Science.gov

Sample records for retransmission-based wireless networks

  1. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  2. Wireless nanosensor network system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyukjun; Kegley, Lauren; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    Many types of wireless modules are being developed to enhance wireless performance with low power consumption, compact size, high data rates, and wide range coverage. However trade-offs must be taken into consideration in order to satisfy all aspects of wireless performance. For example, in order to increase the data rate and wide range coverage, power consumption should be sacrificed. To overcome these drawbacks, the paper presents a wireless client module which offers low power consumption along with a wireless receiver module that has the strength to provide high data rates and wide range coverage. Adopting Zigbee protocol in the wireless client module, the power consumption performance is enhanced so that it plays a part of the mobile device. On the other hand, the wireless receiver module, as adopting Zigbee and Wi-Fi protocol, provides high data rate, wide range coverage, and easy connection to the existing Internet network so that it plays a part of the portable device. This module demonstrates monitoring of gait analysis. The results show that the sensing data being measured can be monitored in any remote place with access to the Internet network.

  3. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  4. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  5. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  6. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  7. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  8. On the performance of a retransmission-based synchronizer

    PubMed Central

    Nowak, Thomas; Függer, Matthias; Kößler, Alexander

    2013-01-01

    Designing algorithms for distributed systems that provide a round abstraction is often simpler than designing for those that do not provide such an abstraction. Further, distributed systems need to tolerate various kinds of failures. The concept of a synchronizer deals with both: It constructs rounds and allows masking of transmission failures. One simple way of dealing with transmission failures is to retransmit a message until it is known that the message was successfully received. We calculate the exact value of the average rate of a retransmission-based synchronizer in environments with probabilistic message loss, within which the synchronizer shows nontrivial timing behavior. We show how to make this calculation efficient, and present analytical results on the convergence speed. The theoretic results, based on Markov theory, are backed up with Monte Carlo simulations. PMID:24748711

  9. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  10. Breaking Free with Wireless Networks.

    ERIC Educational Resources Information Center

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  11. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  12. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  13. Evolutionary games in wireless networks.

    PubMed

    Tembine, Hamidou; Altman, Eitan; El-Azouzi, Rachid; Hayel, Yezekael

    2010-06-01

    We consider a noncooperative interaction among a large population of mobiles that interfere with each other through many local interactions. The first objective of this paper is to extend the evolutionary game framework to allow an arbitrary number of mobiles that are involved in a local interaction. We allow for interactions between mobiles that are not necessarily reciprocal. We study 1) multiple-access control in a slotted Aloha-based wireless network and 2) power control in wideband code-division multiple-access wireless networks. We define and characterize the equilibrium (called evolutionarily stable strategy) for these games and study the influence of wireless channels and pricing on the evolution of dynamics and the equilibrium. PMID:19963703

  14. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  15. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  16. Cooperative Synchronization in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Etzlinger, Bernhard; Wymeersch, Henk; Springer, Andreas

    2014-06-01

    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\\'er-Rao bounds.

  17. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  18. Semantic wireless body area networks.

    PubMed

    Nimmala, Venkatarama S R; Penders, Julien; van Hyfte, Dirk; Brands, Michael; Gyselinckx, Bert

    2008-01-01

    In this paper we introduce the concept of semantic Wireless Body Area Network (sWBAN). First the method for semantic interpretation of body sensor data is developed. This method is then illustrated for the case of ECG monitoring, providing the user with real-time monitoring and interpretation of heart activity. Finally, possible extensions of the method to data fusion and context-aware monitoring are discussed. PMID:19163441

  19. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    ERIC Educational Resources Information Center

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  20. Reliability of wireless sensor networks.

    PubMed

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  1. Tips for Implementing a Wireless Network

    ERIC Educational Resources Information Center

    Walery, Darrell

    2005-01-01

    This article provides a quick start guide to provide educators with the basic points to consider before installing a wireless network in the school. Since many school districts have already implemented wireless networks, there is a lot of information available online to assist in the process.

  2. Epidemic Propagation In Overlaid Wireless Networks

    SciTech Connect

    Yanmaz, Evsen

    2008-01-01

    Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.

  3. Performance Analysis of IIUM Wireless Campus Network

    NASA Astrophysics Data System (ADS)

    Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat

    2013-12-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.

  4. How to model wireless mesh networks topology

    NASA Astrophysics Data System (ADS)

    Sanni, M. L.; Hashim, A. A.; Anwar, F.; Ahmed, G. S. M.; Ali, S.

    2013-12-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches.

  5. Routing Security in Ad Hoc Wireless Networks

    NASA Astrophysics Data System (ADS)

    Pervaiz, Mohammad O.; Cardei, Mihaela; Wu, Jie

    Wireless networks provide rapid, untethered access to information and computing, eliminating the barriers of distance, time, and location for many applications ranging from collaborative, distributed mobile computing to disaster recovery (such as fire, flood, earthquake), law enforcement (crowd control, search, and rescue), and military communications (command, control, surveillance, and reconnaissance). An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration [11

  6. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  7. On computer vision in wireless sensor networks.

    SciTech Connect

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  8. Securing radars using secure wireless sensor networking

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-06-01

    Radar sensors can be viewed as a limited wireless sensor network consisting of radar transmitter nodes, target nodes, and radar receiver nodes. The radar transmitter node sends a communication signal to the target node which then reflects it in a known pattern to the radar receiver nodes. This type of wireless sensor network is susceptible to the same types of attacks as a traditional wireless sensor network, but there is less opportunity for defense. The target nodes in the network are unable to validate the return signal, and they are often uncooperative. This leads to ample opportunities for spoofing and man-in-the-middle attacks. This paper explores some of the fundamental techniques that can be used against a limited wireless network system as well as explores the techniques that can be used to counter them.

  9. Wireless Laptops and Local Area Networks.

    ERIC Educational Resources Information Center

    Tolson, Stephanie Diane

    2001-01-01

    Describes experiences at St. Louis Community College at Florissant Valley (Missouri) with the use of wireless technology and a local area network for library bibliographic instruction. Discusses faculty input and attitudes; technical challenges; and experiences at other community colleges that have found wireless connections more economical than…

  10. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Shared wireless broadband network. 27.1305... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1305 Shared wireless broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private...

  11. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  12. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other

  13. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  14. Wireless Networking for Control: Technologies and Models

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael; Jäntti, Riku

    This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

  15. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  16. Agent routing algorithm in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqing; Yang, Shuqun

    2013-03-01

    Wireless sensor networks are a new technology of information acquisition and processing, so they are widely used in all kinds of fields. In the paper we introduce Agent technology into the wireless sensor network, conduct a in-depth research on the four routing schemes, and propose a new improved routing scheme, which considers the energy consumption of both nodes and path. Furthermore, The scheme we proposed has efficient routing function, can balance the energy consumption of nodes and extends the lifetime of the network in a more efficient way.

  17. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  18. Integrating Wireless Networking for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon

    2006-10-01

    As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.

  19. Evaluation of wireless Local Area Networks

    NASA Astrophysics Data System (ADS)

    McBee, Charles L.

    1993-09-01

    This thesis is an in-depth evaluation of the current wireless Local Area Network (LAN) technologies. Wireless LAN's consist of three technologies: they are infrared light, microwave, and spread spectrum. When the first wireless LAN's were introduced, they were unfavorably labeled slow, expensive, and unreliable. The wireless LAN's of today are competitively priced, more secure, easier to install, and provide equal to or greater than the data throughput of unshielded twisted pair cable. Wireless LAN's are best suited for organizations that move office staff frequently, buildings that have historical significance, or buildings that have asbestos. Additionally, an organization may realize a cost savings of between $300 to $1,200 each time a node is moved. Current wireless LAN technologies have a positive effect on LAN standards being developed by the Defense Information System Agency (DISA). DoD as a whole is beginning to focus on wireless LAN's and mobile communications. If system managers want to remain successful, they need to stay abreast of this technology.

  20. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Shared wireless broadband network. 90.1405... SERVICES PRIVATE LAND MOBILE RADIO SERVICES 700 MHz Public/Private Partnership § 90.1405 Shared wireless broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private...

  1. Building new access network using reconfigurable optical grid network and wireless network

    NASA Astrophysics Data System (ADS)

    Qiu, Yinghui; Wu, Runze; Ji, Yuefeng; Xu, Daxiong

    2007-11-01

    Recently wireless mesh network has been gaining increasing attention and early versions are being deployed as municipal access solutions to eliminate the wired drop to every wireless router at customer premise. In this paper, we propose a novel access network using reconfigurable optical burst switching grid network and wireless mesh network. The proposed access network architecture saves network deployment cost because fiber need not penetrate to each end user. We also propose a hierarchical routing protocol to enhance the routing efficiency.

  2. Quality of service for tactical wireless networks

    NASA Astrophysics Data System (ADS)

    Ordower, Rick; Newman, Nisha; Myrtle, Jeremy

    2010-04-01

    Applications resident on tactical wireless networks are levying increasing offered loads. Tradeoffs can be made between range and throughput, but the wireless network is destined to be considered a limitation in information transfer. If managed correctly, the network can be an intelligent aid in ensuring the right information gets to the right place at the right time. Over the last 5 years, SAIC has worked with Natick Soldier Center (NSRDEC) to provide reliable communication with guaranteed service quality for the dismounted soldier. The effort utilizes a series of tools to mark, shape, condense, fragment and persist information for congestion and corruption control. The critical aspect of the congestion control solution is accomplished by adaptively throttling lower priority information at the sending node before it gets pushed to the wireless realm. Of note is that the solution adapts through passive processes without control messages. The solution also implements compression of messages and images, along with fragmentation techniques to alleviate congestion. Information corruption is purely a radio phenomenon and cannot be overcome through cognitive solutions. However, the solution mitigates corruption through information persistence and reliable retransmission. The implemented solution, unlike Transport Control Protocol, is optimized for wireless networks and demonstrates reduction of added signaling traffic. Combined congestion and corruption techniques have demonstrated how soldiers can get the right information at the right time during high traffic loads or network segmentation.

  3. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  4. Wireless Network Security Vulnerabilities and Concerns

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad

    The dilemma of cyber communications insecurity has existed all the times since the beginning of the network communications. The problems and concerns of unauthorized access and hacking has existed form the time of introduction of world wide web communication and Internet's expansion for popular use in 1990s, and has remained till present time as one of the most important issues. The wireless network security is no exception. Serious and continuous efforts of investigation, research and development has been going on for the last several decades to achieve the goal of provision of 100 percent or full proof security for all the protocols of networking architectures including the wireless networking. Some very reliable and robust strategies have been developed and deployed which has made network communications more and more secure. However, the most desired goal of complete security has yet to see the light of the day. The latest Cyber War scenario, reported in the media of intrusion and hacking of each other's defense and secret agencies between the two super powers USA and China has further aggravated the situation. This sort of intrusion by hackers between other countries such as India and Pakistan, Israel and Middle East countries has also been going on and reported in the media frequently. The paper reviews and critically examines the strategies already in place, for wired network. Wireless Network Security and also suggests some directions and strategies for more robust aspects to be researched and deployed.

  5. Secure Wireless Networking at Simon Fraser University.

    ERIC Educational Resources Information Center

    Johnson, Worth

    2003-01-01

    Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)

  6. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  7. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  8. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  9. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  10. Potential uses of a wireless network in physical security systems.

    SciTech Connect

    Witzke, Edward L.

    2010-07-01

    Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.

  11. Channel models for wireless body area networks.

    PubMed

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model. PMID:19162968

  12. Worm epidemics in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Nekovee, Maziar

    2007-06-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  13. Sensor Network in the Wireless UHF Band

    NASA Astrophysics Data System (ADS)

    Mariño, P.; Fontán, F. P.; Domínguez, M. A.; Otero, S.

    Biological research in agriculture needs a lot of specialized electronic sensors in order to fulfill different goals, like as: climate monitoring, soil and fruit assessment, control of insects and diseases, chemical pollutants, identification and control of weeds, crop tracking, and so on. That research must be supported by consistent biological models able to simulate diverse environmental conditions, in order to predict the right human actions before risky biological damage could be irreversible. In this paper an experimental distributed network based on climatic and biological wireless sensors is described, for providing real measurements in order to validate different biological models used for viticulture applications. Firstly the experimental network for field automatic data acquisition is presented, as a system based in a distributed process. Then, the design of the wireless network is explained in detail, with a previous discussion about the state-of-the-art, and some measurements for viticulture research are pointed out. Finally future developments and conclusions are stated.

  14. Wireless Sensor Network Handles Image Data

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  15. Efficient data communication protocols for wireless networks

    NASA Astrophysics Data System (ADS)

    Zeydan, Engin

    In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to

  16. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  17. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  18. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  19. 47 CFR 90.1405 - Shared wireless broadband network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  20. Formation And Maintenance of Self-Organizing Wireless Networks

    NASA Technical Reports Server (NTRS)

    Scott, Keith; Bambos, Nicholas

    1997-01-01

    There are numerous military, commercial, and scientific applications for mobile wireless networks which are able to self-Organize without recousre to any pre-existing infrastructure. We present the Self Organizing Wireless Adaptive Network protocol, a distributed networking protocol capable of managing such networks.

  1. Scalable Video Streaming in Wireless Mesh Networks for Education

    ERIC Educational Resources Information Center

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  2. Bridge monitoring using heterogeneous wireless sensor network

    NASA Astrophysics Data System (ADS)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  3. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  4. Cooperation and information replication in wireless networks.

    PubMed

    Poularakis, Konstantinos; Tassiulas, Leandros

    2016-03-01

    A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges-close to users-can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance. PMID:26809574

  5. Wireless sensor networks in a maritime environment

    NASA Astrophysics Data System (ADS)

    Kavelaars, W.; Maris, M.

    2005-10-01

    In the recent years, there has been a lot of research on sensor networks and their applications. In particular for monitoring large and potentially hostile areas these networks have proven to be very useful. The technique of land-based sensor networks can be extrapolated to sensing buoys at sea or in harbors. This is a novel and intriguing addition to existing maritime monitoring systems. At TNO, much research effort has gone into developing sensor networks. In this paper, the TNOdes sensor network is presented. Its practical employability is demonstrated in a surveillance application deploying 50 nodes. The system is capable of tracking persons in a field, as would be the situation around a military compound. A camera-system is triggered by the sensors and zooms into the detected moving objects. It is described how this system could be modified to create a wireless buoys network. Typical applications of a wireless (and potentially mobile) buoy network are bay-area surveillance, mine detection, identification and ship protection.

  6. Contactless Biometrics in Wireless Sensor Network: A Survey

    NASA Astrophysics Data System (ADS)

    Razzak, Muhammad Imran; Khan, Muhammad Khurram; Alghathbar, Khaled

    Security can be enhanced through wireless sensor network using contactless biometrics and it remains a challenging and demanding task due to several limitations of wireless sensor network. Network life time is very less if it involves image processing task due to heavy energy required for image processing and image communication. Contactless biometrics such as face recognition is most suitable and applicable for wireless sensor network. Distributed face recognition in WSN not only help to reduce the communication overload but it also increase the node life time by distributing the work load on the nodes. This paper presents state-of-art of biometrics in wireless sensor network.

  7. A novel compound chaotic block cipher for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun; Wang, Zhu; Liu, Yang; Zhang, Miao; Xu, Lianjie

    2015-05-01

    The nodes of wireless sensor network (WSN) have limited calculation and communication ability. Traditional encryption algorithms need large amounts of resources, so they cannot be applied to the wireless sensor network. To solve this problem, this paper proposes a block cipher algorithm for wireless sensor network based on compound chaotic map. The algorithm adopts Feistel network and constructs a Cubic function including discretized chaotic map, and its key is generated by the compound chaotic sequence. Security and performance tests show that the algorithm has high security and efficiency, low resource depletion. So the novel chaotic algorithm is suitable for the wireless sensor networks.

  8. SITRUS: Semantic Infrastructure for Wireless Sensor Networks.

    PubMed

    Bispo, Kalil A; Rosa, Nelson S; Cunha, Paulo R F

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  9. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  10. Network Management Framework for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jaewoo; Jeon, Hahnearl; Lee, Jaiyong

    Network Management is the process of managing, monitoring, and controlling the network. Conventional network management was based on wired network which is heavy and unsuitable for resource constrained WSNs. WSNs can have large scale network and it is impossible to manage each node individually. Also, polling mechanism of Simple Network Management Protocol (SNMP) impose heavy management traffic overhead. Since management messages consume resources of WSNs, it can affect the performance of the network. Therefore, it is necessary for WSNs to perform energy efficient network management. In this paper, we will propose network management framework. We will introduce cluster-based network management architecture, and classify the Management Information Base (MIB) according to their characteristics. Then, we will define management messages and message exchange operation for each kind of MIB. The analysis result of the management overhead indicates that the proposed framework can reduce management traffic compared to polling mechanism.

  11. Mobility Management in Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Mirchandani, Vinod; Prodan, Ante

    A viable support of an on-going or a new session for a subscriber on the move requires an effective scheme for Mobility Management. To this end, an array of protocols such as MIPv4, MIPv6, HMIPv6, FMIPv6 have been proposed for the wired Internet. Unfortunately, the wireless connectivity in the wireless mesh networks (WMNs) gives rise to several issues that limits the direct applicability of these mobility management protocols for the wired network. We have contributed to this chapter by identifying and explaining these issues and then giving a critical review of some of the key research proposals made in this area. The literature review also shows that the proposals offer a limited support for mobility management in multiradio wireless mesh networks (MR-WMN). Thus, we have further contributed, by proposing a scheme to carry out a seamless mobility management in WMN as well as MR-WMN. We have taken into account the lessons learnt from the proposals made in the literature. This chapter has been written in a simple way such that students as well as professionals including those who are new to this area should be able to significantly benefit from reading it.

  12. Nanotechnology enabled sensors and wireless sensing networks

    NASA Astrophysics Data System (ADS)

    Tsui, Ray; Zhang, Ruth; Mastroianni, Sal; Díaz Aguilar, Alvaro; Forzani, Erica; Tao, Nongjian

    2009-05-01

    The capabilities of future mobile communication devices will extend beyond merely transmitting and receiving voice, data, and video information. For example, first responders such as firefighters and emergency workers will wear environmentally- aware devices that will warn them of combustible and toxic gases as well as communicate that information wirelessly to the Command and Control Center. Similar sensor systems could alert warfighters of the presence of explosives or biological weapons. These systems can function either in the form of an individual stand-alone detector or part of a wireless sensor network. Novel sensors whose functionality is enhanced via nanotechnology will play a key role in realizing such systems. Such sensors are important because of their high sensitivity, low power consumption, and small size. This talk will provide an overview of some of the advances made in sensors through the use of nanotechnology, including those that make use of carbon nanotubes and nanoparticles. Their applicability in mobile sensing and wireless sensor networks for use in national security and public safety will be described. Other technical challenges associated with the development of such systems and networks will also be discussed.

  13. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    PubMed Central

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  14. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    PubMed

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  15. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  16. NEURON: enabling autonomicity in wireless sensor networks.

    PubMed

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  17. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  18. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  19. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  20. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  1. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  2. Graphical Model Theory for Wireless Sensor Networks

    SciTech Connect

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  3. New Applications for the Testing and Visualization of Wireless Networks

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac

    2005-01-01

    Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.

  4. Frequency-agile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.

    2004-07-01

    Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.

  5. Mobile middleware for wireless body area network.

    PubMed

    Chen, Xiang; Waluyo, Agustinus Borgy; Pek, Isaac; Yeoh, Wee-Soon

    2010-01-01

    This paper presents a flexible, efficient and lightweight Wireless Body Area Network (WBAN) Middleware. The Middleware is developed to bridge the communication between mobile device as a gateway and the sensor nodes, and therefore it shields the underlying sensor and OS/protocol stack away from the WBAN application layer. The middleware is coded in the form of lightweight dynamic link library, which allows the application developer to simply incorporate the middleware resource dynamic link library into their application and call the required functions (i.e. data acquisition, resource management and configurations). A showcase of the middleware deployment is exhibited at the end of the paper. PMID:21096294

  6. Wireless sensor network for irrigation application in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  7. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  8. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network. PMID:24982927

  9. Self Calibrated Wireless Distributed Environmental Sensory Networks

    NASA Astrophysics Data System (ADS)

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-04-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art.

  10. Self Calibrated Wireless Distributed Environmental Sensory Networks.

    PubMed

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-01-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs' calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable's true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art. PMID:27098279

  11. Self Calibrated Wireless Distributed Environmental Sensory Networks

    PubMed Central

    Fishbain, Barak; Moreno-Centeno, Erick

    2016-01-01

    Recent advances in sensory and communication technologies have made Wireless Distributed Environmental Sensory Networks (WDESN) technically and economically feasible. WDESNs present an unprecedented tool for studying many environmental processes in a new way. However, the WDESNs’ calibration process is a major obstacle in them becoming the common practice. Here, we present a new, robust and efficient method for aggregating measurements acquired by an uncalibrated WDESN, and producing accurate estimates of the observed environmental variable’s true levels rendering the network as self-calibrated. The suggested method presents novelty both in group-decision-making and in environmental sensing as it offers a most valuable tool for distributed environmental monitoring data aggregation. Applying the method on an extensive real-life air-pollution dataset showed markedly more accurate results than the common practice and the state-of-the-art. PMID:27098279

  12. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  13. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  14. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  15. Wireless network traffic modeling based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Liu, Chunfeng; Shu, Yantai; Yang, Oliver W. W.; Liu, Jiakun; Dong, Linfang

    2006-10-01

    In this paper, Extreme Value Theory (EVT) is presented to analyze wireless network traffic. The role of EVT is to allow the development of procedures that are scientifically and statistically rational to estimate the extreme behavior of random processes. There are two primary methods for studying extremes: the Block Maximum (BM) method and the Points Over Threshold (POT) method. By taking limited traffic data that is greater than the threshold value, our experiment and analysis show the wireless network traffic model obtained with the EVT fits well with that of empirical distribution of traffic, thus illustrating that EVT has a good application foreground in the analysis of wireless network traffic.

  16. A cross-layer optimization algorithm for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Le Qing

    2010-07-01

    Energy is critical for typical wireless sensor networks (WSN) and how to energy consumption and maximize network lifetime are big challenges for Wireless sensor networks; cross layer algorithm is main method to solve this problem. In this paper, firstly, we analyze current layer-based optimal methods in wireless sensor network and summarize the physical, link and routing optimization techniques. Secondly we compare some strategies in cross-layer optimization algorithms. According to the analysis and summary of the current lifetime algorithms in wireless sensor network A cross layer optimization algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional Leach routing protocol. Simulation results show that this algorithm is an excellent cross layer algorithm for reducing energy consumption.

  17. Wireless sensor network for mobile surveillance systems

    NASA Astrophysics Data System (ADS)

    van Dijk, Gert J. A.; Maris, Marinus G.

    2004-11-01

    Guarding safety and security within industrial, commercial and military areas is an important issue nowadays. A specific challenge lies in the design of portable surveillance systems that can be rapidly deployed, installed and easily operated. Conventional surveillance systems typically employ stand alone sensors that transmit their data to a central control station for data-processing. One of the disadvantages of these kinds of systems is that they generate a lot of data that may induce processing or storage problems. Moreover, data from the sensors must be constantly observed and assessed by human operators. In this paper, a surveillance concept based on distributed intelligence in wireless sensor networks is proposed. In this concept, surveillance is automatically performed by means of many small sensing devices including cameras. The requirements for such surveillance systems are investigated. Experiments with a demonstration system were conducted to verify some of the claims made throughout this paper.

  18. INSTRUMENTATION AND CONTROL FOR WIRELESS SENSOR NETWORK FOR AUTOMATED IRRIGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in-field sensor-based irrigation system is of benefit to producers in efficient water management. A distributed wireless sensor network eliminates difficulties to wire sensor stations across the field and reduces maintenance cost. Implementing wireless sensor-based irrigation system is challengin...

  19. Are Wireless Networks the Wave of the Future?

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    1999-01-01

    Some college administrators feel the next major trend in educational technology will be wireless networks that let students and professors connect to the Internet with radio waves rather than cumbersome cables. Several universities are already using the less expensive technology. However, some find the slower speed of available wireless services…

  20. A Wireless Sensor Network For Soil Monitoring

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  1. Strain energy harvesting for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Churchill, David L.; Hamel, Michael J.; Townsend, Christopher P.; Arms, Steven W.

    2003-07-01

    Our goal was to demonstrate a robust strain energy harvesting system for powering an embedded wireless sensor network without batteries. A composite material specimen was laminated with unidirectional aligned piezoelectric fibers (PZT5A, 250 um, overall 13x10x.38 mm). The fibers were embedded within a resin matrix for damage tolerance (Advanced Cerametrics, Lambertville, NJ). A foil strain gauge (Micro-Measurements, Raleigh, NC) was bonded to the piezoelectric fiber and shunt calibrated. The specimen was loaded in three point cyclic bending (75 to 300 μɛ peak) using an electrodynamic actuator operating at 60,120, and 180 Hz. Strain energy was stored by rectifying piezoelectric fiber output into a capacitor bank. When the capacitor voltage reached a preset threshold, charge was transferred to an integrated, embeddable wireless sensor node (StrainLink, MicroStrain, Inc., Williston, VT). Nodes include: 16 bit A/D converter w/programmable gain and filter, 5 single ended or 3 differential sensor inputs, microcontroller w/16 bit address, on-board EEPROM, and 418 MHz FSK RF transmitter. Transmission range was 1/3 mile (LOS, 1/4 wavelength antennas, 12 milliamps at +3 VDC). The RF receiver included EEPROM, XML output, and Ethernet connectivity. Received data from network nodes are parsed according to their individual addresses. The times required to accumulate sufficient charge to accomplish data transmission was evaluated. For peak strains of 150 μɛ, the time to transmit was 30 to 160 seconds (for 180 to 60 Hz tests).

  2. ZigBee wireless sensor network for environmental monitoring system

    NASA Astrophysics Data System (ADS)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  3. Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  4. Optimizing Retransmission Threshold in Wireless Sensor Networks.

    PubMed

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 ≤ i ≤ n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  5. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  6. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  7. Fast notification architecture for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  8. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  9. Wireless sensor network for streetlight monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  10. Challenges for Environmental Wireless Sensor Networks (WSNs) (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Davis, T. W.

    2013-12-01

    There are many challenges posed to researchers looking to collect eco-hydrological information with monitoring systems exposed to the natural environment due, in part, to the unpredictable interactions between the environment and the wireless hardware and the scale of the deployment. While wireless sensor network technology has introduced autonomy and pervasiveness to studying the environment, it is not a panacea for outdoor monitoring systems. Despite the fact that each outdoor deployment will encounter its own unique set of challenges, it is often a benefit to researchers to know what problems were faced during other deployments and how these problems were mitigated or solved. This work examines a long-term (i.e., multi-year) environmental wireless sensor network which was deployed in a forested hill-sloped region of western Pennsylvania, USA and the main challenges that were encountered. These include: (1) the startup and maintenance costs of the wireless network; (2) the data collection system and remote access to the network; (3) the security of the network hardware and software; and (4) the reliability of wireless network connectivity. Based on our field study, it was found that while wireless sensor networks (WSNs) have less expensive startup costs compared to similarly sized wired systems (such as data logging), the WSN has relatively high maintenance costs as it requires frequent site visits (mean of 38 days per wireless node). One possible way to reduce the maintenance costs is by adjusting the sampling and/or collection frequency of the wireless nodes. In addition to the high maintenance costs, wireless communications, especially over complex networks, have low success rates of data capture from the field (approximately 50%). Environmental conditions, such as background noise, interference and weather conditions, may significantly influence the wireless communications. Technological advancements (such as smart sampling and data compression) are being

  11. A reliable wireless monitoring network for healthcare applications

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Safi, Ammar; Alaalu, Ahmad N.

    2011-04-01

    In the present work, a reliable wireless healthcare monitoring network which is compatible with common platforms and operating systems is designed and implemented. The main advantages of our suggested wireless monitoring network are the ability to monitor any required quantity, the usage of an efficient programming environment to allow all features of monitoring, controlling, and data processing to be implemented, the ability to extend the number of monitored patients, and the ability to transfer measurement data over wired or wireless channels. In addition to all of the above mentioned features, the system is implemented with components which achieve the minimum costs without scarifying accuracy. The use of low cost wireless communication and internet network facilities makes our suggested monitoring system reliable for all capital projects with minimum costs and ensures upgradability to adapt additional wide user requirements.

  12. Quality of Service in Wireless Sensor Networks (QOS in WSN)

    NASA Astrophysics Data System (ADS)

    Zolhavarieh, Seyedjamal; Barati, Molood

    2013-03-01

    In this paper, we discuss about concept of Quality of Service (QoS) in Wireless Sensor Networks (WSN) and different methods to improve data security network. The most useful methods for network traffic control are Differentiated Services (DS), Integrated Services, Multi-Protocol Labeled Switching (MPLS), Resource Reservation Protocol (RSVP) and Traffic Engineering. Quality of Service is responsible for data transfer between different parts of the network and it guarantees some series of transport properties on the network [14].

  13. Quality of Service Metrics in Wireless Sensor Networks: A Survey

    NASA Astrophysics Data System (ADS)

    Snigdh, Itu; Gupta, Nisha

    2016-03-01

    Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.

  14. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  15. Wireless synapses in bio-inspired neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  16. Geographic wormhole detection in wireless sensor networks.

    PubMed

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols. PMID:25602616

  17. Geographic Wormhole Detection in Wireless Sensor Networks

    PubMed Central

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols. PMID:25602616

  18. Collaborative image transmission over wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wu, Min; Chen, Chang W.

    2004-01-01

    The imaging sensors are able to provide intuitive visual information for quick recognition and decision. However, imaging sensors usually generate vast amount of data. Thus, processing of image data collected in the sensor network for the purpose of energy efficient transmission poses a significant technical challenge. In particular, when a cluster of imaging sensors is activated to track certain moving target, multiple sensors may be collecting similar visual information simultaneously. With correlated image data, we need to intelligently reduce the redundancy among the neighboring sensors so as to minimize the energy for transmission, the primary source of sensor energy consumption. We propose in this paper a novel collaborative image transmission scheme for wireless sensor networks. First, we apply a shape matching method to coarsely register images to find out maximal overlap in order to exploiting the spatial correlation between images acquired from neighboring sensors. A transformation is generated according to the matching results. We encode the original image and the difference between the transformed image and reference image. Then, we transmit the coded bit stream together with the transformation parameters. This will significantly reduce the transmission energy comparing with transmitting two individual images independently. To exploiting the temporal correlation among images in the same sensor, we assume that the imaging sensors and the background scenes remain stationary over the data acquisition period. For a given image sequence, we transmit background image only once. A simple background subtraction method is employed to detect targets. Whenever targets are detected, only the regions of target and their spatial locations are transmitted to the monitoring center. At the monitoring center, the whole image can be reconstructed by fusing the background and the target image as well as its spatial location to further reduce energy consumption

  19. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  20. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management. PMID:22163534

  1. IR wireless cluster synapses of HYDRA very large neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  2. Robust message routing for mobile (wireless) ad hoc networks.

    SciTech Connect

    Goldsby, Michael E.; Johnson, Michael M.; Kilman, Dominique Marie; Bierbaum, Neal Robert; Chen, Helen Y.; Ammerlahn, Heidi R.; Tsang, Rose P.; Nicol, David M.

    2004-01-01

    This report describes the results of research targeting improvements in the robustness of message transport in wireless ad hoc networks. The first section of the report provides an analysis of throughput and latency in the wireless medium access control (MAC) layer and relates the analysis to the commonly used 802.11 protocol. The second section describes enhancements made to several existing models of wireless MAC and ad hoc routing protocols; the models were used in support of the work described in the following section. The third section of the report presents a lightweight transport layer protocol that is superior to TCP for use in wireless networks. In addition, it introduces techniques that improve the performance of any ad hoc source routing protocol. The fourth section presents a novel, highly scalable ad hoc routing protocol that is based on geographic principles but requires no localization hardware.

  3. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  4. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  5. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  6. HIGH SPEED WIRELESS LOCAL AREA NETWORKING FOR FARM APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-speed wireless local area network (WLAN) was designed and implemented on a commercial farm in Macon County, MS, to demonstrate the feasibility of establishing such a network and to provide the basis for continuing development of software and hardware for farm applications. Since the farm was...

  7. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  8. Performance analysis of wireless sensor networks in geophysical sensing applications

    NASA Astrophysics Data System (ADS)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  9. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  10. Improving the reliability of wireless body area networks.

    PubMed

    Arrobo, Gabriel E; Gitlin, Richard D

    2011-01-01

    In this paper we propose a highly reliable wireless body area network (WBAN) that provides increased throughput and avoids single points of failure. Such networks improve upon current WBANs by taking advantage of a new technology, Cooperative Network Coding (CNC). Using CNC in wireless body area network to support real-time applications is an attractive solution to combat packet loss, reduce latency due to retransmissions, avoid single points of failure, and improve the probability of successful recovery of the information at the destination. In this paper, we have extended Cooperative Network Coding, from its original configuration (one-to-one) to many-to-many as in multiple-input-multiple-output (MIMO) systems. Cooperative Network Coding results in increased throughput and network reliability because of the cooperation of the nodes in transmitting coded combination packets across spatially distinct paths to the information sinks. PMID:22254774

  11. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-01-01

    An important criterion of wireless sensor network is the energy efficiency in specified applications. In this wireless multimedia sensor network, the observations are derived from acoustic sensors. Focused on the energy problem of target tracking, this paper proposes a robust forecasting method to enhance the energy efficiency of wireless multimedia sensor networks. Target motion information is acquired by acoustic sensor nodes while a distributed network with honeycomb configuration is constructed. Thereby, target localization is performed by multiple sensor nodes collaboratively through acoustic signal processing. A novel method, combining autoregressive moving average (ARMA) model and radial basis function networks (RBFNs), is exploited to perform robust target position forecasting during target tracking. Then sensor nodes around the target are awakened according to the forecasted target position. With committee decision of sensor nodes, target localization is performed in a distributed manner and the uncertainty of detection is reduced. Moreover, a sensor-to-observer routing approach of the honeycomb mesh network is investigated to solve the data reporting considering the residual energy of sensor nodes. Target localization and forecasting are implemented in experiments. Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimental results verify that energy efficiency of wireless multimedia sensor network is enhanced by the proposed target tracking method.

  12. Wireless networking for the dental office: current wireless standards and security protocols.

    PubMed

    Mupparapu, Muralidhar; Arora, Sarika

    2004-11-15

    Digital radiography has gained immense popularity in dentistry today in spite of the early difficulty for the profession to embrace the technology. The transition from film to digital has been happening at a faster pace in the fields of Orthodontics, Oral Surgery, Endodontics, Periodontics, and other specialties where the radiographic images (periapical, bitewing, panoramic, cephalometric, and skull radiographs) are being acquired digitally, stored within a server locally, and eventually accessed for diagnostic purposes, along with the rest of the patient data via the patient management software (PMS). A review of the literature shows the diagnostic performance of digital radiography is at least comparable to or even better than that of conventional radiography. Similarly, other digital diagnostic tools like caries detectors, cephalometric analysis software, and digital scanners were used for many years for the diagnosis and treatment planning purposes. The introduction of wireless charged-coupled device (CCD) sensors in early 2004 (Schick Technologies, Long Island City, NY) has moved digital radiography a step further into the wireless era. As with any emerging technology, there are concerns that should be looked into before adapting to the wireless environment. Foremost is the network security involved in the installation and usage of these wireless networks. This article deals with the existing standards and choices in wireless technologies that are available for implementation within a contemporary dental office. The network security protocols that protect the patient data and boost the efficiency of modern day dental clinics are enumerated. PMID:15558101

  13. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  14. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.

  15. Software structure for broadband wireless sensor network system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  16. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    NASA Technical Reports Server (NTRS)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  17. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  18. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  19. 78 FR 1264 - CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Employment and Training Administration CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative... workers of the subject firm (TA-W-80,399A; CalAmp Wireless Networks Corporation, Waseca, Minnesota... Wireless Networks Corporation, Waseca, Minnesota to apply for TAA, the Department determines that...

  20. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dahiya, R.; Arora, A. K.; Singh, V. R.

    2015-09-01

    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  1. Wireless Sensor Networks Energy-Efficient MAC Protocol

    NASA Astrophysics Data System (ADS)

    Lijuan, Du; Yuanpeng, Wang; WeiPeng, Jing

    This paper presents a new wireless sensor network energy-efficient MAC protocol, ES-MAC protocol, and shows the results of simulation experiments. During the transmission the nodes do not send ACK packages while use a small amount of new information packets, so they can reduce unnecessary energy loss and wasted time. The theoretical analysis and simulation results show that ES-MAC protocol reduces energy consumption while reducing network latency and improving network throughput.

  2. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  3. Link-quality measurement and reporting in wireless sensor networks.

    PubMed

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-01-01

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389

  4. Efficient evaluation of wireless real-time control networks.

    PubMed

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-01-01

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications. PMID:25679314

  5. Authentication and Key Establishment in Dynamic Wireless Sensor Networks

    PubMed Central

    Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier

    2010-01-01

    When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321

  6. A hierarchical wireless sensor network model for structural monitoring system

    NASA Astrophysics Data System (ADS)

    Niu, Jianjun; Deng, Zhidong

    2007-12-01

    Based on the technology of wireless sensor networks, topology planning of a large building structural monitoring system is investigated in this paper. A three-level transmission power model and two constrained premise are built up to form a clustering hierarchy based routing model for low delay and high data rate demands. Aim to minimize total power consumption of the whole system, particle swarm optimization (PSO) algorithm is applied to optimize the power level of each nodes. This optimized topology approach is important to design a more permanent wireless sensor network for structural monitoring system in the initial stage.

  7. The microelectronic wireless nitrate sensor network for environmental water monitoring.

    PubMed

    Gartia, Manas Ranjan; Braunschweig, Björn; Chang, Te-Wei; Moinzadeh, Parya; Minsker, Barbara S; Agha, Gul; Wieckowski, Andrzej; Keefer, Laura L; Liu, Gang Logan

    2012-12-01

    Quantitative monitoring of water conditions in a field is a critical ability for environmental science studies. We report the design, fabrication and testing of a low cost, miniaturized and sensitive electrochemical based nitrate sensor for quantitative determination of nitrate concentrations in water samples. We have presented detailed analysis for the nitrate detection results using the miniaturized sensor. We have also demonstrated the integration of the sensor to a wireless network and carried out field water testing using the sensor. We envision that the field implementation of the wireless water sensor network will enable "smart farming" and "smart environmental monitoring". PMID:23138753

  8. Efficient Evaluation of Wireless Real-Time Control Networks

    PubMed Central

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-01-01

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications. PMID:25679314

  9. A Survey of Routing Protocols in Wireless Body Sensor Networks

    PubMed Central

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-01

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses. PMID:24419163

  10. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    PubMed Central

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-01-01

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389

  11. Secure Your Wireless Network: Going Wireless Comes with Its Own Special Set of Security Concerns

    ERIC Educational Resources Information Center

    Bloomquist, Jane; Musa, Atif

    2004-01-01

    Imagine a completely wireless school, an open network in which all students and staff can roam around using laptops or handheld computers to browse the Internet, access files and applications on the school server, and communicate with each other and the world via e-mail. It's a great picture--and at some schools the future is already here. But…

  12. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time. PMID:23851949

  13. Research trends in wireless visual sensor networks when exploiting prioritization.

    PubMed

    Costa, Daniel G; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-01

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425

  14. Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-01

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425

  15. Malicious node detection in ad-hoc wireless networks

    NASA Astrophysics Data System (ADS)

    Griswold, Richard L.; Medidi, Sirisha R.

    2003-07-01

    Advances in wireless communications and the proliferation of mobile computing devices has led to the rise of a new type of computer network: the ad-hoc wireless network. Ad-hoc networks are characterized by a lack of fixed infrastructure, which give ad-hoc networks a great deal of flexibility, but also increases the risk of security problems. In wired networks, key pieces of network infrastructure are secured to prevent unauthorized physical access and tampering. Network administrators ensure that everything is properly configured and are on-hand to fix problems and deal with intrusions. In contrast, the nodes in an ad-hoc network are responsible for routing and forwarding data in the network, and there are no network administrators to handle potential problems. This makes an ad-hoc network more vulnerable to a misconfigured, faulty, or compromised node. We propose a means for a node in an ad-hoc network to detect and handle these malicious nodes by comparing data available to the routing protocol, such as cached routes in Dynamic Source Routing, ICMP messages, and transport layer information, such as TCP timeouts. This data can then be used along with network probes to isolate the malicious node.

  16. Application of Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Liang, X.; Kuo, C.; Liang, Y.

    2009-05-01

    The application of wireless sensor networks (WSNs) for environmental monitoring enhances measurements over multiple locations and reduces the manpower for data collection. This study examines the applicability of WSNs for sap flow monitoring, which can benefit land-surface modeling with a better understanding and representation of plant water use phenomena. Two sap flow sensor designs are presented and their performance is tested against their expensive commercial sensor counterparts. These sensors are then integrated into a WSN. The data quality of the sap flow measurements is dependent upon the data sampling frequency. When sap flow monitoring is integrated into a WSN, a tradeoff is created between the measured data quality and the battery life of the wireless network. This study examines the tradeoff to determine an optimal sampling frequency for wireless sap flow monitoring.

  17. Personal Navigation Algorithms Based on Wireless Networks and Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Kaňa, Zdenek; Bradáč, Zdenek; Fiedler, Petr

    2014-08-01

    The work aims at a development of positioning algorithm suitable for low-cost indoor or urban pedestrian navigation application. The sensor fusion was applied to increase the localization accuracy. Due to required low application cost only low grade inertial sensors and wireless network based ranging were taken into account. The wireless network was assumed to be preinstalled due to other required functionality (for example: building control) therefore only received signal strength (RSS) range measurement technique was considered. Wireless channel loss mapping method was proposed to overcome the natural uncertainties and restrictions in the RSS range measurements The available sensor and environment models are summarized first and the most appropriate ones are selected secondly. Their effective and novel application in the navigation task, and favorable fusion (Particle filtering) of all available information are the main objectives of this thesis.

  18. Wireless Network Simulation in Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  19. TCPL: A Defense against wormhole attacks in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  20. TCPL: A Defense against wormhole attacks in wireless sensor networks

    SciTech Connect

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-26

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  1. The Audacity of Fiber-Wireless (FiWi) Networks

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  2. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  3. Distributed wireless quantum communication networks with partially entangled pairs

    NASA Astrophysics Data System (ADS)

    Yu, Xu-Tao; Zhang, Zai-Chen; Xu, Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.

  4. Resource Management in QoS-Aware Wireless Cellular Networks

    ERIC Educational Resources Information Center

    Zhang, Zhi

    2011-01-01

    Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…

  5. Wireless Infrared Networking in the Duke Paperless Classroom.

    ERIC Educational Resources Information Center

    Stetten, George D.; Guthrie, Scott D.

    1995-01-01

    Discusses wireless (diffuse infrared) networking technology to link laptop computers in a computer programming and numerical methods course at Duke University (North Carolina). Describes products and technologies, and effects on classroom dynamics. Reports on effective instructional strategies for lecture, solving student problems, building shared…

  6. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  7. Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.

    PubMed

    Rangarajan, Anuradha

    2016-01-01

    Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services. PMID:27413830

  8. Security in Wireless Sensor Networks Employing MACGSP6

    ERIC Educational Resources Information Center

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  9. Wide area wireless network (WAWN) for supporting precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high speed wireless network was established using a 100 meter tall microwave tower as the base station located on Prairie Point Road, 16 km from Macon, MS, in Noxubee County. Three sectorial antennas were used to provide complete 360 degree coverage. The system used state-of-the-art unlicensed dig...

  10. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  11. A modular architecture for wireless sensor network nodes

    NASA Astrophysics Data System (ADS)

    Davis, Jesse; Berry, Nina

    2004-09-01

    The system level hardware architecture of individual nodes in a wireless distributed sensor network has not received adequate attention. A large portion of the development work in wireless sensor networks has been devoted to the networking layer or the network communications, but considering the tight integration required between the hardware and software on each node can result in major benefits in power, performance, and usability as well. A novel hardware architecture based on the concept of task specific modular computing provides both the high flexibility and power efficiency required for effective distributed sensing solutions. A comparative power analysis with a traditional, centralized architecture gives a justifying motivation for pursuing the modular architecture. Finally, three decentralized module self-control mechanisms developed to minimize total system power will be presented and explained in detail.

  12. Distributed Detection of Wormhole Attacks in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    de Graaf, Rennie; Hegazy, Islam; Horton, Jeffrey; Safavi-Naini, Reihaneh

    Sensors in a wireless sensor network depend on their neighbours to route their messages. Yet, routing protocols in wireless sensor network are vulnerable to different types of attacks. In this paper, we consider the wormhole attack in which the adversary diverts traffic from one part of the network to another part by introducing a low cost tunnel between the two parts. We introduce a distributed intrusion detection system that monitors the communication in the network and propose a criterion for the placement of intrusion detection nodes. The intrusion detection system searches for violations of that criterion to detect wormholes of length above a certain minimum value. We evaluate the effectiveness of our system in a simulated environment. The experiments show that our system can detect 100% of the wormholes that are beyond the communication range of the intrusion detection nodes. Finally, we discuss our results and show directions for future work.

  13. Connectivity, Coverage and Placement in Wireless Sensor Networks

    PubMed Central

    Li, Ji; Andrew, Lachlan L.H.; Foh, Chuan Heng; Zukerman, Moshe; Chen, Hsiao-Hwa

    2009-01-01

    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes. PMID:22408474

  14. The study and implementation of the wireless network data security model

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng

    2013-03-01

    In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.

  15. Graphical user interface for wireless sensor networks simulator

    NASA Astrophysics Data System (ADS)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  16. The Cable and Wireless approach to network synchronization

    NASA Technical Reports Server (NTRS)

    Calvert, Robert D.

    1990-01-01

    The philosophy adopted by Cable and Wireless for the synchronization of its world-wide network is presented. The architectures of some clock systems already deployed and how network synchronization had been implemented at selected locations are discussed. This includes some innovative designs as the network spans both first and third world countries with a combination of North Amercan and European hierarchy equipment. Different parts of the global network are linked together by a combination of terrestrial microwave, submarine cable and satellite technology. The impact of synchronization on Intelsat Intermediate Data Rate (IDR) operation and the restoration of submarine cable systems are addressed.

  17. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  18. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  19. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    SciTech Connect

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-04-19

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  20. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  1. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  2. New packet scheduling algorithm in wireless CDMA data networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Gao, Zhuo; Li, Shaoqian; Li, Lemin

    2002-08-01

    The future 3G/4G wireless communication systems will provide internet access for mobile users. Packet scheduling algorithms are essential for QoS of diversified data traffics and efficient utilization of radio spectrum.This paper firstly presents a new packet scheduling algorithm DSTTF under the assumption of continuous transmission rates and scheduling intervals for CDMA data networks . Then considering the constraints of discrete transmission rates and fixed scheduling intervals imposed by the practical system, P-DSTTF, a modified version of DSTTF, is brought forward. Both scheduling algorithms take into consideration of channel condition, packet size and traffic delay bounds. The extensive simulation results demonstrate that the proposed scheduling algorithms are superior to some typical ones in current research. In addition, both static and dynamic wireless channel model of multi-level link capacity are established. These channel models sketch better the characterizations of wireless channel than two state Markov model widely adopted by the current literature.

  3. Statistical performance evaluation of ECG transmission using wireless networks.

    PubMed

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation. PMID:23777301

  4. Wireless Multimedia Sensor Networks: current trends and future directions.

    PubMed

    Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  5. Wireless Multimedia Sensor Networks: Current Trends and Future Directions

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  6. Signalprint-Based Intrusion Detection in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Mitchell, Rob; Chen, Ing-Ray; Eltoweissy, Mohamed

    Wireless networks are a critical part of global communication for which intrusion detection techniques should be applied to secure network access, or the cost associated with successful attacks will overshadow the benefits that wireless networks offer. In this paper we investigate a new scheme called Nodeprints to extend the existing centralized Signalprints design for authentication to a distributed voting-based design for intrusion detection. We analyze the effect of voting-based intrusion detection designs, the probability of an individual node voting incorrectly, the ratio of mobile nodes to base stations, and the rate at which nodes are compromised, on the system performance measured by the probability that the intrusion detection system yields a false result. We develop a performance model for evaluating our Nodeprints design and identify conditions under which Nodeprints outperforms the existing Signalprints design.

  7. Fault Tolerance in ZigBee Wireless Sensor Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  8. MAC layer security issues in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  9. A distributed geo-routing algorithm for wireless sensor networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads. PMID:22408514

  10. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  11. The wireless networking system of Earthquake precursor mobile field observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  12. Radiation detection and wireless networked early warning

    NASA Astrophysics Data System (ADS)

    Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis

    2012-06-01

    We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.

  13. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks.

    PubMed

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-01-01

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them. PMID:26610512

  14. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks

    PubMed Central

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-01-01

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them. PMID:26610512

  15. Data Transport in a Novel Wireless Sensor Network

    SciTech Connect

    Roberts, R S

    2001-06-01

    The deployment and operation of large wireless sensor networks can pose difficult problems, particularly in time critical situations, over large geographic areas, or in rugged terrain. An approach to this problem is to use unmanned air vehicles to first deploy the sensors, and then provide communication services to the sensors. This paper presents a network model that describes the flow of data through such a sensor network. Simulation results are presented that illustrate the behavior of the data flow in steady state and transient conditions.

  16. 802.11s Wireless Mesh Network Visualization Application

    NASA Technical Reports Server (NTRS)

    Mauldin, James Alexander

    2014-01-01

    Results of past experimentation at NASA Johnson Space Center showed that the IEEE 802.11s standard has better performance than the widely implemented alternative protocol B.A.T.M.A.N (Better Approach to Mobile Ad hoc Networking). 802.11s is now formally incorporated into the Wi- Fi 802.11-2012 standard, which specifies a hybrid wireless mesh networking protocol (HWMP). In order to quickly analyze changes to the routing algorithm and to support optimizing the mesh network behavior for our intended application a visualization tool was developed by modifying and integrating open source tools.

  17. Network coding on heterogeneous multi-core processors for wireless sensor networks.

    PubMed

    Kim, Deokho; Park, Karam; Ro, Won W

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  18. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  19. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  20. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  1. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks

    PubMed Central

    Srie Vidhya Janani, E.; Ganesh Kumar, P.

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417

  2. Turtle Nest Monitoring with Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Terzis, A.; Musaloiu, R.; Liang, C.; Cogan, J.; Klofas, J.; Xia, L.; Swarth, C.; Matthews, S.

    2007-12-01

    We have recently developed a wireless sensor system for environmental monitoring. The system is based upon the sensor platform by Telos, soil moisture sensors from Decagon and our own temperature sensors. The system was deployed at the Jug Bay Wetland Sanctuary, around several nests of Eastern Box Turtles (Terrapene carolina). Conditions in the soil where turtles excavate their nests can have a profound effect on egg survival, hatchling survival and on the sex of hatchling turtles. Turtles prefer nesting in sunny areas where solar radiation provides the heat source that warms the developing embryos. Our system has provided a continuous monitoring of all these parameters over a period of several months in the summer of 2007. The data show several interesting phenomena about temperature gradients in the vicinity of the turtle nests. The deployment also served as a validation of our second generation sensor platform, which performed remarkably well.

  3. Signal processing techniques for synchronization of wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  4. Wireless thermal sensor network with adaptive low power design.

    PubMed

    Lee, Ho-Yin; Chen, Shih-Lun; Chen, Chiung-An; Huang, Hong-Yi; Luo, Ching-Hsing

    2007-01-01

    There is an increasing need to develop flexible, reconfigurable, and intelligent low power wireless sensor network (WSN) system for healthcare applications. Technical advancements in micro-sensors, MEMS devices, low power electronics, and radio frequency circuits have enabled the design and development of such highly integrated system. In this paper, we present our proposed wireless thermal sensor network system, which is separated into control and data paths. Both of these paths have their own transmission frequencies. The control path sends the power and function commands from computer to each sensor elements by 2.4GHz RF circuits and the data path transmits measured data by 2.4GHz in sensor layer and 60GHz in higher layers. This hierarchy architecture would make reconfigurable mapping and pipeline applications on WSN possibly, and the average power consumption can be efficiently reduced about 60% by using the adaptive technique. PMID:18003354

  5. Energy Efficient Moving Target Tracking in Wireless Sensor Networks.

    PubMed

    Wen, Yingyou; Gao, Rui; Zhao, Hong

    2016-01-01

    Moving target tracking in wireless sensor networks is of paramount importance. This paper considers the problem of state estimation for L-sensor linear dynamic systems. Firstly, the paper establishes the fuzzy model for measurement condition estimation. Then, Generalized Kalman Filter design is performed to incorporate the novel neighborhood function and the target motion information, improving with an increasing number of active sensors. The proposed measurement selection approach has some advantages in time cost. As such, if the desired accuracy has been achieved, the parameter initialization for optimization can be readily resolved, which maximizes the expected lifespan while preserving tracking accuracy. Through theoretical justifications and empirical studies, we demonstrate that the proposed scheme achieves substantially superior performances over conventional methods in terms of moving target tracking under the resource-constrained wireless sensor networks. PMID:26729129

  6. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  7. Energy Efficient Moving Target Tracking in Wireless Sensor Networks

    PubMed Central

    Wen, Yingyou; Gao, Rui; Zhao, Hong

    2016-01-01

    Moving target tracking in wireless sensor networks is of paramount importance. This paper considers the problem of state estimation for L-sensor linear dynamic systems. Firstly, the paper establishes the fuzzy model for measurement condition estimation. Then, Generalized Kalman Filter design is performed to incorporate the novel neighborhood function and the target motion information, improving with an increasing number of active sensors. The proposed measurement selection approach has some advantages in time cost. As such, if the desired accuracy has been achieved, the parameter initialization for optimization can be readily resolved, which maximizes the expected lifespan while preserving tracking accuracy. Through theoretical justifications and empirical studies, we demonstrate that the proposed scheme achieves substantially superior performances over conventional methods in terms of moving target tracking under the resource-constrained wireless sensor networks. PMID:26729129

  8. The design and simulation test of wireless antenna protection network

    NASA Astrophysics Data System (ADS)

    Chen, Zipeng; Dai, Yawen; Li, Peng; Li, Zhuoqiu

    2013-03-01

    In this paper, a wireless antenna protection program has been designed. In the program, the TVS diode was used as the first lever for protection, and the π-type high pass filtering network as the second lever. As a result, the program not only has the traditional function of ESD protection, which can avoid the high voltage damage to the internal circuit, but also achieves the purpose of load matching, ensuring the signal source not to distort. The ADS simulation software was used to test the ability of this program for filtering and impedance matching, which proved the feasibility of this program. The wireless antenna protection network has been practically used, and its' performance of anti-electromagnetic interference has been validated.

  9. Artificial neural network for location estimation in wireless communication systems.

    PubMed

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. PMID:22736978

  10. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    PubMed Central

    Xia, Feng; Tian, Yu-Chu; Li, Yanjun; Sun, Youxian

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.

  11. Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    PubMed Central

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688

  12. High speed infrared optical wireless for home access networks

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.

    2013-12-01

    The availability of high-bandwidth internet connections to home gateways will place increasing demands on the home access network that provides connections to computers and other devices. In this paper the use of infrared optical wireless to provide connections to user appliances and terminals is discussed. The design and implementation of two demonstration systems operating at hundreds of Mbit/s and above are detailed. Future challenges are also discussed.

  13. Research on secure routing algorithm in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    2013-03-01

    Through the research on the existing wireless sensor network (WSN) and its security technologies, this paper presents a design of the WSN-based secure routing algorithm. This design uses the existing routing algorithm as chief source, adding the security guidance strategy, introducing the location key information, to enhance the security performance of WSN routing. The improved routing algorithm makes the WSN routing achieve better anti-attack in the case of little overhead increase, therefore has high practical value.

  14. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    PubMed Central

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  15. Wireless networks of opportunity in support of secure field operations

    NASA Astrophysics Data System (ADS)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  16. Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks.

    PubMed

    Ko, Minsu; Lee, Myung-Jae; Rücker, Holger; Choi, Woo-Young

    2013-09-23

    We present two types of Si photonics-wireless interface (PWI) integrated circuits (ICs) realized in standard Si technology. Our PWI ICs convert optical signals into radio-frequency (RF) signals for downlink remote antenna units in fiber-wireless networks. Characterization and modeling of Si avalanche photodetectors (APDs) fabricated in two different Si technologies are carried out and used for PWI IC design. A 5-GHz RF-over-fiber PWI IC composed of APD, preamplifier, and power amplifier (PA) is fabricated in 0.18-μm CMOS technology and its performance is verified by 54-Mb/s wireless local area network data transmission. A 60-GHz baseband-over-fiber PWI IC containing APD, baseband photoreceiver, 60-GHz binary phase-shift keying (BPSK) modulator, and 60-GHz PA is realized in 0.25-μm SiGe BiCMOS technology. Error-free transmission of 1.6-Gb/s BPSK data in 60 GHz with this PWI IC is successfully achieved. PMID:24104180

  17. Wireless medical sensor networks: design requirements and enabling technologies.

    PubMed

    Vallejos de Schatz, Cecilia H; Medeiros, Henry Ponti; Schneider, Fabio K; Abatti, Paulo J

    2012-06-01

    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols-namely, Bluetooth(®) (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)-are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home. PMID:22500740

  18. The development of wireless sensor network for ECG monitoring.

    PubMed

    Lin, Jun-Liang; Liu, Hsien-Chieh; Tai, Yu-Ting; Wu, Hsin-Hsien; Hsu, Shuo-Jen; Jaw, Fu-Shan; Chen, You-Yin

    2006-01-01

    The main problem we want to solve contains two subjects: The first one is the patient's pressure due to wired physiological signal estimation. With wireless sensor network technique, patients only need to carry a few small nodes, and then the physiological signal can be transmitted in the air. The other subject of the vital problem is that some protocols, like Bluetooth, provide a peer to peer wireless communication technique, but such peer to peer network may need a complex algorithm to find the best data transmission path. In this study, we use the hierarchy routing as network topology that three-layer architecture contains PAN coordinator, router and device. The study focuses on implementation of a prototype electrocardiography (ECG) system which replaces wired connections between sensor points and a central node with wireless links. Successful implementation of the final system would be of benefit to all involved in the use of ECG as access to and movement of the patient would not be impeded by the physical constraints imposed by the cables. Most aspects of the design would also be portable to other sensor applications, making the work relevant to a vast range of systems where movement of sensors is desirable and constrained by hard-wired links. PMID:17946570

  19. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks.

    PubMed

    Rajeswari, S Raja; Seenivasagam, V

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  20. Usage Based Building Management through Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Erickson, Varick L.

    Wireless sensor networks (WSNs) is a field with broad variety of applications. Its flexibility for remote continuous measurement lends itself to applications ranging from locating snipers to measuring volcanic activity. One application that stands to substantially benefit from WSNs is building management. Buildings currently account for 41% of the total energy consumption of U.S. [bed11]. Reducing this energy is of critical importance if we are to achieve sustainability. In most commercial buildings, many rooms remain unoccupied or are conditioned assuming maximum occupancy. By relaxing temperature setbacks and adjusting ventilation to match actual occupancy, significant energy savings are possible. This Dissertation examines the use of wireless sensor networks for the purpose of building energy management and actuation. It explores the design and development of wireless sensor networks for building energy management, how data from these deployments are utilized, the development and implementation of data driven occupancy models to perform simulation and prediction, how data models are used to actuate building management systems, and how crowd-sourced data can be integrated into building control strategies. We show based on real-world data that 30% energy savings is possible through usage based strategies and that 80% occupant satisfaction rates are possible by occupant driven control strategies.

  1. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    PubMed Central

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  2. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  3. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other

  4. A comprehensive survey of Wireless Body Area Networks : on PHY, MAC, and Network layers solutions.

    PubMed

    Ullah, Sana; Higgins, Henry; Braem, Bart; Latre, Benoit; Blondia, Chris; Moerman, Ingrid; Saleem, Shahnaz; Rahman, Ziaur; Kwak, Kyung Sup

    2012-06-01

    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted. PMID:20721685

  5. Using Internet of Things technologies for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.

    2013-12-01

    Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.

  6. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  7. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  8. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    PubMed Central

    Albaladejo, Cristina; Sánchez, Pedro; Iborra, Andrés; Soto, Fulgencio; López, Juan A.; Torres, Roque

    2010-01-01

    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed. PMID:22163583

  9. The Study of Collective Actions in a University Anchored Community Wireless Network

    ERIC Educational Resources Information Center

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  10. Patrol detection for replica attacks on wireless sensor networks.

    PubMed

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods. PMID:22163752

  11. Fiber-wireless (FiWi) access networks for a green video-dominated future internet

    NASA Astrophysics Data System (ADS)

    Maier, Martin

    2010-12-01

    We report on our ongoing research activities on integrated EPON and WLAN-based wireless mesh networks with a focus on reducing the CO2 footprint and improving the bandwidth-efficient video transport of fiber-wireless (FiWi) access networks. Various power saving techniques and mechanisms for efficient video transport in FiWi access networks are discussed.

  12. On connectivity of wireless ultraviolet networks.

    PubMed

    Wang, Leijie; Li, Yiyang; Xu, Zhengyuan

    2011-10-01

    Non-line-of-sight optical communication can be enabled by modulating signals into an UV carrier and then transmitting them through an atmospheric scattering channel. This paper investigates some connectivity issues for such UV communication networks. We discuss k-connectivity in a multiuser interference environment. Compared with the studied case without considering multiuser interference in which more users bring higher probability of k-connectivity, a large number of noncoordinated users cause higher interference and limit the network performance. Thus, node density should be carefully designed in accordance with network configurations. Four typical scenarios are discussed, depending on whether each node transmitter is capable of adjusting its pointing angle and tracking a target receiver. They lead to different link losses and consequently the network k-connectivity properties. One of the cases simplifying the transceiver design for adjustable pointing is also illustrated, where each node is equipped with multiple transmitters to be activated via electronic on/off switching. The number of transmitters on a single node then becomes another critical parameter whose effect on k-connectivity is studied. These results will provide a guideline for system and network designers. PMID:21979501

  13. A Novel Framework to Maximum Lifetime for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Sheng, Feng; Xiao-Gang, Qi; Ji-Long, Xue

    In this paper, a novel framework is presented to prolong the lifetime of wireless sensor networks to the maximum. This framework consists of two parts. One is a novel topology management mechanism called electric fan topology mechanism (EFTM) and the other is an efficient routing protocol called maximum lifetime routing (MLR). EFTM provides a scheduler strategy to save much energy by turning off some transceivers periodically. MLR is based on the work of EFTM, which selects nodes with high-energy reserves as router. Though we turn off some transceivers periodically, we have developed receiver-based packet routing policy and last-mile algorithm to accommodate rapid change of topology and to guarantee the robust of networks. Simulation results show that MLR based on the work of EFTM extends the lifetime of networks to the maximum. MLR is suitable for large scale non-real time wireless sensor applications. When all trajectories are unavailable, nodes can still send packets to sink efficiently. The network using MLR can adapt to the rapid change of network topology very well.

  14. Non-line-of-sight underwater optical wireless communication network.

    PubMed

    Arnon, Shlomi; Kedar, Debbie

    2009-03-01

    The growing need for ocean observation systems has stimulated considerable interest within the research community in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. Sensors and ad hoc sensor networks are the emerging tools for performing extensive data-gathering operations on land, and solutions in the subsea setting are being sought. Efficient communication from the sensors and within the network is critical, but the underwater environment is extremely challenging. Addressing the special features of underwater wireless communication in sensor networks, we propose a novel non-line-of-sight network concept in which the link is implemented by means of back-reflection of the propagating optic signal at the ocean-air interface and derive a mathematical model of the channel. Point-to-multipoint links can be achieved in an energy efficient manner and broadcast broadband communications, such as video transmissions, can be executed. We show achievable bit error rates as a function of sensor node separation and demonstrate the feasibility of this concept using state-of-the-art silicon photomultiplier detectors. PMID:19252651

  15. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    SciTech Connect

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  16. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  17. Distributed Signal Processing for Wireless EEG Sensor Networks.

    PubMed

    Bertrand, Alexander

    2015-11-01

    Inspired by ongoing evolutions in the field of wireless body area networks (WBANs), this tutorial paper presents a conceptual and exploratory study of wireless electroencephalography (EEG) sensor networks (WESNs), with an emphasis on distributed signal processing aspects. A WESN is conceived as a modular neuromonitoring platform for high-density EEG recordings, in which each node is equipped with an electrode array, a signal processing unit, and facilities for wireless communication. We first address the advantages of such a modular approach, and we explain how distributed signal processing algorithms make WESNs more power-efficient, in particular by avoiding data centralization. We provide an overview of distributed signal processing algorithms that are potentially applicable in WESNs, and for illustration purposes, we also provide a more detailed case study of a distributed eye blink artifact removal algorithm. Finally, we study the power efficiency of these distributed algorithms in comparison to their centralized counterparts in which all the raw sensor signals are centralized in a near-end or far-end fusion center. PMID:25850092

  18. Optimal topologies for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Tillett, Jason C.; Yang, Shanchieh J.; Rao, Raghuveer M.; Sahin, Ferat

    2004-11-01

    Since untethered sensor nodes operate on battery, and because they must communicate through a multi-hop network, it is vital to optimally configure the transmit power of the nodes both to conserve power and optimize spatial reuse of a shared channel. Current topology control algorithms try to minimize radio power while ensuring connectivity of the network. We propose that another important metric for a sensor network topology will involve consideration of hidden nodes and asymmetric links. Minimizing the number of hidden nodes and asymmetric links at the expense of increasing the transmit power of a subset of the nodes may in fact increase the longevity of the sensor network. In this paper we explore a distributed evolutionary approach to optimizing this new metric. Inspiration from the Particle Swarm Optimization technique motivates a distributed version of the algorithm. We generate topologies with fewer hidden nodes and asymmetric links than a comparable algorithm and present some results that indicate that our topologies deliver more data and last longer.

  19. Message Integrity Model for Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Qleibo, Haider W.

    2009-01-01

    WSNs are susceptible to a variety of attacks. These attacks vary in the way they are performed and executed; they include but not limited to node capture, physical tampering, denial of service, and message alteration. It is of paramount importance to protect gathered data by WSNs and defend the network against illegal access and malicious…

  20. Wireless Sensor Networks for Developmental and Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  1. An energy-aware routing protocol in wireless sensor networks.

    PubMed

    Liu, Ming; Cao, Jiannong; Chen, Guihai; Wang, Xiaomin

    2009-01-01

    The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered. PMID:22389610

  2. ZERO: Probabilistic Routing for Deploy and Forget Wireless Sensor Networks

    PubMed Central

    Vilajosana, Xavier; Llosa, Jordi; Pacho, Jose Carlos; Vilajosana, Ignasi; Juan, Angel A.; Vicario, Jose Lopez; Morell, Antoni

    2010-01-01

    As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called ”hot spot” problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this ”hot spot” problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques. PMID:22163388

  3. M-BRIDGE: Wireless portable onbody aggregator and visualizer system for Wireless Body Sensor Network.

    PubMed

    Phyo Wai, Aung Aung; Ge, Yu

    2013-01-01

    Advances made in electronics, intelligent and wireless technologies enable individuals to self-observe their health states anywhere anytime. The shift in self care becomes a promising paradigm to alleviate burdens on centralized institutional care. As a result, Wireless Body Sensor Network (WBSN) personal health solutions can be seen increasingly although medical community still has concerns on their usability and applicability. Especially, there is still lacking in portable wireless wearable gateway to integrate WBSN into existing healthcare solutions. To fulfill this gap, we design and develop MobilE on-Body aGgregator and vIsualizer Device (M-BRIDGE) system using Android smart phone. Our proposed solution fully supports the needs of flexible device interfacing, data aggregation, efficient data distribution and user-friendly visualization. We also explain how M-BRIDGE's unique features and operation can complement with and fulfill the deficiency of existing WBSN healthcare solutions. We finally present the details of implementation and technical evaluation as well as discussion on the potential issues and future works. PMID:24109920

  4. Clock Synchronization in Wireless Sensor Networks: An Overview

    PubMed Central

    Rhee, Ill-Keun; Lee, Jaehan; Kim, Jangsub; Serpedin, Erchin; Wu, Yik-Chung

    2009-01-01

    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs. PMID:22389588

  5. A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.

    PubMed

    Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor

    2015-12-01

    As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics. PMID:26490151

  6. Review of wireless sensors networks in health applications.

    PubMed

    Zubiete, Enrique Dorronzoro; Luque, Luis Fernandez; Rodríguez, Ana Verónica Medina; González, Isabel Gomez

    2011-01-01

    Wireless Sensor Networks (WSN) are becoming increasingly important for telemedicine applications, monitoring patients both in the clinical setting and at home. They reduce user discomfort, enhance mobility and reduce costs. WSN are also fundamental in Ambient Assisted Living (AAL) since these smart systems, which are tailored to users needs, collect information about users and their ambient in order to provide personalized feedback. Despite the growing use of wireless communications in the health domain and in AAL systems there is a lack of research literature reviewing trials of these technologies. This paper provides a systematic review of the use of WSN in the health domain, presenting current WSN implementations. It covers 126 papers, of which 26 are studies, classified according to inclusion criteria. There is presented a discussion about the recent research conducted in the field. PMID:22254675

  7. Near-Optimal Radio Use for Wireless Network Synchronization

    NASA Astrophysics Data System (ADS)

    Bradonjić, Milan; Kohler, Eddie; Ostrovsky, Rafail

    In this paper we consider the model of communication where wireless devices can either switch their radios off to save energy (and hence, can neither send nor receive messages), or switch their radios on and engage in communication. The problem has been extensively studied in practice, in the setting such as deployment and clock synchronization of wireless sensor networks - see, for example, [31,41,33,29,40]. The goal in these papers is different from the classic problem of radio broadcast, i.e. avoiding interference. Here, the goal is instead to minimize the use of the radio for both transmitting and receiving, and for most of the time to shut the radio down completely, as the radio even in listening mode consumes a lot of energy.

  8. Interference-Aware Transmission Power Control for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Junseok; Kwon, Younggoo

    Maintaining the lowest possible transmission power in the wireless sensor networks (WSNs) is vulnerable to the interference fluctuations because of the bad signal-to-interference-plus-noise-ratio (SINR). The previous transmission power control (TPC) algorithms do not consider much for the interferences from other 2.4GHz devices, which can cause significant performance degradations in real world deployments. This paper proposes the interference-aware transmission power control (I-TPC) algorithm for WSNs. In the proposed algorithm, each node dynamically adjusts the transmission power and the received signal strength (RSS) target, hence the appropriate SINR is provided even when the wireless LAN (WLAN) interferences become strong. The experimental results show that the proposed algorithm outperforms the previous algorithms in terms of the energy and the packet reception ratio (PRR) performance in WLAN interference environments.

  9. Wireless address event representation system for biological sensor networks

    NASA Astrophysics Data System (ADS)

    Folowosele, Fopefolu; Tapson, Jonathan; Etienne-Cummings, Ralph

    2007-05-01

    We describe wireless networking systems for close proximity biological sensors, as would be encountered in artificial skin. The sensors communicate to a "base station" that interprets the data and decodes its origin. Using a large bundle of ultra thin metal wires from the sensors to the "base station" introduces significant technological hurdles for both the construction and maintenance of the system. Fortunately, the Address Event Representation (AER) protocol provides an elegant and biomorphic method for transmitting many impulses (i.e. neural spikes) down a single wire/channel. However, AER does not communicate any sensory information within each spike, other that the address of the origination of the spike. Therefore, each sensor must provide a number of spikes to communicate its data, typically in the form of the inter-spike intervals or spike rate. Furthermore, complex circuitry is required to arbitrate access to the channel when multiple sensors communicate simultaneously, which results in spike delay. This error is exacerbated as the number of sensors per channel increases, mandating more channels and more wires. We contend that despite the effectiveness of the wire-based AER protocol, its natural evolution will be the wireless AER protocol. A wireless AER system: (1) does not require arbitration to handle multiple simultaneous access of the channel, (2) uses cross-correlation delay to encode sensor data in every spike (eliminating the error due to arbitration delay), and (3) can be reorganized and expanded with little consequence to the network. The system uses spread spectrum communications principles, implemented with a low-power integrate-and-fire neurons. This paper discusses the design, operation and capabilities of such a system. We show that integrate-and-fire neurons can be used to both decode the origination of each spike and extract the data contained within in. We also show that there are many technical obstacles to overcome before this version

  10. Wireless intelligent sensor network for autonomous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Sazonov, Edward; Janoyan, Kerop; Jha, Ratan

    2004-07-01

    Life cycle monitoring of civil infrastructure such as bridges and buildings is critical to the long-term operational cost and safety of aging structures. The widespread use of Structural Health Monitoring (SHM) systems is limited due to unavailability of specialized data acquisition equipment, high cost of generic equipment, and absence of fully automatic decision support systems. The goals of the presented project include: first, design of a Wireless Intelligent Sensor and Actuator Network (WISAN) and creation of an inexpensive set of instrumentation for the tasks of structural health monitoring; second, development of a SHM method, which is suitable for autonomous structural health monitoring. The design of the wireless sensor network is aimed at applications of structural health monitoring, addressing the issues of achieving a low cost per sensor, higher reliability, sources of energy for the network nodes, energy-efficient distribution of the computational load, security and coexistence in the ISM radio bands. The practical applicability of the sensor network is increased through utilization of computational intelligence and support of signal generation capabilities. The automated SHM method is based on the method of modal strain energy, though other SHM methods will be supported as well. The automation tasks include automation of the modal identification through ambient vibrations, classification of the acquired mode shapes, and automatic evaluation of the structural health.

  11. An Overview of Data Routing Approaches for Wireless Sensor Networks

    PubMed Central

    Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri

    2012-01-01

    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:22666013

  12. Network Efficient Power Control for Wireless Communication Systems

    PubMed Central

    Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350

  13. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  14. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  15. Future integrated broadband fiber, wireless, and satellite networks

    NASA Astrophysics Data System (ADS)

    Chan, Vincent W. S.

    2006-10-01

    With the increasing technical maturity in fiber, wireless and satellite communication technologies, new horizons are becoming feasible for future broadband networks, providing economical data rates well in excess of Gbps for stationary and mobile users as well as novel applications these advanced network services will permit. This talk explores the future architecture possibilities of such a network using new and radical technology building blocks such as: free space laser communications, multiple access multi-beam data satellite communications, novel all-optical network transport/switching and analog transmission and processing over optical carriers that support coherent distributed platform sensing and communications. We will articulate why we have to design this new network across layers from the Physical Layer to the Network and Transport Layers (even the Application Layer). Not only can future network performance and cost undergo quantum-leap improvements; such a network can have profound transforming effects on space and terrestrial system architectures for sensing, healthcare, early warning systems, disaster relief, research collaborations and other new commercial applications.

  16. Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network

    PubMed Central

    2015-01-01

    In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221

  17. EAP-Kerberos: A Low Latency EAP Authentication Method for Faster Handoffs in Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Zrelli, Saber; Okabe, Nobuo; Shinoda, Yoichi

    The wireless medium is a key technology for enabling ubiquitous and continuous network connectivity. It is becoming more and more important in our daily life especially with the increasing adoption of networking technologies in many fields such as medical care and transportation systems. Although most wireless technologies nowadays provide satisfying bandwidth and higher speeds, several of these technologies still lack improvements with regard to handoff performance. In this paper, we focus on wireless network technologies that rely on the Extensible Authentication Protocol for mutual authentication between the station and the access network. Such technologies include local area wireless networks (IEEE 802.11) as well as broadband wireless networks (IEEE 802.16). We present a new EAP authentication method based on a three party authentication scheme, namely Kerberos, that considerably shortens handoff delays. Compared to other methods, the proposed method has the advantage of not requiring any changes on the access points, making it readily deployable at reasonable costs.

  18. Analysis on Imai-Shin's LR-AKE Protocol for Wireless Network Security

    NASA Astrophysics Data System (ADS)

    Wang, Yingjie; Luo, Wei; Shen, Changxiang

    In 2005 Imai and Shin proposed a leakage-resilient authenticated key exchange protocol(LR-AKE) for wireless network security. For simplicity, the protocol is based on password authentication plus additional secrets to fit wireless environment (e.g., computation constraint). In this paper we show that Imai-Shin’s scheme is vulnerable to both client and server impersonation attacks and needs to be improved to provide strong security for wireless network.

  19. Coverage in Wireless Sensor Network Based on Probabilistic Sensing Model

    NASA Astrophysics Data System (ADS)

    Li, Fen; Deng, Kai; Meng, Fanzhi; Weiyan, Zhang

    One of the major problem to consider in designing wireless sensor network is how to extend the network lifetime and provide desired quality of service. To achieve this, a broadly-used method is topology control. This paper studies the problem of how to ensure the network fully connected without nodes' location information. The coverage control model based on probabilistic sensing model is proposed in this paper. With random sensor deployment, the sensing node and communicating node number can be calculated based on the size of sensing region and the performance parameters of node (e.g., node sensing radius, communication radius, and so on). Simulation results show that the actual coverage quality provided by sensing nodes scheduled with the proposed coverage control model is higher than the threshold of coverage quality.

  20. Genetic algorithm application in optimization of wireless sensor networks.

    PubMed

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  1. Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks

    PubMed Central

    Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif

    2015-01-01

    Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902

  2. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  3. Potentials and Limitations of Wireless Sensor Networks for Environmental

    NASA Astrophysics Data System (ADS)

    Bumberger, J.; Remmler, P.; Hutschenreuther, T.; Toepfer, H.; Dietrich, P.

    2013-12-01

    Understanding and dealing with environmental challenges worldwide requires suitable interdisciplinary methods and a level of expertise to be able to implement these solutions, so that the lifestyles of future generations can be secured in the years to come. To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of wireless sensor networks are their self-organizing behaviour, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. In this presentation, the possibilities and limitations of the applicability of wireless sensor networks for long-term environmental monitoring are presented. To underline the importance of this future technology, example concepts are given in the field of near-surface geothermics, groundwater observation, measurement of spatial radiation intensity and air humidity on soils, measurement of matter fluxes, greenhouse gas measurement, and landslide monitoring.

  4. Detection of Epileptic Seizure Using Wireless Sensor Networks

    PubMed Central

    Borujeny, Golshan Taheri; Yazdi, Mehran; Keshavarz-Haddad, Alireza; Borujeny, Arash Rafie

    2013-01-01

    The monitoring of epileptic seizures is mainly done by means of electroencephalogram (EEG) monitoring. Although this method is accurate, it is not comfortable for the patient as the EEG-electrodes have to be attached to the scalp which hampers the patient's movement. This makes long-term home monitoring not feasible. In this paper, the aim is to propose a seizure detection system based on accelerometry for the detection of epileptic seizure. The used sensors are wireless, which can improve quality of life for the patients. In this system, three 2D accelerometer sensors are positioned on the right arm, left arm, and left thigh of an epileptic patient. Datasets from three patients suffering from severe epilepsy are used in this paper for the development of an automatic detection algorithm. This monitoring system is based on Wireless Sensor Networks and can determine the location of the patient when a seizure is detected and then send an alarm to hospital staff or the patient's relatives. Our wireless sensor nodes are MICAz Motes developed by Crossbow Technology. The proposed system can be used for patients living in a clinical environment or at their home, where they do only their daily routines. The analysis of the recorded data is done by an Artificial Neural Network and K Nearest-Neighbor to recognize seizure movements from normal movements. The results show that K Nearest Neighbor performs better than Artificial Neural Network for detecting these seizures. The results also show that if at least 50% of the signal consists of seizure samples, we can detect the seizure accurately. In addition, there is no need for training the algorithm for each new patient. PMID:24098859

  5. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches. PMID:17281067

  6. Trusted Network Selection using SAW and TOPSIS Algorithms for Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Savitha, K.; Chandrasekar, C.

    2011-07-01

    Seamless continuity is the main goal in fourth generation Wireless networks (FGWNs), to achieve this "HANDOVER" technique is used, when a mobile terminal(MT) is in overlapping area for service continuity, Handover mechanism are mainly used. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared and Multi Attribute Decision Making (MADM) is used to choose the best network from the available Visitor networks (VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. MADM algorithms SAW and TOPSIS where compared to reduce the processing delay by using NS2 to evaluate the parameters for processing delay.

  7. Development of a photovoltaic power supply for wireless sensor networks.

    SciTech Connect

    Harvey, Matthew R.; Kyker, Ronald D.

    2005-06-01

    This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.

  8. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  9. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  10. Resilient Wireless Sensor Networks Using Topology Control: A Review.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Sendra, Juana; López, Lourdes

    2015-01-01

    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k - 1 nodes while the rest of nodes remain connected, the network is called k - connected. k is one of the most important indicators for WSNs' self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k - connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs. PMID:26404272

  11. GPS-free localization algorithm for wireless sensor networks.

    PubMed

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  12. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  13. Resilient Wireless Sensor Networks Using Topology Control: A Review

    PubMed Central

    Huang, Yuanjiang; Martínez, José-Fernán; Sendra, Juana; López, Lourdes

    2015-01-01

    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs. PMID:26404272

  14. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  15. Extensible and Precise Modeling for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Akbal-Delibas, Bahar; Boonma, Pruet; Suzuki, Junichi

    Developing applications for wireless sensor networks (WSN) is a complicated process because of the wide variety of WSN applications and low-level implementation details. Model-Driven Engineering offers an effective solution to WSN application developers by hiding the details of lower layers and raising the level of abstraction. However, balancing between abstraction level and unambiguity is challenging issue. This paper presents Baobab, a metamodeling framework for designing WSN applications and generating the corresponding code, to overcome the conflict between abstraction and reusability versus unambiguity. Baobab allows users to define functional and non-functional aspects of a system separately as software models, validate them and generate code automatically.

  16. A dynamic clustering algorithm in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liang, Yan; Pan, Quan; Wang, Quan; Cheng, Yongmei

    2005-11-01

    It is essential to prolong the lifetime of wireless sensor networks (WSN) via effective cooperation of its sensor nodes. Here, a dynamic clustering algorithm, named DCA, is presented to optimally and dynamically select the micro-sensor nodes to construct a dynamic sensor cluster at each time based on the integrated performance index including information acquirement and energy consumption. In distributed target tracking with WSN, the DCA can avoid the problem of "too frequent cluster head (CH) switches", save more than 80% energy and remain almost same tracking accuracy, compared with the information-driven sensor querying (IDSQ).

  17. A Secure and Efficient Handover Authentication Protocol for Wireless Networks

    PubMed Central

    Wang, Weijia; Hu, Lei

    2014-01-01

    Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an efficient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable efficiency features of PairHand, but enjoys the provable security in the random oracle model. PMID:24971471

  18. Wireless mesh networked radios optimized for UGS applications

    NASA Astrophysics Data System (ADS)

    Calcutt, Wade; Williams, Jonathan; Jones, Barry

    2010-04-01

    Wireless mesh networked (WMN) radios have been applied to unattended ground sensor (UGS) applications for a number of years. However, adapting commercial off-the-shelf (COTS) WMN protocols and hardware for UGS applications has not yielded the desired performance because of compromises inherent to these existing radios. As a leading provider of UGS systems, McQ Inc. has been developing custom WMN protocols and radio hardware that are adapted specifically for the unique scenarios of the UGS situation. This paper presents the McQ designs, the tradeoffs made in developing the designs, and test and performance results.

  19. Communicable Disease Case Entry Using PDAs and Public Wireless Networks

    PubMed Central

    Lober, WB; Bliss, D; Dockrey, MR; Davidson, AJ; Karras, BT

    2003-01-01

    Concerns about detecting and responding to attacks with biowarfare agents have resulted in the development of deployable case reporting systems, e.g. RSVP1. We implement a proof of concept web-based information system to be used securely from personal digital assistants over public wireless networks, by public health field workers for routine and emergent case reporting. The system collects data for a local health jurisdiction, provides content- and event-based notification, and forwards case reports to the Colorado State communicable disease reporting system (CEDRS). We believe this demonstrates a useful integration of portable and web-based technologies with public health practice. PMID:14728422

  20. Adaptive routing for dynamic on-body wireless sensor networks.

    PubMed

    Maskooki, Arash; Soh, Cheong Boon; Gunawan, Erry; Low, Kay Soon

    2015-03-01

    Energy is scarce in mobile computing devices including wearable and implantable devices in a wireless body area network. In this paper, an adaptive routing protocol is developed and analyzed which minimizes the energy cost per bit of information by using the channel information to choose the best strategy to route data. In this approach, the source node will switch between direct and relayed communication based on the quality of the link and will use the relay only if the channel quality is below a certain threshold. The mathematical model is then validated through simulations which shows that the adaptive routing strategy can improve energy efficiency significantly compared with existing methods. PMID:24686306

  1. WiFiSiM: An Educational Tool for the Study and Design of Wireless Networks

    ERIC Educational Resources Information Center

    Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A.

    2013-01-01

    A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…

  2. An Optimization Multi-path Inter-Session Network Coding in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Xia, Zhuo-Qun; Liu, Chao; Zhu, Xue-Han; Liu, Pin-Chao; Xie, Li-Tong

    Wireless sensor networks (wsns) typically provide several paths from a source to a destination, and by using such paths efficiently. This has the potential not only to increase multiplicatively the achieved end-to-end rate, but also to provide robustness against performance fluctuations of any single link in the system. Network coding is a new technique which improves the network performance. This paper we analyze how to using network coding according to the characteristic of multi-path routing in the wsns. As a result, an optimization multi-path inter-session network coding is designed to improve the wsns performance.

  3. An Energy Aware Ant Colony Algorithm for the Routing of Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Deqiang; Xun, Yangyang; Zhou, Ting; Li, Wenjie

    Based on the characteristics of routing protocol for wireless sensor networks, an energy aware ant colony algorithm (EAACA) for the routing of wireless sensor networks is proposed in this paper. When EAACA routing protocol chooses the next neighbor node, not only the distance of sink node, but also the residual energy of the next node and the path of the average energy are taken into account. Theoretical analysis and simulation results show that compared with the traditional ACA algorithm for the routing of wireless sensor network, EAACA routing protocol balances the energy consumption of nodes in the network and extends the network lifetime.

  4. R&D on wireless broadband communication systems: new generation ubiquitous mobile network

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroyo

    2007-09-01

    R&D on new generation mobile network has attracted a growing interest over the world on the background of rapid market growth for 2nd and 3rd - generation cellular networks and wireless LANs/MANs. The National Institute of Information and Communications Technology (NICT) has been carried out the New Generation Mobile Network Project from April 2002 to March 2006, and has developed fundamental technologies to enable seamless and secure integration of various wireless access networks such as existing cellular networks, wireless LANs, home networks, intelligent transport systems (ITS), the Beyond-3G (B3G) cellular and other wireless access systems. From April 2006, Ubiquitous Mobile Network project focused on cognitive radio technology and integrated seamless networking technology was started. This paper overviews the achievement and the future plan of these projects.

  5. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  6. Protru: Leveraging Provenance to Enhance Network Trust in a Wireless Sensor Network

    ERIC Educational Resources Information Center

    Dogan, Gulustan

    2013-01-01

    Trust can be an important component of wireless sensor networks for believability of the produced data and historical value is a crucial asset in deciding trust of the data. A node's trust can change over time after its initial deployment due to various reasons such as energy loss, environmental conditions or exhausting sources. Provenance can…

  7. Energy efficient mechanisms for high-performance Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alsaify, Baha'adnan

    2009-12-01

    Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.

  8. Providing Source-Location Privacy in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ren, Jian

    Wireless sensor networks (WSN) have been widely used in many areas for unattended event monitoring. Mainly due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized detection, interception and and even node capture. Privacy is becoming one of the major issues that jeopardize the successful deployment and survivability of wireless sensor networks. While confidentiality of the message can be ensured through content encryption, it is much more difficult to adequately address the source-location privacy. For WSN, source-location privacy service is further complicated by the fact that the sensor nodes consist of low-cost and low-power radio devices, computationally intensive cryptographic algorithms (such as public-key cryptosystems) and large scale broadcasting-based protocols are not suitable for WSN. In this paper, we propose a two-step routing strategy for the messages to be routed from the actual source node to the SINK node through either a single, or multiple, randomly selected intermediate node(s) away from the source node so that it is to make it infeasible for the adversaries to trace back to the source node through hop-by-hop routing analysis. In the first protocol, the messages will be routed to a single intermediate node. This scheme can provide very good local source-location privacy. We also propose routing through multiple randomly selected intermediate nodes based on angle and quadrant to further improve the performance and security. While providing source-location privacy for WSN, our simulation results demonstrate that the proposed schemes are very efficient in energy consumption, and transmission latency. The proposed schemes can also assurance high message delivery ratio. Therefore, they can be used for many practical applications.

  9. Open hardware: a role to play in wireless sensor networks?

    PubMed

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-01-01

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications. PMID:25803706

  10. Chain-based communication in cylindrical underwater wireless sensor networks.

    PubMed

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  11. Directional MAC approach for wireless body area networks.

    PubMed

    Hussain, Md Asdaque; Alam, Md Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol. PMID:22346602

  12. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  13. Directional MAC Approach for Wireless Body Area Networks

    PubMed Central

    Hussain, Md. Asdaque; Alam, Md. Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol. PMID:22346602

  14. Open Hardware: A Role to Play in Wireless Sensor Networks?

    PubMed Central

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-01-01

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications. PMID:25803706

  15. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  16. From biological and social network metaphors to coupled bio-social wireless networks.

    PubMed

    Barrett, Christopher L; Channakeshava, Karthik; Eubank, Stephen; Anil Kumar, V S; Marathe, Madhav V

    2011-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  17. A neural networks-based hybrid routing protocol for wireless mesh networks.

    PubMed

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  18. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    PubMed Central

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  19. Developing a robust wireless sensor network structure for environmental sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  20. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    NASA Astrophysics Data System (ADS)

    Bin, Zheng; Qingfeng, Meng; Nan, Wang; Zhi, Li

    2011-07-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  1. A Patterned Preamble MAC Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Joe, Inwhee

    In this paper, we propose a novel MAC protocol with the patterned preamble technique to improve performance in terms of low power, channel utilization, and delay in wireless sensor networks. B-MAC is one of typical MAC protocols for wireless sensor networks using the duty cycle in order to achieve low-power operation. Since it works in an asynchronous fashion, B-MAC employs extended preamble and preamble sampling techniques. Even if it has outstanding performance in idle state, the overhead of these techniques is very large when packets are sent and received, because there is a lot of waste in the traditional preamble method. Instead of the simple preamble, our proposed MAC solution is to introduce more intelligent preamble with some patterns consisting of 2 phases (Tx phase & Ack phase). With this concept we implement real source code working on the mica2 platform with Tinyos-1.x version. Also, the test setup is presented, and the test results demonstrate that the proposed protocol provides better performance in terms of delay compared to B-MAC.

  2. Calibration and data validation of wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Jialin; Liu, Qiang; Li, Xiuhong; Niu, Hailin; Cai, Erli; Chang, Chongyan

    2015-12-01

    Soil moisture is an important parameter in the study of agriculture, ecology and carbon cycle. However, it has great difficulties to retrieve soil moisture content using remote sensing techniques. Even, field measurements can hardly reflect the spatial variation of soil moisture, due to the tremendous heterogeneity in its spatial distribution. Wireless Sensor Network (WSN), as a new technology for ground data collection, has been gradually applied to various fields. This novel technique has great advantages in monitoring soil moisture content, obtaining the soil moisture data in real time from multiple sites and different depths. Taking Huailai remote sensing comprehensive experimental station of Chinese Academy of Sciences for example, this paper introduces the calibration and data validation of soil moisture wireless sensor network. Oven drying method is used to calibrate the soil moisture sensor EC-5. The analysis indicates that the data measured by EC-5 had fairly well accuracy, so that the further calibration is not necessary. Data validation experiments had been taken from three aspects: data validity verification, temporal and spatial validation. It is clear to see that WSN data reveals the changes of soil moisture both in spatial domain and in different depths. Although the soil moisture data measured by WSN still do not have enough absolute accuracy, its continuous real-time data can clearly reflect the temporal and spatial relative variation, and the wide installation of sensors enables the data be obtained by the large amount, which was practically unavailable before.

  3. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    PubMed

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  4. Defense and security of a wireless tactical network

    NASA Astrophysics Data System (ADS)

    Younger, Michael; Young, Stuart H.

    2001-08-01

    Recall the adage `a chain is as strong as its weakest link'- -a phrase that could serve as the official mantra of computer security. Operating Systems are difficult system to administer because it is not only complex and cantankerous but also hard to secure. They are enormous configurability, the fact that vendors don't ship secure systems, and that it requires significant amounts of time, resources, and expertise to safeguard a host are only some of the reasons that so many systems are insecure any type of network commercial or tactical. To compound the problem, like all modern operating systems it not only becomes less secure as time goes on (simply due to usage), but with the rapidly changing security field, it also requires considerably effort to stay abreast of the latest information. Army Research Labs is trying to address the security of the operating system in a tactical wireless environment. Through the use of public domain and/or commercial mans. ARL is evaluating monitoring, deployment, and auditing techniques to the wire commercial domain. By evaluating the wire domain ARL will determine what works and how they work in the tactical area. There are numerous ways to protect the wire/wireless network via public domain or commercial software.

  5. RUASN: A Robust User Authentication Framework for Wireless Sensor Networks

    PubMed Central

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  6. RUASN: a robust user authentication framework for wireless sensor networks.

    PubMed

    Kumar, Pardeep; Choudhury, Amlan Jyoti; Sain, Mangal; Lee, Sang-Gon; Lee, Hoon-Jae

    2011-01-01

    In recent years, wireless sensor networks (WSNs) have been considered as a potential solution for real-time monitoring applications and these WSNs have potential practical impact on next generation technology too. However, WSNs could become a threat if suitable security is not considered before the deployment and if there are any loopholes in their security, which might open the door for an attacker and hence, endanger the application. User authentication is one of the most important security services to protect WSN data access from unauthorized users; it should provide both mutual authentication and session key establishment services. This paper proposes a robust user authentication framework for wireless sensor networks, based on a two-factor (password and smart card) concept. This scheme facilitates many services to the users such as user anonymity, mutual authentication, secure session key establishment and it allows users to choose/update their password regularly, whenever needed. Furthermore, we have provided the formal verification using Rubin logic and compare RUASN with many existing schemes. As a result, we found that the proposed scheme possesses many advantages against popular attacks, and achieves better efficiency at low computation cost. PMID:22163888

  7. Relative Span Weighted Localization of Uncooperative Nodes in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Laurendeau, Christine; Barbeau, Michel

    Increasingly ubiquitous wireless technologies require novel localization techniques to pinpoint the position of an uncooperative node, whether the target be a malicious device engaging in a security exploit or a low-battery handset in the middle of a critical emergency. Such scenarios necessitate that a radio signal source be localized by other network nodes efficiently, using minimal information. We propose two new algorithms for estimating the position of an uncooperative transmitter, based on the received signal strength (RSS) of a single target message at a set of receivers whose coordinates are known. As an extension to the concept of centroid localization, our mechanisms weigh each receiver’s coordinates based on the message’s relative RSS at that receiver, with respect to the span of RSS values over all receivers. The weights may decrease from the highest RSS receiver either linearly or exponentially. Our simulation results demonstrate that for all but the most sparsely populated wireless networks, our exponentially weighted mechanism localizes a target node within the regulations stipulated for emergency services location accuracy.

  8. Energy-Efficient Receiver-Driven Wireless Mesh Sensor Networks

    PubMed Central

    Kominami, Daichi; Sugano, Masashi; Murata, Masayuki; Hatauchi, Takaaki

    2011-01-01

    A major challenge in wireless sensor networks research is energy efficiency. In the intermittent receiver-driven data transmission (IRDT) protocol, which aims at saving energy, communication between two nodes commences when multiple receiver nodes transmit their own IDs and the sender nodes receive them. This protocol can be used to construct a mesh network which is robust against node failure and wireless channel fluctuations. In our work, we improve this protocol by implementing a collision avoidance method for control packets. First, we refer to the probability of control packet collision as a function of the intermittent interval. We then introduce procedures to determine the interval which decreases or minimizes this probability. Afterwards, we include a data aggregation mechanism into IRDT to reduce data transmission frequency and the occurrence of control packet collisions. Through computer simulation, we show that IRDT can offer greater reduction of the average energy consumption compared with RI-MAC and X-MAC, especially at small loads, and we also demonstrate that IRDT with collision avoidance for control packets can attain higher performance than the original IRDT. This method ensures a packet collection ratio of more than 99% and an average energy consumption 38% lower than that of EA-ALPL and 90% lower than that of the original IRDT. PMID:22346570

  9. Data-Centric Routing for Intra Wireless Body Sensor Networks.

    PubMed

    Bangash, Javed Iqbal; Khan, Abdul Waheed; Abdullah, Abdul Hanan

    2015-09-01

    A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art. PMID:26242749

  10. Energy-efficient receiver-driven wireless mesh sensor networks.

    PubMed

    Kominami, Daichi; Sugano, Masashi; Murata, Masayuki; Hatauchi, Takaaki

    2011-01-01

    A major challenge in wireless sensor networks research is energy efficiency. In the intermittent receiver-driven data transmission (IRDT) protocol, which aims at saving energy, communication between two nodes commences when multiple receiver nodes transmit their own IDs and the sender nodes receive them. This protocol can be used to construct a mesh network which is robust against node failure and wireless channel fluctuations. In our work, we improve this protocol by implementing a collision avoidance method for control packets. First, we refer to the probability of control packet collision as a function of the intermittent interval. We then introduce procedures to determine the interval which decreases or minimizes this probability. Afterwards, we include a data aggregation mechanism into IRDT to reduce data transmission frequency and the occurrence of control packet collisions. Through computer simulation, we show that IRDT can offer greater reduction of the average energy consumption compared with RI-MAC and X-MAC, especially at small loads, and we also demonstrate that IRDT with collision avoidance for control packets can attain higher performance than the original IRDT. This method ensures a packet collection ratio of more than 99% and an average energy consumption 38% lower than that of EA-ALPL and 90% lower than that of the original IRDT. PMID:22346570

  11. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    PubMed Central

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-01-01

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results. PMID:26610495

  12. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm.

    PubMed

    Ozturk, Celal; Karaboga, Dervis; Gorkemli, Beyza

    2011-01-01

    As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks. PMID:22163942

  13. On Modeling Viral Diffusion in Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai-Nam; Shinoda, Yoichi

    Smart phones and computers now are able to co-work in a wireless environment where malware can propagate. Although many investigations have modeled the spread of malware, little has been done to take into account different characteristics of items to see how they affect disease diffusion in an ad hoc network. We have therefore developed a novel framework, consisting of two models, which consider diversity of objects as well as interactions between their different classes. Our framework is able to produce a huge result space thus makes it appropriate to describe many viral proliferating scenarios. Additionally, we have developed a formula to calculate the possible average number of newly infected devices in the considered system. An important contribution of our work is the comprehension of item diversity, which states that a mixture of device types causes a bigger malware spread as the number of device types in the network increases.

  14. Energy efficient wireless sensor networks using asymmetric distributed source coding

    NASA Astrophysics Data System (ADS)

    Rao, Abhishek; Kulkarni, Murlidhar

    2013-01-01

    Wireless Sensor Networks (WSNs) are networks of sensor nodes deployed over a geographical area to perform a specific task. WSNs pose many design challenges. Energy conservation is one such design issue. In literature a wide range of solutions addressing this issue have been proposed. Generally WSNs are densely deployed. Thus the nodes with the close proximity are more likely to have the same data. Transmission of such non-aggregated data may lead to an inefficient energy management. Hence the data fusion has to be performed at the nodes so as to combine the edundant information into a single data unit. Distributed Source Coding is an efficient approach in achieving this task. In this paper an attempt has been made in modeling such a system. Various energy efficient codes were considered for the analysis. System performance in terms of energy efficiency has been made.

  15. Programmable Re-tasking of Wireless Sensor Networks Using WISEMAN

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, Sergio; Chen, Min; Cao, Huasong; Leung, Victor C. M.

    In this paper we present a flexible middleware platform for re-tasking Wireless Sensor Networks (WSNs) that we coin WISEMAN. Based on our previous experiences with mobile agents in computer networks, we developed a lightweight interpreter of text-based codes that enables their deployment in order to implement diverse WSNs tasks. WISEMAN occupies 19Kbytes of TinyOS embedded code, and 3 Kbytes of memory to operate in commercially available sensor nodes. We examine different agent migration methodologies, and present performance evaluations to gauge their efficiency in terms of delay and bandwidth with aims to determine which approach works best depending on the intended agent application. Our results indicate that WISEMAN agents can migrate as fast as 235 mS per-hop, which is comparable to existing approaches, while supporting the necessary code execution flexibility needed for the rapid implementation and deployment of WSN re-tasking programs.

  16. A Survey on Clustering Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions. PMID:23112649

  17. Wireless sensor networks for indoor air quality monitoring.

    PubMed

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. PMID:22133488

  18. Finding Minimum-Power Broadcast Trees for Wireless Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II

    2004-01-01

    Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.

  19. An effective Denial of Service Attack Detection Method in Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Luan, Liangyu; Fu, Yingfang; Xiao, Peng

    In order to detect the DoS attack (Denial-of-Service attack) when wireless mesh networks adopt AODV routing protocol of Ad Hoc networks. Such technologies as an end-to-end authentication, utilization rate of cache memory, two pre-assumed threshold value and distributed voting are used in this paper to detect DoS attacker, which is on the basic of hierarchical topology structure in wireless mesh networks. Through performance analysis in theory and simulations experiment, the scheme would improve the flexibility and accuracy of DoS attack detection, and would obviously improve its security in wireless mesh networks.

  20. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed

  1. An improved unified network protocol framework for large-scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ding, Jin; Sivalingam, Krishna M.

    2004-08-01

    Rapid technological advances in wireless communication have made it possible for networking sensor devices. Given the low computation and battery power capacities of these sensor nodes, the key design factors of network protocols are self-configuring, energy-efficient, adaptive, and scalable. We presented the multi-hop infrastructure network architecture (MINA) for a wireless sensor network consisting of a few hundred sensors that communicate data to a base station (BS). We designed a Unified Network Protocol Framework for MINA that encompasses network organization, medium access control (MAC) and routing protocols. In this paper, we improve it by adaptively varying transmission range to maintain network connectivity. It is a derivative-free optimization algorithm. The BS periodically evaluates the objective function, chooses the appropriate transmission range and broadcasts it to the sensor nodes that then update the transmission range. The advantages are: (i) Avoids the disconnectivity; (ii) Maximizes the number of nodes that can be connected to the BS, (iii) Minimizes the energyxdelay metric and (iv) Avoids the "hot-spot" nodes in the network. The performance in terms of delay, throughput, energy consumption and network lifetimes, is studied in detail using discrete-event simulation compared with other protocol. The results show that it is energy efficient in a large scale network.

  2. Low-power wireless sensor networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Musaloiu-Elefteri, Razvan

    Significant progress has been made in the field of Wireless Sensor Networks in the decade that passed since its inception. This thesis presents several advances intended to make these networks a suitable instrument for environmental monitoring. The thesis first describes Koala, a low-power data-retrieval system that can achieve duty cycles below 1% by using bulk transfers, and Low Power Probing, a novel mechanism to efficiently wake up a network. The second contribution is Serendipity, another data-retrieval system, which takes advantage of the random rendezvous inherent in the Low Power Probing mechanism to achieve a very low duty cycle for low data rate networks. The third part explores the problem of and presents a solution for the interference between WSNs using IEEE 802.15.4 radios and the ubiquitous WiFi networks in the 2.4 GHz spectrum bandwidth. The last contribution of this thesis is Latte, a restricted version of the JavaScript language, that not only can be compiled to C and dynamically loaded on a sensing node, but can also be simulated and debugged in a JavaScript-enabled browser.

  3. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  4. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  5. Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors

    NASA Astrophysics Data System (ADS)

    Lynch, Jerome P.; Wang, Yang; Loh, Kenneth J.; Yi, Jin-Hak; Yun, Chung-Bang

    2006-12-01

    As researchers continue to explore wireless sensors for use in structural monitoring systems, validation of field performance must be done using actual civil structures. In this study, a network of low-cost wireless sensors was installed in the Geumdang Bridge, Korea to monitor the bridge response to truck loading. Such installations allow researchers to quantify the accuracy and robustness of wireless monitoring systems within the complex environment encountered in the field. In total, 14 wireless sensors were installed in the concrete box girder span of the Geumdang Bridge to record acceleration responses to forced vibrations introduced by a calibrated truck. In order to enhance the resolution of the capacitive accelerometers interfaced to the wireless sensors, a signal conditioning circuit that amplifies and filters low-level accelerometer outputs is proposed. The performance of the complete wireless monitoring system is compared to a commercial tethered monitoring system that was installed in parallel. The performance of the wireless monitoring system is shown to be comparable to that of the tethered counterpart. Computational resources (e.g. microcontrollers) coupled with each wireless sensor allow the sensor to estimate modal parameters of the bridge such as modal frequencies and operational displacement shapes. This form of distributed processing of measurement data by a network of wireless sensors represents a new data management paradigm associated with wireless structural monitoring.

  6. Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    PubMed Central

    Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano

    2009-01-01

    Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345

  7. Advanced Mobility Handover for Mobile IPv6 Based Wireless Networks

    PubMed Central

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches. PMID:25614890

  8. A survey on virtualization of Wireless Sensor Networks.

    PubMed

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  9. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  10. A Survey on Virtualization of Wireless Sensor Networks

    PubMed Central

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  11. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  12. A Data Fusion Method in Wireless Sensor Networks

    PubMed Central

    Izadi, Davood; Abawajy, Jemal H.; Ghanavati, Sara; Herawan, Tutut

    2015-01-01

    The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches. PMID:25635417

  13. SNR Based Digital Estimation of Security in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ashraf, Adnan; Rajput, Abdulrauf; Mussadiq, Marvie; Chowdhry, Bhawani S.; Hashmani, Manzoor

    Security in wireless sensor networks (WSNs) is usually thought as privacy, auditing, intrusion detection and protection. In general, the quality of signal processing is considered as issue of middleware layers. The higher values of signal to noise ratio (SNR) are vital for target detection and estimation which is the most critical objective of WSN. Despite of the fact that SNR has a significant impact on objectives of WSN, not much investigation is found in literature about SNR and its security impact on such networks. The entire WSN can be rendered as useless due to SNR degradation and therefore, SNR is a prevailing security threat in WSNs. In the light of modern concepts of security, the safety should accompany the availability, scalability, efficiency and the quality parameters of inter-node communication. We show that SNR can identify suspicious activities which can exploit the performance and quality of communication in a sensor network. Also, by varying range of transmission radii and observing its impact on SNR we demonstrate that SNR-values, SNR-variance and pre-defined network threshold of SNR-variance, together can be useful in security assessment of WSN.

  14. Advanced mobility handover for mobile IPv6 based wireless networks.

    PubMed

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches. PMID:25614890

  15. Wireless sensors and sensor networks for homeland security applications

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.

    2012-01-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  16. The Use of Wireless Sensor Networks in Soil Ecology

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Szalay, A. S.; Hong, W.; Wertheimer, D.

    2004-12-01

    The availability of inexpensive, low power wireless sensors is changing the way we can acquire environmental information. This type of monitoring is especially necessary in systems, where conditions vary at different spatial and temporal scales. The most spatially complex stratum of a terrestrial ecosystem is its soil. Soil harbors an enormous variety of plants, microorganisms, invertebrates and vertebrates which provide numerous ecosystem services, such as decomposition of organic matter, soil aeration, modification of pore and aggregate size. We still poorly understand how biodiversity, abundance and functioning of the soil system are linked together. Our understanding of soil organism dynamics and, more importantly the role these organisms play in important ecosystem processes is limited due to the complexity of this environments and lack of continuously collected abiotic data. In particular, spatial and temporal variations in the environmental factors over mezoscopic (1-10m) distances is important to the distribution and behavior of soil invertebrates, to their role in litter and nutrient dynamics, and to soil nutrient processing. This presentation focuses on how low-cost wireless networks can be assembled and customized to augment several ongoing soil ecological studies in the Baltimore Ecosystem Study, and urban LTER site. A relatively modest configuration of a few hundred sensors will collect close to 100 million data points over a year. The projects range from neighborhood scale assessment of soil communities to reproductive biology of invasive soil invertebrates and to a detailed study of the enormous spatial and temporal heterogeneity of the soil substrate.

  17. A Wireless Sensor Network of Permanently Installed Structural Integrity Monitors

    NASA Astrophysics Data System (ADS)

    Benny, Graham; Steel, Kenneth; McNab, Alistair; Hayward, Gordon

    2005-04-01

    Structural integrity monitoring (SIM) involving a large numbers of distributed sensors is of increasing importance to a wide range of industries. Compact sensor packages combining ultrasonic transducers with local sensor and communications control functions and signal processing have been designed using modern miniaturization techniques. Autonomous wireless devices powered by on-board batteries can extract top-up energy derived from the sensor environment. Applications to date include erosion or corrosion monitors via ultrasonic thickness measurement devices, area mapping array sensors and time-of-flight diffraction (TOFD) technique transducers for defect monitoring. Formation or propagation of defects can also be monitored with passive acoustic emission (AE) sensors. The project concepts and early prototyping were presented at QNDE 2003. This paper highlights further progress towards a distributed wireless ultrasonic sensor network and presents results of TOFD and thickness measurement tests. Signal processing techniques including averaging, finite impulse response (FIR) filtering and pulse compression have been employed to improve signal-to-noise ratio (SNR), to extend battery power and to address time resolution issues. Field trials in a hostile industrial environment with metallic obstructions in the form of pipe-work, ducting, stairs, beams and floors have been performed and methods of extracting environmental energy have been tested.

  18. On wireless sensing networks in hydrology: from observation to prediction

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H. R.; Huisman, J. A.; Wei, Q.; Fang, Z.; Vanderborght, J.; Kollet, S. J.

    2015-12-01

    The use of wireless sensor networks (WSN) has gained increasing attention in the field of hydrology, because WSNs offer a unique potential to monitor the spatial and temporal dynamics of soil moisture at scales beyond the field scale. In addition, they provide unique opportunities for the validation of numerical models, hydrogeophysical measurement techniques, as well as for the calibration and validation of remotely sensed soil moisture data. In this presentation, we will discuss results of temporal and spatially resolved measurements of soil moisture using WSNs installed in two different small-scale catchments under forest (Wüstebach, Germany) and grassland (Rollesbroich, Germany). In combination with measurements of hydrological fluxes, we were able to close the water balance of the Wüstebach catchment up to 3% of the yearly rainfall. In addition, changes between wet and dry states of the catchment could be observed and related to a critical soil moisture content. Using stochastic analysis of water flow in the unsaturated zone and pedotransfer functions, we were able to predict subgrid variability of soil moisture. This framework also allowed deriving the spatial variability of soil hydraulic parameters using the relationship between the variance of soil moisture and its mean soil water content. Finally, soil moisture data from the WSN in the Wüstebach catchment were used to validate a detailed hydrologic model of the catchment using empirical orthogonal functions and coherence wavelet analysis. Further development of wireless sensing technologies will include the monitoring of soil moisture potential and biogeochemical properties such as redox potential.

  19. Efficient and Anonymous Authentication Scheme for Wireless Body Area Networks.

    PubMed

    Wu, Libing; Zhang, Yubo; Li, Li; Shen, Jian

    2016-06-01

    As a significant part of the Internet of Things (IoT), Wireless Body Area Network (WBAN) has attract much attention in this years. In WBANs, sensors placed in or around the human body collect the sensitive data of the body and transmit it through an open wireless channel in which the messages may be intercepted, modified, etc. Recently, Wang et al. presented a new anonymous authentication scheme for WBANs and claimed that their scheme can solve the security problems in the previous schemes. Unfortunately, we demonstrate that their scheme cannot withstand impersonation attack. Either an adversary or a malicious legal client could impersonate another legal client to the application provider. In this paper, we give the detailed weakness analysis of Wang et al.'s scheme at first. Then we present a novel anonymous authentication scheme for WBANs and prove that it's secure under a random oracle model. At last, we demonstrate that our presented anonymous authentication scheme for WBANs is more suitable for practical application than Wang et al.'s scheme due to better security and performance. Compared with Wang et al.'s scheme, the computation cost of our scheme in WBANs has reduced by about 31.58%. PMID:27091755

  20. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  1. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Wagner, Raymond S.

    2009-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Any practical WSN deployment must contend with a number of difficulties in its radio frequency (RF) environment. Multi-path reflections can distort signals, limit data rates, and cause signal fades that prevent nodes from having clear access to channels, especially in a closed environment such as a spacecraft. Other RF signal sources, such as wireless internet, voice, and data systems may contend with the sensor nodes for bandwidth. Finally, RF noise from electrical systems and periodic scattering from moving objects such as crew members will all combine to give an incredibly unpredictable, time-varying communication environment.

  2. Achieving network level privacy in Wireless Sensor Networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks. PMID:22294881

  3. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  4. Bioinspired Evolutionary Algorithm Based for Improving Network Coverage in Wireless Sensor Networks

    PubMed Central

    Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie

    2014-01-01

    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm. PMID:24693247

  5. Concept of distributed corporative wireless vehicle voice networks based on radio-over-fiber technique

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Bukashkin, Sergey A.; Buzov, Alexander V.; Kubanov, Victor P.; Praporshchikov, Denis E.; Tyazhev, Anatoly I.

    2016-03-01

    This work is concerned on description of the concept of corporative wireless vehicle voice networks based on Radioover- Fiber (RoF) technology, which is integration of wireless and fiber optic networks. The concept of RoF means to transport data over optical fibers by modulating lightwave with radio frequency signal or at the intermediate frequency/baseband that provides to take advantage of the low loss and large bandwidth of an optical fiber together with immunity to electromagnetic influence, flexibility and transparence. A brief overview of key RoF techniques as well as comparative analysis and ability of its application for wireless vehicle voice network realization is presented.

  6. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  7. Design of multilevel heterogeneous ad-hoc wireless networks with UAVs

    NASA Astrophysics Data System (ADS)

    Gu, Daniel L.; Gerla, Mario; Ly, Henry; Xu, Kaixin; Kong, Jiejun; Hong, Xiaoyan

    2001-10-01

    Multi-Layer Ad Hoc Wireless Networks with UAVs is an ideal infrastructure to establish a rapidly deployable wireless communication system any time any where in the world for military applications. In this paper, we review the research we have done so far for our heterogeneous solution. First of all, we proposed the infrastructure of Multi-level Heterogeneous Ad-Hoc Wireless Network with UAVs. Second, we developed a new MAC layer protocol, Centralized Intelligent Channel Assigned Multiple Access (C-ICAMA), for ground mobile backbone nodes to access UAV. Third, we extended HSR (Hierarchical State Routing) to this Multi-Level Heterogeneous Ad-Hoc Wireless Network. Due to the intrinsic limitations of Extended HSR, we extended the Landmark Ad Hoc Routing (LANMAR) as our forth step. Security is a critical issue for mobile ad-hoc wireless networks, especially for military applications. We developed an embedded distributed security protocol and integrated with this heterogeneous hierarchical ad hoc wireless networks in our fifth step. Therefore, the hierarchical multi-layer approach is the most desirable approach to achieve routing scalability in multi-hop wireless networks.

  8. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    PubMed Central

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  9. A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    PubMed Central

    Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols. PMID:22163483

  10. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    PubMed

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  11. A novel prediction methodology for detecting failures and instabilities in directional wireless networks

    NASA Astrophysics Data System (ADS)

    Coleman, David M.; Milner, Stuart D.; Davis, Christopher C.

    2012-10-01

    Even though advances in wireless technology have yielded lower power consumption, higher data rates, and numerous other improvements, the ability to develop a proactive strategy towards handling degradations and failures in directional wireless networks has evaded the research community. In this paper, we introduce a methodology using an analogy to molecular systems in which a directional wireless network utilizing free space optical (FSO) or RF links is modeled as a molecule whose links can grow/retract similarly to bonds. A normal mode analysis (NMA) is performed to identify link instabilities (degradations and failures) and an N-dimensional potential energy surface (PES) is derived with respect to network and environmental parameters to aide in the detection of when a new topology is available ahead of the topology computation stage. Together, the NMA and PES form a basis for a proactive network methodology aimed at improving performance in directional wireless networks.

  12. Secure and Authenticated Data Communication in Wireless Sensor Networks

    PubMed Central

    Alfandi, Omar; Bochem, Arne; Kellner, Ansgar; Göge, Christian; Hogrefe, Dieter

    2015-01-01

    Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes. PMID:26266413

  13. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors.

    PubMed

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao

    2016-01-01

    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902

  14. Secure Many-to-One Communications in Wireless Sensor Networks

    PubMed Central

    Viejo, Alexandre; Domingo-Ferrer, Josep; Sebé, Francesc; Castellà-Roca, Jordi

    2009-01-01

    Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched. PMID:22346700

  15. Distributed efficient similarity search mechanism in wireless sensor networks.

    PubMed

    Ahmed, Khandakar; Gregory, Mark A

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  16. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  17. Intelligent Transmission of Patient Sensor Data in Wireless Hospital Networks

    PubMed Central

    Bragg, Danielle; Yun, Mira; Bragg, Haya; Choi, Hyeong-Ah

    2012-01-01

    Medical data sensors on patients in hospitals produce an increasingly large volume of increasingly diverse real-time data. Because scheduling the transmission of this data through wireless hospital networks becomes a crucial problem, we propose a Reinforcement Learning-based queue management and scheduling scheme. In this scheme, we use a game-theoretical approach where patients compete for transmission resources by assigning different utility values to data packets. These utility functions are largely based on data criticality and deadline, which together determine the data’s scheduling priority. Simulation results demonstrate the high performance of this scheme in comparison to a datatype-based scheme, with the drop rate of critical data as a performance measure. We also show how patients can optimize their policies based on the utility functions of competing patients. PMID:23304390

  18. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  19. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  20. Game Theory for Wireless Sensor Networks: A Survey

    PubMed Central

    Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong

    2012-01-01

    Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533

  1. Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    PubMed Central

    Ahmed, Khandakar; Gregory, Mark A.

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  2. Secure and Authenticated Data Communication in Wireless Sensor Networks.

    PubMed

    Alfandi, Omar; Bochem, Arne; Kellner, Ansgar; Göge, Christian; Hogrefe, Dieter

    2015-01-01

    Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes. PMID:26266413

  3. Distribution of Link Distances in a Wireless Network

    PubMed Central

    Miller, Leonard E.

    2001-01-01

    The probability distribution is found for the link distance between two randomly positioned mobile radios in a wireless network for two representative deployment scenarios: (1) the mobile locations are uniformly distributed over a rectangular area and (2) the x and y coordinates of the mobile locations have Gaussian distributions. It is shown that the shapes of the link distance distributions for these scenarios are very similar when the width of the rectangular area in the first scenario is taken to be about three times the standard deviation of the location distribution in the second scenario. Thus the choice of mobile location distribution is not critical, but can be selected for the convenience of other aspects of the analysis or simulation of the mobile system.

  4. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks.

    PubMed

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  5. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    PubMed Central

    Cho, Eung Jun; Hong, Choong Seon; Lee, Sungwon; Jeon, Seokhee

    2013-01-01

    The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  6. Physical and Cross-Layer Security Enhancement and Resource Allocation for Wireless Networks

    ERIC Educational Resources Information Center

    Bashar, Muhammad Shafi Al

    2011-01-01

    In this dissertation, we present novel physical (PHY) and cross-layer design guidelines and resource adaptation algorithms to improve the security and user experience in the future wireless networks. Physical and cross-layer wireless security measures can provide stronger overall security with high efficiency and can also provide better…

  7. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  8. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  9. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    ERIC Educational Resources Information Center

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  10. Joint Channel-Network Coding (JCNC) for Distributed Storage in Wireless Network

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Lin, Jiaru

    We propose to construct a joint channel-network coding (knosswn as Random Linear Coding) scheme based on improved turbo codes for the distributed storage in wireless communication network with k data nodes, s storage nodes (kNetwork Coding (JCNC) system benefits from network coding, compared with that of system without network coding based only on store and forward (S-F) approach. Another helpful parameter: node degree (L) indicates how many storage nodes one data packet should fall onto. L characterizes the en/decoding complexity of the system. Moreover, this proposed framework can be extended to ad-hoc and sensor network easily.

  11. Energy-Efficient and Robust In-Network Inference in Wireless Sensor Networks.

    PubMed

    Zhao, Wei; Liang, Yao

    2015-10-01

    Distributed in-network inference plays a significant role in large-scale wireless sensor networks (WSNs) in various applications for distributed detection and estimation. While belief propagation (BP) holds great potential for forming a powerful underlying mechanism for such distributed in-network inferences in WSNs, one major challenge is how to systematically improve the energy efficiency of BP-based in-network inference in WSNs. In this paper, we first propose a systematic and rigorous data-driven approach to building information models for WSN applications upon which BP-based in-network inference can be effectively and efficiently performed. We then present a wavelet-based BP framework for multiresolution inference, with respect to our WSN information modeling, to further reduce WSNs' energy. We empirically evaluate our proposed WSN information modeling and wavelet-based BP framework/multiresolution inference using real-world sensor network data. The results demonstrate the merits of our proposed approaches. PMID:25415997

  12. A Distributed Support Vector Machine Learning Over Wireless Sensor Networks.

    PubMed

    Kim, Woojin; Stanković, Milos S; Johansson, Karl H; Kim, H Jin

    2015-11-01

    This paper is about fully-distributed support vector machine (SVM) learning over wireless sensor networks. With the concept of the geometric SVM, we propose to gossip the set of extreme points of the convex hull of local data set with neighboring nodes. It has the advantages of a simple communication mechanism and finite-time convergence to a common global solution. Furthermore, we analyze the scalability with respect to the amount of exchanged information and convergence time, with a specific emphasis on the small-world phenomenon. First, with the proposed naive convex hull algorithm, the message length remains bounded as the number of nodes increases. Second, by utilizing a small-world network, we have an opportunity to drastically improve the convergence performance with only a small increase in power consumption. These properties offer a great advantage when dealing with a large-scale network. Simulation and experimental results support the feasibility and effectiveness of the proposed gossip-based process and the analysis. PMID:26470063

  13. Clustering and Beamforming for Efficient Communication in Wireless Sensor Networks.

    PubMed

    Porcel-Rodríguez, Francisco; Valenzuela-Valdés, Juan; Padilla, Pablo; Luna-Valero, Francisco; Luque-Baena, Rafael; López-Gordo, Miguel Ángel

    2016-01-01

    Energy efficiency is a critical issue for wireless sensor networks (WSNs) as sensor nodes have limited power availability. In order to address this issue, this paper tries to maximize the power efficiency in WSNs by means of the evaluation of WSN node networks and their performance when both clustering and antenna beamforming techniques are applied. In this work, four different scenarios are defined, each one considering different numbers of sensors: 50, 20, 10, five, and two nodes per scenario, and each scenario is randomly generated thirty times in order to statistically validate the results. For each experiment, two different target directions for transmission are taken into consideration in the optimization process (φ = 0° and θ = 45°; φ = 45°, and θ = 45°). Each scenario is evaluated for two different types of antennas, an ideal isotropic antenna and a conventional dipole one. In this set of experiments two types of WSN are evaluated: in the first one, all of the sensors have the same amount of power for communications purposes; in the second one, each sensor has a different amount of power for its communications purposes. The analyzed cases in this document are focused on 2D surface and 3D space for the node location. To the authors' knowledge, this is the first time that beamforming and clustering are simultaneously applied to increase the network lifetime in WSNs. PMID:27556463

  14. An Overview on Wireless Sensor Networks Technology and Evolution

    PubMed Central

    Buratti, Chiara; Conti, Andrea; Dardari, Davide; Verdone, Roberto

    2009-01-01

    Wireless sensor networks (WSNs) enable new applications and require non-conventional paradigms for protocol design due to several constraints. Owing to the requirement for low device complexity together with low energy consumption (i.e., long network lifetime), a proper balance between communication and signal/data processing capabilities must be found. This motivates a huge effort in research activities, standardization process, and industrial investments on this field since the last decade. This survey paper aims at reporting an overview of WSNs technologies, main applications and standards, features in WSNs design, and evolutions. In particular, some peculiar applications, such as those based on environmental monitoring, are discussed and design strategies highlighted; a case study based on a real implementation is also reported. Trends and possible evolutions are traced. Emphasis is given to the IEEE 802.15.4 technology, which enables many applications of WSNs. Some example of performance characteristics of 802.15.4-based networks are shown and discussed as a function of the size of the WSN and the data type to be exchanged among nodes. PMID:22423202

  15. Quantum versus simulated annealing in wireless interference network optimization.

    PubMed

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  16. Concept of wireless sensor network for future in-situ exploration of lunar ice using wireless impedance sensor

    NASA Astrophysics Data System (ADS)

    Pabari, J. P.; Acharya, Y. B.; Desai, U. B.; Merchant, S. N.

    2013-07-01

    It is known that a wireless sensor network uses some sort of sensors to detect a physical quantity of interest, in general. The wireless sensor network is a potential tool for exploring the difficult-to-access area on the earth and the concept may be extended to space applications in future. Recently, lunar water has been detected by a few lunar missions using remote sensing techniques. The lunar water is expected to be in the form of ice at very low temperatures of permanently dark regions on the moon. To support the remote observations and also to find out potential ice bearing sites on the moon, in-situ measurement of the lunar ice is essential. However, a rover may not be able to reach the permanently shadowed regions due to terrain irregularity. One possibility to access such areas is to use a wireless sensor network on the lunar surface.In this paper, we have investigated a possibility of in-situ exploration of lunar ice by a wireless sensor network. The research issues related to the lunar wireless sensor network and a few possible solutions have been reviewed for the sake of completeness. A key component in the system is an ice sensor, which can measure the permittivity of the ice at appropriate frequency to differentiate with the soil. We suggest an impedance based sensor for this purpose, whose design aspects were reported earlier. We have successfully tested pure ice sample made from Milli-Q water in the laboratory environment and the results are shown in this paper.

  17. Elliptic Curve Cryptography with Security System in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Sharma, Dharmendra

    2010-10-01

    The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man

  18. Estimation with Wireless Sensor Networks: Censoring and Quantization Perspectives

    NASA Astrophysics Data System (ADS)

    Msechu, Eric James

    In the last decade there has been an increase in application areas for wireless sensor networks (WSNs), which can be attributed to the advances in the enabling sensor technology. These advances include integrated circuit miniaturization and mass-production of highly-reliable hardware for sensing, processing, and data storage at a lower cost. In many emerging applications, massive amounts of data are acquired by a large number of low-cost sensing devices. The design of signal processing algorithms for these WSNs, unlike in wireless networks designed for communications, face a different set of challenges due to resource constraints sensor nodes must adhere to. These include: (i) limited on-board memory for storage; (ii) limited energy source, typically based on irreplaceable battery cells; (iii) radios with limited transmission range; and (iv) stringent data rates either due to a need to save energy or due to limited radio-frequency bandwidth allocated to sensor networks. This work addresses distributed data-reduction at sensor nodes using a combination of measurement-censoring and measurement quantization. The WSN is envisioned for decentralized estimation of either a vector of unknown parameters in a maximum likelihood framework, or, for decentralized estimation of a random signal using Bayesian optimality criteria. Early research effort in data-reduction methods involved using a centralized computation platform directing selection of the most informative data and focusing computational and communication resources toward the selected data only. Robustness against failure of the central computation unit, as well as the need for iterative data-selection and data-gathering in some applications (e.g., real-time navigation systems), motivates a rethinking of the centralized data-selection approach. Recently, research focus has been on collaborative signal processing in sensor neighborhoods for the data-reduction step. It is in this spirit that investigation of methods

  19. A feedback-based secure path approach for wireless sensor network data collection.

    PubMed

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  20. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    PubMed

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-01-01

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957

  1. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests

    PubMed Central

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-01-01

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957

  2. Enhancements for distributed certificate authority approaches for mobile wireless ad hoc networks.

    SciTech Connect

    Van Leeuwen, Brian P.; Michalski, John T.; Anderson, William Erik

    2003-12-01

    Mobile wireless ad hoc networks that are resistant to adversarial manipulation are necessary for distributed systems used in military and security applications. Critical to the successful operation of these networks, which operate in the presence of adversarial stressors, are robust and efficient information assurance methods. In this report we describe necessary enhancements for a distributed certificate authority (CA) used in secure wireless network architectures. Necessary cryptographic algorithms used in distributed CAs are described and implementation enhancements of these algorithms in mobile wireless ad hoc networks are developed. The enhancements support a network's ability to detect compromised nodes and facilitate distributed CA services. We provide insights to the impacts the enhancements will have on network performance with timing diagrams and preliminary network simulation studies.

  3. Energy Efficiency of Distributed Signal Processing in Wireless Networks: A Cross-Layer Analysis

    NASA Astrophysics Data System (ADS)

    Geraci, Giovanni; Wildemeersch, Matthias; Quek, Tony Q. S.

    2016-02-01

    In order to meet the growing mobile data demand, future wireless networks will be equipped with a multitude of access points (APs). Besides the important implications for the energy consumption, the trend towards densification requires the development of decentralized and sustainable radio resource management techniques. It is critically important to understand how the distribution of signal processing operations affects the energy efficiency of wireless networks. In this paper, we provide a cross-layer framework to evaluate and compare the energy efficiency of wireless networks under different levels of distribution of the signal processing load: (i) hybrid, where the signal processing operations are shared between nodes and APs, (ii) centralized, where signal processing is entirely implemented at the APs, and (iii) fully distributed, where all operations are performed by the nodes. We find that in practical wireless networks, hybrid signal processing exhibits a significant energy efficiency gain over both centralized and fully distributed approaches.

  4. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  5. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    SciTech Connect

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano; Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  6. A routing algorithm for industrial wireless network based on deterministic scheduling

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Qichen; Wang, Ping; Luo, Zhiyong

    2012-01-01

    In the industrial wireless network, determinacy, reliability and real-time applications have been bottleneck of the network. The existed routing protocols of the wireless sensor network cannot be fully corresponded with the industrial applications. In this paper, a routing algorithm based LQI (link quality indicator) and deterministic scheduling is proposed, which is focus to solve the issue of high reliability. The test results in ISA100.11a DL subnet show the superiority of the proposed algorithm, which has much more superiority to reduce the network overhead and save the network resources.

  7. A routing algorithm for industrial wireless network based on deterministic scheduling

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Qichen; Wang, Ping; Luo, Zhiyong

    2011-12-01

    In the industrial wireless network, determinacy, reliability and real-time applications have been bottleneck of the network. The existed routing protocols of the wireless sensor network cannot be fully corresponded with the industrial applications. In this paper, a routing algorithm based LQI (link quality indicator) and deterministic scheduling is proposed, which is focus to solve the issue of high reliability. The test results in ISA100.11a DL subnet show the superiority of the proposed algorithm, which has much more superiority to reduce the network overhead and save the network resources.

  8. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  9. Self organization of wireless sensor networks using ultra-wideband radios

    DOEpatents

    Dowla, Farid U.; Nekoogar, Franak; Spiridon, Alex

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  10. Networking via wireless bridge produces greater speed and flexibility, lowers cost.

    PubMed

    1998-10-01

    Wireless computer networking. Computer connectivity is essential in today's high-tech health care industry. But telephone lines aren't fast enough, and high-speed connections like T-1 lines are costly. Read about an Ohio community hospital that installed a wireless network "bridge" to connect buildings that are miles apart, creating a reliable high-speed link that costs one-tenth of a T-1 line. PMID:10186034

  11. UGV navigation in wireless sensor and actuator network environments

    NASA Astrophysics Data System (ADS)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  12. Compressive-sampling-based positioning in wireless body area networks.

    PubMed

    Banitalebi-Dehkordi, Mehdi; Abouei, Jamshid; Plataniotis, Konstantinos N

    2014-01-01

    Recent achievements in wireless technologies have opened up enormous opportunities for the implementation of ubiquitous health care systems in providing rich contextual information and warning mechanisms against abnormal conditions. This helps with the automatic and remote monitoring/tracking of patients in hospitals and facilitates and with the supervision of fragile, elderly people in their own domestic environment through automatic systems to handle the remote drug delivery. This paper presents a new modeling and analysis framework for the multipatient positioning in a wireless body area network (WBAN) which exploits the spatial sparsity of patients and a sparse fast Fourier transform (FFT)-based feature extraction mechanism for monitoring of patients and for reporting the movement tracking to a central database server containing patient vital information. The main goal of this paper is to achieve a high degree of accuracy and resolution in the patient localization with less computational complexity in the implementation using the compressive sensing theory. We represent the patients' positions as a sparse vector obtained by the discrete segmentation of the patient movement space in a circular grid. To estimate this vector, a compressive-sampling-based two-level FFT (CS-2FFT) feature vector is synthesized for each received signal from the biosensors embedded on the patient's body at each grid point. This feature extraction process benefits in the combination of both short-time and long-time properties of the received signals. The robustness of the proposed CS-2FFT-based algorithm in terms of the average positioning error is numerically evaluated using the realistic parameters in the IEEE 802.15.6-WBAN standard in the presence of additive white Gaussian noise. Due to the circular grid pattern and the CS-2FFT feature extraction method, the proposed scheme represents a significant reduction in the computational complexity, while improving the level of the

  13. A Robust Trust Establishment Scheme for Wireless Sensor Networks

    PubMed Central

    Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob

    2015-01-01

    Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms. PMID:25806875

  14. Synchronization for wireless multi-radar covert communication networks

    NASA Astrophysics Data System (ADS)

    Surender, Shrawan C.; Narayanan, Ram M.

    2007-04-01

    The motivation for our current work is the need for a covert wireless communication network between multi-site radars. Such radars form an effective network-centric architecture that has intrinsic properties such as LPI, LPD, and good data dissemination capabilities. Our continuing work indicates that a notched UWB noise signal within which OFDM data symbols are embedded can be used as a secure communication channel between individual noise radars. The receiver performance in such systems depends heavily on the timing of the DFT window for detecting the message symbols concealed within the noise-OFDM waveform. Performance is therefore severely limited due to the effects of timing and frequency offsets on the noise-data signal. These synchronization errors bring unwanted noise into this window in the form of ICI, ISI, etc. In this paper, we show that most of the techniques developed for a simple OFDM system do not suit the covert noise-OFDM system requirements. We further propose a packet/frame detection and timing estimation technique for the noise-data signal used between the random noise radars. This technique is unique as it is applied to OFDM symbols embedded in UWB noise. With no preprocessing required in the transmitter and no knowledge about the source noise signal, the correlation properties of band-limited white noise are exploited to achieve synchronization.

  15. Agent-based analysis of trustworthiness in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Fernandes, Ronald; Li, Biyan; Vadakkeveedu, Kalyan; Verma, Ajay; Gustafson, Paul; Hwang, Jong

    2012-06-01

    Information assurance is a critical component of any organization's data network. Trustworthiness of the sensor data, especially in the case of wireless sensor networks (WSNs), is an important metric for any application that requires situational awareness. In a WSN, information packets are typically not encrypted and the nodes themselves could be located in the open, leaving them susceptible to tampering and physical degradation. In order to develop a method to assess trustworthiness in WSNs, we have utilized statistical trustworthiness metrics and have implemented an agentbased simulation platform that can perform various trustworthiness measurement experiments for various WSN operating scenarios. Different trust metrics are used against multiple vulnerabilities to detect anomalous behavior and node failure as well as malicious attacks. The simulation platform simulates WSNs with various topologies, routing algorithms, battery and power consumption models, and various types of attacks and defense mechanisms. Additionally, we adopt information entropy based techniques to detect anomalous behavior. Finally, detection techniques are fused to provide various metrics, and various trustworthiness metrics are fused to provide aggregate trustworthiness for the purpose of situational awareness.

  16. Wireless Sensor Networks Applied on Environmental Monitoring in Fowl Farm

    NASA Astrophysics Data System (ADS)

    Dong, Fangwu; Zhang, Naiqing

    Aiming at the real time monitoring requirement of poultry farms on the environment, a online monitoring system is proposed for poultry farms on the environment based on ZigBee, its application of ZigBee wireless networks and sensor technology. supply a network structure of monitoring system, monitoring system node controller of data acquisition, data transmission and control node, which is TI's CC2430 based on ZigBee technology. CO2 sensors use TGS4161, temperature and humidity sensors use SHT75 to detect environmental parameters. designed circuit diagram of parameter testing node and system master control node, CC2430 as a data processing chip. through the analysis of data transmission of system, simplifying the ZigBee protocol stack, designed data transmission protocols and communication formats of the system. given program flow chart of sensors nodes and main node. practical application shows that the performance ratio cable monitoring system is better, Especially in real-time systems and anti-jamming, it so superior on the current forms of environmental monitoring SCM cable system which cost lower than the SCM cable control system about 30%.Successfully achieved the Monitoring of fowlery's CO2 concentration, temperature, humidity and other environmental parameters for large-scale poultry farming, and to provide a new monitoring environment technologie.

  17. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  18. Intelligent composting assisted by a wireless sensing network.

    PubMed

    López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva

    2014-04-01

    Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. PMID:24472716

  19. Operating Systems for Wireless Sensor Networks: A Survey

    PubMed Central

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems. PMID:22163934

  20. Building Intrusion Detection with a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Wälchli, Markus; Braun, Torsten

    This paper addresses the detection and reporting of abnormal building access with a wireless sensor network. A common office room, offering space for two working persons, has been monitored with ten sensor nodes and a base station. The task of the system is to report suspicious office occupation such as office searching by thieves. On the other hand, normal office occupation should not throw alarms. In order to save energy for communication, the system provides all nodes with some adaptive short-term memory. Thus, a set of sensor activation patterns can be temporarily learned. The local memory is implemented as an Adaptive Resonance Theory (ART) neural network. Unknown event patterns detected on sensor node level are reported to the base station, where the system-wide anomaly detection is performed. The anomaly detector is lightweight and completely self-learning. The system can be run autonomously or it could be used as a triggering system to turn on an additional high-resolution system on demand. Our building monitoring system has proven to work reliably in different evaluated scenarios. Communication costs of up to 90% could be saved compared to a threshold-based approach without local memory.

  1. Acquiring Authentic Data in Unattended Wireless Sensor Networks

    PubMed Central

    Yu, Chia-Mu; Chen, Chi-Yuan; Lu, Chun-Shien; Kuo, Sy-Yen; Chao, Han-Chieh

    2010-01-01

    An Unattended Wireless Sensor Network (UWSN) can be used in many applications to collect valuable data. Nevertheless, due to the unattended nature, the sensors could be compromised and the sensor readings would be maliciously altered so that the sink accepts the falsified sensor readings. Unfortunately, few attentions have been given to this authentication problem. Moreover, existing methods suffer from different kinds of DoS attacks such as Path-Based DoS (PDoS) and False Endorsement-based DoS (FEDoS) attacks. In this paper, a scheme, called AAD, is proposed to Acquire Authentic Data in UWSNs. We exploit the collaboration among sensors to address the authentication problem. With the proper design of the collaboration mechanism, AAD has superior resilience against sensor compromises, PDoS attack, and FEDoS attack. In addition, compared with prior works, AAD also has relatively low energy consumption. In particular, according to our simulation, in a network with 1,000 sensors, the energy consumed by AAD is lower than 30% of that consumed by the existing method, ExCo. The analysis and simulation are also conducted to demonstrate the superiority of the proposed AAD scheme over the existing methods. PMID:22319271

  2. Sleep Deprivation Attack Detection in Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  3. Quantum versus simulated annealing in wireless interference network optimization

    PubMed Central

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  4. Quantum versus simulated annealing in wireless interference network optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  5. Distributed estimation of sensors position in underwater wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  6. A robust trust establishment scheme for wireless sensor networks.

    PubMed

    Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob

    2015-01-01

    Security techniques like cryptography and authentication can fail to protect a network once a node is compromised. Hence, trust establishment continuously monitors and evaluates node behavior to detect malicious and compromised nodes. However, just like other security schemes, trust establishment is also vulnerable to attack. Moreover, malicious nodes might misbehave intelligently to trick trust establishment schemes. Unfortunately, attack-resistance and robustness issues with trust establishment schemes have not received much attention from the research community. Considering the vulnerability of trust establishment to different attacks and the unique features of sensor nodes in wireless sensor networks, we propose a lightweight and robust trust establishment scheme. The proposed trust scheme is lightweight thanks to a simple trust estimation method. The comprehensiveness and flexibility of the proposed trust estimation scheme make it robust against different types of attack and misbehavior. Performance evaluation under different types of misbehavior and on-off attacks shows that the detection rate of the proposed trust mechanism is higher and more stable compared to other trust mechanisms. PMID:25806875

  7. Wireless Sensor Network Deployment for Monitoring Wildlife Passages

    PubMed Central

    Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Losilla, Fernando; Kulakowski, Pawel; Garcia-Haro, Joan; Rodríguez, Alejandro; López-Bao, José-Vicente; Palomares, Francisco

    2010-01-01

    Wireless Sensor Networks (WSNs) are being deployed in very diverse application scenarios, including rural and forest environments. In these particular contexts, specimen protection and conservation is a challenge, especially in natural reserves, dangerous locations or hot spots of these reserves (i.e., roads, railways, and other civil infrastructures). This paper proposes and studies a WSN based system for generic target (animal) tracking in the surrounding area of wildlife passages built to establish safe ways for animals to cross transportation infrastructures. In addition, it allows target identification through the use of video sensors connected to strategically deployed nodes. This deployment is designed on the basis of the IEEE 802.15.4 standard, but it increases the lifetime of the nodes through an appropriate scheduling. The system has been evaluated for the particular scenario of wildlife monitoring in passages across roads. For this purpose, different schemes have been simulated in order to find the most appropriate network operational parameters. Moreover, a novel prototype, provided with motion detector sensors, has also been developed and its design feasibility demonstrated. Original software modules providing new functionalities have been implemented and included in this prototype. Finally, main performance evaluation results of the whole system are presented and discussed in depth. PMID:22163601

  8. Deployment of Distributed Applications in Wireless Sensor Networks

    PubMed Central

    Pilloni, Virginia; Atzori, Luigi

    2011-01-01

    The increase in computation and sensing capabilities as well as in battery duration of commercially available Wireless Sensors Network (WSN) nodes are making the paradigm of an horizontal ambient intelligence infrastructure feasible. Accordingly, the sensing, computing and communicating infrastructure is set with a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. In this scenario, we face the problem of setting up the desired application in complex scenarios with hundreds of nodes, which consists of identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. Accordingly, we approach the problem by considering every possible decomposition of the application’s sensing and computing operations into tasks to be assigned to each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions. PMID:22164024

  9. Operating systems for wireless sensor networks: a survey.

    PubMed

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems. PMID:22163934

  10. Optical wireless networked-systems: applications to aircrafts

    NASA Astrophysics Data System (ADS)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  11. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    PubMed

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate. PMID:21766227

  12. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  13. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    ERIC Educational Resources Information Center

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  14. Distributed power allocation for sink-centric clusters in multiple sink wireless sensor networks.

    PubMed

    Cao, Lei; Xu, Chen; Shao, Wei; Zhang, Guoan; Zhou, Hui; Sun, Qiang; Guo, Yuehua

    2010-01-01

    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol. PMID:22294911

  15. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data

  16. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    PubMed

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2015-01-01

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485

  17. QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding

    PubMed Central

    Razzaque, Mohammad Abdur; Javadi, Saeideh S.; Coulibaly, Yahaya; Hira, Muta Tah

    2015-01-01

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts. PMID:25551485

  18. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  19. Intelligent routing protocol for ad hoc wireless network

    NASA Astrophysics Data System (ADS)

    Peng, Chaorong; Chen, Chang Wen

    2006-05-01

    A novel routing scheme for mobile ad hoc networks (MANETs), which combines hybrid and multi-inter-routing path properties with a distributed topology discovery route mechanism using control agents is proposed in this paper. In recent years, a variety of hybrid routing protocols for Mobile Ad hoc wireless networks (MANETs) have been developed. Which is proactively maintains routing information for a local neighborhood, while reactively acquiring routes to destinations beyond the global. The hybrid protocol reduces routing discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity. On the other side the hybrid routing protocols in MANETs likes Zone Routing Protocol still need route "re-discover" time when a route between zones link break. Sine the topology update information needs to be broadcast routing request on local zone. Due to this delay, the routing protocol may not be applicable for real-time data and multimedia communication. We utilize the advantages of a clustering organization and multi-routing path in routing protocol to achieve several goals at the same time. Firstly, IRP efficiently saves network bandwidth and reduces route reconstruction time when a routing path fails. The IRP protocol does not require global periodic routing advertisements, local control agents will automatically monitor and repair broke links. Secondly, it efficiently reduces congestion and traffic "bottlenecks" for ClusterHeads in clustering network. Thirdly, it reduces significant overheads associated with maintaining clusters. Fourthly, it improves clusters stability due to dynamic topology changing frequently. In this paper, we present the Intelligent Routing Protocol. First, we discuss the problem of routing in ad hoc networks and the motivation of IRP. We describe the hierarchical architecture of IRP. We describe the routing process and illustrate it with an example. Further, we describe the control manage

  20. [Design of a long-distance consultation system using wireless sensor networks].

    PubMed

    Wang, Ji; Shen, Yuli; Xa, Guobao; Xie, Shiyi

    2010-02-01

    A remote interactive consultation system based on wireless sensor networks is proposed for family health care works and non-hospital special case patient monitoring. The sensor nodes are integrated into a local area network to collect a variety of human physiological information, which is uploaded to Internet through the Code-Division Multiple Access (CDMA) wireless network technology and sent to the database based on GIS spatial location query technology for achieving electronic diagnosis. Users or administrators can visit remote monitor region through Internet. The results show that the system, using a star passive topology of static gateway and mobile detection node, combines intelligent-distributed wireless sensing, computing and wireless communication technologies. Hence the proposed system has a great practical value. PMID:20337049

  1. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  2. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    PubMed

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump. PMID:26665944

  3. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  4. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  5. LBR: Load Balancing Routing Algorithm for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Daabaj, Khaled; Dixon, Mike; Koziniec, Terry

    2010-06-01

    Homogeneous wireless sensor networks (WSNs) are organized using identical sensor nodes, but the nature of WSNs operations results in an imbalanced workload on gateway sensor nodes which may lead to a hot-spot or routing hole problem. The routing hole problem can be considered as a natural result of the tree-based routing schemes that are widely used in WSNs, where all nodes construct a multi-hop routing tree to a centralized root, e.g., a gateway or base station. For example, sensor nodes on the routing path and closer to the base station deplete their own energy faster than other nodes, or sensor nodes with the best link state to the base station are overloaded with traffic from the rest of the network and experience a faster energy depletion rate than their peers. Routing protocols for WSNs are reliability-oriented and their use of reliability metric to avoid unreliable links makes the routing scheme worse. However, none of these reliability oriented routing protocols explicitly uses load balancing in their routing schemes. Since improving network lifetime is a fundamental challenge of WSNs, we present, in this chapter, a novel, energy-wise, load balancing routing (LBR) algorithm that addresses load balancing in an energy efficient manner by maintaining a reliable set of parent nodes. This allows sensor nodes to quickly find a new parent upon parent loss due to the existing of node failure or energy hole. The proposed routing algorithm is tested using simulations and the results demonstrate that it outperforms the MultiHopLQI reliability based routing algorithm.

  6. Distributed Prognostics and Health Management with a Wireless Network Architecture

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  7. Energy efficient in-network RFID data filtering scheme in wireless sensor networks.

    PubMed

    Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon

    2011-01-01

    RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes' energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes. PMID:22163999

  8. Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks

    PubMed Central

    Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon

    2011-01-01

    RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes. PMID:22163999

  9. Wireless integrated network sensors: toward low-cost and robust self-organizing security networks

    NASA Astrophysics Data System (ADS)

    Pottie, Gregory J.; Clare, Loren P.

    1999-01-01

    A very important benefit of continuing advances in CMOS IC technology is the ability to construct a wide variety of micro electrical mechanical systems (MEMS), including sensors and RF components. These building blocks enable the fabrication of complete systems in a low-cost module, which include sensing, signal processing, and wireless communications. Together with innovative and focused network design techniques that will make possible simple deployment and sustained low- power operation, the small size and cost can be enabling for a very large number of law enforcement and security applications, including remote reconnaissance and security zones ranging from persons to borders. We outline how the application can be exploited in the network design to enable sustained low-power operation. In particular, extensive information processing at nodes, hierarchical decision-making, and energy conserving routing and network topology management methods will be employed in the networks under development.

  10. The research of self-localization algorithms for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Yang, Han; Liu, Xiaoying; Li, Shaomin; Liu, Chong

    2008-12-01

    With the development of sensor techniques, low-power and inexpensive wireless sensors have been put into application, then the wireless sensor networks have appeared. Wireless sensor networks can be applied to many areas and have become a new research focus. Many applications of wireless sensor networks are based on sensor self-positioning, which depend on knowing the location of sensor nodes. So the location techniques of sensor nodes are being important. In this article, the principles and characteristics of wireless networks are discussed and presented. The taxonomy for wireless sensor networks localization systems is described. The principles and characteristics of some representative range-free localization approaches are also discussed. The article focuses on the investigation of DV-Hop location algorithm after contrast it with other range-free algorithms. DV-Hop localization uses a mechanism that is similar to classical distance vector routing which uses the product of hops and hopsize to represent the distance. We use VC++ to simulate this algorithm and point out matters needed attention. After got the simulation results, we analyze the result at length, and focus at nodes density and other factors which influence location accuracy, and the reason of the effect is discussed in detail.

  11. Demonstration of UAV deployment and control of mobile wireless sensing networks for modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet

    2016-04-01

    Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.

  12. An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay.

    PubMed

    Gündoğdu, Köksal; Çalhan, Ali

    2016-03-01

    The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results. PMID:26779643

  13. Autonomous Throughput Improvement Scheme Using Machine Learning Algorithms for Heterogeneous Wireless Networks Aggregation

    NASA Astrophysics Data System (ADS)

    Kon, Yohsuke; Hashiguchi, Kazuki; Ito, Masato; Hasegawa, Mikio; Ishizu, Kentaro; Murakami, Homare; Harada, Hiroshi

    It is important to optimize aggregation schemes for heterogeneous wireless networks for maximizing communication throughput utilizing any available radio access networks. In the heterogeneous networks, differences of the quality of service (QoS), such as throughput, delay and packet loss rate, of the networks makes difficult to maximize the aggregation throughput. In this paper, we firstly analyze influences of such differences in QoS to the aggregation throughput, and show that it is possible to improve the throughput by adjusting the parameters of an aggregation system. Since manual parameter optimization is difficult and takes much time, we propose an autonomous parameter tuning scheme using a machine learning algorithm for the heterogeneous wireless network aggregation. We implement the proposed scheme on a heterogeneous cognitive radio network system. The results on our experimental network with network emulators show that the proposed scheme can improve the aggregation throughput better than the conventional schemes. We also evaluate the performance using public wireless network services, such as HSDPA, WiMAX and W-CDMA, and verify that the proposed scheme can improve the aggregation throughput by iterating the learning cycle even for the public wireless networks. Our experimental results show that the proposed scheme achieves twice better aggregation throughput than the conventional schemes.

  14. A cell phone based health monitoring system with self analysis processor using wireless sensor network technology.

    PubMed

    Chung, Wan-Young; Yau, Chiew-Lian; Shin, Kwang-Sig; Myllyla, Risto

    2007-01-01

    This paper describes the integrated wireless CDMA-based ubiquitous healthcare monitoring system for disease and chronic management and better patient care in the hospital, home or travel environments with extended standalone simple electrocardiogram (ECG) diagnosis algorithm at cell phone. This system utilizes a wireless dongles prototype as the intermediary devices to remotely monitor the physiological signs of patient's from a tiny wireless sensor to transmit directly to medical center monitoring/PDA wirelessly within 802.15.4 wireless LAN or using cell phone to relay the medical data through CDMA network when outside the coverage LAN. The external standalone ECG diagnosis was implemented to enable continuous monitoring and evaluation of the ECG signal locally before any medical data could be sent to the medical center. PMID:18002802

  15. A Secure Trust Establishment Scheme for Wireless Sensor Networks

    PubMed Central

    Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob

    2014-01-01

    Trust establishment is an important tool to improve cooperation and enhance security in wireless sensor networks. The core of trust establishment is trust estimation. If a trust estimation method is not robust against attack and misbehavior, the trust values produced will be meaningless, and system performance will be degraded. We present a novel trust estimation method that is robust against on-off attacks and persistent malicious behavior. Moreover, in order to aggregate recommendations securely, we propose using a modified one-step M-estimator scheme. The novelty of the proposed scheme arises from combining past misbehavior with current status in a comprehensive way. Specifically, we introduce an aggregated misbehavior component in trust estimation, which assists in detecting an on-off attack and persistent malicious behavior. In order to determine the current status of the node, we employ previous trust values and current measured misbehavior components. These components are combined to obtain a robust trust value. Theoretical analyses and evaluation results show that our scheme performs better than other trust schemes in terms of detecting an on-off attack and persistent misbehavior. PMID:24451471

  16. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    PubMed Central

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  17. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    PubMed Central

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  18. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  19. Wireless Body Area Network (WBAN) design techniques and performance evaluation.

    PubMed

    Khan, Jamil Yusuf; Yuce, Mehmet R; Bulger, Garrick; Harding, Benjamin

    2012-06-01

    In recent years interest in the application of Wireless Body Area Network (WBAN) for patient monitoring applications has grown significantly. A WBAN can be used to develop patient monitoring systems which offer flexibility to medical staff and mobility to patients. Patients monitoring could involve a range of activities including data collection from various body sensors for storage and diagnosis, transmitting data to remote medical databases, and controlling medical appliances, etc. Also, WBANs could operate in an interconnected mode to enable remote patient monitoring using telehealth/e-health applications. A WBAN can also be used to monitor athletes' performance and assist them in training activities. For such applications it is very important that a WBAN collects and transmits data reliably, and in a timely manner to a monitoring entity. In order to address these issues, this paper presents WBAN design techniques for medical applications. We examine the WBAN design issues with particular emphasis on the design of MAC protocols and power consumption profiles of WBAN. Some simulation results are presented to further illustrate the performances of various WBAN design techniques. PMID:20953680

  20. Censored Distributed Space-Time Coding for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yiu, S.; Schober, R.

    2007-12-01

    We consider the application of distributed space-time coding in wireless sensor networks (WSNs). In particular, sensors use a common noncoherent distributed space-time block code (DSTBC) to forward their local decisions to the fusion center (FC) which makes the final decision. We show that the performance of distributed space-time coding is negatively affected by erroneous sensor decisions caused by observation noise. To overcome this problem of error propagation, we introduce censored distributed space-time coding where only reliable decisions are forwarded to the FC. The optimum noncoherent maximum-likelihood and a low-complexity, suboptimum generalized likelihood ratio test (GLRT) FC decision rules are derived and the performance of the GLRT decision rule is analyzed. Based on this performance analysis we derive a gradient algorithm for optimization of the local decision/censoring threshold. Numerical and simulation results show the effectiveness of the proposed censoring scheme making distributed space-time coding a prime candidate for signaling in WSNs.

  1. Energy-Constrained Optimal Quantization for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Luo, Xiliang; Giannakis, Georgios B.

    2007-12-01

    As low power, low cost, and longevity of transceivers are major requirements in wireless sensor networks, optimizing their design under energy constraints is of paramount importance. To this end, we develop quantizers under strict energy constraints to effect optimal reconstruction at the fusion center. Propagation, modulation, as well as transmitter and receiver structures are jointly accounted for using a binary symmetric channel model. We first optimize quantization for reconstructing a single sensor's measurement, and deriving the optimal number of quantization levels as well as the optimal energy allocation across bits. The constraints take into account not only the transmission energy but also the energy consumed by the transceiver's circuitry. Furthermore, we consider multiple sensors collaborating to estimate a deterministic parameter in noise. Similarly, optimum energy allocation and optimum number of quantization bits are derived and tested with simulated examples. Finally, we study the effect of channel coding on the reconstruction performance under strict energy constraints and jointly optimize the number of quantization levels as well as the number of channel uses.

  2. RSBP: A Reliable Slotted Broadcast Protocol in Wireless Sensor Networks

    PubMed Central

    Van Vinh, Phan; Oh, Hoon

    2012-01-01

    In wireless sensor networks for monitoring and control applications, a sink node needs to disseminate messages to all nodes to acquire monitoring data or to control the operation of sensor nodes. The basic flooding protocol suffers from low transmission reliability in broadcasting messages due to the hidden terminal problem. Besides, it can cause the broadcast storm problem by having many nodes rebroadcast the received message simultaneously. In order to resolve these problems while minimizing energy consumption in delivery of broadcast messages, we propose a reliable slotted broadcast protocol (RSBP) that allocates broadcast time slots to nodes based on their slot demands and then allows every node to transmit its broadcast message within the allocated slots. Then, every node can broadcast messages safely in a contention-free manner. Moreover, RSBP can be deployed easily since it does not have any specific requirements such as GPS, multi-channels and directional antennas that may not be always available in real scenarios. We show by experimental study that RSBP significantly outperforms other broadcast protocols in terms of safety-critical packet delivery and energy consumption. PMID:23202180

  3. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  4. ARIMA based Value Estimation in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Amidi, A.

    2014-10-01

    Due to the widespread inaccuracy of wireless sensor networks (WSNs) data, it is essential to ensure that the data is as complete, clean and precise as possible. To address data gaps and replace erroneous data, temporal correlation modelling can be applied, which takes advantage of temporal correlation and is also energy efficient. In this research, the suitability of adapting the ARIMA model into a WSN context is scrutinized, as technological requirements demand special considerations. The necessity of applying a smoothing technique is explored and the selection of an appropriate method is determined. Additionally, the available options with regards to ARIMA set-up are discussed, in terms of achieving accurate and energy friendly predictions. The effect of sufficient historical data and the importance of predictions' life span on the estimation accuracy are additionally investigated. Finally, an adaptive, online and energy efficient system is proposed for maintaining the accuracy of the model that simultaneously detects outliers and events as well as substitutes any missing or erroneous data with estimated values.

  5. A wireless sensor network for monitoring volcano-seismic signals

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  6. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  7. Secure data aggregation in wireless sensor networks using homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Verma, Shekhar; Lata, Kusum

    2015-04-01

    In a Wireless Sensor Network (WSN), aggregation exploits the correlation between spatially and temporally proximate sensor data to reduce the total data volume to be transmitted to the sink. Mobile agents (MAs) fit into this paradigm, and data can be aggregated and collected by an MA from different sensor nodes using context specific codes. The MA-based data collection suffers due to large size of a typical WSN and is prone to security problems. In this article, homomorphic encryption in a clustered WSN has been proposed for secure and efficient data collection using MAs. The nodes keep encrypted data that are given to an MA for data aggregation tasks. The MA performs all the data aggregation operations upon encrypted data as it migrates between nodes in a tree-like structure in which the nodes are leafs and the cluster head is the root of the tree. It returns and deposits the encrypted aggregated data to the cluster head after traversing through all the intra cluster nodes over a shortest path route. The homomorphic encryption and aggregation processing in encrypted domain makes the data collection process secure. Simulation results confirm the effectiveness of the proposed secure data aggregation mechanism. In addition to security, MA-based mechanism leads to lesser delay and bandwidth requirements.

  8. Sensor data security level estimation scheme for wireless sensor networks.

    PubMed

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  9. Distributed visual-target-surveillance system in wireless sensor networks.

    PubMed

    Wang, Xue; Wang, Sheng; Bi, Daowei

    2009-10-01

    A wireless sensor network (WSN) is a powerful unattended distributed measurement system, which is widely used in target surveillance because of its outstanding performance in distributed sensing and signal processing. This paper introduces a multiview visual-target-surveillance system in WSN, which can autonomously implement target classification and tracking with collaborative online learning and localization. The proposed system is a hybrid system of single-node and multinode fusion. It is constructed on a peer-to-peer (P2P)-based computing paradigm and consists of some simple but feasible methods for target detection and feature extraction. Importantly, a support-vector-machine-based semisupervised learning method is used to achieve online classifier learning with only unlabeled samples. To reduce the energy consumption and increase the accuracy, a novel progressive data-fusion paradigm is proposed for online learning and localization, where a feasible routing method is adopted to implement information transmission with the tradeoff between performance and cost. Experiment results verify that the proposed surveillance system is an effective, energy-efficient, and robust system for real-world application. Furthermore, the P2P-based progressive data-fusion paradigm can improve the energy efficiency and robustness of target surveillance. PMID:19336319

  10. Radio Resource Allocation on Complex 4G Wireless Cellular Networks

    NASA Astrophysics Data System (ADS)

    Psannis, Kostas E.

    2015-09-01

    In this article we consider the heuristic algorithm which improves step by step wireless data delivery over LTE cellular networks by using the total transmit power with the constraint on users’ data rates, and the total throughput with the constraints on the total transmit power as well as users’ data rates, which are jointly integrated into a hybrid-layer design framework to perform radio resource allocation for multiple users, and to effectively decide the optimal system parameter such as modulation and coding scheme (MCS) in order to adapt to the varying channel quality. We propose new heuristic algorithm which balances the accessible data rate, the initial data rates of each user allocated by LTE scheduler, the priority indicator which signals delay- throughput- packet loss awareness of the user, and the buffer fullness by achieving maximization of radio resource allocation for multiple users. It is noted that the overall performance is improved with the increase in the number of users, due to multiuser diversity. Experimental results illustrate and validate the accuracy of the proposed methodology.

  11. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    PubMed Central

    Niu, Jianjun; Deng, Zhidong

    2009-01-01

    Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491

  12. Detecting and isolating malicious nodes in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Li, Fanzhi; Jassim, Sabah

    2007-04-01

    Malicious nodes can seriously impair the performance of wireless ad hoc networks as a result of different actions such as packet dropping. Secure routes are shortest paths on which every node on the route is trusted even if unknown. Secure route discovery requires the adoption of mechanisms of associating trust to nodes. Most existing secure route discovery mechanisms rely on shared keys and digital signature. In the absence of central nodes that act as certification authority, such protocols suffer from heavy computational burden and are vulnerable to malicious attacks. In this paper we shall review existing techniques for secure routing and propose to complement route finding with creditability scores. Each node would have a credit list for its neighbors. Each node monitors its neighbors' pattern of delivering packets and regularly credits are reviewed and updated accordingly. Unlike most existing schemes the focus of our work is based on post route discovery stage, i.e. when packets are transmitted on discovered routes. The level of trust in any route will be based on the credits associated with the neighbors belonging to the discovered route. We shall evaluate the performance of the proposed scheme by modifying our simulation system so that each node has a dynamic changing "credit list" for its neighbors' behavior. We shall conduct a series of simulations with and without the proposed scheme and compare the results. We will demonstrate that the proposed mechanism is capable of isolating malicious nodes and thereby counteracting black hole attacks.

  13. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  14. Application of wireless sensor system on security network

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyeokjun; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    In this research we developed wireless sensor system for security application. We have used geophone to detect seismic signals which are generated by footsteps. Geophones are resonant devices. Therefore, vibration on the land can generate seismic waveforms which could be very similar to the signature by footstep. The signals from human footstep have weak signals to noise ratio and the signal strength is subject to the distance between the sensor and human. In order to detect weak signals from footstep, we designed and fabricated 2-stage amplification circuit which consists of active and RC filters and amplifiers. The bandwidth of filter is 0.7Hz-150Hz and the gain of amplifier is set to 1000. The wireless sensor system also developed to monitor the sensing signals at the remote place. The wireless sensor system consists of 3 units; a wireless sensor unit, a wireless receiver unit, and a monitoring unit. The wireless sensor unit transmits amplified signals from geophone with Zigbee, and the wireless receiver unit which has both Zigbee and Wi-Fi module receives signals from the sensor unit and transmits signals to the monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve the low power consumption and wide range coverage.

  15. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    PubMed

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  16. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  17. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  18. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method

    PubMed Central

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773

  19. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method.

    PubMed

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773

  20. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  1. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  2. Truck-based mobile wireless sensor networks for the experimental observation of vehicle-bridge interaction

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Lynch, Jerome P.; Lee, Jong-Jae; Lee, Chang-Geun

    2011-06-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle-bridge interaction. In recent years, interest in vehicle-bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle-bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle-bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm.

  3. Packet loss and compensation of Wi-Fi-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Han, Feng; Bao, Yuequan; Ou, Jinping

    2015-03-01

    In wireless data transmissions processes, the problem of packet loss become an important factor that affects the robustness of wireless data transmission. In order to solve the problem, the compressive sensing (CS) based wireless data transmission approach is proposed in this paper. The specific steps that use the CS approach to reconstruct lost data are as follows: The first step is to encode the original data in a random sampling matrix. Then the original data and the encoded data are sent to the receiving side through the wireless transmission. After the data is received, if there are packets lost, it can be reconstructed by CS approach. The reconstructed data are able to compensate for the incomplete original data in a certain range. In this paper, a wireless sensor network (WSN) based on Wi-Fi is developed for verifying the effectiveness and feasibility of the CS approach. The WSN consists of small nodes with sensors, base stations, PC client. Experimental results show that the wireless sensor network is working properly and steady. Moreover, the CS approach could compensate for the packet loss effectively, and increase the robustness and the speed of wireless transmission greatly.

  4. Game-theoretic approach for improving cooperation in wireless multihop networks.

    PubMed

    Ng, See-Kee; Seah, Winston K G

    2010-06-01

    Traditional networks are built on the assumption that network entities cooperate based on a mandatory network communication semantic to achieve desirable qualities such as efficiency and scalability. Over the years, this assumption has been eroded by the emergence of users that alter network behavior in a way to benefit themselves at the expense of others. At one extreme, a malicious user/node may eavesdrop on sensitive data or deliberately inject packets into the network to disrupt network operations. The solution to this generally lies in encryption and authentication. In contrast, a rational node acts only to achieve an outcome that he desires most. In such a case, cooperation is still achievable if the outcome is to the best interest of the node. The node misbehavior problem would be more pronounced in multihop wireless networks like mobile ad hoc and sensor networks, which are typically made up of wireless battery-powered devices that must cooperate to forward packets for one another. However, cooperation may be hard to maintain as it consumes scarce resources such as bandwidth, computational power, and battery power. This paper applies game theory to achieve collusive networking behavior in such network environments. In this paper, pricing, promiscuous listening, and mass punishments are avoided altogether. Our model builds on recent work in the field of Economics on the theory of imperfect private monitoring for the dynamic Bertrand oligopoly, and adapts it to the wireless multihop network. The model derives conditions for collusive packet forwarding, truthful routing broadcasts, and packet acknowledgments under a lossy wireless multihop environment, thus capturing many important characteristics of the network layer and link layer in one integrated analysis that has not been achieved previously. We also provide a proof of the viability of the model under a theoretical wireless environment. Finally, we show how the model can be applied to design a generic

  5. Nondestructive monitoring of a pipe network using a MEMS-based wireless network

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Chou, Pai H.; Kim, Sehwan; Kim, Hong Rok; Yoon, Eunbae; Mustafa, Hadil; Karmakar, Debasis; Pul, Selim

    2010-04-01

    A MEMS-based wireless sensor network (WSN) is developed for nondestructive monitoring of pipeline systems. It incorporates MEMS accelerometers for measuring vibration on the surface of a pipe to determine the change in water pressure caused by rupture and the damage location. This system enables various sensor boards and camera modules to be daisychained underground and to transmit data with a shared radio board for data uplink. Challenges include reliable long-range communication, precise time synchronization, effective bandwidth usage, and power management. The low-cost MEMS technology, saved wiring cost, and simple installation without destructive modification enable large-scale deployment at an affordable cost.

  6. Position Estimation of Access Points in 802.11 Wireless Networks

    SciTech Connect

    Kent, C A; Dowla, F U; Atwal, P K; Lennon, W J

    2003-12-05

    We developed a technique to locate wireless network nodes using multiple time-of-flight range measurements in a position estimate. When used with communication methods that allow propagation through walls, such as Ultra-Wideband and 802.11, we can locate network nodes in buildings and in caves where GPS is unavailable. This paper details the implementation on an 802.11a network where we demonstrated the ability to locate a network access point to within 20 feet.

  7. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    PubMed

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273

  8. On a digital wireless impact-monitoring network for large-scale composite structures

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-08-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network.

  9. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    PubMed Central

    Vimalarani, C.; Subramanian, R.; Sivanandam, S. N.

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273

  10. Research on low-latency MAC protocols for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Sha, Xuejun; Lee, Chankil

    2007-11-01

    Energy-efficient should not be the only design goal in MAC protocols for wireless sensor networks, which involve the use of battery-operated computing and sensing devices. Low-latency operation becomes the same important as energy-efficient in the case that the traffic load is very heavy or the real-time constrain is used in applications like tracking or locating. This paper introduces some causes of traditional time delays which are inherent in a multi-hops network using existing WSN MAC protocols, illuminates the importance of low-latency MAC design for wireless sensor networks, and presents three MACs as examples of low-latency protocols designed specially for sleep delay, wait delay and wakeup delay in wireless sensor networks, respectively. The paper also discusses design trade-offs with emphasis on low-latency and points out their advantages and disadvantages, together with some design considerations and suggestions for MAC protocols for future applications and researches.

  11. Analysis of security and threat of underwater wireless sensor network topology

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wei, Zhiqiang; Cong, Yanping; Jia, Dongning

    2012-04-01

    Underwater wireless sensor networks (UWSNs) are a subclass of wireless sensor networks. Underwater sensor deployment is a significant challenge due to the characteristics of UWSNs and underwater environment. Recent researches for UWSNs deployment mostly focus on the maintenance of network connectivity and maximum communication coverage. However, the broadcast nature of the transmission medium incurs various types of security attacks. This paper studies the security issues and threats of UWSNs topology. Based on the cluster-based topology, an underwater cluster-based security scheme (U-CBSS) is presented to defend against these attacks. and safety.

  12. Influence of Mobility Models in Precision Spray Aided by Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Gonçalves, L. B. L.; Costa, F. G.; Neves, L. A.; Ueyama, J.; Zafalon, G. F. D.; Montez, C.; Pinto, A. S. R.

    2015-01-01

    Precision Spray is a technique to increase performance of Precision Agriculture. This spray technique may be aided by a Wireless Sensor Network, however, for such approach, the communication between the agricultural input applicator vehicle and network is critical due to its proper functioning. Thus, this work analyzes how the number of nodes in a wireless sensor network, its type of distribution and different areas of scenario affects the performance of communication. We performed simulations to observe system's behavior changing to find the most fitted non-controlled mobility model to the system.

  13. Teaching the Geoweb: Interdisciplinary Undergraduate Research in Wireless Sensor Networks, Web Mapping, and Geospatial Data Management

    ERIC Educational Resources Information Center

    Abernathy, David

    2011-01-01

    This article addresses an effort to incorporate wireless sensor networks and the emerging tools of the Geoweb into undergraduate teaching and research at a small liberal arts college. The primary goal of the research was to identify the hardware, software, and skill sets needed to deploy a local sensor network, collect data, and transmit that data…

  14. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  15. Performance of a wireless sensor network for crop monitoring and irrigation control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  16. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    PubMed Central

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  17. Two-layer wireless distributed sensor/control network based on RF

    NASA Astrophysics Data System (ADS)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  18. Two-dimensional wavelength routing for transparent optical wireless networking

    NASA Astrophysics Data System (ADS)

    Shi, Haiyan; Liang, Kefei; Sheard, Stephen J.; O'Brien, Dominic C.; Faulkner, Grahame E.

    2005-08-01

    In this article a novel system architecture that uses a combination of wavelength and spatial diversity for indoor infrared wireless communications is presented. This configuration promises to fully exploit the available bandwidth of optics and demonstrate all-optical networking. Electronic processing is restricted to mobile terminals, with base stations potentially remaining passive, without any conversion between optics and electronics. For the downlink, multiple transmitter beams with different wavelengths are steered from the fiber infrastructure through the base station to mobile terminals located in different positions. An optimum combination of diffractive optics and reflective optics (a diffraction grating and an array of mirrors) can flexibly steer each transmitter beam and enable full control over the required coverage pattern. For the uplink, in the transmitter, another grating and an array of mirrors can direct multiple beams upward from different mobile users toward the base station. System simulation shows that the downlink has the potential to approach 10 Gbit/s, while maintaining wide-area coverage (such as in a room of 3m×4m×4m) with the help of fine optical tracking. System modeling indicates that the uplink is more susceptible to power losses than the downlink, but the utilization of dynamic beam steering in the uplink can suppress power losses to a tolerable level (e.g. below 30dB). An array of 16 mirrors has been designed to implement point-to-point beam steering in a room of 3m×1m×1m. Two-dimensional coverage patterns measured at a distance of 0.5 m and 1.5 m coincide with simulation results. Operation at 1 Gbit/s has been demonstrated successfully for tracking in two dimensions.

  19. Configuring a Context-Aware Middleware for Wireless Sensor Networks

    PubMed Central

    Gámez, Nadia; Cubo, Javier; Fuentes, Lidia; Pimentel, Ernesto

    2012-01-01

    In the Future Internet, applications based on Wireless Sensor Networks will have to support reconfiguration with minimum human intervention, depending on dynamic context changes in their environment. These situations create a need for building these applications as adaptive software and including techniques that allow the context acquisition and decisions about adaptation. However, contexts use to be made up of complex information acquired from heterogeneous devices and user characteristics, making them difficult to manage. So, instead of building context-aware applications from scratch, we propose to use FamiWare, a family of middleware for Ambient Intelligence specifically designed to be aware of contexts in sensor and smartphone devices. It provides both, several monitoring services to acquire contexts from devices and users, and a context-awareness service to analyze and detect context changes. However, the current version of FamiWare does not allow the automatic incorporation related to the management of new contexts into the FamiWare family. To overcome this shortcoming, in this work, we first present how to model the context using a metamodel to define the contexts that must to be taken into account in an instantiation of FamiWare for a certain Ambient Intelligence system. Then, to configure a new context-aware version of FamiWare and to generate code ready-to-install within heterogeneous devices, we define a mapping that automatically transforms metamodel elements defining contexts into elements of the FamiWare family, and we also use the FamiWare configuration process to customize the new context-aware variant. Finally, we evaluate the benefits of our process, and we analyze both that the new version of the middleware works as expected and that it manages the contexts in an efficient way. PMID:23012505

  20. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  1. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    USGS Publications Warehouse

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-01-01

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  2. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  3. A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems

    NASA Astrophysics Data System (ADS)

    Zhong, Xu; Zhou, Yu

    2014-05-01

    This paper presents a decentralized multi-robot motion control strategy to facilitate a multi-robot system, comprised of collaborative mobile robots coordinated through wireless communications, to form and maintain desired wireless communication coverage in a realistic environment with unstable wireless signaling condition. A fuzzy neural network controller is proposed for each robot to maintain the wireless link quality with its neighbors. The controller is trained through reinforcement learning to establish the relationship between the wireless link quality and robot motion decision, via consecutive interactions between the controller and environment. The tuned fuzzy neural network controller is applied to a multi-robot deployment process to form and maintain desired wireless communication coverage. The effectiveness of the proposed control scheme is verified through simulations under different wireless signal propagation conditions.

  4. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  5. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    PubMed Central

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  6. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  7. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    PubMed

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. PMID:26343165

  8. The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy

    Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.

  9. On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    PubMed Central

    Bagula, Antoine B.; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks. PMID:22408557

  10. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    NASA Astrophysics Data System (ADS)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  11. Optical wireless communication in sensor networks: data harvesting for disaster recovery operations

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Kedar, Debbie

    2007-09-01

    Networks of sensors are an emerging technology for real-time data gathering in applications such as pollution monitoring, home security, surveillance, industrial control, etc. Many miniature nodes with sensing, computing and wireless communication capabilities are randomly deployed in an area or volume to be probed. One of the possible communication modalities for sensor networks is optical wireless communication (OWC). Initially, the sensor population must be mapped prior to interrogation by the base station and data communication from the sensor node. In this paper we review some theoretical and experimental work in this area and underline some of the challenges and possible solutions. The specific scenario of wireless sensor networks in a disaster recovery operation is modeled.

  12. Data compression in wireless sensors network using MDCT and embedded harmonic coding.

    PubMed

    Alsalaet, Jaafar K; Ali, Abduladhem A

    2015-05-01

    One of the major applications of wireless sensors networks (WSNs) is vibration measurement for the purpose of structural health monitoring and machinery fault diagnosis. WSNs have many advantages over the wired networks such as low cost and reduced setup time. However, the useful bandwidth is limited, as compared to wired networks, resulting in relatively low sampling. One solution to this problem is data compression which, in addition to enhancing sampling rate, saves valuable power of the wireless nodes. In this work, a data compression scheme, based on Modified Discrete Cosine Transform (MDCT) followed by Embedded Harmonic Components Coding (EHCC) is proposed to compress vibration signals. The EHCC is applied to exploit harmonic redundancy present is most vibration signals resulting in improved compression ratio. This scheme is made suitable for the tiny hardware of wireless nodes and it is proved to be fast and effective. The efficiency of the proposed scheme is investigated by conducting several experimental tests. PMID:25541332

  13. Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2013-06-01

    Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people's lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people's social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system's utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks. PMID:25436180

  14. Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks

    PubMed Central

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2014-01-01

    Wireless body area networks (WBANs) are cyber-physical systems (CPS) that have emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance including depleting the energy of WBAN nodes more quickly, and even eventually jeopardize people’s lives due to unreliable (caused by the interference) healthcare data collections. Therefore, It is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs due to their ignoring the social nature of WBANs. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people’s social interaction information. Our major contributions include: (1) model the inter-WBANs interference, and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; (2) develop social interaction detection and prediction algorithms for people carrying WBANs; (3) develop a power control game based on the social interaction information to maximize the system’s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks. PMID:25436180

  15. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  16. Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    NASA Astrophysics Data System (ADS)

    Oda, Akihiro; Nishi, Hiroaki

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

  17. Impact of network structure on the capacity of wireless multihop ad hoc communication

    NASA Astrophysics Data System (ADS)

    Krause, Wolfram; Glauche, Ingmar; Sollacher, Rudolf; Greiner, Martin

    2004-07-01

    As a representative of a complex technological system, the so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.

  18. Design of high-encryption wireless network with distributed host management and dynamic key generation

    NASA Astrophysics Data System (ADS)

    Weber, Robert E.

    2001-11-01

    The widespread deployment of wireless networks using the 802.11(b) standard across the country presents a rebirth of age-old network security problems along with a number of new ones. The wireless network, much like a shared network using broadcast devices such as network hubs, travels across a shared medium. Because of the structure any member of the wireless network can observe and intercept data being sent or received by other members. Unlike 'wired' networks there is no means to isolate traffic from other network members. The second security issue for wireless networks is the transmission of data 'clear text' so that if it is intercepted it can be read and used. Wireless networks bring about another problem that compounds the first two concerns that all shared networks must deal with, that is, anyone within the transmission range of the wireless network can join. No longer must a person enter a building to infiltrate a business network, they need only park across the street. The first implementation of network security for wireless was the WEP (Wired Equivalent Privacy) protocol. WEP attempts to make a wireless network at least as secure as a switched 'wired' network. The WEP protocol intends to secure the traffic integrity with the use of a RC4 cipher and a CSC-32 checksum. In the passphrase used for the RC4 encryption is also used as a form of access control. There are several critical faults in the WEP implementation that allow both passive data acquisition and active data modification. At 11 Mbit, capturing approximately 5 hours of clear text data can guarantee the capture of two packets with the same initialization vector (IV). Once the packets are used to get the clear text packet, that information can be used to decrypt any packets with the same IV. Since the IV's are only 24 bits the decryption of entire network becomes only an exercise in patience, with a 24 hours of continuous monitoring the WEP encryption can be defeated completely and a simple

  19. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    PubMed Central

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734

  20. Efficient security mechanisms for mHealth applications using wireless body sensor networks.

    PubMed

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734