Science.gov

Sample records for retinol-binding protein crbp-i

  1. Preresonance Raman spectroscopic studies on retinoid binding proteins: RBP, CRBP-I and CRALBP

    NASA Astrophysics Data System (ADS)

    Ju, Zhongmo

    1997-07-01

    The nature of the binding interactions between retinoid and many retinoid binding proteins is not well understood. Three such proteins: Retinol Binding Protein (RBP), Cellular Retinol Binding Protein-I (CRBP-I) and Cellular Retinaldehyde Bingding Protein (CRALBP) have been isolated, complexed with all-trans and 11-cis retinal respectively, and probed using pre-resonance and difference Raman spectroscopy. In the study of RBP, we have measured the pre-presonance Raman spectra of retinal, retinoic acid and retinol in dilute CCl4 solutions and when bound to bovine-serum RBP. The comparison reveals that the binding interaction does not involve any specific interactions of the terminal group and the polyene chain with a particular protein residue. The data indicate hydrogen bonding of bound retinal's head group oxygen to water, as well as some torsional angle change of its polyene chain upon binding. The pre-resonance Raman spectrum of all-trans retinal complexed with CRBP-I has also been obtained, displaying a spectral shift in the position of the retinal carbonyl band that is typical of hydrogen bonding effects. This carbonyl red shift has been compared to hydrogen bonding interactions between the all-trans retinal carbonyl and a series of phenol derivatives, varying in proton donating ability by FT-IR spectroscopy, allowing quantitation of the hydrogen bond enthalpy. To characterize the bonding between CRALBP and the carbonyl of 11-cis retinal, a difference Raman experiment was performed using protein complexes with native 11-cis retinal and 11-cis retinal isotopically labeled with 13C at the 15 position. The difference spectrum has been compared to solution Raman spectra of 11-cis retinaldehyde, Schiff Base and Protonated Schiff Base in order to evaluate the retinoid CRALBP link. The results point to a possibility either Schiff Base or H-bond as the linkage between CRALBP and 11-cis retinal. Future isotopic labeling study of CRALBP complexed with 18O-edited 11-cis

  2. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  3. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  4. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  5. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  6. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  7. Liver takes up retinol-binding protein from plasma

    SciTech Connect

    Gjoen, T.; Bjerkelund, T.; Blomhoff, H.K.; Norum, K.R.; Berg, T.; Blomhoff, R.

    1987-08-15

    Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared /sup 125/I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.

  8. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    SciTech Connect

    MacDonald, P.N.; Ong, D.E. ); Bok, D. )

    1990-06-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  9. Localization of Cellular Retinol-Binding Protein and Retinol-Binding Protein in Cells Comprising the Blood-Brain Barrier of Rat and Human

    NASA Astrophysics Data System (ADS)

    MacDonald, Paul N.; Bok, Dean; Ong, David E.

    1990-06-01

    Brain is not generally recognized as an organ that requiries vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the endothelial cells of the brain microvasculature and within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  10. The Crystalline Structure of Escherichia Coli Derived, - and Holo-Rat Cellular Retinol Binding Protein II

    NASA Astrophysics Data System (ADS)

    Winter, Nathan Shoup

    1993-01-01

    Crystal of apo- and holo-rat cellular retinol binding protein II from the recombinant protein isolated from E. coli were grown. X-ray data to about 2A resolution for both crystal forms were collected. The phases for both data sets were determined by the molecular replacement technique using cellular retinol binding protein. The structures were then refined. The electron density from bound retinol was observed in the holo-form. Other than the presence or absence of bound retinol, little difference was noted in the structures of the apo- and holo-protein. The retinol was bound in a interior cavity with the hydroxyl group in the center of the protein, and the ionone ring near the surface. The hydroxyl group of the retinol made a hydrogen bond to glutamine 108, and the amine group of lysine 40 came into Van der Waals contact with the isoprene chain. The structure of cellular retinol binding protein II was then compared with the structures of five other intracellular lipid binding proteins: adipocyte lipid binding protein, cellular retinol binding protein, intestinal fatty acid binding protein, p2 protein from myelin sheaths, and a midgut fatty acid binding protein.

  11. Glycosylation is essential for translocation of carp retinol-binding protein across the endoplasmic reticulum membrane

    SciTech Connect

    Devirgiliis, Chiara; Gaetani, Sancia; Apreda, Marianna; Bellovino, Diana . E-mail: bellovino@inran.it

    2005-07-01

    Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH{sub 2}-terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process.

  12. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection

    PubMed Central

    Derebe, Mehabaw G; Zlatkov, Clare M; Gattu, Sureka; Ruhn, Kelly A; Vaishnava, Shipra; Diehl, Gretchen E; MacMillan, John B; Williams, Noelle S; Hooper, Lora V

    2014-01-01

    Retinol plays a vital role in the immune response to infection, yet proteins that mediate retinol transport during infection have not been identified. Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization, but their exact functions remain unclear. Here we show that mouse and human SAAs are retinol binding proteins. Mouse and human SAAs bound retinol with nanomolar affinity, were associated with retinol in vivo, and limited the bacterial burden in tissues after acute infection. We determined the crystal structure of mouse SAA3 at a resolution of 2 Å, finding that it forms a tetramer with a hydrophobic binding pocket that can accommodate retinol. Our results thus identify SAAs as a family of microbe-inducible retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and suggest how retinol is circulated during infection. DOI: http://dx.doi.org/10.7554/eLife.03206.001 PMID:25073702

  13. Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases.

    PubMed

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-11-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine. PMID:26567199

  14. Identification and Characterization of a Non-retinoid Ligand for Retinol-binding Protein 4 Which Lowers Serum Retinol-binding Protein 4 Levels in Vivo*

    PubMed Central

    Motani, Alykhan; Wang, Zhulun; Conn, Marion; Siegler, Karen; Zhang, Ying; Liu, Qingxiang; Johnstone, Sheree; Xu, Haoda; Thibault, Steve; Wang, Yingcai; Fan, Pingchen; Connors, Richard; Le, Hoa; Xu, Guifen; Walker, Nigel; Shan, Bei; Coward, Peter

    2009-01-01

    Retinol-binding protein 4 (RBP4) transports retinol from the liver to extrahepatic tissues, and RBP4 lowering is reported to improve insulin sensitivity in mice. We have identified A1120, a high affinity (Ki = 8.3 nm) non-retinoid ligand for RBP4, which disrupts the interaction between RBP4 and its binding partner transthyretin. Analysis of the RBP4-A1120 co-crystal structure reveals that A1120 induces critical conformational changes at the RBP4-transthyretin interface. Administration of A1120 to mice lowers serum RBP4 and retinol levels but, unexpectedly, does not improve insulin sensitivity. In addition, we show that Rpb4-/- mice display normal insulin sensitivity and are not protected from high fat diet-induced insulin resistance. We conclude that lowering RBP4 levels does not improve insulin sensitivity in mice. Therefore, RBP4 lowering may not be an effective strategy for treating diabetes. PMID:19147488

  15. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

    PubMed Central

    Wang, Yan; Xiao, Li-Hua; Zhao, Xiao-Ling; Liu, Yi-Ping; Zhu, Qing

    2014-01-01

    CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken. PMID:25083100

  16. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  17. Rates of synthesis of prealbumin and retinol-binding protein during acute inflammation in the rat.

    PubMed

    Felding, P; Fex, G

    1985-04-01

    The rates of synthesis of prealbumin (PA), retinol-binding protein (RBP), and other plasma proteins were measured in primary monolayer cultures of rat hepatocytes isolated from normal rats and from rats 18 h after induction of an inflammatory reaction by subcutaneous injection of croton oil. The inflammatory pattern of protein synthesis seemed to persist in the isolated hepatocytes for 1-2 days. This pattern included significantly decreased rates of synthesis of PA. The rate of synthesis of RBP was probably also decreased, but significantly less than the rate of PA synthesis. The results support the idea that it is mainly the decreased rate of PA synthesis which is responsible for the decreased plasma concentration of PA, and its ligand RBP and retinol during inflammation. PMID:4039519

  18. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis

    PubMed Central

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-01-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124

  19. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  20. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  1. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  2. Synthesis and secretion of interstitial retinol-binding protein by the human retina

    SciTech Connect

    Hollyfield, J.G.; Fliesler, S.J.; Rayborn, M.E.; Fong, S.L.; Landers, R.A.; Bridges, C.D.

    1985-01-01

    Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein present between the retina and pigmented epithelium, which may function to shuttle vitamin A derivatives between these tissues. While previous studies have shown that the retina is solely responsible for IRBP synthesis, the specific retinal cell(s) in which this occurs has not been established. Since the carbohydrate moiety of IRBP contains fucose, the authors have analyzed the sites of incorporation of /sup 3/H-fucose in the human retina in vitro, using autoradiography. Following a 30-min pulse incubation, all retinal layers exhibited incorporation of label; however, the rod photoreceptor inner segments contained one- to two-fold more radioactivity than was present in any other retinal compartment. In autoradiographs of retinas recovered following a 4 hr chase incubation, all retinal layers retained similar levels of radioactivity with the exception of the rod photoreceptors, cone photoreceptors and cells in the inner nuclear layer, which lost 75, 11, and 14 percent, respectively of the radioactivity present immediately following the 30-min pulse. Proteins present in the chase incubation medium were analyzed by polyacrylamide gel electrophoresis and fluorography. The principal labeled component in the chase medium was identified as IRBP by immunoprecipitation with antibovine-IRBP immunoglobulins.

  3. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development. PMID:19591834

  4. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4)*

    PubMed Central

    Alapatt, Philomena; Guo, Fangjian; Komanetsky, Susan M.; Wang, Shuping; Cai, Jinjin; Sargsyan, Ashot; Rodríguez Díaz, Eduardo; Bacon, Brandon T.; Aryal, Pratik; Graham, Timothy E.

    2013-01-01

    Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues. PMID:23105095

  5. Subcellular location for the formation of the retinol/retinol-binding protein complex in rat liver

    SciTech Connect

    Crumbaugh, L.M.; Green, E.L.; Smith, J.E.

    1986-03-01

    Retinol complexes with retinol-binding protein (RBP) within the hepatocyte, however the subcellular location where complex formation occurs has not previously been identified. A model similar to that of lipoproteins formation has been hypothesized. The authors have identified the initial site of retinol/RBP complex formation. Furthermore, the authors have elucidated the progression of the complex through the subcellular organelles. Intravenous injections of /sup 3/H-retinol suspended in Tween 40 were administered to vitamin A depleted rats. After intervals of 2, 3, 4, 5, 10, 15, 20, and 30 minutes the rat livers were removed and fractions enriched in rough and smooth microsomes and Golgi apparatus were prepared. Extracts of these subcellular fractions were chromatographed on Sephadex G-100. Simultaneous elution of /sup 3/H-retinol and immunoreactive RBP indicated the presence of the complex. The retinol/RBP complex was observed in rough microsomes 2 minute after the injection of /sup 3/H-retinal. The complex appeared subsequently in smooth microsomes and Golgi apparatus. The complex was first detected serum around 10 minutes after injection. Based on the data, they believe that the retinol/RBP complex formation occurs in rough microsomes.

  6. High expression of cellular retinol binding protein-1 in lung adenocarcinoma is associated with poor prognosis

    PubMed Central

    Doldo, Elena; Costanza, Gaetana; Ferlosio, Amedeo; Pompeo, Eugenio; Agostinelli, Sara; Bellezza, Guido; Mazzaglia, Donatella; Giunta, Alessandro; Sidoni, Angelo; Orlandi, Augusto

    2015-01-01

    Purpose Adenocarcinoma, the most common non-small cell lung cancer is a leading cause of death worldwide, with a low overall survival (OS) despite increasing attempts to achieve an early diagnosis and accomplish surgical and multimodality treatment strategies. Cellular retinol binding protein-1 (CRBP-1) regulates retinol bioavailability and cell differentiation, but its role in lung cancerogenesis remains uncertain. Experimental design CRBP-1 expression, clinical outcome and other prognostic factors were investigated in 167 lung adenocarcinoma patients. CRBP-1 expression was evaluated by immunohistochemistry of tissue microarray sections, gene copy number analysis and tumor methylation specific PCR. Effects of CRBP-1 expression on proliferation/apoptosis gene array, protein and transcripts were investigated in transfected A549 lung adenocarcinoma cells. Results CRBP-1High expression was observed in 62.3% of adenocarcinomas and correlated with increased tumor grade and reduced OS as an independent prognostic factor. CRBP-1 gene copy gain also associated with tumor CRBP-1High status and dedifferentiation. CRBP-1-transfected (CRBP-1+) A549 grew more than CRBP-1− A549 cells. At >1μM concentrations, all trans-retinoic acid and retinol reduced viability more in CRBP-1+ than in CRBP-1− A549 cells. CRBP-1+ A549 cells showed up-regulated RARα/ RXRα and proliferative and transcriptional genes including pAkt, pEGFR, pErk1/2, creb1 and c-jun, whereas RARβ and p53 were strongly down-regulated; pAkt/pErk/ pEGFR inhibitors counteracted proliferative advantage and increased RARα/RXRα, c-jun and CD44 expression in CRBP-1+ A549 cells. Conclusion CRBP-1High expression in lung adenocarcinoma correlated with increased tumor grade and reduced OS, likely through increased Akt/Erk/EGFR-mediated cell proliferation and differentiation. CRBP-1High expression can be considered an additional marker of poor prognosis in lung adenocarcinoma patients. PMID:26807202

  7. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    PubMed Central

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  8. Retinol Binding Protein-4 and Adiponectin Levels in Thyroid Overt and Subclinical Dysfunction.

    PubMed

    Kokkinos, S; Papazoglou, D; Zisimopoulos, A; Papanas, N; Tiaka, E; Antonoglou, C; Maltezos, E

    2016-02-01

    Thyroid dysfunction is accompanied by numerous changes in intermediary metabolism. Retinol binding protein-4 (RBP-4) and adiponectin are 2 adipocytokines that have multiple metabolic functions. The aim of our study was to examine serum RBP4 and adiponectin levels in clinical (before and after therapy) and subclinical hyperthyroid and hypothyroid subjects as compared to controls.150 patients with thyroid dysfunction were recruited (65 hyperthyroid and 85 hypothyroid) while 28 euthyroid subjects served as a control group. We measured anthropometric, biochemical and hormonal (free T4, free T3, TSH, insulin) parameters in all participants. RBP-4 and adiponectin were measured using commercial ELISA kits.Mean baseline levels of RBP-4 were higher in patients with clinical hypothyroidism (29.0±10.2 ng/ml, 25.1±12.6 ng/ml, 38.8±16.5 ng/ml, 31.9±13.2 ng/ml, 20.4±8.2 ng/ml in patients with hyperthyroidism, subclinical hyperthryrodism, hypothyroidism, subclinical hypothyroidism and controls respectively, F=4.86, P<0.001) and decreased significantly in patients with clinical hyperthyroidism and hypothyroidism after normalization of thyroid hormones' levels (from 29.0±10.2 to 24.9±8.4 ng/ml, p=0.003 and from 38.8±16.5 to 29.0±10.8 ng/ml, p=0.001 respectively). We did not observe analogous changes in adiponectin levels in any of the studied groups.RBP-4 levels are higher in patients with clinical hypothyroidism and exhibit a marked decrease after normalization of thyroid function in both hyper and hypothyroid patients. We suggest that RBP-4 may play a role in the metabolic disturbances which accompany thyroid dysfunction. PMID:26575118

  9. Circulating Retinol-Binding Protein-4 Concentration Might Reflect Insulin Resistance–Associated Iron Overload

    PubMed Central

    Fernández-Real, José Manuel; Moreno, José María; Ricart, Wifredo

    2008-01-01

    OBJECTIVES—The mechanisms behind the association between retinol-binding protein-4 (RBP4) and insulin resistance are not well understood. An interaction between iron and vitamin A status, of which RBP4 is a surrogate, has long been recognized. We hypothesized that iron-associated insulin resistance could be behind the impaired insulin action caused by RBP4. RESEARCH DESIGN AND METHODS—Serum ferritin and RBP4 concentration and insulin resistance were evaluated in a sample of middle-aged men (n = 132) and in a replication independent study. Serum RBP4 was also studied before and after iron depletion in patients with type 2 diabetes. Finally, the effect of iron on RBP4 release was evaluated in vitro in adipose tissue. RESULTS—A positive correlation between circulating RBP4 and log serum ferritin (r = 0.35 and r = 0.61, respectively; P < 0.0001) was observed in both independent studies. Serum RBP4 concentration was higher in men than women in parallel to increased ferritin levels. On multiple regression analyses to predict serum RBP4, log serum ferritin contributed significantly to RBP4 variance after controlling for BMI, age, and homeostasis model assessment value. Serum RBP4 concentration decreased after iron depletion in type 2 diabetic patients (percent mean difference −13.7 [95% CI −25.4 to −2.04]; P = 0.024). The iron donor lactoferrin led to increased dose-dependent adipose tissue release of RBP4 (2.4-fold, P = 0.005) and increased RBP4 expression, while apotransferrin and deferoxamine led to decreased RBP4 release. CONCLUSIONS—The relationship between circulating RBP4 and iron stores, both cross-sectional and after iron depletion, and in vitro findings suggest that iron could play a role in the RBP4–insulin resistance relationship. PMID:18426863

  10. Retinol-binding protein 4 and its potential roles in hypercholesterolemia revealed by proteomics

    PubMed Central

    Jugnam-ang, Watcharapong; Pannengpetch, Supitcha; Isarankura-Na-Ayudhya, Patcharee; Thippakorn, Chadinee; Isarankura-Na-Ayudhya, Chartchalerm; Lawung, Ratana; Prachayasittiku, Virapong

    2015-01-01

    Effects of hypercholesterolemia on alterations of serum proteins have not been fully elucidated. Herein, using two-dimensional gel electrophoresis (2-DE) in conjunction with LC-MS searching has successfully been carried out to investigate the change of protein expression profiles as consequences of raised blood cholesterol at different levels (normal group: total cholesterol 200 mg/dL; borderline high group: total cholesterol 200-239 mg/dL; and high group: total cholesterol ≥ 240 mg/dL) (n = 45). Results revealed that down-regulation of retinol-binding protein 4 (RBP4) (-2.26 fold), transthyretin (-1.25 fold) and gelsolin (-1.47 fold) was observed in the high group. Meanwhile, the other proteins such as haptoglobin, complement factor B and CD5 antigen-like protein were up-regulated upto +3.24, +1.96 and +2.04 fold, respectively. Confirmation by Western blotting revealed a significant reduction of RBP4 (approximately 50 %) in individual samples derived from the high group. Presumptive conclusion can be drawn that down-regulation of RBP4 might be attributable to the inflammation of adipocytes caused by the release of proinflammatory cytokines (e.g. tumor necrosis factor α and interleukin-1β) from adipose tissues. Moreover, the decrease of transthyretin might also be taken into accounts since it is known that the transthyretin usually forms complex with RBP4 to prevent glomerular filtration and excretion through the kidney. The suppressing effect on RBP4 should be potentiated by the increase of complement factor B and CD5 antigen-like protein, which rendered the adipose tissues to overwhelm the liberation of RBP4 to blood circulation by metabolic and inflammatory processes. Such inflammation could further modulate the induction of cytokine release (e.g. IL-6 and IL-1β), resulting in the synthesis of acute phase protein, in particular, haptoglobin and C-reactive proteins from hepatocytes. However, the mechanism of gelsolin reduction remains unclear. Among these

  11. Hepatic uptake of (TH)retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells

    SciTech Connect

    Blomhoff, R.; Norum, K.R.; Berg, T.

    1985-11-05

    We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.

  12. Immunoassay of urinary retinol binding protein as a putative renal marker in cats.

    PubMed

    van Hoek, Ingrid; Daminet, Sylvie; Notebaert, Sofie; Janssens, Isabel; Meyer, Evelyne

    2008-01-01

    The presence of low molecular weight retinol binding protein (RBP) in urine reflects tubular damage. Therefore, RBP has been used as a renal marker in humans and dogs. Using an anti-human RBP antibody (Ab), this study first demonstrates feline urinary RBP by Western blot analysis and then evaluates its potential as a renal marker in cats by enzyme-linked immunosorbent assay (ELISA). Urine was taken by cystocentesis, centrifuged and stored at -80 degrees C until analysis. Urinary RBP levels were compared in clinically healthy cats (H), chronic renal failure patients (CRF) and cats with hyperthyroidism (HT). The detection of a band at the same position as the human RBP standard with Western blot analysis, indicated that RBP was present in the urine of CRF and HT patients but minimally present in H cats. The data obtained with ELISA were in accordance with these observations. RBP levels were expressed as RBP:creatinine (RBP:c) ratios following normalisation with urinary creatinine. The functional assay sensitivity was 1.37 microg/l RBP. Parallelism between the trend lines of the human RBP standard curve and the curves obtained from sequentially diluted urine samples indicated that feline RBP was recovered. The mean intra-assay coefficient of variance was 7% and the standardised agreement index revealed satisfactory day-to-day repeatability. The RBP:c ratio in all H cats (n=10) was below the assay sensitivity. The groups of CRF and HT patients had increased mean RBP:c ratios of 1.6+/-0.5x10(-2) microg/mg (mean+/-SEM, n=10) and 1.4+/-0.4x10(-2) microg/mg (n=13), respectively. Both groups showed a large variation in the relative RBP concentrations of individual cats. In conclusion, RBP is demonstrated for the first time in urine from most CRF and HT patients and the validated ELISA allows its evaluation as a putative renal marker in cats. PMID:17996888

  13. Reproducibility of Retinol Binding Protein 4 and Omentin-1 Measurements over a Four Months Period: A Reliability Study in a Cohort of 207 Apparently Healthy Participants

    PubMed Central

    Wittenbecher, Clemens; di Giuseppe, Romina; Biemann, Ronald; Menzel, Juliane; Arregui, Maria; Hoffmann, Juliane; Aleksandrova, Krasimira; Boeing, Heiner; Isermann, Berend; Schulze, Matthias B.; Weikert, Cornelia

    2015-01-01

    The reliability of single time point measurements of the novel adipokines retinol-binding protein 4 and omentin-1 in the blood has not been evaluated in large samples yet. The present study aimed to assess the amount of biological variation of these two adipokines within individuals. The study sample comprised 207 participants (124 women and 83 men) from Potsdam (Germany) and surrounding areas, with an average age of 56.5 years (SD 4.2). Blood samples were collected from each participant twice, approximately four months apart. Using enzyme linked immunosorbent assays, the concentrations of retinol-binding protein 4 and omentin-1 were determined in EDTA plasma. As indicators of reliability, intraclass correlation coefficients (ICCs) were calculated from the repeated biomarker measurements. The ICCs for repeated retinol-binding protein 4 and omentin-1 measurements were 0.77 (95% CI 0.71, 0.82) and 0.83 (95% CI 0.78, 0.87), respectively, indicating for both adipokines excellent reliability. ICCs were stable across strata according to sex, age, BMI, and blood pressure. Thus, for epidemiological studies it seems reasonable to rely on concentrations of retinol-binding protein 4 and omentin-1 in samples from a single time point if repeated measurements are not available. PMID:26402656

  14. Rat cellular retinol-binding protein: cDNA sequence and rapid retinol-dependent accumulation of mRNA.

    PubMed Central

    Sherman, D R; Lloyd, R S; Chytil, F

    1987-01-01

    Cellular retinol-binding protein (CRBP) may be an important mediator of vitamin A action. We report here the identification of a cDNA clone corresponding to the rat CRBP gene. The cDNA is 695 nucleotides long, with an open reading frame corresponding to a protein of 134 amino acids. The deduced amino acid sequence is identical with that of rat CRBP. The nucleotide sequence shows 90.5% similarity with the human CRBP cDNA sequence. Genomic DNA analysis indicates that CRBP is present in one, or at most two, copies within the rat genome. Analysis of mRNA reveals a single species in every tissue tested and suggests that the isolated cDNA is full-length. Finally, when retinol-deficient rats are fed retinyl acetate for 4 hr, about 4-fold accumulation of CRBP-specific mRNA is observed in the lungs. This rapid effect suggests that the micronutrient retinol may directly influence the expression of its specific intracellular binding protein. Images PMID:3472205

  15. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism

    PubMed Central

    Du, Mei; Otalora, Laura; Martin, Ashley A.; Moiseyev, Gennadiy; Vanlandingham, Phillip; Wang, Qilong; Farjo, Rafal; Yeganeh, Alexander; Quiambao, Alexander

    2015-01-01

    Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients. PMID:26055327

  16. Effects of nutritional and hormonal factors on the metabolism of retinol-binding protein by primary cultures of rat hepatocytes

    SciTech Connect

    Dixon, J.L.; Goodman, D.S.

    1987-01-01

    Studies were conducted to explore hormonal and nutritional factors that might be involved in the regulation of retinol-binding protein (RBP) synthesis and secretion by the liver. The studies employed primary cultures of hepatocytes from normal rats. When cells were cultured in Dulbecco's modified Eagle's medium alone, a high rate of RBP secretion was observed initially, which declined and became quite low by 24 hr. Supplementing the medium with amino acids maintained RBP and albumin secretion at moderate (but less than initial) rates for at least 3 days. Further addition of dexamethasone maintained the production and secretion rates of RBP, transthyretin, and albumin close to the initial rates for up to 3-5 days in culture as measured by radioimmunoassay. Hormonally treated hepatocytes produced and secreted RBP, transthyretin, and albumin at both absolute and relative rates similar to physiological values, as estimated from rates reported by others from studies in vivo and with perfused livers. Glucagon addition partially maintained the secretion rates of these 3 proteins, but less effectively than did dexamethasone. A number of other hormones, added singly or in combination, did not affect RBP production or secretion. Addition of retinol to the cultured normal hepatocytes was without effect upon RBP secretion. These studies show that supplementing the culture medium of hepatocytes with amino acids and dexamethasone maintains RBP production and secretion for several days. In normal hepatocytes, with ample supply of retinol available within the cell, addition of exogenous retinol does not appear to influence RBP metabolism or secretion by the cells.

  17. Effect of Omega-3 Supplementation on Lipocalin 2 and Retinol-Binding Protein 4 in Type 2 Diabetic Patients

    PubMed Central

    FARAHBAKHSH-FARSI, Payam; DJAZAYERY, Abolghassem; ESHRAGHIAN, Mohammad Reza; KOOHDANI, Fariba; ZAREI, Mahnaz; JAVANBAKHT, Mohammad Hassan; DERAKHSHANIAN, Hoda; DJALALI, Mahmoud

    2016-01-01

    Background: Serum levels of lipocalin 2 (LCN 2) and retinol-binding protein-4 (RBP 4), increase in type 2 diabetes mellitus (T2DM). We sought to determine whether serum LCN 2 and RBP 4 change after an intervention with omega-3 fatty acids supplementation in diabetic patients. Methods: Forty-five type 2 diabetic patients from Iranian Diabetic Association in Tehran, Iran in 2013 were randomly recruited into two groups: one group received 4 g/d omega-3 for 10 wk; and the control group received placebo. Blood samples, food intake records, anthropometric measurements were obtained from all participants at the beginning and end of the study. Results: Fasting RBP 4 plasma levels significantly changed after 10 wk supplementation (P = 0.01). The LCN 2 concentrations decreased in omega-3 group, but the changes were not statistically significant. Omega-3 supplementation had no noticeable effect on anthropometric factors. Conclusion: These findings provide a rationale for omega-3 supplements aimed at lowering serum RBP 4 levels in T2DM. PMID:27114982

  18. Effect of Omega-3 Supplementation on Lipocalin 2 and Retinol-Binding Protein 4 in Type 2 Diabetic Patients

    PubMed Central

    FARAHBAKHSH-FARSI, Payam; DJAZAYERY, Abolghassem; ESHRAGHIAN, Mohammad Reza; KOOHDANI, Fariba; ZAREI, Mahnaz; JAVANBAKHT, Mohammad Hassan; DERAKHSHANIAN, Hoda; DJALALI, Mahmoud

    2016-01-01

    Background: Serum levels of lipocalin 2 (LCN 2) and retinol-binding protein-4 (RBP 4), increase in type 2 diabetes mellitus (T2DM). We sought to determine whether serum LCN 2 and RBP 4 change after an intervention with omega-3 fatty acids supplementation in diabetic patients. Methods: Forty-five type 2 diabetic patients from Iranian Diabetic Association in Tehran, Iran in 2013 were randomly recruited into two groups: one group received 4 g/d omega-3 for 10 wk; and the control group received placebo. Blood samples, food intake records, anthropometric measurements were obtained from all participants at the beginning and end of the study. Results: Fasting RBP 4 plasma levels significantly changed after 10 wk supplementation (P = 0.01). The LCN 2 concentrations decreased in omega-3 group, but the changes were not statistically significant. Omega-3 supplementation had no noticeable effect on anthropometric factors. Conclusions: These findings provide a rationale for omega-3 supplements aimed at lowering serum RBP 4 levels in T2DM. PMID:27057523

  19. Urinary Kininogen-1 and Retinol binding protein-4 respond to Acute Kidney Injury: predictors of patient prognosis?

    PubMed Central

    Gonzalez-Calero, Laura; Martin-Lorenzo, Marta; Ramos-Barron, Angeles; Ruiz-Criado, Jorge; Maroto, Aroa S.; Ortiz, Alberto; Gomez-Alamillo, Carlos; Arias, Manuel; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2016-01-01

    Implementation of therapy for acute kidney injury (AKI) depends on successful prediction of individual patient prognosis. Clinical markers as serum creatinine (sCr) have limitations in sensitivity and early response. The aim of the study was to identify novel molecules in urine which show altered levels in response to AKI and investigate their value as predictors of recovery. Changes in the urinary proteome were here investigated in a cohort of 88 subjects (55 AKI patients and 33 healthy donors) grouped in discovery and validation independent cohorts. Patients’ urine was collected at three time points: within the first 48 h after diagnosis(T1), at 7 days of follow-up(T2) and at discharge of Nephrology(T3). Differential gel electrophoresis was performed and data were confirmed by Western blot (WB), liquid chromatography/mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA). Retinol binding protein 4 (RBP4) and kininogen-1 (KNG1) were found significantly altered following AKI. RBP4 increased at T1, and progressively decreased towards normalization. Maintained decrease was observed for KNG1 from T1. Individual patient response along time revealed RBP4 responds to recovery earlier than sCr. In conclusion, KNG1 and RBP4 respond to AKI. By monitoring RBP4, patient’s recovery can be anticipated pointing to a role of RBP4 in prognosis evaluation. PMID:26792617

  20. Retinol-Binding Protein 4 Induces Cardiomyocyte Hypertrophy by Activating TLR4/MyD88 Pathway.

    PubMed

    Gao, Wei; Wang, Hao; Zhang, Lin; Cao, Yang; Bao, Ji-Zhang; Liu, Zheng-Xia; Wang, Lian-Sheng; Yang, Qin; Lu, Xiang

    2016-06-01

    Insulin resistance plays a major role in the development and progression of cardiac hypertrophy and heart failure. Heart failure in turn promotes insulin resistance and increases the risk for diabetes. The vicious cycle determines significant mortality in patients with heart failure and diabetes. However, the underlying mechanisms for the vicious cycle are not fully elucidated. Here we show that circulating levels and adipose expression of retinol-binding protein 4 (RBP4), an adipokine that contributes to systemic insulin resistance, were elevated in cardiac hypertrophy induced by transverse aortic constriction and angiotensin-II (Ang-II) infusion. Ang-II increased RBP4 expression in adipocytes, which was abolished by losartan, an Ang-II receptor blocker. The elevated RBP4 in cardiac hypertrophy may have pathophysiological consequences because RBP4 increased cell size, enhanced protein synthesis, and elevated the expression of hypertrophic markers including Anp, Bnp, and Myh7 in primary cardiomyocytes. Mechanistically, RBP4 induced the expression and activity of toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) in cardiomyocytes, resulting in enhanced inflammation and reactive oxygen species production. Inhibition or knockdown of the TLR4/MyD88 pathway attenuated inflammatory and hypertrophic responses to RBP4 stimulation. Importantly, RBP4 also reduced the expression of glucose transporter-4 and impaired insulin-stimulated glucose uptake in cardiomyocytes. This impairment was ameliorated in cardiomyocytes from TLR4 knockout mice. Therefore, RBP4 may be a critical modulator promoting the vicious cycle of insulin resistance and heart failure by activating TLR4/MyD88-mediated inflammatory pathways. Potentially, lowering RBP4 might break the vicious cycle and improve both insulin resistance and cardiac hypertrophy. PMID:27100622

  1. Decreased retinol-binding protein 4 in the sera of patients with end-stage renal disease after kidney transplantation.

    PubMed

    Zhang, W X; Zhou, W; Zhang, Z M; Zhang, Z Q; He, J F; Shi, B Y

    2014-01-01

    Retinol-binding protein 4 (RBP4) is a novel adipokine that has been associated with insulin resistance and type 2 diabetes. Patients with end-stage renal disease (ESRD) have very high serum RBP4 levels. However, whether successful kidney transplantation alleviates these elevated serum RBP4 levels is unclear. The serum RBP4 levels of 24 ESRD patients were determined before transplantation and at 1 day, 1 week, and 1 month after kidney transplantation. The control group included 22 healthy subjects. Serum RBP4 concentrations were measured using a commercial kit via the immunologic turbidimetric method, and were related to biomarkers for renal and liver function. The serum RBP4 level of ESRD patients before kidney transplantation (160.8 ± 29.1 mg/L) was approximately 7-fold higher than that of normal controls (22.6 ± 11.0 mg/L; P = 0.000). The serum RBP4 level before transplantation was significantly higher than that at 1 day (65.3 ± 28.4 mg/L), 1 week (48.3 ± 22.9 mg/L), and 1 month after transplantation (53.1 ± 25.5 mg/L; P = 0.000). However, these values were still higher than those of controls (P = 0.000). Univariate regression analysis showed that the percent changes in serum RBP4 concentration before and after kidney transplantation were positively correlated with serum creatinine, blood urea nitrogen, phosphate, and pre-albumin concentrations and negatively correlated with the estimated glomerular filtration rate. The serum RBP4 concentration of patients with ESRD decreased significantly after kidney transplantation; therefore, we found that serum RBP4 concentration was related to renal function. PMID:25299197

  2. Vitamin A, Cancer Treatment and Prevention: The New Role of Cellular Retinol Binding Proteins

    PubMed Central

    Doldo, Elena; Costanza, Gaetana; Tarquini, Chiara; Arcuri, Gaetano; Orlandi, Augusto

    2015-01-01

    Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy. PMID:25879031

  3. Carotenoid and retinoid transport to fish oocytes and eggs: what is the role of retinol binding protein?

    PubMed

    Lubzens, E; Lissauer, L; Levavi-Sivan, B; Avarre, J-C; Sammar, M

    2003-12-01

    Fish eggs contain carotenoids, retinals (retinal and dehydroretinal) and retinols (retinol, dehydroretinol and retinyl-esters) that are utilized during embryonic development, after fertilization. The carotenoids (mainly astaxanthins) are transported in the plasma by the low density lipoproteins, high density lipoproteins, and very high density lipoproteins (VHDL) and were found to be associated also with serum albumin. Retinals were found to be associated vitellogenin (VTG), a component of the plasma VHDL fraction that is internalized by oocytes during vitellogenesis. However, the transport of retinols and retinyl-esters that were located in the oil droplet fraction of homogenized eggs, has yet to be elucidated. Retinols are more abundant in freshwater fish eggs than in eggs of marine fish species. Since retinol is transported in the plasma of vertebrates in association with retinol binding protein (RBP), recent studies on the molecular characterization and expression sites of RBP, could contribute to determining the involvement of RBP in transporting retinol to developing oocytes in vertebrates.Recently, results from our laboratory show that RBP mRNA levels in the liver and RBP plasma levels did not significantly change with the onset and during vitellogenesis in the Rainbow trout. These results were in contrast with a dramatic elevation in the mRNA levels of VTG in the liver and an increase in VTG plasma levels that was observed in the same females. Moreover, 17beta-estradiol treatment of immature fish, resulted in relatively lower mRNA levels of RBP in the liver, concomitantly with an increase in the level of VTG transcripts and the appearance of VTG in the plasma of treated fish. In addition, RBP was localized in the cytosol of ovulated oocytes. These results for Rainbow trout are similar to those reported for the chicken but differ from those of Xenopus, where an increase in RBP mRNA was reported in the liver and higher levels of retinal and retinol were found

  4. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    PubMed

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. PMID:26900151

  5. IRBP-like proteins in the eyes of six cephalopod species--immunochemical relationship to vertebrate interstitial retinol-binding protein (IRBP) and cephalopod retinal-binding protein.

    PubMed

    Fong, S L; Lee, P G; Ozaki, K; Hara, R; Hara, T; Bridges, C D

    1988-01-01

    SDS polyacrylamide gel electrophoresis and immunoblotting were used to examine soluble proteins from the eyes of six species of cephalopods i.e. Lolliguncula brevis, Sepia officinalis, Octopus maya, Octopus bimaculoides, Rossia pacifica and Loligo opalescens. All species had a protein ("IRBP") with molecular weight virtually identical with vertebrate interstitial retinol-binding protein (IRBP) averaging 132,400 +/- 700 (n = 6). "IRBP" reacted on nitrocellulose blot transfers with rabbit antibovine IRBP and rabbit antifrog IRBP antibodies. Unlike vertebrate IRBP, cephalopod "IRBP" (from L. brevis) did not bind exogenous retinol or concanavalin A. The N-terminal amino acid appeared to be blocked in samples electroeluted from SDS gels. The antifrog IRBP antibodies also reacted with a series of proteins with molecular weights between 46,000 and 47,000, identified as retinal-binding protein (RALBP) with anti-RALBP antibodies. Anti-IRBP also reacted with pure RALBP prepared from Todarodes pacificus. Occasionally, anti-RALBP antibodies were seen to react weakly with "IRBP" in some cephalopods. We conclude that RALBP, cephalopod "IRBP" and vertebrate IRBP share a common but distant ancestry, and that a protein resembling IRBP appeared before the vertebrates diverged from the invertebrates. Both RALBP and IRBP appear to have analogous functions in shuttling retinoids between rhodopsin and the corresponding isomerizing system, retinochrome in the cephalopods and retinol isomerase in the vertebrates. The function of cephalopod "IRBP" is unknown. PMID:3195063

  6. All-trans retinol and retinol-binding protein from embryonic cerebrospinal fluid exhibit dynamic behaviour during early central nervous system development.

    PubMed

    Parada, Carolina; Gato, Angel; Bueno, David

    2008-06-11

    Embryonic cerebrospinal fluid (E-CSF) is involved in the regulation of survival, proliferation and neurogenesis of neuroectodermal progenitor cells, as well as in the control of mesencephalic gene expression in collaboration with the isthmic organizer. Recently, we showed the presence of retinol-binding protein (RBP) within the E-CSF proteome. RBP is an all-trans retinol carrier, a molecule that can be metabolized into retinoic acid, a morphogen involved in central nervous system (CNS) morphogenesis and patterning. Here we demonstrate the presence of all-trans retinol within the E-CSF and analyse the dynamics of RBP and all-trans retinol within this fluid, as well as the expression of retinoic acid-synthesizing enzymes during early CNS development. Our results suggest a relationship between the dynamics of these molecules and the early events of CNS patterning. PMID:18520998

  7. Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease

    PubMed Central

    2015-01-01

    Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. We recently showed that A1120 (3), a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4–/– mice. As part of the NIH Blueprint Neurotherapeutics Network project we undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. We also demonstrate that upon acute and chronic dosing in rats, 43, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approximately 60%. PMID:25210858

  8. Sitagliptin downregulates retinol-binding protein 4 and upregulates glucose transporter type 4 expression in a type 2 diabetes mellitus rat model.

    PubMed

    Hu, Honglin; Xu, Min; Qi, Renjuan; Wang, Youmin; Wang, Changjiang; Liu, Jiongjiong; Luo, Li; Xia, Li; Fang, Zhaohui

    2015-01-01

    The present study was designed to investigate the effects of sitagliptin on metabolic parameters as well as the expression levels of retinol-binding protein 4 (RBP4) and glucose transporter type 4 (GLUT4) in a rat model of type 2 diabetes mellitus. A rat model of type 2 diabetes mellitus was established by a combination of a high-fat diet and intraperitoneal injection of low-dose streptozotocin. Rats were divided into three groups: normal control group, diabetes group, and diabetes + sitagliptin group. Body weight, glycemic parameters, lipid profiles, fasting insulin (FINS) and serum RBP4 levels were assessed at baseline and after 6 weeks of therapy. Western blotting was used to detect the tissue RBP4 and GLUT4 expression levels. After treatment for 6 weeks, the diabetes + sitagliptin group displayed significantly improve levels of blood sugar, blood grease, and insulin sensitizing functions (P < 0.05) than the diabetes group. Sitagliptin markedly down regulated RBP4 expression levels and up-regulated GLUT4 expression levels in adipose tissue and skeletal muscle. The results indicate that sitagliptin can modulate the RBP4-GLUT4 system in adipose tissue and skeletal muscle. Modulation of the RBP4-GLUT4 system may be one of the mechanisms by which sitagliptin ameliorates the symptoms of type 2 diabetes mellitus. PMID:26770384

  9. Regulation of retinol-binding protein metabolism by glucocorticoid hormones in cultured H/sub 4/II EC/sub 3/ liver cells

    SciTech Connect

    Borek, C.; Smith, J.E.; Soprano, D.R.; Goodman, D.S.

    1981-08-01

    Studies were conducted to explore the effects of glucocorticoid hormones on the regulation of the metabolism of retinol-binding protein (RBP) by H/sub 4/II EC/sub 4/ rat hepatoma cells in culture. Cortisol, corticosterone, and the synthetic glucocorticoid analog dexamethasone all induced a 2- to 3-fold increase in the accumulation of RBP. Half-maximal stimulation occurred at concentrations of dexamethasone in the range of 1 to 5 nM. Progesterone in the concentration range of 1 to 10 ..mu..M, inhibited the stimulatory effect of dexamethasone. Progesterone alone in this concentration range had no effect on RBP metabolism. The addition of retinol over a range from 3.5 nM to 3.5 ..mu..M stimulated a dose-dependent secretion of RBP from the cells into the medium. When studied over a wide range of concentrations, retinol and dexamethasone incubated together produced approximately additive increases in the accumulation of RBP. Dexamethasone, moreover, did not affect the retinol-induced secretion of RBP. Thus, retinol and dexamethasone appear to function via different and independent mechanisms to regulate the metabolism of RBP by the liver cell.

  10. Bicyclic [3.3.0]-Octahydrocyclopenta[c]pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease.

    PubMed

    Cioffi, Christopher L; Racz, Boglarka; Freeman, Emily E; Conlon, Michael P; Chen, Ping; Stafford, Douglas G; Schwarz, Daniel M C; Zhu, Lei; Kitchen, Douglas B; Barnes, Keith D; Dobri, Nicoleta; Michelotti, Enrique; Cywin, Charles L; Martin, William H; Pearson, Paul G; Johnson, Graham; Petrukhin, Konstantin

    2015-08-13

    Antagonists of retinol-binding protein 4 (RBP4) impede ocular uptake of serum all-trans retinol (1) and have been shown to reduce cytotoxic bisretinoid formation in the retinal pigment epithelium (RPE), which is associated with the pathogenesis of both dry age-related macular degeneration (AMD) and Stargardt disease. Thus, these agents show promise as a potential pharmacotherapy by which to stem further neurodegeneration and concomitant vision loss associated with geographic atrophy of the macula. We previously disclosed the discovery of a novel series of nonretinoid RBP4 antagonists, represented by bicyclic [3.3.0]-octahydrocyclopenta[c]pyrrolo analogue 4. We describe herein the utilization of a pyrimidine-4-carboxylic acid fragment as a suitable isostere for the anthranilic acid appendage of 4, which led to the discovery of standout antagonist 33. Analogue 33 possesses exquisite in vitro RBP4 binding affinity and favorable drug-like characteristics and was found to reduce circulating plasma RBP4 levels in vivo in a robust manner (>90%). PMID:26181715

  11. Retinol binding protein and vitamin D associations with serum antibody isotypes, serum influenza virus-specific neutralizing activities and airway cytokine profiles.

    PubMed

    Jones, B G; Oshansky, C M; Bajracharya, R; Tang, L; Sun, Y; Wong, S S; Webby, R; Thomas, P G; Hurwitz, J L

    2016-02-01

    Vitamin A supports the induction of immunoglobulin (Ig)A responses at mucosal surfaces in mice, but much less is known about the influence of vitamins on antibody isotype expression in humans. To address this knowledge gap, we examined 46 residual blood samples from adults and children, some of whom were experiencing influenza virus infections of the respiratory tract. Assays were performed for retinol binding protein (RBP, a surrogate for vitamin A), vitamin D (a related vitamin) and antibody isotypes. Results showed that all but two tested samples exhibited RBP and/or vitamin D insufficiencies or deficiencies. Vitamin D correlated with blood IgM and IgG3, while RBP correlated with IgG4 and IgA. RBP also correlated positively with age and with influenza virus-specific antibody neutralization titres. Individuals with low blood RBP levels exhibited the highest frequencies of over-expressed cytokines and growth factors in nasal wash samples, an indication of inflamed mucosal tissues. While cause-effect relationships were not discerned, results support a hypothesis that vitamins directly influence B cell isotype expression in humans, and by so doing may help protect mucosal surfaces from respiratory viral disease. PMID:26425827

  12. High fat diet induced insulin resistance and elevated retinol binding protein 4 in female rats; treatment and protection with Berberis vulgaris extract and vitamin A.

    PubMed

    El-Sayed, Mohamed Mohammed; Ghareeb, Doaa Ahmad; Talat, Heba Allah; Sarhan, Eman Mohammed

    2013-11-01

    This research was conducted to investigate two main aims; the first aim was to find if there is a relationship between insulin resistance (IR) and retinol binding protein 4 (RBP4). The second aim was to use berberis vulgaris extract and vitamin A as protective and/or curative agents against insulin resistance. IR was developed by feeding the female rats a high fat diet (HFD) for six weeks then treating or protecting them with b. vulgaris extract (0.2 g/Kg body weight) or vitamin A (12.8μg/Kg/day) for two weeks. HFD intake elevated insulin level and RBP4 expression that associated with hyperglycemia and hyperlipidemia. Co-administration of vitamin A and B. vulgaris extracts reduced blood glucose level, insulin, body weight and RBP4 expression before, during and after HFD. Furthermore, vitamin A reduced the blood glucose, triglycerides (TG) and cholesterol levels. IR syndrome associated with the RBP 4 alteration that gives high indication about the role of RBP4 expression in the IR progression and development. Furthermore, the treatment with vitamin A and/or b. vulgaris alleviated the IR syndrome through the action on RBP4 and Insulin secretion. On the other hand, vitamin A must be avoided for the predisposed IR and prediabetic patients. PMID:24191325

  13. Sitagliptin downregulates retinol-binding protein 4 and upregulates glucose transporter type 4 expression in a type 2 diabetes mellitus rat model

    PubMed Central

    Hu, Honglin; Xu, Min; Qi, Renjuan; Wang, Youmin; Wang, Changjiang; Liu, Jiongjiong; Luo, Li; Xia, Li; Fang, Zhaohui

    2015-01-01

    The present study was designed to investigate the effects of sitagliptin on metabolic parameters as well as the expression levels of retinol-binding protein 4 (RBP4) and glucose transporter type 4 (GLUT4) in a rat model of type 2 diabetes mellitus. A rat model of type 2 diabetes mellitus was established by a combination of a high-fat diet and intraperitoneal injection of low-dose streptozotocin. Rats were divided into three groups: normal control group, diabetes group, and diabetes + sitagliptin group. Body weight, glycemic parameters, lipid profiles, fasting insulin (FINS) and serum RBP4 levels were assessed at baseline and after 6 weeks of therapy. Western blotting was used to detect the tissue RBP4 and GLUT4 expression levels. After treatment for 6 weeks, the diabetes + sitagliptin group displayed significantly improve levels of blood sugar, blood grease, and insulin sensitizing functions (P < 0.05) than the diabetes group. Sitagliptin markedly down regulated RBP4 expression levels and up-regulated GLUT4 expression levels in adipose tissue and skeletal muscle. The results indicate that sitagliptin can modulate the RBP4-GLUT4 system in adipose tissue and skeletal muscle. Modulation of the RBP4-GLUT4 system may be one of the mechanisms by which sitagliptin ameliorates the symptoms of type 2 diabetes mellitus. PMID:26770384

  14. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    PubMed

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  15. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    PubMed Central

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  16. Cellular retinol-binding protein-1 is transiently expressed in granulation tissue fibroblasts and differentially expressed in fibroblasts cultured from different organs.

    PubMed Central

    Xu, G.; Redard, M.; Gabbiani, G.; Neuville, P.

    1997-01-01

    We have reported that cellular retinol-binding protein-1 (CRBP-1) is transiently expressed by arterial smooth muscle cells during experimental intimal repair (P. Neuville, A. Geinoz, G. Benzonana, M. Redard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol 1997, 150:509-521). We have examined here the expression of CRBP-1 during wound healing after a full-thickness rat skin wound. CRBP-1 was transiently expressed by a significant proportion of fibroblastic cells including myofibroblasts. Expression started 4 days after wounding, reached a maximum at 12 days, and persisted up to 30 days when a scar was formed. After wound closure, most CRBP-1-containing fibroblastic cells underwent apoptosis. We have further investigated CRBP-1 expression in rat fibroblasts cultured from different organs. CRBP-1 was abundant in lung and heart fibroblasts and was detected in decreasing amounts in muscle, tendon, subcutaneous tissue, and granulation tissue fibroblasts. Dermis fibroblasts contained no detectable levels of CRBP-1. All-trans retinoic acid and transforming growth factor-beta1 inhibited cell proliferation and increased CRBP-1 expression in fibroblastic populations except dermis fibroblasts. We demonstrate that during granulation tissue formation a subpopulation of fibroblastic cells express CRBP-1 de novo. We also demonstrate that CRBP-1 expression by fibroblasts is regulated in vitro by retinoic acid and transforming growth factor-beta1. Our results suggest that CRBP-1 and possibly retinoic acid play a role in the evolution of granulation tissue. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:9403724

  17. Expression of retinol binding protein 4 and nuclear factor-κB in diabetic rats with atherosclerosis and the intervention effect of pioglitazone

    PubMed Central

    Zhou, Wan; Ye, Shandong; Li, Jing

    2016-01-01

    This study aims to investigate the expression of retinol binding protein 4 (RBP4) and the activity of nuclear factor-kappa B (NF-κB) in diabetic rats with atherosclerosis, and to evaluate the intervention effect of pioglitazone. A total of 75 Wistar rats were randomly divided into four groups: Normal control (NC), diabetic rats (DM1), diabetic rats with atherosclerosis (DM2) and diabetic rats treated with pioglitazone (DM + Pio). The activity of NF-κB, the levels of serum and adipose tissue RBP4, fasting plasma glucose (FPG), fasting insulin (FINS), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG) and arteria caudilis systolic blood pressure (SBP) were measured. Percentage of fat mass (PFM), atherogenic index of plasma (AIP) and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Compared with the NC and DM + Pio groups, all the parameters mentioned above increased significantly in the DM1 and DM2 groups, with the exception that HDL-c decreased. Pearson analysis showed that RBP4 in serum and adipose tissue were positively associated with TG, LDL-c, FINS, PFM, AIP, HOMA-IR, NF-κB, SBP and negatively associated with HDL-c. Multivariable logistic regression analysis showed that serum RBP4 and TG were predictors for the presence of diabetic atherosclerosis. In conclusion, RBP4 may be an effective predictor for diabetic atherosclerosis; pioglitazone is able to decrease RBP4 and NF-κB, which may partly contribute to its protective effect against diabetic atherosclerosis. PMID:27446311

  18. Fatty Acid-and Retinol-Binding Protein, Mj-FAR-1 Induces Tomato Host Susceptibility to Root-Knot Nematodes

    PubMed Central

    Iberkleid, Ionit; Vieira, Paulo; de Almeida Engler, Janice; Firester, Kalia; Spiegel, Yitzhak; Horowitz, Sigal Brown

    2013-01-01

    Plant-parasitic nematodes produce at least one structurally unique class of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant hosts. Herein we describe a protein of the plant-parasitic root-knot nematode Meloidogyne javanica, which is a member of the nematode-specific fatty-acid- and retinol-binding (Mj-FAR-1) family of proteins. The mj-far-1 mRNA was detected through M. javanica pre-parasitic J2s, migratory and sedentary parasitic stages by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Immunolocalization assays demonstrate that the FAR protein of Meloidogyne is secreted during sedentary stages, as evidenced by the accumulation of FAR at the nematode cuticle surface and along the adjacent host root tissues. Tomato roots constitutively expressing mj-far-1 demonstrated an increased susceptibility to root-knot nematodes infection as observed by accelerated gall induction and expansion, accompanied by a higher percentage of nematodes developing into mature females compared to control roots. RNA interference assays that expressed double-stranded RNA complementary to mj-far-1 in transgenic tomato lines specifically reduced nematode infection levels. Histological analysis of nematode-infested roots indicated that in roots overexpressing mj-far-1, galls contained larger feeding cells and might support a faster nematode development and maturation. Roots overexpressing mj-far-1 suppressed jasmonic acid responsive genes such as the proteinase inhibitor (Pin2) and γ-thionin, illustrating the possible role of Mj-FAR-1 in manipulating the lipid based signaling in planta. This data, suggests that Meloidogyne FAR might have a strategic function during the interaction of the nematode with its plant host. Our study present the first demonstration of an in planta functional characterization and localization of FAR proteins secreted by plant-parasitic nematodes. It provides evidence that Mj-FAR-1 facilitates

  19. Associations between retinol-binding protein 4 and cardiometabolic risk factors and subclinical atherosclerosis in recently postmenopausal women: cross-sectional analyses from the KEEPS study

    PubMed Central

    2012-01-01

    Background The published literature regarding the relationships between retinol-binding protein 4 (RBP4) and cardiometabolic risk factors and subclinical atherosclerosis is conflicting, likely due, in part, to limitations of frequently used RBP4 assays. Prior large studies have not utilized the gold-standard western blot analysis of RBP4 levels. Methods Full-length serum RBP4 levels were measured by western blot in 709 postmenopausal women screened for the Kronos Early Estrogen Prevention Study. Cross-sectional analyses related RBP4 levels to cardiometabolic risk factors, carotid artery intima-media thickness (CIMT), and coronary artery calcification (CAC). Results The mean age of women was 52.9 (± 2.6) years, and the median RBP4 level was 49.0 (interquartile range 36.9-61.5) μg/mL. Higher RBP4 levels were weakly associated with higher triglycerides (age, race, and smoking-adjusted partial Spearman correlation coefficient = 0.10; P = 0.01), but were unrelated to blood pressure, cholesterol, C-reactive protein, glucose, insulin, and CIMT levels (all partial Spearman correlation coefficients ≤0.06, P > 0.05). Results suggested a curvilinear association between RBP4 levels and CAC, with women in the bottom and upper quartiles of RBP4 having higher odds of CAC (odds ratio [95% confidence interval] 2.10 [1.07-4.09], 2.00 [1.02-3.92], 1.64 [0.82-3.27] for the 1st, 3rd, and 4th RBP4 quartiles vs. the 2nd quartile). However, a squared RBP4 term in regression modeling was non-significant (P = 0.10). Conclusions In these healthy, recently postmenopausal women, higher RBP4 levels were weakly associated with elevations in triglycerides and with CAC, but not with other risk factors or CIMT. These data using the gold standard of RBP4 methodology only weakly support the possibility that perturbations in RBP4 homeostasis may be an additional risk factor for subclinical coronary atherosclerosis. Trial registration ClinicalTrials.gov number NCT00154180 PMID:22587616

  20. Assessment of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Retinol-Binding Protein 4 (RBP4) in Type 2 Diabetic Patients with Nephropathy

    PubMed Central

    Mahfouz, Mohamed H.; Assiri, Adel M.; Mukhtar, Mohammed H.

    2016-01-01

    Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes. The study aims to evaluate the diagnostic value of serum neutrophil gelatinase-associated lipocalin (NGAL) and retinol-binding protein 4 (RBP4) as biomarkers for early detection of nephropathy in type 2 diabetic patients. The current study was performed on 150 type 2 diabetic patients. These patients were classified into three equal groups according to their albumin/creatinine ratio (ACR), including patients with normoalbuminuria (ACR <30 mg/g creatinine), patients with microalbuminuria (ACR = 30–300 mg/g creatinine), and patients with macroalbuminuria (ACR >300 mg/g creatinine). Fifty apparently healthy subjects matching the same age and socioeconomic status with diabetic subjects were selected as a control group. The plasma glucose, insulin, glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR), lipid profile, urea, creatinine, cystatin C, glomerular filtration rate (GFR), NGAL, and RBP4 were measured in the studied groups. Significantly elevated NGAL and RBP4 levels were observed in micro- and macroalbuminuric diabetic groups when compared to the control and normoalbuminuric diabetic groups. NGAL and RBP4 were found to correlate positively with duration of diabetes, systolic and diastolic blood pressure, glucose, HbA1c, HOMA-IR, triacylglycerol, and ACR, but correlate inversely with GFR in DN groups. Receiver operating characteristic curves revealed that for early detection of DN, the best cutoff values to discriminate DN and diabetic without nephropathy groups were 91.5 ng/mL for NGAL with 87% sensitivity, 74% specificity, and area under the curve (AUC) = 0.881; 24.5 ng/mL for RBP4 with 84% sensitivity, 90% specificity, and AUC = 0.912; and 37.5 mg/g creatinine for ACR with 89% sensitivity, 72% specificity, and AUC = 0.819. RBP4 is more specific (90% specificity) than NGAL (74% specificity) and ACR (72% specificity). Therefore

  1. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism

    PubMed Central

    Norseen, Julie; Hosooka, Tetsuya; Hammarstedt, Ann; Yore, Mark M.; Kant, Shashi; Aryal, Pratik; Kiernan, Urban A.; Phillips, David A.; Maruyama, Hiroshi; Kraus, Bettina J.; Usheva, Anny; Davis, Roger J.; Smith, Ulf

    2012-01-01

    Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces expression of proinflammatory cytokines in mouse and human macrophages and thereby indirectly inhibits insulin signaling in cocultured adipocytes. This occurs through activation of c-Jun N-terminal protein kinase (JNK) and Toll-like receptor 4 (TLR4) pathways independent of the RBP4 receptor, STRA6. RBP4 effects are markedly attenuated in JNK1−/− JNK2−/− macrophages and TLR4−/− macrophages. Because RBP4 is a retinol-binding protein, we investigated whether these effects are retinol dependent. Unexpectedly, retinol-free RBP4 (apo-RBP4) is as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory cytokines in macrophages. Apo-RBP4 is likely to be physiologically significant since RBP4/retinol ratios are increased in serum of lean and obese insulin-resistant humans compared to ratios in insulin-sensitive humans, indicating that higher apo-RBP4 is associated with insulin resistance independent of obesity. Thus, RBP4 may cause insulin resistance by contributing to the development of an inflammatory state in adipose tissue through activation of proinflammatory cytokines in macrophages. This process reveals a novel JNK- and TLR4-dependent and retinol- and STRA6-independent mechanism of action for RBP4. PMID:22431523

  2. ¹H, ¹³C and ¹⁵N chemical shift assignments of Na-FAR-1, a helix-rich fatty acid and retinol binding protein of the parasitic nematode Necator americanus.

    PubMed

    Rey-Burusco, M Florencia; Ibañez-Shimabukuro, Marina; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2014-04-01

    The fatty acid and retinol-binding (FAR) proteins are a family of unusual helix-rich lipid binding proteins found exclusively in nematodes, and are secreted by a range of parasites of humans, animals and plants. Na-FAR-1 is from the parasitic nematode Necator americanus, an intestinal blood-feeding parasite of humans. Sequence-specific (1)H, (13)C and (15)N resonance assignments have been obtained for the recombinant 170 amino acid protein, using three-dimensional triple-resonance heteronuclear magnetic resonance experiments. Backbone assignments have been obtained for 99.3% of the non-proline HN/N pairs (146 out of 147). The amide resonance of T45 was not observed, probably due to rapid exchange with solvent water. A total of 96.9% of backbone resonances were identified, while 97.7% assignment of amino acid sidechain protons is complete. All Hα(166), Hβ(250) and Hγ(160) and 98.4% of the Hδ (126 out of 128) atoms were assigned. In addition, 99.4% Cα (154 out of 155) and 99.3% Cβ (143 out of 144) resonances have been assigned. No resonances were observed for the NH(n) groups of R93 NεHε, arginine, N(η1)H2, N(η2)H2, histidine N(δ1)H(δ1), N(ε1)H(ε1) and lysine N(ζ3)H3. Na-FAR-1 has a similar overall arrangement of α-helices to Ce-FAR-7 of the free-living Caeorhabditis elegans, but with an extra C-terminal helix. PMID:23179061

  3. GC Gene Polymorphism and Unbound Serum Retinol-Binding Protein 4 Are Related to the Risk of Insulin Resistance in Patients With Chronic Hepatitis C: A Prospective Cross-Sectional Study.

    PubMed

    Mateos-Muñoz, Beatriz; García-Martín, Elena; Torrejón, María J; Devesa-Medina, María J; Esguevillas, Gara; Cárdenas, María C; Fernández, Cristina; Carballo, Miguel; Agúndez, José A; Ladero, José M

    2016-03-01

    Insulin resistance (IR) is found in chronic hepatitis C (CHC) more frequently than in other chronic liver diseases.Prospective cross-sectional study to evaluate a wide multitest panel to identify factors related with IR in CHC and their possible interactions.In 76 patients with CHC we performed a series of routine laboratory analysis as well as specifically designed serum biochemical tests [retinol, retinol-binding protein 4 (RBP4), 25-OH vitamin D, Vitamin E, lipopolysaccharide-binding protein (LBP), interleukin-6 (IL-6), and cystatin C]. The single nucleotide polymorphisms rs7041 and rs4588 GC-DBP (group-specific component-Vitamin D-binding protein), rs738409 PNPLA3 (patatin-like phospholipase domain containing 3), and rs12979860 IL28B (interleukin-28 B) genes were determined. Insulin sensitivity was established with the HOMA-IR and IR was diagnosed when HOMA-IR > 3. Fibrosis staging was assessed with liver biopsy or transient elastography.After backward logistic regression analysis, independent variables associated with IR were Gc1s/Gc1s DBP phenotype, that results from the homozygous carriage of the rs7041G/rs4588C haplotype (P = 0.033); low retinol/RBP4 ratio, reflecting a greater rate of unbound RBP4 (P = 0.005); older age (P = 0.01); high serum tryglicerides (P = 0.026); and advanced (F3-F4) fibrosis stage. The AUROC provided by the multivariate model was 0.950 (95% CI = 0.906-0.993).In addition to previously known ones, the Gc1s/Gc1s phenotype variant of DBP and the unbound fraction of plasma RBP4 may be considered as factors related with the incidence, and possibly the risk, of IR in CHC patients. PMID:26962819

  4. Retinoid Content, Visual Responses, and Ocular Morphology Are Compromised in the Retinas of Mice Lacking the Retinol-Binding Protein Receptor, STRA6

    PubMed Central

    Ruiz, Alberto; Mark, Manuel; Jacobs, Hugues; Klopfenstein, Muriel; Hu, Jane; Lloyd, Marcia; Habib, Samer; Tosha, Chinatsu; Radu, Roxana A; Ghyselinck, Norbert B; Nusinowitz, Steven; Bok, Dean

    2012-01-01

    Purpose. We report generation of a mouse model in which the STRA6 gene has been disrupted functionally to facilitate the study of visual responses, changes in ocular morphology, and retinoid processing under STRA6 protein deficiency. Methods. A null mouse line, stra6 −/−, was generated. Western Blot and immunocytochemistry were used to determine expression of STRA6 protein. Visual responses and morphological studies were performed on 6-week, 5-month and 10-month-old mice. The retinoid content of eye tissues was evaluated in dark-adapted mice by high performance liquid chromatography. Results. STRA6 protein was not detectable in stra6 −/− null mice, which had a consistent reduction, but not total ablation of their visual responses. The mice also showed significant depletion of their retinoid content in retinal pigment epithelium (RPE) and neurosensory retina, including a 95% reduction in retinyl esters. At the morphological level, a reduction in thickness of the neurosensory retina due to shortening of the rod outer and inner segments was observed when compared to control litter mates with a commensurate reduction in rod a- and b-wave amplitudes. In addition, there was a reduction in cone photoreceptor cell number and cone b-wave amplitude. A typical hallmark in stra6 −/− null eyes was the presence of a persistent primary hypertrophic vitreous, an optically dense vascularized structure located in the vitreous humor between the posterior surface of the lens and neurosensory retina. Conclusions. Our studies of stra6 −/− null mice established the importance of the STRA6 protein for the uptake, intracellular transport, and processing of retinol by the RPE. In its absence, rod photoreceptor outer and inner segment length was reduced, and cone cell numbers were reduced, as were scotopic and photopic responses. STRA6 also was required for dissolution of the primary vitreous. However, it was clear from these studies that STRA6 is not the only pathway for

  5. Uterocalin, a lipocalin provisioning the preattachment equine conceptus: fatty acid and retinol binding properties, and structural characterization.

    PubMed Central

    Suire, S; Stewart, F; Beauchamp, J; Kennedy, M W

    2001-01-01

    The equine conceptus is surrounded by a fibrous capsule that persists until about day 20 of pregnancy, whereupon the capsule is lost, the conceptus attaches to the endometrium and placentation proceeds. Before attachment, the endometrium secretes in abundance a protein of the lipocalin family, uterocalin. The cessation of secretion coincides with the end of the period during which the conceptus is enclosed in its capsule, suggesting that uterocalin is essential for the support of the embryo before direct contact between maternal and foetal tissues is established. Using recombinant protein and fluorescence-based assays, we show that equine uterocalin binds the fluorescent fatty acids 11-(dansylamino)undecanoic acid, dansyl-D,L-alpha-amino-octanoic acid and cis-parinaric acid, and, by competition, oleic, palmitic, arachidonic, docosahexaenoic, gamma-linolenic, cis-eicosapentaenoic and linoleic acids. Uterocalin also binds all-trans-retinol, the binding site for which is coincident or interactive with that for fatty acids. Molecular modelling and intrinsic fluorescence analysis of the wild-type protein and a Trp-->Glu mutant protein indicated that uterocalin has an unusually solvent-exposed Trp side chain projecting from its large helix directly into solvent. This feature is unusual among lipocalins and might relate to binding to, and uptake by, the trophoblast. Uterocalin therefore has the localization and binding activities for the provisioning of the equine conceptus with lipids including those essential for morphogenesis and pattern formation. The possession of a fibrous capsule surrounding the conceptus might be an ancestral condition in mammals; homologues of uterocalin might be essential for early development in marsupials and in eutherians in which there is a prolonged preimplantation period. PMID:11368763

  6. RESPONSE OF HEPATIC PROTEINS TO THE LOWERING OF HABITUAL DIETARY PROTEIN TO THE RECOMMENDED SAFE LEVEL OF INTAKE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plasma concentrations of albumin, HDL apolipoprotein A1 (apoA1), retinol-binding protein (RBP), transthyretin (TTR), haptoglobulin, and fibrinogen were measured, and a stable isotope infusion protocol was used to determine the fractional and absolute synthesis rates of RBP, TTR, and fibrinogen i...

  7. Effects of three liquid diets on nutrition-sensitive plasma proteins of tube-fed elderly men.

    PubMed

    Feller, A G; Caindec, N; Rudman, I W; Rudman, D

    1990-06-01

    The effects on three nutrition-sensitive plasma proteins of isocaloric feedings with three enteral formulas were compared in 10 tube-fed male nursing home residents. The enteral products were Isocal (based on whole protein), Peptamen (based on a mixture of oligopeptides), and Vivonex T.E.N. (based on free amino acids). The nutrition-sensitive plasma proteins were albumin, transferrin, and retinol-binding protein. After observation during four weeks of feeding with Isocal, each subject was then monitored during four weeks of Peptamen and four weeks of Vivonex T.E.N. The latter two products were alternated in a crossover design. The shift of Isocal to Peptamen did not significantly (P greater than .05) influence the serum level of albumin, transferrin, or retinol-binding protein. In contrast, the shift of Isocal to Vivonex T.E.N. or of Peptamen to Vivonex caused a significant (P less than .05) decline in all three plasma proteins, the kinetics of their reductions corresponding to their known half-lives. The behavior of the three nutrition-sensitive plasma proteins suggests that in elderly nursing home men without gastrointestinal disease the nutritional value of the protein component of the three formulas follows the order Isocal = Peptamen greater than Vivonex T.E.N. However, this conclusion will require confirmation by nitrogen balance studies. PMID:2113546

  8. Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants

    PubMed Central

    Trenchevska, Olgica; Phillips, David A.; Nelson, Randall W.; Nedelkov, Dobrin

    2014-01-01

    Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes. PMID:24955979

  9. Tuning the Electronic Absorption of Protein-Embedded All-trans-Retinal

    SciTech Connect

    Wang, Wenjing; Nossoni, Zahra; Berbasova, Tetyana; Watson, Camille T.; Yapici, Ipek; Lee, Kin Sing Stephen; Vasileiou, Chrysoula; Geiger, James H.; Borhan, Babak

    2014-10-02

    Protein-chromophore interactions are a central component of a wide variety of critical biological processes such as color vision and photosynthesis. To understand the fundamental elements that contribute to spectral tuning of a chromophore inside the protein cavity, we redesigned human cellular retinol binding protein II (hCRBPII) to fully encapsulate all-trans-retinal and form a covalent bond as a protonated Schiff base. The system, using rational mutagenesis designed to alter the electrostatic environment within the binding pocket of the host protein, enabled regulation of the absorption maximum of the pigment in the range of 425 to 644 nanometers. Moreover, with only nine point mutations, the hCRBPII mutants induced a systematic shift in the absorption profile of all-trans-retinal of more than 200 nanometers across the visible spectrum.

  10. Tuning the electronic absorption of protein-embedded all-trans-retinal.

    PubMed

    Wang, Wenjing; Nossoni, Zahra; Berbasova, Tetyana; Watson, Camille T; Yapici, Ipek; Lee, Kin Sing Stephen; Vasileiou, Chrysoula; Geiger, James H; Borhan, Babak

    2012-12-01

    Protein-chromophore interactions are a central component of a wide variety of critical biological processes such as color vision and photosynthesis. To understand the fundamental elements that contribute to spectral tuning of a chromophore inside the protein cavity, we redesigned human cellular retinol binding protein II (hCRBPII) to fully encapsulate all-trans-retinal and form a covalent bond as a protonated Schiff base. This system, using rational mutagenesis designed to alter the electrostatic environment within the binding pocket of the host protein, enabled regulation of the absorption maximum of the pigment in the range of 425 to 644 nanometers. With only nine point mutations, the hCRBPII mutants induced a systematic shift in the absorption profile of all-trans-retinal of more than 200 nanometers across the visible spectrum. PMID:23224553

  11. Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome

    PubMed Central

    2012-01-01

    Background Refractory anemia with excess blasts subtype 1 (RAEB-1) is a subgroup of myelodysplastic syndrome. It represents a heterogeneous group of oncohematological bone marrow diseases, which occur particularly in elderly patients. The aim of this proteomic study was to search for plasma protein alterations in RAEB-1 patients. Results A total of 24 plasma samples were depleted of fourteen high-abundant plasma proteins, analyzed with 2D SDS-PAGE, compared, and statistically processed with Progenesis SameSpots software. Proteins were identified by nanoLC-MS/MS. Retinol-binding protein 4 and leucine-rich alpha-2-glycoprotein were relatively quantified using mass spectrometry. 56 significantly differing spots were found; and in 52 spots 50 different proteins were successfully identified. Several plasma proteins that changed either in their level or modification have been described herein. The plasma level of retinol-binding protein 4 was decreased, while leucine-rich alpha-2-glycoprotein was modified in RAEB-1 patients. Changes in the inter-alpha-trypsin inhibitor heavy chain H4, altered protein fragmentation, or fragments modifications were observed. Conclusions This study describes proteins, which change quantitatively or qualitatively in the plasma of RAEB-1 patients. It is the first report on qualitative changes in the leucine-rich alpha-2-glycoprotein in the RAEB-1 subgroup of myelodysplastic syndrome. Described changes in the composition or modification of inter-alpha-trypsin inhibitor heavy chain H4 fragments in RAEB-1 are in agreement with those changes observed in previous study of refractory cytopenia with multilineage dysplasia, and thus H4 fragments could be a marker specific for myelodysplastic syndrome. PMID:22568928

  12. Correlation of secretion of retinol and protein by the lacrimal gland

    SciTech Connect

    Ubels, J.L.; Rismondo, V.

    1986-03-01

    Retinol, which is present in tears, is secreted by the lacrimal gland. Retinol secretion is stimulated by cholinergic drugs and vasoactive intestinal peptide with characteristics very similar to the exocytotic secretion of protein by the lacrimal gland, suggesting that retinol and protein are secreted by similar mechanisms. The authors investigated this by cannulating the lacrimal gland ducts of rabbits and collecting lacrimal gland fluid (LGF) under conditions of maximal flow stimulated by IV injection of pilocarpine (400 ..mu..g/kg) every 20 min for 4.5 hr. Over this period LGF protein concentration decreased 36.4% from 22.8 +/- 1.94 mg/ml to 8.29 1.86 mg/ml while retinol decreased 37% from 55.1 +/- 16.2 ng/ml to 20.4 +/- 6.5 ng/ml. The retinol/protein ratio remained constant at 2.88 ng/mg. This demonstrates a strong correlation between retinol and protein secretion, suggesting that retinol may be protein bound. To investigate binding of retinol to LGF protein, LGF was incubated with /sup 3/H-retinol. The bound and unbound retinol were separated on a Lipidex 1000 column. Retinol binding was linear over a range of 1.25-200 nM /sup 3/H-retinol. Binding was not inhibited by PCMBS or addition of a 100-fold excess of unlabeled retinol and was not increased by prior extraction of endogenous retinol from the LGF. This indicates that the binding of retinol to LGF protein is non-specific. Retinol therefore appears to be secreted by the lacrimal gland cells in non-specific association with protein.

  13. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics.

    PubMed

    Suomivuori, Carl-Mikael; Lang, Lucas; Sundholm, Dage; Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-06-01

    Rational design of light-capturing properties requires understanding the molecular and electronic structure of chromophores in their native chemical or biological environment. We employ here large-scale quantum chemical calculations to study the light-capturing properties of retinal in recently designed human cellular retinol binding protein II (hCRBPII) variants (Wang et al. Science, 2012, 338, 1340-1343). Our calculations show that these proteins absorb across a large part of the visible spectrum by combined polarization and electrostatic effects. These effects stabilize the ground or excited state energy levels of the retinal by perturbing the Schiff-base or β-ionone moieties of the chromophore, which in turn modulates the amount of charge transfer within the molecule. Based on the predicted tuning principles, we design putative in silico mutations that further shift the absorption properties of retinal in hCRBPII towards the ultraviolet and infrared regions of the spectrum. PMID:27120137

  14. A novel antilithiatic protein from Tribulus terrestris having cytoprotective potency.

    PubMed

    Aggarwal, Anshu; Tandon, Simran; Singla, Surinder Kumar; Tandon, Chanderdeep

    2012-08-01

    Adhesion of calcium oxalate (CaOx) crystals to kidney cells is a key event in kidney stones associated with marked hyperoxaluria. As the propensity of stone recurrence and persistent side effects are not altered by surgical techniques available, phytotherapeutic agents could be useful as an adjuvant therapy. The present study is aimed at examining the antilithiatic potency of the protein biomolecules of Tribulus terrestris, a plant which is a common constituent of herbal marketed preparations to treat urolithiasis. Various biochemical methods with mass spectrometry were used to purify and characterize the purified protein. The protective potency of the protein was tested on the oxalate induced injury on renal epithelial cell lines (NRK 52E). An antilithiatic protein having molecular weight of ~ 60kDa was purified. This purified protein showed similarities with Carotenoid cleavage dioxygenase 7 (CCD7) of Arabidopsis thaliana after matching peptide mass fingerprints in MASCOT search engine. An EF hand domain was identified in CCD7 by SCAN PROSITE. Presence of an EF hand domain, a characteristic feature of calcium binding proteins and a role in the synthesis of retinol which is transported by retinol binding protein, a protein found in kidney stone matrix; of CCD7 support the role of TTP as an antilithiatic protein. The protective potency of TTP on NRK 52E was quite comparable to the aqueous extract of cystone. Our findings suggest that this purified protein biomolecule from Tribulus terrestris could open new vista in medical management of urolithiasis. PMID:22702898

  15. Proteomic profiling of the stem cell response to retinoic acid and synthetic retinoid analogues: identification of major retinoid-inducible proteins.

    PubMed

    Maltman, Daniel J; Christie, Victoria B; Collings, Jonathan C; Barnard, Jonathan H; Fenyk, Stepan; Marder, Todd B; Whiting, Andrew; Przyborski, Stefan A

    2009-05-01

    The natural retinoid, all-trans retinoic acid (ATRA), is widely used to direct the in vitro differentiation of stem cells. However, substantial degradation and isomerisation of ATRA in response to UV-vis light has serious implications with regard to experimental reproducibility and standardisation. We present the novel application of proteomic biomarker profiling technology to stem cell lysates to rapidly compare the differentiation effects of ATRA with those of two stable synthetic retinoid analogues, EC19 and EC23, which have both been shown to induce differentiation in the embryonal carcinoma cell line TERA2.cl.SP12. MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) protein profiles support previous findings into the functional relationships between these compounds in the TERA2.cl.SP12 line. Subsequent analysis of protein peak data enabled the semi-quantitative comparison of individual retinoid-responsive proteins. We have used ion exchange chromatographic protein separation to enrich for retinoid-inducible proteins, thereby facilitating their identification from SDS-PAGE gels. The cellular retinoid-responsive proteins CRABP-I, CRABP-II, and CRBP-I were up-regulated in response to ATRA and EC23, indicating a bona fide retinoid pathway response to the synthetic compound. In addition, the actin filament regulatory protein profilin-1 and the microtubule regulator stathmin were also elevated following treatment with both ATRA and EC23. The up-regulation of profilin-1 and stathmin associated with retinoid-induced neural differentiation correlates with their known roles in cytoskeletal reorganisation during axonal development. Immunological analysis via western blotting confirmed the identification of CRABP-I, profilin-1 and stathmin, and supported their observed regulation in response to the retinoid treatments. PMID:19381361

  16. Fatty Acid- and Retinoid-binding Proteins Have Distinct Binding Pockets for the Two Types of Cargo*

    PubMed Central

    Jordanova, Rositsa; Groves, Matthew R.; Kostova, Elena; Woltersdorf, Christian; Liebau, Eva; Tucker, Paul A.

    2009-01-01

    Parasitic nematodes cause serious diseases in humans, animals, and plants. They have limited lipid metabolism and are reliant on lipid-binding proteins to acquire these metabolites from their hosts. Several structurally novel families of lipid-binding proteins in nematodes have been described, including the fatty acid- and retinoid-binding protein family (FAR). In Caenorhabditis elegans, used as a model for studying parasitic nematodes, eight C. elegans FAR proteins have been described. The crystal structure of C. elegans FAR-7 is the first structure of a FAR protein, and it exhibits a novel fold. It differs radically from the mammalian fatty acid-binding proteins and has two ligand binding pockets joined by a surface groove. The first can accommodate the aliphatic chain of fatty acids, whereas the second can accommodate the bulkier retinoids. In addition to demonstrating lipid binding by fluorescence spectroscopy, we present evidence that retinol binding is positively regulated by casein kinase II phosphorylation at a conserved site near the bottom of the second pocket. far-7::GFP (green fluorescent protein) expression shows that it is localized in the head hypodermal syncytia and the excretory cell but that this localization changes under starvation conditions. In conclusion, our study provides the basic structural and functional information for investigation of inhibitors of lipid binding by FAR proteins. PMID:19828452

  17. All-Purpose Containers? Lipid-Binding Protein – Drug Interactions

    PubMed Central

    Beringhelli, Tiziana; Gianazza, Elisabetta; Maggioni, Daniela; Scanu, Sandra; Parravicini, Chiara; Sensi, Cristina; Monaco, Hugo L.; Eberini, Ivano

    2015-01-01

    The combined use of in vitro (19F-NMR) and in silico (molecular docking) procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine) for different drugs (mainly steroids and vastatins). Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding). Dissociation constants (Ki) for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions), vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues). PMID:26167932

  18. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    PubMed Central

    Reboul, Emmanuelle

    2013-01-01

    Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol) absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others). Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability. PMID:24036530

  19. Relationship between Proinflammatory and Antioxidant Proteins with the Severity of Cardiovascular Disease in Type 2 Diabetes Mellitus

    PubMed Central

    García-Fontana, Beatriz; Morales-Santana, Sonia; Longobardo, Victoria; Reyes-García, Rebeca; Rozas-Moreno, Pedro; García-Salcedo, José Antonio; Muñoz-Torres, Manuel

    2015-01-01

    Type 2 diabetes mellitus patients are at significant risk of cardiovascular disease, however, the pathophysiology of these complications is complex and incompletely known in this population. The aim of this study was to compare the serum proteome of patients with type 2 diabetes mellitus presenting or not presenting cardiovascular disease with non-diabetic subjects to find essential proteins related to these cardiovascular complications. This cross-sectional study compares the serum proteome by a combination of protein depletion with 2D-DIGE (2-dimension Difference Gel Electrophoresis) methodology. The proteins differentially expressed were identified by MALDI TOF/TOF (Matrix-assisted laser desorption/ionization and Time-Of-Flight ion detector) or LC-MS/MS (Liquid Chromatography coupled to Mass-Mass Spectrometry). Type 2 diabetes mellitus patients with cardiovascular disease showed higher expression of plasma retinol binding protein and glutathione peroxidase-3 compared to those without cardiovascular disease and non-diabetic controls. These results show that proteins related to the inflammatory and redox state appear to play an important role in the pathogenesis of the cardiovascular disease in the type 2 diabetes mellitus patients. PMID:25923078

  20. Protein polymorphism of a human plasma apolipoprotein D antigenic epitope.

    PubMed

    Camato, R; Marcel, Y L; Milne, R W; Lussier-Cacan, S; Weech, P K

    1989-06-01

    Based on our previous observation that monoclonal antibody anti-apoD-4E11 reacted with several HDL proteins we studied them further with three questions in mind: i) is there common protein polymorphism in healthy individuals? ii) how many proteins are present and what are their characteristics? iii) are they all apolipoproteins and do they have the same lipoprotein distribution as apoD? Isolated, delipidated apoD was used as a standard for radioimmunometric assay of plasma with antibody 4E11. The antigen varied from 3 to 11 mumol-equivalents of apoD per liter of plasma (equivalent to 5-20 mg apoD/dl plasma) with means of 6.1 and 6.8 mumol/l in men and women, respectively. Two-dimensional electrophoresis of plasma found up to eight 4E11-antigenic-proteins of different Mr, each heterogeneous in pI. All plasmas tested contained apoD and an Mr 38,000 antigen, the latter being the most immunoreactive. Six proteins of Mr 70,000-94,000 were found, but the number varied between subjects. Eighty nine percent of the plasma antigen was associated with lipoproteins: 83% with HDL and VHDL, 5% with LDL and VLDL. Lipoproteins of all sizes, separated by polyacrylamide gradient gel electrophoresis, contained the antigen. ApoD was almost the only 4E11-antigen in LDL, and was in two states: the one free, the other an apoD-apoB mixed disulfide complex. The apparent proportions of higher Mr antigens increased with increasing lipoprotein density, and the proportion of apoD decreased reciprocally. None of these 4E11-antigenic-proteins cross-reacted with antiserum to retinol-binding protein. PMID:2477480

  1. Protein-induced changes in kidney function depend on the time of administration but not on the dietary source.

    PubMed

    Buzio, C; Mutti, A; Perazzoli, F; Alinovi, R; Arisi, L; Negro, A

    1990-01-01

    Two separate experiments were carried out to study the effects of the same acute protein load given at different hours of the day and to assess the ability of proteins from different sources to induce hyperfiltration. In the first experiment, 9 healthy volunteers were kept at strict bedrest for 48 h, during which both a meat high-protein meal (protein load, PL) and a vegetable low-protein meal (control load, CL) were given either at lunch or at suppertime. As compared to a CL, PL determined a significant increase in GFR, total proteinuria (uTP), albuminuria (uA), and urinary retinol-binding protein (uRBP). These effects were much more significant after lunch PL than after supper PL, thus indicating an interaction between the PL and the time of the day. The existence of a circadian rhythm for GFR, uTP, uA, and uRBP was corroborated by spontaneous changes over baseline levels, which also were prominent after lunch CL as compared to those following supper CL. In the second experiment, 7 healthy volunteers ingested at lunch three protein-rich meals at 1-week intervals. The three protein loads consisted of about 80 g protein in the form of cooked red meat, cheese, and soya, respectively. The only significant differences between groups were urea appearance and urea clearance, lower and higher, respectively after soya load. These findings suggest that when evaluating the renal functional reserve after acute protein load both the spontaneous changes and the time-dependent sensitivity of kidney functions to acute challenges should be considered. Finally, the amount rather than quality of dietary proteins seems to be the determinant factor for protein-induced glomerular hyperfiltration. PMID:2077404

  2. Quantitative Liver-Specific Protein Fingerprint in Blood: A Signature for Hepatotoxicity

    PubMed Central

    Hu, Zhiyuan; Lausted, Christopher; Yoo, Hyuntae; Yan, Xiaowei; Brightman, Amy; Chen, Jiankui; Wang, Weizhi; Bu, Xiangli; Hood, Leroy

    2014-01-01

    We discuss here a new approach to detecting hepatotoxicity by employing concentration changes of liver-specific blood proteins during disease progression. These proteins are capable of assessing the behaviors of their cognate liver biological networks for toxicity or disease perturbations. Blood biomarkers are highly desirable diagnostics as blood is easily accessible and baths virtually all organs. Fifteen liver-specific blood proteins were identified as markers of acetaminophen (APAP)-induced hepatotoxicity using three proteomic technologies: label-free antibody microarrays, quantitative immunoblotting, and targeted iTRAQ mass spectrometry. Liver-specific blood proteins produced a toxicity signature of eleven elevated and four attenuated blood protein levels. These blood protein perturbations begin to provide a systems view of key mechanistic features of APAP-induced liver injury relating to glutathione and S-adenosyl-L-methionine (SAMe) depletion, mitochondrial dysfunction, and liver responses to the stress. Two markers, elevated membrane-bound catechol-O-methyltransferase (MB-COMT) and attenuated retinol binding protein 4 (RBP4), report hepatic injury significantly earlier than the current gold standard liver biomarker, alanine transaminase (ALT). These biomarkers were perturbed prior to onset of irreversible liver injury. Ideal markers should be applicable for both rodent model studies and human clinical trials. Five of these mouse liver-specific blood markers had human orthologs that were also found to be responsive to human hepatotoxicity. This panel of liver-specific proteins has the potential to effectively identify the early toxicity onset, the nature and extent of liver injury and report on some of the APAP-perturbed liver networks. PMID:24465277

  3. An investigation on the interaction modes of a single-strand DNA aptamer and RBP4 protein: a molecular dynamic simulations approach.

    PubMed

    Torabi, Raheleh; Bagherzadeh, Kowsar; Ghourchian, Hedayatollah; Amanlou, Massoud

    2016-09-14

    Type two diabetes is one of the primary health issues threatening public well-being worldwide. One of the pre-diagnosis biomarkers of this disease, retinol binding protein 4 (RBP4), has been demonstrated to be detected with a 76-mer ssDNA aptamer instead of conventional antibodies. However, there is no structural information on the RBP4 binding aptamer (RBA) and the mechanism of its binding to RBP4 still remains unexplored. The objective of the present study is to achieve a better understanding of specific binding interactions of the target protein (RBP4) and RBA, employing Molecular Dynamics simulations (MDs) to provide detailed information on fluctuations, conformational changes, critical bases and effective forces to develop regulated aptamers to be employed in designing new aptamers for many useful recognition applications. RBA was designed according to its reported base pair sequence and secondary structure. The HADDOCK on line docking program was used to predict a suitable RBP4-RBA mode of interaction to start MDs with. MDs methodology was used to analyze the final complex stability and detect interacting residues. Eventually, we conclude that single strand located bases are the key components that conduct the intercalation phenomenon with big targets rather than those involving loops and folded motifs, to encompass targets and probably inhibit their activity. Also, UV-visible, circular dichroism and fluorescence spectroscopy measurements confirmed the interactions between RBA and RBP4 and RBP4-RBA complex formation. PMID:27511589

  4. Nearly 200 X-ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses?

    PubMed

    Palaninathan, S K

    2012-01-01

    Transthyretin (TTR), a β-strand rich tetrameric protein present in human serum and cerebrospinal fluid is involved in the transport of thyroxine and retinol binding protein:retinol complex (holo-RBP). TTR forms two T4 binding sites at the center of the dimer-dimer interface and contains holo-RBP binding sites on both faces of the tetramer. Dissociation of TTR tetramers followed by misfolding and misassembly results in amyloid fibril formation, the causative agent of four neurodegenerative diseases. Misfolding of wild type TTR in humans over 60 years of age is linked to a sporadic amyloid disease called senile systemic amyloidosis. Single point mutations enhance the amyloidogenicity of TTR, causing familial amyloid cardiomyopathy, familial amyloid polyneuropathy, and central nervous system selective amyloidosis. To date, nearly 200 X-ray crystal structures of TTR and their complexes have been solved. They have provided potential insights into its structure-function relationships with molecular partners, and its interactions with small molecule ligands that inhibit tetramer destabilization and amyloid formation. This review will focus on the key findings of the structural studies of TTR that provided atomic level description of its architecture, the mechanistic role of structural components involved in its function and misfolding, and the progress and limitations towards the design of selective inhibitors for TTR amyloidoses. PMID:22471981

  5. Identification of toxicological biomarkers of di(2-ethylhexyl) phthalate in proteins secreted by HepG2 cells using proteomic analysis.

    PubMed

    Choi, Seonyoung; Park, So-Young; Jeong, Ji; Cho, Eunkyung; Phark, Sohee; Lee, Min; Kwak, Dongsub; Lim, Ji-Youn; Jung, Woon-Won; Sul, Donggeun

    2010-05-01

    The effects of di(2-ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 microM) for 24 or 48 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 microM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose- and time-dependent fashion. Proteomic analysis using two different pI ranges (4-7 and 6-9) and large size 2-DE revealed the presence of 2776 protein spots. A total of 35 (19 up- and 16 down-regulated) proteins were identified as biomarkers of DEHP by ESI-MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up- or down-regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin-1, and haptoglobin-related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP. PMID:20198640

  6. Identification of Host-Immune Response Protein Candidates in the Sera of Human Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Chen, Yeng; Azman, Siti Nuraishah; Kerishnan, Jesinda P.; Zain, Rosnah Binti; Chen, Yu Nieng; Wong, Yin-Ling; Gopinath, Subash C. B.

    2014-01-01

    One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC), which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25) and healthy controls (n = 25) were subjected to two-dimensional gel electrophoresis (2-DE) and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG), alpha-1-B-glycoprotein (ABG), clusterin (CLU), PRO2044, haptoglobin (HAP), complement C3c (C3), proapolipoprotein A1 (proapo-A1), and retinol-binding protein 4 precursor (RBP4). Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC. PMID:25272005

  7. Short-Term Preoperative Calorie and Protein Restriction Is Feasible in Healthy Kidney Donors and Morbidly Obese Patients Scheduled for Surgery

    PubMed Central

    Jongbloed, Franny; de Bruin, Ron W. F.; Klaassen, René A.; Beekhof, Piet; van Steeg, Harry; Dor, Frank J. M. F.; van der Harst, Erwin; Dollé, Martijn E. T.; IJzermans, Jan N. M.

    2016-01-01

    Introduction. Surgery-induced oxidative stress increases the risk of perioperative complications and delay in postoperative recovery. In mice, short-term preoperative dietary and protein restriction protect against oxidative stress. We investigated the feasibility of a calorie- and protein-restricted diet in two patient populations. Methods. In this pilot study, 30 live kidney donors and 38 morbidly obese patients awaiting surgery were randomized into three groups: a restricted diet group, who received a synthetic liquid diet with 30% fewer calories and 80% less protein for five consecutive days; a group who received a synthetic diet containing the daily energy requirements (DER); and a control group. Feasibility was assessed using self-reported discomfort, body weight changes, and metabolic parameters in blood samples. Results. Twenty patients (71%) complied with the restricted and 13 (65%) with the DER-diet. In total, 68% of the patients reported minor discomfort that resolved after normal eating resumed. The mean weight loss on the restricted diet was significantly greater (2.4 kg) than in the control group (0 kg, p = 0.002), but not in the DER-diet (1.5 kg). The restricted diet significantly reduced levels of serum urea and plasma prealbumin (PAB) and retinol binding protein (RBP). Conclusions. A short-term preoperative calorie- and protein-restricted diet is feasible in kidney donors and morbidly obese patients. Compliance is high and can be objectively measured via changes in urea, PAB, and RBP levels. These results demonstrate that this diet can be used to study the effects of dietary restriction on surgery-induced oxidative stress in a clinical setting. PMID:27213441

  8. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  9. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  10. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  11. Application of Time-Resolved Tryptophan Phosphorescence Spectroscopy to Protein Folding Studies.

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vinod

    This thesis presents studies of the protein folding problem, one of the most significant questions in contemporary biophysics. Sensitive biophysical techniques, including room temperature tryptophan phosphorescence, which reports on the local environment of the residue, and the lability of proteins to denaturation, a global parameter, were used to assess the validity of the traditional assumption that the biologically active state of a protein is the 'native' state, and to determine whether the pathways of folding in vitro lead to the folded state achieved in vivo. Phosphorescence techniques have also been extended to study, for the first time, emission from tryptophan residues engineered into specific positions as reporters of protein structure. During in vitro refolding of E. coli alkaline phosphatase and bovine 13-lactoglobulin, significant differences were found between the refolded proteins and the native conformations, which have no apparent effect on the biological functions. Slow conformational transitions, termed 'annealing,' that occur long after the return of enzyme activity of alkaline phosphatase are manifested in the retarded recovery of phosphorescence intensity, lifetime, and protein lability. While 'annealing' is not observed for beta -lactoglobulin, both phosphorescence and lability experiments reveal changes in the structure of the refolded protein, even though its biological activity, retinol binding, is fully recovered. This result suggests that the pathways of folding in vitro need not lead to the structure formed in vivo. We have used phosphorescence techniques to study the refolding of ribonuclease T1, which exhibits slow kinetics characteristic of proline isomerization. Furthermore, the ability to extract structural information from phosphorescent tryptophan probes engineered into selected regions represents an important advance in studying protein structure; we have reported the first such results from a mutant staphylococcal nuclease. The

  12. Protein profiling of nasopharyngeal aspirates of hospitalized and outpatients revealed cytokines associated with severe influenza A(H1N1)pdm09 virus infections: A pilot study.

    PubMed

    Fu, Yu; Gaelings, Lana; Jalovaara, Petri; Kakkola, Laura; Kinnunen, Mervi T; Kallio-Kokko, Hannimari; Valkonen, Miia; Kantele, Anu; Kainov, Denis E

    2016-10-01

    Influenza A viruses (IAV) mutate rapidly and cause seasonal epidemics and occasional pandemics, which result in substantial number of patient visits to the doctors and even hospitalizations. We aimed here to identify inflammatory proteins, which levels correlated to clinical severity of the disease. For this we analysed 102 cytokines and growth factors in human nasopharyngeal aspirate (NPA) samples of 27 hospitalized and 27 outpatients diagnosed with influenza A(H1N1)pdm09 virus infection. We found that the relative levels of monocyte differentiation antigen CD14, lipocalin-2 (LCN2), C-C-motif chemokine 20 (CCL20), CD147, urokinase plasminogen activator surface receptor (uPAR), pro-epidermal growth factor (EGF), trefoil factor 3 (TFF3), and macrophage migration inhibitory factor (MIF) were significantly lower (p<0.008), whereas levels of retinol-binding protein 4 (RBP4), C-X-C motif chemokine 5 (CXCL5), interleukin-8 (IL-8), complement factor D (CFD), adiponectin, and chitinase-3-like 1 (CHI3L1) were significantly higher (p<0.008) in NPA samples of hospitalized than non-hospitalized patients. While changes in CD14, LCN2, CCL20, uPAR, EGF, MIF, CXCL5, IL-8, adiponectin and CHI3L1 levels have already been correlated with severity of IAV infection in mice and humans, our study is the first to describe association of CD147, RBP4, TFF3, and CFD with hospitalization of IAV-infected patients. Thus, we identified local innate immune profiles, which were associated with the clinical severity of influenza infections. PMID:27442005

  13. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis.

    PubMed

    Neale, E P; Batterham, M J; Tapsell, L C

    2016-05-01

    Consumption of healthy dietary patterns has been associated with reduced risk of cardiovascular disease and metabolic syndrome. Dietary intervention targets disease prevention, so studies increasingly use biomarkers of underlying inflammation and metabolic syndrome progression to examine the diet-health relationship. The extent to which these biomarkers contribute to the body of evidence on healthy dietary patterns is unknown. The aim of this meta-analysis was to determine the effect of healthy dietary patterns on biomarkers associated with adiposity, insulin resistance, and inflammation in adults. A systematic search of Scopus, PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (all years to April 2015) was conducted. Inclusion criteria were randomized controlled trials; effects of dietary patterns assessed on C-reactive protein (CRP), total adiponectin, high-molecular-weight adiponectin, tumor necrosis factor-α, adiponectin:leptin, resistin, or retinol binding protein 4. Random effects meta-analyses were conducted to assess the weighted mean differences in change or final mean values for each outcome. Seventeen studies were included in the review. These reflected research on dietary patterns associated with the Mediterranean diet, Nordic diet, Tibetan diet, and the Dietary Approaches to Stop Hypertension diet. Consumption of a healthy dietary pattern was associated with significant reductions in CRP (weighted mean difference, -0.75 [-1.16, -0.35]; P = .0003). Non-significant changes were found for all other biomarkers. This analysis found evidence for favorable effects of healthy dietary patterns on CRP, with limited evidence for other biomarkers. Future research should include additional randomized controlled trials incorporating a greater range of dietary patterns and biomarkers. PMID:27101757

  14. Insulinlike Growth Factor I Plus Insulinlike Growth Factor Binding Protein 3 Attenuates the Proinflammatory Acute Phase Response in Severely Burned Children

    PubMed Central

    Jeschke, Marc G.; Barrow, Robert E.; Herndon, David N.

    2000-01-01

    Objective To determine the effect of insulinlike growth factor I (IGF-I) in combination with its principal binding protein (IGFBP-3) on the hepatic acute phase response in severely burned children. Summary Background Data The hepatic acute phase response is a cascade of events initiated to restore homeostasis after trauma. A prolonged response, however, may contribute to multiple organ failure, hypermetabolism, complications, and death. Methods Twenty-two children with a mean total body surface area (TBSA) burn of 57 ± 3% were given a continuous infusion of 1 to 4 mg/kg/day IGF-I/BP-3 for 5 days after wound excision and grafting. Eight children with a TBSA burn of 54 ± 4% were given saline as controls. Before and 5 days after excision and grafting, blood samples were taken for serum hepatic constitutive protein, acute phase protein, and proinflammatory cytokine analysis. Results Serum IGF-I levels in burned children given the IGF-I/BP-3 complex increased from 113 ± 15 to 458 ± 40 ng/mL and IGFBP-3 levels increased from 1.8 ± 0.2 to 3.1 ± 0.3 ng/mL. Levels of serum constitutive hepatic proteins (prealbumin, retinol-binding protein, and transferrin) increased with IGF-I/BP-3, whereas levels of type I acute phase proteins (C-reactive protein, α1-acid glycoprotein, and complement C-3) decreased when compared with controls. The complex had no effect on type II acute phase proteins. Tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) levels decreased with IGF-I/BP-3 compared with controls, with no effect on interleukin-6. Conclusion Severely burned children receiving IGF-I/BP-3 showed a decrease in IL-1β and TNF-α followed by a decrease in type I acute phase proteins that was associated with a concomitant increase in constitutive hepatic proteins. Attenuating the proinflammatory acute phase with IGF-1/BP-3 response may prevent multiple organ failure and improve clinical outcomes after thermal injury without any detectable adverse side effects. PMID

  15. The interrelationship of thyroid hormones with vitamin A and zinc nutritional status in patients with chronic hepatic and gastrointestinal disorders.

    PubMed

    Morley, J E; Russell, R M; Reed, A; Carney, E A; Hershman, J M

    1981-08-01

    To define the role of vitamin A, retinol binding protein, and zinc deficiency in producing the thyroid hormone abnormalities found in chronic illness, we studied 62 clinically stable patients with hepatic and gastrointestinal disorders. Serum triiodothyronine (T3) and free T3 index (FT3I) were depressed compared to controls (p less than 0.05) in the patients. Retinol binding protein and prealbumin levels correlated with both T3 and FT3I (p less than 0.01), whereas vitamin A levels did not. Vitamin A therapy in patients with documented vitamin A deficiency produced an increase in T3, thyroxine (T4), FT3I, FT4I, and free T3 by dialysis, with a concomitant increase in retinol binding protein and no alteration in prealbumin concentrations. Zinc-deficient patients had significantly depressed T3 and FT3I (p less than 0.001) and increased prolactin levels (p less than 0.01). Zinc supplementation failed to return any of these parameters to normal. Vitamin A therapy in normals produced a transient decrease in T3 and T4 after 1 wk of therapy, but after a further 2 wk, thyroid function returned to normal. Our data suggest a causal relationship between the pathogenesis of deranged vitamin A-retinol binding protein metabolism and the low T3 syndrome either by interfering with T4 entry into tissues or by directly affecting the enzymatic conversion of T4 to T3. PMID:7196691

  16. Retinoid Pathway and Cancer Therapeutics

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2010-01-01

    The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid × receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with the emphasis on the application of retinoids in cancer treatment and prevention. PMID:20654663

  17. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi

    PubMed Central

    Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J.; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  18. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    PubMed

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  19. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  20. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  1. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  2. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  3. Intra individual variability in markers of proteinuria for normal subjects and those with cadmium induced renal dysfunction: interpretation of results from untimed, random urine samples.

    PubMed

    Howard J Mason Alison J Stevenson Nerys Williams Michael Morgan

    1999-01-01

    The project aimed to help interpretation of urinary protein measurements, namely -2-microglobulin, retinol-binding protein, albumin and total protein in untimed, random urine samples as indicating significant changes in renal tubular reabsorption and glomerular permeability in an individual. A standard methodology used in clinical laboratory medicine was applied to calculate the intra-individual biological variation for these analytes. This parameter in conjunction with a laboratory's analytical variation allows definition of uncertainty about a single urine protein measurement, significant changes above normal variation in serial measurements within an individual and a defined level of maximum acceptable analytical imprecision. Repeat urine samples were obtained over a period of one week from a group of cadmium-exposed workers, 90% of whom had long-term tubular proteinuria, and a group of five unexposed volunteers with normal renal function. Dilute samples defined as having creatinines less than 3 mmol l-1 were excluded, as were urines with pH less than 5.5 for -2-microglobulin. Samples were analysed twice after randomisation in large batches. There was no evidence of any diurnal variation in the four protein measurements from samples collected between early morning and 16:00 hours. Creatinine or specific gravity correction of urine results for all four proteins only marginally reduced the uncertainty associated with an individual measurement asreflecting the true excretion value. For those subjects with defined tubular proteinuria, variability in retinol-binding protein excretion was less than that for -2- microglobulin. About 30% of the samples had urine pHs of 5.5 or less where -2- microglobulin degradation occurs. Using our laboratory analytical precision the minimum changes between serial creatinine-corrected measurements that are needed to be considered statistically significant (p < 0.05) is 110% for retinol-binding protein, 177% for -2-microglobulin, 70

  4. Dietary Proteins

    MedlinePlus

    ... grains and beans. Proteins from meat and other animal products are complete proteins. This means they supply all of the amino acids the body can't make on its own. Most plant proteins are incomplete. You should eat different types of plant proteins every day to get ...

  5. Protein Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Sam K. C.

    Proteins are an abundant component in all cells, and almost all except storage proteins are important for biological functions and cell structure. Food proteins are very complex. Many have been purified and characterized. Proteins vary in molecular mass, ranging from approximately 5000 to more than a million Daltons. They are composed of elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Twenty α-amino acids are the building blocks of proteins; the amino acid residues in a protein are linked by peptide bonds. Nitrogen is the most distinguishing element present in proteins. However, nitrogen content in various food proteins ranges from 13.4 to 19.1% (1) due to the variation in the specific amino acid composition of proteins. Generally, proteins rich in basic amino acids contain more nitrogen.

  6. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S

    2016-02-01

    Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. PMID:26628673

  7. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  8. Whey Protein

    MedlinePlus

    ... shows that taking whey protein in combination with strength training increases lean body mass, strength, and muscle size. ... grams/kg of whey protein in combination with strength training for 6-10 weeks. For HIV/AIDS-related ...

  9. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  10. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  11. Prevalence of malnutrition and vitamin A deficiency in the Diourbel, Fatick, and Kaolack regions of Senegal: a controlled study.

    PubMed

    Carlier, C; Moulia-Pelat, J P; Ceccon, J F; Mourey, M S; Malvy, D; Fall, M; N'Diaye, M; Amédée-Manesme, O

    1991-01-01

    Two hundred and six Senegalese preschool children included in an epidemiological study were selected by their results from impression cytology with transfer (ICT) for assessment of their nutritional state by means of biological variables and for assessment of the diagnostic values of the ICT. A problem of protein-calorie malnutrition existed (transthyretin and retinol-binding protein concentrations were low) associated with vitamin A deficiency (retinol concentrations were low). The sensitivity and specificity of the ICT defined with respect to retinol (threshold fixed at 0.35 mumol/L) varied with the classification criteria of ICT and seemed to be fairly insensitive but specific. PMID:1898583

  12. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  13. Binding affinities of CRBPI and CRBPII for 9-cis-retinoids

    PubMed Central

    Kane, Maureen A.; Bright, Frank V.; Napoli, Joseph L.

    2014-01-01

    Background Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid×receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids. Methods We have determined apparent dissociation constants, Kd′, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions. Results CRBPI and CRBPII, respectively, bind 9-cis-retinol ( Kd′, 11 nM and 68 nM) and 9-cis-retinal ( Kd′, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII. Conclusions CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal. General significance These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins. PMID:21382444

  14. Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2011-03-01

    Proteins combine properties of solids, liquids, and glasses. Schrödinger anticipated the main features of biomolecules long ago by stating that they had to be solid-like, but able to assume many different conformations. Indeed proteins can assume a gigantic number of conformational substates with the same primary sequence but different conformations. The different substates are described as craters in a very-high-dimensional energy landscape. The energy landscape is organized in a hierarchy of tiers, craters within craters within craters. Protein motions are pictured as transition between substates - jumps from crater to crater. Initially we assumed that these jumps were controlled by internal barriers between substates, but experiments have shown that nature selected a different approach. Proteins are surrounded by one to two layers of water and are embedded in a bulk solvent. Structural motions of the protein are controlled by the alpha fluctuations in the solvent surrounding the protein. Some internal motions most likely involving side chains are controlled electrostatically by beta fluctuations in the hydration shell. The dynamics of proteins is consequently dominated by the environment (H. Frauenfelder et al. PNAS 106, 5129 (2009). One can speculate that this organization permits exchange of information among biomolecules. The energy landscape is not just organized into two tiers, alpha and beta, but cryogenic experiments have revealed more tiers and protein more properties similar to that of glasses. While proteins function at ambient temperatures, cryogenic studies are necessary to understand the physics relevant for biology.

  15. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    PubMed Central

    Flynn, F. V.; Lapsley, M.; Sansom, P. A.; Cohen, S. L.

    1992-01-01

    AIM: To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. METHODS: Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. RESULTS: All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. CONCLUSIONS: Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive

  16. Interfacial Protein-Protein Associations

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2014-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface – with areas of high protein density (i.e. strongly-interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e. partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e. clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage. PMID:24274729

  17. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  18. Molecular cloning and characterization of a nematode polyprotein antigen/allergen from the human and animal hookworm Ancylostoma ceylanicum

    PubMed Central

    Fairfax, Keke C.; Harrison, Lisa M.; Cappello, Michael

    2015-01-01

    Nematodes are unable to synthesize fatty acids de novo and must acquire them from the environment or host. It is hypothesized that two unique classes of fatty acid and retinol binding proteins that nematodes produce (fatty acid and retinol binding (FAR) and nematode polyprotein antigen/allergen (NPA)) are used to meet this need. A partial cDNA has been cloned corresponding to four subunits of a putative Ancylostoma ceylanicum NPA (AceNPA). The translated amino acid sequence of AceNPA share sequence identity with similar proteins from Dictyocaulus viviparus, Ascaris suum, and Ostertagia ostertagi. Immunoblot experiments using a polyclonal anti-AceNPA IgG revealed proteins corresponding to the expected sizes of single, as well as two or three un-cleaved NPA subunits in adult excretory/secretory proteins and soluble adult worm extracts. Immunohistochemistry experiments localize AceNPA to the cuticle and pseudocoelomic space, suggesting a role in hookworm biology that is distinct from what has previously been defined for other hookworm lipid binding proteins. A single recombinant subunit of AceNPA (rAceNPAb) demonstrated binding in vitro to fluorescent fatty acids DAUDA, cis-parinaric acid, as well as retinol, at equilibrium dissociation constants in the low micromolar range. Further, in vitro data reveal that rAceNPAb binds fatty acids with chain lengths of C12–C22, with the greatest affinities for arachidonic, linoleic (C18), and eicosapentaenoic (C20) acids. PMID:25481749

  19. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  20. Designed protein-protein association.

    PubMed

    Grueninger, Dirk; Treiber, Nora; Ziegler, Mathias O P; Koetter, Jochen W A; Schulze, Monika-Sarah; Schulz, Georg E

    2008-01-11

    The analysis of natural contact interfaces between protein subunits and between proteins has disclosed some general rules governing their association. We have applied these rules to produce a number of novel assemblies, demonstrating that a given protein can be engineered to form contacts at various points of its surface. Symmetry plays an important role because it defines the multiplicity of a designed contact and therefore the number of required mutations. Some of the proteins needed only a single side-chain alteration in order to associate to a higher-order complex. The mobility of the buried side chains has to be taken into account. Four assemblies have been structurally elucidated. Comparisons between the designed contacts and the results will provide useful guidelines for the development of future architectures. PMID:18187656

  1. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  2. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  3. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  4. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/. PMID:26935399

  5. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  6. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  7. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  8. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  9. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  10. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  11. Protein folding, protein homeostasis, and cancer

    PubMed Central

    Van Drie, John H.

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery. PMID:21272445

  12. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  13. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  14. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  15. Protein electrophoresis - serum

    MedlinePlus

    ... digestive tract to absorb proteins ( protein-losing enteropathy ) Malnutrition Kidney disorder called nephrotic syndrome Scarring of the ... may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone marrow ...

  16. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  17. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  18. Domains mediate protein-protein interactions and nucleate protein assemblies.

    PubMed

    Costa, S; Cesareni, G

    2008-01-01

    Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions. PMID:18491061

  19. Protein sensing with engineered protein nanopores*

    PubMed Central

    Mohammad, Mohammad M.; Movileanu, Liviu

    2013-01-01

    The use of nanopores is a powerful new frontier in single-molecule sciences. Nanopores have been used effectively in exploring various biophysical features of small polypeptides and proteins, such as their folding state and structure, ligand interactions, and enzymatic activity. In particular, the α-hemolysin protein pore (αHL) has been used extensively for the detection, characterization and analysis of polypeptides, because this protein nanopore is highly robust, versatile and tractable under various experimental conditions. Inspired by the mechanisms of protein translocation across the outer membrane translocases of mitochondria, we have shown the ability to use nanopore-probe techniques in controlling a single protein using engineered αHL pores. Here, we provide a detailed protocol for the preparation of αHL protein nanopores. Moreover, we demonstrate that placing attractive electrostatic traps is instrumental in tackling single-molecule stochastic sensing of folded proteins. PMID:22528256

  20. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  1. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  2. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  3. Whey protein fractionation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated whey protein products from cheese whey, such as whey protein concentrate (WPC) and whey protein isolate (WPI), contain more than seven different types of proteins: alpha-lactalbumin (alpha-LA), beta-lactoglobulin (beta-LG), bovine serum albumin (BSA), immunoglobulins (Igs), lactoferrin ...

  4. Sorghum and millet proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum and millet proteins are an important source of dietary protein for significant numbers of people living throughout Africa and parts of Asia. Compared to other food proteins, such as those found in milk, eggs and wheat, little is known about the functionality of sorghum and millet proteins. ...

  5. Protein in diet

    MedlinePlus

    ... protein. The basic structure of protein is a chain of amino acids. You need protein in your diet to help your body repair cells and make new ones. Protein is also important for growth and development in children, teens, and pregnant women.

  6. Techniques in protein methylation.

    PubMed

    Lee, Jaeho; Cheng, Donghang; Bedford, Mark T

    2004-01-01

    Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated. PMID:15173617

  7. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  8. Biochemical Approaches for Discovering Protein-Protein Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions or protein complexes are indigenous to nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For ex...

  9. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  10. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  11. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  12. Designing Fluorinated Proteins.

    PubMed

    Marsh, E N G

    2016-01-01

    As methods to incorporate noncanonical amino acid residues into proteins have become more powerful, interest in their use to modify the physical and biological properties of proteins and enzymes has increased. This chapter discusses the use of highly fluorinated analogs of hydrophobic amino acids, for example, hexafluoroleucine, in protein design. In particular, fluorinated residues have proven to be generally effective in increasing the thermodynamic stability of proteins. The chapter provides an overview of the different fluorinated amino acids that have been used in protein design and the various methods available for producing fluorinated proteins. It discusses model proteins systems into which highly fluorinated amino acids have been introduced and the reasons why fluorinated residues are generally stabilizing, with particular reference to thermodynamic and structural studies from our laboratory. Lastly, details of the methodology we have developed to measure the thermodynamic stability of oligomeric fluorinated proteins are presented, as this may be generally applicable to many proteins. PMID:27586337

  13. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  14. PINT: Protein-protein Interactions Thermodynamic Database.

    PubMed

    Kumar, M D Shaji; Gromiha, M Michael

    2006-01-01

    The first release of Protein-protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein-protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available at http://www.bioinfodatabase.com/pint/index.html. PMID:16381844

  15. Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome

    PubMed Central

    2013-01-01

    Background Refractory anemia and refractory anemia with ringed sideroblasts are two myelodysplastic syndrome (MDS) subgroups linked with anemia. MDS is a group of heterogeneous oncohematological bone marrow disorders characterized by ineffective hematopoiesis, blood cytopenias, and progression of the disease toward acute myeloid leukemia. The aim of this study was to search for plasma proteome changes in MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Results A total of 26 patient and healthy donor plasma samples were depleted of fourteen high-abundant plasma proteins, separated with 2D electrophoresis, and statistically processed with Progenesis SameSpots software. 55 significantly differing spots were observed and corresponded to 39 different proteins identified by nanoLC-MS/MS. Changes in the fragments of the inter-alpha-trypsin inhibitor heavy chain H4 protein were observed. Using mass spectrometry-based relative label-free quantification of tryptic peptides, there were differences in alpha-2-HS-glycoprotein peptides, while no differences were observed between the control and patient sample groups for retinol-binding protein 4 peptides. Conclusions This study describes plasma proteome changes associated with MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Changes observed in the inter-alpha-trypsin inhibitor heavy chain H4 fragments were in agreement with our previous studies of other MDS subgroups: refractory cytopenia with multilineage dysplasia and refractory anemia with excess blasts subtype 1. Mass spectrometry-based relative quantification of retinol-binding protein 4 peptides has shown that there are differences in the modification of this protein between refractory anemia with excess blasts subtype 1 patients and MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Alpha-2-HS-glycoprotein seems to be a new potential MDS biomarker candidate. PMID

  16. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  17. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  18. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  19. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  20. Protein electrophoresis - urine

    MedlinePlus

    ... nephropathy Kidney failure Multiple myeloma Nephrotic syndrome Acute urinary tract infection Risks There are no risks associated with this ... Primary amyloidosis Protein in diet Protein urine test Urinary tract infection - adults Update Date 5/29/2014 Updated by: ...

  1. [Protein-losing enteropathy].

    PubMed

    Amiot, A

    2015-07-01

    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  2. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  3. Hydrodynamic effects in proteins

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Cieplak, Marek

    2011-01-01

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins.

  4. Hydrodynamic effects in proteins.

    PubMed

    Szymczak, Piotr; Cieplak, Marek

    2011-01-26

    Experimental and numerical results pertaining to flow-induced effects in proteins are reviewed. Special emphasis is placed on shear-induced unfolding and on the role of solvent mediated hydrodynamic interactions in the conformational transitions in proteins. PMID:21406855

  5. Understanding protein folding: small proteins in silico.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-01-01

    Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins. PMID:18036571

  6. Imaging Protein-protein Interactions in vivo

    PubMed Central

    Seegar, Tom; Barton, William

    2010-01-01

    Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface. PMID:20972411

  7. Metabolic interactions between vitamin A and conjugated linoleic acid.

    PubMed

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-01-01

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A. PMID:24667133

  8. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  9. Palmitoylation of Hedgehog proteins.

    PubMed

    Buglino, John A; Resh, Marilyn D

    2012-01-01

    Hedgehog (Hh) proteins are secreted signaling proteins that contain amide-linked palmitate at the N-terminus and cholesterol at the C-terminus. Palmitoylation of Hh proteins is critical for effective long- and short-range signaling. The palmitoylation reaction occurs during transit of Hh through the secretory pathway, most likely in the lumen of the ER. Attachment of palmitate to Hh proteins is independent of cholesterol modification and autoprocessing and is catalyzed by Hhat (Hedgehog acyltransferase). Hhat is a member of the membrane bound O-acyltransferase (MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty acyl groups to lipids and proteins. Several classes of secreted proteins have recently been shown to be substrates for MBOAT acyltransferases, including Hh proteins and Spitz (palmitoylated by Hhat), Wg/Wnt proteins (modified with palmitate and/or palmitoleate by Porcupine) and ghrelin (octanoylated by ghrelin O-acyltransferase). These findings highlight protein fatty acylation as a mechanism that not only influences membrane binding of intracellular proteins but also regulates the signaling range and efficacy of secreted proteins. PMID:22391306

  10. Protein electrophoresis - serum

    MedlinePlus

    Normal value ranges are: Total protein: 6.4 to 8.3 g/dL (grams per deciliter) Albumin: 3.5 to 5.0 g/dL Alpha-1 ... Decreased total protein may indicate: Abnormal loss of protein from the digestive tract or the inability of the digestive tract ...

  11. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  12. CSF myelin basic protein

    MedlinePlus

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Normal value ranges may vary ...

  13. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  14. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  15. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  16. Protein - Which is Best?

    PubMed

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  17. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  18. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  19. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  20. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  1. Selective Precipitation of Proteins.

    PubMed

    Matulis, Daumantas

    2016-01-01

    Selective precipitation of proteins can be used as a bulk method to recover the majority of proteins from a crude lysate, as a selective method to fractionate a subset of proteins from a protein solution, or as a very specific method to recover a single protein of interest from a purification step. This unit describes a number of methods suitable for selective precipitation. In each of the protocols that are outlined, the physical or chemical basis of the precipitation process, the parameters that can be varied for optimization, and the basic steps for developing an optimized precipitation are described. PMID:26836410

  2. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  3. Mechanism of protein decarbonylation.

    PubMed

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2013-12-01

    Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890

  4. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  5. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  6. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  7. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  8. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  9. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  10. Energy design for protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Ravikant, D. V. S.; Elber, Ron

    2011-08-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions.

  11. Protein-protein docking with backbone flexibility.

    PubMed

    Wang, Chu; Bradley, Philip; Baker, David

    2007-10-19

    Computational protein-protein docking methods currently can create models with atomic accuracy for protein complexes provided that the conformational changes upon association are restricted to the side chains. However, it remains very challenging to account for backbone conformational changes during docking, and most current methods inherently keep monomer backbones rigid for algorithmic simplicity and computational efficiency. Here we present a reformulation of the Rosetta docking method that incorporates explicit backbone flexibility in protein-protein docking. The new method is based on a "fold-tree" representation of the molecular system, which seamlessly integrates internal torsional degrees of freedom and rigid-body degrees of freedom. Problems with internal flexible regions ranging from one or more loops or hinge regions to all of one or both partners can be readily treated using appropriately constructed fold trees. The explicit treatment of backbone flexibility improves both sampling in the vicinity of the native docked conformation and the energetic discrimination between near-native and incorrect models. PMID:17825317

  12. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  13. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation. PMID:26172624

  14. Electrophoretic separation of proteins.

    PubMed

    Chakavarti, Bulbul; Chakavarti, Deb

    2008-01-01

    Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. The combination of pore size and protein charge, size, and shape determines the migration rate of the protein. In this unit, the standard Laemmli method is described for discontinuous gel electrophoresis under denaturing conditions, i.e., in the presence of sodium dodecyl sulfate (SDS). PMID:19066548

  15. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  16. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. PMID:26320628

  17. Elastic proteins and elastomeric protein alloys.

    PubMed

    Aghaei-Ghareh-Bolagh, Behnaz; Mithieux, Suzanne M; Weiss, Anthony S

    2016-06-01

    The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering. PMID:26780495

  18. Principles of Flexible Protein-Protein Docking

    PubMed Central

    Andrusier, Nelly; Mashiach, Efrat; Nussinov, Ruth; Wolfson, Haim J.

    2008-01-01

    Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. PMID:18655061

  19. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  20. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  1. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  2. Protein oxidation and peroxidation.

    PubMed

    Davies, Michael J

    2016-04-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  3. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  4. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-10-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3. PMID:26510391

  5. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  6. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  7. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  8. Glycolipid transfer proteins

    PubMed Central

    Brown, Rhoderick E.; Mattjus, Peter

    2007-01-01

    Glycolipid transfer proteins (GLTPs) are small (24 kD), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D protein structures of GLTP reveal liganded structures with unique lipid binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes. PMID:17320476

  9. Engineering therapeutic protein disaggregases.

    PubMed

    Shorter, James

    2016-05-15

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  10. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  11. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  12. Consensus protein design.

    PubMed

    Porebski, Benjamin T; Buckle, Ashley M

    2016-07-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  13. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  14. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  15. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  16. Acanthamoeba castellanii STAT protein.

    PubMed

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  17. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  18. The multifaceted nature of retinoid transport and metabolism

    PubMed Central

    Li, Yang; Wongsiriroj, Nuttaporn

    2014-01-01

    Since their discovery over a century ago, retinoids have been the most studied of the fat-soluble vitamins. Unlike most vitamins, retinoids are stored at relatively high concentrations in the body to buffer against nutritional insufficiency. Until recently, it was thought that the sole important retinoid delivery pathway to tissues involved retinol bound to retinol-binding protein (RBP4). More recent findings, however, indicate that retinoids can be delivered to tissues through multiple overlapping delivery pathways, involving chylomicrons, very low density lipoprotein (VLDL) and low density lipoprotein (LDL), retinoic acid bound to albumin, water soluble β-glucuronides of retinol and retinoic acid, and provitamin A carotenoids. This review will focus on explaining this evolving understanding of retinoid metabolism and transport within the body. PMID:25019074

  19. The multifaceted nature of retinoid transport and metabolism.

    PubMed

    Li, Yang; Wongsiriroj, Nuttaporn; Blaner, William S

    2014-06-01

    Since their discovery over a century ago, retinoids have been the most studied of the fat-soluble vitamins. Unlike most vitamins, retinoids are stored at relatively high concentrations in the body to buffer against nutritional insufficiency. Until recently, it was thought that the sole important retinoid delivery pathway to tissues involved retinol bound to retinol-binding protein (RBP4). More recent findings, however, indicate that retinoids can be delivered to tissues through multiple overlapping delivery pathways, involving chylomicrons, very low density lipoprotein (VLDL) and low density lipoprotein (LDL), retinoic acid bound to albumin, water soluble β-glucuronides of retinol and retinoic acid, and provitamin A carotenoids. This review will focus on explaining this evolving understanding of retinoid metabolism and transport within the body. PMID:25019074

  20. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation

    PubMed Central

    Fu, Ming; Sato, Yoshiharu; Lyons-Warren, Ariel; Zhang, Bin; Kane, Maureen A.; Napoli, Joseph L.; Heuckeroth, Robert O.

    2010-01-01

    Hirschsprung disease is a serious disorder of enteric nervous system (ENS) development caused by the failure of ENS precursor migration into the distal bowel. We now demonstrate that retinoic acid (RA) is crucial for GDNF-induced ENS precursor migration, cell polarization and lamellipodia formation, and that vitamin A depletion causes distal bowel aganglionosis in serum retinol-binding-protein-deficient (Rbp4–/–) mice. Ret heterozygosity increases the incidence and severity of distal bowel aganglionosis induced by vitamin A deficiency in Rbp4–/– animals. Furthermore, RA reduces phosphatase and tensin homolog (Pten) accumulation in migrating cells, whereas Pten overexpression slows ENS precursor migration. Collectively, these data support the hypothesis that vitamin A deficiency is a non-genetic risk factor that increases Hirschsprung disease penetrance and expressivity, suggesting that some cases of Hirschsprung disease might be preventable by optimizing maternal nutrition. PMID:20110328

  1. Structure of the STRA6 receptor for retinol uptake.

    PubMed

    Chen, Yunting; Clarke, Oliver B; Kim, Jonathan; Stowe, Sean; Kim, Youn-Kyung; Assur, Zahra; Cavalier, Michael; Godoy-Ruiz, Raquel; von Alpen, Desiree C; Manzini, Chiara; Blaner, William S; Frank, Joachim; Quadro, Loredana; Weber, David J; Shapiro, Lawrence; Hendrickson, Wayne A; Mancia, Filippo

    2016-08-26

    Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer. PMID:27563101

  2. Data correlations between gender, cytomegalovirus infection and T cells, NK cells, and soluble immune mediators in elderly humans.

    PubMed

    Al-Attar, Ahmad; Presnell, Steven R; Peterson, Charlotte A; Thomas, D Travis; Lutz, Charles T

    2016-09-01

    We describe a cohort of 50 elderly subjects, age at least 70 years. We present gender-specific findings in T lymphocyte markers and soluble immune mediators. We show the correlation between cytomegalovirus infection status with CD56(dim) NK cell responses to a variety of stimuli and with CD56(bright)/CD56(dim) NK cell ratio. We also present the correlation of retinol binding protein (RBP)-4 plasma levels with NK cell responses and we explore the relationship between gender and adiponectin, 25(OH)D (vitamin D), and RBP4 in affecting CD56(dim) NK cell responses. These data are discussed in Al-Attar et al. (2016) [1]. PMID:27508213

  3. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice

    PubMed Central

    Krzyżosiak, Agnieszka; Niewiadomska-Cimicka, Anna; Rochel, Natacha; Szeles, Lajos; Vaz, Belén; Wietrzych-Schindler, Marta; Álvarez, Susana; Szklenar, Monika; Nagy, Laszlo

    2015-01-01

    The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand. PMID:26030625

  4. Protein metabolism and requirements.

    PubMed

    Biolo, Gianni

    2013-01-01

    Skeletal muscle adaptation to critical illness includes insulin resistance, accelerated proteolysis, and increased release of glutamine and the other amino acids. Such amino acid efflux from skeletal muscle provides precursors for protein synthesis and energy fuel to the liver and to the rapidly dividing cells of the intestinal mucosa and the immune system. From these adaptation mechanisms, severe muscle wasting, glutamine depletion, and hyperglycemia, with increased patient morbidity and mortality, may ensue. Protein/amino acid nutrition, through either enteral or parenteral routes, plays a pivotal role in treatment of metabolic abnormalities in critical illness. In contrast to energy requirement, which can be accurately assessed by indirect calorimetry, methods to determine individual protein/amino acid needs are not currently available. In critical illness, a decreased ability of protein/amino acid intake to promote body protein synthesis is defined as anabolic resistance. This abnormality leads to increased protein/amino acid requirement and relative inefficiency of nutritional interventions. In addition to stress mediators, immobility and physical inactivity are key determinants of anabolic resistance. The development of mobility protocols in the intensive care unit should be encouraged to enhance the efficacy of nutrition. In critical illness, protein/amino acid requirement has been defined as the intake level associated with the lowest rate of catabolism. The optimal protein-sparing effects in patients receiving adequate energy are achieved when protein/amino acids are administered at rates between 1.3 and 1.5 g/kg/day. Extra glutamine supplementation is required in conditions of severe systemic inflammatory response. Protein requirement increases during hypocaloric feeding and in patients with acute renal failure on continuous renal replacement therapy. Evidence suggests that receiving adequate protein/amino acid intake may be more important than achieving

  5. Binding Efficiency of Protein-Protein Complexes

    PubMed Central

    Day, Eric S.; Cote, Shaun M.; Whitty, Adrian

    2012-01-01

    We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPI), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for the large receptor TNFR1 binding to its ligands TNFα (KD = 1.4 ± 0.4 nM) and lymphotoxin-α (KD = 50 ± 10 nM), and also for the small receptor Fn14 binding to TWEAK (KD = 70 ± 10 nM). We additionally assembled data for all other TNF/TNFR family complexes for which reliable single site binding affinities have been reported. We used these values to calculate the binding efficiency – defined as binding energy per Å2 of surface area buried at the contact interface – for the nine of these complexes for which co-crystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinity values. The results show that the most efficient PPI complexes generate ~20 cal.mol−1/Å2 of binding energy. A minimum contact area of ~500 Å2 is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of co-localizing two proteins from 1 M solution. The most compact and efficient TNF/TNFR complex was BAFF/BR3, which achieved ~80% of the maximum achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method to predict how large a natural or engineered contact interface must be to achieve a given level of binding affinity. PMID:23088250

  6. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented. PMID:27444727

  7. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery. PMID:25815400

  8. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  9. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  10. Proteins and glasses

    SciTech Connect

    Frauenfelder, H.

    1997-12-31

    The structure, the energy landscape, and the dynamics of proteins and glasses are similar. Both types of systems display characteristic nonexponential time dependencies of relaxation phenomena. Experiments suggest that both, proteins and glasses, are heterogeneous and that this fact causes the observed time dependence. This result is discussed in terms of the rough energy landscape characteristic of complex systems.

  11. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  12. The AVIT protein family

    PubMed Central

    Kaser, Alexandra; Winklmayr, Martina; Lepperdinger, Günther; Kreil, Günther

    2003-01-01

    Homologues of a protein originally isolated from snake venom and frog skin secretions are present in many vertebrate species. They contain 80–90 amino acids, 10 of which are cysteines with identical spacing. Various names have been given to these proteins, such as mamba intestinal protein 1 (MIT1), Bv8 (Bombina variegata molecular mass ∼8 kDa), prokineticins and endocrine-gland vascular endothelial growth factor (EG-VEGF). Their amino-terminal sequences are identical, and so we propose that the sequence of their first four residues, AVIT, is used as a name for this family. From a comparison of the sequences, two types of AVIT proteins can be discerned. These proteins seem to be distributed widely in mammalian tissues and are known to bind to G-protein-coupled receptors. Members of this family have been shown to stimulate contraction of the guinea pig ileum, to cause hyperalgesia after injection into rats and to be active as specific growth factors. Moreover, the messenger RNA level of one of these AVIT proteins changes rhythmically in the region of the brain known as the suprachiasmatic nucleus. This shows that members of this new family of small proteins are involved in diverse biological processes. PMID:12728244

  13. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  14. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  15. Protein sequence databases.

    PubMed

    Apweiler, Rolf; Bairoch, Amos; Wu, Cathy H

    2004-02-01

    A variety of protein sequence databases exist, ranging from simple sequence repositories, which store data with little or no manual intervention in the creation of the records, to expertly curated universal databases that cover all species and in which the original sequence data are enhanced by the manual addition of further information in each sequence record. As the focus of researchers moves from the genome to the proteins encoded by it, these databases will play an even more important role as central comprehensive resources of protein information. Several the leading protein sequence databases are discussed here, with special emphasis on the databases now provided by the Universal Protein Knowledgebase (UniProt) consortium. PMID:15036160

  16. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  17. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  18. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  19. Electronegative low density lipoprotein induces renal apoptosis and fibrosis: STRA6 signaling involved[S

    PubMed Central

    Chen, Chao-Hung; Ke, Liang-Yin; Chan, Hua-Chen; Lee, An-Sheng; Lin, Kun-Der; Chu, Chih-Sheng; Lee, Mei-Yueh; Hsiao, Pi-Jung; Hsu, Chin; Chen, Chu-Huang; Shin, Shyi-Jang

    2016-01-01

    Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. “Stimulated by retinoic acid 6” (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFβ1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1−/− mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease. PMID:27256691

  20. Electronegative low density lipoprotein induces renal apoptosis and fibrosis: STRA6 signaling involved.

    PubMed

    Chen, Chao-Hung; Ke, Liang-Yin; Chan, Hua-Chen; Lee, An-Sheng; Lin, Kun-Der; Chu, Chih-Sheng; Lee, Mei-Yueh; Hsiao, Pi-Jung; Hsu, Chin; Chen, Chu-Huang; Shin, Shyi-Jang

    2016-08-01

    Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. "Stimulated by retinoic acid 6" (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFβ1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1(-/-) mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease. PMID:27256691

  1. A study of thorium exposure during tungsten inert gas welding in an airline engineering population.

    PubMed

    McElearney, N; Irvine, D

    1993-07-01

    To investigate the theoretic possibility of excessive exposure to thorium during the process of tungsten inert gas (TIG) welding using thoriated rods we carried out a cross-sectional study of TIG welders and an age- and skill-matched group. We measured the radiation doses from inhaled thorium that was retained in the body and investigated whether any differences in health or biologic indices could have been attributable to the welding and tip-grinding process. Sixty-four TIG welders, 11 non-TIG welders, and 61 control subjects from an airline engineering population participated. All of the subjects were interviewed for biographic, occupational history and morbidity details. All of the welders and eight control subjects carried out large-volume urine sampling to recover thorium 232 and thorium 228; this group also had chest radiographs. All of the subjects had a blood sample taken to estimate liver enzymes, and they provided small-volume urine samples for the estimation of retinol-binding protein and beta 2-microglobulin. We found no excess of morbidity among the TIG or non-TIG welding groups, and the levels of retinol-binding protein and beta 2-microglobulin were the same for both groups. There was a higher aspartate aminotransferase level in the control group. The internal radiation doses were estimated at less than an annual level of intake in all cases, and considerably less if the exposure (as was the case) was assumed to be chronic over many years. Some additional precautionary measures are suggested to reduce further any potential hazard from this process. PMID:8396174

  2. Assessment of indicators of vitamin A status in non-cirrhotic chronic hepatitis C patients

    PubMed Central

    Santana, R.C.; Machado, A.A.; Martinelli, A.L.C.; Jordão, A.A.; Ramalho, L.N.Z.; Vannucchi, H.

    2015-01-01

    Subjects with chronic liver disease are susceptible to hypovitaminosis A due to several factors. Therefore, identifying patients with vitamin deficiency and a requirement for vitamin supplementation is important. Most studies assessing vitamin A in the context of hepatic disorders are conducted using cirrhotic patients. A cross-sectional study was conducted in 43 non-cirrhotic patients with chronic hepatitis C to evaluate markers of vitamin A status represented by serum retinol, liver retinol, and serum retinol-binding protein levels. We also performed the relative dose-response test, which provides an indirect estimate of hepatic vitamin A reserves. These vitamin A indicators were assessed according to the stage of liver fibrosis using the METAVIR score and the body mass index. The sample study was predominantly composed of male subjects (63%) with mild liver fibrosis (F1). The relative dose-response test was <20% in all subjects, indicating vitamin A sufficiency. Overweight or obese patients had higher serum retinol levels than those with a normal body mass index (2.6 and 1.9 µmol/L, respectively; P<0.01). Subjects with moderate liver fibrosis (F2) showed lower levels of serum retinol (1.9 vs 2.5 µmol/L, P=0.01) and retinol-binding protein levels compared with those with mild fibrosis (F1) (46.3 vs 67.7 µg/mL, P<0.01). These results suggested an effect of being overweight on serum retinol levels. Furthermore, more advanced stages of liver fibrosis were related to a decrease in serum vitamin A levels. PMID:26577844

  3. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  4. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  5. Protein Regulation in Signal Transduction.

    PubMed

    Lee, Michael J; Yaffe, Michael B

    2016-01-01

    SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues. PMID:27252361

  6. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  7. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  8. PSC: protein surface classification

    PubMed Central

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-01-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25 857 functional surfaces identified from 24 170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided. PMID:22669905

  9. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  10. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.