Science.gov

Sample records for retrofit micro-pilot ignition

  1. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-05-01

    This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for

  2. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3

  3. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report

  4. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect

    Ted Bestor

    2004-06-01

    This report documents the second year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase II goals and objectives were met. We intend to proceed with the Phase III research plan, as set forth by the applicable Research Management Plan. The objective for Phase II was to further develop and optimize the micropilot ignition system for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system to demonstrate the technology's readiness for the field demonstration phase. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase II were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. Modifications to existing engine components were kept to a minimum. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. An extensive testing program at the EECL using the GMV-4 test engine demonstrated that: (1) In general, the engine operated more stable fewer misfires and partial combustion events when using the 3-hole injectors compared to the 5-hole injectors used in Phase I. (2) The engine had, in general, a wider range of operation with the 3-hole injectors. Minimum operational boost levels were approximately 5''Hg lower and the

  5. Arkansas solar retrofit guide

    SciTech Connect

    Not Available

    1981-06-01

    An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is reported. The retrofits examined were greenhouses, air heaters and water heaters. The design, construction, and performance of the retrofits are described, along with some information about sun motion and orientation and greenhouse gardening. Appended are maps, tables, and graphs of insolation in Arkansas. (LEW)

  6. Lighting Retrofit Study

    SciTech Connect

    Kromer, S.; Morse, O.; Siminovitch, M.

    1991-09-01

    The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

  7. Thermal Ignition

    NASA Astrophysics Data System (ADS)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region

  8. Steel bridge retrofit evaluation

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1998-03-01

    The development of a retrofit design aimed at retarding or eliminating fatigue crack growth in a large bridge can be a very difficult and expensive procedure. Analytical techniques frequently do not provide sufficient accuracy when applied to complex structural details. The Infrastructure Technology Institute (ITI) of Northwestern University, under contract to the California Department of Transportation (Caltrans), recently applied experimental state-of-the-art NDE technology to the Interstate 80 bridge over the Sacramento River near Sacramento, California (Bryte Bend). Acoustic emission monitoring was applied in conjunction with strain gage monitoring to aid in characterizing the retrofits' effect on existing active fatigue cracks. The combined test results clearly showed that one retrofit design was superior to the other.

  9. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  10. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  11. Multifamily Ventilation Retrofit Strategies

    SciTech Connect

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  12. Retrofitted supersymmetric models

    NASA Astrophysics Data System (ADS)

    Bose, Manatosh

    This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB) and a supersymmetric model of hybrid inflation. All of these models possess discrete R-symmetries. We specially focus on the retrofitted models for supersymmetry breaking models. At first we construct retrofitted models of gravity mediation. In these models we explore the genericity of the so-called "split supersymmetry." We show that with the simplest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a split spectrum is not generic. However if the goldstino superfield is charged under some symmetry other than the R-symmetry, then a split spectrum is achievable but not generic. We also present a gravity mediated model where the fine tuning of the Z-boson mass is dictated by a discrete choice rather than a continuous tuning. Then we construct retrofitted models of gauge mediated SUSY breaking. We show that, in these models, if the approximate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by retrofitted couplings, a very small dimensionless number is required; if supergravity corrections are responsible for the symmetry breaking, at least two moderately small couplings are required, and that there is a large range of possible messenger scales. Finally we switch our attention to small field hybrid inflation. We construct a model that yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating the scale of inflation with the dynamics responsible for supersymmetry breaking.

  13. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  14. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  15. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  16. Retrofit Best Practices Guide

    SciTech Connect

    Stovall, T.K.

    2004-01-13

    Few people add siding or change their windows just to reduce their energy bills. But whatever your reasons for retrofitting your home, this will be an important opportunity to improve your home's energy efficiency. Not only will this reduce your utility bills, it will also improve your comfort level and improve our environment. Retrofitting your house is a big deal, and you shouldn't underestimate the effort that will be required to plan the job properly. The energy conservation rewards can be great, but there are also pitfalls that you'll want to avoid. That's what this Best Practices Guide is all about. We can't cover all the issues in these few pages, but we'll tell you some things you need to know if you're changing your siding or windows, and tell you where to learn more about other changes you may want to make to your house. What exactly is a ''best practice''? To put this guide together, we've tested products, talked to contractors and manufacturers, and reviewed the results from a large number of house retrofits. Of course, ''best'' will vary according to the situation. That's why you must start with a careful examination of your house and its existing condition.

  17. Arkansas solar-retrofit guide

    SciTech Connect

    Skiles, A.

    1981-06-01

    How solar retrofits should be designed to suit the climate and resources of Arkansas is reported. Retrofits examined are solar greenhouses, solar air heaters, and solar batch water heaters. A composite of successful construction and operation methods is presented in a format to help individuals build solar retrofits for themselves. Appended are a glossary, listings of references and information sources, and solar radiation data for Arkansas. (LEW)

  18. Evaluation of Retrofit Delivery Packages

    SciTech Connect

    Berman, M.; Smith, P.; Porse, E.

    2013-07-01

    Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

  19. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  20. Strengthening Building Retrofit Markets

    SciTech Connect

    Templeton, Mary; Jackson, Robert

    2014-04-15

    The Business Energy Financing (BEF) program offered commercial businesses in Michigan affordable financing options and other incentives designed to support energy efficiency improvements. We worked through partnerships with Michigan utilities, lenders, building contractors, trade associations, and other community organizations to offer competitive interest rates and flexible financing terms to support energy efficiency projects that otherwise would not have happened. The BEF program targeted the retail food market, including restaurants, grocery stores, convenience stores, and wholesale food vendors, with the goal of achieving energy efficiency retrofits for 2 percent of the target market. We offered low interest rates, flexible payments, easy applications and approval processes, and access to other incentives and rebates. Through these efforts, we sought to help customers strive for energy savings retrofits that would save 20 percent or more on their energy use. This program helped Michigan businesses reduce costs by financing energy efficient lighting, heating and cooling systems, insulation, refrigeration, equipment upgrades, and more. Businesses completed the upgrades with the help of our authorized contractors, and, through our lending partners, we provided affordable financing options.

  1. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  2. Advancing Residential Retrofits in Atlanta

    SciTech Connect

    Jackson, Roderick K; Kim, Eyu-Jin; Roberts, Sydney; Stephenson, Robert

    2012-07-01

    This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

  3. Ignitability test method

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1989-01-01

    To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.

  4. Deep Residential Retrofits in East Tennessee

    SciTech Connect

    Boudreaux, Philip R; Hendrick, Timothy P; Christian, Jeffrey E; Jackson, Roderick K

    2012-04-01

    Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is

  5. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  6. Electrostatic-discharge ignition

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1977-01-01

    Electrode in cylinder permits charge to transfer during top dead center compression stroke in modified Otto-cycle engine. Charge transfer produces spark which causes ignition of droplets without resorting to other ignition devices which are incapable of igniting ultralean mixtures.

  7. Laser induced ignition

    NASA Astrophysics Data System (ADS)

    Liedl, G.; Schuöcker, D.; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2007-05-01

    Nowadays, combustion engines and other combustion processes play an overwhelming and important role in everyday life. As a result, ignition of combustion processes is of great importance, too. Usually, ignition of a combustible material is defined in such a way that an ignition initiates a self-sustained reaction which propagates through the inflammable material even in the case that the ignition source has been removed. In most cases, a well defined ignition location and ignition time is of crucial importance. Spark plugs are well suited for such tasks but suffer from some disadvantages, like erosion of electrodes or restricted positioning possibilities. In some cases, ignition of combustible materials by means of high power laser pulses could be beneficial. High power lasers offer several different possibilities to ignite combustible materials, like thermal ignition, resonant ignition or optical breakdown ignition. Since thermal and resonant ignitions are not well suited on the requirements mentioned previously, only optical breakdown ignition will be discussed further. Optical breakdown of a gas within the focal spot of a high power laser allows a very distinct localization of the ignition spot in a combustible material. Since pulse duration is usually in the range of several nanoseconds, requirements on the ignition time are fulfilled easily, too. Laser peak intensities required for such an optical breakdown are in the range of 10 11 W/cm2. The hot plasma which forms during this breakdown initiates the following self-propagating combustion process. It has been shown previously that laser ignition of direct injection engines improves the fuel consumption as well as the exhaust emissions of such engines significantly. The work presented here gives a brief overview on the basics of laser induced ignition. Flame propagation which follows a successful ignition event can be distinguished into two diffrent regimes. Combustion processes within an engine are usually

  8. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  9. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  10. DC CICC retrofit magnet

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-10-30

    The coil system presented here for the MHD retrofit magnet incorporates many features of the latest in superconducting magnet technology and finite element modeling to create an efficient and viable design concept. At the core of the design is the niobium titanium (NbTi) superconducting Cable-in-Conduit Conductor (CICC). Engineered to create moderately high magnetic fields (up to 8 T) with essentially no power loss, this specific CICC design provides good load carrying capacity, operating margin from a perturbation such as a local heat input, and coil protection in the event of a quench transient. The CICC is wound on a mandrel into long, tapered, saddle shaped single conductor thickness pancakes. By defining the appropriate number of conductor turns in each pancake, the saddle coils can be stacked to form a semi-elliptical winding pack cross section. Extruded aluminum filler blocks are fitted into the steps, at the edge of the pancake and present a smooth surface to the supporting structure. The semi-elliptical conductor array is supported by an identically shaped strap at all locations except where the end turns sweep over the MHD channel. The strap resists the electromagnetic forces tending to separate the coils on each side of the channel. Low friction surfaces are placed between conductor pancakes, and between the inside skin of the support straps and the outside surface of the conductor winding pack. This allows relative movement between pancakes, and between the strap and coil, thereby reducing shear stresses and coulombic friction heating which would otherwise tend to crack insulation, load joints, and initiate a quench in the superconducting cable.

  11. Strategy Guideline: Mitigation of Retrofit Risk Factors

    SciTech Connect

    Berman, M.; Smith, P.; Porse, E.

    2012-12-01

    The Alliance for Residential Building Innovation (ARBI) is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

  12. Strategy Guideline. Mitigation of Retrofit Risk Factors

    SciTech Connect

    Berman, M.; Smith, P.; Porse, E.

    2012-12-01

    The Alliance for Residential Building Innovation (ARBI) Building America team is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

  13. Energy Retrofit for Aging K-12 Schools.

    ERIC Educational Resources Information Center

    3D/International, Houston, TX.

    Successfully retrofitting aging K-12 schools using energy conservation measures (ECM) that can improve the physical plant and reduce energy consumption are explored. Topics explore how certain ECM measures can benefit educational facilities, why retrofitting begun sooner rather than later is important, how to finance the retrofit program, and the…

  14. EMCS Retrofit Analysis - Interim Report

    SciTech Connect

    Diamond, R.C.; Salsbury, T.I.; Bell, G.C.; Huang, Y.J.; Sezgen, A.O.; Mazzucchi, R.; Romberger, J.

    1999-03-01

    This report presents the interim results of analyses carried out in the Phillip Burton Federal Building in San Francisco from 1996 to 1998. The building is the site of a major demonstration of the BACnet communication protocol. The energy management and control systems (EMCS) in the building were retrofitted with BACnet compatible controllers in order to integrate certain existing systems on one common network. In this respect, the project has been a success. Interoperability of control equipment from different manufacturers has been demonstrated in a real world environment. Besides demonstrating interoperability, the retrofits carried out in the building were also intended to enhance control strategies and capabilities, and to produce energy savings. This report presents analyses of the energy usage of HVAC systems in the building, control performance, and the reaction of the building operators. The report does not present an evaluation of the performance capabilities of the BACnet protocol. A monitoring system was installed in the building that parallels many of the EMCS sensors and data were archived over a three-year period. The authors defined pre-retrofit and post-retrofit periods and analyzed the corresponding data to establish the changes in building performance resulting from the retrofit activities. The authors also used whole-building energy simulation (DOE-2) as a tool for evaluating the effect of the retrofit changes. The results of the simulation were compared with the monitored data. Changes in operator behavior were assessed qualitatively with questionnaires. The report summarizes the findings of the analyses and makes several recommendations as to how to achieve better performance. They maintain that the full potential of the EMCS and associated systems is not being realized. The reasons for this are discussed along with possible ways of addressing this problem. They also describe a number of new technologies that could benefit systems of the type

  15. Torch ignition: Ideal for lean burn premixed-charge engines

    SciTech Connect

    Mavinahally, N.S. ); Assanis, D.N. ); Govinda Mallan, K.R.; Gopalakrishnan, K.V. )

    1994-10-01

    Sluggish flame initiation and propagation, and even potential misfiring, become major problems with lean-fueled, premixed-charge, spark-ignited engines. This work studies torch ignition as a means for improving combustion, fuel economy, and emissions of a retrofitted, large combustion chamber with nonideal spark plug location. A number of alternative configurations, employing different torch chamber designs, spark-plug locations, and materials, were tested under full-load and part-load conditions. Results indicate a considerable extension of the lean operating limit of the engine, especially under part-load conditions. In addition, torch ignition can lead to substantial thermal efficiency gains for either leaner or rich air-fuel ratios than the optimum for the conventional ignition system. On the richer side, in particular, the torch-ignited engine is capable of operating at maximum brake torque spark timings, rather than compromised, knock-limited spark timings used with conventional ignition. This translates into thermal efficiency improvements as high as 8% at an air-fuel ratio of 20:1 and full load.

  16. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  17. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  18. Energy Retrofit--Step One.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.; And Others

    1983-01-01

    A School Retrofit Design Analysis System (SRDAS) provides energy modeling analyses of school buildings. SRDAS has three subprograms that consider first, roof, windows, walls, floors, and infiltration sites; second, costs per student, compliance with national energy consumption norms, and electricity costs projections; and third, financial savings…

  19. Monitoring conservative retrofits in single family buildings

    SciTech Connect

    Richardson, C.S.

    1992-12-06

    This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant's names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

  20. Flare ignition system

    SciTech Connect

    Sorelle, R.R.

    1984-05-22

    A flare ignition system is claimed for oil well flaring of combustible gases. It includes a central control unit, low voltage interconnect line and plural remote igniter units which include alternate first and second spark gaps coordinated in fail-safe operation. Coordination is carried out by pulse counting and validating circuitry which assures that one of the spark gaps will always be ignitable or alarm condition will exist.

  1. Reaching ignition in the tokamak

    SciTech Connect

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project. (MOW)

  2. Dropwise ignition versus external ignition for multicomponent fuel sprays

    NASA Astrophysics Data System (ADS)

    Mawid, M.; Aggarwal, S. K.

    1988-07-01

    An attempt has been made to identify conditions for dropwise ignition and spray ignition. Both pure as well as multicomponent fuels are considered. For dropwise ignition, an existing ignition criterion has been modified to account for the nonlinear dependence of reaction rate on fuel and oxygen concentrations and to account for the multicomponent nature of the fuel. The external or spray ignition is considered through the zero heat flux condition at the ignition source. The effect of chemical kinetics is examined by employing reaction schemes with unity as well as non-unity exponents of fuel and oxygen concentrations. Results indicate that for most of the conditions considered, the individual droplet ignition is favored over the external ignition. Only when the drop diameter is smaller than 30 microns, the spray ignites earlier than droplets. The addition of a small amount of a volatile component significantly enhances the ignitability of both modes. However, the effect is stronger for the dropwise ignition mode.

  3. Low profile thermite igniter

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  4. Advanced Catalytic Hydrogenation Retrofit Reactor

    SciTech Connect

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  5. Canadian retrofit meets stiffer sulfur recovery regulations

    SciTech Connect

    Nasato, E. ); Goar, B.G. ); Borsboom, J. )

    1992-02-10

    Retrofitting Mobil Oil Canada's Lone Pine Creek gas plant with the Superclaus-99 process has led to SO{sub 2} emissions being reduced by 30-45%. Commissioning of the retrofit occurred in late 1990. The process was chosen because of its relatively low capital investment requirements and its operational simplicity and flexibility. Retrofit requirements included minor equipment and piping modifications and a new catalyst for the third converter. This paper reports that operationally, Superclaus-99 is a straight-through, continuous process with a more flexible air-to-acid-gas control than the conventional Claus process. This retrofit was the first of its kind in North America.

  6. Building Energy Model Development for Retrofit Homes

    SciTech Connect

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  7. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  8. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  9. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith

    1992-01-01

    The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.

  10. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  11. Prologis Rolls Out Warehouse Energy Retrofits

    SciTech Connect

    2013-03-01

    Prologis partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus pre-retrofit energy use as part of DOE’s Commercial Building Partnership (CBP) program.

  12. Quantifying the Financial Benefits of Multifamily Retrofits

    SciTech Connect

    D. Philbrick; Scheu, R.; Brand, L.

    2016-01-01

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  13. Molded composite pyrogen igniter for rocket motors. [solid propellant ignition

    NASA Technical Reports Server (NTRS)

    Heier, W. C.; Lucy, M. H. (Inventor)

    1978-01-01

    A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.

  14. Direct spark ignition system

    SciTech Connect

    Gann, R.A.

    1986-12-02

    This patent describes a direct spark ignition system having a gas burner, an electrically operable valve connected to the burner to admit fuel thereto, a gated oscillator having a timing circuit for timing a trial ignition, a spark generator responsive to the oscillator for igniting fuel emanating from the burner, and a flame sensor for sustaining oscillations of the oscillator while a flame exists at the burner. The spark generator has an inverter connected to a low voltage dc source and responsive to the oscillator for converting the dc voltage to a high ac voltage, a means for rectifying the high ac voltage, a capacitor connected to the rectifying means for storing the rectified high voltage, an ignition coil in series between the storage capacitor and a switch, and a means for periodically turning on the switch to produce ignition pulses through the coil. The ignition system is powered from the dc source but controlled by the oscillator. An improvement described here is wherein the inverter is comprised of a step-up transformer having its primary winding connected in series with the dc source and a common emitter transistor having its collector connected to the primary winding. The transistor has its base connected to be controlled by the oscillator to chop the dc into ac in the primary winding, and a diode connected between the storage capacitor and the collector of the transistor, the diode being poled to couple into the capacitor back EMF energy when the transistor is turned off.

  15. Burner retrofits reduce brewery emissions

    SciTech Connect

    Not Available

    1993-04-01

    In 1988, the South Coast Air Quality Management District in California (SCAQMD) tightened its grip on industrial emissions of nitrogen oxides (NOx). The new statute, Rule 1146, mandates a 75% reduction in NOx emissions over a five-year period ending this July. Anheuser-Busch Inc.'s second-largest brewery in Van Nuys fell under the new law's jurisdiction. Under the new law, the maximum allowable NOx emission must be reduced from 120 to 30 ppm for the two largest boilers. There were two alternatives: either prevent its formation inside the boiler, or remove it from the off-gases via selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR). Prevention was chosen, because the NOx-removal technologies are unproven in the US on natural-gas-fired boilers. In addition, it was not known whether SCR or SNCR could respond to the wide swings in boiler demand. At any given time, loads between 30 and 100% of capacity would be required from the boilers. The brewery retrofitted the 125,000-lb/h boilers with Variflame burners, based upon an earlier retrofit at Anheuser-Busch's Merrimack, N.H., brewery. The paper describes this burner and its performance.

  16. Proven Performance of Seven Cold Climate Deep Retrofit Homes

    SciTech Connect

    Osser, R.; Neuhauser, K.; Ueno, K.

    2012-06-01

    Seven test homes located in Massachusetts are examined within this report. The retrofit strategies of each home are presented along with a comparison of the pre- and post-retrofit airtightness achieved by the group. Pre- and post-retrofit utility bills were collected; energy models were used to estimate pre-retrofit energy use when bills were unavailable.

  17. Infrastructure Retrofit Design via Composite Mechanics

    NASA Technical Reports Server (NTRS)

    Chamis, Christos, C.; Gotsis,Pascal K.

    1998-01-01

    Select applications are described to illustrate the concept for retrofitting reinforced concrete infrastructure with fiber reinforced plastic laminates. The concept is first illustrated by using an axially loaded reinforced concrete column. A reinforced concrete arch and a dome are then used to illustrate the versatility of the concept. Advanced methods such as finite element structural analysis and progressive structural fracture are then used to evaluate the retrofitting laminate adequacy. Results obtains show that retrofits can be designed to double and even triple the as-designed load of the select reinforced concrete infrastructures.

  18. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  19. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  20. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1991-01-01

    An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.

  1. Retrofitting and the mu Problem

    SciTech Connect

    Green, Daniel; Weigand, Timo; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    One of the challenges of supersymmetry (SUSY) breaking and mediation is generating a {mu} term consistent with the requirements of electro-weak symmetry breaking. The most common approach to the problem is to generate the {mu} term through a SUSY breaking F-term. Often these models produce unacceptably large B{mu} terms as a result. We will present an alternate approach, where the {mu} term is generated directly by non-perturtative effects. The same non-perturbative effect will also retrofit the model of SUSY breaking in such a way that {mu} is at the same scale as masses of the Standard Model superpartners. Because the {mu} term is not directly generated by SUSY breaking effects, there is no associated B{mu} problem. These results are demonstrated in a toy model where a stringy instanton generates {mu}.

  2. The Automotive Ignition Coil

    NASA Technical Reports Server (NTRS)

    Darnell, T H

    1932-01-01

    This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.

  3. Retrofitting the Streetlights in Boise, Idaho

    ScienceCinema

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2013-05-29

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  4. Retrofitting the Streetlights in Boise, Idaho

    SciTech Connect

    Young, Clay; Oliver, LeAnn; Bieter, David; Johnson, Michael; Oldemeyer, Neal

    2011-01-01

    Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life.

  5. Bedford Farmhouse High Performance Retrofit Prototype

    SciTech Connect

    2010-04-26

    In this case study, Building Science Corporation partnered with Habitat for Humanity of Greater Lowell on a retrofit of a mid-19th century farmhouse into affordable housing meeting Building America performance standards.

  6. On thermonuclear ignition criterion at the National Ignition Facility

    SciTech Connect

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Batha, Steven H.

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirements of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.

  7. Ignition timing control

    SciTech Connect

    Lambert, J.E.; Bedross, G.M.

    1993-05-25

    An engine ignition control system for controlling the timing of the spark for initiating burning in the combustion chamber of a four stroke cycle, single cylinder, internal combustion engine is described; said engine having a cylinder, a piston in said cylinder, a crankshaft connected to said piston, said piston being adapted to reciprocate between a top dead center position and a bottom dead center position; a speed sensor means for developing periodic sensor voltage timing pulses, the cycle time between timing pulses being an indication of engine crankshaft speed; means for developing ignition timing pulses, each timing pulse having a leading edge corresponding to a voltage change in a timing voltage pulse and a trailing edge corresponding to an opposite voltage change in a timing voltage pulse; means for developing a spark voltage including an ignition coil and a source of ignition coil current, said spark voltage occurring at a coil primary current interrupt point; means for measuring in real-time, cycle time and a timing pulse time for one engine cycle; and means for computing an optimum delay time from the leading edge of a timing pulse for said one cycle to said interrupt point whereby combustion is initiated at a time in advance of the top dead center position.

  8. Post-Retrofit Residential Assessments

    SciTech Connect

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be

  9. Equilibrium ignition for ICF capsules

    SciTech Connect

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-12-31

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.

  10. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  11. Advanced over fire air retrofit for summer ozone compliance

    SciTech Connect

    Hayden, J.; Steitz, T.

    1998-07-01

    As part of a system wide Ozone Compliance Plan, Baltimore Gas and Electric (GBE) pursued a NOx reduction project at Brandon Shores Unit 1, a 680 MWg unit equipped with first generation low NOx burners. Strict current and proposed Ozone reduction regulations in the Northeastern United States required BGE to formulate a compliance plan. BGE reviewed many types of combustion and post-combustion NOx reduction techniques for the Station. An Over Fire Air (OFA) retrofit was evaluated as the least cost option to obtain compliance on a cost per ton of NOx removed. BGE selected an Advanced Over Fire (AOFA) System designed by Foster Wheeler (FW) to achieve their project goals for Brandon Shores Unit 1. The AOFA System demonstrated NOx reductions up to 44% at full load, with absolute NOx levels dropping to below 0.30 lb/MMBtu. All project goals for NOx, LOI (Loss on Ignition), CO, and boiler performance were met or exceeded. The Low NOx System proved to be a very cost effective method to reduce NOx for summertime Ozone compliance, while still allowing for optimum operating efficiency with the Low NOx System out of service during the non-Ozone season.

  12. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  13. Monolithic catalytic igniters

    NASA Technical Reports Server (NTRS)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  14. Ignition target design for the National Ignition Facility

    SciTech Connect

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  15. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  16. Central ignition scenarios for TFTR

    SciTech Connect

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs.

  17. Pinch technology experience in plant retrofits

    SciTech Connect

    Kumana, J.D.; Spriggs, H.D.; Ashton, G.

    1987-01-01

    Pinch technology has been applied to retrofit of many plants employing a wide variety of technologies, including continuous and batch processes, and those involving solids processing. This paper reports the authors recent experience in identifying energy savings opportunities in an oil refinery, an ethylene plant, and a corn wet milling plant. The key findings are that: Pinch technology can be successfully applied to retrofits as well as new plant designs; the correct design for retrofits is not the same as that for new designs; pinch technology gives good results even in ''difficult'' processes employing the less common unit operations; and some commonly accepted practices (specifically in solids drying) are fundamentally wrong; multiple-effect drying based on a countercurrent humidity profile offers significant potential for energy savings.

  18. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect

    Rudd, Armin

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods.

  19. National Grid Deep Energy Retrofit Pilot

    SciTech Connect

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  20. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  1. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  2. Retrofit Gloveport Cover and Security Device

    DOE PAGESBeta

    Hinckley, Jon E.

    2015-01-01

    The world of glovebox work in the areas of science and manufacturing is in a consistent state of flux due to the inherent nature of changing missions. These rapidly changing work environments result in almost continuous regulatory changes within the codes and standards in order to maintain worker and environmental safety. Gloveboxes designed and manufactured prior to these regulations are not easy to update or retrofit to accommodate new requirements. In order to meet the challenge of retrofitting gloveboxes to the meet the requirements, the following solutions have been developed.

  3. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R P

    2009-12-01

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF), has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  4. Plastic ablator ignition capsule design for the National Ignition Facility

    SciTech Connect

    Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.; Salmonson, Jay D.; Callahan, Debra A.; Town, Richard P. J.

    2010-05-15

    The National Ignition Campaign, tasked with designing and fielding targets for fusion ignition experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, S228 (2004)], has carried forward three complementary target designs for the past several years: a beryllium ablator design, a plastic ablator design, and a high-density carbon or synthetic diamond design. This paper describes current simulations and design optimization to develop the plastic ablator capsule design as a candidate for the first ignition attempt on NIF. The trade-offs in capsule scale and laser energy that must be made to achieve a comparable ignition probability to that with beryllium are emphasized. Large numbers of one-dimensional simulations, meant to assess the statistical behavior of the target design, as well as two-dimensional simulations to assess the target's susceptibility to Rayleigh-Taylor growth are presented.

  5. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  6. Retrofiting survivability of military vehicles

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0

  7. Rocket Ignition Demonstrations Using Silane

    NASA Technical Reports Server (NTRS)

    Pal, Sibtosh; Santoro, Robert; Watkins, William B.; Kincaid, Kevin

    1998-01-01

    Rocket ignition demonstration tests using silane were performed at the Penn State Combustion Research Laboratory. A heat sink combustor with one injection element was used with gaseous propellants. Mixtures of silane and hydrogen were used as fuel, and oxygen was used as oxidizer. Reliable ignition was demonstrated using fuel lead and and a swirl injection element.

  8. Tokamak and RFP ignition requirements

    SciTech Connect

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.

  9. Hydrogen/Air-Ignition Torch

    NASA Technical Reports Server (NTRS)

    Repas, George A.

    1988-01-01

    Torch is simple, reliable, and economical. Airflow cools inner tube prior to flowing through openings in inner tube and mixing with gaseous hydrogen. Spark plug connected to constant-duty simple ignition transformer threaded into side of torch and into inner tube. Transformer used to excite spark plug for period long enough to ignite gas. Transformer is turned off.

  10. Plasma jet ignition device

    DOEpatents

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  11. Retrofitting the 5045 Klystron for Higher Efficiency

    SciTech Connect

    Jensen, Aaron; Fazio, Michael; Haase, Andy; Jongewaard, Erik; Kemp, Mark; Neilson, Jeff

    2015-04-15

    The 5045 klystron has been in production and accelerating particles at SLAC National Accelerator Laboratory for over 25 years. Although the design has undergone some changes there are still significant opportunities for improvement in performance. Retrofitting the 5045 for higher efficiencies and a more mono-energetic spent beam profile is presented.

  12. National Grid Deep Energy Retrofit Pilot

    SciTech Connect

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  13. Retrofitting: The Thermal Upgrading of Buildings.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This publication is a compilation of talks delivered during the spring of 1977 by Charles Wing. Contents of the booklet include retrofitting old houses, condensation and vapor barriers, solutions to the vapor barrier problem, and how much of which insulation to use. The publication includes charts, drawings, and equations to illustrate the topics…

  14. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  15. Retrofit methods reduce valves' fugitive emissions

    SciTech Connect

    Gallupe, W. )

    1993-06-01

    Retrofitting in-service valves is a practical alternative that reduces plant fugitive emissions and meets the federal and state environmental provisions. Plant operators must find cost-effective technologies that control and restrain valve emissions. Unfortunately, valves are dynamic devices and must move to perform their functions. Surveying all options, total replacement is not viable due to cost and scale of magnitude. However, retrofit technologies are practical measures that concentrate on correcting the problem points on a valve--the stem, the valve body and piping connections. Retrofits examine if the proper valve type is being used. Retrofit methods can meet the emission standards and reduce capital costs for environmental compliance. Leaks from nearly all types of process equipment fall under the provisions of the Clean Air Act Amendments, but valves are the most serious challenge for the process industries, and consequently, the most costly to control. The paper discusses the following: valves as dynamic devices; compliance with environmental regulations; what makes valves leak; enhanced stem sealing; modular stem sealing devices; custom design solutions; special valves; and bellows seals.

  16. Energy Retrofit Creates an Efficient Building.

    ERIC Educational Resources Information Center

    Freeman, Laurie

    1997-01-01

    After 20 years of inadequate heating and cooling, an Indiana school district took advantage of a 1994 state law that allows school districts to bypass the "low-bidder wins" restriction. The district established a guaranteed energy-saving contract for a climate-control-improvements package to retrofit the junior-senior high school. (MLF)

  17. Evaluation of Crawlspace Retrofits in Multifamily Buildings

    SciTech Connect

    Rudd, A.

    2014-09-01

    In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods. While the unvented crawlspace retrofit was effective in reducing heat loss, and the majority of the bulk water drainage problems had been resolved, the important finding was that some of the wood joists embedded in masonry pockets behind the brick veneer were showing signs of moisture damage.

  18. Greenbuilt Retrofit Test House Final Report

    SciTech Connect

    Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

    2014-06-01

    The Greenbuilt house, is an all-electric, 1980's era home in the eastern Sacramento suburb of Fair Oaks that was retrofit by Greenbuilt Construction as part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration (EERD) Program. The project was a joint effort between the design-build team at Greenbuilt Construction, led by Jim Bayless, SMUD and their project manager Mike Keesee, and the National Renewable Energy Laboratory (NREL). The goal of the Energy Efficient Remodel Demonstration program is to work with local builders to renovate homes with cost-effective energy efficient retrofit measures. The homes remodeled under the EERD program are intended to showcase energy efficient retrofit options for homeowners and other builders. The Greenbuilt house is one of five EERD projects that NREL has supported. NREL's main role in these projects is to provide energy analysis and to monitor the home's performance after the retrofit to verify that the energy consumption is in line with the modeling predictions. NREL also performed detailed monitoring on the more innovative equipment included in these remodels, such as an add-on heat pump water heater.

  19. Monitoring conservative retrofits in single family buildings. Final technical report

    SciTech Connect

    Richardson, C.S.

    1992-12-06

    This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant`s names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

  20. Ignition process in Diesel engines

    NASA Technical Reports Server (NTRS)

    Wentzel, W

    1936-01-01

    This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.

  1. Homeowner Best Practices Guide for Residential Retrofits

    SciTech Connect

    Walker, Iain S.

    2005-09-01

    This best practices guide for HV AC system retrofits is aimed at homeowners who want guidance on upgrading their heating, cooling and ventilation (HVAC) systems and integrating these upgrades with other changes to their home. It has been developed around the idea of having packages of changes to the building HV AC system and building envelope that are climate and house construction dependent. These packages include materials procedures and equipment, and are designed to remove some of the guesswork when selecting a builder, contractor, or installer. The packages are not meant to be taken as rigid requirements - instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction, where a systems engineering approach has been used to develop extremely energy-efficient homes that are comfortable safe and durable, and often cost less than standard construction. This approach is best epitomized by the Building America program, whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of simple tests that a homeowner can perform on their own together with checklists and questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HV AC system, the local

  2. Best practices guide for residential HVAC Retrofits

    SciTech Connect

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  3. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  4. The Ignition Target for the National Ignition Facility

    SciTech Connect

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-03-12

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10{sup 8} K), pressures (10-GBar) and matter densities (> 100 g/cm{sup 3}). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art.

  5. Piezoelectrically Initiated Pyrotechnic Igniter

    NASA Technical Reports Server (NTRS)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  6. Emergency ignition shutoff system

    SciTech Connect

    Gomes, L.R. Jr.

    1987-01-13

    An emergency shut-off mechanism is described for a racing car having a roll bar framework forming a driver's cage. The mechanism comprises, in combination, a toggle switch wired in series with an ignition switch of the car, the toggle switch being mounted on a dashboard of the car, one end of a flexible cord being connected to the toggle switch, and an ''L''-shaped conduit affixed to the driver's cage through which the cord slidably extends. A snap hook is affixed to an opposite end of the cord and a ring is affixed to a rear portion of a driver's helmet for detachable attachment to the snap hook. The conduit extends from the dashboard to a position rearward of a driver's seat and of the helmet. Sufficient movement of the helmet pulls the cord, thereby actuating the switch and shutting off the car.

  7. Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.

    ERIC Educational Resources Information Center

    Hartman, Nicholas T.

    2003-01-01

    Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)

  8. Retrofitting old turbomachinery with vibration monitors

    SciTech Connect

    Ward, K.A. )

    1994-01-01

    Most operating companies don't realize that the people problems during and after a turbo-machinery monitoring retrofit can be much more difficult to overcome than the mechanical problems. Typical mechanical problems include: designing brackets for installing the vibration probes in the desired locations and at the proper angles, imbedding the thermo-couples in the bearings, routing the wiring out of the bearing housings without oil leaks and burnishing the vibration probe target areas on the shafts to obtain runout free readings. The following guidelines, however, deal with the more important people problems. Violate each of these guidelines and implementation of the turbomachinery monitoring retrofit project and acceptance of the monitors by the unit operators may just be successful.

  9. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  10. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  11. Retrofit California Overview and Final Reports

    SciTech Connect

    Choy, Howard; Rosales, Ana

    2014-03-01

    Energy efficiency retrofits (also called upgrades) are widely recognized as a critical component to achieving energy savings in the building sector to help lower greenhouse gas (GHG) emissions. To date, however, upgrades have accounted for only a small percentage of aggregate energy savings in building stock, both in California and nationally. Although the measures and technologies to retrofit a building to become energy efficient are readily deployed, establishing this model as a standard practice remains elusive. Retrofit California sought to develop and test new program models to increase participation in the energy upgrade market in California. The Program encompassed 24 pilot projects, conducted between 2010 and mid-2013 and funded through a $30 million American Recovery and Reinvestment Act (ARRA) grant from the U.S. Department of Energy’s (DOE) Better Buildings Neighborhood Program (BBNP). The broad scope of the Program can be seen in the involvement of the following regionally based Grant Partners: Los Angeles County (as prime grantee); Association of Bay Area Governments (ABAG), consisting of: o StopWaste.org for Alameda County o Regional Climate Protection Authority (RCPA) for Sonoma County o SF Environment for the City and County of San Francisco o City of San Jose; California Center for Sustainable Energy (CCSE) for the San Diego region; Sacramento Municipal Utilities District (SMUD). Within these jurisdictions, nine different types of pilots were tested with the common goal of identifying, informing, and educating the people most likely to undertake energy upgrades (both homeowners and contractors), and to provide them with incentives and resources to facilitate the process. Despite its limited duration, Retrofit California undoubtedly succeeded in increasing awareness and education among home and property owners, as well as contractors, realtors, and community leaders. However, program results indicate that a longer timeframe will be needed to

  12. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  13. Engine ignition timing control apparatus

    SciTech Connect

    Takahashi, N.

    1988-03-01

    An apparatus for controlling the timing of ignition of an internal combustion engine including at least one cylinder is described comprising: sensor means sensitive to combustion pressure in the cylinder for providing a sensor signal indicative of a sensed cylinder combustion pressure; and a control circuit including means coupled to the sensor means for measuring a crankshaft angle at which the cylinder combustion pressure is at maximum, means for retarding the ignition timing in response to the measured crankshaft angle being less than a first value, means for retaining the ignition timing in response to the measured crankshaft angle being between the first and a second value greater than the first value, and means for advancing the ignition timing in response to the measured crankshaft angle being greater than the second value.

  14. Retrofit cogeneration system increases refrigeration capacity

    SciTech Connect

    Amberger, R.F. ); DeFrees, J.A. )

    1993-04-01

    This article describes a retrofit cogeneration systems for increasing refrigeration capacity at a milk processing plant in Queens, New York. The natural gas/ammonia cogeneration and subcooling systems reduce CO[sub 2] emissions and provide cost and energy savings. The topics of the article include the innovative aspects, computer modeling for system analysis, analysis technique, system configuration, refrigeration loads, operations and maintenance, cost effectiveness and environmental benefits.

  15. Evaluation of Eco-Efficiency and Performance of Retrofit Materials

    NASA Astrophysics Data System (ADS)

    Gopinath, Smitha; Rama Chandra Murthy, A.; Iyer, Nagesh R.; Kokila, S.

    2015-12-01

    In this work three materials namely Fiber Reinforced Polymer (FRP), ferrocement and Textile Reinforced Concrete (TRC) have been evaluated towards their performance efficiency and eco-effectiveness for sustainable retrofitting applications. Investigations have been carried out for flexural strengthening of RC beams with FRP, ferrocement and TRC. It is observed that in the case of FRP, it is not possible to tailor the material according to design requirements and most of the time strengthened structure becomes over stiff. Eco-effectiveness of these retrofitting materials has been evaluated by computing the embodied energy. It is observed that the amount of CO2 emitted by TRC is less compared to other retrofit materials. Further, the performance point of retrofitted RC frames has been evaluated and damage index has been calculated to find out the effective retrofit material. It is concluded that, if RC frame is retrofitted with FRP and TRC, it undergoes less damage compared to ferrocement.

  16. The National Ignition Facility Project

    SciTech Connect

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-06-16

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project.

  17. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect

    Cunningham, Kerrie; Hannigan, Eileen

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results-program cost and energy savings-to help understand the overall strengths and weaknesses or challenges of each model.

  18. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect

    Cunningham, K.; Hannigan, E.

    2013-03-01

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

  19. Alcohol ignition interlock programs.

    PubMed

    Beirness, D J; Marques, P R

    2004-09-01

    The alcohol ignition interlock is an in-vehicle DWI control device that prevents a car from starting until the operator provides a breath alcohol concentration (BAC) test below a set level, usually .02% (20 mg/dl) to .04% (40 mg/dl). The first interlock program was begun as a pilot test in California 18 years ago; today all but a few US states, and Canadian provinces have interlock enabling legislation. Sweden has recently implemented a nationwide interlock program. Other nations of the European Union and as well as several Australian states are testing it on a small scale or through pilot research. This article describes the interlock device and reviews the development and current status of interlock programs including their public safety benefit and the public practice impediments to more widespread adoption of these DWI control devices. Included in this review are (1) a discussion of the technological breakthroughs and certification standards that gave rise to the design features of equipment that is in widespread use today; (2) a commentary on the growing level of adoption of interlocks by governments despite the judicial and legislative practices that prevent more widespread use of them; (3) a brief overview of the extant literature documenting a high degree of interlock efficacy while installed, and the rapid loss of their preventative effect on repeat DWI once they are removed from the vehicles; (4) a discussion of the representativeness of subjects in the current research studies; (5) a discussion of research innovations, including motivational intervention efforts that may extend the controlling effect of the interlock, and data mining research that has uncovered ways to use the stored interlock data record of BAC tests in order to predict high risk drivers; and (6) a discussion of communication barriers and conceptual rigidities that may be preventing the alcohol ignition interlock from taking a more prominent role in the arsenal of tools used to control

  20. Fluidized-bed retrofit a practical alternative to FGD

    SciTech Connect

    Stringfellow, T.E.

    1984-02-01

    A comparison is made between the costs of flue-gas desulphurization retrofit to a 112 MW pf-fired boiler, fluidized-bed combustion retrofit to the boiler, and a new fluidized-bed boiler. Breakdowns are given for capital costs, operating and maintenance costs and the busbar cost of energy for a 20 year unit life. The analysis shows that fbc is a viable option for the retrofit of many existing boilers from both a technical and economic viewpoint.

  1. National Ignition Facility: Experimental plan

    SciTech Connect

    Not Available

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester`s Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  2. Plasma breakdown and combustion ignition

    NASA Astrophysics Data System (ADS)

    McNeill, Donald H.; Tran, Phuoc

    2001-10-01

    Ignition in chemically reactive media and electrical breakdown are among the most widely used transient processes. The two phenomena operate together during electrical (and laser) spark ignition of combustible gases. Analogs between them show up in Semenov's early (1920's) work on chemical chain reactions and on thermal breakdown of dielectrics. Both breakdown and ignition are under active study today. The energy source for breakdown is an applied electric field, and that for ignition, an applied flux of heat or radicals. Electrons and intermediate reactants are the corresponding driver particles, with a velocity difference that implies a vast difference in the growth rates for the two processes. Combustion takes place in a fuel-oxidant mixture, and an ignited reaction can proceed until the fuel or oxidant is depleted, while a (non-afterglow, non-fusion) plasma is sustained by an external power supply. The energy balance, propagation behavior, and time evolution of some specific forms of plasma breakdown and chemical ignition are further compared in order to illustrate their physical nature.

  3. National Ignition Campaign Hohlraum Energetics

    SciTech Connect

    Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

    2009-11-16

    The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

  4. Hotel Cedes 7 months' savings for total lighting retrofit

    SciTech Connect

    Warrock, A.M.

    1983-07-11

    In an unusual shared-savings agreement, the Hilton Florida Center at Orlando, where a retrofit program was begun two years ago, will give up all savings from a lighting retrofit program for seven months, avoiding upfront costs of equipment purchase, and will then become sole owner of the equipment and beneficiary of the savings. The four-month-old program has improved the lighting and cut electricity costs $2000 to $2500 per month, which would have been a six-month payback. Contracts for two other hotels are expected where retrofitting has begun. Retrofit details are given.

  5. The National Ignition Facility

    SciTech Connect

    Miller, G H

    2003-12-19

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10'' bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5 ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as multi-color laser operation and high-energy short pulse operation.

  6. Dual schedule ignition system

    SciTech Connect

    Remmers, G.M.

    1991-08-13

    This patent describes a time base generator for an ignition system of an internal combustion engine having a crankshaft. It comprises an encoder disk which rotates synchronously with the crankshaft of the engine and includes a plurality of timing features of a predetermined width which are at fixed locations relative to the crankshaft and includes at least one synchronizing feature which is at a fixed location relative to the crankshaft and to at least one of the timing features; detector means for detecting the presence or absence of the timing features and the at least one synchronizing feature and for generating digital signals representative thereof; and pulse generating means for generating a first pulse train from the trailing edge of each timing feature represented in the digital signal and for generating a second pulse train from the leading edge of each timing feature represented in the digital signal whereby the pulses of the second pulse train are advanced from the pulses of the first pulse train by a predetermined angular rotation of the crankshaft determined by the width of each timing feature.

  7. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  8. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  9. Multimodal Friction Ignition Tester

    NASA Technical Reports Server (NTRS)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  10. Progress Toward Ignition on the National Ignition Facility

    SciTech Connect

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger

  11. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  12. Enhanced Model for Fast Ignition

    SciTech Connect

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  13. Ignition problems in scramjet testing

    SciTech Connect

    Mitani, Tohru

    1995-05-01

    Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

  14. National Ignition Campaign Hohlraum energetics

    SciTech Connect

    Meezan, N. B.; Atherton, L. J.; Callahan, D. A.; Dewald, E. L.; Dixit, S.; Dzenitis, E. G.; Edwards, M. J.; Haynam, C. A.; Hinkel, D. E.; Jones, O. S.; Landen, O.; London, R. A.; Michel, P. A.; Moody, J. D.; Milovich, J. L.; Schneider, M. B.; Thomas, C. A.; Town, R. P. J.; Warrick, A. L.; Weber, S. V.

    2010-05-15

    The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum 'energetics', a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition Hohlraum experiments.

  15. Ignition characterization of LOX/hydrocarbon propellants

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Wong, K. Y.

    1985-01-01

    The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.

  16. Practical solutions to turbine control system retrofit problems

    SciTech Connect

    Cavanagh, M.; Lovejoy, K.

    1996-10-01

    This paper addresses the use of microprocessors in retrofitting turbine control systems. The topics of the paper include modern control system architecture, human machine interface, steam flow linearization and automatic valve calibration, retrofit hydraulic interfacing, reliability considerations, and advanced valve positioning technique (quarter cycle damping).

  17. Damage monitoring of CFRP retrofit using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Joshi, Kunal; Breaux Frketic, Jolie; Olawale, David; Dickens, Tarik

    2015-04-01

    With nearly 25% of bridge infrastructure deemed deficient, repair of concrete structures is a critical need. FRP materials as thin laminates or fabrics are appearing to be an ideal alternative to traditional repair technology, because of their high strength to weight ratios and stiffness to weight ratios. In addition, FRP materials offer significant potential for lightweight, high strength, cost-effective and durable retrofit. One drawback of using CFRP retrofitting is its brittle-type failure; caused by its nearly linear elastic nature of the stress-strain behavior. This causes a strength reduction of the retrofitted member, thus the health of the retrofit applied on the structure becomes equally important to sustain the serviceability of the structure. This paper provides a system to monitor damage on the CFRP retrofits through optical fiber sensors which are woven into the structure to provide damage sensing. Precracked reinforced concrete beams were retrofitted using CFRP laminates with the most commonly used FRP application technique. The beams were tested under constant stress to allow the retrofitting to fail while evaluating the performance of the sensing system. Debonding failure modes at a stress of 9 MPa were successfully detected by TL optical fiber sensors in addition to detection during flexural failure. Real-time failure detection of FRP strengthened beams was successfully achieved and the retrofit damage-monitoring scheme aims at providing a tool to reduce the response time and decision making involved in maintenance of deficient structures.

  18. A systems approach to retrofitting residential HVAC systems

    SciTech Connect

    McWilliams, J.A.; Walker, I.S.

    2004-05-01

    A Best Practices Guide for retrofitting residential HVAC systems has recently been completed by DOE. The guide uses diagnostics and checklists to guide the user to specific retrofit packages that maximize retrofit energy savings, comfort and safety potential. The guide uses a systems approach to retrofitting where the interaction of different building components is considered throughout the retrofit selection process. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC systems can be used. In this study, several houses were surveyed using the Best Practices Guide and a single house was selected for retrofitting. The objectives were to demonstrate how a successful system-wide retrofit can be carried out and to provide feedback to improve the guide. Because it represents a departure from current practice, a key aspect of this study was to investigate the interactions with contractors and code officials who are unfamiliar with the systems approach. The study found that the major barrier to the systems approach in retrofits was in changing the working practices of contractors and code officials.

  19. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    ERIC Educational Resources Information Center

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  20. Crowne Plaza Renovation Retrofit Case Study

    SciTech Connect

    none,

    2013-03-01

    InterContinental Hotels Group (IHG) and its franchise partner B.F. Saul Company Hospitality Group (B.F. Saul Co.) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  1. Measure Guideline. Hybrid Foundation Insulation Retrofits

    SciTech Connect

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  2. Seismic Retrofit for Electric Power Systems

    SciTech Connect

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  3. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  4. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  5. Spark ignition of flowing gases

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1956-01-01

    Research conducted at the NACA Lewis Laboratory on ignition of flowing gases by means of long-duration discharges is summarized and analyzed. Data showing the effect of a flowing combustible mixture on the physical and electrical characteristics of spark discharges and data showing the effects of variables on the spark energy required for ignition that has been developed to predict the effect of many of the gas-stream and spark variables is described and applied to a limited amount of experimental data.

  6. Integral magnetic ignition pickup trigger

    SciTech Connect

    King, R.

    1992-10-27

    This patent describes a trigger system for the ignition system of an internal combustion engine having a crankcase with a rotatable crankshaft therein, and a flywheel on one end of the crankcase connected to an end of the crankshaft. It comprises: a nonferromagnetic disk-shaped hub for connection to the crankshaft and rotatable therewith on the end opposite the flywheel; and a stationary sensor mounted adjacent the hub for detecting impulses from the magnetically responsive elements as the hub rotates and utilizing the impulses to trigger the ignition system.

  7. Fast ignition without hole boring.

    PubMed

    Hain, S; Mulser, P

    2001-02-01

    A fast-ignitor scheme for inertial confinement fusion is proposed which works without hole boring. It is shown that a thermonuclear burn wave starts from the pellet corona when an adequate amount of energy (typically 10 kJ) is deposited in the critical layer by a petawatt laser ("coronal ignition"). Burn efficiencies as high as predicted for standard central spark ignition are achieved. In addition, the scheme is surprisingly insensitive to large deviations from spherical precompression symmetry. It may open a new prospect for direct drive. PMID:11177998

  8. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  9. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  10. Isochoric implosions for fast ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2006-06-05

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.

  11. Flow Friction or Spontaneous Ignition?

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  12. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... rulemaking published in the Federal Register on June 8, 2010 (75 FR 32612). That notice proposed revisions to... Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency... the standards of performance for stationary compression ignition and spark ignition...

  13. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  14. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-06-14

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

  15. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  16. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, P.; Podorson, D.; Varshney, K.

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  17. Air Distribution Retrofit Strategies for Affordable Housing

    SciTech Connect

    Dentz, J.; Conlin, F.; Holloway, Parker; Podorson, David; Varshney, Kapil

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  18. Ignition and combustion phenomena in Diesel engines

    NASA Technical Reports Server (NTRS)

    Sass, F

    1928-01-01

    Evidences were found that neither gasification nor vaporization of the injected fuel occurs before ignition; also that the hydrogen coefficient has no significance. However the knowledge of the ignition point and of the "time lag" is important. After ignition, the combustion proceeds in a series of reactions, the last of which at least are now known.

  19. Integral low-energy thermite igniter

    DOEpatents

    Gibson, Albert; Haws, Lowell D.; Mohler, Jonathan H.

    1984-08-14

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  20. Integral low-energy thermite igniter

    DOEpatents

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  1. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  2. 78 FR 9936 - Federal Housing Administration (FHA): PowerSaver Home Energy Retrofit Loan Pilot Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ..., 2011, HUD published a notice at 76 FR 17936 that announced HUD's FHA Home Energy Retrofit Loan Pilot... URBAN DEVELOPMENT Federal Housing Administration (FHA): PowerSaver Home Energy Retrofit Loan Pilot... Home Energy Retrofit Loan Pilot Program (Retrofit Pilot Program) known as FHA PowerSaver, which is...

  3. Tank farm potential ignition sources

    SciTech Connect

    Scaief, C.C. III

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks.

  4. EVALUATION OF IGNITABILITY METHODS (LIQUIDS)

    EPA Science Inventory

    The purpose of the research was to evaluate the ignitability Methods 1010 (Pensky-Martens) and 1020 (Setaflash) as described by OSW Manual SW846 (1). The effort was designed to provide information on accuracy and precision of the two methods. During Phase I of the task, six stand...

  5. Hydrogen-air ignition torch

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1986-01-01

    The design and operation of a hydrogen-air ignition torch presently being used to burn off excess hydrogen that accumulates in the scrubber exhaust ducts of two rocket engine test facilities at the NASA Lewis Research Center in Cleveland, Ohio, is described.

  6. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.

    1998-12-31

    Mechanical insults of granular high explosives (HE) can result in localized areas of elevated temperature, or hot spots. The evolution of these hot spots is a central issue of HE science. Because of the complexity involved, it is worthwhile to study mechanical and reaction processes in isolation. Mechanical processes are isolated and studied using inert materials or weak insults where reaction may be minimal. Likewise, purely thermal processes can be considered to isolate HE reaction response. In this work the authors study the radiant ignition of various HEs of interest, including HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}), PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), RDX (C{sub 3}H{sub 6}N{sub 6}O{sub 6}), TATB (C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502. Initial work has included unconfined samples at ambient pressure in air. Diagnostics have included photodiodes to record first light emission, high speed photography, microthermocouple and IR emission measurement to obtain surface temperature, IR emission of gases above the pellet, and a novel nonlinear optical technique to characterize the dynamic {beta}-{delta} solid phase transformation and the formation of a liquid layer. The authors find that ignition delays at various power levels is very similar for HMX and RDX; except that the minimum radiant flux needed for RDX ignition is higher. The addition of only 5% binder (PBX 9501) causes significantly longer ignition delays at lower heat fluxes compared with HMX alone. TATB and TATB-based explosives exhibit much longer ignition delays than HMX. In contrast to HMX, however, no measurable difference is observed in TATB by the addition of a binder (PBX 9502, aged or pristine).

  7. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  8. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  9. Research of laser ignition detection system

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhao, Dong; Xu, Qie; Ai, Xin

    2010-10-01

    Laser ignition is an important means of detonation but the accuracy and security is requested strictly. Based on the above, two points were considered in the design: achieve ignition-Fiber-optical health monitoring in the condition of low-intensity light (ensure the safety of gunpowder); observant the explosive imaging. In the paper, the laser ignition equipment was designed with optical detection and inner optical imaging system for the real-time monitoring to the optical fiber and the process of ignition. This design greatly improved the reliability and the safety of laser ignition system and provided the guarantee for usage and industrialization.

  10. Willow firing in retrofitted Irish peat plant

    SciTech Connect

    Broek, R. van den; Faaij, A.; Kent, T.

    1995-11-01

    Interest in biomass electricity in Ireland is being re-awakened by environmental concerns about CO{sub 2} emissions from power generation and the potential of biomass production to provide an alternative agricultural enterprise. The technical and economical feasibility of wood-fuelled power production using willow from energy farming in existing peat-fired plants in Ireland is being studied within the framework of the EU JOULE II+ programme. These options are compared with new combustion plants and a biomass integrated gasifier with combined cycle (BIG/CC). Background studies supplied data for yields of willow farming, establishment of willow plantations, harvesting methods, logistics and costs and efficiencies for different retrofit options at Irish peat plants. All technologies considered are currently available or are expected to be available in the near future. Neither agricultural subsidies nor possible CO{sub 2} taxes have been included. In the least cost supply scenario storage and chipping of wood is done at the power station. In this case wood is only stored in the form of sticks and wood harvested by a chips harvester is supplied to the plant directly during the harvesting season. Fuel costs at the plant gate were estimated between 3.3 and 11 EGU/GJ{sub LHV}. This wide range resulted in a wide range of kWh costs. For the lowest cost option they ranged between 5.4 and 15 ECUcents/kWh. The cheapest proven retrofit option is the conversion of the existing milled peat Lanesborough unit 3 into a bubbling fluidized bed with kWh costs ranging from 5.6 up to 16 ECUcents/kWh. For this plant, costs per tonne of avoided CO{sub 2} emissions varied between 1 and 70 ECU. It is noteworthy that the kWh costs for all options considered were very close. Especially in the high costs scenario a BIG/CC appeared to have lower kWh cost than all biomass combustion plants. Mainly for the retrofitted plants the fuel costs were by far the largest kWh cost component.

  11. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  12. Novel ignition systems for heavy calibre guns

    NASA Astrophysics Data System (ADS)

    Bowden, C. N.; Cook, G. G.; Henning, P. S.

    1986-01-01

    In recent years there was a trend towards steadily rising gun pressures, especially in direct fire weapons and this has caused many functional problems to arise with conventional vent tube ignition systems. To overcome these problems and to allow the process of gun development to continue, the United Kingdom is performing a program of research into a number of ignition systems for heavy caliber guns. These include: spark ignition, laser ignition, and electrical impulse ignition. A number of different spark plug configurations were evaluated. Extensive trials were performed on the ignition characteristics of black powders and black powder substitutes using an experimental 4 J neodymium laser. Work was also performed on the development of high pressure sapphire windows. A study into methods of charge ignition by electrical impulse techniques was also performed.

  13. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect

    Musunuru, S.; Pettit, B.

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  14. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    SciTech Connect

    Musunuru, S.; Pettit, B.

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  15. A polar-drive shock-ignition design for the National Ignition Facility

    SciTech Connect

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A.; Betti, R.; Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R.

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  16. Seismic Retrofit for Electric Power Systems

    DOE PAGESBeta

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  17. Retrofitting the Southeast: The Cool Energy House

    SciTech Connect

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  18. Retrofitting the Southeast. The Cool Energy House

    SciTech Connect

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  19. Tritium and ignition target management at the National Ignition Facility.

    PubMed

    Draggoo, Vaughn

    2013-06-01

    Isotopic mixtures of hydrogen constitute the basic fuel for fusion targets of the National Ignition Facility (NIF). A typical NIF fusion target shot requires approximately 0.5 mmoles of hydrogen gas and as much as 750 GBq (20 Ci) of 3H. Isotopic mix ratios are specified according to the experimental shot/test plan and the associated test objectives. The hydrogen isotopic concentrations, absolute amounts, gas purity, configuration of the target, and the physical configuration of the NIF facility are all parameters and conditions that must be managed to ensure the quality and safety of operations. An essential and key step in the preparation of an ignition target is the formation of a ~60 μm thick hydrogen "ice" layer on the inner surface of the target capsule. The Cryogenic Target Positioning System (Cryo-Tarpos) provides gas handling, cyro-cooling, x-ray imaging systems, and related instrumentation to control the volumes and temperatures of the multiphase (solid, liquid, and gas) hydrogen as the gas is condensed to liquid, admitted to the capsule, and frozen as a single spherical crystal of hydrogen in the capsule. The hydrogen fuel gas is prepared in discrete 1.7 cc aliquots in the LLNL Tritium Facility for each ignition shot. Post-shot hydrogen gas is recovered in the NIF Tritium Processing System (TPS). Gas handling systems, instrumentation and analytic equipment, material accounting information systems, and the shot planning systems must work together to ensure that operational and safety requirements are met. PMID:23629062

  20. Short-Term Test Results. Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, James

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. This report describes the Bay Ridge project, a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). Findings from the short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach.

  1. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    SciTech Connect

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  2. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  3. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW CONTROL

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow (WWF). Cost/benefit relationships were compared to construction of new conventional control and treatment facilities. Desktop...

  4. RETROFIT STORMWATER MANAGEMENT: NAVIGATING MULTIDISCIPLINARY HURDLES AT THE WATERSHED SCALE

    EPA Science Inventory

    Stormwater runoff from extensive impervious surfaces in urban and suburban areas has led to human safety risks and stream ecosystem impairment, triggering an interest in watershed-scale retrofit stormwater management. Such stormwater management is of multidisciplinary relevance, ...

  5. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    SciTech Connect

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  6. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  7. Self-ignition of diesel spray combustion

    NASA Astrophysics Data System (ADS)

    Dhuchakallaya, Isares; Watkins, A. P.

    2009-10-01

    This work presents the development and implementation of auto-ignition modelling for DI diesel engines by using the probability density function-eddy break-up (PDF-EBU) model. The key concept of this approach is to combine the chemical reaction rate dealing with low-temperature mode, and the turbulence reaction rate governing the high-temperature part by a reaction progress variable coupling function which represents the level of reaction. The average reaction rate here is evaluated by a PDF averaging approach. In order to assess the potential of this developed model, the well-known Shell ignition model is chosen to compare in auto-ignition analysis. In comparison, the PDF-EBU ignition model yields the ignition delay time in good agreement with the Shell ignition model prediction. However, the ignition kernel location predicted by the Shell model is slightly nearer injector than that by the PDF-EBU model leading to shorter lift-off length. As a result, the PDF-EBU ignition model developed here are fairly satisfactory in predicting the auto-ignition of diesel engines with the Shell ignition model.

  8. Piezoelectric Ignition of Nanocomposite Energetic Materials

    SciTech Connect

    Eric Collins; Michelle Pantoya; Andreas A. Neuber; Michael Daniels; Daniel Prentice

    2014-01-01

    Piezoelectric initiators are a unique form of ignition for energetic material because the current and voltage are tied together by impact loading on the crystal. This study examines the ignition response of an energetic composite composed of aluminum and molybdenum trioxide nanopowders to the arc generated from a lead zirconate and lead titanate piezocrystal. The mechanical stimuli used to activate the piezocrystal varied to assess ignition voltage, power, and delay time of aluminum–molybdenum trioxide for a range of bulk powder densities. Results show a high dielectric strength leads to faster ignition times because of the higher voltage delivered to the energetic. Ignition delay is under 0.4 ms, which is faster than observed with thermal or shock ignition. Electric ignition of composite energetic materials is a strong function of interparticle connectivity, and thus the role of bulk density on electrostatic discharge ignition sensitivity is a focus of this study. Results show that the ignition delay times are dependent on the powder bulk density with an optimum bulk density of 50%. Packing fractions and electrical conductivity were analyzed and aid in explaining the resulting ignition behavior as a function of bulk density.

  9. The Early Phase of Spark Ignition

    NASA Astrophysics Data System (ADS)

    Pitt, Philip Lawrence

    In this dissertation, some practical ignition techniques are presented that show how some problems of lean-burn combustion can be overcome. Then, to shed light on the effects of the ignition techniques described, the focus shifts to the more specific problem of the early phase of spark ignition. Thermal models of ignition are reviewed. These models treat the energy provided by the electrical discharge as a point source, delivered infinitely fast and creating a spherically symmetric ignition kernel. The thesis challenges the basis of these thermal models by reviewing the work of many investigators who have clearly shown that the temporal characteristics of the discharge have a profound effect upon ignition. Photographic evidence of the early phase of ignition, as well as other evidence from the literature, is also presented. The evidence clearly demonstrates that the morphology of spark kernels in the early phase of development is toroidal, not spherical as suggested by thermal models. A new perspective for ignition, a fluid dynamic point of view, is described. The common ignition devices are then classified according to fluid dynamics. A model describing the behaviour of spark kernels is presented, which extends a previously established mixing model for plasma jets, to the realm of conventional axial discharges. Comparison of the model behaviour to some limited data is made. The model is modified by including the effect of heat addition from combustion, and ignition criteria are discussed.

  10. Programmable Beam Spatial Shaping System for the National Ignition Facility

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

    2011-01-21

    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

  11. LP turbine retrofit modernization: Improvements in performance and operation

    SciTech Connect

    Groenedaal, J.C.; Fowls, L.G.; Subbiah, R.; Maxwell, B.P.; Persson, B.

    1996-11-01

    Westinghouse Electric Corporation retrofitted six low pressure (LP) nuclear turbine rotors and associated blade path components at Ringhals 1, a 1960`s vintage English Electric (GEC) unit located near Varobacka, Sweden, and operated by Vattenfall AB. This achieved significant performance improvements and provided improved mechanical features over the original equipment. This paper, discusses design, manufacture, installation, operation and project coordination. The retrofit processes employed for these units can be applied to any potential customers units.

  12. Diagnostics for Fast Ignition Science

    SciTech Connect

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  13. The benefits of integrated chiller retrofits: Excerpts from case studies

    SciTech Connect

    Gartland, L.; Sartor, D.

    1998-07-01

    An integrated chiller retrofit is an effective way to turn the CFC phaseout into an opportunity for energy efficiency and money savings. The 1996 moratorium on CFC production means many chillers will soon have to be replaced or converted to use alternative refrigerants. Integrating building load reductions and system improvements with chiller replacements and/or conversions can solve building comfort and maintenance problem, increase energy efficiency, save money on utility bills, increase a building's asset value, and produce a more financially attractive project. The poll $ense program at Lawrence Berkeley National laboratory has been gathering integrated chiller retrofit case studies from its regional workshops. This paper presents some of the best examples of different aspects of integrated retrofits. Example projects include: (1) a chiller conversion, (2) a chiller replacement, (3) an effective cooling system renovation, (4) a model building load reduction scheme, (5) an illustration of integrated chiller retrofit economics, (6) a chiller sizing cautionary tale, and (7) an environmentally friendly and cost-effective retrofit. These projects enumerate retrofit measures to consider, and show how much more effective it is to widen your focus from the chiller alone to the entire building when facing the CFC phaseout.

  14. Fragility curves of concrete bridges retrofitted by column jacketing

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Kim, Sang-Hoon; Kushiyama, Shigeru; Yi, Jin-Hak

    2002-12-01

    The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans’ bridges not retrofitted by column jacketing. In this respect, this study represents results of fragility curve development for two (2) sample bridges typical in southern California, strengthened for seismic retrofit by means of steel jacketing of bridge columns. Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agcncy (FEMA) SAC (SEAOC-ATC-CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit. In this first attempt to formulate the problem of fragility enhancement, the quantification is made by comparing the median values of the fragility curves before and after the retrofit. Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage, the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit.

  15. Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes

    SciTech Connect

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-04-01

    The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. This report will detail the retrofit of 2 existing houses in the program. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district GSHP system to service the project. This draft report examines the energy efficiency recommendations for retrofit construction at these homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a Cold Climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project's affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

  16. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    SciTech Connect

    Huelman, P.; Goldberg, L.; Jacobson, R.

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  17. Retrofit of a Multifamily Mass Masonry Building in New England

    SciTech Connect

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  18. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  19. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  20. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  1. The ignition physics study group supports the compact ignition tokamak and engineering test reactor programs

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)

  2. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    SciTech Connect

    Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

  3. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new

  4. Modelling piloted ignition of wood and plastics

    SciTech Connect

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  5. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  6. Ignition threshold for impact-generated fires

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Kring, David A.

    2004-08-01

    Widespread fires can be generated after large impact events by atmospheric heating caused by the reaccretion of high-energy, vapor-rich plume material. We examine the threshold irradiance levels necessary for spontaneous and pilot ignition of various types of vegetation and define three specific cases for investigation: (1) 51 kW/m2 for a period of at least 2 min to spontaneously ignite wood; (2) 20 kW/m2 for a period of at least 20 min to ignite wood in the presence of an ignition source; and (3) 28 kW/m2 for a period of at least 1 min to ignite foliage, rotten wood, and forest litter. The threshold ejected plume mass for continent-wide spontaneous ignition of wood is ~2 to 6 × 1015 kg, independent of impact location but dependent on the details of the ejecta speed distribution. The threshold ejected plume mass for global spontaneous ignition of wood is in the range ~1 to 2 × 1016 kg. The threshold plume masses for continent-wide and global fires are very nearly the same for piloted ignition of wood, while the threshold plume masses for continent-wide and global ignition of leaves and forest litter are significantly lower, by a factor of ~2 to 3. Impact craters of at least 85 km diameter are needed to produce continental-scale fires, and craters of ~135 km diameter are needed for global-scale fires.

  7. PORST: a computer code to analyze the performance of retrofitted steam turbines

    SciTech Connect

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  8. Salt water cooling tower retrofit experience

    SciTech Connect

    Rittenhouse, R.C.

    1994-06-01

    This article describes the experience of engineers at Atlantic Electric Co. with a recent cooling tower fill retrofit at the company's B.L. England Station, Unit 3. Note that this tower is unique. It is the first natural draft salt water tower to be built in the United States. Unit 3's closed-loop saltwater cooling system features a double condenser and two 50% capacity horizontal circulating water pumps. A natural draft cooling tower rejects heat to the atmosphere through evaporation and sensible heat transfer. The tower is 180 ft in diameter at the base and 208 ft high, and features a counterflow design. It was designed to cool 63,500 gpm of circulating salt water through a range of 26 F with an approach of 19.2 degrees at an ambient wet bulb temperature of 76 F and 60% relative humidity. A drift rate of 0.002% of circulating water flow was specified to avoid excessive salt water carryover.

  9. Greenbuilt Retrofit Test House Final Report

    SciTech Connect

    Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

    2014-06-01

    The Greenbuilt house is a 1980's era house in the Sacramento area that was a prominent part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration Program. The house underwent an extensive remodel, aimed at improving overall energy efficiency with a goal of reducing the home's energy use by 50%. NREL researchers performed a number of tests on the major systems touched by the retrofit to ensure they were working as planned. Additionally, SMUD rented the house from Greenbuilt Construction for a year to allow NREL to perform a number of tests on the cooling system and the water heating system. The goal of the space conditioning tests was to find the best ways to cut cooling loads and shift the summer peak. The water heating system, comprised of an add-on heat pump water heater and an integrated collector-storage solar water heater, was operated with a number of different draw profiles to see how varying hot water draw volume and schedule affected the performance of the system as a whole. All the experiments were performed with the house empty, with a simulated occupancy schedule running in the house to mimic the load imposed by real occupants.

  10. Retrofitted natural supersymmetry from a U(1)

    NASA Astrophysics Data System (ADS)

    Hardy, Edward; March-Russell, John

    2013-05-01

    We propose that a single, spontaneously broken, U(1) gauge symmetry may be responsible for suppressing both the first two generation Yukawa couplings, and also, in a correlated manner, parameters in the dynamical supersymmetry (SUSY) breaking sector by the mechanism of retrofitting. In the dynamical SUSY breaking sector, these small parameters are typically required in order to introduce R-symmetry breaking in a controlled manner and obtain phenomenologically viable meta-stable vacua. The heavy U(1) multiplet mediates a dominant contribution to the first two generation MSSM sfermion soft masses, while gauge mediation provides a parametrically suppressed soft term contribution to the stop and most other states, so realising a natural SUSY spectrum in a fashion consistent with SUSY unification. In explicit models the spectra obtained can be such that current LHC limits are evaded, and predictions of flavour changing processes are consistent with observation. We examine both implementations with low scale mediation, and string-motivated examples where the U(1) is anomalous before the inclusion of a generalised Green-Schwarz mechanism.

  11. Mutual colliding impact fast ignition

    SciTech Connect

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  12. Mutual colliding impact fast ignition

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2014-09-01

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB11) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  13. Ignition in laminar and turbulent nonpremixed counterflow

    NASA Astrophysics Data System (ADS)

    Blouch, John Dewey

    2002-01-01

    Investigations into nonpremixed ignition were conducted to examine the influence of complex chemistry and flow turbulence as found in practical combustion systems. The counterflow configuration, where a hot air jet ignited a cold (298K) fuel jet, was adopted in experiments and calculations. The study of the ignition of large alkane hydrocarbons focused on the effects of fuel structure by investigating the reference fuels n-heptane and iso-octane. The ignition response of these fuels was similar to smaller fuels with similar molecular structures. This conclusion was reinforced by showing that the ignition temperature became nearly insensitive to fuel molecule size above C4, but continued to depend on whether the structure was linear or branched. The effects of turbulence were studied by adding perforated plates to the burner to generate controlled levels of turbulence. This configuration was examined in detail experimentally and computationally without reaction, and subsequently the effects of turbulence on ignition were studied with hydrogen as the fuel. The results indicated that at low turbulence intensities, ignition is enhanced relative to laminar ignition, but as the turbulence intensity increases the ignition temperature also increases, demonstrating that optimal conditions for ignition exist at low turbulence intensities. At high pressures, where HO2 chemistry is important, all turbulent ignition temperatures were higher than laminar ones, and the increasing temperature trend with turbulence intensity was still observed. At low fuel concentrations, a different ignition mode was observed where the transition from a weakly reacting state to a flame occurred over a range of temperatures where the flame was repeatedly ignited and extinguished. Turbulent ignition was modeled by solving a joint scalar PDF equation using a Monte Carlo technique. The absence of significant heat release prior to ignition enabled the use of a frozen flow solution, solved separately

  14. Manufacturing of Igniters for NHB 8060.1 Testing

    NASA Technical Reports Server (NTRS)

    Williams, James

    1996-01-01

    The purpose of this WJI is to incorporate a standard procedure to prepare, certify, and ship standard NHB 8060.1B and NHB 8060.1C igniters for flammability testing and to update LJI-320-35-18. The operations are divided into five parts as follows: A. Preparing the igniter mix; B. Extruding the igniters; C. Curing, cutting, and weighing the igniters; D. Certifying the igniters and E. Packaging, storing, and shipping the igniters

  15. Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit

    SciTech Connect

    Lyons, J.

    2013-01-01

    Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ≥ 50% compared to pre-retrofit, and the short-term testing supports this estimate.

  16. Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes

    SciTech Connect

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-04-01

    The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district ground source heat pump (GSHP) system to service the project. This report details the retrofit of two existing houses in the program, and examines the energy efficiency recommendations for the homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a cold climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project’s affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

  17. Magnetic Booster Fast Ignition Macron Accelerator

    SciTech Connect

    Friedwardt Winterberg

    2007-10-01

    Fast Impact ignition using the magnetic booster target concept is studied for isentropic compression and for thermonuclear micro-detonation. Fast ignition of a dense beam-magnetized cylindrical pure D target by multi-megampere GeV proton beams generated with a Super Marx Generator is studied. Shear flow stabilization of think cylindrical axial current confined DT detonation targets.

  18. Advanced ignition and propulsion technology program

    SciTech Connect

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  19. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  20. 33 CFR 183.410 - Ignition protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ignition protection. 183.410 Section 183.410 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.410 Ignition protection. (a) Each...

  1. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition...

  2. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition...

  3. Physics of compact ignition tokamak designs

    SciTech Connect

    Singer, C.E.; Ku, L.P.; Bateman, G.; Seidl, F.; Sugihara, M.

    1986-03-01

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given.

  4. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  5. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  6. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  7. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  8. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  9. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  10. Plasma torch igniter for scramjets

    NASA Technical Reports Server (NTRS)

    Wagner, Timothy C.; O'Brien, Walter F.; Northam, G. Burton; Eggers, James M.

    1989-01-01

    A small, uncooled plasma torch was developed and used in combination with an injector designed to study ignition and flameholding in hydrogen-fueled supersonic flows. The plasma torch was operated on mixtures of hydrogen and argon with total flows of 10 to 70 scfh. The fuel injector design consisted of five small upstream pilot fuel injectors, a rearward facing step for recirculation, and three main fuel injectors downstream of the step. The plasma torch was located in the recirculation region, and all injection was perpendicular to the Mach 2 stream. Both semi-freejet and ducted tests were conducted. The experimental results indicate that a low power plasma torch operating on a 1:1 volumetric mixture of hydrogen and argon and located in the recirculation zone fueled by the upstream pilot fuel injectors is a good igniter for flow conditions simulating a flight Mach number of 3.7. The total temperature required to autoignite the hydrogen fuel for this injector geometry was 2640 R. The injector configuration was shown to be a good flameholder over a wide range of total temperature. Spectroscopic measurements were used to verify the presence of air total temperatures below 1610 R.

  11. Plasma torch igniter for scramjets

    NASA Technical Reports Server (NTRS)

    Wagner, Timothy C.; Obrien, Walter F.; Northam, G. Burton; Eggers, James M.

    1986-01-01

    A small, uncooled plasma torch was developed and used in combination with an injector designed to study ignition and flameholding in hydrogen-fueled supersonic flows. The plasma torch was operated on mixtures of hydrogen and argon with total flows of 10 to 70 scfh. The fuel injector design consisted of five small upstream pilot fuel injectors, a rearward facing step for recirculation, and three main fuel injectors downstream of the step. The plasma torch was located in the recirculation region, and all injection was perpendicular to the Mach 2 stream. Both semi-freejet and ducted tests were conducted. The experimental results indicate that a low power plasma torch operating on a 1:1 volumetric mixture of hygrogen and argon and located in the recirculation zone fueled by the upstream pilot fuel injectors is a good igniter for flow conditions simulating a flight Mach number of 3.7. The total temperature required to autoignite the hydrogen fuel for this injector geometry was 2640 R. The injector configuration was shown to be a good flameholder over a wide range of total temperature. Spectroscopic measurements were used to verify the presence of air total temperatures below 1610 R.

  12. Isochoric Implosions for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Tabak, Max

    2006-10-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hotspot ignition counterpart. These gain models, however, all assume nearly uniform-density fuel assemblies. By contrast, typical ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hotspot. To realize fully the advantages of FI, then, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hotspots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters, i.e., accessible peak pressures, shell aspect ratios, etc. An implosion scheme is presented which meets all of these requirements, suggesting the possibility of genuinely isochoric implosions for FI.

  13. Isochoric Implosions for Fast Ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2007-04-04

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. & Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm{sup 3} and areal density of 2.4 g=cm{sup 2} using 485 kJ of laser energy.

  14. The NIF Ignition Program: Progress And Planning

    SciTech Connect

    Hammel, B A

    2006-06-12

    The first experimental campaign for ignition, beginning in 2010 after NIF construction and commissioning are completed, will include experiments to measure and optimize key laser and target conditions necessary for ignition. These ''tuning campaigns'' will precede the first ignition shots. Ignition requires acceptable target performance in several key areas: Energetics, Symmetry, Shock timing, and Capsule Hydrodynamics. Detailed planning and simulations for ''tuning campaigns'' in each of these areas is currently underway, as part of the National Ignition Campaign (NIC) Program. Tuning and diagnostic methods are being developed and tested on present facilities, including the Omega laser at the Laboratory for Energetics (LLE), the Z facility at Sandia National Laboratories (SNL), and the Trident laser at Los Alamos National Laboratory (LANL).

  15. Ignition of a granular propellant bed

    SciTech Connect

    Wildegger-Gaissmaier, A.E.; Johnston, I.R.

    1996-08-01

    An experimental and theoretical study is reported on the ignition process of a low vulnerability ammunition (LOVA) propellant bed in a 127-mm (5-in) bore gun charge. The theoretical investigation was with a two-phase flow interior ballistics code and the model predictions showed the marked influence the igniter system can have on pressure wave development, flame spreading, and the overall interior ballistics performance. A number of different igniter systems were investigated in an empty and propellant-filled gun simulator. Pressure, flame spreading, and high-speed film records were used to analyze the ignition/combustion event. The model predictions for flame spreading were confirmed qualitatively by the experimental data. Full-scale instrumented gun firings were conducted with the optimized igniter design. Pressure waves were not detected in the charge during the firings. Model predictions on overall interior ballistics performance agreed well with the firing data.

  16. Ignition apparatus for internal combustion engine

    SciTech Connect

    Imoto, K.; Katada, H.

    1986-10-07

    An ignition apparatus is described for an internal combustion engine having a crankshaft and a camshaft coupled to the crankshaft to be rotated thereby, comprising: crankshaft position signal generating means for detecting that the crankshaft has rotated to a predetermined angular position and for generating crankshaft position signals in response to the detection; camshaft position signal generating means for detecting that the camshaft has rotated to a predetermined angular position and for generating camshaft position signals in response to the detection; command signal generating means coupled to receive the crankshaft position signals, for generating ignition command signals in response to the crankshaft position signals; and ignition circuit means for generating a high ignition voltage in response to the ignition command signals.

  17. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  18. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-06-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  19. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-01-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  20. Modular industrial solar retrofit project (MISR)

    SciTech Connect

    Alvis, R.L.

    1980-01-01

    The intent of this paper is to describe a major Department of Energy (DOE) thrust to bring line-focus solar thermal technology to commercial readiness. This effort is referred to as the MISR Project. The project is based upon the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil fuel applications are technically the first that should be retrofitted. Experience has shown that modularity in system design and construction offers potential for reducing engineering design costs, reduces manufacturing costs, reduces installation time and expense, and improves system operational reliability. The modular design effort will be sponsored by Sandia National Laboratories with industry doing the final designs. The operational credibility of the systems will be established by allowing selected industrial thermal energy users to purchase MISR systems from suppliers and operate them for two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost sharing basis. The MISR system allowed in the experiments will have been previously qualified for the application. The project is divided into three development phases which represent three design and experiment cycles. The first cycle will use commercially available trough-type solar collectors and will incorporate 5 to 10 experiments of up to 5000 m/sup 2/ of collectors each. The project effort began in March 1980, and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The project is success oriented, and if the first cycle reaches commercial readiness, the project will be terminated. If not, a second, and possibly a third, development cycle will be conducted.

  1. Housing Stock Characterization Study: An Innovative Approach to Measuring Retrofit Impact

    SciTech Connect

    Jones, P.; Taylor, N.; Kipp, J.

    2012-09-01

    A residential energy efficiency retrofit loan program depends on a self-sustaining finance option and optimized retrofit measures that recoup their unsubsidized costs through energy bill savings alone within the useful life of the retrofit. A first step in evaluating retrofit options is to measure and verify their energy savings. This report evaluates Orlando Utilities Commission (OUC) residential energy-efficiency demand side management (DSM) programs to assess their relative energy and economic performance.

  2. Housing Stock Characterization Study. An Innovative Approach to Measuring Retrofit Impact

    SciTech Connect

    Jones, P.; Taylor, N.; Kipp, J.

    2012-09-01

    A residential energy efficiency retrofit loan program depends on a self-sustaining finance option and optimized retrofit measures that recoup their unsubsidized costs through energy bill savings alone within the useful life of the retrofit. A first step in evaluating retrofit options is to measure and verify their energy savings. This report evaluates Orlando Utilities Commission (OUC) residential energy-efficiency demand side management (DSM) programs to assess their relative energy and economic performance.

  3. Field Assessment of Energy Audit Tools for Retrofit Programs

    SciTech Connect

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also show homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.

  4. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect

    Dentz, Jordan; Podorson, David; Varshney, Kapil

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  5. Full-Scale Demonstration Low-NOx Cell Burner retrofit

    SciTech Connect

    Not Available

    1991-05-24

    The overall objective of the Full-Scale Low-NOx Cell (LNC) Burner Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: at least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; and demonstrate that the LNC burner retrofits are the most cost-effective alternative to emerging, or commercially- available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

  6. 75 FR 21016 - Notice of Proposed Information Collection: Comment Request; The Green Retrofit Program of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... URBAN DEVELOPMENT Notice of Proposed Information Collection: Comment Request; The Green Retrofit Program... package with respect to the Green Retrofit Program authorized by the American Recovery and Revitalization... and the Owner. The Green Retrofit Program is detailed in HUD Notice H 09-02 issued on May 13,...

  7. 77 FR 24505 - Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... SECURITY Federal Emergency Management Agency Hazard Mitigation Assistance for Wind Retrofit Projects for... comments on Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings... property from hazards and their effects. One such activity is the implementation of wind retrofit...

  8. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  9. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    SciTech Connect

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  10. Retrofit and verification test of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Poeschel, R. L.

    1980-01-01

    Twenty modifications were found to be necessary and were approved by design review. These design modifications were incorporated in the thruster documents (drawings and procedures) to define the J series thruster. Sixteen of the design revisions were implemented in a 900 series thruster by retrofit modification. A standardized set of test procedures was formulated, and the retrofit J series thruster design was verified by test. Some difficulty was observed with the modification to the ion optics assembly, but the overall effect of the design modification satisfies the design objectives. The thruster was tested over a wide range of operating parameters to demonstrate its capabilities.