genes in seed morphology. These data suggest that RGE1 expression in the endosperm at the heart stage of embryo development plays an important role in controlling embryo growth. PMID:18567831

  18. Vignettes in Mental Retardation.

    ERIC Educational Resources Information Center

    Crissey, Marie Skodak

    1983-01-01

    Described are turn-of-the-century (1900) efforts of E. Johnstone, Vineland Training School for the mentally retarded; H. Goddard, psychologist (also at Vineland); and C. Davenport, Carnegie Foundation biological laboratory, Coldspring Harbor; to identify the roles of genetic heredity and environmental impact, and thus to eradicate or ameliorate…

  19. Epidemiology of Mental Retardation.

    ERIC Educational Resources Information Center

    Heber, Rick

    Prevalence data on mental retardation is presented including international estimates on general prevalence, age directions, geographical variations within the United States, racial and ethnic variations, economic class distributions, family variations, and population distribution in institutions. Statistics are also provided in areas of specific…

  20. Monkey Retardate Learning Analysis

    ERIC Educational Resources Information Center

    Chamove, A. S.; Molinaro, T. J.

    1978-01-01

    Seven rhesus monkeys reared on diets high in phenylalanine to induce phenylketonuria (PKU--a metabolic disorder associated with mental retardation if untreated) were compared with normal, pair-fed, and younger controls; frontal brain-lesioned monkeys; and those raised on high-tryptophan diets in three object discrimination tasks. (Author)

  1. Systematic Variation in the Pattern of Gene Paralog Retention between the Teleost Superorders Ostariophysi and Acanthopterygii

    PubMed Central

    Garcia de la serrana, Daniel; Mareco, Edson A.; Johnston, Ian A.

    2014-01-01

    Teleost fish underwent whole-genome duplication around 450 Ma followed by diploidization and loss of 80–85% of the duplicated genes. To identify a deep signature of this teleost-specific whole-genome duplication (TSGD), we searched for duplicated genes that were systematically and uniquely retained in one or other of the superorders Ostariophysi and Acanthopterygii. TSGD paralogs comprised 17–21% of total gene content. Some 2.6% (510) of TSGD paralogs were present as pairs in the Ostariophysi genomes of Danio rerio (Cypriniformes) and Astyanax mexicanus (Characiformes) but not in species from four orders of Acanthopterygii (Gasterosteiformes, Gasterosteus aculeatus; Tetraodontiformes, Tetraodon nigroviridis; Perciformes, Oreochromis niloticus; and Beloniformes, Oryzias latipes) where a single copy was identified. Similarly, 1.3% (418) of total gene number represented cases where TSGD paralogs pairs were systematically retained in the Acanthopterygian but conserved as a single copy in Ostariophysi genomes. We confirmed the generality of these results by phylogenetic and synteny analysis of 40 randomly selected linage-specific paralogs (LSPs) from each superorder and completed with the transcriptomes of three additional Ostariophysi species (Ictalurus punctatus [Siluriformes], Sinocyclocheilus species [Cypriniformes], and Piaractus mesopotamicus [Characiformes]). No chromosome bias was detected in TSGD paralog retention. Gene ontology (GO) analysis revealed significant enrichment of GO terms relative to the human GO SLIM database for “growth,” “Cell differentiation,” and “Embryo development” in Ostariophysi and for “Transport,” “Signal Transduction,” and “Vesicle mediated transport” in Acanthopterygii. The observed patterns of paralog retention are consistent with different diploidization outcomes having contributed to the evolution/diversification of each superorder. PMID:24732281

  2. Paralog specific Hsp90 Inhibitors – a brief history and a bright future

    PubMed Central

    Gewirth, Daniel T.

    2016-01-01

    Structured Abstract Background The high sequence and structural homology among the hsp90 paralogs – Hsp90α, Hsp90β, Grp94, and Trap-1 – has made the development of paralog-specific inhibitors a challenging proposition. Objective This review surveys the state of developments in structural analysis, compound screening, and structure-based design that have been brought to bear on this problem. Results First generation compounds that selectively bind to Hsp90, Grp94, or Trap-1 have been identified. Conclusion With the proof of principle firmly established, the prospects for further progress are bright. PMID:27072700

  3. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  4. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability.

    PubMed

    Parplys, Ann C; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G; Leung, Stanley G; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-11-16

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  5. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    SciTech Connect

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.

  6. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    DOE PAGESBeta

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; et al

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintainingmore » wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.« less

  7. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    PubMed Central

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-01-01

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  8. Mental Retardation, Selected Conference Papers.

    ERIC Educational Resources Information Center

    Scheerenberger, R.C., Ed.

    A compilation of selected papers includes the following: comprehensive diagnostic services; pediatric aspects of diagnosis; psychological evaluation of the severely retarded; use of social competency devices; diagnosis of the adult retarded; programing for the severely retarded; nursery school experiences for the trainable; a practical approach to…

  9. Teaching the Educable Mentally Retarded.

    ERIC Educational Resources Information Center

    Love, Harold D.

    The text discusses the behavior, evaluation, and education of mentally retarded children. Harold D. Love presents an overview of the retarded, a description of intelligence and personality tests, and a historical survey of retardation; Virginia Cantrell reviews the educational philosophies and methods of Itard, Seguin, and Montessori. Shirley K.…

  10. Paralogous Antirepressors Acting on the Master Regulator for Biofilm Formation in Bacillus subtilis

    PubMed Central

    Chai, Yunrong; Kolter, Roberto; Losick, Richard

    2009-01-01

    Summary Matrix production during biofilm formation by Bacillus subtilis is governed by a gene control circuit at the heart of which are three dedicated regulatory proteins, the antirepressor SinI, the repressor SinR, and the downstream regulator SlrR. Matrix production is triggered by the synthesis of SinI, which binds to and inactivates SinR, thereby derepressing genes for matrix production as well as the gene for SlrR. Recently, two additional regulators of matrix genes were identified: SlrA, which was reported to be an activator of SlrR, and YwcC, a repressor of SlrA synthesis. We present evidence indicating that SlrA, which is a paralog of SinI, is like SinI, an antirepressor that binds to, and inactivates, SinR. We also show that SlrA does not activate SlrR for expression of matrix genes. Instead, SlrR binds to, and inhibits the activity of, SlrA. Thus, the YwcC-SlrA-SinR-SlrR pathway is a negative feedback loop in which SlrA indirectly stimulates the synthesis of SlrR, and SlrR, in turn, inhibits the activity of SlrA. Finally, we report that under standard laboratory conditions SlrA makes only a small contribution to the expression of genes for matrix production. We propose that in response to an unknown signal recognized by the YwcC repressor, SlrA transiently boosts matrix production. PMID:19788541

  11. Regulation of gill claudin paralogs by salinity, cortisol and prolactin in Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Tipsmark, Christian K; Breves, Jason P; Rabeneck, D Brett; Trubitt, Rebecca T; Lerner, Darren T; Grau, E Gordon

    2016-09-01

    In euryhaline teleosts, reorganization of gill tight junctions during salinity acclimation involves dynamic expression of specific claudin (Cldn) paralogs. We identified four transcripts encoding Cldn tight junction proteins in the tilapia gill transcriptome: cldn10c, cldn10e, cldn28a and cldn30. A tissue distribution experiment found cldn10c and cldn10e expression levels in the gill to be 100-fold higher than any other tissues examined. cldn28a and cldn30 levels in the gill were 10-fold greater than levels in other tissues. Expression of these genes in Mozambique tilapia was examined during acclimation to fresh water (FW), seawater (SW), and in response to hormone treatments. Transfer of tilapia from FW to SW elevated cldn10c and cldn10e, while cldn28a and cldn30 were stimulated following transfer from SW to FW. In hypophysectomized tilapia transferred to FW, pituitary extirpation induced reduced expression of cldn10c, cldn10e and cldn28a; these effects were mitigated equally by either prolactin or cortisol replacement. In vitro experiments with gill filaments showed that cortisol stimulated expression of all four cldns examined, suggesting a direct action of cortisol in situ. Our data indicate that elevated cldn10c and cldn10e expression is important during acclimation of tilapia to SW possibly by conferring ion specific paracellular permeability. On the other hand, expression of cldn28a and cldn30 appears to contribute to reorganization of branchial epithelium during FW acclimation. Hormone treatment experiments showed that particular FW- and SW-induced cldns are controlled by cortisol and prolactin. PMID:27210417

  12. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.

    PubMed

    Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P

    2011-04-15

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296

  13. Conserved structure and expression of hsp70 paralogs in teleost fishes.

    PubMed

    Metzger, David C H; Hemmer-Hansen, Jakob; Schulte, Patricia M

    2016-06-01

    The cytosolic 70KDa heat shock proteins (Hsp70s) are widely used as biomarkers of environmental stress in ecological and toxicological studies in fish. Here we analyze teleost genome sequences to show that two genes encoding inducible hsp70s (hsp70-1 and hsp70-2) are likely present in all teleost fish. Phylogenetic and synteny analyses indicate that hsp70-1 and hsp70-2 are distinct paralogs that originated prior to the diversification of the teleosts. The promoters of both genes contain a TATA box and conserved heat shock elements (HSEs), but unlike mammalian HSP70s, both genes contain an intron in the 5' UTR. The hsp70-2 gene has undergone tandem duplication in several species. In addition, many other teleost genome assemblies have multiple copies of hsp70-2 present on separate, small, genomic scaffolds. To verify that these represent poorly assembled tandem duplicates, we cloned the genomic region surrounding hsp70-2 in Fundulus heteroclitus and showed that the hsp70-2 gene copies that are on separate scaffolds in the genome assembly are arranged as tandem duplicates. Real-time quantitative PCR of F. heteroclitus genomic DNA indicates that four copies of the hsp70-2 gene are likely present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between isoforms and tissues. These data indicate that ecological and toxicological studies using hsp70 as a biomarker in teleosts should take this complexity into account. PMID:26922644

  14. Two proprotein convertase subtilisin/kexin type 9 (PCSK9) paralogs from the tropical sea cucumber (Stichopus monotuberculatus): Molecular characterization and inducible expression with immune challenge.

    PubMed

    Ren, Chunhua; Chen, Ting; Jiang, Xiao; Sun, Hongyan; Qian, Jing; Hu, Chaoqun; Wang, Yanhong

    2016-09-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a multifunctional protein that widely exists in eukaryotic species. In this study, two PCSK9 paralogs, named StmPCSK9-1 and StmPCSK9-2, were identified from the tropical sea cucumber (Stichopus monotuberculatus). The cDNAs of StmPCSK9-1 and StmPCSK9-2 are 1330 kb and 1508 kb in size, respectively. The open reading frames (ORF) for StmPCSK9-1 and StmPCSK9-2 cDNAs are 1128 and 1167 bp in length, encoding the proteins of 375 and 388 amino acids with the deduced molecular weights of 38.76 and 41.07 kDa, respectively. In accord with other members in PCSK9 family, the two StmPCSK9 paralogs possessed the inhibitor_I9 and peptidase_S8 functional domains, seven active sites, a catalytic triad and two calcium binding sites. For the gene structure, the splicing of the two StmPCSK9 paralogs was relatively conserved. In addition, the mRNA expression of StmPCSK9-1 and StmPCSK9-2 was only detected in the sea cucumber intestine and coelomocytes, and the expression levels of both the two StmPCSK9 paralogs were higher in intestine. Moreover, StmPCSK9-2 was found to be a cytoplasm protein without signal peptide, and show no response to the immune challenge. On the contrary, StmPCSK9-1 was a secreted protein and the transcriptional expression of StmPCSK9-1 was significantly up-regulated by lipopolysaccharides (LPS) treatment and slightly down-regulated by polyriboinosinic polyribocytidylic acid [Poly (I:C)] challenge in in vitro experiments performed in the cultural primary coelomocytes, suggesting that the StmPCSK9-1 may play critical roles in the innate immune defense of sea cucumber, S. monotuberculatus, against bacterial and/or viral infections. PMID:27426522

  15. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  16. Fire and smoke retardants

    NASA Astrophysics Data System (ADS)

    Drews, M. J.

    Despite a reduction in Federal regulatory activity, research concerned with flame retardancy and smoke suppression in the private sector appears to be increasing. This trend seem related to the increased utilization of plastics for end uses which traditionally have employed metal or wood products. As a result, new markets have appeared for thermally stable and fire resistance thermoplastic materials, and this in turn has spurred research and development activity. In addition, public awareness of the dangers associated with fire has increased as a result of several highly publicized hotel and restaurant fires within the past two years. The consumers recognition of flammability characteristics as important materials property considerations has increased. The current status of fire and smoke retardant chemistry and research are summarized.

  17. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  18. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  19. [Curing mental retardation: searching for balance].

    PubMed

    Harel, Sharon; Jenna, Sarah

    2011-01-01

    Mental retardation (MR) occurs in 2 to 3 % of the general population and is still not therapeutically addressed. Milder forms of MR result from deficient synaptogenesis and/or impaired synaptic plasticity during childhood. These alterations would result from disequilibrium in signalling pathways regulating the balance between long term potentiation (LTP) and long term depression (LTD) in certain neurons such as hippocampus neurons. To provide mentally retarded children with increased cognitive abilities, novel experimental approaches are currently being developed to characterize signalling status associated with MR and to identify therapeutic targets that would restore lost equilibrium. Several studies also highlighted the major role played by molecular switches like kinases, phosphatases, small G proteins and their regulators in the coordination and integration of signalling pathways associated with synaptic plasticity. These proteins may therefore constitute promising therapeutic targets for a number of cognitive deficiencies. PMID:21299965

  20. Sibling rivalry among paralogs promotes evolution of the human brain.

    PubMed

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. PMID:22579279

  1. ß-tubulin Paralogs Provide a Qualitative Test for a Phylogeny of Cyst Nematodes

    PubMed Central

    Sabo, A.; Ferris, V. R.

    2004-01-01

    Evolutionary relationships among cyst nematodes based on predicted ß-tubulin amino acid and DNA sequence data were compared with phylogenies inferred from ribosomal DNA (ITS1, 5.8S gene, ITS2). The ß-tubulin amino acid data were highly conserved and not useful for phylogenetic inference at the taxonomic level of genus and species. Phylogenetic trees based on ß-tubulin DNA sequence data were better resolved, but the relationships at lower taxonomic levels could not be inferred with confidence. Sequences from single species often appeared in more than one monophyletic clade, indicating the presence of ß-tubulin paralogs (confirmed by Southern blot analysis). For a subset of taxa, good congruence between the two data sets was revealed by the presence of the same putative ß-tubulin gene paralogs in monophyletic groups on the rDNA tree, corroborating the taxon relationships inferred from ribosomal DNA data. PMID:19262824

  2. Palaeophylogenomics of the vertebrate ancestor--impact of hidden paralogy on hagfish and lamprey gene phylogeny.

    PubMed

    Kuraku, Shigehiro

    2010-07-01

    In dissecting the transition from invertebrates to vertebrates at the molecular level, whole-genome duplications are recognized as a key event. This gave rise to more copies of genes in jawed vertebrates (gnathostomes), such as the four Hox clusters in the human, compared to the single ancestral cluster in invertebrates. To date, as the most early-branching lineages in vertebrates, cyclostomes (hagfishes and lampreys) have been used for comparative analyses of gene regulations and functions. However, assignment of orthology/paralogy for cyclostomes' genes is not unambiguously demonstrated. Thus, there is a high degree of incongruence in tree topologies between gene families, although whole genome duplications postulate uniform patterns in gene phylogeny. In this review, we demonstrate how expansion of an ancient genome before the cyclostome-gnathostome split, followed by reciprocal gene loss, can cause this incongruence. This is sometimes referred to as 'hidden paralogy'. PMID:21558193

  3. Identification, origin and evidence for retained functionality of two IκBα paralogs in Megalobrama amblycephala.

    PubMed

    Jakovlić, Ivan; Liu, Han; Wang, Wei-Min

    2016-09-01

    IκBα plays an essential role in the innate immune response in mammals. We found two functional IκBα paralogs, originating from the teleost-specific genome duplication, in Megalobrama amblycephala: maIκBαa and maIκBαb. Their size (936/933 bp) and structure are highly analogous to known orthologs. mRNA expression was analysed by qPCR in spleen, liver, kidney, intestine and gills. Apart from maIκBαb in gills (<0.001-fold), both paralogs were constitutively expressed in all tissues. Differential expression was observed in gills (high for maIκBαa) and liver: maIκBαa - 2nd lowest (0.47), maIκBαb - 2nd highest (4.25). Both paralogs (mRNA) were upregulated in liver, spleen and kidney after a bacterial (Aeromonas hydrophila) challenge. In spleen, expressions peaked at 12 h post injection (hpi) (maIκBαa = 14.3-fold, maIκBαb = 21.3-fold), but only maIκBαb was highly upregulated at 4, 24 and 120 hpi. In liver, both were upregulated early, but maIκBαa peaked at 4 hpi (15.2-fold) and maIκBαb at 12 hpi (9.8-fold). In kidney, maIκBαa was highly upregulated only at 12 hpi (8.7-fold), and maIκBαb at 4 (peak - 8.2-fold), 12 and 24 hpi. The results indicate that both IκBα paralogs have retained their functionality, that they are structurally and functionally homologous to IκBα orthologs described in other animal species, and that they both play an important role in the innate immune system of M. amblycephala. PMID:27155355

  4. Robustness of Helicobacter pylori Infection Conferred by Context-Variable Redundancy among Cysteine-Rich Paralogs

    PubMed Central

    Putty, Kalyani; Marcus, Sarah A.; Mittl, Peer R. E.; Bogadi, Lindsey E.; Hunter, Allison M.; Arur, Swathi; Berg, Douglas E.; Sethu, Palaniappan; Kalia, Awdhesh

    2013-01-01

    Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells. PMID:23555707

  5. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum

    PubMed Central

    Maurin, Thomas; Melko, Mireille; Abekhoukh, Sabiha; Khalfallah, Olfa; Davidovic, Laetitia; Jarjat, Marielle; D'Antoni, Simona; Catania, Maria Vincenza; Moine, Hervé; Bechara, Elias; Bardoni, Barbara

    2015-01-01

    Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors. PMID:26250109

  6. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum.

    PubMed

    Maurin, Thomas; Melko, Mireille; Abekhoukh, Sabiha; Khalfallah, Olfa; Davidovic, Laetitia; Jarjat, Marielle; D'Antoni, Simona; Catania, Maria Vincenza; Moine, Hervé; Bechara, Elias; Bardoni, Barbara

    2015-09-30

    Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors. PMID:26250109

  7. The Mentally Retarded in Sweden.

    ERIC Educational Resources Information Center

    Grunewald, Karl

    Described are residential and educational services provided for mentally retarded (MC) children and adults in Sweden. Normalization is the focus of the services which make maximum use of mental and physical capacities to reduce the handicap of mental retardation. Described are general principles, and four stages involving development of services…

  8. Educable Mentally Retarded, Level I.

    ERIC Educational Resources Information Center

    Suo, Minnie Alice; Willemin, Helen

    Intended for teachers of special classes of educable mentally retarded children aged 6 to 8 (mental age = 3.5 to 4.9), the guide stresses skills necessary to the development of physical, personal and social, and vocational competency. An introduction defines philosophy and goals, outlines the educable mentally retarded program and the readiness…

  9. China's Approach to Mental Retardation.

    ERIC Educational Resources Information Center

    Hittman, Stephan

    History, tradition, culture, and superstition have played significant roles in influencing Chinese attitudes toward the mentally retarded. China's overwhelmingly rural, agricultural society has made it dependent upon a huge force of semi-skilled and unskilled labor, to which the retarded are capable of contribution. The stress on self-reliance,…

  10. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  11. THE PATHOLOGY OF MENTAL RETARDATION.

    ERIC Educational Resources Information Center

    CROME, L.; STERN, J.

    DATA FROM RECENT COMPREHENSIVE STUDIES OF THE PATHOLOGY OF MENTAL RETARDATION ARE ASSEMBLED, INCLUDING MATERIAL ON ETIOLOGY, MORPHOLOGY, BIOCHEMISTRY, AND LABORATORY DIAGNOSIS. AREAS COVERED ARE (1) GENETIC CAUSES OF MENTAL RETARDATION, (2) DISORDERS OF GESTATION, (3) BIRTH INJURY, (4) GENERAL CONSIDERATIONS OF POSTNATAL CAUSES OF MENTAL…

  12. Roles of ATR1 paralogs YMR279c and YOR378w in boron stress tolerance

    SciTech Connect

    Bozdag, Gonensin Ozan; Uluisik, Irem; Gulculer, Gulce Sila; Karakaya, Huseyin C.; Koc, Ahmet

    2011-06-17

    Highlights: {yields} ATR1 paralog YMR279c plays role in boron detoxification. {yields} YMR279c overexpression lowers cytoplasmic boron levels. {yields} ATR1 paralog YOR378w has no roles in boron stress response. -- Abstract: Boron is a necessary nutrient for plants and animals, however excess of it causes toxicity. Previously, Atr1 and Arabidopsis Bor1 homolog were identified as the boron efflux pump in yeast, which lower the cytosolic boron concentration and help cells to survive in the presence of toxic amount of boron. In this study, we analyzed ATR1 paralogs, YMR279c and YOR378w, to understand whether they participate in boron stress tolerance in yeast. Even though these genes share homology with ATR1, neither their deletion rendered cells boron sensitive nor their expression was significantly upregulated by boron treatment. However, expression of YMR279, but not YOR378w, from the constitutive GAPDH promoter on a high copy plasmid provided remarkable boron resistance by decreasing intracellular boron levels. Thus our results suggest the presence of a third boron exporter, YMR279c, which functions similar to ATR1 and provides boron resistance in yeast.

  13. Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum

    PubMed Central

    Genois, Marie-Michelle; Plourde, Marie; Éthier, Chantal; Roy, Gaétan; Poirier, Guy G.; Ouellette, Marc; Masson, Jean-Yves

    2015-01-01

    To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival. PMID:25712090

  14. Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum.

    PubMed

    Genois, Marie-Michelle; Plourde, Marie; Éthier, Chantal; Roy, Gaétan; Poirier, Guy G; Ouellette, Marc; Masson, Jean-Yves

    2015-03-11

    To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival. PMID:25712090

  15. Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function.

    PubMed Central

    Pollock, R A; Sreenath, T; Ngo, L; Bieberich, C J

    1995-01-01

    To investigate the functions of paralogous Hox genes, we compared the phenotypic consequences of altering the embryonic patterns of expression of Hoxb-8 and Hoxc-8 in transgenic mice. A comparison of the phenotypic consequences of altered expression of the two paralogs in the axial skeletons of newborns revealed an array of common transformations as well as morphological changes unique to each gene. Divergence of function of the two paralogs was clearly evident in costal derivatives, where increased expression of the two genes affected opposite ends of the ribs. Many of the morphological consequences of expanding the mesodermal domain and magnitude of expression of either gene were atavistic, inducing the transformation of axial skeletal structures from a modern to an earlier evolutionary form. We propose that regional specialization of the vertebral column has been driven by regionalization of Hox gene function and that a major aspect of this evolutionary progression may have been restriction of Hox gene expression. Images Fig. 1 Fig. 2 Fig. 3 PMID:7753831

  16. Zinc Finger Domain of the PRDM9 Gene on Chromosome 1 Exhibits High Diversity in Ruminants but Its Paralog PRDM7 Contains Multiple Disruptive Mutations

    PubMed Central

    Ahlawat, Sonika; Sharma, Priyanka; Sharma, Rekha; Arora, Reena; De, Sachinandan

    2016-01-01

    PRDM9 is the sole hybrid sterility gene identified so far in vertebrates. PRDM9 gene encodes a protein with an immensely variable zinc-finger (ZF) domain that determines the site of meiotic recombination hotspots genome-wide. In this study, the terminal ZF domain of PRDM9 on bovine chromosome 1 and its paralog on chromosome 22 were characterized in 225 samples from five ruminant species (cattle, yak, mithun, sheep and goat). We found extraordinary variation in the number of PRDM9 zinc fingers (6 to 12). We sequenced PRDM9 ZF encoding region from 15 individuals (carrying the same ZF number in both copies) and found 43 different ZF domain sequences. Ruminant zinc fingers of PRDM9 were found to be diversifying under positive selection and concerted evolution, specifically at positions involved in defining their DNA-binding specificity, consistent with the reports from other vertebrates such as mice, humans, equids and chimpanzees. ZF-encoding regions of the PRDM7, a paralog of PRDM9 on bovine chromosome 22 and on unknown chromosomes in other studied species were found to contain 84 base repeat units as in PRDM9, but there were multiple disruptive mutations after the first repeat unit. The diversity of the ZFs suggests that PRDM9 may activate recombination hotspots that are largely unique to each ruminant species. PMID:27203728

  17. Functional Annotations of Paralogs: A Blessing and a Curse.

    PubMed

    Zallot, Rémi; Harrison, Katherine J; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie

    2016-01-01

    Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105

  18. Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX) vertebrate protein.

    PubMed

    López-Falcón, Brenda; Meyer-Nava, Silvia; Hernández-Rodríguez, Benjamín; Campos, Adam; Montero, Daniel; Rudiño, Enrique; Vázquez, Martha; Zurita, Mario; Valadez-Graham, Viviana

    2014-01-01

    The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance. PMID:25437195

  19. Characterization of the Drosophila Group Ortholog to the Amino-Terminus of the Alpha-Thalassemia and Mental Retardation X-Linked (ATRX) Vertebrate Protein

    PubMed Central

    Hernández-Rodríguez, Benjamín; Campos, Adam; Montero, Daniel; Rudiño, Enrique; Vázquez, Martha; Zurita, Mario; Valadez-Graham, Viviana

    2014-01-01

    The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance. PMID:25437195

  20. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  1. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  2. The Sheep Tetherin Paralog oBST2B Blocks Envelope Glycoprotein Incorporation into Nascent Retroviral Virions

    PubMed Central

    Murphy, Lita; Varela, Mariana; Desloire, Sophie; Ftaich, Najate; Murgia, Claudio; Golder, Matthew; Neil, Stuart; Spencer, Thomas E.; Wootton, Sarah K.; Lavillette, Dimitri; Terzian, Christophe; Palmarini, Massimo

    2014-01-01

    ABSTRACT Bone marrow stromal cell antigen 2 (BST2) is a cellular restriction factor with a broad antiviral activity. In sheep, the BST2 gene is duplicated into two paralogs termed oBST2A and oBST2B. oBST2A impedes viral exit of the Jaagsiekte sheep retroviruses (JSRV), most probably by retaining virions at the cell membrane, similar to the “tethering” mechanism exerted by human BST2. In this study, we provide evidence that unlike oBST2A, oBST2B is limited to the Golgi apparatus and disrupts JSRV envelope (Env) trafficking by sequestering it. In turn, oBST2B leads to a reduction in Env incorporation into viral particles, which ultimately results in the release of virions that are less infectious. Furthermore, the activity of oBST2B does not seem to be restricted to retroviruses, as it also acts on vesicular stomatitis virus glycoproteins. Therefore, we suggest that oBST2B exerts antiviral activity using a mechanism distinct from the classical tethering restriction observed for oBST2A. IMPORTANCE BST2 is a powerful cellular restriction factor against a wide range of enveloped viruses. Sheep possess two paralogs of the BST2 gene called oBST2A and oBST2B. JSRV, the causative agent of a transmissible lung cancer of sheep, is known to be restricted by oBST2A. In this study, we show that unlike oBST2A, oBST2B impairs the normal cellular trafficking of JSRV envelope glycoproteins by sequestering them within the Golgi apparatus. We also show that oBST2B decreases the incorporation of envelope glycoprotein into JSRV viral particles, which in turn reduces virion infectivity. In conclusion, oBST2B exerts a novel antiviral activity that is distinct from those of BST2 proteins of other species. PMID:25339764

  3. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.

    PubMed

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  4. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles

    PubMed Central

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  5. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  6. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development.

    PubMed

    Ertl, Iris; Porta-de-la-Riva, Montserrat; Gómez-Orte, Eva; Rubio-Peña, Karinna; Aristizábal-Corrales, David; Cornes, Eric; Fontrodona, Laura; Osteikoetxea, Xabier; Ayuso, Cristina; Askjaer, Peter; Cabello, Juan; Cerón, Julián

    2016-03-01

    SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery. PMID:26739451

  7. Neurotoxicity of brominated flame retardants

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  8. Can earthworms survive fire retardants?

    USGS Publications Warehouse

    Beyer, W.N.; Olson, A.

    1996-01-01

    Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.

  9. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  10. Intumescent Coatings as Fire Retardants

    NASA Technical Reports Server (NTRS)

    Fish, R. H.; Fohlen, G. M.; Parker, J. A.; Sawko, P. M.

    1970-01-01

    Fire-retardant paint, when activated by the heat of fire, reacts to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction.

  11. The evolution of Bab paralog expression and abdominal pigmentation among Sophophora fruit fly species.

    PubMed

    Salomone, Joseph R; Rogers, William A; Rebeiz, Mark; Williams, Thomas M

    2013-01-01

    The evolution of gene networks lies at the heart of understanding trait divergence. Intrinsic to development is the dimension of time: a network must be altered during the correct phase of development to generate the appropriate phenotype. One model of developmental network evolution is the origination of dimorphic (male-specific) abdomen pigmentation in the fruit fly subgenus Sophophora. In Drosophila (D.) melanogaster, dimorphic pigmentation is controlled by the dimorphic expression of the paralogous Bab1 and Bab2 transcription factors that repress pigmentation. These expression patterns are thought to have evolved from a monomorphic ancestral state. Here we show that the spatial domain and contrast in dimorphic Bab expression increases during the latter half of pupal development, and this late pupal expression is necessary and sufficient to suppress pigmentation. Late pupal Bab expression was monomorphic for species from basal clades exhibiting monomorphic pigmentation, though dimorphic expression was observed in D. pseudoobscura that represents an intermediate-branching monomorphic clade. Among species from the dimorphic Sophophora clades, Bab expression was dimorphic, but a poor correlation was found between the domains of expression and male pigmentation. Lastly, while Bab paralog co-expression was generally observed, an instance of paralog-specific expression was found, indicating more complex regulatory mechanisms and mutational effects have shaped the evolution of the bab locus. These results highlight the importance of the time and place of Bab expression for pigmentation development and evolution, and suggest that dimorphism evolved early in Sophophora, but diversity in male pigmentation was not further shaped by alterations in Bab expression. PMID:24261445

  12. Understanding and Teaching the Dependent Retarded Child.

    ERIC Educational Resources Information Center

    Rosenzweig, Louis E.; Long, Julia

    Levels of mental retardation and school admission procedures for the dependent retarded (IQ's 30 to 50) are reviewed. Goals for all retarded and the application of goals to the dependent retarded are considered. Plans and procedures for both teacher and child activities along with suggestions for audiovisual and other materials are provided in the…

  13. The Mentally Retarded Offender: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Schilit, Jeffrey; And Others

    An annotated bibliography of approximately 150 books and articles on the mentally retarded offender as well as 30 nonannotated entries are provided. Topics covered include such areas as characteristics of mentally retarded delinquents, rehabilitation of the retarded offender, community services for retarded persons, rights of the mentally…

  14. Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.

    PubMed

    Gande, Santosh Lakshmi; Mariappan, Malaiyalam; Schmidt, Bernhard; Pringle, Thomas H; von Figura, Kurt; Dierks, Thomas

    2008-03-01

    Formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the oxidation of a specific cysteine residue to formylglycine, which is the catalytic residue required for sulfate ester hydrolysis. This post-translational modification occurs in the endoplasmic reticulum (ER), and is an essential step in the biogenesis of this enzyme family. A paralog of FGE (pFGE) also localizes to the ER. It shares many properties with FGE, but lacks formylglycine-generating activity. There is evidence that FGE and pFGE act in concert, possibly by forming complexes with sulfatases and one another. Here we show that human pFGE, but not FGE, is retained in the ER through its C-terminal tetrapeptide PGEL, a noncanonical variant of the classic KDEL ER-retention signal. Surprisingly, PGEL, although having two nonconsensus residues (PG), confers efficient ER retention when fused to a secretory protein. Inducible coexpression of pFGE at different levels in FGE-expressing cells did not significantly influence the kinetics of FGE secretion, suggesting that pFGE is not a retention factor for FGE in vivo. PGEL is accessible at the surface of the pFGE structure. It is found in 21 mammalian species with available pFGE sequences. Other species carry either canonical signals (eight mammals and 26 nonmammals) or different noncanonical variants (six mammals and six nonmammals). Among the latter, SGEL was tested and found to also confer ER retention. Although evolutionarily conserved for mammalian pFGE, the PGEL signal is found only in one further human protein entering the ER. Its consequences for KDEL receptor-mediated ER retrieval and benefit for pFGE functionality remain to be fully resolved. PMID:18266766

  15. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures: absence of short-term responses.

    PubMed

    Boon, J P; van Zanden, J J; Lewis, W E; Zegers, B N; Goksøyr, A; Arukwe, A

    2002-01-01

    The short-term effects of the commercial PBDE flame retardant mixtures Penta-BDE and cta-BDE on the expression of cytochrome P450 1A (CYP1A), vitellogenin (Vtg) and zona radiata proteins (Zrp) were investigated in juvenile salmon (Salmo salar). For this purpose, groups of fish were dosed twice (oral intake at days I and 4) with 10 and 50 mg/kg body weight of both commercial mixtures. The fishes were sacrificed at day 7 (n = 5 for each group) and 14 (n = 6 for each group), and blood, liver, fillet, and brain were collected. Blanks and positive controls were also part of the experiment. The expressions of Vtg, Zrp, and CYPIA were measured with several techniques (EROD, ELISA, Western, Northern and Slot Blot). The values in the groups of fish treated with Penta-BDE or Octa-BDE did not significantly differ from the reference group for any of the parameters tested. In contrast, the positive control groups treated with estradiol-17beta for Vtg and Zrp expression, and beta-naphthoflavone for CYP1A expression did show a significant response, indicating the potential sensitivity of the fishes for the parameters measured. Since the results of the chemical analyses showed concentrations of a number of PBDE congeners in liver, fillet, and brain that were about three orders of magnitude above those of fish from the North Sea, it is concluded that the short-term toxicity of both commercial PBDE mixtures for these endpoints was low. PMID:12408642

  16. Development of novel fire retardants

    NASA Astrophysics Data System (ADS)

    Sigdel Regmi, Bhawani

    Numerous candidate environmentally-friendly, water-soluble, and non-toxic fire retardants and fire-retarding processes were developed and tested according to the ASTM D 3801 flammability test and the NRL 8093 smoldering test. Flame retardants that passed the ASTM D 3801 flammability test with the highest V0 rating were boron esters of guanidinium hydroxycarboxylate (glycolate, salicylate and dihydroxybenzoate), zinc gluconate borate ester, and cyanoacetate salts of organic bases (melaminium, cyanoguanidinium, and ammonium). Several related compounds pass this test with the lower V1 rating. Two new synergistic flame and smolder retarding systems were developed in which the individual components were incapable of preventing flame spread or smoldering but in combination they were highly effective. These systems were mixtures of either guanyl urea phosphate and boric acid or beta-alanine and boric acid. Compositions leading to the maximum solubility of boron oxides in the ammonium borate/sodium borate system were determined at several temperatures and the formation of mixtures exceeding 50% dissolved boric acid equivalents was found possible. These mixtures were applied as flame retardants for wood, paper, and carbon-loaded polyurethane foam both directly and indirectly by in situ precipitation of boric acid or zinc borate by appropriate chemical treatments. These all passed the ASTM flammability test with V0 rating. The performance of the boron-containing fire retardants is likely due to deposition of protective boron oxide coatings at elevated temperatures except where phosphate was present and a protective boron phosphate was deposited instead. In all cases, the oxidation of carbonaceous char was strongly inhibited. The hydroxycarboxylate groups generally formed intumescent chars during thermal decomposition that also contributed to fire retardancy.

  17. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  18. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery.

    PubMed

    Pan, Shu-Ting; Xue, Danfeng; Li, Zhi-Ling; Zhou, Zhi-Wei; He, Zhi-Xu; Yang, Yinxue; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-01-01

    The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery. PMID:27367670

  19. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery

    PubMed Central

    Pan, Shu-Ting; Xue, Danfeng; Li, Zhi-Ling; Zhou, Zhi-Wei; He, Zhi-Xu; Yang, Yinxue; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-01-01

    The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA (“Orthologous MAtrix”) Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery. PMID:27367670

  20. Auto cannibalism in mental retardation.

    PubMed

    Verma, Rohit; Mina, Shaily; Sachdeva, Ankur

    2014-01-01

    Mental retardation (MR) deems an individual more vulnerable to psychopathologies. The individual may develop an array of behavioral disturbances manifesting themselves in the form of aggressive and destructive conduct, violent fits of anger, stereotyped, or self-injuring behavior. Self-injurious behavior is heterogeneous in nature ranging from mild to severe variant. We report a case of a 7-year-old boy with MR with self-inflicted severe oral injuries of cannibalistic nature presenting as cleft lip and palate. A more extensive research is needed on the problem behaviors in mentally retarded patients for early detection and effective and timely intervention leading to a better outcome. PMID:24891909

  1. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed Central

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-01-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  2. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins.

    PubMed

    Shen, W F; Montgomery, J C; Rozenfeld, S; Moskow, J J; Lawrence, H J; Buchberg, A M; Largman, C

    1997-11-01

    Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets. PMID:9343407

  3. New Insights into the Roles of Xin Repeat-Containing Proteins in Cardiac Development, Function, and Disease

    PubMed Central

    Wang, Qinchuan; Lin, Jenny Li-Chun; Erives, Albert J.; Lin, Cheng-I; Lin, Jim Jung-Ching

    2016-01-01

    Since the discovery of Xin repeat-containing proteins in 1996, the importance of Xin proteins in muscle development, function, regeneration, and disease has been continuously implicated. Most Xin proteins are localized to myotendinous junctions of the skeletal muscle and also to intercalated discs (ICDs) of the heart. The Xin gene is only found in vertebrates, which are characterized by a true chambered heart. This suggests that the evolutionary origin of the Xin gene may have played a key role in vertebrate origins. Diverse vertebrates including mammals possess two paralogous genes, Xinα (or Xirp1) and Xinβ (or Xirp2), and this review focuses on the role of their encoded proteins in cardiac muscles. Complete loss of mouse Xinβ (mXinβ) results in the failure of forming ICD, severe growth retardation, and early postnatal lethality. Deletion of mouse Xinα (mXinα) leads to late-onset cardiomyopathy with conduction defects. Molecular studies have identified three classes of mXinα-interacting proteins: catenins, actin regulators/modulators, and ion-channel subunits. Thus, mXinα acts as a scaffolding protein modulating the N-cadherin-mediated adhesion and ion-channel surface expression. Xin expression is significantly upregulated in early stages of stressed hearts, whereas Xin expression is downregulated in failing hearts from various human cardiomyopathies. Thus, mutations in these Xin loci may lead to diverse cardiomyopathies and heart failure. PMID:24725425

  4. Genetic Counseling in Mental Retardation.

    ERIC Educational Resources Information Center

    Bowen, Peter

    The task of the genetic counselor who identifies genetic causes of mental retardation and assists families to understand risk of recurrence is described. Considered are chromosomal genetic disorders such as Down's syndrome, inherited disorders such as Tay-Sachs disease, identification by testing the amniotic fluid cells (amniocentresis) in time…

  5. Transportation and the Mentally Retarded.

    ERIC Educational Resources Information Center

    President's Committee on Mental Retardation, Washington, DC.

    Reported were the results of a contract that involved identification, description, and categorization of the nature of transportation problems for the mentally retarded by means of analysis of existing studies, two surveys, and an inventory of specialized programs and systems operating in the United States. One major problem was found to be…

  6. Detection of Malingered Mental Retardation

    ERIC Educational Resources Information Center

    Shandera, Anne L.; Berry, David T. R.; Clark, Jessica A.; Schipper, Lindsey J.; Graue, Lili O.; Harp, Jordan P.

    2010-01-01

    In a cross-validation of results from L. O. Graue et al. (2007), standard psychological assessment instruments, as well as tests of neurocognitive and psychiatric feigning, were administered under standard instructions to 24 participants diagnosed with mild mental retardation (MR) and 10 demographically matched community volunteers (CVH). A 2nd…

  7. Mental Retardation: Diagnosis and Treatment.

    ERIC Educational Resources Information Center

    Poser, Charles M., Ed.

    A collection of writings by 17 authors, the text includes the following discussions: general principles of diagnosis and management of mental retardation, neurologic evaluation of the infant and child, psychological evaluation, educational information, and treatment of pseudoretardation, communicative disorders, and metabolic and endocrine causes.…

  8. Idiots Savants: Retarded and Gifted.

    ERIC Educational Resources Information Center

    Yewchuk, Carolyn

    The paper reviews the paradoxical nature of idiots savants, persons who, although retarded, have exceptional skills in certain areas. Various explanations for the phenomenon are discussed, such as a specific genetic endowment, a specialized compensatory response to general intellectual deficiency, and possession of an eidetic memory. Various…

  9. Books for Mentally Retarded Children.

    ERIC Educational Resources Information Center

    Cincinnati - Hamilton County Public Library, OH.

    Presented is an annotated list of approximately 300 books for educable (EMR) and trainable mentally retarded (TMR) children and adolescents, 6 to 15 years of age. Books are arranged in the following groups for EMR students: Group I contains approximately 84 entries for students 6 to 9 years of age; Group II lists approximately 81 stories and books…

  10. Dichotic Stimulation and Mental Retardation.

    ERIC Educational Resources Information Center

    Mosley, James L.; Virbancic, Mirna I.

    1990-01-01

    This paper reviews literature on the use of dichotic stimulation in individuals with mental retardation, and examines how noninvasive dichotic stimulation relates to hemisphere lateralization. Common findings are discussed concerning direction and magnitude of ear asymmetries, patterns of intrusion errors, and speech lateralization of Down…

  11. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  12. VOCATIONAL PROGRAMMING FOR THE RETARDED.

    ERIC Educational Resources Information Center

    BRICE, CARL R.

    A SUCCESSFUL PROGRAM OF VOCATIONAL TRAINING FOR THE MENTALLY RETARDED IS BEING CARRIED ON AT THE MADISON (WISCONSIN) VOCATIONAL, TECHNICAL, AND ADULT SCHOOLS. THE TRAINEES MUST BE 17 YEARS OR OLDER, WITH AN IQ OF APPROXIMATELY 50-75. THE SCHOOL OF QUANTITY FOOD PREPARATION CONTRIBUTES GREATLY TO THIS PROGRAM, FOR WHILE IT MAINLY TEACHES CHEFS AND…

  13. Toilet Training the Retarded Child.

    ERIC Educational Resources Information Center

    Schwartz, Jeffrey K.

    The booklet offers guidelines in both Spanish and English to parents who are toilet training a mentally retarded child. The toilet training process is broken down into tasks that the child must learn, and the importance of positive reinforcement for each successfully accomplished task is emphasized. It is recommended that parents keep charts…

  14. HANDBOOK OF MENTAL RETARDATION SYNDROMES.

    ERIC Educational Resources Information Center

    CARTER, CHARLES H.

    THE CLINICAL SYNDROMES WHICH CONTRIBUTE TO THE PRODUCTION OF MENTAL RETARDATION ARE DESCRIBED BY SIGNS, SYMPTOMS, AND ETIOLOGY. SYNDROMES TREATED ARE (1) PRENATAL AND POSTNATAL INFECTIONS, (2) PRENATAL INTOXICATION AND ALLERGIC REACTIONS, (3) PRENATAL TRAUMA, PHYSICAL AGENTS, OR INTOXICATION, (4) BIRTH INJURIES, (5) POSTNATAL POISONS AND ALLERGIC…

  15. Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones

    PubMed Central

    Won, Amy Hye; Shi, Tujin; Daude, Nathalie; Lau, Agnes; Young, Rebecca; Xu, Lei; Carlson, George A.; Williams, David; Westaway, David; Schmitt-Ulms, Gerold

    2009-01-01

    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins. PMID:19798432

  16. The Supreme Court V. Retarded Children.

    ERIC Educational Resources Information Center

    Biklen, Douglas

    1981-01-01

    The author examines the Supreme Court decisions regarding the rights of retarded children not to be institutionalized and rights of retarded people to have aggressive medical treatment that will help prolong their lives. (SB)

  17. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions

    PubMed Central

    Villarino, Alejandro; Laurence, Arian; Robinson, Gertraud W; Bonelli, Michael; Dema, Barbara; Afzali, Behdad; Shih, Han-Yu; Sun, Hong-Wei; Brooks, Stephen R; Hennighausen, Lothar; Kanno, Yuka; O'Shea, John J

    2016-01-01

    The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI: http://dx.doi.org/10.7554/eLife.08384.001 PMID:26999798

  18. Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout.

    PubMed

    Seiliez, Iban; Froehlich, Jacob Michael; Marandel, Lucie; Gabillard, Jean-Charles; Biga, Peggy R

    2015-03-01

    The extraordinary muscle growth potential of teleost fish, particular those of the Salmoninae clade, elicits questions about the regulation of the relatively highly conserved transcription factors of the myogenic program. The pseudotetraploid nature of the salmonid genome adds another layer of regulatory complexity that must be reconciled with epigenetic data to improve our understanding of the achievement of lifelong muscle growth in these fish. We identify three paralogous pax7 genes (pax7a1, pax7a2 and pax7b) in the rainbow trout genome. During in vitro myogenesis, pax7a1 transcripts remain stable, whereas pax7a2 and pax7b mRNAs increase in abundance, similarly to myogenin mRNAs but in contrast to the expression pattern of the mammalian ortholog. We also profile the distribution of repressive H3K27me3 and H3K9me3 and permissive H3K4me3 marks during in vitro myogenesis across these loci and find that pax7a2 expression is associated with decreased H3K27 trimethylation, whereas pax7b expression is correlated with decreased H3K9me3 and H3K27me3. These data link the unique differential expression of pax7 paralogs with epigenetic histone modifications in a vertebrate species displaying growth divergent from that of mammals and highlight an important divergence in the regulatory mechanisms of pax7 expression among vertebrates. The system described here provides a more comprehensive picture of the combinatorial control mechanisms orchestrating skeletal muscle growth in a salmonid, leading to a better understanding of myogenesis in this species and across Vertebrata more generally. PMID:25487404

  19. Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout

    PubMed Central

    Seiliez, Iban; Froehlich, Jacob Michael; Marandel, Lucie; Gabillard, Jean-Charles; Biga, Peggy R.

    2015-01-01

    The extraordinary muscle growth potential of teleost fish, particular those of the Salmoninae clade, elicits questions about how the relatively highly conserved transcription factors of the myogenic program are regulated. In addition, the pseudotetraploid nature of the salmonid genome adds another layer of regulatory complexity, and this must be reconciled with epigenetic data to better understand how these fish achieve lifelong muscle growth. To this end, we identified three paralogous pax7 genes (pax7a1, pax7a2, and pax7b) in the rainbow trout genome. During in vitro myogenesis, pax7a1 transcripts remain stable, while pax7a2 and pax7b mRNAs increase in abundance, similarly to myogenin mRNAs and in contrast to the expression pattern of the mammalian ortholog. In addition, we profiled the distribution of repressive H3K27me3 and H3K9me3 and permissive H3K4me3 marks during in vitro myogenesis across these loci, finding that pax7a2 expression was associated with decreased H3K27 trimethylation, while pax7b expression was correlated with decreased H3K9me3 and −K27me3. Altogether, these data link the highly unique differential expression of pax7 paralogs with epigenetic histone modifications in a vertebrate species displaying growth divergent from that of mammals and highlight an important divergence in the regulatory mechanisms of pax7 expression among vertebrates. The system described here provides a more comprehensive picture of the combinatorial control mechanisms orchestrating skeletal muscle growth in a salmonid, leading to a better understanding of myogenesis in this species and across Vertebrata more generally. PMID:25487404

  20. Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases.

    PubMed

    Pandith, Shahzad A; Dhar, Niha; Rana, Satiander; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P; Shah, Manzoor A; Vishwakarma, Ram; Lattoo, Surrinder K

    2016-08-01

    Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and

  1. Endocrine Disorders Associated with Mental Retardation

    PubMed Central

    Reddy, Churku Mohan

    1980-01-01

    Endocrine disorders associated with mental retardation are described in relation to clinical characteristics, pathogenesis, diagnostic procedures, and treatment. Some endocrine disorders, particularly hypothyroidism, nephrogenic-diabetes insipidus, and hypoglycemic conditions, are frequently associated with mental retardation. Early diagnosis and prompt and proper management reduce mortality and the incidence of mental retardation associated with endocrine disorders. PMID:7392067

  2. Low Elevated Lead Levels and Mental Retardation.

    ERIC Educational Resources Information Center

    Marlowe, Mike; And Others

    The relationship between low elevated lead absorption and mild mental retardation was investigated in 40 rural children (preschool to grade 12) without demonstrable cause for their retardation. Trace mineral analysis of hair samples from Ss and a control group (N=20) indicated the mean hair lead concentrations for the retarded Ss were considerably…

  3. Rehearsal Capacity and Dimensional Independence in Retardates

    ERIC Educational Resources Information Center

    McBane, Bonnie M.

    1976-01-01

    Retardate use of retention strategies and the independence of color and form retention were compared with predictions of the Attention-Retention theory of retardate discrimination learning. Institutional retardates were selected from two MA ranges, 6 to 8 and 9 to 12 years, without regard to diagnostic categories. (Author/JH)

  4. Mental Retardation: Prevention Strategies That Work.

    ERIC Educational Resources Information Center

    President's Committee on Mental Retardation, Washington, DC.

    The report by the President's Committee on Mental Retardation reviews the current state of knowledge in the area of biological and environmental prevention of mental retardation and describes programs on the frontiers of research or service delivery. Section I examines programs that are effectively preventing mental retardation through biomedical…

  5. THE TEACHER OF THE MENTALLY RETARDED.

    ERIC Educational Resources Information Center

    CHARNEY, LEON; LACROSSE, EDWARD

    BASIC INFORMATION IS PROVIDED FOR PROSPECTIVE TEACHERS OF MENTALLY RETARDED CHILDREN. THE FIRST FOUR CHAPTERS ARE DEVOTED TO CLASSROOM CONDITIONS, PARENTAL ATTITUDES, AND TEACHER-PUPIL INTERACTION IN THE SPECIAL CLASS FOR RETARDATES. CHAPTER ONE GIVES A GENERAL DESCRIPTION OF THE MENTALLY RETARDED CHILD AS HE APPEARS TO THE TEACHER. CHAPTER TWO…

  6. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens.

    PubMed

    Gao, Weixia; Zhang, Zhongxiong; Feng, Jun; Dang, Yulei; Quan, Yufen; Gu, Yanyan; Wang, Shufang; Song, Cunjiang

    2016-09-01

    Actin-like MreB paralogs play important roles in cell shape maintenance, cell wall synthesis and the regulation of the D,L-endopeptidases, CwlO and LytE. The gram-positive bacteria, Bacillus amyloliquefaciens LL3, is a poly-γ-glutamic acid (γ-PGA) producing strain that contains three MreB paralogs: MreB, Mbl and MreBH. In B. amyloliquefaciens, CwlO and LytE can degrade γ-PGA. In this study, we aimed to test the hypothesis that modulating transcript levels of MreB paralogs would alter the synthesis and degradation of γ-PGA. The results showed that overexpression or inhibition of MreB, Mbl or MreBH had distinct effects on cell morphology and the molecular weight of the γ-PGA products. In fermentation medium, cells of mreB inhibition mutant were 50.2% longer than LL3, and the γ-PGA titer increased by 55.7%. However, changing the expression level of mbl showed only slight effects on the morphology, γ-PGA molecular weight and titer. In the mreBH inhibition mutant, γ-PGA production and its molecular weight increased by 56.7% and 19.4%, respectively. These results confirmed our hypothesis that suppressing the expression of MreB paralogs might reduce γ-PGA degradation, and that improving the cell size could strengthen γ-PGA synthesis. This is the first report of enhanced γ-PGA production via suppression of actin-like MreB paralogs. PMID:27481703

  7. [Sterilization of mentally retarded women].

    PubMed

    Heidenreich, W; Petersen, P; Schneider, J

    1982-07-01

    Seven mentally retarded women were sterilized in the Department of Obstetrics and Gynaecology of Medical School Hannover between 1.6.74 and 1.6.81. The decision to operate proceeded only after careful consideration by the director of the clinic. Each case was documented with proof that improvement of the mental situation was unprobable and that sterilization seemed highly desirable. In spite of strong reservation the sterilization of a mentally retarded may medically and ethically be justified in exceptional cases. The operation seems possible by the following: The sterilization may only be performed if the patient does not obviously refuse it. Diagnosis and prognosis of the mental handicap must undoubtedly be proven. If the patient cannot judge the consequence of the operation the legal guardian must decide for her. The court must consent in these cases. Regarding legal theory the decision by the guardian is an open question. PMID:6922080

  8. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  9. Expression of POTE protein in human testis detected by novel monoclonal antibodies

    SciTech Connect

    Ise, Tomoko; Das, Sudipto; Nagata, Satoshi; Maeda, Hiroshi; Lee, Yoomi; Onda, Masanori; Anver, Miriam R.; Pastan, Ira

    2008-01-25

    The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2{gamma}C, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2{gamma}C and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.

  10. 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix.

    PubMed

    Sung, Nuri; Lee, Jungsoon; Kim, Ji Hyun; Chang, Changsoo; Tsai, Francis T F; Lee, Sukyeong

    2016-08-01

    TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1NM dimer is presented, featuring an intact N-domain and M-domain structure, bound to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70. PMID:27487821